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Green–Kubo and Einstein expressions for the transport coefficients of a fluid in a nonequilibrium
steady state can be derived using the fluctuation theorem and by assuming the probability
distribution of the time-averaged dissipative flux is Gaussian. These expressions are consistent with
those obtained using linear response theory and are valid in the linear regime. It is shown that these
expressions are, however, not valid in the nonlinear regime where the fluid is driven far from
equilibrium. We advance an argument for why these expressions are only valid in the linear
response, zero field limit. ©2000 American Institute of Physics.@S0021-9606~00!51221-5#

I. INTRODUCTION

In 1993 Evans, Cohen, and Morriss,1 ECM2, gave a
quite general formula for the logarithm of the probability
ratio that in a nonequilibrium steady state, the time-averaged
dissipative flux takes on a value,J̄1(t), to minus that value,
namely, J̄2(t)52 J̄1(t); that is they gave a formula for
ln@p(J̄1(t))/p(J̄2(t))# from a natural invariant measure.1,2 This
formula gives an analytic expression for the probability that,
for a finite system and for a finite time, the dissipative flux
flows in the reverse direction to that required by the second
law of thermodynamics. The formula has come to be known
as the fluctuation theorem~FT!. Surprisingly perhaps, it is
valid far from equilibrium in the nonlinear response regime.1

Since 1993 there have been a number of derivations and
generalizations of the FT. Evans and Searles3–5 gave a deri-
vation, similar to that given here, which considered transient,
rather than steady state, nonequilibrium averages and em-
ployed the Liouville measure. Gallavotti and Cohen6,7 gave a
proof of the formula for a nonequilibrium stationary state,
based on a chaotic hypothesis and employing the SRB mea-
sure. In the long time limit, when steady state averages are
independent of the initial phase used to generate the steady
state trajectory, averages overtransient segments which
originate from the initial equilibrium microcanonical en-
semble can be expected to approach those taken over non-
equilibrium steady statesegments. Thus for chaotic systems
both approaches should be able to explain the steady state
results. However, this point is being debated.8 Other gener-
alizations of the FT have recently been developed.9–12

In a footnote to their original paper, ECM2 also pointed
out that in the weak field regime, there was a connection
between the FT, the central limit theorem~CLT!,13,14 and
Green–Kubo relations.1,4 In the present paper we explore
this connection further and consider the validity of the
Green–Kubo relations far from equilibrium. We show thatif
the distribution of the time averaged dissipative flux,
p( J̄(t)), is Gaussian arbitrarily far from the mean, then from
the FT one can derive both generalized Einstein and gener-

alized Green–Kubo relations for the relevant transport coef-
ficient. Both isothermal~i.e., isokinetic! and isoenergetic dy-
namics are considered. We conduct computer simulations
which prove that, outside the linear regime, these generalized
Green–Kubo and Einstein relations are incorrect. It turns out
that in order for the nonlinear Green–Kubo relations to be
valid p( J̄(t)/s J̄(t)) must be a normalized Gaussian when
both t and J̄(t)/s J̄(t)→`, wheres

J̄(t)

2
is the variance of the

distribution of values ofJ̄(t). However, this is not guaran-
teed by the central limit theorem15 and the nonlinear Green–
Kubo relations are invalid.

II. NEMD DYNAMICAL SYSTEMS

The development of nonequilibrium molecular dynamics
~NEMD! over the previous two decades has lead to a set of
deterministic algorithms~i.e., N-particle dynamical systems!
from which one can, in principle, calculate correct values for
each of the Navier–Stokes transport coefficients.16 These dy-
namical systems actually duplicate the salient features of real
experimental nonequilibrium steady states. In the linear re-
gime close to equilibrium, nonequilibrium statistical me-
chanics is used to prove that in the large system limit the
calculated transport properties are correct. Using NEMD one
can calculate far more than just transport coefficients. One
can also correctly calculate the changes to the local molecu-
lar structure and dynamics, caused by the applied external
fields.

Consider anN-particle system in three Cartesian dimen-
sions, with coordinates and peculiar momenta,
$q1 ,q2 ,..qN ,p1 ,..pN%[(q,p)[G. The internal energy of
the system is

H0[(
i 51

N

pi
2/2m1F~q!,

whereF~q! is the interparticle potential energy which is a
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function of the coordinates of all of the particles,q. In the
presence of an external fieldFe , the thermostatted equations
of motion are taken to be

q̇i5pi /m1Ci~G!Fe ,

ṗi5Fi~q!1Di~G!Fe2a~G!pi ,
~1!

where

Fi~q!52
]F~q!

]qi
, ~2!

anda is the thermostat multiplier derived from Gauss’ prin-
ciple of least constraint in order to fix the peculiar kinetic
energy,K[( i 51

N pi
2/2m, or the internal energy,H0 . In a

constant energy system the thermostat multiplier is easily
seen to be

aE52J~G!VFe/2K, ~3!

while in an isokinetic system the corresponding expression
for the multiplier is

aK5(
pi

m
•~Fi1DiFe!/2K. ~4!

We note that the thermostatted equations of motion are time
reversible. The dissipative flux is defined in terms of the
adiabatic~i.e., unthermostatted! derivative of the internal en-
ergy,

Ḣ0
ad[2J~G!VFe , ~5!

whereV is the system volume.
In an isokinetic system, the balance between the work

done on the system by the external field and the heat re-
moved by the thermostat implies that

lim
~ t→`!

E
0

t

dsJ~G~s!!VFe522K0 lim
~ t→`!

E
0

t

dsaK~G~s!!,

~6!

while in a constant energy system, energy balance is exact
instantaneously,

J~G!VFe522K~p!aE~G!. ~7!

In Eq. ~6!, K0 is the ~fixed! peculiar kinetic energy,

3NkBT/2[3Nb0
21/2[K0 . ~8!

A shorthand notation will be used to refer to the time-
averaged value of a phase function along a trajectory seg-
ment,G1(s); 0,s,t. We will write

Ā1~ t ![1/tE
0

t

dsA~G1~s!!. ~9!

Since the dynamics is time reversible, for every trajectory
segment G1(s); 0,s,t, there exists an antisegment,
G2(s); 0,s,t, A plus or minus sign is ascribed to a par-
ticular trajectory segment depending on the sign of the time-
averaged value of the thermostat multiplier: therefore, by
definition ā1(t).0. The time reversed conjugate of the seg-
mentG1(s); 0,s,t, namelyG2(s); 0,s,t, is termed an
antisegment and

Ā2~ t ![1/tE
0

t

dsA~G2~s!!. ~10!

Depending on the parity of the phase functionA(G) under
the time reversal mapping, there may be a simple relation
betweenĀ1(t) and Ā2(t). Without loss of generality we
take the external field to be even under time reversal sym-
metry; therefore the dissipative flux is odd and

J̄2~ t !52 J̄1~ t !, ;t. ~11!

Using this notation the dissipative flux is related to the phase
space compression accomplished by the thermostat

lim
~ t→`!

b J̄1~ t !VFe52 lim
~ t→`!

3Nā1~ t ! isokinetic,

bJ1~ t !VFe523Nā1~ t ! isoenergetic, ~12!

where for both the isokinetic and isoenergetic systems

bJ~G!V[3NJ~G!V/2K~p!,

but in the isokinetic case, the peculiar kinetic energyK is a
constant of the motion. Sinceb is always positive, we see
from Eq. ~12! that the sign convention for distinguishing
segments and antisegments can equally well be taken from
the sign of the dissipative flux.

III. THE „TRANSIENT… FLUCTUATION THEOREM

For our system, since the adiabatic incompressibility of
phase space (AIG) holds,16 the Liouville equation for the
N-particle distribution functionf (G,t), reads

d f~G,t !

dt
52 f ~G,t !]Ġ•/]G

53Na~G! f ~G,t !1O~1! f ~G,t !. ~13!

The O(1) terms are omitted in the following discussion. In-
corporation of these terms poses no difficulty but compli-
cates the expressions and the consequences can be neglected
in the large system limit. The solution of this equation can be
written as4

f ~G6~ t !,t !5expF E
0

t

3Na~G6~s!!dsG f ~G6,0!,

5exp@3Nā6~ t !t# f ~G6,0!. ~14!

This is known as the Lagrangian form of the Kawasaki dis-
tribution function.4

Consider the propagation of a phase point along a
trajectory in phase space. If we select an initial,t50,
phase,G(1) , and we advance time from 0 tot using the
equations of motion ~1! we obtain G(2)5G(t;G(1))
5exp@iL(G(1) ,Fe)t#G(1) , where the phase Liouvillean,
iL (G(1) ,Fe), is defined as iL (G,Fe)[q̇(G,Fe)•]/]q
1ṗ(G,Fe)•]/]p. Continuing on to 2t gives G(3)

5exp@iL(G(2) ,Fe)t#G(2)5exp@iL(G(1) ,Fe)2t#G(1) . This is
demonstrated in Fig. 1.

From this trajectory segment, we can construct a time
reversed trajectory. At themidpointof the trajectory segment
G(1,3) ~i.e., at t5t! we apply the time reversal mapping,
M (T), to G(2) generatingM (T)G(2)[G(5) . If we now propa-
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gate backward in time keeping the same external field, we
obtain G(4)5exp@2iL(G(5) ,Fe)t#G(5) . G(4) is the initial t
50 phase from which a segmentG(4,6) can be generated with
G(6)5exp@iL(G(4) ,Fe)2t#G(4) . We denote the trajectory
t-segment G(1)→G(3) , as G(1,3)5G1 ; similarly G(4,6)

5G2 . Using the symmetry of the equations of motion it is
trivial to show thatJ(G(2))52J(G(5)) and thatJ(t;G1,0
,t,2t)52J(2t2t;G2,0,t,2t); see Fig. 1. We now
have an algorithm for findinginitial phases which will sub-
sequently generate the conjugate segments.

The ratio of probabilities of finding the initial phases
G(1) , G(4) which generate these conjugate segments will now
be discussed. In acausaluniverse, the probabilities of ob-
serving the segmentsG1 and G2 are proportional to the
probabilities of observing theinitial phases which generate
those segments.3,5 It is convenient to consider a small phase
space volume,dV(G( i )(0)), about an initial phase,G( i )(0).
If we are considering isoenergetic dynamics, then the initial
equilibrium phases are distributedmicrocanonically, and
therefore the probability of observing ensemble members in-
side dV(G( i )(0)) is proportional todV(G( i )(0)) ~for gener-
alizations to other ensembles see Ref. 17!. From the
Liouville equation ~13! and the fact that for sufficiently
small volumes, dV(G(t));1/f (G(t),t), we can make
the following observations: dV25dV1(t)5dV1(0)
3exp@2*0

t3Na(s;G(1))ds# and, dV35dV1(2t)5dV1(0)
3exp@2*0

2t3Na(s;G(1))ds#. Because the segmentG(4,6) is re-
lated to G(1,3) by M (T) which is applied att5t, and the
Jacobian of M (T) is unity, dV25dV5⇒dV35dV4 and
dV1(0)5dV6 .

However, sincedV1(0) and dV4(0) are volumes att
50 and since the distribution of initial phases is microca-
nonical, we can compute the ratio of probabilities of observ-
ing t50 phases withindV1(0) anddV4(0). This ratio is just
the volume ratio,

dV4~0!/dV1~0!5dV1~2t!/dV1~0!

5expF E
0

2t

23Na~s;G~1!!dsG , ;t.

~15!

There may be trajectory segments whose initial phases lie
outside the phase space volumedV1(0) but which have the
same value ofā(2t) as those lying insidedV1(0). Suppose
that there are two noncontiguous subvolumes of phase space
dV1(0), dV18(0) from which trajectories originate which,
after a time 2t, have time-averaged values ofa which lie in
the range: (ā1(2t),ā1(2t)1da) ~see Fig. 2!. Suppose that
at time 2t these volumes evolve to:dV1(2t)5dV3 ,
dV18(2t)5dV38 . At time zero the corresponding volumes
for the corresponding antitrajectories are:dV1(2t)5dV4 ,
dV18(2t)5dV48 .

The ratio of probabilities of observing trajectories
(ā1(2t),ā1(2t)1da) compared to the corresponding an-
titrajectories, (ā2(2t),ā2(2t)1da), is

~dV41dV48!/~dV11dV18!

5~dV31dV38!/~dV11dV18!

5
lim da→0

~dV1 exp@3Nā1~2t!2t#

1dV18 exp@3Nā1~2t!2t#)/~dV11dV18! ~16!

5exp@3Nā1~2t!2t#

sinceā(2t) is the same for both trajectories. This shows that
even when noncontiguous regions of phase space have the
same time-averaged values for the thermostatting multiplier,
the ratio of probability thatā(t)5ā1(t)5A to the probabil-
ity that ā(t)5ā2(t)52A @i.e., p(ā(t)5A)/p(ā(t)52A#,
whereA is any required value of the time average ofa is

p~ ā~ t !5A!

p~ ā~ t !52A!
5exp@3NAt#. ~17!

FIG. 1. The shear stress,Pxy , for trajectory segments from a simulation of
200 disks atT5Spi

2/2mNkB51.0, andn5N/V50.4. The trajectory seg-
ment,G(1,3) , was obtained from a forward time simulation. Att52, a time
reversal map was applied toG(2) , to giveG(5) ~for the SLLOD equations of
motion the time reversal map is the Kawasaki map (x,y,px ,pz ,g)→(x,
2y,2px ,pz ,g)!. Forward and reverse time simulations from this point give
the trajectory segmentsG(5,6) andG(5,4) , respectively. If one invertsPxy in
Pxy50 and inverts time aboutt52, one transforms thePxy(t) values for the
anti-segmentG(4,6) into those for the conjugate segment,G(1,3) .

FIG. 2. Schematic diagram showing two disconnected subvolumes of phase
spacedV1(0), dV18(0) from which trajectories originate which, after a time
2t, have time-averaged values ofa which lie in the range:
(ā1(2t),ā1(2t)1da). At time 2t these volumes evolve to:dV1(2t)
5dV3 , dV18(2t)5dV38 . See Eq.~16!.
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This formula is exact for transient trajectory segments of a
system undergoing isoenergetic dynamics. For isoenergetic
dynamics there is a linear relationship between the value of
a and the value ofbJ, so

p~ ā~ t !5A!

p~ ā~ t !52A!
5

p~bJ~ t !5B!

p~bJ~ t !52B!

5exp@3NAt#5exp@2BVFet#, ~18!

whereB523NA/VFe . For isokinetic dynamics, the proce-
dure above can be used to show that17

p~ J̄~ t !5B!

p~ J̄~ t !52B!
5exp@2BbVFet#. ~19!

If we are interested in steady state segments, Eqs.~18! and
~19! will only be true in the limit as the segment duration,t,
goes to infinity1,6–8,17 and only when the steady state is
unique:

lim
~ t→`!

1

t
lnS p~bJ~ t !5B!

p~bJ~ t !52B!
D 52BVFe . ~20!

Equations~18!, ~19!, and ~20! express what has become
known as the fluctuation theorem~FT! for the dissipative
flux for isokinetic and the isoenergetic dynamics.1,2–7,17

IV. EINSTEIN AND GREEN–KUBO RELATIONS

We consider first the isokinetic case. In this caseb is a
constant of the motion:bJ(t)5b0J̄(t). It might be expected
that as the averaging time,t, becomes arbitrarily large com-
pared to the Maxwell time,tM , which characterizes serial
correlations in the dissipative flux, contributions to the tra-
jectory segment averages of the dissipative flux,$J̄(t)%,
would become statistically independent and therefore satisfy
the central limit theorem~CLT!; that is, ast→`, the distri-
bution would approach a Gaussian. If the distribution is
Gaussian, it is trivial to show that there is a relation between
the logarithm of conjugate probabilities of time-averaged
steady state dissipative fluxes and the variance of the distri-
bution of those averaged dissipative fluxes

lim
~ t→`!

1

t
lnS p~bJ~ t !5bB!

p~bJ~ t !52bB!
D 5 lim

~ t→`!

1

t
lnS p~ J̄~ t !5B!

p~ J̄~ t !5B!
D

5 lim
~ t→`!

2B^J&Fe

tsJ~ t !
2 ~ t !

, ~21!

wheres
J̄(t)

2
(t) is the variance of the distribution of$J̄(t)%.

Combining this equation with Eq.~20! shows that if the dis-
tribution is Gaussian, there must be a trivial relation between
the variance and the mean of the distribution of averaged
fluxes.18 From this relation the nonlinear transport coefficient
is given

L~Fe!5
2^J&Fe

Fe
5 lim

~ t→`!

1

2
b0Vts

J̄~ t !

2
. ~22!

In the zero field limit this equation constitutes an Einstein
relation for the linear transport coefficient,L(0). Except for

the case of color conductivity where Eq.~22! is equivalent to
the standard Einstein expression for the self-diffusion
coefficient,19 these zero field Einstein relations are not well
known. For nonzero applied fields, the generalized Einstein
relation for the field dependent transport coefficient,L(Fe),
Eq. ~22! is, as we shall see, incorrect.

In the long time limit the variance of the steady state
distribution of t-averaged fluxes,

s
J̄~ t !

2
~Fe!5^~ J̄~ t !2^J&Fe

!2&Fe
, ~23!

satisfies the equation~see Ref. 4 and also the Appendix!,

lim
~ t→`!

ts
J̄~ t !

2
~Fe!52L̃J~0;Fe!/b0V1 lim

~ t→`!

2L̃J8~0;Fe!/b0Vt

52L̃J~0;Fe!/b0V, ~24!

where

L̃J~s;Fe![b0VE
0

`

dte2st^~J~0!2^J&Fe
!~J~ t !2^J&Fe

!&Fe
.

~25!

L̃J(s;Fe) is the frequency and field dependent Green–Kubo
transform~GK! of the dissipative flux and therefore is essen-
tially the Fourier–Laplace transform of the field dependent
dissipative flux autocorrelation function evaluated in a NESS
with an applied fieldFe :

L̃J8~s;Fe![dL̃J~s;Fe!/ds. ~26!

The factorb0 is included in the GK transform to make the
expression consistent with the Green–Kubo expression for
the transport coefficient at zero applied field.

Combining Eq. ~22! and ~24!, shows that if the
t-averaged dissipative fluxes are Gaussian, then thenonlin-
ear phenomenological transport coefficient,L(Fe), is given
by the zero frequency Green–Kubo transform of the dissipa-
tive flux,

L~Fe!5L̃J~0;Fe!

5b0VE
0

`

dt^~J~0!2^J&Fe
!~J~ t !2^J&Fe

!&Fe
.

~27!

In the zero field limit Eq.~27! reduces to the correct well
known Green–Kubo expression for the linear transport coef-
ficient, L(0). Therelationship between the FT and GK ex-
pressions in the linear regime has been considered
previously.4,10,20–22In the present paper, simulations are car-
ried out to test these relationships in the nonlinear, large field
regime. These numerical calculations show that this general-
ized Green–Kubo relation Eq.~27!, is not valid, forcing us to
conclude that the distribution is not sufficiently Gaussian far
from equilibrium and far from the mean.

In the isoenergetic case,if the distribution is Gaussian,
we have
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lim
~ t→`!

1

t
lnS p~bJ~ t !5B!

p~bJ2~ t !5B!
D 5 lim

~ t→`!

2B^bJ&Fe

tsbJ~ t !
2

5 lim
~ t→`!

22B^bJ&Fe

tsbJ~ t !
2 . ~28!

Combining this equation with Eq.~20! shows that if the dis-
tribution is Gaussian there there must again be a trivial rela-
tion between the variance of the distribution of averaged
fluxes and the nonlinear transport coefficient,

^b&Fe
L~Fe![

2^bJ&Fe

Fe
5 lim

~ t→`!

1

2
VtsbJ~ t !

2 . ~29!

Were such a relation to be true at large fields it would con-
stitute a generalized Einstein relation for the field dependent
transport coefficientL(Fe). In the long time limit the vari-
ance of the steady state distribution oft-averaged fluxes,

sbJ~ t !
2

~Fe!5^~bJ~ t !2^bJ&Fe
!2&Fe

, ~30!

satisfies the equation

lim
~ t→`!

tsbJ~ t !
2

~Fe!

52^b&Fe
L̃J~0;Fe!/V1 lim

~ t→`!

2^b&Fe
L̃J8~0;Fe!/Vt

52^b&Fe
L̃J~0;Fe!/V, ~31!

where

^b&Fe
L̃J~s;Fe![VE

0

`

dt e2st^~bJ~0!2^bJ&Fe
!

3~bJ~ t !2^bJ&Fe
!&Fe

. ~32!

Combining Eqs.~28! and ~30! shows that if the distribution
of the t-averaged dissipative fluxes is Gaussian, then thenon-
linear phenomenological transport coefficient,L(Fe), is
given by the zero frequency Green–Kubo transform of the
dissipative flux,

L~Fe!5L̃J~0;Fe!

[V^b&Fe

21E
0

`

dt^~bJ~0!2^bJ&Fe
!~bJ~ t !

2^bJ&Fe
!&Fe

. ~33!

Not surprisingly, results of numerical tests of this relation-
ship indicate that Eq.~33! is also not correct.

V. NUMERICAL RESULTS

Steady state NEMD simulations of a fluid undergoing
shear flow were used to test the accuracy of the expressions
derived above. All simulations were carried out in two Car-
tesian dimensions with interactions between particles given
by the Weeks–Chandler–Anderson repulsive pair potential.
Note that Lennard-Jones reduced units are used in the figures
and throughout this section. In both cases, simulations were
carried out for systems of 200 particles and for the isokinetic
system, the temperature was constrained atT51.0, whereas

for the isoenergetic system the internal energy was con-
strained atE/N51.560 32. For the isokinetic fluid, two den-
sities,n5N/V, were considered:n50.4 andn50.8; and for
the isoenergetic fluid the density was set ton50.8.

The SLLOD equations-of-motion with Lees–Edwards
periodic boundary conditions were employed to model the
shear flow, and a Gaussian thermostat or ergostat used to
maintain a steady state.16 The adiabatic SLLOD equations
give an exact representation of shear flow arbitrarily far from
equilibrium and Lees–Edwards periodic boundary conditions
give the unique generalization of periodic boundary condi-
tions to planar Couette flow. The SLLOD equations@analo-
gous to Eq.~1!# are given by:

q̇i5pi1 igyi ,
~34!

ṗi5Fi2 igpyi2api ,

whereg is the strain rate anda is the isokinetic or isoener-
getic thermostat multiplier. When the kinetic energy is a con-
stant of motion,

aK5
( i 51

N Fi•pi2gpxipyi

( i 51
N pi•pi

, ~35!

while if the internal energy is a constant of motion,

aE5
2gPxyV

( i 51
N pi•pi

, ~36!

wherePxy is thexy element of the pressure tensor,

PxyV5(
i 51

N

pxipyi2
1

2 (
i , j 51

N

xi j Fyi j , ~37!

which is the dissipative flux:J[Pxy . The nonlinear shear
viscosity, h~g!, is the nonlinear transport coefficient calcu-
lated using this algorithm. We note that since the theory
given above assumes that the external field doesnot change
sign on the time reversed trajectory, and since the strain rate
is odd under a simple time reversal mapping, the appropriate
mapping for generating anti-trajectories under shear
is the Kawasaki mapping,16 MK(x,y,px ,py ;g)5(x,2y,
2px ,py ;g).

First we carried out simulations to show that in the long
time limit, for an isokinetic system the variance of the dis-
tribution of $J̄(t)% is related to the zero frequency Green–
Kubo transform ofJ̄(t) by Eq. ~24!, and for an isoenergetic
system, the variance of the distribution of$Jb(t)% is related
to the zero frequency Green–Kubo transform ofJb(t) by
Eq. ~31!. The behavior at various strain rates was examined
and the results are shown in Fig. 3. Equations~24! and ~31!
are found to be verified in all cases.

We tested the nonlinear Green–Kubo relations~27! and
~33! for the systems described above and the results are
shown in Fig. 4. SinceL̃(0;Fe) is also related to the variance
of the distribution of$J̄(t)% or $Jb(t)% as t→` for the iso-
kinetic or isoenergetic system, respectively, results obtained
directly from the variance are also presented. Clearly the
equivalence ofL(Fe) andL̃(0;Fe) is only observed at small
fields. At intermediate fields the Green–Kubo transform of
the dissipative fluxL̃(0;Fe), underestimates the actual trans-
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port coefficient while at high fieldsL̃(0;Fe), overestimates
the transport coefficient. We conclude that nonlinear Green–
Kubo relations@~27!, ~33!# arenot valid in the far from equi-
librium regime.

VI. DISCUSSION

In the zero field limit, thermostatted linear response
theory can be used to determine the field dependent transport
coefficients. For the isokinetic response:

lim
Fe→0

L~Fe!52 lim
Fe→0

^J&Fe ,K

Fe

5b0VE
0

`

dt^J~0!J~ t !&0,K , ~38!

where the ensemble average^&0,K is over the equilibrium
isokinetic ensemble. This expression derived from linear re-
sponse theory is identical to Eq.~27! in the limit Fe→0,
which was derived using both the CLT and the FT. The
results in Fig. 4 confirm the agreement of Eqs.~38! and~27!
in the zero field limit with linear response theory.

FIG. 3. Calculation ofL̃J(0;Fe) from the variance of distributions of the
t-averaged dissipative flux for simulations at:~a! constant temperature with
T51.0, n50.4, Fe50.0 ~unfilled circles!, Fe51.0 ~filled circles! and Fe

52.0 ~squares!; ~b! constant temperature withT51.0,n50.8; Fe50.0 ~un-
filled circles!, Fe50.5 ~filled circles! and Fe51.0 ~squares!; and ~c! con-
stant internal energy withE/N51.560 32,n50.8,Fe50.0 ~unfilled circles!,
Fe50.3 ~triangles! and 0.5~filled circles!. The crosses showL̃J(0;Fe) de-
termined from the zero frequency Green–Kubo transform of the dissipative
flux.

FIG. 4. The filled circles show the viscosity as a function of strain rate for
systems at~a! constant temperature withT51.0 andn50.4; ~b! constant
temperature withT51.0 andn50.8; and~c! constant internal energy with
E/N51.560 32 andn50.8. The crosses are predictions determined from the
Green–Kubo expression@Eq. ~27! for the isokinetic case and Eq.~33! for
the isoenergetic case# and the squares are predictions from the variance@Eq.
~22! for the isokinetic case and Eq.~29! for the isoenergetic case#.
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This work also shows that in the zero field limit, one can
calculate linear transport coefficients by considering the lim-
iting long time variance,s

J̄(t)

2
(Fe50), of the distributions of

J̄(t), Eqs.~24, 31!, rather than by computing autocorrelation
functions of the dissipative flux and then performing the ap-
propriate long time integrals. The variance of thet-averaged
flux therefore provides an alternative route to thelinear
transport coefficients and Eqs.~24!, ~31! thus provide useful
Einstein routes to linear transport coefficients.

We now turn to the question of why the nonlinear
Green–Kubo and Einstein expressions fail, far from equilib-
rium. A necessary condition for the CLT is the statistical
independence of the sample averages. A breakdown of this
independence could be responsible for the breakdown of the
CLT, Einstein, and Green–Kubo expressions. However, tra-
jectory segments that are much longer than the Maxwell
time, tM , which characterizes the decay of the autocorrela-
tion function of the dissipative flux autocorrelation function,
should haveno correlations between successive samples of
J̄(t). Thus regardless of the distribution ofJ(t) we expect
that for long enought, the CLT will apply. Figure 5 com-
pares the decay time autocorrelation function ofJ(t) for dif-
ferent applied fields. At moderate fieldstM is lessthan it is
at equilibrium. Only at very large fields doestM increase.
This means that possible decay time divergences or anoma-
lies arenot responsible for the breakdown of the nonlinear
Einstein and GK expressions~33!, ~27!. Further, if one com-
putes the distribution ofJ̄(t), for various values oft, one
cannotobservedepartures from Gaussian behavior for values
of t@tM , in the neighborhood of the mean current.

Figure 6 compares the distributions ofJ(t) ~the distribu-
tion of the instantaneous flux! and J̄(t) for an equilibrium
and nonequilibrium system with a strain rate which ensures it
is in the nonlinear regime~T51.0, n50.8, g51.0!. While
the skewness,g1 , and kurtosis,k, for the instantaneous equi-
librium J(t) distribution are zero within error bars which is
consistent with a Gaussian distribution, the skewness is non-
zero for the sheared system~g1520.2360.01, k50.13
60.04, respectively!. The distributions of the time-averaged
fluxes,J̄(t), were obtained for a trajectory segment of length

t54.0 and both distributions, as expected,appearGaussian.
The skewness of the distribution for the sheared system is
g1520.06460.004, and the kurtosisk520.0260.02. Thus
on the basis of these testsalthough for a sheared system the
distribution ofJ(t) is not Gaussian the distribution ofJ̄(t),
for a trajectory segment of lengtht54.0, is on the scales
shown in Fig. 6, already indistinguishable from a Gaussian.

As noted in Refs. 21 and 22, the distribution ofJ̄(t) and
Jb(t) cannot be exactly Gaussian because the values of
these variables are bounded. In practice, however, these
bounds are so large that they become irrelevant in the limit
t→` where the t-averaged distributions collapse to zero
variance distributions. Moreover, the bounds still apply in
the zero field limit where the Green–Kubo and Einstein ex-
pressions are all valid. Thus the boundedness of the fluxes
cannot be the responsible for the breakdown of the nonlinear
GK and Einstein expressions.

If we examine the derivation of Eqs.~27! and~33! more
closely, it can be seen that in order to obtain a GK expression
we require the distribution atboth J̄(t)5 J̄1(t) and J̄(t)
52 J̄1(t) be well approximated by a Gaussian for times
sufficiently long that the GK integrals have converged,t
@tM(Fe) ~see the Appendix for details!.23 Any deviations
from the behavior indicated by Eqs.~21! and ~28! will be
related to the relative deviation of the distribution from a
Gaussian at bothJ̄1(t) and J̄2(t). It is therefore of interest

FIG. 5. The decay of the shear stress time correlation function,
*0

t dŝ DPxy(0)DPxy(s)&, at equilibrium and in nonequilibrium steady states
for a system at constant temperature withT51.0 andn50.4. The full line is
at equilibrium~g50! the dotted line is for a simulation with a strain rate of
g51 and dashed line with a strain rate ofg52.

FIG. 6. ~a! The instantaneous~small circles! and time-averaged distribution
~squares,t54.0! of the dissipative flux for an equilibrium system atT
51.0 andn50.8. ~b! The instantaneous~small circles! and time-averaged
distribution ~squares,t54.0! of the dissipative flux for a nonequilibrium
system atT51.0, n50.8 and withg51.0.
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to consider the rate of convergence to a Gaussian. The mag-
nitude of the relative deviation of the distributionp(( J̄(t)
2J% )/s J̄(tM)) from a normalized Gaussian generally in-

creases with the separation ofJ̄(t) from the meanJ% for suf-
ficiently large separations~see, for example, Sec. 7.2 of Ref.
13!. Heres J̄(tM) is the standard deviation of the distribution

p( J̄(t)) whent5tM . In thet→` limit, at fixed J̄(t)Þ J̄, the
magnitude of the relative deviation ofp( J̄(t)) from a Gauss-
ian becomes infinite. This means that in thet→` limit, the
CLT gives information which is not sufficiently precise to
derive Green–Kubo relations for non-zero applied fields.

We illustrate this point in more detail. Suppose that
J̄(t)5 J̄1(t) is equal to the mean current,J% ; then the conju-
gate trajectories will haveJ̄(t)5 J̄2(t)52J% . Clearly
uJ̄2(t)2J% u52L(Fe)Fe . Therefore using Eq.~A6! of the
Appendix, we find in thet→` limit, exceptwhenFe50,

uJ̄2~ t !2J% u/s J̄~tM !52L~Fe!Fe /s J̄~tM !

.FeA2VtL~Fe!b→`. ~39!

For any nonzero field, ifJ̄(t)5J% , then ast increases, the
value of J̄2(t) moves further and further into the wings of
the normalized distribution where the magnitude of the rela-
tive deviation of p( J̄(t)) from a Gaussian grows without
bound. Strictly speaking, therefore, in the infinite time limit,
for any finite field, the relative deviation ofp( J̄(t)) from a
Gaussian, evaluated in the neighborhood of the mean anti-
current, 2J% grows without bound and nonlinear Green–
Kubo relations cannot be derived. However, in practice one
does not need to take the infinite time limit. Considering the
shift in the mean value of the dissipative flux with field
shows that the nonlinear GK expression will beapproxi-
matelycorrect provided,

Fe<O~1/AbVMtM~Fe!L~Fe!!, ~40!

where VM is the minimum volume required for transport
coefficient to be approximately equal to its large system,
limiting value.24 Clearly, the nonlinear GK relations satisfy
this relation only in a small neighborhoodincluding Fe50.
For the systems studied here, Eq.~40! predicts that the non-
linear GK relations will beapproximatelycorrect provided
g,;1021. This is in agreement with experimental observa-
tions given in Figs. 4~a!–4~c!.
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APPENDIX

The variance of the time-averaged dissipative flux is
given by

s
J̄~ t !

2
5^~ J̄~ t !2^J&!2&Fe

5K 1

t2 S E
0

t

ds1DJ~s1! D S E
0

t

ds2DJ~s2! D L
Fe

5
1

t2 E
0

t

ds1E
0

t

ds2^DJ~s1!DJ~s2!&Fe
, ~A1!

where DJ(t)5 J̄(t)2^J&. Using a change of variables:t1

5s12s2 andt25s11s2 this integral can be written:

s
J̄~ t !

2
5

1

2t2 E
0

t

dt2E
2t2

t2
ds2^DJ~ 1

2~t11t2!!

3DJ~ 1
2~t22t1!!&Fe

1
1

2t2 E
0

t

dt2E
2t2

t2
ds2

3^DJ~ 1
2~t11t22t!!DJ~ 1

2~t22t12t!!&Fe
. ~A2!

Since correlation functions are invariant under a time trans-
lation in the steady state, and using the symmetry of the
functions, we obtain

s
J̄~ t !

2
5

2

t2 E
0

t

dt2E
0

t

dt1^DJ~t1!DJ~0!&Fe
. ~A3!

Changing the order of integration gives:

s
J̄~ t !

2
5

2

t2 E
0

t

dt1E
t1

t

dt2^DJ~t1!DJ~0!&Fe

5
2

t2 E
0

t

dt1E
t1

t

dt2^DJ~t1!DJ~0!&Fe
~A4!

5
2

t2 E
0

t

dt1^DJ~t1!DJ~0!~ t2t1!&Fe
.

Therefore, for any steady state system, at all times:

ts
J̄~ t !

2
~Fe!52E

0

t

dŝ ~J~0!2^J&Fe
!~J~s!2^J&Fe

!&Fe

2
2

t E0

t

dŝ ~J~0!2^J&Fe
!~J~s!2^J&Fe

!&Fe
s.

~A5!

At any time greater than the time required for the time
correlation function to decay to zero,tC.tM , in an
isokinetic system, *0

tCdŝ (J(0)2^J&Fe
)(J(s)2^J&Fe

)&Fe

5L̃J(0;Fe)/(b0V) and *0
tCdŝ (J(0)2^J&Fe

)(J(s)

2^J&Fe
)&Fe

s52L̃J8(s;Fe)/(b0V). Therefore,

tCs
J̄~ tC!

2
~Fe!52L̃J~0;Fe!/b0V12L̃J8~0;Fe!/b0VtC .

~A6!

If the distribution is Gaussian atJ̄(t) and2 J̄(t) at tC , then
assuming that the second term of Eq.~A6! is negligible and
that the FT is true att5tC , combining Eqs.~20! and ~A6!
gives

2^J&Fe

Fe
5

1

2
b0VtCs

J̄~ tC!

2
5L̃J~0;Fe!; ~A7!

that is, a GK expression is valid.
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