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Abstract

One of the most unconventional electronic states in high transition tem-

perature cuprate superconductors is the pseudogap state. In the temperature

versus doping phase diagram, the pseudogap state straddles across the anti-

ferromagnetic (AF) state near half filling and the superconducting (SC) dome

on the hole doped side above the transition temperature Tc. The relation-

ship between the pseudogap state and these two well known states - the AF

state and the SC state is believed to be very important for understanding su-

perconductivity and the emergent quantum electronic matter in doped Mott

insulators. The pseudogap is characterized by the emergence of a soft gap in

the single-particle excitation spectrum in the normal state in the tempera-

ture range between Tc and a characteristic temperature T ∗, i.e. Tc < T < T ∗.

The most puzzling feature of the pseudogap is the nodal-antinodal dichotomy.

Observed by ARPES in momentum space, the Fermi surface is gapped out

in the antinodal region leaving a Fermi arc of gapless excitations near the

nodes. Whether the pseudogap is an incoherent superconducting gap (one-



gap scenario) or it is a different gap governed by other mechanisms, other

than superconductivity, (two-gap scenario) is still under debate. In this the-

sis I study the particle-particle channel and the particle-hole channel of the

valence bond fluctuations away from half filling. Based on a strong-coupling

analysis of the t − J model, I argue that the superexchange interaction J

induced incommensurate bond centered density wave order is the driving

mechanism for the pseudogap state. Low energy density of states (DOS) are

eliminated by multiple incommensurate scatterings in the antinodal region at

the Fermi level. I show that the interplay between the incommensurate bond

centered d-wave density wave instability and the intrinsic electronic inhomo-

geneity in real cuprate materials is responsible for the observed pseudogap

phenomena. Utilizing the spatially unrestricted Gutzwiller approximation, I

show that the off-stoichiometric doping induced electrostatic disorder pins the

low-energy d-wave bond density fluctuations, resulting in a VBG phase. The

antinodal Fermi surface (FS) sections are gapped out, giving rise to a genuine

normal state Fermi arc. The length of the Fermi arc shrinks with underdop-

ing below the temperature T ∗ determined by thermal filling of the antinodal

pseudogap. Below Tc, the d-wave superconducting gap due to singlet pairing

coexists and competes with the VBG pseudogap. The spatial, momentum,

temperature and doping dependence of these two gaps are consistent with

recent ARPES and STM observations in underdoped and chemically sub-

stituted cuprates. The temperature versus doping phase diagram captures

the salient properties of the pseudogap phenomena and provides theoretical



support for the two-gap scenario. In addition to resolving the complexities

of the quantum electronic states in hole-doped cuprates, my unified theory

elucidates the important role of the interplay between the strong electronic

correlation and the intrinsic electronic disorder in doped transition metal

oxides.
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Chapter 1

Introduction

1.1 The Very Beginning

Most materials can be classified by the band theory of solids. For a particular

material, if band theory predicts a gap then the material is likely an insu-

lator. There are notable exceptions though where the band theory of solids

fails though. In the quantum hall state the material is an insulator without a

gap. For strongly correlated systems, sometimes the gap defines the material

and sometimes not, the gap must be interpreted. In this thesis I will intro-

duce and explain a specific type of gap, the pseudogap, and talk about its

interpretation in the field of high transition temperature superconductivity -

a typical strongly correlated electronic system.

1.2 The Discovery of the Superconductor

The history of the superconductor is very rich and has taken several inter-

esting turns since it was first discovered by Kammerlingh Onnes in 1911.

Indeed, the initial discovery itself is wrapped in legend. The discovery of

helium liquification allowed resistance measurements to be taken at temper-

atures never taken before (4 K and lower). It was proposed that at the lowest

temperatures these materials would exhibit insulating properties. The first

1



observations did not show insulating behavior however, but an anomalous

zero resistance. At first observation of this zero resistance state in mercury

it has been told that the reading was blamed on equipment failure (perhaps

the common thing to attribute a surprising result to). Later it became clear

that this truly was a zero resistance phenomena and a new state of matter.

This was the discovery of superconductivity. Superconductivity can loosely

be defined as a zero resistance state below some critical temperature known as

Tc. Above Tc no superconductivity exists, that temperature is high enough to

destroy the superconductivity. It was also found that superconductors have

a relationship with magnetic field. Meissner subjected superconductors to

strong magnetic fields and noticed that the magnetic fields were be expelled.

This perfect diamagnetism exists up to a limit of magnetic field strength, Hc,

and is a trait of all superconductors. Because of this fact, no field can exist

within the inside volume of a superconductor (as long as the field is less than

Hc. [1]). Though Meissner’s discovery was and important the microscopic

mechanism for what makes superconductivity possible was still a mystery at

that point.

In 1935, brothers Fritz and Heinz London began to work on some theory

to shed insight on this superconducting phenomena. Though phenomenolog-

ical, these so called London equations were able to describe the magnetic field

expulsion witnessed by Meissner [2]. Fifteen years later, another phenomeno-

logical theory was proposed by Ginzburg and Landau. This theory is based

largely on thermodynamic arguments. One important aspect of this theory

is the study of the properties of a superconducting material with respect to

temperature. Two major successes of these Ginzburg Landau equations are

in the parametrization of the characteristic quantities: the coherence length

and the penetration depth. The coherence length relates to the size of ther-

modynamic fluctuations in the material while the penetration depth refers to

the depth in which magnetic fields can penetrate. [3]. Though relevant this

was not a microscopic theory and offers no insight into the inner workings of

2



what makes a superconductor function.

The microscopic theory was eventually tackled by the team of J.Bardeen,

L.N. Cooper, and J.R.Schrieffer in the mid 1950’s. This is considered to

be one of the most important contributions in condensed matter physics in

the last century. For this theory they would win the Nobel prize. Under

this theoretical frame work, electrons form two electron pairs which have

come to be called Cooper pairs after the founder. This pairing is stable and

energetically favorable to two separate electrons. To break these cooper pairs

apart actually requires some energy. (∆ is half the energy needed to break

this cooper pair). This pairing is brought on by an attractive interaction,

due to the virtual exchange of phonons. This pairing turns two fermions of

opposite spin and momentum into an effective boson free to condense into a

coherent ground state. This coherent state is superconductive. This created

framework fully and unambiguously explains the observed loss of electrical

resistance [4].

Probably what helped the BCS team realize the true nature of pairing

was the specific heat data taken on vanadium. It’s exponential dependence

pointed to an absence of electrons at certain energies in the electronic density

of states [5]. This so called energy gap was surprising. It was unclear where

these electrons went and why they went at all. At present, in the case of

mercury, lead and the other materials the BCS team studied, it is well known

that this gap is a consequence of pairing. ( I will soon discuss that this is not

the case with all superconducting materials.) All of the electrons centered

∆ radius from the Fermi energy disappear in the single particle density of

states. They have disappeared since they do not contribute to the specific

heat measurement. They are, of course, still in the material. They are now

just paired up and now synthetic bosons.

At the time of its discovery, the BCS solution was indeed good for all su-

perconductors and the previous question was thought to be answered: The

gap does imply pairing. This certainty would change though. About thirty

3



Figure 1.1: A road map of discoveries in superconductivity, from
http://www.ccas-web.org/img/superconductivity/sc0.gif

years later a surprising result shocked the community. In 1986, Benorz and

Muller discovered a new phenomenon in the material lanthanum barium cop-

per oxide (LBCO)[6]. With sufficient chemical doping, the critical tempera-

ture of this material could reach as high as 35 K. Soon later in 1987, M.K.Wu

et al. found superconductivity in a similar material, only hotter, with a tran-

sition temperature of 90K (well above liquid nitrogen temperature) [7]. Why

is this fascinating? It is because it was generally accepted that McMillan’s

theory was true and that the maximum Tc a material could have was around

40 K [8]. So at 90 K (more than twice McMillan’s prediction and almost five

times more than the previous Tc record holder) it was clear something was

drastically different. Perhaps it is Mother Nature’s joke on the world but it
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seems that the record holder for the highest transition temperature super-

conductivity comes from a ceramic (an insulator). No current theories were

equipped to explain this strange fact. These discoveries kindled a whole new

era of study about this general class of materials referred to as high transition

temperature (Tc) superconductors .

The past two and a half decades have shown an extreme effort and satis-

factory progress into the field of high Tc, but unfortunately the most funda-

mental questions have not been answered. As more materials were developed,

more theories were developed. With more materials certain commonalities

were formed. What these materials had in common were they were all were

made of copper, and they were all layered materials. But if the high Tc field

teaches us anything it is to keep an open mind and never rule anything out.

The community learned that once in 1986 and learned it again in 2008 with

the introduction of the pnictide superconductors when Kamihara [9] discov-

ered a superconductor without copper and without a layered structure Our

basic understanding of superconductivity is once again challenged.

But really our basic understanding was not that firm prior to the pnic-

tides. Twenty-five years on the strictly copper superconductors had not

yielded the answers to some basic questions. One very basic question con-

cerns pairing. In the BCS case the gap in the density of states implied the

creation of cooper pairs. But does the creation of a gap ALWAYS imply

pairing? Or is it governed by a totally different mechanics? In the high

temperature superconductor case this question has not been answered and is

the subject of this thesis.
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1.3 Cuprates-the Copper Family of High Tem-

perature Superconductors

1.3.1 Crystal Structure of Cuprates

In most of the high Tc materials it is the copper and oxygen that facilitates

the interesting physics. The oxygen 2p orbital hybridizes with Copper’s 3d

electrons which are doubly ionized to form a 2-d plane. Copper-oxygen high

temperature superconductors are called cuprates. All cuprates are layered

perovskites. They all have one or more of these copper oxide planes per unit

cell. Single layer materials have one CuO2 plane per unit cell, multi layer

materials have two or three CuO2 planes per unit cell. The CuO2 planes

are interweaved by other blocks of elements which serve as charge reservoirs.

Cuprates can be categorized into different families. Families differ from each

other by having different elements in these blocks, such as Bi family, La

family, T l family, Y family, Hg family, etc.

A typical single layer Cuprates parent compound is La2CuO4. Its crystal

structure is shown in Fig. 1.2. Each Copper is surrounded by six oxygens to

form an octahedron. The Cu ions in the CuO2 plane form a square lattice

with a Cu−Cu distance of 3.8 Å. The Cu−O distance along the c−axis is

2.4Å, slightly larger than the ones in the plane. This distance can be larger

in other materials. The CuO2 plane is well separated by LaO plane.

Depending on the material, the copper oxygen plane can be linked with

additional oxygen. The square oxygen lattice (among the copper sites) can

have this so called apical oxygen either directly above or below the four

oxygens. This is referred to as the CuO6 octahedron. In the single layer

compounds the octahedron is unmodified with the apical oxygen above and

below. In the double layer structures it is split in half to form two separated

6



Figure 1.2: The crystal structure of La2CuO4

Figure 1.3: The copper oxygen structure in the (a)single,(b)bilayer,(c)trilayer
cuprate parent compounds

pyramids. In the tri-layer structure the split in half pyramids have a single

CuO2 plane sandwiched in between them. The basic copper oxygen struc-

tures in cuprates are summarized in Fig. 1.3. Experimentally it is observed

that the Tc of a material is related to the number of layers. So this octa-

hedron structure is examined in terms of its influence on superconducting

behavior.
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1.3.2 Electronic Structure of Cuprates

The unique nature of the cuprates originates from the basic electronic struc-

ture of this class of materials. Copper has the electron configuration of

[Ar]3d104S1. This is contrary to the ordinary filling order of 4s before 3d.

The electron configuration creates a more stable half filled shell and leaves

completely filled subshells. In this case copper behaves like an electron donor

while oxygen behaves like a hole donor. When copper loses 2 electrons and

becomes Cu2+ , the outer subshell has a 3d9 configuration. According to crys-

tal field theory, in the octahedral symmetry, the five degenerate d−orbitals

split into two sets, where the dxy,dxz and dyz orbitals will be lower in energy

than the dz2 and dx2−y2 orbitals. The former set is referred to as t2g and the

latter set is referred to as eg. The eg orbital degeneracy is lifted further due

to the distortions away from a perfect octahedron (two apical oxygens are

further away than usual). The field splitting is demonstrated in Fig. 1.4. In

this case the d9 configuration gives us a half filled 3dx2−y2 orbital, i.e., one

electron (electron picture) or one hole (hole picture) per site. From band the-

ory, half filling results in a metal. Strong interactions dominate the energy

and the band is split into the upper Hubbard band and the lower Hubbard

band. The lower Hubbard band is filled while the upper Hubbard band is

empty. This forms a Mott insulator [10]. Cu 3dx2−y2 and O 2p orbitals form

a covalent bond. In terms of the hole picture, the copper site is occupied

by one hole with spin S = 1
2

while the oxygen site is empty. The nearby

copper sites have opposite spins. This lowers the energy. This results in a

ground state which is antiferromagnetic (AF) at half filling. A more detailed

discussion will be included in later chapters.

Precisely at half filling the cuprates show antiferromagnetism, but the

material does not always have to be at half filling. More electrons can be

added or removed to change the filling factor. This is called doping. If extra

electrons are removed this is called hole-doping and if extra electrons are

added this is called electron doping. When the material is doped away from

8



Figure 1.4: Octahedron crystal field splitting for copper

half filling, different states can emerge other than antiferromagnetism. If the

parent compound contains cations of n+ valence, substituting x percent of

it with cations of (n− 1)+ valence can result in a hole doped cuprate; And

similarly, substituting x percent of it with cations of (n + 1)+ valence can

result in an electron doped cuprate.

I focus on the hole doped side of the cuprates. From half filling, with

the increase of doping, AF order gets suppressed. With a greater increase

in doping, superconductivity appears and gets stronger in terms of the Tc

value. This increase lasts until the point called optimal doping where Tc is at

a max, beyond which superconductivity begins to get weaker in terms of the

Tc value and eventually disappears. As previously discussed there are other

ways to destroy the superconductive states such as increasing temperature

and increasing magnetic field. With an increase of temperature the super-

conductivity gets quenched in a parabolic shape following doping. Because

of this shape it is referred to as the dome of superconductivity. The standard

way to view this area, where the superconductivity can live. is to look at the

9



Figure 1.5: The temperature vs. doping phase diagram of the cuprates.

temperature vs. doping phase diagram. (see Fig. 1.5). This tracks out the

area where the material is superconductive.

Besides resistivity other experimental probes can give clues about this

superconductivity. Sometimes though the probes disagree and some confu-

sions exist. One place of extreme confusion is the area spaced between the

superconducting dome and AF order. This is called the pseudogap and the

subject of this thesis.
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1.4 A Mystery in Cuprates: The Pseudogap

Phenomena

1.4.1 What is a Pseudogap

The pseudogap is a gap in the density of states as recorded by many ex-

periments. It is known that in the regime where the pseudogap exists the

material is not a superconductor. It could still be a pairing gap, though.

It was seen in the low temperature BCS case that electrons paired leaving

behind a superconductive gap of size 2∆. In the BCS case this is unambigu-

ously known to be a cause of pairing. Of course not all gaps are consequences

of pairing. Insulators, semiconductors and the quantum Hall effect are ex-

amples of gaps not caused by the paring of electrons. So is the pseudogap a

consequence of pairing or something else? This is unclear and the source of

great debate. It is the general feeling that it is probably one of two things

though. The first idea is that the pseudogap is related to superconductivity

and that it is, a pairing gap due to pairing of electrons into cooper pairs. For

some reason though, these cooper pairs are not able to achieve coherence and

thus do not become truly superconductive. The second idea is that the gap

is something else entirely. Perhaps some other ordering that is not related

to superconductivity and it competes with it. This debate is referred to as

the pre-formed pairs vs. competing order debate. We will give more details

on this debate in the last section of this chapter. In studying this problem

the terms Tc and T ∗ are used. Below Tc the material is superconductive.

Above T ∗ the material behaves like a “normal metal”. The pseudogap is a

suppression of density of states in the regime Tc < T < T ∗ in the underdoped

cuprates. In the following sections I will review the experimental evidence

and interpretation of many different experiments performed in the pseudogap

region.

11



Figure 1.6: Planar 63Cu spin-lattice relaxation rate in optimally doped
Y Ba2Cu3O6.95 (squares) and underdoped Y Ba2Cu3O6.64 (circles). The pseudo-
gap causes a suppression in the relaxation rate well above Tc in the underdoped
material.

1.4.2 Pseudogap Experimental Evidence: First Exper-

iments

In BCS superconductors, pair formation will affect the spin response. When

the free spins bind together to make cooper pairs at Tc, the spin response

decreases due to the lack of free spins. This decrease was expected in high

temperature superconductors at the transition temperature Tc and it did

indeed happen. The experiments measuring such phenomena are the Nuclear

Magnetic Resonance (NMR) measurements. NMR is a local probe to explore

the spin channel of electronic state at different nuclear sites in the lattice. It

has an advantage in that it does not require large samples for measurements

so it is usually one of the first techniques used on a newly discovered material.

In 1989,Warren et al. used NMR to study in Y Ba2Cu3O6+δ in the un-

derdoped regime at δ = 0.64 with Tc = 60 K, and compared the result with

12



Figure 1.7: Planar 63Cu Knight shift in optimal doped Y Ba2Cu3O6.95 (squares)
and underdoped Y Ba2Cu3O6.64 (circles). The normal-state susceptibility is tem-
perature independent in the optimally doped compound but decreases with temper-
ature in the underdoped compound.

the same measurement in the optimal doped regime at δ = 0.95, Tc=92 K.

They found that the spin relaxation rate (the imaginary part of the low fre-

quency dynamic spin susceptibility) began to be reduced at a temperature

much higher than Tc in the underdoped sample, while it only starts to drop

at Tc in the optimal doped sample on the contrary [11] (See Fig.1.6).

In 1990, Walstedt et al. measured the Knight shift also in underdoped and

optimal doped YBCO [12]. (see Fig. 1.7). This technique finds a character-

istic shift, Ks, which is proportional to spin susceptibility χs. In the context

of Fermi liquid it is proportional to the density of states at the Fermi surface.

At high enough temperature, χs is a constant as in a normal metal. Upon

decreasing the temperature, very different temperature dependent behavior

is observed in these two different compounds. In the optimal doped case,

the polarization of elections in the magnetic field starts to decrease dramat-

ically because cooper pairs start to form below the transition temperature,

13



Figure 1.8: Various components of the Cu and O Knight shift are plotted against
temperature with different vertical scales and origins. The T-dependent values of
spin Knight shifts in the y ≈ 0 material are also plotted with the same vertical
scales.

this is consistent with the classic superconductors. But in the underdoped

case, way above the transition temperature Tc =60 K, a suppression of spin

susceptibility has already occurred. Such suppression persists upon further

decreasing temperature. These results were similar to results taken earlier by

Aloul et al.[13]. It was found that all the nuclei (not just copper) show the

same evidence of the pseudogap. It was also found that different sites have

identical T dependence. [13] [14]. This will provide justification for using a

one band only model. (See Fig. 1.8). It should also be noted that the data

is similar in all cuprates such as in the BSCCO family. [15]

A similar suppression at high temperatures was seen in the magnetic

susceptibility measurements of Johnston et al. [16] Rather than spin singlet

formation Johnston interpreted this as following the same behavior of 2D

Heisenberg antiferromagnet. The model predicts that the static magnetic
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susceptibility will decrease, which is what is seen.

1.4.3 Pseudogap Experimental Evidence: ARPES

Angle-resolved photoemission spectroscopy (ARPES) measures the density

of single electron excitations below the Fermi energy and has been very im-

portant in the study of cuprates. ARPES is a powerful tool for many reasons

but probably its most notable asset is in its ability to take angle resolved

measurements and thus be able to map the Fermi surface and the constant

energy contours. In ARPES, the sample being studied contains electrons

that are held inside of the material by the work function φ. An incoming

photon can be absorbed by the material and can free the electron, if it has

enough energy to break the vacuum barrier. This electron will travel to-

ward the detector in a manner which can be modeled as a plane wave. The

direction of the electron is recorded as well as the kinetic energy, yielding

the full electron momentum. The relevant information though is not the

measurement of the electron, the interest is in relating this to the material

which has been excited. This is usually analyzed in terms of the three step

model: Step 1 is the optical excitation of the electron as it is living inside

the solid. Step 2 is the transport of this photoelectron to the surface of the

material. Step 3 is the escape of the photoelectron into the vacuum space.

This is a simplification and breakdown of the actual process where all three

steps in essence happen simultaneously. In this model, though, they are well

separated and independent and all treated classically except for step 1.

By using Fermi’s golden rule the photocurrent is expressed as

ωif =
2π

~
|〈ΨN

f |Hrad|ΨN
i 〉|

2δ(EN
f − EN

i − hν) (1.1)

and with the electron interacting with the radiation field given by the Hamil-
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Figure 1.9: (a) Spectra showing various pseudogap closing temperatures for
various positions around the M point. (b) Symmetrized spectra showing various
pseudogap closing temperatures for various positions around the M point. (c) Ex-
tracted spectrum from (a)(b) on the point near the nodal region.(d) Extracted spec-
trum from (a)(b) on the point near the antinodal region. The vertical arrow shows
one way to determine gap size: the leading edge gap. The horizontal arrow shows
the other way to determine gap size: the symmetrized gap.

tonian where the dipole approximation is used

Hrad = − e

2mc
(A · p + p · A) ≈ − e

mc
A · p (1.2)

From this the single particle spectral function can be related to the mea-

sured photocurrent. It is not necessary to go through the full mathematical

rigor of this derivation at this time.

As the high Tc cuprate was engineered and sample quality improved the

quality of ARPES techniques and equipment were constantly improving as

well, leading the way for better experiments with higher quality data. This
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Figure 1.10: A schematic diagram of the so-called Fermi arc created by the
momentum dependent closings. The d-wave node below Tc (left panel) becomes a
gapless arc above Tc (middle panel) which expands with increasing T to form the
full Fermi surface at T ∗(right panel).[20]

made it possible to take higher resolution data both in angle and in energy

on high temperature superconductors. An early pioneer in the ARPES of

BSCCO 2212 cuprates was Ding et al. [17]. They directly measured the mo-

mentum resolved electron excitation spectrum in the copper-oxygen planes

on a variety of dopings of BSCCO from overdoped to heavily underdoped. A

suppression of spectral weight was found to be present above Tc. In the sam-

ple with Tc = 83 K this suppression was found to exist all the way to 170 K.

They labeled this temperature as T ∗. For a more underdoped sample, where

the Tc was reduced to as low as 10 K, the suppression lasted all the way to

temperature of 300 K. This was seen at the M point or the (π,0) point in the

Brillouin zone. At the (0,0) to (π,π) direction no gap is ever seen. At these

high temperatures, it was observed that the linewidths are so broad that the

spectral weight at the Fermi energy is non-zero, so it is not the hard gap but

rather a pseudogap. This pseudogap was found to have d-wave symmetry

and appeared to transition into the superconducting gap as the temperature

was lowered below Tc. Similar results were seen from other ARPES studies

[18][19].
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Above Tc , in the normal state, the optimally doped high temperature su-

perconductor should appear metallic (in that it has a Fermi surface of gapless

electronic excitations). The ARPES measurements confirmed this. Norman

et al. though set out to determine this Fermi surface for the underdoped

samples [20]. They had studied this problem at three points in momentum

space. When the sample is cooled the initial temperature at which the pseu-

dogap opens is found to be strongly momentum dependent (See Fig. 1.9 a.

and b.). Since ARPES measures I(k, ω) ∝ A(k, ω)f(ω), there are two ways

to read the gap size from the Energy Distribution Curve (EDC): one is the

leading edge gap; The other is the gap after symmetrization (see Fig. 1.9 d.).

The purpose of symmetrization is to remove the effect of the Fermi function:

A(kf , ω) = A(kf ,−ω)

Isym(kf , ω) = I(kf , ω) + I(kf ,−ω) = I0Asym(kf , ω)

(1.3)

Comparing the symmetrized spectrum at the nodal and antinodal region,

as extracted in Fig. 1.9(c)(d) from (a)(b), the gap shape is highly anisotropic

in k-space. When the temperature is between T ∗ and Tc, the spectrum is

gapless around the nodal region while it has substantial sized gaps around

the antinodal region. This “nodal-antinodal dichotomy” is more clearly ex-

pressed in the mapping of the Fermi surface in this temperature region (see

Fig. 1.10(b)). The different momentum dependence of the gap leaves the

Fermi surface to have a discontinuous contour, the so called Fermi arc. Some

regions of the Fermi surface become gapped while other parts remain gapless.

As a result of this unusual anisotropy in momentum space, the concept of the

“hot” electron and “cold” electron came out. The “hot” electrons are near the

antinodal region and “cold” electrons are near the nodal regions. The “hot”

electrons are considered to be more prone to the pseudogap phenomena.

Though the gap is transitioning at different points in momentum space
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Figure 1.11: The graph on the left shows the doping evolution closer to the
node and the graph in the center shows the doping evolution at the antinode. The
shading denotes the determination of gap size and the opposite trend in doping
is seen in the two graphs. This data is plotted to the right on a phase diagram.
Figure from [21]

it was originally assumed that this was the same gap. This might not be the

case though. Tanaka et al. have a different proposal. They used ARPES

on deeply underdoped Bi2Sr2Ca1−xYxCu2O8 (Bi2212). They found a gap

where no coherence peak was observed. This was found in the antinodal

regime and increased in size with underdoping. This was consistent with

all previous results. Another gap was found though in the area near the

nodal regime. This gap has a coherence peak and the gap reduced with

underdoping. This was a surprise and not previously observed. This leads

Tanaka et al. to conclude that two distinct energy gaps are inherent in

this material [21]. (See Fig. 1.11). Ma et al. found a similar result through

dividing the low temperature spectrum from the high temperature spectrum.

They indeed find two distinct gaps. They propose that the gap that is near

nodal is potentially the gap associated with superconductivity and that it

doesn’t stop at the antinodal region but actually extends into it. [22]

The pseudogap phenomena ARPES observed can be summarized here:

When T > T ∗, the Fermi surface is a large continuous contour and the

system is a normal metal. Right below the characteristic temperature T*, a
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Fermi surface mapping shows discontinuous arcs formed from the points that

have no pseudogap along the arcs contrasted with the points that still have

pseudogaps near the antinodes. As the temperature is further decreased these

Fermi arcs shrink. Below Tc, the material is a full d-wave superconductor so

the Fermi surface is fully gapped except at the nodes which are protected by

the d-wave symmetry of the superconducting gap. This break up of the Fermi

surface occurs without long range order, which is a very surprising result.

The temperature dependence of the Fermi surface is shown schematically in

Fig. 1.10. The gap near the nodal region and the gap near the antinodal

region behave distinctively in terms of their momentum, temperature and

doping dependence. This is supportive of the two-gap scenario.
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1.4.4 Pseudogap Experimental Evidence: STM

One of the easiest ways to visualize the pseudogap is by looking at scanning

tunneling microscope (STM) spectra on BSCCO 2212. The STM is able

to measure the single particle density of states with extreme spatial resolu-

tion. The operating principle of the STM is based on quantum tunneling.

When a sharp tip is brought in range of a surface, classical mechanics forbids

an electron from jumping from the tip to the surface unless the energy of

the electron exceeds the energy of the work function describing the system.

Quantum mechanics, however, permits an electron with energy lower than

the barrier to travel from the sample to the tip (or visa versa). Since in the

quantum world an electron is not a point particle but rather a wave like spa-

tial entity it is possible that there is some overlap between the wavefunction

of the tip and the sample. An overlap in the wavefunction means that an

electron of arbitrary small energy can end up on either side of the barrier

separating these wave functions with some probability proportional to the

size of the overlap. Even at atomically close distances this overlap will be

extremely small which means these events are very unlikely. However un-

likely, they do happen and can be counted by an electrometer which is part

of the STM circuit. This counting of tunneling electrons is how the STM

takes data. The physical framework of how this works is given for a given

geometry based on Bardeen’s tunneling theory [23].

Itip→sample = 2× 2πe

~

∞∫
−∞

|Mts|2 ρt(ε + eV ) · f(ε + eV )︸ ︷︷ ︸
# of filled tip states

ρs(ε) · [1− f(ε)]︸ ︷︷ ︸
# of empty sample states

dε

(1.4)

The current flowing from the tip to the sample is based on the applied

bias voltage V where M is some tunneling matrix based on the sample-tip

characteristics, f(E) is the Fermi-Dirac distribution and ρt(s) is the density

of states of the tip or sample. After subtracting the corresponding contri-

21



bution from sample to tip and making low temperature approximations and

approximations based on the tunneling matrix it can be shown for certain

metallic tips (with flat density of stats profiles) the current across the tun-

neling junction is:

I(r) ∝ e−2ξz

eV∫
0

ρs(r, ε)dε (1.5)

A simple numerical derivative with respect to voltage then gives that

dI/dV is proportional to the density of states of the sample. (In practice

the derivative is performed by a machine called a lock-in amplifier to keep

signal noise low). So what can the STM and its density of states measure-

ments say about superconductivity and the pseudogap? It is known from

measurements on BCS superconductors that the STM will show the super-

conducting gap at temperatures below Tc with no states residing at the Fermi

energy and a metallic state with many states at the Fermi energy above Tc.

The superconducting gap had also been seen at temperatures below Tc on

high temperature cuprates like BSCCO 2212. In 1998 Renner et al. decided

to use STM to study the superconducting gap in BSCCO as a function of

temperature.

Renner et al [24] are among the first who reported the direct observation

of pseudogap above the superconducting transition temperature in Bi2212,

as shown is Fig. 1.12. When T < Tc, there is a d-wave superconducting gap

around zero bias with sharp coherence peaks. When Tc < T < T ∗, there is

still a depression of conductance in the low energy regime, and this depression

persists all the way to room temperature with a smooth evolution.

STM’s most useful feature is in its spatial resolution and its ability to

look for patterns. In the pseudogap phase, at temperatures around 100K,

Vershinin et al. began to search for any spatial pattern associated with the

pseudogap in BSCCO 2212 with zinc substitutions. These modulations were

seen to be energy independent, following the orientation of the copper-oxygen
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Figure 1.12: Tunneling conductance of underdoped Bi2212, a gap like feature
at zero bias is seen to persist in the normal state which is direct evidence of a
pseudogap in the tunneling conductance . In the superconducting state a peak
develops at ±45 meV followed by a dip and a broad maximum, the gap size does
not seem to have temperature dependence.[24]

bonds, and have periodicity which is incommensurate with the lattice. They

suggest that this has to do with some form of spin or charge ordering, which

is only seen in this region above Tc and below T ∗.[25]

Boyer et al. used temperature-dependent scanning tunneling spectroscopy

to study the single layer cuprate (Bi1−yPby)2Sr2CuO6+x. They found a nar-

row gap that vanishes near Tc. In addition to this, they found the typically

observed inhomogeneous and broader gap, which is only weakly temperature

dependent. They interpret these results that the smaller gap may be asso-

ciated with superconductivity as it is associated with Tc and the larger gap
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Figure 1.13: Spectra taken in underdoped BSCCO 2212 showing two distinct
energy level features. The small feature shows quasiparticle scattering while the
larger gap has some static charge ordering. Figure is based on data from Gomes
et al. [27] and Kohsaka et al. [28] [29]

may be related to the pseudogap state.[26] This would be in contrast to the

Kugler report though it is worth noting that these two gaps come from a

division of high temperature by low temperature data and aren’t necessarily

observable in the low temperature data alone. These multiple energy features

are visible though in the heavily underdoped BSCCO 2212 in the study by

Gomes et al. [27](See Fig. 1.13)

1.4.5 Pseudogap Experimental Evidence: Specific Heat

Loram et al [30][31] use a sensitive differential technique to measure the elec-

tronic specific heat in Y BCO. They also find a pseudogap in the underdoped

regime. The technique uses a reference sample with well known specific heat

to compare with the exact same number of moles of the cuprate. When ex-
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act same amount of heat is used to heat up both samples the difference of

the temperature rise between these two samples are measured to calculate

the specific heat of the cuprate sample. In the overdoped material a gap,

signalled by a depression in the specific heat coefficient γ, opens up below

Tc. In the underdoped sample a gap starts to form in the normal state below

140K way above Tc. This is the signature of the pseudogap.
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1.4.6 Pseudogap Experimental Evidence: Raman Scat-

tering

Raman scattering is one of the most common excitation spectroscopies for

looking at phonons as well as other modes. The way that Raman scattering

works is based on the inelastic scattering of a monochromatic source (usu-

ally in the range of 200-4000 cm−1) although most of the source is scattered

elastically. The part that is inelastic has a shifted frequency based on the

excitation it was scattered from. This frequency shift can be based on either

the absorption or emission of a photon in the scattering process which is

referred to as the Stokes and anti-Stokes scattering processes respectively.

A series of selection rules are used to determine which vibrations are being

looked at. This makes Raman Scattering a powerful tool to look at quasipar-

ticles in the superconducting state at specific momentums, specifically the

nodal and anti nodal regions.

Slakey et al. used Raman scattering to complete one of the first studies

on a high Tc cuprate YBCO. Previous studies had found BCS like behavior

with a redistributed gap around 350 and 500 cm−1 when probing the A1g and

B1g symmetries. In the underdoped YBCO they studied though, they did

not see that. They saw a peak that was insensitive to doping and persisted

into the normal state past Tc. The peak got broadened but does not show

softening. They claim that if the 500 cm−1 peak is interpreted as a pairing

energy then their results are consistent with pairing above 100K with no

significant temperature dependence below this. [32].

Le Tacon et al. use electron Raman scattering (ERS) on as grown

HgBa2CuO4+δ (Hg + 1201) with doping from underdoped to overdoped.

This sample has specific properties that avoid nodal and antinodal mixing

which sometimes occurs in other samples like YBCO. They characterize the

superconducting state by examining the slope and position of the gap at the

nodes and the maximum amplitude and position of the gap at the antinodes.

Both of these parameters have different doping dependence which is not ex-
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Figure 1.14: Tacon et al. use two new parameters on the Raman data to
reclassify theirs and old data to show a new nodal/antinodal dichotomy for various
cuprates. Figure from Tacon et al. [33]

pected for a standard d-wave gap. The nodal slope of the gap decreases as

the doping decreases and the maximum of the gap increases as the doping

decreases. The energy of the antinodal peak increases while the intensity

of this peak rapidly decreases as the doping decreases. Together these facts

point to the coherence of nodal quasiparticles and the incoherence of the

antinodal ones. There are two distinct energy scales in the superconduct-

ing state which have different doping dependence in the underdoped regime.

This has already been established in the normal state and now is seen in

the superconducting state and coined the“nodal-antinodal dichotomy” . [33]

(See figure 1.14)
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1.5 The Origin of the Pseudogap State

The pseudogap has an intimate relationship with both superconductivity and

antiferromagnetism at half filling. Understanding the role of the pseudogap is

no easy task. To start with, I look at how superconductivity arises when the

system is doped away from half filling. In the undoped compounds, at half

filling, spin-1
2

moments on Cu order antiferromagnetically as an insulator. As

holes are introduced into the insulator by doping, the hole on the copper site

and the doped hole on the nearby oxygen site form a two-hole singlet state.

This singlet moves coherently in the background of the copper spins [34] when

there are enough doped holes to sustain the mobility. The hybridization of

copper and oxygen holes lower the system’s energy through the singlets’

coherent motion. At different doping levels, there are different amounts of

holes in the system. It is natural to relate the stability of the Zhang-Rice

singlets’ coherent motion to doping level. When the doping is approximately

at half filling, the coherent motion is highly suppressed due to the lack of

holes; the AF correlation between copper spins are particularly strong at

very low doping. In an näıve picture, one would expect that the more holes

doped, the more stable the coherence would be and that a large Fermi surface

would exist whose area follows the Luttinger theorem. In this picture, in the

normal state, I would have a large Fermi surface with a volume containing

1 − x electrons and it would follow the signatures of conventional Fermi

liquid. One specific example of this is in the cuprate material T l2Ba2CuO6+δ

(T l− 2201). It is extensively studied since it has a simple single CuO2 layer

without other complications. In the overdoped regime, ARPES [35] and

quantum oscillation experiments [36] have reached a consensus that indeed

there is a large Fermi surface and the material acts as a regular Fermi liquid.

But, as I will show you, in general, it is not always this simple.

Things are more complex when it comes to the underdoped regime. The

situation is quite unconventional and the picture I spoke of earlier no longer

holds. The experiments previously discussed [37] [38] show the signature of
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a pseudogap in the normal state above the superconductor transition tem-

perature Tc. Not until the temperature is increased all the way above T ∗

does it returns to the conventional Fermi liquid state like what is seen in the

overdoped case.

The origin of this pseudogap is one of the most intensely studied subjects

in high temperature superconductivity [39]. After 30 years of debate, there

is still no consensus as to what the pseudogap is; the basic dilemma is the

ungapped portion of the Fermi surface. It should consist of continuous con-

tours since the Fermi surface is the trajectories of the poles in the one-particle

Green’s function. One would expect that as temperature is decreased from

below T ∗ to low temperatures (in the normal state when superconductivity

is suppressed) the Fermi arc will evolve into either a Fermi point (Nodal liq-

uid) or a Fermi surface pocket around the node. In reality however, despite

numerous improvements in experimental methods and accuracy, there is no

sign of pockets but instead a Fermi arc. The appearance of this Fermi arc

is a haunting problem in high Tc field. There are many theories which can

be mainly classified into two groups: proposals based on a one-gap scenario

and proposals based on a two-gap scenario.

1.5.1 One-Gap Scenario

The one-gap scenario is a preformed pair scenario which considers the pseu-

dogap to be an incoherent pairing gap above Tc. When temperature decreases

from above T ∗ to below T ∗, the d-wave pairs start to form but have not yet

gained their long-range phase coherence yet. Upon further decrease of tem-

perature toward Tc, the Fermi arc length shrinks toward the nodal point. The

pseudogap evolves continuously to the d-wave superconductive gap, which re-

sembles the coherent movement of the cooper pairs below Tc accompanied

by the collapse of the arc to a node. The main point of the one-gap scenario

is that there is only one gap existing below Tc and that d-wave pairing is the

only driving force to gap the entire Fermi surface.
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Models describing phase disordering include two different pictures. The

first picture is thermal phase fluctuation [40][41][42][43]. The second picture

is inelastic scattering and life-time effects [44]. The observed Nernst effect

[45][46][47][48] provides evidence of large fluctuating superconductivity above

the transition temperature. It is worth noting that there are two different

kinds of pseudogaps. One has the same energy scale of the superconducting

gap and extends above Tc to TMF , which is the Nernst region. In this type

of pseudogap the doping dependance of TMF and Tc follow the same trend.

The second kind of pseudogap is the more conventional pseudogap is shown

in the phase diagram Fig. 1.5. This pseudogap has a clear characteristic

temperature T ∗ which has the opposite doping dependence in the underdoped

region with superconductivity.

Taking into account the experimental fact that the characteristic temper-

ature T ∗ for pseudogap is increasing with respect to the doping decrease in

the very underdoped regime, it is necessary to invoke an energetically com-

petitive state with d-wave gap symmetry. [49]. Several quantum and thermal

phase disordering in the fluctuating states are proposed, and they all involve

a competing state with the superconductivity, such as the AF state [50],

staggered flux phase [51], and stripes phase [52]. Among all these proposals

there is only one gap - the d-wave pairing gap is responsible for the entire

Fermi surface gaping.

Kanigel et al. reported that arc length depends only on the ratio T/T ∗.

The arcs collapse linearly with T/T ∗ ratio and extrapolate to zero [53][54].

They support the proposal that the T = 0 pseudogap state is a nodal liquid

− a strange metallic state whose gapless excitations exist only at points in

k-space, just as in a d-wave superconducting state. However the experiments

are performed on the optimal to lightly underdoped BSCCO samples, so

there is a need for more information in the very underdoped regime to shed

light on the pseudogap debate.
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1.5.2 Two-Gap Scenario

In the two-gap scenario, the pseudogap is a completely different state from

the superconducting state. It is an independent order of an energetically

competitive state with a characteristic temperature T ∗ which is not related

to electron pairing. The following proposals all follow this two-gap school of

thought, including (1) static orbital current order.[55] [56] [57] [58] [59].(2)

charge density wave order [60] [61] [62] [63].(3) valence-bond density density

wave order[64].(4) other general density wave [65] [52].

Most of the theories involve breaking the translation symmetry, resulting

in superstructures characterized by a finite crystal momentum q. A finite

q vector gaps out the antinodal region of the Fermi surface and the folding

of the bands by q gives Fermi pockets around the node. Because of the

coherence factors which mix the quasiparticle states connected by vector q,

one side of the pockets is weaker than the other side. This can give what

appears as a ’Fermi arc’. There are also phenomenological theories which

propose that the crossing of the Fermi surface and Luttinger surface leads to

the truncation of the Fermi surface [66] [67] [68] [69].

After many years of research on this pseudogap issue, with much im-

proved measurement resolution, Fermi pockets and folded bands have not

been seen by ARPES. However, recent quantum oscillation measurement

have suggested that there might be Fermi pockets in the presence of high

magnetic field in underdoped ortho − II Y Ba2Cu3O6.5. Since, though, the

experiments were done in a very high magnetic field with suppressed Tc, the

small Fermi pockets may be caused by a field induced density wave [70] [71].

1.5.3 My Concentration

The most important prediction of the two-gap scenario is that there are two

gaps coexisting below Tc: a superconducting gap around the nodal region

and a different gap around antinodal region [72]. The most recent ARPES
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experiments[21] [73] [74] and Raman scattering experiments[75] support this

two gap picture in the very underdoped regime. In Bi2212 the supercon-

ducting gap is large and hard to be separated from the pseudogap. It is

very hard to reach a very underdoped regime with a high sample quality. In

order to overcome this difficulty, the above ARPES experiments have been

performed on Y doped Bi2212 or Ln doped Bi2201. They find that the

spectral gap in the superconducting state contains two distinctly different

pieces in terms of their momentum, temperature and doping dependence.

One piece is a superconducting gap near the nodal region accompanied by a

coherence peak that tracks Tc. The other piece is a large pseudogap near the

antinodal region that is associated with a broad spectrum without a coherent

peak that tracks T ∗. This evidence strongly support the idea that pseudogap

emerges from the generic two-gap scenario. In this thesis, I will start with a

non-superconducting normal state and describe the origin of the Fermi arc

in the clean case. Then I will study the pining of such pseudogap state by

the disordered ionic potential and the interplay of the two gaps. Several

perspectives will be presented to be compared with the experiments.
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Chapter 2

Renormalized Mean Field

Theory for High Tc Cuprates

In a strongly correlated system the inter particle interactions are very impor-

tant. They dominate over the single particle dynamics. High temperature

superconductors fall into the category of strongly correlated systems and the

dominating interactions manifest different novel states. The t-J model is

commonly considered to be the bare minimum model for high temperature

cuprates. It is simple yet sophisticated and complicated enough to capture

the salient characteristics of the complex materials. The t-J model can not

be solved exactly. Approximations are needed to make theoretical progress.

Starting from the basic interactions in cuprates, I will derive the renormalized

t-J model which will be integral to the rest of this thesis.

2.1 Emergence of the t-J Model

All the members of the cuprate families share similar quasi 2D structures

which contain layers of CuO2 planes. These planes are known to be the

”battle fields” of the electrons and focal planes of the physics. Despite the

vast difference in both number of layers of CuO2 planes and chemical com-
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Figure 2.1: Hopping integral, onsite potential and intersite potential with the
quasi 2D CuO2 layer, revised from [79]

.

position of the insulating layers, different families of cuprates all share the

similar basic properties of high temperature superconductors. Therefore,

such a system, can be simplified into one 2D plane with a square lattice of

Copper atoms with an Oxygen atom sitting between each Cu-Cu bond.

2.1.1 Three-Band p-d Model

From the electronic structure of the CuO2 plane it is known that the most

straight forward model is to directly deal with the Cu 3dx2−y2 orbital and

the O 2p orbital. Several physicists have developed this three-band model

[76] [77] [78] which takes into account the interactions between the nearest

neighbor Cu − O bonds, the nearest neighbor O − O bonds and the next

nearest neighbor O − O bonds (see Fig. 2.1). The Hamiltonian can be

written, in the context of a ”hole language” as Eq. 2.1 [79].
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Hdp = − tdp

∑
〈i,j〉σ

(d†iσpjσ + h.c.)

− tp
∑
〈j,j′〉σ

(p†jσpj′σ + h.c.)

+ t′p
∑
〈j,j”〉σ

(p†jσpj”σ + h.c.)

+ εd

∑
i,σ

nd,iσ + εp

∑
jσ

np,jσ + Ud

∑
i

nd,i↑nd,i↓

+ Up

∑
j

np,j↑np,j↓ + V
∑
〈i,j〉

nd,inp,j (2.1)

Where d†iσ (diσ) is a creation(annihilation) operator of a hole with spin σ on

the Cu3dx2−y2 -orbital at site i, and where p†iσ (piσ) is a creation(annihilation)

operator of a hole with spin σ on the O2p-orbital at site j. < i, j > means

i and j are the nearest neighbors. The number operators are defined as

nd =
∑

σ d†iσdiσ and np =
∑

σ p†iσpiσ. The vacuum is defined as Cu 3d10 and

O 2p6. Due to the Cu d9 electron structure the outter most orbital is the

Cu 3dx2−y2 orbital and it lays head to head with the oxygen 2p orbital (see

Fig. 2.2). The hopping integrals tdp, tp, t
′
p correspond to the hybridizations

of the atoms whose bonds are connected together. They are proportional to

the overlap of the wave functions of the corresponding holes. They give the

energy gain by destroying one hole from one site and simultaneously creating

another hole on the neighboring site. The most significant hopping integral

is the d to p orbital hopping tpd ∼ 1.3eV . It is about twice the magnitude

of the nearest p to p orbital hopping tp ∼ 0.65eV . The energy level of the

single occupied copper d orbital is εd and the energy level of the oxygen

p orbital is εp, (here I set εd = 0). The difference in these two orbitals is

defined as ∆p = εp−εd at half filling. In the charge transfer insulator picture,

because ∆p > 0, it is energetically favorable for one hole to sit on the copper
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Figure 2.2: Charge transfer insulator and Mott Insulator, revised from [79]
.

d orbital. The definition of ∆ = Ud − ∆p is given by Fig. 2.2, which is the

energy difference between the copper d orbital and the oxygen p orbital. The

onsite potential of copper Ud = 10.5eV is huge. This means that the lowest

energy excitation would be one hole with spin 1
2

coming from the copper site

and going to the oxygen site. This makes the undoped parent compound

a charge transfer insulator. Other repulsions in the system are the oxygen

onsite repulsion UP ∼ 4eV and the nearest neighbor repulsion in between

the copper and oxygen V = 1.5eV . They are both significantly smaller than

Ud.

It is worth mentioning the difference between a charge transfer insulator

and a Mott insulator. At half filling, in the electron picture, the lowest

energy excitation is exciting an electron from the fully occupied O 2p to the

Cu 3d orbital to form a fully occupied Cu 3d orbital. The energy cost is

∆ = Ud − ∆p, where Ud in the onsite coulomb repulsion of the d orbital
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double occupancy and ∆p is the energy difference of Cu 3d and O 2p. If ∆p

is sufficiently large as compared to tpd, one hole will form a local moment

on Cu. That is referred to as a charge transfer insulator [80]. It is more

convenient to think in the hole picture, where the Cu 3d orbital is singly

occupied by a hole with spin 1
2
. Upon exciting this hole to the empty O 2p

orbital, the energy cost is ∆ ∼ 3.6eV . On the other hand, the Mott insulator

follows a difference story, here, at half filling. In the electron picture, a fully

occupied O 2p has lower energy than the singly occupied copper. The lowest

energy excitation will excite one electron from one copper orbital to the

other, forming a doubly occupied copper orbital with a huge energy loss of

Ud. This is why the electrons are confined to their own copper sites to form

local moments, referred to as the Mott insulator [10]. In this scenario, O 2p

is always fully occupied by electrons, or say, fully empty without any holes.

So O 2p is left out of the excitation in the Mott insulator picture. In the

context of the high temperature superconductor, it is more suitable to adopt

the first convention and I shall derive the t-J model from this picture in the

following section. There is a different approach to reach the same final result

in deriving the t-J model in the second case, which will be the second order

perturbation from the Hubbard model. This will be summarized in Appendix

A for the sake of completeness on this issue.

2.1.2 From the Two-Band Model to Effective One-Band

t-J Model

The three-band model contains many interactions and it is rather involved

to solve. So further reduction of the degrees of the freedom in the model was

considered. There are only two types of orbitals left, the copper d orbital and

the oxygen p orbital. The ultimate question is whether those two are equally

important or if one of them can be reduced. F.C. Zhang and T.M Rice [34]

developed a method to recover the effective single band model which was first

proposed by Anderson[81]. Their starting point is a two-band model which
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only considers the hybridization of nearest neighbor Cu 3d and O 2p sites,the

on-site Coulomb repulsions at Cu sites, and the single occupied energy level

of Cu and O sites. Different from the three-band model, the initial two-band

model in Eq. 2.2 omits the effect of higher energy states on the low energy

excitations. This approximation is debated, but according to experimental

result in Fig. 1.8, the reduction to the effective one-band model is supported

(as discussed in the first chapter).

H2b = Ht + Hp

Ht =
∑
i,j

(−1)Mi,j tpd(d
†
iσpjσ + h.c.)

Hp = εd

∑
i,σ

nd,iσ + εp

∑
jσ

np,jσ + Ud

∑
i

nd,i↑nd,i↓ (2.2)

where

Mi,j = 1, (j = i +
1

2
x̂, ŷ)

Mi,j = 2, (j = i− 1

2
x̂, ŷ) (2.3)

Hp = J
∑
〈ij〉

Si · Sj

J =
4t4dp

ε2
pUd

+
4t4dp

2ε3
p

(2.4)

In Equation. 2.2, the hybridization part Ht describes the hopping process

between a Cu hole and a O hole. From the definition of the symmetry in

Fig. 2.3(a), the up bond and the right bond have negative tpd while the left

bond and the down bond have a positive one. An O hole can be either
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Figure 2.3: (a)Schematic diagram of the hybridization of the O hole (2p5) and
Cu hole (3d9), the signs + and − represent the phase of the wave function [34].
Upon doping one hole into the O site, this doped hole can resonate on the four O
sites around a Cu, the dashed arrow refers to the motion of the resonance. (b)The
resonating spin combined with the spin of a hole residing on Cu forms a spin
singlet on the copper site, it is equivalent to taking out the copper d hole with spin
and leaving a spinless hole. (c) Doping oxygen p holes into a half filled system
results in doping holes onto the copper site (d). In the final result (d) the system
is simplified into a two dimensional square lattice with only copper site involved.

in a symmetric(-) or an antisymmetric(+) state with respect to a Cu hole,

and either of them can combine a Cu hole to form a spin singlet (S) or a

spin triplet (T) state. After choosing an orthogonal and complete function

φiσ to represent symmetric O hole space, the symmetric singlet state can be

written as Equation. 2.7. The hopping motion of a singlet with its neighbors

can be expressed as Equation. 2.5, where tij are hopping integrals which can

be determined within second order perturbation theory. Creation of a Cu d

hole on site i means annihilation of a singlet state. In other words, Ψ−
i is

equivalent of an empty site without any Cu d hole. So Equation. 2.5 can be

reduced to Equation 2.6. The operator (1− ni,σ̄) explicitly excludes double
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occupation on site i.

Ht =
∑
i6=j,σ

tij((Ψ
−
j d†iσ)+(Ψ−

i pjσ)) (2.5)

=
∑
i6=j,σ

tij(1− ni,σ̄)d†iσdjσ(1− nj,σ̄) (2.6)

Ψ−
i = (1/

√
2)(Φi↑di↓ − Φi↓di↑) (2.7)

In Equation. 2.2, the potential part Hp describes the on-site potential for the

Cu hole and the O hole, also the inter-site repulsion between them. It is well

known that at half filling it can be reduced to S = 1
2

Heisenberg model on

the square lattice [82], see Equation. 2.4.

The basic idea of Zhang and Rice is that when doping one hole into the

O site from half filling (one hole per Cu site, empty in O site), that doped

hole can resonate on the four O sites around a Cu site (see Fig. 2.3(a)). In

order to form a stable state, the resonating spin combined with the spin of

the hole residing on Cu forms a spin singlet. So instead of a hole located

originally on the oxygen site, there is a spin singlet state centered on the Cu

site. It is equivalent to subtracting one spin −1
2

from the Cu site to have an

empty spin site. This is the so called hole in the Heisenberg spin system (see

Fig. 2.3(b)). The 2D CuO2 plane is reduced to a system which consists of

antiferromagnetic spins on the copper sites at half filling and doped holes on

top of that when the system goes away from half filling to the p-doped side

(see Fig 2.3(c)(d)). The oxygen hole is totaly out of the picture. In this

sense, the two-band model has been reduced to an effective one-band model:

the t-J model.

HtJ =
∑
i6=j,σ

tij(1− ni,σ̄)d†iσdjσ(1− nj,σ̄) +
∑
〈ij〉

JSi · Sj (2.8)

40



2.2 The Renormalized Mean Field Method

with Gutzwiller Approximation

The t-J model is considered to be the simplest model available to treat

cuprates. Although quite simple in its expression, the exact treatment of

it is only limited to very special cases. There are two difficulties: The first

difficulty is the question of how to project out the double occupancy on the

same site in order to work in a reduced Hilbert space. The second diffi-

culty is the question of how to treat the four-fermion interaction term Si ·Sj.

The renormalized mean-field theory (RMFT) is a powerful tool to resolve

these difficulties with some sensible approximations. The key issue here is

the correct evaluation of the expectation values of operators with respect to

the trial wave function |Ψ〉. With our constraint of reduced Hilbert space,

a projection P̂ needs to act on the non-interacting wave function, resulting

in |Ψ〉 = P̂ |Ψ0〉. |Ψ0〉 is an uncorrelated state, for example a Slater deter-

minate of single particle states. The expression of the object operator’s (Ô)

expectation value follows the following term:

〈Ô〉R ≡
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉

=
〈Ψ0|P̂ ÔP̂ |Ψ0〉
〈Ψ0|P̂ 2|Ψ0〉

≈ gO(M)
〈Ψ0|Ô|Ψ0〉
〈Ψ0|Ψ0〉

= gO(M)〈Ô〉

(2.9)

Here the expectation value, which is supposed to be evaluated on the pro-

jected space 〈Ô〉R, is successfully reduced to the expectation value evaluated

on the unprojected space 〈Ô〉 with a renormalization factor gO(M) in front.

M = (M1, M2, M3, · · · ) are the relevant mean fields. Here I follow one of

the renormalization schemes, the so called the Gutzwiller approximation to

implement the blueprint which was laid out in Equation. 2.9.
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2.2.1 Uniform Gutzwiller Approximation

In the last section, I derived an effective Hamiltonian for cuprates. The t-J

model is applied on a reduced Hilbert space, excluding double occupation.

Although having a reduced Hilbert space is easy to conceptualize, it is not

trivial to treat analytically. The Gutzwiller approximation is a very pow-

erful tool to project out double occupation. Gutzwiller [83][84] and Ogata

[85] have derived the renormalization factor using a classical weight counting

method. Vollhardt [86] has given a clear physical explanation of this issue.

They reach a consistent result in the uniform case.

The Gutzwiller factor acts like a classical weighting factor which ensures

the expectation value of the kinetic energy term and superexchange term are

correctly estimated. [87] The projection is defined as |Ψ〉 = PG|Ψ0〉. The

renormalization of these two major terms in the t-J model is as follows:

〈Ψ0|PGC†
iσCjσPG|Ψ0〉 = gt〈Ψ0|C†

iσCjσ|Ψ0〉0 (2.10)

〈Ψ0|PGSi · SjPG|Ψ0〉 = gJ〈Ψ0|Si · Sj|Ψ0〉0 (2.11)

The first term is the hopping process. Starting with site i empty and site j

singly occupied with a spin up electron, the spin up election hops from j site

to i site. If there is no exclusions of double occupation, the Pauli principle

prohibits the process to occur when i site is occupied by a spin up election. If

the probability of site i occupied by a spin up electron is ni↑, then the proba-

bility of site i being not occupied by a spin up electron is 1−ni↑ = (1 +x)/2

when spin up and spin down are degenerate. Here x is the doping of holes.

After the projection, the double occupation is excluded. The hopping only

happens when site i is occupied by a hole. That probability is x indeed. To

give the right expectation value of the hopping term using the projected wave
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function, there should be a factor of x
(1+x)/2

in front of the expectation value

of the hopping term using the bare wave function. This gives us gt = 2x
1+x

.

The second process is the superexchange process. Initially I start with site

i occupied by a spin up electron and site j occupied by a spin down electron.

After a superexchage, site i is occupied by a spin down electron and site j is

occupied by a spin up electron. The net effect is the orientation of the spin

flipped during the process. Without excluding the double occupation, the

process can be broken down into two steps. Step one: the spin up electron

on site i hops into site j with a probability ni↑(1 − nj↑). Step two: the spin

down electron on site j hops into site i with a probability nj↓(1−ni↓). So the

total probability of the process to happen is ni↑(1−nj↑)nj↓(1−ni↓). If double

occupation is prohibited, the probability for this process to happen is instead

ni↑nj↓. To give the right expectation value of the superexchange term, using

the projected wave function, there should be a factor of
ni↑nj↓

ni↑(1−nj↑)nj↓(1−ni↓)
in

front of the expectation value of the superexchange term using the bare wave

function. That gives us gJ = 4
(1+x)2

.

This uniform Gutzwiller factor can be achieved by setting the hole den-

sity to be the same value at every lattice site in the spatially unrestricted

Gutzwiller factor. This will be further explained in the next section.

2.2.2 Spatially Unrestricted Gutzwiller Approximation

Strongly correlated electrons in cuprates have novel response to inhomo-

geneity, the resulting physics cannot be overlooked. The uniform Gutzwiller

approximation, which gives exactly the same projection on every lattice site,

is not justified in the presence of inhomogeneity. The concept of statistical

counting in the classical regime depends on the correlation strength. The

correlation strength is dependant on the spatial density of each individual

lattice site. This needs to be taken into account beginning with the construc-
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tion of the trial wave function. Due to the spatially inhomogeneous nature

of cuprates, the spatially unrestricted Gutzwiller approximation (SUGA) is

needed. Following the method of F.C Zhang et al [88], I will derive the

renormalization factors for t-J model in the spatially unrestricted case.

In t-J model, I separate the Hamiltonian into two different parts: the

kinetic energy part Ht and the exchange part HJ .

H = Ht + HJ

Ht = −t
∑

<ij>σ

(c†iσcjσ + h.c.)

HJ = J
∑

<i,j>σ

(Si · Si −
1

4
ninj)

(2.12)

When constructing a trial wave function describing correlated states |Ψ〉
from uncorrelated states |Ψ0〉, the projection operator is site dependent, de-

fined by

|Ψ〉 =
∏

i

P̂i|Ψ0〉 (2.13)

The definition of P̂i is given by

P̂i = y
n̂i↑
i↑ · yn̂i↓

i↓ · (1− n̂i↑n̂i↓) (2.14)

yiσ is the site and spin dependent fugacity. The purpose of introducing

it is to keep the electron density before and after the projection identical,

〈n̂iσ〉 = 〈n̂iσ〉0. n̂iσ is the density operator which counts the number of the

spin σ electrons on site i. Since the density operator can only result in

an empty 0 or occupied 1 state, I can simplify the exponential function as

follows:
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yn̂iσ
iσ = 1− (1− yiσ)n̂iσ (2.15)

Using the commutation relation of fermions, I can transform the projection

operator P̂i in Equation. 2.14 into the form composed of empty operator Êi

and single occupation operator Q̂iσ,

P̂i = Êi + yi↑Q̂i↑ + yi↓Q̂i↓

Êi = (1− ni↑)(1− ni↓)

Q̂i↑ = n̂i↑(1− n̂i↓)

Q̂i↓ = n̂i↓(1− n̂i↑) (2.16)

Note that if I set the fugacity of the up spin and down spin to be equal to

each other (yi↑ = yi↓ = yi), the spin dependent fugacity can be reduced to the

spin independent one, which is the case for the paramagnetic state where the

up and down spins are degenerate. Now I calculate the expectation values

of the occupation operators in the unprojected space:

ei0 = 〈Ψ0|Êi|Ψ0〉 = (1− niσ0)(1− niσ̄0)

qiσ0 = 〈Ψ0|Q̂iσ|Ψ0〉 = niσ0(1− niσ̄0)

(2.17)

Similarly, I can calculate the expectation values of the occupation oper-
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ators in the projected space:

ei = z−1
i 〈Ψ0|P̂iÊiP̂i|Ψ0〉 = z−1

i 〈Ψ0|Êi|Ψ0〉 =
ei0

zi

qiσ = z−1
i 〈Ψ0|P̂iQ̂iσP̂i|Ψ0〉 = z−1

i 〈Ψ0|y2
iσQ̂iσ|Ψ0〉 =

y2
iσqiσ0

zi

(2.18)

Note in Equation. 2.18, the renormalization factor Z =
∏

i zi, where

zi = 〈Ψ0|P̂i · P̂i|Ψ0〉 = ei0 + y2
i↑qi↑0 + y2

i↓qi↓0 (2.19)

Using the basic fermion commutation relation {C†
i , Ci} = 1 and Pauli

principle the following building blocks are derived. They are helpful tools in

later calculations.

P̂iC
†
iσP̂i = [yiσ(1− niσ̄)]C†

iσ (2.20)

P̂iCiσP̂i = [yiσ(1− niσ̄)]Ciσ (2.21)

P̂iniP̂i =
∑

σ

y2
iσQiσ (2.22)

P̂iS
+
i P̂i = yiσyiσ̄S

+
i (2.23)

P̂iS
−
i P̂i = yiσyiσ̄S

−
i (2.24)

Equipped with these equations, next I am going to derive the projection

factor for Ht and HJ .
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〈Ψ|C†
iσCjσ|Ψ〉

= 〈Ψ0|P̂iC
†
iσP̂iP̂jCjσP̂j|Ψ0〉/zizj

= gtσ(i)gtσ(j)〈Ψ0|C†
iσCjσ|Ψ0〉 (2.25)

gt(i) =
yiσ(1− niσ̄)

zi

=

√
eiqiσ

ei0qiσ0

(1− niσ̄)

=

√
niσ(1− ni)

niσ(1− niσ)

=

√
2xi

1 + xi

gt(j) =
yjσ(1− njσ̄)

zj

=

√
ejqjσ

ej0qjσ0

(1− njσ̄)

=

√
njσ(1− nj)

njσ(1− njσ)

=

√
2xj

1 + xj

(2.26)

In order to get the renormalization factor in front the superexchange

term, I break the exchange term into two parts, the S+− part and the Szz

part ( SiSj = S+
i S−

j + Sz
i S

z
j ). Although there are different ways to interpret

the renormalization factor for the Szz part, there is indeed consensus on the

renormalization factor for the first S+− part:
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〈Ψ|S+
i · S−

j |Ψ〉

= 〈Ψ0|P̂iS
+
i P̂iP̂jS

−
j P̂j|Ψ0〉/zizj

= g+−
J (i)g+−

J (j)〈Ψ0|S+
i · S−

j |Ψ0〉

g+−
J (i) =

yi↑yi↓

zi

=

√
qi↑qi↓

qi↑0qi↓0

=

√
ni↑

ni↑(1− ni↓)

ni↓

ni↓(1− ni↑)

=

√
1

(1− ni↑)(1− ni↓)
=

1

1− ni

2

=
2

1 + xi

g+−
J (j) =

yj↑yj↓

zj

=

√
qj↑qj↓

qj↑0qj↓0

=

√
nj↑

nj↑(1− nj↓)

nj↓

nj↓(1− nj↑)

=

√
1

(1− nj↑)(1− nj↓)
=

1

1− nj

2

=
2

1 + xj

(2.27)

The renormalization factor for the Szz part has several interpretations and

the derivation is rather involved [89]. In the paramagnetic state there is spin-

rotation symmetry. The renormalization factor in front of Sz
i S

z
j should be

the same as the one in front of S+
i S−

j . In summary, the spatially unrestricted

Gutzwiller factors can be written as:

gt
ij =

〈Ψ|C†
iσCjσ|Ψ〉

〈Ψ0|C†
iσCjσ|Ψ0〉

=

√
4xixj

(1 + xi)(1 + xj)

gJ
ij =

〈Ψ|SiSj|Ψ〉
〈Ψ0|SiSj|Ψ0〉

=
4

(1 + xi)(1 + xj)

(2.28)
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Again, if this is a uniform state (xi = xj = x), the uniform Gutzwiller

factor can be recovered:

gt = 2x/(1 + x)

gJ = 4/(1 + x)2

(2.29)
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2.2.3 The Mean Field Decoupling of S · S Superex-

change Term in the t-J Model

The Gutzwiller approximation has taken care of the strongest correlation in

the system. Now I can move onto how to treat the four-fermion term in the

t-J model. The superexchange term in the t-J model is:

J
∑

<i,j>σ

(Si · Sj −
1

4
ninj) =

1

2
(C†

iσCiσ̄C
†
jσ̄Cjσ − niσnjσ̄) (2.30)

Si is defined as Si = 1
2
C†

iασαβCiβ, where σ are the Pauli matrices. There

is an extra −1
4
ninj term in addition to the exchange term in Equation. 2.8.

Since Si · Sj = 1
2
C†

iσCiσ̄C
†
jσ̄Cjσ + 1

4
niσnjσ − 1

4
niσnjσ̄, and 1

4
ninj = 1

4
niσnjσ +

1
4
niσnjσ̄, with an extra −1

4
ninj term, the indices in front of C†

iσCiσ̄C
†
jσ̄Cjσ

and −niσnjσ̄ are tuned to be the same. Also, it is consistent with the t-J

model derived from the Hubbard model using second perturbation theory.

These two four-fermion terms can be written into the mean field format.

Using AB+CD = 1
2
(A+C)(B+D)+ 1

2
(A−C)(B−D), the first four-fermion

term can be written as the following:

1

2
C†

iσCiσ̄C
†
jσ̄Cjσ

= −1

2
(C†

i↑Cj↑C
†
j↓Ci↓ + C†

i↓Cj↓C
†
j↑Ci↑)

= −1

4
(C†

i↑Cj↑ + C†
i↓Cj↓)(C

†
j↓Ci↓ + C†

j↑Ci↑)

−1

4
(C†

i↑Cj↑ − C†
i↓Cj↓)(C

†
j↓Ci↓ − C†

j↑Ci↑)

(2.31)

If I define the mean field order parameter representing the bond order as the
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following :

χ+
ij ≡ 〈C†

i↑Cj↑ + C†
i↓Cj↓〉

(χ+
ij)

∗ ≡ 〈C†
j↓Ci↓ + C†

j↑Ci↑〉

χ−
ij ≡ 〈C†

i↑Cj↑ − C†
i↓Cj↓〉

(χ−
ij)

∗ ≡ −〈C†
j↓Ci↓ − C†

j↑Ci↑〉

(2.32)

The first four-fermion term becomes:

1

2
C†

iσCiσ̄C
†
jσ̄Cjσ

= −1

4
[(χ+

ij)
∗(C†

i↑Cj↑ + C†
i↓Cj↓) + h.c.− |χ+

ij|2]

+
1

4
[(χ−

ij)
∗(C†

i↑Cj↑ − C†
i↓Cj↓) + h.c.− |χ−

ij|2]

(2.33)

In the same way, the second four-fermion term can be written:

−1

2

∑
σ

niσnjσ̄

= −1

2
(C†

i↑C
†
j↓Cj↓Ci↑ + C†

i↓C
†
j↑Cj↑Ci↓)

= −1

4
(C†

i↑C
†
j↓ + C†

i↓C
†
j↑)(Cj↓Ci↑ + Cj↑Ci↓)

−1

4
(C†

i↑C
†
j↓ − C†

i↓C
†
j↑)(Cj↓Ci↑ − Cj↑Ci↓)

(2.34)

If I define the mean field order parameter representing the pairing order as

the following:
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∆+
ij ≡ 〈C†

i↑C
†
j↓ + C†

i↓C
†
j↑〉

(∆+
ij)

∗ ≡ Cj↓Ci↑ + Cj↑Ci↓

∆−
ij ≡ 〈C†

i↑C
†
j↓ − C†

i↓C
†
j↑〉

(∆−
ij)

∗ ≡ 〈Cj↓Ci↑ − Cj↑Ci↓〉

(2.35)

The second four-fermion term becomes:

−1

2

∑
σ

niσnjσ̄

= −1

4
(∆+

ij)
∗(C†

i↑C
†
j↓ + C†

i↓C
†
j↑) + h.c.− |∆+

ij|2

−1

4
(∆−

ij)
∗(C†

i↑C
†
j↓ − C†

i↓C
†
j↑) + h.c.− |∆−

ij|2

(2.36)

I sum over these two terms to get the mean field decoupled S · S term:

J
∑

<i,j>σ

(Si · Sj −
1

4
ninj)

= −1

4
J [(χ+

ij)
∗(C†

i↑Cj↑ + C†
i↓Cj↓) + h.c.− |χ+

ij|2]

+
1

4
J [(χ−

ij)
∗(C†

i↑Cj↑ − C†
i↓Cj↓) + h.c.− |χ−

ij|2]

−1

4
J [(∆+

ij)
∗(C†

i↑C
†
j↓ + C†

i↓C
†
j↑) + h.c.− |∆+

ij|2]

−1

4
J [(∆−

ij)
∗(C†

i↑C
†
j↓ − C†

i↓C
†
j↑) + h.c.− |∆−

ij|2]

(2.37)
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Here I use spin dependant notation to write the order parameter:

χijσ = 〈C†
iσCjσ〉

∆ijσ = 〈CiσCjσ̄〉

(2.38)

Then the order parameters in Equation. 2.42 can be written as:

χ+
ij = χij↑ + χij↓

χ−
ij = χij↑ − χij↓

∆+
ij = ∆ij↑ + ∆ij↓

∆−
ij = ∆ij↑ −∆ij↓

(2.39)

In the paramagnetic state, the SU(2) symmetry requires setting up the order

parameters in the following way:

χij↑ = χij↓

∆ij↑ = −∆ij↓

(2.40)

I can drop the +− sign in my definition of order parameters in Equation. 2.42

to get the more conventional notation:

χij = 〈C†
i↑Cj↑ + C†

i↓Cj↓〉

∆ij = 〈C†
i↑C

†
j↓ − C†

i↓C
†
j↑ 〉

(2.41)
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As a result, the S · S term becomes multiple two-fermion terms coupled

with the mean fields. At this point I have tackled the last difficulty in solving

the t-J model.

J
∑

<i,j>σ

(Si · Sj −
1

4
ninj)

= −1

4
J [χ∗

ij(C
†
i↑Cj↑ + C†

i↓Cj↓) + h.c.− |χij|2]

−1

4
J [∆∗

ij(C
†
i↑C

†
j↓ − C†

i↓C
†
j↑) + h.c.− |∆ij|2]

(2.42)

2.2.4 The Renormalized Mean Field Hamiltonian with

SUGA

From the most standard format of t-J model:

H = P̂{−
∑
i6=j

tijC
†
iσCjσ + J

∑
<i,j>

(Si · Sj −
1

4
n̂in̂j)}P̂

(2.43)

Incorporating the two parts of the approximation: the SUGA part and the

mean field decoupling part. I get the renormalized mean field t-J model I am

going to use throughout the following chapters:

HGA = −
∑
i6=j

gt
ijtijC

†
iσCjσ −

∑
i

µfC
†
iσCiσ +

∑
i

λiC
†
iσCiσ

− 1

4
J
∑
〈i,j〉

gχ
ij(χ

∗
ijC

†
iσCjσ + h.c.− |χij|2)

− 1

4
J
∑
〈i,j〉

g∆
ij (∆

∗
ijεσσ′C

†
iσCjσ′ + h.c.− |∆ij|2)

(2.44)
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C†
iσ creates an electron that hops between near neighbors via tij with repeated

spin indices summed. The density operator and the electron density at site

i is n̂i = C†
iσCiσ. The local doping concentration is given by xi = 1 − ni.

The average doping is x = (1/Ns)
∑

i xi on a square lattice of Ns sites.

gχ
ij = g∆

ij = gJ
ij in the Gutzwiller approximation reflects the SU(2) symmetry

at half filling. µf is the chemical potential which keeps the doping to be

the desired one. λi is the local fugacity which is necessary when there is

inhomogeneity.

There are three mean fields {∆ij, χij, xi}, they can be solved self-consistently

by minimizing the energy. There are no spatial restrictions on any of these

mean fields unless I am particularly interested in the uniform case. The

strong correlation is built in the renormalization factor gχ
ij and g∆

ij . Since

they depend on one of the mean fields, the local density, they are optimized

simultaneously when the global energy minimum is reached upon solving the

mean field order parameters self-consistently.

2.2.5 Two Valence Bond Channels with the Same Ori-

gin Become Different Away from Half Filling

In the undoped case at half filling, the kinetic energy is completely quenched,

leading to a Mott insulator. The superexchange interaction causes the spins

to order antiferromagnetically in the ground state (see Fig. 2.4(a)), this can

be described by the Heisenberg model.

For more than two decades, theories have been guided by the idea that the

strong quantum fluctuations of the spin-1/2 moments make the spin-singlet

valence bond state close in energy to the antiferromagnetic state. Following

the mean field decomposition in Equation. 2.45, the valence bond can form

via either spin singlet pairing ∆ij or the orbital hybridization χij. This has

been envisioned by Pauling in the context of chemical bonding in molecules
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Figure 2.4: Cuprates at half filling.(a) The ground state is an AF state with spins
aligned in the opposite position with all their nearest neighbors to avoid costing ex-
tra superexchange energy.(b)(c) Two examples of valence bond arrangement at half
filling. The RVB ground state is the superposition of all the possible arrangements.

and revived by Anderson in the resonance valence bond (RVB) theory for

cuprates [81]:

∆ij = 〈Ci↑Cj↓ − Ci↓Cj↑〉 =
1√
2
(| ↑↓〉 − | ↓↑〉)

χij = 〈C†
i↑Cj↑ + C†

i↓Ci↓〉 =
1√
2
(| ↑⇑〉+ | ↓⇓〉)

(2.45)

Since charge fluctuations are completely suppressed, these two descrip-

tions (the spin singlet pair and the orbital hybridization) in Equation. 2.45

are equivalent at half filling due to the SU(2) symmetry [90][55]. The SU(2)

transformation is:

(
Ci↑

C†
i↓

)
=

(
a b

−b∗ a∗

)(
C̃i↑

C̃†
i↓

)
(2.46)

(2.47)
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Figure 2.5: Doping a Mott insulator. (a) One valence bond arrangement at half
filling. (b) Doped Mott insulator

Here the matrix is unitary with |a|2 + |b|2 = 1. If I use a = 0, b = 1,

this will immediately give us the transformation I need to prove the equiv-

alence of the spin singlet pair and the orbital hybridization at half filling in

Equation. 2.45:

C↑ → C†
↓

C↓ → −C†
↑

(2.48)

If the order parameters are real, the s state in ∆ij is equivalent with

the uniform state with real χij. If the order parameters are complex, the

s + id state in ∆ij is equivalent with the flux phase with complex χij. In

Anderson’s RVB theory, two nearest neighbor spins form a valence bond to

lower the energy. The ground state is a linear superposition of valence bond

arrangements (see Figure 2.4). This is considered to be a valence bond

liquid state with short range order. Besides valence bond liquid states, there

are also symmetry breaking valence bond crystal states that are gapped but

competitive in energy [59] [52].
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When doping away from half filling, extra carriers break the SU(2) sym-

metry. One of the consequences is that the valence bond in the particle-

particle representation and particle-hole representation become different from

each other. The doping process can be represented in the cartoon Fig. 2.5.

This can be viewed as follows: the introduced extra holes hop on the back-

ground of the resonating valence bond liquid. As it goes away from half filling,

the basic question one can ask is which fluctuation valence bond states is se-

lected when a sufficient amount of doping destroys the AF long-rang order.

In the short-range RVB theory, the spin-singlet valence bond pairs are mobi-

lized by the doped holes and tend to condense into a d-wave SC state below

Tc [91]. There is a natural competing order driven by the same spin exchange

interaction J, but associated with the valence bond χij in particle-hole chan-

nel that favors a quantum paramagnetic state. The competition between

these two might result in the rich physics of the underdoped cuprates.

2.3 The Bridge Between the Theory and Ex-

periment – Using Retarded Green’s Func-

tion to Describe One Particle Properties

as Seen in Experiments

Once I have my model, the next step is to determine what ”measurables”

can be calculated and compared with the experiments. Of particular interest

is experimental evidence from ARPES and STM. Together, they described

the one-particle properties of cuprates both in the momentum and the real

space. One of the important quantities of concern is the retarded Green’s

function, since the one particle spectral function and the density of states

are both related to it. Following Mahan’s [92] notation, the definition of the
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retarded Green’s function for an electron in state k is:

Gret(k, t− t′) = −iΘ(t− t′)〈[Ckσ(t)C†
kσ(t′) + C†

kσ(t′)Ckσ(t)]〉

= −iΘ(t− t′)〈{Ckσ(t), C†
kσ(t′)}〉

(2.49)

In Equation. 2.49, the expectation value of the quantity in the bracket means

taking the thermal average. In other words, it means tracing over a complete

set of states. Here I set t′ = 0. It means that one starts a signal at t′ =

0 and measures it at a later time t. The real measurement at time t is

always the result of the signal at starting point t′ = 0. The definition of

the retarded Green’s function can be simplified into the following form (see

Equation. 2.50). This formula is written at a non-zero temperature, but the

zero temperature formula can be deduced by setting the temperature to be

zero, T = 0:

Gret(k, t) = −iΘ(t)〈[Ckσ(t)C†
kσ(0) + C†

kσ(0)Ckσ(t)]〉

= −iΘ(t)〈{Ckσ(t), C†
kσ(0)}〉

= −iΘ(t)Tr{e−β(K−Ω)[{Ckσ(t), C†
kσ(0)}]}

K ≡ H − µN (2.50)

In Equation. 2.50, µ is the chemical potential, and N is the particle number.

The thermodynamic potential Ω is a scalar function of β and µ. e−βΩ is the

usual normalization factor for the thermal average, which can be denoted as

Z−1. The grand Canonical ensemble is used since the particle number of the

many body system can vary during the observation. If I write the retarded

Green’s function out explicitly on a set of states |n〉, and the eigenvalues of
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K is En, Equation. 2.50 gives us the following:

Gret(k, t) = −iΘ(t)〈[Ckσ(t)C†
kσ(0) + C†

kσ(0)Ckσ(t)]〉

= −iΘ(t)eβΩ
∑

n

〈n|Ckσ(t)C†
kσ(0) + C†

kσ(0)Ckσ(t)|n〉

= −iΘ(t)eβΩ
∑
m,n

〈n|Ckσ(t)|m〉〈m|C†
kσ(0)|n〉+ 〈n|C†

kσ(0)|m〉〈m|Ckσ(t)|n〉

= −iΘ(t)eβΩ
∑
m,n

|〈n|Ckσ|m〉|2eit(En−Em)[e−βEn + e−βEm ]

(2.51)

The retarded Green’s function has the standard Fourier transform:

Gret(k, ω) =

∫
Gret(k, t) exp(iωt)

Gret(k, t) =
1

2π

∫
Gret(k, ω) exp(−iωt)

(2.52)

Utilizing the Fourier transform in Equation. 2.52 to transform the re-

tarded Green’s function from the time t space to energy ω space, I get the

frequency dependent retarded Green’s function:

Gret(k, ω) = −i

∫ ∞

0

eit(ω+iδ)dteβΩ
∑
m,n

|〈n|Ckσ|m〉|2eit(En−Em)[e−βEn + e−βEm ]

= eβΩ
∑
m,n

|〈n|Ckσ|m〉|2
e−βEn + e−βEm

ω + En − Em + iδ

(2.53)
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In the experiment, ω is the energy relevant to the Fermi level. Since the

reference metal and the superconductor are in the thermal equilibrium, they

have the same Fermi Level. In equation. 2.53, δ → 0+. Sokhotsky’s formula

comes in handy when taking the limit. The Sokhotshy’s formula states that:

lim
ε→0+

1

x± iε
= P(

1

x
)∓ iπδ(x) (2.54)

After taking the limit, the retarded Green’s function becomes:

Gret(k, ω) = eβΩ
∑
m,n

|〈n|Ckσ|m〉|2
e−βEn + e−βEm

ω + En − Em + iδ

= eβΩ
∑
m,n

|〈n|Ckσ|m〉|2[e−βEn + e−βEm ]

[P(ω + En − Em)− iπδ(ω + En − Em)]

(2.55)

The definition of the one particle spectral function is :

A(k, ω) = −2Im[Gret(k, ω)] (2.56)

Then I get the spectral function for the electron:

A(k, ω) = 2πeβΩ
∑
m,n

|〈n|Ckσ|m〉|2[e−βEn + e−βEm ]δ(ω + En − Em) (2.57)

A standard manipulation of the temperature factors can be utilized:

[e−βEn + e−βEm ] = e−βEm [1 + e−β(En−Em)] (2.58)
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f(ω) is the Fermi function:

f(ω) =
1

e
− ω

kBT + 1
(2.59)

The spectral function can be written as:

A(k, ω) = 2πeβΩ
∑
m,n

|[e−βEm/f(ω)]〈n|Cp|m〉|2δ(ω + En − Em) (2.60)

ARPES is measuring the photoemission process which extracts one elec-

tion from the system. The spectral function A(k, ω) contains two parts:

the photoemission term and the inverse photoemission term. A−(k, ω) is

the one electron removal spectra, which can be extracted from the ARPES

measurement. A+(k, ω) is the one electron addition spectra which can be

extracted from inverse photoemission. High quality data is currently lacking

though from inverse photoemission experiments. The relation in between

these spectral functions is:

A(k, ω) = A−(k, ω) + A+(k, ω) (2.61)

The one electron removal spectral function can be written as:

A−(k, ω) = 2πeβΩ
∑
m,n

|[e−βEm ]〈n|Cp|m〉|2δ(ω + En − Em) (2.62)

As a result:

A−(k, ω) = f(ω)A(k, ω) (2.63)

In order to write the intensity measured by an ARPES experiment ex-

plicitly, several approximations need to be made. One of them is the sudden

approximation. Assume the energy of the photo-electron is high, the outgoing

photo-electron is so fast that I can ignore its interaction with other photo-

holes and the medium. The process of the photoemission can be treated
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simply by considering that this photo-electron is removed from the system

instantaneously, the rest of the system changes its status into a new state of

matter instantaneously. Once the process happens, both the photo-electron

and the remaining system do not suffer any continuous change due to colli-

sions. Although this does not apply to photo-electrons which have low energy,

at least providing the context wherein, this is a valid approximation [93]. An-

other approximation is that I need to neglect any extrinsic background to

simplify the real situation into a simple formula. The energy distribution

curve(EDC) is given by [94][95]:

I(k, ω) = I0(k)f(ω)A(k, ω) (2.64)

k is the momentum on the 2D plane of the sample. I0(k) is related to the

square of the one electron dipole matrix element and all the kinematical

factors. Symmetrization of the spectrum is the usual technique for ARPES

in order to take out the effect of Fermi function at finite temperature. In

this way the true gap can be measured.

The integrated density of states can be calculated by summing over all

the k space points. ∑
k

A(k, ω) = N(ω) (2.65)

Following the same routine, I can calculate the local tunneling density of

states to compare with STM data [96]. For example at T = 0 K, I can define

the retarded Green’s function of an electron in real space:

Gret(i, t) = −θ(t)〈{Ciσ(0)†, Ciσ(t)}〉 (2.66)

The local density of states can be calculated with the definition of the spectral

function and the sum rule:

Ni(ω) = Im

∫
dteiωtGret(i, t) (2.67)
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Equipped with these tools, not only I can study the two valence bond

channels arising from the superexchange interactions on the level of mean

field order parameters, but also I can compare the consequences of the in-

terplay between these two by looking at the one particle properties. Thus, I

can thoroughly investigate the matter of pseudogap in cuprates.
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Chapter 3

The Incommensurate Bond

Density Wave State of Cuprates

3.1 The Visualization of Bond Density Waves

in Cuprates

On the CuO2 plane there are two hypothetical ways for the density wave to

form: the O − Cu − O site centered density wave and the Cu − O − Cu

bond centered density wave. With increasing spatial resolution of STM

measurements, Davis et al. [29] have successfully resolved the difference

between these two. They have studied two lightly hole-doped cuprates:

Ca1.88Na0.12CuO2Cl2 and Bi2Sr2Dy0.2Ca0.8Cu2O8+d with the atomic-resolution

tunneling-asymmetry imaging method. Despite the difference of the two, the

universality in terms of spatial variations at the planar oxygen sites is ob-

vious in both materials. Their spatial arrangement forms a Cu − O − Cu

bond-centered electronic pattern without long-range order. The natural bond

centered quantity in mean field t−J model is the paramagnetic valence bond

χij. This observation is motivation to study the bond channel in detail.

One important observation in Fig. 3.1(c) is that the major spatial vari-
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Figure 3.1: (a) electronic orbitals of the CuO2 plane. Cu 3d orbitals are shown
in orange and O 2p orbitals are shown in blue. Two structural equivalent Cu −
O − Cu bonds are shown in the dashed ovals, along the x-direction is shown in
red, along the y-direction is shown is yellow.(b)Typical dI/dV curves at 4.2K of
Na − CCOC (Tc ∼ 21K) and Dy − Bi2212 (Tc ∼ 45K) are shown on the left.
The spectra is normalized on the positive side. The structure of Na − CCOC
and Dy − Bi2212 are shown on the right.(c) R map of Na − CCOC (c1) and
Dy − Bi2212 (c3), where R(r, V ) = I(r,z,+V )

I(r,z,−V) . The corresponding high resolution
R map within equivalent domains in the blue boxes are shown in (c2) and (c4)
respectively. The location of the Cu atoms are shown as black crosses. (d) A
field of view R map of Dy −Bi2212, the blue box and yellow box show two typical
domains of Cu − O − Cu bond states with different bond orientations. They are
randomly distributed with equal probability. Graphs are modified from [29]
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ation is concentrated on the O site rather than Cu site, which is in strong

support of bond centered behavior. The intensity is very different between

the oxygen site along the vertical line labeled ′1′ and the oxygen site along

the vertical line labeled ′4′. Also, although sharing the same corner Cu, the

intensity on the x-direction oxygen site and the intensity on the y-direction

oxygen site are very different. Both the rotational C4 symmetry and trans-

lational symmetry are broken from a perfect square lattice. With the help

of a field of view map in Fig. 3.1 (d), I can identify two kinds of domains

with perpendicular electronic variations of the Cu − O − Cu bond states.

They are randomly distributed in the entire sample with equal probability.

These observations are highly suggestive that there are two energetically de-

generate states which have different bond orientations and serve as a major

inspiration of bond centered treatment of normal state Hamiltonian.
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3.2 Incommensurate Multiple Scattering in

Underdoped Cuprates

Away from half filling, when there is enough doping, the paramagnetic bond

channel and the pairing channel become different. In this chapter, I focus

on the normal state by turning off the pairing channel completely. Also,

I focus on the state without breaking the time reversal symmetry so the

order parameter in the bond channel is real. My starting point is choosing a

unreconstructed Fermi surface in the Fermi liquid state described by:

Ĥ0 =
∑
k,σ

(ε(k)− µf )(C
†
kσCkσ) (3.1)

Where C†
k(Ck) is the creation (annihilation) operator for an electron with

momentum k, Ĥ0 is a renormalized tight binding model and ε(k) is the

renormalized band dispersion with the Gutzwiller factor. µf is introduced to

keep track of the doping. This will give a large Fermi surface in the uniform

case. It is a continuous contour in momentum space centered at (π, π). The

volume of this hole like contour is proportional to the hole density following

Luttinger’s theorem [97]. This is confirmed by ARPES in the optimal to

overdoped regime. I use J = 120meV and up to the fifth nearest neighbor

hoppings t = (360;−120; 29; 24;−24)meV relevant for the band structure

[98] to calculate the shape of the Fermi surface at different dopings. The

result is shown in Fig. 3.2. With the increase of doping, the volume of Fermi

surface increases.

STM reported the intrinsic bond centered short ranged order with a

wavevecter q [29]. And also the truncation of the the sections of the large

Fermi surface around (π, 0)and (0, π) are generally believed to be tied to the

scattering around the antinodal region by certain wave vector q, as observed

in the ARPES measurements. As a result, in addition to the Hamiltonian

Eq. 3.1, I need to add a term which includes the multiple scattering process.
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Figure 3.2: Continuous Fermi surface line shape in the normal Fermi liquid
state, at the doping level (a)x=0.125, (b)x=0.17,(c)x=0.22 ,(d)x=0.28

I call this term Ĥs, standing for the scattering part of the Hamiltonian.

Ĥs =
∑
kq

Vq(C
†
k+qCk + h.c.) (3.2)

So the total Hamiltonian can be written as :

Ĥ = Ĥ0 + Ĥs (3.3)

The specific form of Ĥ in the context of the t-J model will be discussed in

detail in section 3.3. I illustrate here the basic ideas. In Equation. 3.3, H0 is

the diagonal part in k, and Hs is the off diagonal part which connects different

k’s by q. Hs is part of the Hamiltonian which cannot be considered small.
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In other words, without considering the entangled part Hs, the system has a

well defined set of eigenstates with eigenvalues Ek with a large normal state

Fermi surface. But with multiple scattering, the situation becomes more

complicated. I allow all possible q′s connecting all k′s to lower the total

energy of the system. In this way, I take into account every scattering which

can happen in the system. To understand how to treat the Hs term, I need

to explain the effect of multiple scattering with incommensurate wavevector

q.

First I need to define what I mean by ”incommensuration”. Consider the

simplest 1D example: when q is commensurate where q = qAF = π, as shown

in Fig. 3.3(a). The top panel shows that k and k + q are connected by q.

Due to the periodicity in momentum space, k and k + 2q are equivalent. In

order to show this equivalence, the bottom panel connects k and k + 2q as

one point to make a full circle. This problem can be solved by diagonalizing

the matrix.

AAF =

(
εk Vq

Vq εk+q

)
(3.4)

When q is incommensurate, q is not a rational number. The multiple

scattering connected by incommensurate wavevectors never closes a full loop,

as shown in Fig. 3.3(b). Each scattering is unique in k space and will never

repeat. This means that no periodicity can be found. If I start with a point k

in momentum space, there are an infinite number of other k′ points connected

by a series of scatterings related to the incommensurate vector q. Because of

this, writing down the matrix or diagonalizing it is impossible.

Due to this infinite point problem I have no choice but to reduce the

dimension of k. To compromise I write the incommensurate wavevector into

an almost incommensurate case. Eq. 3.5 shows an almost incommensurate
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Figure 3.3: Cartoon illustration of commensuration, incommensuration and
practical ”almost” incommensuration in 1D (a) qAF = π, the simplest commen-
surate case. The bottom panel is the rolled up top panel due to the periodicity
in momentum space. (b)q = qinc incommensuration case, starting point k and
end point k′ = k + nqinc where n is a positive integer (in the graph, n=6),
are both distinctive points in momentum space, it can never form a closed loop
since qinc is not a rational number.(c)(d)(e) demonstration of mimicking the in-
commensuration by increasing the denominator M in q = N/M(2π), note that
N/M = 1/5 ≈ 4/21 ≈ 10/49
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case (when M is a large enough number). I approximate incommensuration

by a large commensurate ratio.

Q = n× q, n = (0, 1, 2, ....,M − 1) (3.5)

q =
N

M
× (2π) (3.6)

(3.7)

where N and M are positive integers. Fig. 3.3 (c)(d)(e) show the transi-

tion from the commensurate scattering to the incommensurate scattering by

increasing the denominator M in Eq. 3.5. In Fig. 3.3(c) q = (N/M)2π =

(1/5)2π is the base scattering vector, this is a commensurate case since the

denominator M is very small. It forms a closed loop by 5q. This problem

can be solved by diagonalizing the matrix in Eq. 3.8:

A =


εk − µ f(Vq, V4q) f(V2q, V3q) f(V2q, V3q) f(Vq, V4q)

f(Vq, V4q) εk+q − µ f(Vq, V4q, ) f(V2q, V3q, ) f(V2q, V3q)

f(V2q, V3q) f(Vq, V4q) εk+2q − µ f(V4q, Vq) f(V2q, V3q)

f(V2q, V3q) f(V2q, V3q) f(Vq, V4q) εk+3q − µ f(Vq, V4q)

f(Vq, V4q) f(V2q, V3q) f(V2q, V3q) f(Vq, V4q) εk+4q − µ


(3.8)

It is worth noting that here in Eq. 3.8, all of the Vnq are order parameters.

They all serve an equally important role at the beginning of the iterations.

They become different in strength after being solved self consistently. For

the incommensurate case, the system undergoes a multiple scattering pro-

cess with continuous scattering wave vectors. The incommensurate limit is

when k space and q space are both continuous. As a result, through multiple

scattering, all the preferred scattering according to the topology of the Fermi

surface can be picked up. Equivalently, all the scattering process with differ-

ent wave vectors will be chosen by the system itself, and an ensemble of the

prominent scattering will be dominating in the ground state. It is natural to
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reach the conclusion that all the possible scattering processes involving dif-

ferent wave vectors need to be considered as independent order parameters

and that the total energy should be minimized with respect to everyone of

them.

Looking back to the realization of almost incommensuration, in Fig. 3.3(c)(d)(e)

the denominator M increases from (c) to (e). There are more and more k

points connected as I increase the denominator. It is useful for me to choose

a large enough M without paying the expensive computing time to study

the almost incommensurate case as an approximation to the incommensu-

rate limit. Here I am going to drop the terminology ”almost”, and call

a wavevector“incommensurate” when the denominator M is large enough.

This carries out through the rest of this chapter.
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3.3 Renormalized Mean Field Hamiltonian in

Momentum Space

After outlining how to treat the incommensurate wave vector, the problem

now boils down to how to treat the bond centered hopping term. My starting

point is the normal state renormalized mean field Hamiltonian in real space

as described in Eq. 2.44. Setting pairing to be zero it reads:

HGA = −
∑
i6=j

gt
ijtijc

†
iσcjσ

− 1

4
J
∑
〈i,j〉

gχ
ij

(
χ∗

ijc
†
iσcjσ + h.c.− |χij|2

)
− µf

∑
c†iσciσ (3.9)

Where χij =
∑

σ C†
iσCjσ is the bond order parameter of concern. The density

at every site is ni = 1−xi. Since I am going to study the system in k space, I

use the uniform Gutzwiller approximation in Eq. 2.29, where gt
ij = gt = 2x

1+x

and gj
ij = 4

(1+x)2
. The hopping term contains up to fifth nearest neighbor

hopping. The Fourier transform is given by:

−
∑
n=1

∑
ijσ

tn · gtC†
iσCjσ = −

∑
n=1

∑
k

gt · tnβn

(
C†

k↑Ck↑ + C†
k↓Ck↓

)
(3.10)

β1 = 2 ∗ (coskx + cosky)

β2 = 4 ∗ (coskx · cosky)

β3 = 2 ∗ (cos2kx + cos2ky)

β4 = 4 ∗ (cos2kx · cosky + coskx · cos2ky)

β5 = 4 ∗ (cos2kx · cos2ky) (3.11)

Now I need to choose the coordinates to Fourier transform the term in-

volving χij =
∑

σ C†
iσCjσ. Examining the CuO2 plane closely it can be seen

that for each copper site there are two bonds that share the same copper
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without double counting. As a result, there are two equivalent sets of bonds,

the x direction bond and y direction bond, as shown in Fig. 3.4. The choice

of bond center is quite non-trivial. Here, I adopt the idea of bond centered

short ranged order. I choose the location of the x direction bond and the y

direction bond as in Fig. 3.4, labeled by Rx(i) and Ry(i) respectively. They

are half a lattice constant offset from the copper atom site labeled by r(i).

The relationship is in shown in Fig. 3.12:

Rx(i) = r(i) + x̂/2

Ry(i) = r(i) + ŷ/2

(3.12)

A Fourier transform of the χ term can be written in terms of the x bond

and y bond:

χx(i) =
∑

q

χx(q) cos(q ·Rx(i))

=
∑

q

χx(q) cos(q · ri +
1

2
q · x̂)

χy(i) =
∑

q

χy(q) cos(q ·Ry(i))

=
∑

q

χy(q) cos(q · ri +
1

2
q · x̂)

(3.13)

With this definition of bond centered two sublattice sites for χij , I per-

form the Fourier transform in the bond channel of the Hamiltonian. Note

that the fermions follow the site centered definition. If I only consider the

real part of the bond,it reads,
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Figure 3.4: The illustration of CuO2 Plane. The red circle is the copper site,
labeled by r(i) at site i. The blue and yellow rectangular are bond centered oxygen
sites, labeled by rx(i) and ry(i) respectively. Different colors denote the different
orientations of the bonds.

∑
〈i,j〉σ

χ∗
i,jC

†
iσCjσ

=
∑
iη

∑
kk′q

χη(q)
1

2
[ei(q·ri+

1
2
q·η̂) + e−i(q·ri+

1
2
q·η̂)]eik·rie−ik′·(ri+η̂)C†

kCk′

=
1

2

∑
ηkq

e−i(k+ 1
2
q)·η̂χη(q)(C

†
kCk+q + C†

k+qCk) (3.14)

In the same way I can do the Fourier transform on the h.c. term of the
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bond channel.

∑
〈i,j〉σ

χi,jC
†
jσCiσ

=
∑
iη

∑
kk′q

χη(q)
1

2
[ei(q·ri+

1
2
q·η̂) + e−i(q·ri+

1
2
q·η̂)]eik·(ri+η̂)e−ik′·riC†

kCk′

=
1

2

∑
ηkq

ei(k+ 1
2
q)·η̂χη(q)(C

†
kCk+q + C†

k+qCk) (3.15)

Summing them up, I get the Fourier transform of the second part of the

Hamiltonian: ∑
〈i,j〉σ

χ∗
i,jC

†
iσCjσ + h.c.

=
∑

η

∑
kq

cos((k +
1

2
q) · η̂)χη(q)(C

†
kCk+q + C†

k+qCk)

(3.16)

And the mean field constant term reads:
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∑
ij

|χij|2 =
∑
iη

χ∗
iηχiη

=
∑
iqq′η

χη(q)χη(q
′) cos(q · ri +

1

2
q · η̂) cos(q′ · ri +

1

2
q′ · η̂)

=
1

4
N
∑
qq′η

χη(q)χη(q
′)[δ(q + q′ + G)eiq+q′

2 ]

+
1

4
N
∑
qq′η

χη(q)χη(q
′)[δ(q− q′ + G)eiq−q′

2 ]

+
1

4
N
∑
qq′η

χη(q)χη(q
′)[δ(−q + q′ + G)ei−q+q′

2 ]

+
1

4
N
∑
qq′η

χη(q)χη(q
′)[δ(−q− q′ + G)ei−q−q′

2 ]

= N
∑

q

(|χx(q)|2 + |χy(q)|2) (3.17)

The t-J model in k space with bond centered χij reads:

H = −
∑
k,σ

[
5∑

n=1

gtβntn − µf ]C
†
k,σCk,σ

−
∑
kqσ

1

4
JgJ

(
cos(kx +

1

2
qx)χx(q) + cos(ky +

1

2
qy)χy(q)

)
(C†

kCk+q + h.c.)

+ N
∑

q

1

4
JgJ(|χx(q)|2 + |χy(q)|2)

(3.18)

Separating into two parts, the diagonal part and the off diagonal parts
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(as before), I get:

Ĥ = Ĥ0 + Ĥs

Ĥ0 = −
∑
k,σ

[
5∑

n=1

gttnβn +
1

2
JgJ (cos(kx) + cos(ky)) χ0 − µf ]C

†
k,σCk,σ

=
∑
k,σ

(ε(k)− µf )(C
†
kσCkσ)

Hs = −
∑
kqσ

1

4
JgJ

(
cos(kx +

1

2
qx)χx(q) + cos(ky +

1

2
qy)χy(q)

)
(C†

kCk+q + h.c.)

+ N
∑

q

1

4
JgJ(|χx(q)|2 + |χy(q)|2)

(3.19)

Since I am modeling a 2D plane I need to extend my treatment of the

incommensurate q in the last section into two dimensions. I am considering

all the possible q in a 2D momentum space, and they contribute equally to

the Hamiltonian Hs. The spontaneous breaking of the lattice symmetry by

q will be determined self-consistently. If q is the connecting vector, state k

is connected with k + q through vector q ,where

q ≡ (qx, qy) = (nxq, nyq)

nx,y = 0, 1, · · ·, M − 1

q = 2π(
N

M
)

M > N > 0

(3.20)

I minimize the ground state energy of Eq. 3.18 through self-consistently

determined χx(q), χy(q) for every q in the 2D plane of dimension M2 ×M2

lattice sites for different choice of M.

The stationary states are determined by
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〈 ∂Hk

∂χx(q)
〉 = 0

〈 ∂Hk

∂χy(q)
〉 = 0

(3.21)

As a result, I get the self-consistency equations for χx(q), χy(q)

χx(q) =
1

2N

∑
kσ

cos(kx +
1

2
qx)〈C†

k,σCk+q,σ + h.c.〉

χy(q) =
1

2N

∑
kσ

cos(ky +
1

2
qy)〈C†

k,σCk+q,σ + h.c.〉

(3.22)

I choose a 2D momentum space k = (kx, ky).

C†
k = (C†

k, C
†
k+(0,q), · · · , C†

k+(M−1)q,(M−1)q) (3.23)

At this point I can write my Hamiltonian into the matrix form, It reads:

H = H0 + Hs

=
∑
kσ

C†
kσA0Ckσ

+
∑
kqσ

C†
kσAkqCk+q,σ

(3.24)

where
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A0 =


Ak,k 0 · · · 0

0 Ak+(0,q),k+(0,q) · · · 0

· · · · · · · · ·
0 0 · · · Ak+((M−1)q,(M−1)q),k+((M−1)q,(M−1)q)


(3.25)

Akq =
0 Ak,k+(0,q) · · · Ak,k+((M−1)q,(M−1)q)

Ak,k+(0,q) 0 · · · Ak+(0,q),k+((M−1)q,(M−1)q)

· · · · · · · · ·
Ak,k+((M−1)q,(M−1)q) Ak+(0,q),k+((M−1)q,(M−1)q) · · · 0


(3.26)

in which,the element Ak,k+q and Ak,k read:

Ak,k = −
5∑

n=1

gttnβn − µf −
∑

σ

1

4
JgJ (cos(kx)χx(q = (0, 0)) + cos(ky)χy(q = (0, 0)))

= ε(k)− µf

Ak,k+q = −1

4
JgJ

(
cos(kx +

1

2
qx)χx(q) + cos(ky +

1

2
qy)χy(q)

)
(q 6= (0, 0))

(3.27)

In order to reduce computation time I invoke a procedure called the su-

perlattice method in momentum space. I separate all the k points in the

momentum space into different groups. Within each group I diagonalize a

smaller matrix (rather than a matrix containing all the k points in my trun-

cated momentum space). This method is summarized as follows: (also in

Fig. 3.5)
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Figure 3.5: Cartoon drawing of supercell and superlattice in k space

A specific k point in momentum space can be connected by all q vectors

with a set of k′. All of the bond terms connecting k and k′ enter the matrix.

I call all these k points which belong to a set K. The matrix dimension of all

connecting k points is the dimension of the set K. The dimension of the set

K is D ∗D, (D = M ∗M) accordingly. In the same way, every single k point

in momentum space I choose belong to a corresponding set K. This allows

us to maintain the matrix dimension to be D ∗D. In order to sum over all
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the k point, I treat the whole system as a summation of all the existing set

K. In other words, all the of set K form another super lattice which I call

the supper lattice κ. Increasing the dimension of the supper lattice κ will

increase the computing time linearly. On the other hand, by increasing the

dimension of K, the computing time will increase by the power law. Thus

this is an economic way deal with larger system sizes.
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3.4 Uniform Normal State without Symme-

try Breaking

The simplest case is the normal state in the Fermi liquid regime. In this

case, there is only χη(q = (0, 0)) left in the Hamiltonian, all the other

χη(q 6= (0,0)) = 0. The Fermi surface is a continuous contour in momentum

space. This is my starting point, the non-interacting band structure before

multiple scattering is taken into consideration. It is necessary to study this

simplest case because there is an underlying instability due to the topology

of the Fermi surface. In order to show the generality of the situations in

underdoped cuprates, I consider two slightly different band parameters [99]

[98] at doping x = 0.125. They share similar characters. Fig. 3.6 (a)(b) show

the continuous contour of the trajectory of the poles. These are generic cases

since the tips of the Fermi surface at the antinodal region are not particu-

larly tuned to be parallel to each other, which is closer to the real materials

measured by experimentalists.

When the electron Fermi surface “nests” with a specific band structure,

the Fermi surface has the tendency towards instability. In order to lower

the energy, the systems tends to open up gaps to form density wave orders.

This is so called Fermi surface nesting [100] [101]. To gain more insight into

the situation, I need to take a look at an important quantity: the wave-

vector-dependent susceptibility Γ(q). The definition of Γ(q) is the following

Γ(q) =
∑
k,σ

f(εk)− f(εk+q)

εk+q − εk

(3.28)

where f(ε) is the Fermi function. q is the vector connecting two states at

k and k + q. The expression for Γ(q) contains 1
εk+q−εk

= 1
∆ε

, where ∆ε is

the energy difference between occupied and unoccupied states. Therefore,

the maximum contribution will come from states when q are connecting the

occupied and unoccupied states near an equal energy contour, which is the
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Figure 3.6: (a) ∼ (b)Continuous Fermi surface plot for underdoped cuprates, at
doping x = 0.125. (a)J=0.12 eV, t= (0.36,−0.12, 0.028, 0.024,−0.024) eV . (b)
J=0.12 eV, t= (0.48,−0.16, 0.05, 0.05,−0.05) eV (c) ∼ (d) Wave vector dependent
susceptibility Γ(q) (Joint density of states) plot for underdoped cuprates, at doping
x = 0.125 .(c)J=0.12 eV, t= (0.36,−0.12, 0.028, 0.024 − 0.024) eV . (d) J=0.12
eV, t= (0.48,−0.16, 0.05, 0.05,−0.05) eV
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Fermi surface. I calculate the wave-vector-dependent susceptibility of the

two cases respectively. The maps as a function of q is shown in Fig. 3.6 (c)

(d).

Along the (0, 0)− (π, 0) direction: In the first case the dominant suscep-

tibility is around the wave vector q1 = (2π
6

, 0) , and in the second case the

dominant susceptibility is around the wave vector q1 = (2π
5

, 0). In general,

there is one promising peak along (π, 0) direction: q1 = (2π
n

, 0).

Along the (0, 0) − (π, π) direction: In the first case the dominant sus-

ceptibility is around the wave vector qd = (2π
6

, 2π
6

) and qπ = (π, π), and

in the second case the dominant susceptibility is around the wave vector

qd = (2π
5

, 2π
5

) and qπ = (π, π). In general, there are two promising peaks

along (π, π) direction: qd = (2π
n

, 2π
n

) and qπ = (π, π)

Nevertheless, the peaks are not only limited along the x,y axis or along

the diagonal of the Brillouin zone, they actually form a ”hot square” around

zero. That is precisely the reason why I want to treat every possible wave

vector as an independent order parameter in χ, although I am focusing on

the most dominating ones as described above.

Using the periodicity in k-space, I can get the relationship between these

wave vectors,

qd = qπ + q7

|qd| '
√

2|q1|

(3.29)

When the AF zone boundary cuts through the Fermi surface, there are

8 interceptions, labeled by a pair of red dots, a pair of blue dots, a pair of

yellow dots, and a pair of pink dots in one Brillouin zone as shown in Fig. 3.7

(a). q1 is the connecting vector of the two dots with the same color, as shown

in Fig. 3.7 (d). q7 and qd are the connecting vectors of the two dots with

different colors, where q7 can straddle across to adjacent Brillouin zone and it
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Figure 3.7: Relationship between different characteristic wave vectors. qπ,qd,q7,q1

has its equivalence in the same Brillouin zone due to the periodic boundary

condition. This is shown in Fig. 3.7 (a)(b). This definition is close but not

limited to the definition one can find in the experimental observations in the

superconducting state [102] [103].

Now I turn my attention to the density wave instability around these

dominating q wave vectors [104]. According to the definition of my order

parameter for the bond:

χη(Q) =
1

2N

∑
kσ

cos(kη +
1

2
Qη)〈C†

k,σCk+Q,σ + h.c.〉 (3.30)

Q is the density wave vector. It is natural to think that the underdoped

cuprates inherit the antiferromagnetism of the half filled Mott Insulator.
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This is why the new added AF zone boundary in momentum space is quite

special. q7, qd and q1 are connecting the hot spots created by this boundary.

The AF long range order Q = (π, π) is the first natural candidate for the

bond ordering. But this is not the case when my discussion is limited in the

case that the time reversal symmetry is conserved in the system. The reason

is the following.

First I take a Hermitian conjugate of the order parameter in Equa-

tion. 3.30,

χ∗
η(Q) =

1

2N

∑
kσ

cos(kη +
1

2
Qη)〈C†

k+Q,σCk,σ + h.c.〉 (3.31)

Also if I change k into k′ in Equation. 3.30,

k′ = k + Q, Q = (π, π) (3.32)

And I can get the following relation:

χη(Q) =
1

2N

∑
kσ

cos(kη +
1

2
Qη + π)〈C†

k+Q,σCk+Q+Q,σ + h.c.〉 (3.33)

Since 2π is the periodicity of Ck, so Ck+Q+Q,σ = Ck,σ. I can rewrite Equa-

tion. 3.33 into the following term:

χη(Q) =
1

2N

∑
kσ

cos(kη +
1

2
Qη + π)〈C†

k+Q,σCk,σ + h.c.〉 (3.34)

From equations 3.31 and 3.34, I can get:

χ∗
η(Q) = −χη(Q) (3.35)

My assumption is the bond order parameter is real, this yields:

χ∗
η(Q) = χη(Q) (3.36)
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From Equation. 3.35 and Equation. 3.36, I get

χη(π, π) = 0 (3.37)

As a result, the system won’t have a bond density wave which shows the

(π, π) ordering if I insist on preserving the time reversal symmetry. But as

I discussed before the inheritance from the Mott Insulator is still in the un-

derdoped cuprates, that is why all the dominating density wave instabilities

are closely related to the AF zone boundary.
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3.5 Commensurate Bond Density Wave State

As discussed in the beginning of this chapter, the term commensurate wave

vector means that the elemental density wave vector, q = N
M
∗ (2π), denom-

inator is a small integer number. Take N
M

= 1
5

for example, the allowed

scattering is the combination of the multiples of the following Q vectors:

Q1,0 = (
1

5
, 0) ∗ (2π)

Q0,1 = (0,
1

5
) ∗ (2π)

Q1,1 = (
1

5
,
1

5
) ∗ (2π)

(3.38)

After learning the normal state instability in the Fermi liquid regime, I can

move on to the next step. First of all, I want to investigate the commensurate

case to see how the system reacts to it. I calculated the spectral function

A(k, ω) to show the Fermi surface of the two cases corresponding to Fig. 3.6.

The wave-vector dependent susceptibility exhibits sharp peaks at certain

finite elementary q = N
M
∗ (2π) = 1

6
∗ (2π) and q = N

M
∗ (2π) = 1

5
∗ (2π) for the

two cases respectively. The system is prone to these instabilities which lead

to bond density wave ordered states with lower energy than in the uniform

state. The resulting spectral intensity maps are shown in Fig. 3.8 after self-

consistency calculations. In Fig. 3.8, Fermi surface sections connected by

q are truncated and there are clear signatures of band folding according to

these q’s in both cases. Here I use a log scale Fermi surface to show the

fine structures of the shadow bands in the Fermi surface topology. There

are several wave vectors interlacing the systems, giving the fine structure of

the shadow bands. I demonstrated how to achieve these fine structures by

simply folding the band according to the instability wave vectors.

It is worth mentioning that different commensurate wave vectors have

been tested. They are slightly different than the ones close to the peaks.
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Figure 3.8: Fermi surface of the commensurate orderings. (a) (b) the
elemental vector is q = (2π)(1/5) (c) (d) the elemental vector is q =
(2π)(1/6). The black solid curves are the uniform Fermi surfaces. The
red solid curves show the band foldings according to wave vectors Qd =
(q, q), (q,−q), (−q, q), (−q,−q). And the green solid curves show the band fold-
ings according to Q1 = (q, 0), (−q, 0), (0, q), (0,−q). (b) is overlaid on top of the
log scale plot of the Fermi surface (a). And (d) is superimposed on top of the log
scale plot of the Fermi surface (c).
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These commensurate wave vectors have been tested as a base vector to solve

the self-consistency equations and there is no finite value around the other

q values. They all recover to the uniform case after convergence, if q is not

matching the wave-vector-dependent susceptibility peaks.

Similar features have been achieved on an 80 ∗ 80 systems with supercell

technique in the spatially unrestricted system. The ground state converged to

a checkerboard state with a wave vector q∗ = N
M
∗(2π) = 1

5
∗(2π) with slightly

different hopping integrals [64]. It also yields partiality gapped segments

near (0,±π) and (±π, 0) on the Fermi surface. This indicates the density

wave state has lower energy than the uniform Fermi liquid state, and the

(logarithmic) divergence when q approach to q∗ leads to the instability around

it.
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3.6 The Emergence of the Fermi Arc: From

the Commensurate Bond Density Wave

State to the Incommensurate Bond Den-

sity Wave State

Now I have explored the possibility for the commensurate scattering case.

Let’s remind ourselves of the structure of the Hamiltonian I am investigating

in Equation. 3.3. For the commensurate case, the number in a set of k which

are connected by Q = nq is limited to be small, so the role of Ĥs is relatively

clear. It tends to open up a gap according to the instability wave vector.

When M in q = N
M
∗ (2π) gets larger, there is more freedom in the choice

of Q which can connect different k in order to lower the energy. In other

words, there is an ensemble of Q around the commensurate wave vector and

every one of them can result in elimination of the state at the Fermi level

due to scattering. They are not isolated either, and they are all connected

and enter the Hamiltonian as a nonseparable part Ĥs.

Ĥs is a rather complex term to interpret. Its effect is not straightforward

but rather a chaotic one. To gain more insight of incommensurate multi-

ple scattering process, I calculate the spectral function A(k, ω) and plot the

Fermi surface as in Fig. 3.9(a) ∼ (d). In the graph I show the comparison

between commensurate multiple scattering process Fig. 3.9(a) and incom-

mensurate multiple scattering process Fig. 3.9(b). To take a closer look of

the low intensity spectrum in the antinodal region, I plot the same Fermi

surface by lower the intensity by 10 times to show how the fine structures

of the shadow bands change when I increase incommensurability by large

commensurations, see Fig. 3.9(c) ∼ (d).

As can be seen from Fig. 3.9 there are several points worth noticing. First

of all, compared to the commensurate scattering case, in the incommensurate

case there is further elimination of states in the antinodal (π, 0) and (0, π)
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Figure 3.9: (a)Fermi surface of the commensurate ordering case with unit wave
vector q = 1

6(2π) .(b)Fermi surface of incommensurate ordering case with unit
wave vector q = 4

23(2π). (c) Same plot as (a) by lowing the intensity 10 times.
(d) Same plot as (b) by lowing the intensity 10 times. (e) Density of states of
the commensurate ordering case with unit wave vector q = 1

6(2π) . (f)Density of
states of the incommensurate ordering case with unit wave vector q = 4

23(2π).
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region. Secondly, in the commensurate case, the Fermi surface is truncated

according to a single Q vector. In the incommensurate case, there are ef-

fectively more than one Q vectors existing in the converged result which all

contribute to lowering the energy. Thirdly, although the Fermi surface in

the commensurate case looks similar to the pseudogap state already, clearly

band folding is seen in this state. It is less obvious than in the incommensu-

rate case. The continuous contour of Fermi surface is strongly interrupted by

the multi wave vector scattering process, resulting in a discontinues contour

more close to the Fermi arc which is observed in the ARPES experiments.

In order to gain more insight into this issue, I calculated the average

density of states (DOS) by summing over all the spectrum in k space for

each case. For the commensurate case, there is suppression of density of

states below the Fermi energy, resulting in a particle hole asymmetric gap at

low energy. While increasing incommensuration, the density of states curve

becomes more and more symmetric towards a V shaped gap, as observed in

STM experiments.

With limited computing power, I can not perform a large incommensu-

ration with a larger M in the denominator, thus both the Fermi arc and the

DOS are still pretty close to the commensurate case. For example, there are

still multiple shadow bands seen in the antinodal region on the Fermi sur-

face, although with lower intensity. Also, the DOS is not a perfect V shaped

around zero. It is important, though, to study the trend of increasing the

incommensuration. I believe that in the true incommensurate case, all these

phenomena will recover to the real situation as observed in experiments. I

found an alternative way to realize the true incommensuration case which

will be discussed in the next chapter.
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3.7 Doping Dependence of the Incommensu-

rate Bond Density Wave State

With increasing doping, more holes are introduced into the system. As a

result the hole like Fermi surface in the Fermi liquid regime around the X

point gets larger and larger. At different doping levels, the AF zone boundary

cuts through the Fermi surface at different k points, as shown in Fig. 3.2. As

a result, the wave vector of the susceptibility peak is changing accordingly.

In order to demonstrate this, I performed the self-consistency calculation at

different dopings. The susceptibility calculations show that with the increase

of doping the length of the basic scattering vector |q| decreases, i.e. the “hot

zone” around zero gets smaller and smaller. Also, the absolute value of the

wave vector dependent susceptibility peak gets lower and lower. The trend

can be easily seen in Fig. 3.10. Detailed measurement of the peak position

in Fig. 3.10 is consistent with the “hot spot” (the intersections of the Fermi

surface in the uniform case and the AF zone boundary) in Fig. 3.10.

As a consequence of this trend two phenomena can be observed: (1) The

corresponding Fermi arc will grow in length while increasing the doping (2)

the V− shaped gap in density of states will get smaller when increasing

doping. This can be seen in Fig. 3.11.
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Figure 3.10: The wave vector dependent susceptibility map at four different
doping levels. (a)x=0.125. (b) x=0.17 (c) x=0.22 (d)x=0.28. All the four maps
are on the same color scale to be compared on equal footing
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Figure 3.11: (a) Fermi surface at doping x=0.125, incommensurate wave vector
is q = (4/23)(2π).(b) Fermi surface at doping x=0.17, incommensurate wave vector
is q = (4/23)(2π) . c) Density of states at doping x=0.125. d) Density of states
at doping x=0.17.
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3.8 Nematic Order and Symmetry Breaking

Regarding the STM observation I discussed earlier, the x-bond oxygen site

and y-bond oxygen site inequality within one domain of the sample, the so

called electronic nematicity of the states close to the pseudogap energy, is

further studied in a recent STM report [105]. Here I examine this issue

vis-a-vis incommensurate bond density wave state. The relevant questions

are: Will there be a similar nematic order associated with the symmetry

breaking? Where does it come from? Why would the system want to choose

these states? And does this nematicity have important consequences in the

pseudogap state?

First, let’s take a look at the order parameter in the incommensurate

bond density wave state. I plot χx − χy in momentum space in Fig. 3.12(a).

If there is non vanishing component in this map, that means that the x-

bond and y bond are not totally equivalent. As can be seen, this nematicity

manifests itself into a 4-fold symmetry broken state. The non vanishing value

at zero q means the average of χx bond and χy bond are not entirely the

same in this state. This can be viewed through the x-bond oxygen site and

y-bond oxygen site inequality (for instance, the x-bond has more intensity

than the y-bond within one domain of the sample). Certain instances of the

combination of x and y bond intensity are degenerate with other separate

and different instances (perhaps where the y-bond is more intense than the x-

bond) in other domains of the sample. All the other spots with finite q imply

that there are fluctuations in this x-bond oxygen site and y-bond oxygen site

inequality. Although bonds show the same trend (for example the x-bond

has more intensity than the y-bond) within one domain, they still undergo

certain fluctuations, see Fig. 3.1. I show a similar bond map in Fig. 3.12(b),

the blue region and the yellow region have different bond orientations. In

the blue region the x-bond value is bigger than the y bond value and in the

yellow region the y-bond value is bigger than the x-bond value. Also the four

fold symmetry broken pattern can be seen particularly on the x-axis and
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y-axis. It can be seen from Fig. 3.12(a) that the spots on (q, 0) and (0, q) are

not equivalent.

It is particularly meaningful to dig deeper to see where does this 4-fold

broken symmetry state come from. Yamase and Kohno did a systematic

study [106] to show that within the slave boson approximation mean field

theory, the two-dimensional t-J model has an intrinsic instability toward

forming a 4-fold symmetry broken Fermi surface, what they call a quasi 1D

state. With the decrease of doping, the instability gets stronger and stronger.

I plotted the bond value of the x direction and y direction with respect to

doping in Fig. 3.12(d) . It changes from the 4-fold symmetric 2D Fermi

surface to a 2-fold symmetric 1D Fermi surface. My doping level is slightly

below the critical 2D to 1D transition. In other words, the incommensurate

scattering allows the system to undergo a symmetry broken transition to

bring out this intrinsic instability, comparing to its commensurate case, which

does not break the 4-fold symmetry. In Fig. 3.12(c), I plotted the quasi-1D

Fermi surface and the corresponding 4-fold symmetric 2D Fermi surface.

There are two kinds of instabilities existing in the system, the density

wave instability and the quasi 1D instability. Both of these become stronger

and stronger with deeper and deeper underdoping. The fascinating“strange”

behaviors of the pseudogap are the manifestation of these instabilities.
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Figure 3.12: (a)The momentum dependence of the order parameter χx − χy,
a typical arrangement in the incommensurate bond density wave state at doping
x=0.125. (b) A bond map corresponding to the ordered state in (a). The blue
rectangular region shows one type of domain and the yellow rectangular region
shows the other. Within those two regions, the location of the copper site are
marked by +. The brighter the color, the bigger the bond value is. (c) Quasi 1D
Fermi surface at doping x=0.1, the grey line shows the corresponding four fold
symmetric Fermi surface at the same doping. (d) Bond value of x direction and y
direction at different doping levels, with increase of underdoping, such nematicity
increases.
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Chapter 4

Valence Bond Glass Theory in

the Pseudogap Regime

4.1 Interplay of Incommensurate Valence Bond

Order and Electronic Disorder

One common feature in real cuprate materials is intrinsic electronic inho-

mogeneity. This electronic disorder can potentially pin the low energy fluc-

tuations, resulting in an unusual inhomogeneous state. Here I give a quick

survey on electronic disorder in underdoped cuprates.

ARPES groups have studied high quality samples of the chemically sub-

stituted Bismuth family of cuprates in the optimal and underdoped regimes

where the superconducting energy scale and the pseudogap energy scale are

well separated. These substitutions include substituting the cation atom Ca

by Y in bilayer Bi2Sr2Ca1−xYxCu2O8 (substituted Bi2212) and substituting

the Sr ion in apical planes by a trivalent Lanthanide (Ln = La, Bi, orEu)

in single-layered Bi2Sr2−zLnzCuO6+δ (substituted Bi2201). The ARPES

group led by Ding studied the evolution of the pseudogap with continuous

underdoping [22], pushing the underdoping threshold continuously to the su-
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perconducting/insulating phase boundary. By substituting the divalent Sr

ions by the trivalent Bi ions in the apical plane in Bi2Sr2−zBizCuO6+δ, Luo

et al.[107] have achieved a continuous range of substitutional densities from

z = 0 to z = 0.5. The large range has provided the possibility to detect

the true underdoped properties. This has been confirmed by measuring the

underlying Fermi surface volume [22]. There are two effects of such doping:

The first effect is that it changes the hole density because of the difference

in valence electrons: there is one more electron in the outmost layer in Bi as

compared to Sr. The second effect is that it increases the off-plane disorder

due to the Sr : Bi ionic radii mismatch in the apical plane [108] [109]. The

ARPES data of Ding et al has been compared with those obtained in heavily

underdoped Bi2212 Bi2Sr2Ca1−xYxCu2O8[21] and the nonsuperconducting

zero temperature pseudogap phase of Ca1.95Na0.05CuO2Cl2[110]. All these

materials have shown disorder as a common character in the underdoped

regime.

On the other hand, mounting STM evidence shows that electronic disor-

der is an inherent feature of the cuprates. Experimentalists have observed

nanoscale single particle spectral gap disorder as well as short-range ordered

checkerboard density of states modulations. The inhomogeneity of gaps has

been reported in Bi2Sr2CaCu2O8+x by several groups [111] [112] [113] [114],

and also on Ca2−xNaxCuO2Cl2 [115]. When superconductivity is weakened

under various conditions, the short-range ordered checkerboard and short-

range ordered DOS modulations have been reported by several group [112]

[115] [116] [117]. The electronic disorder is important because the period-

ically modulated checkerboard states have rather short correlation lengths

(about 20 lattice spacings). This is further reflected in the finite width of the

non dispersive peak structure in the Fourier spectrum of the tunneling con-

ductance maps. The observed quasiparticle interference patterns signaled by

the dispersive peak structures with bias energy inside the superconducting

gap[118] have been attributed to off plane dopant disorder induced elastic
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scattering of the quasiparticles. This picture has gained theoretical support

[119][120]. It is natural to suspect that the short range ordered patterns are

manifestations of certain density-wave states [65] [121] [122] [123] [124] [125]

[126] pinned by electronic disorder. In fact, they are not inconsistent with

the disorder induced glassy phase or the nematic liquid crystal of stripes.

[52].

It is then important to determine the cause of this electronic disorder and

how to treat it. The out of plane ionic dopant is the most prominent candi-

date. It can be interstitial as in Bi2Sr2CaCu2O8−x; it can be substitutional

as in La2−xSrxCuO4 and Ca2−xNaxCuO2Cl2; and it can be in combination

with chemical substitutions as in Bi2Ln2−zBizCuO6+x (Ln-Bi2201). The

classification of different family of cuprates and their disorder are shown in

Fig. 4.1.

While donating carriers to the CuO2 planes, the out of plane ionic dopants

are also introducing off-plane electrostatic potential centers which directly af-

fect the low energy electronic states in the CuO2 planes at the same time. The

screening of the dopant electrostatic potential is highly nonlinear in doped

Mott insulators since the kinetic energy required for charge redistribution is

frustrated due to strong coulomb correlation. This nonlinear screening also

leads to spatially inhomogeneous electronic states. [96] [119].

To include the effects of this intrinsic electronic disorder, I include the

electrostatic potential originating from the off plane ionic dopants. Previous

studies of doping induced inhomogeneity treat interstitial ionic dopants as

random charge centers [96] [99]. Here I utilize a hard wall condition counting

in the number of dopants. As shown in Fig. 4.2, oxygen dopants are randomly

distributed outside the CuO2 plane following a hard wall condition, exposing

the correlated electrons in the CuO2 plane to the off-plane dopant potential

through the relation:

Himp =
∑
kqσ

V (q)C†
k+q,σCk,σ (4.1)
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Figure 4.1: Classification of bulk High Tc cuprates in terms of the disorder
site and the number of CuO2 layers. Materials belonging to the same family are
indicated by the same color.( This Figure is taken from [108])
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Figure 4.2: The illustration of introducing the electronic disorder by adding out
of plane random ionic dopants. The top plane(blue) is the the dopants plane, and
bottom plane (multi color) is the CuO2 plane. The 3D contour plot represents
the hole doping distributions on the CuO2 plane. In the rainbow color scale, red
represents high hole density

As a result, the doping concentration undergoes a reconstruction due to

the nonlinear screening of the dopant potential. Fig. 4.3 shows the induced

density inhomogeneity in the presence of out of the plane ionic dopants on a

2D map.

The density inhomogeneity is not periodic and involves a distribution of

wave vectors (q). As discussed in the previous chapter, a density wave with

a unique wavevector q has several serious difficulties to reconcile with exper-

iments. In the ARPES experiment, there is not even the slightest feature

for the emergence of Fermi surface pockets folded along the (π, π) boundary.

Also, there is no sign of band folding by the commensurate wave vector q.

The pseudogap produced by the commensurate density wave order is quite

generically particle-hole asymmetric in the density of states [64] which is in-

consistent with experiments that find V-shaped gapping of the low-energy

106



Figure 4.3: The density map of the CuO2 plane, the black balls represent off
plane dopants overlaid on top of the density map.

states. With out of plane random ionic dopants, there is a modulation with

many wave vectors comparable to the situation with the incommensurate

density wave state. The electronic disorder can effectively pin down the low

energy density wave state with multiple incommensurate scattering. Such

freedom also allows us to have a Fermi surface with a more relaxed condition,

in comparison with models based on Fermi surface nesting. Perfect nesting

requires fine tuning of the hopping parameters such that the antinodal sec-

tions are parallel and nearly one dimensional [64] [61] [127] [128]. But in

most of the cuprates materials exhibiting pseudogap phenomena, the antin-

odal sections of the Fermi surface are not perfectly parallel and nearly one

dimensional. Since I do not require the Fermi surface to be perfectly nested

to accommodate the single commensurate q condition, it is more generic and

persuading to show the pseudogap phenomena is a common robust feature

of underdoped cuprates.
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4.2 Unified Theory of the Doping Induced

Electronics Disorder and the Incommen-

surate Bond Density Wave Pseudogap States

In the remaining sections of this thesis I present a unified theory showing

that the doping induced electronic disorder pins down the incommensurate

bond centered charge density wave pseudogap states. I present this through

an explicit calculation based on an extended t-J model including the dopant

potential. I show that the pseudogap originates from disordered (or short-

ranged ordered) bond-centered charge density waves with a distribution of

wavevectors centered around q∗. This can be viewed as a state arising from

the low-lying valence bond fluctuations pinned by electronic disorder and

similar in spirit to the disorder induced glassy phases or the nematic liquid

crystal of stipes [52].

The antinodal Fermi surface sections are gapped out by the disordered

bond density waves, giving rise to a genuine normal state Fermi arc. Short

range order is sufficient to produce a pseudogap because the latter is a feature

of the quasiparticle excitation energy spectrum and long range coherence is

not a prerequisite. As a consequence, there is no true thermodynamic phase

transition at T ∗ in this approach, which is determined by thermal filling of

the antinodal pseudogap. The incommensurate bond density wave pseudogap

increases and the Fermi arc length shrinks with underdoping. I show that

this is due to the weakening of the screening of the dopant potential and the

increase of q∗. This doping dependence of the pseudogap is consistent with

the experiments.

Our theory provides a microscopic realization of the generic two-gap sce-

nario for the nodal-antinodal dichotomy of an electronic origin through the

exchange interaction J . Below Tc the Fermi arc collapses as the d-wave

superconducting gap opens and coexists competitively with the disordered

bond density wave pseudogap. The evolution of the local and the momentum
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space spectroscopy and the phase diagram as a function of doping and tem-

perature captures the salient properties of the pseudogap phenomena and

the electronic disorder revealed by recent ARPES and STM experiments, es-

pecially in the chemically substituted bilayer and single-layer Bi-based high

Tc superconductors where the pseudogap and the pairing gap energy scales

are well separated. I show that the superconducting gap and the pseudogap

contain distinctly different information in many aspects. This is a strong

support for the pseudogap picture that emerges from the generic two-gap

scenario.

4.3 Extended t-J Model with Spatially Unre-

stricted Gutzwiller Approximation

Extending the original t-J model to adapt this disordered nature requires

considering some new elements, different from the Hamiltonian I used in

the last chapter. The first is to include the long-range coulomb interaction

coming from both other electrons in the same plane and the dopants off

the plane for an electron on a particular site. This inclusion of the long-

range Coulomb interaction is necessary because the charge distribution is

inhomogeneous due to the dopant potential. The second new element is to

use a spatially unrestricted Gutzwiller approximation which depends on the

local densities. Since there is inhomogeneity in the CuO2 plane, different

sites and bonds have different renormalization factors [99].

First I introduce two Coulomb potential terms into the original t-J model:

H = HtJ +
∑
i6=j

n̂iV
c
ijn̂j −

∑
i

Vin̂i (4.2)

HtJ = −
∑
i6=j

PitijC
†
iσCjσPj + J

∑
<i,j>

(Si · Sj −
1

4
n̂in̂j)

(4.3)
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The long-range Coulomb interaction V c
ij = Vc

|ri−rj | between the electrons in the

CuO2 plane provides the important screening of the electrostatic potential

from off-plane dopants. The local doping concentration is given by xi = 1−ni,

where ni = 〈n̂i〉 = 〈C†
iσCiσ〉. On a square lattice of Ns sites, the average

doping is given by x = (1/Ns)
∑

i xi. The long-range Coulomb interaction is

treated by the Hartree approximation.

In addition to the in-plane long range Coulomb interactions, I include the

electrostatic potential between the dopants and the electrons in the CuO2

plane. The total ionic potential, which is the summation of the coulomb

potential from all the off plane dopants, is given by:

Vi =

Nd∑
l=1

Vd√
|ri − rl|2 + d2

s

(4.4)

In Eq. 4.4, Nd = xNs is the number of dopants and ds is the setback

distances [96][99] (see Fig. 4.2 ). Summing over all lattice sites on the plane,

one gets the last term in Eq. 4.2.

The projection operator P indicates that double occupation of a site must

be removed due to the strong on-site Coulomb repulsion (or the large charge

transfer gap). In order to account for the interplay between strong correlation

and disorder, I consider the spatially unrestricted Gutzwiller approximation

where Pi depends on the spatial density distribution. In this way, the t-J

model in the projected Hilbert space is replaced by one in the unprojected

space with renormalized hopping and the exchange parameters which take

into account the basic physics of Mottness. In the Gutzwiller approximation,

the effect of projection results in renormalizations of the hopping matrix and

the superexchange,

tij → gt
ijtij

J → gJ
ijJ

(4.5)
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The spatially unrestricted Gutzwiller factors can be derived as I have dis-

cussed in the previous chapter:

gt
ij =

〈Ψ|C†
iσCjσ|Ψ〉

〈Ψ0|C†
iσCjσ|Ψ0〉

=

√
4xixj

(1 + xi)(1 + xj)

gJ
ij =

〈Ψ|Si · Sj|Ψ〉
〈Ψ0|Si · Sj|Ψ0〉

=
4

(1 + xi)(1 + xj)

(4.6)

In a disordered electronic state, the factors depend on the local dopings at

the sites connected by the hopping and the superexchange processes. Since

the strong correlation effects are taken into account by the Gutzwiller renor-

malization, it is now justified to decouple the exchange term by the valence

bond in the particle-hole and the particle-particle channel in terms of the

bond χij and the pairing ∆ij, as previously discussed. Finally I reach the

renormalized mean-field Hamiltonian for the extended t-J model:

HGA = −
∑
i6=j

gt
ijtijC

†
iσCjσ +

∑
i

εiC
†
iσCiσ −

∑
i

λini

− 1

4
J
∑
〈i,j〉

gχ
ij(χ

∗
ijC

†
iσCjσ + h.c.− |χij|2)

− 1

4
J
∑
〈i,j〉

g∆
ij (∆

∗
ijεσσ′C

†
iσCjσ′ + h.c.− |∆ij|2)

(4.7)

Where gχ
ij, g

∆
ij = gJ

ij are the Gutzwiller renormalization factor. The local

energy for the electrons is εi = Vsc(i) + λi − µf , where µf is the chemical

potential and λi is the fugacity. The chemical potential and the local fugac-

ity together with the third term in the Hamiltonian ensure the equilibrium

condition for local occupation ni = 〈C†
iσCiσ〉. Vsc(i) is the screened Coulomb

111



potential:

Vsc(i) = Vi + Vc

∑
j 6=i

xi − x

|ri − rj|
. (4.8)

I use J = 120meV and up to the fifth nearest neighbor hopping in order

to utilize the band structure in experiments [99] [98]. It does not require

the fine tuning of parallel antinodal Fermi surfaces, since my results are not

sensitive to this condition. I set Vc = Vd = 0.5 eV and ds = 1 in units of

the lattice constant [96]. To account for their Coulomb repulsion, the ionized

dopant configurations are generated randomly with a hard-core condition of

one to three lattice spacings.

The Hamiltonian in Eq. 4.7 can be diagonalized in real space by solving

the corresponding Bogoliubov−de Gennes equations to obtain the eigenstates

γ†n and γn with energy En ,n = 1, ..., 2Ns,

H =
∑
ij

(C†
i↑, Ci↓)

(
Kij Fij

F ∗
ij −K∗

ij

)(
Cj↑

C†
j↓

)
+ H0

where the matrix elements can be written as:

H0 =
1

4
J
∑
〈ij〉

gJ
ij(|χij|2 + |∆ij|2) +

∑
i

λi(xi − 1)

Fij =
1

4
JgJ

ij∆ij

∑
η

δj,i+η

Kij = [−gt
ijtij −

1

4
JgJ

ijχ
∗
ij]
∑

η

δj,i+η + (Vsc(i) + λi − µf )δij

(4.9)

The fermion creation and annihilation operators can be expanded in this
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basis according to:

C†
i↑(t) =

∑
n

u∗n(i)γ†ne
iEnt/~

Ci↓(t) =
∑

n

v∗n(i)γ†ne
iEnt/~

(4.10)

where [un(i), vn(i)] is the wave function at site i. the The order parameters

and the local hole density can be expressed in terms of the wave functions

as follows:

∆ij =
∑

n

[un(i)v∗n(j)][1− f(En)]− v∗n(i)un(j)[f(En)]

χij =
∑

n

[vn(i)v∗n(j)][1− f(En)] + u∗n(i)un(j)[f(En)]

1− xi =
∑

n

[|vn(i)|2[1− f(En)] + |un(i)|2[f(En)]

(4.11)

where f(En) is the usual Fermi distribution function. I minimize the ground

state energy of 〈HGA〉 through self-consistently determined (xi, λi, χij,∆ij
) on

24× 24 systems for different realizations of the dopant configurations.

Recall the relationship between the two mean field order parameters:

the spin singlet pair ∆ij = 〈Ci↑Cj↓ − Ci↓Cj↑〉 and the orbital hybridization

χij = 〈C†
i↑Cj↑ + C†

i↓Cj↓〉. Away from half filling, the equivalence of these

two order parameters no longer holds, although they are driven by the same

superexchange J. The nature of ∆ij is considered solved by the short-range

RVB theory. The spin-singlet valence bond pairs are mobilized by the doped

holes and tend to condense into a d-wave SC state below Tc [91]. The nature

of χij and its interplay with ∆ij is still unsettled.

To gain more insight, I decompose χij into low angular momentum ex-
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tended s-wave and d-wave components:

χs(i) =
1

4
Sijχij

χd(i) =
1

4
dijχij

(4.12)

In Eq. 4.12, the form factors Sij = 1 are for the four bonds emanating

from site i. The form factors dij = ±1 are for the bonds along the x and

y direction respectively. In momentum space, the fluctuation valence bonds

are:

χs(q) =
∑
kσ

γkC
†
k+q,σCkσ + h.c.

χd(q) =
∑
kσ

βkC
†
k+q,σCkσ + h.c.

(4.13)

where γk = coskx + cosky are the extended s-wave factors and βk = coskx −
cosky are the d-wave form factors. In the uniform system, without consid-

ering the off-plane disorder, χs(q = 0) = χs(0) 6= 0. χs(0) renormalizes

the nearest neighbor hopping. It is the uniform Fermi liquid phase. At the

same time χd(q → 0) = 0. No d-wave bond order can exist with both the

translational and time-reversal symmetry preserved.

A non-vanishing d-wave component is allowed if translational symmetry

and/or time reversal symmetry are broken. For example, if the imaginary

part χ′′
d(q

∗) 6= 0 for q∗ = (π, π), it becomes the staggered flux phase [55] [56],

also known as the DDW phase[57] or the orbital current phase.

I show here that without breaking the time reversal symmetry the “or-

der parameter” of the pseudogap phase originates from the real part of the

d-wave valence bond χ′
d(q) 6= 0. In the presence of doping induced disor-

der, the pseudogap phase can be well described by a glassy d-wave valence
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Figure 4.4: (a) Distribution of d-wave valence bond showing glassy order at
doping level x=0.125. (b) A field of view of bond map χij in real space for a
particular sample.

bond centered density wave with a distribution of q centered around the in-

commensurate ordering wave vectors q∗ in the clean case as discussed in the

previous chapter.

4.4 Normal State and Pseudogap Phase

4.4.1 The Fermi Arc and “V” Shaped Density of States

First I study the normal state pseudogap phase above Tc or the zero tempera-

ture pseudogap phase when the pairing is suppressed. I show that the glassy

valence bond density waves produce the pseudogap phenomena. I achieve

the normal state above Tc by setting ∆ = 0.

The valence bond is real and fluctuates due to the disordered dopant

potential. A statistical study of the bond order is shown in Fig. 4.4. Un-

like in the clean case without symmetry breaking where χd is strictly zero,

the disorder potential breaks translational symmetry and χd becomes non
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vanishing. The histogram of the valence bond order parameter χd in the

normal state at an average doping x = 0.125 is shown in Fig. 4.4 (a). By

summing different 24 × 24 sites samples, the histogram shows the statistics

of the bond order within a larger sample as measured in experiments. It

follows a Gaussian distribution with a zero mean. The root-mean-squared

fluctuation represents a nonzero glassy order parameter δχ =
√∑

i χd(i)2/Ns

at this doping for the Valence Bond Glass phase. Ns is the size of the sam-

ple. I note that the glassy dynamics of the valence bond were studied in

the weak-coupling metallic phase of the Hubbard-Heisenberg model at half

filling [129]. In contrast, here I discuss the glassy nature of the state away

from half filling. First, it is not a solid due to its disordered nature, this can

be seen clearly in the bond map in Fig. 4.4 (b). Second, it is not a liquid

because of the existing short-range order in the system, which I am going

to discuss in detail in the later sections. This is a valence bond glass state

(VBG state). It is an incommensurate bond density wave state pinned by

the disordered dopant potential. It possesses a glassy order which is different

from the valence bond solid (VBS). The most succinct feature of the valence

bond glass is the emergence of the pseudogap and the Fermi arc. The aver-

age DOS in Fig. 4.5 shows a remarkable V-shaped pseudogap. The size of

the gap is ∆pg ≈ 32meV at doping x = 0.125. The gap is approximately

symmetrically distributed around the Fermi level due to the d-wave nature

of the VBG. Different from the line shape of the density of states plot in

the commensurate case in Fig. 3.9(e) the particle-hole symmetry of the

pseudogap is approximately restored as observed in the STM experiments.

The calculated spectral intensity at the Fermi energy is plotted in Fig. 4.6.

Fig. 4.6(a) shows the intensity with full scale. It reveals a Fermi surface

truncated near the antinodes by the pseudogap and a Fermi arc around

the nodes which tracks the underlying Fermi surface. The more interesting

feature of this pseudogap Fermi surface can be seen when I lower the intensity

scale in Fig. 4.6(b). The Fermi arcs around the nodes remain prominent. In
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Figure 4.5: Average density of states plot at x = 0.125 showing the VBG pseu-
dogap, it is symmetric around zero bias and has a clear“V” shape which resembles
the d-wave symmetry.

Figure 4.6: Fermi surface spectrum intensity plot at doping x = 0.125. (a)
Fermi arc with full intensity, the antinodal region is gapped out leaving the gapless
nodal region intact. (b) Fermi arc with lower intensity comparing with (a), in the
antinodal region no clear sign of band folding .
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the antinodal region there is no signs of band folding. The agreement with

the experimentally established phenomenology such as the nodal-antinodal

dichotomy strongly suggests that the emergence of the pseudogap is due to

the short range order of the incommensurate bond density wave in response

to the dopant potential.
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4.4.2 Understanding the Role of Disordered Potential

The nodal-antinodal dichotomy in the underdoped regime highlights the non-

Fermi liquid nature of the VBG pseudogap phase. Its emergence does not

require the antinodal Fermi surface sections to be overly parallel and one-

dimensional which my parameters relevant to the band structure [98] do not

produce. It is sufficient for the quasiparticle dispersion to have a rather

flat-band section near the antinodes. In this Fermi liquid limit, I found

that the static susceptibility S0
χd

(q) exhibits diverging sharp peaks at q∗. I

have demonstrated that the Fermi surface becomes unstable to superlattice

instabilities.

With the presence of the screened potential, the renormalized d-wave

charge density wave susceptibility is given by an RPA-like expression:

Sχd
(q) =

S0
χd

(q)

1 + Vsc(q)S0
χd

(q)
(4.14)

In my approach I have exposed the CuO2 plane to the off-plane dopant po-

tential through Himp =
∑

k,q,σ V (q)C†
k+q,σCk,σ. The disorder potential V(q)

is generally finite for all q values with moderate features reflecting the av-

erage inter-dopant distance. Vsc(q) is the screened dopant potential by the

itinerant carriers. Vsc(q) has substantially weaker spatial variations than the

bare ionic potential V (q). It is the driving force of the electronic disorder.

The divergence of the static susceptibility Sχd
(q) is governed by the interplay

between the screened potential and the bare susceptibility (joint density of

states). This is why the disordered potential introduces a disordered bond

density wave, which gaps out the antinodal region of the Fermi surface. My

calculation shows the d-wave bond density wave parameter χd(q) develops

a distribution of q-values, since χd(q) = Sχd
(q)Vsc(q). The q dependence of

bond order parameters is plotted for several doping levels in Fig. 4.7. The

underlying mechanism of this is in the self-consistent theory, the electronic

disorder pins the low-energy bond density wave fluctuations into a glassy
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Figure 4.7: (a)1D Fourier power spectrum |χd(q)| along qx direction at three dif-
ferent doping levels, x = 0.125,x = 0.17 and x = 0.22.(b) Linecuts along the atomic
lattice direction of the Fourier transform of the local density of states maps at three
different dopings for Bi2201. Green is the underdoped sample with Tc = 25K,
red is the underdoped sample with Tc = 32K, black is the optimal doped sample
with Tc = 35K . The corresponding peak wavevectors are with the wavelengths of
6.2a0,5.1a0 and 4.5a0, respectively. Figure (b) is modified from [26]

.

phase with distributions of χd(q) around q∗. I show the Fourier power spec-

trum |χd(q)| in Fig. 4.7(a) along the qx direction, where the peak is located

at a group of incommensurate wavevectors around q∗x = 0.4π. The width of

the peak indicates the short range nature of the d-wave valence bond order

with approximate 5a × 5a checkerboard pattern. This can be connected to

the checkerboard modulations observed by STM [26][130]. The Fourier trans-

form of the local density of states is shown in Fig. 4.7(b). The characteristic

instability wave vector |q|∗ changes upon doping. This can be explained by

a topology change of the Fermi arc as demonstrated from my calculation in

the Fermi liquid regime. It is consistent with the current theoretical and

experimental observational trends.
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Figure 4.8: Fermi arc doping dependence at three different doping levels.

4.4.3 Doping Dependence of the Pseudogap

I study the doping dependence of the disordered d-wave bond centered charge

density wave state and the evolution of the pseudogap. This allows me to

understand the interplay between the kinetic energy and the d-wave bond

centered charge density wave formation in the presence of electronic disor-

der. The doping dependence of the pseudogap is shown in Fig. 4.8. From

the underdoped to the overdoped region, the pseudogap and the Fermi arc

give way to a more conventional disordered metal.

In the top three panels of Fig. 4.8 the calculated quasiparticle spectral in-

tensities at their Fermi energy are shown for three ascending doping levels. In

the underdoped regime, the spectral intensity reveals the antinodal truncated

Fermi surface (Fermi arc). It also reveals that the Fermi arc length increases

with increasing doping in agreement with ARPES. From my calculations in

the uniform case, it is seen that the divergence in bare susceptibility has a
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Figure 4.9: Density of states doping dependence at different doping levels. x is
the doping level.

smaller and smaller q with increasing doping, this will result in the growth

of the Fermi arc length in the absence of disorder. In the same way, the dis-

ordered bond density waves will also respond to the screened susceptibility

derived from the bare susceptibility. In Fig. 4.7, with the increase of doping,

q∗ becomes smaller and smaller and the peak of q∗ get weaker and weaker.

This is one reason for the arc growth in the disordered case. On the other

hand, while the density of dopants increases, the screened potential Vsc(q)

decreases due to improved screening by more mobile carriers. This leads to

weaker fluctuations of the potential, and as a result, the Fermi arc keeps

growing with less and less scattering in the antinodal region.

The bottom three panels of Fig. 4.8 show the histograms of the domi-

nant fluctuations in the d-wave component of the valence bonds for three

different doping concentrations. They all follow the Gaussian distributions

and the root-mean-square fluctuations increase with deepening underdoping.

The same reasoning applies. While the density of off-plane dopants increases
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for larger doping, the VBG order parameter decreases as a consequence of

the improved screening due to higher density of doped carriers i.e. weakened

Vsc(q). The fluctuation strength of the order parameter χd is closely tied to

the pseudogap. The bigger the fluctuation is, the bigger the pseudogap is.

I show in Fig. 4.9 the integrated density of states for several doping con-

centrations. The pseudogap becomes smaller and shallower with increasing

doping. The pseudogap becomes undiscernible beyond x = 0.22 on the shoul-

der of the Van Hove peak. The phenomena can be explained following the

same argument for the arc growth. We can view the density of states as the

momentum average of the spectral intensity in k-space. With less quasipar-

ticle scattering in the antinodal region with increasing doping, there will be

less elimination of states in the low energy, resulting in a smaller pseudogap.
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Figure 4.10: Temperature evolution of VBG pseudogap at doping x = 0.125.

4.4.4 Temperature Dependence of the Pseudogap

The temperature evolution of the pseudogap is also studied using the spa-

tially unrestricted Gutzwiller approximation. Compared to the variational

Monte Carlo projection, the spatially unrestricted Gutzwiller approximation

has its unique strengths. It allows me to study finite temperature properties

by minimizing the free energy in the renormalized mean field theory [87] [131].

Rather than a gap closing, I find that upon the increase of temperature,

the gap fills up. In Fig. 4.10, I show an example of the temperature evolu-

tion of the pseudogap at doping concentration x = 0.125. The pseudogap

temperature T ∗ is clearly seen to be determined by the thermal filling of

the pseudogap. This indicates that the pseudogap phenomenon is therefore

not associated with the phase transition which involves long range order, al-

though experimentally there is still controversy[132]. The thermal filling of

the pseudogap is a unique feature of the glassy state.
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4.4.5 Nodal Antinodal Dichotomy in the Spectral Func-

tion

Fig. 4.11(a) shows the momentum-dependence of the symmetrized single-

particle spectral function as measured by ARPES at x = 0.14. It displays

the evolution of the quasiparticles along the arc and the opening of the pseu-

dogap at the arc tip which increases towards the antinodes. The signature

of the nodal antinodal dichotomy is that the spectrum is gapless along the

conducting arc, in comparison with the large gap in the antinodal region.

This is consistent with the earlier ARPES observations. In order to scruti-

nize how the pseudogap opens up along the underlying Fermi surface, the

angular dependence of the pseudogap extracted from the symmetrized spec-

trum function is plotted in Fig. 4.11(b). Away from the zero-gap Fermi arc,

the pseudogap follows the d-wave form (dashed line). The Fermi arc can be

correspondingly defined by the angles φ that span the zero-gap region em-

anating from 45-degrees. Lee et al. have reported this angular dependence

of the spectrum gap in Bi2212 and similar results have been found when the

temperature is above the superconducting transition temperature Tc among

three different samples at different dopings [133]. The pseudogap line-shape

highlights one of the most significant predictions of the glassy phase: the

pseudogap near the antinodes is a soft gap that opens approximately lin-

early in energy. There are in-gap states left. This is in fact consistent with

the ARPES experiments which use the terminology ”pseudogap” originally.

It is in sharp contrast to the näıve picture of a hard gap that depletes all

states near the antinodes below the pseudogap energy scale. This has very

important consequences in the superconducting state.
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Figure 4.11: (a)Angular dependence of the symmetrized spectral function in mo-
mentum space. insert: the definition of angle (φ = 0 is the nodal point φ = 45◦ is
the antinodal region). The white circles are the points where the spectrum function
are plotted.(b) The angular dependence of the pseudogap is shown in black dots.
The red curve is a d-wave fit used as a guide to the eye.(c)Schematic illustrations
of the gap function evolution for three different doping levels of Bi2212 , Figure
is taken from [133]. (top panel), Underdoped sample with Tc = 75K. (middle
panel), Underdoped sample with Tc = 92K. (bottom panel), Overdoped sample
with Tc = 86K. At 10 K above Tc there exists a gapless Fermi arc region near
the node; a pseudogap has already fully developed near the antinodal region (red
curves). With increasing doping, this gapless Fermi arc elongates (thick red curve
on the Fermi surface), as the pseudogap effect weakens.
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Figure 4.12: Doping dependence of pseudogap extracted from DOS(circles) and
d-wave valence bond order parameter(squares).

4.4.6 Quantitative Evaluation of the Glassy Bond Or-

der and the Pseudogap

I have shown qualitative relations between the bond order parameter χd and

the strength of the pseudogap. With the doping dependence of the arc length

and DOS gap size study, it is clear that the fluctuation of χd is tied to the

strength of the pseudogap. It is more convincing to establish this glassy bond

order if I evaluate the order parameter more carefully and compare it with

the size of the pseudogap. Fig. 4.12 demonstrates the connection more clearly.

Here I extract the size of the pseudogap in two different ways: the first way

is to directly measure it from the integrated density of states calculation; The
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other way is to calculate it from the order parameter following the relation:

∆pg ' (J/8)×
√∑

i

(
∑

j

gχ
ijχijdij)2/Ns (4.15)

It is clear that the results from these two methods are consistent with

each other. This method is also used later to plot a phase diagram. From

the doping dependence of the pseudogap size, I can see that without the pres-

ence of superconducting order, the valence bond glass gives us an increasing

gap in energy scale with decreasing doping. Obviously the pseudogap is a

separate energy scale in addition to the superconducting energy scale. This

has been reported by ARPES performing a doping dependence study [21].

They find that the antinodal gaps and the nodal gaps show different trends

with increasing doping. In earlier temperature and angular dependence stud-

ies [133] it has been hard to reconcile the differently positioned gaps emerging

at different temperatures on the same sheet of the Fermi surface. Since they

are not opening up at the same temperature they do not comprise a single

gap. Instead they must be thought of as two distinct gaps.

Also Raman scattering has shown clear evidence for two gaps [33] as

discussed previously. Having already established that the pseudogap and

the superconducting gap have two distinct energy scales it is now useful to

study the interplay between these two gaps. There are theories such as a

bipolaron theory[134] which can also produce two energy gaps with distinct

temperature dependence: one gap opens at Tc following BCS theory and the

other is across Tc. It requires the two gaps to add in quadrature. However,it is

contradicting with the angular dependence ARPES study in the underdoped

Bi2212 where clearly there is no such quadrature relation.
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4.5 Superconducting Phase

To examine the interplay between these two channels (both driven by the

same superexchange J) I now turn on the superconducting channel. Below

Tc the glassy valence bond charge density waves coexist and compete with the

inhomogeneous d-wave superconducting pairs. The present theory predicts

two spectral gaps, originating from the particle-hole and particle-particle

channels of the valence bond fluctuations, respectively. The Gutzwiller renor-

malization factors are identical gχ
ij = g∆

ij at half filling, reflecting the SU(2)

symmetry from the spin degrees of freedom. At finite doping concentra-

tions, the charge fluctuations will break the balance. In particular, the pair-

breaking effects induced by inter-site Coulomb repulsion V will effectively

weaken the singlet pairing channel as compared to the paramagnetic density

wave channel[119]. As a result, the pairing channel is suppressed at a fixed

doping compared to its counterpart with zero Coulomb repulsion (V = 0).

The critical doping, where the pairing order vanishes, gets pushed back to a

smaller value compared to its counterpart as well. Here I am only considering

strong electron-electron correlations. However, more surveys show that the

effects of the electron-phonon interaction cannot be overlooked either. It is

reported that the electron-phonon interactions promote the d-wave charge

density wave [60] [61]. Equivalently, the competing pairing channel is weak-

ened due to the electron phonon interaction. To incorporate these effects

into the renormalized mean field theory in Eq. 4.7, I use

gχ
ij = gJ

ij

g∆
ij = pgJ

ij

(4.16)

where p = 0.475. p is a phenomenological parameter which separates the

two energy gap scales in the underdoped regime. With the coexistence of

the glassy bond order and the superconducting order, the real space and the
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momentum space properties are investigated to make connection with the

STM and ARPES experiments. The competing nature of these two orders

manifest themselves into the distinctive spatial, momentum, temperature

and doping dependence in the underdoped regime. Thorough investigation

is presented to show the supportive evidence for the two-gap scenario.

4.5.1 The First Glance of the Coexistence of Two Gaps

In Fig 4.13(a), the T=0 integrated density of states is shown at doping

x = 0.14. It clearly displays two gaps in agreement with STM experiments

on La − Bi2201 [26][22], the smaller superconducting gap ∆sc ' 10meV

represents the spin singlet pairing and a large pseudogap ∆pg ' 22meV

inherited from the normal state. Both gaps exhibit doping induced spatial

inhomogeneity accompanied by the distributions of the corresponding order

parameters (∆d, χd)(see Fig 4.13(b)). The gaps scale according to Gpg ∼√∑
i(
∑

j gχ
ijχijdij)2/Ns and Gsc ∼

∑
ij ∆ijτ

d
ij/Ns respectively. We can see

they both follow approximately the Gaussian distribution as a manifestation

of the disorder nature of the system. The ARPES and STM results on very

underdoped La − Bi2201 both show the coexistence of a small gap and a

big gap, as shown in Fig. 4.13(c)(d)(e). The coexistence of two gaps is also

observed in underdoped Bi2Sr2Ca1−xYxCu2O8+δ(Bi−2212) with Tc = 50K.

[135].
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Figure 4.13: (a) The average density of states showing the coexistence of the
pseudogap and the superconducting gap at doping x = 0.14. The pseudogap
is the larger gap with the size being approximately 22 meV and the small gap
is the superconducting gap with the size being approximately 10 meV. (b) The
histogram of ∆d and χd. They both follow the Gaussian distribution. (c)(d)(e) are
experimental results on Bi2Sr2−xLaxCuO6+x when x = 0.4, [22], they all show
the coexisting of the two gaps. (c) Single STM spectrum (red) representative of
the average small gaps and large gaps and a spatially averaged STM spectrum
(black) from a 240 Å dI/dV map. (d) Symmetrized ARPES energy distribution
curves (EDCs) taken at antinodal positions and at the arc tip near the antinodal
region (φ = 21◦) .(e) Gap histogram (237 A◦ dI/dV map) with average small gap
at 10.50 meV ± 2.8 meV and large gap average at 27.2 meV ± 5.4 meV.
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Figure 4.14: (a)Average density of states showing the temperature evolution
of the superconducting gap and the pseudogap from T = 0meV to T = 8meV ,
Tc = 4meV . (b) Temperature dependence of the superconducting gap size and the
pseudogap size.

4.5.2 Temperature Dependence of the Pseudogap and

the Superconducting Gap

I calculate the temperature evolution of the density of states shown in Fig. 4.14

by minimizing the free energy. The superconducting gap and the coherence

peaks vanish above Tc ∼ 4meV . Tc is determined by the vanishing pairing

order parameter upon raising the temperature. As the system enters the

pseudogap phase T > Tc, the large gap remains and behaves like a normal

pseudogap with thermal filling upon further increasing temperature. Inter-

estingly, as T is increased toward Tc, the pairing gap and the pseudogap

show opposite temperature dependence, a typical feature of coexisting but

competing order ( Fig. 4.14).

132



4.5.3 The Momentum Dependence of the Two Coex-

isting Gaps

To study the the momentum anisotropy of the two gaps, I calculated the

single-particle spectral function A(k, ω) as measured by ARPES. Fig. 4.15

shows the symmetrized energy distribution curve (EDC) on the underlying

Fermi surface around the three characteristic locations: on the normal state

Fermi arc near the nodes, at the tip of the Fermi arc, and near the antinode.

A single gap due to d-wave pairing is seen on the Fermi arc which closes at Tc,

but with signatures of an emerging pseudogap just above Tc which is filled up

at moderately higher temperatures. The EDC becomes qualitatively differ-

ent near the antinodes and exhibits coexisting pairing and the valence bond

density wave gap at low temperatures. Thus, the theory predicts that d-wave

pairing extends beyond the Fermi arc into the antinodal regime. This is a

consequence of the softness of the normal state pseudogap discussed above

which allows pairing of the antinodal state near the Fermi level below the

gap energy. The pairing gap and the coherence peaks disappear above Tc

as the system transitions into the normal state pseudogap phase. Although

the large incoherent background and inelastic life time broadening observed

by ARPES tend to suppress the coherent peaks and mask the pairing gap

near the antinode, recent high resolution ARPES experiments performed on

La−Bi2201 indeed observed the pairing gap near the antinodes. [22][136].

Extracting the gap values from the spectral function, I plot the angular

dependence of the pairing gap and the pseudogap in Fig. 4.16. It clearly dis-

plays the evolution of the d-wave pairing gap along the Fermi arc and the co-

existence of the pairing and valence bond charge density wave gap off the arc.

In general, I do not see a single gap formed by the quadrature of two underly-

ing gaps because the origin of the two gaps are in the particle-particle and the

particle-hole channels respectively. It is in good agreement with ARPES and

Raman [33] experiments. It suggests that the d-wave pairing gap along the
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Figure 4.15: Symmetrized spectral function at different locations in momentum
space at three temperatures: T = 2meV , T = 4meV , T = 6meV , at doping
x = 0.14, Tc = 4meV . Location (1) on Fermi arc near the nodal region. Single
d-wave pairing gap disappearing above Tc. (2) Near arc tip. Similar d-wave pairing
gap and VBG pseudogap surviving above Tc (3) Near antinode. Coexisting large
pseudogap and d-wave pairing gap below Tc.
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Figure 4.16: (a)Angular dependence of the superconducting gap and pseudo-
gap. The angle φ is defined in the insert. On the Fermi arc there is one single
d-wave superconducting gap opens up in the BCS manner. From the arc tip to
the antinodal region, two gaps are resolved to follow different trends while they
both grow in value. A smaller gap continues to open up in the BCS manner and
a bigger gap which emerges right off the arc tip and develops towards the antin-
odal region with a more dramatic increase (b)Angular φ dependence of peak posi-
tion of the symmetrized EDC (∆peak). Solid black line shows ∆peak for optimally
doped Bi2212 [∆Bi2212/cos(2φ)]. Dashed black line shows ∆Bi2212 divided by 2.6
[≈ Tc(Bi2212)/Tc(Bi2201) = 90K/35K].

Fermi arc evolves into the coexisting pairing and valence bond charge density

wave gaps off the arc (when they are resolved). This can be compared very

well with Kondo et al.’s result[73], on (Bi, Pb)2(Sr, La)2CuO6+δ (Bi2201),

which has a low transition temperature Tc ∼35 K at optimal doping, where

Tc is almost 3 times smaller than (Bi2212). In Bi2201 the superconducting

gap and the pseudogap are well separated (see Fig. 4.16). Below the super-

conducting transition temperature the angular dependence of the gap devi-

ates away from a single dx2−y2 once it is off the arc. In the antinodal region

the value is much higher than just the extrapolated d-wave dependence of Tc.
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Figure 4.17: Fourier transform of the power spectrum of (a)the pairing channel
∆d(q) and (b)the bond channel χd(q) of one specific sample at doping x = 0.14 in
the coexisting phase.

Thus the ground state below Tc is a coexisting state of glassy d-wave

valence bond density waves and superconducting pairing, a mixture of a

quantum paramagnet and spin singlets. They are competing with each other

although they are driven by the same superexchange J. There are traces of

glassy valence bond density waves in the pairing gap and pairing in the va-

lence bond density wave gap near the antinodes. To uncover the finite-q

feature in the pairing channel and the bond channel, I plot the power spec-

trum of the Fourier transformed d-wave pairing order parameter ∆d(q) and

the glassy bond order parameter χd(q) in the coexisting phase in Fig. 4.17.

In Fig. 4.17(a), ∆d(q) shows a bright spot at zero q. In addition to the main

contribution at q = 0 there are four very weak subdominant peaks represent-

ing finite-momentum pairing at |q|∗ connecting the antinodal Fermi surface

section. On the other hand, in the plot of χd(q) there are several dominat-

ing qs which show a clear tendency of disordered nematic patterns at finite

wavevectors.
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Figure 4.18: (a) Local density of states plot along two linecuts. The linecuts are
chosen in the region where the local doping is around underdoped to the optimal
doped range in order to see a well separated superconducting gap and pseudogap
(b) Spectra along a 100 Å line on underdoped Bi2Sr2−xLaxCuO6+x (La-Bi2201)
when La doping is x = 0.4 [22])

4.5.4 The Spatial Dependence of the Two Gaps

In order to see the two gaps directly in real space, like that which is mea-

sured by STM, I have calculated the the local density of states (LDOS) along

two linecuts on one sample at the doping concentration x = 0.14 shown in

Fig. 4.18. The evolution of the line shape agrees with the STM conductance

spectra [26][22]. There is one small gap which has a coherent peak repre-

senting the spin singlet pairing inside a large broader gap which is attribute

to the pseudogap. Both the small gap and large gap are spatially inhomoge-

neous.
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Figure 4.19: Superconducting gap ∆SC and pseudogap ∆PG as a function of
doping

4.5.5 The Theoretical Phase Diagram

In summary, due to the strong electronic correlation the valence bond fluc-

tuations are strong and can be pinned by the disordered screened dopant

potential. The quasiparticle pairing from the particle-particle channel and

the incommensurate bond centered charge density waves from the particle

hole channel are the key ingredients for understanding the superconducting

and the pseudogap phases of the cuprates. I present a unified theory of glassy

valence bond charge density wave describing the most essential features of

the pseudogap phenomena and electronic disorder. I construct a theoretical

phase diagram (see Fig. 4.19) using the doping dependence of the d-wave

pairing gap and the pseudogap. It clearly captures the basic topology of

the global phase diagram of the high Tc cuprates. In particular the dop-
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ing dependence of the two gaps are opposite in the underdoped regime, but

become similar in the overdoped part of the phase diagram. Although the

present theory does not involve a precursor pairing induced pseudogap above

Tc, it does not rule out such a possibility when fluctuation effects beyond the

Gutzwiller projection are taken into account. However, it is likely that the

partial gapping of the Fermi surface due to the glassy valence bond density

wave order can account for most parts of the large Nernst signal at Tc. It

is conceivable that suppression in the electronic disorder induced glassy va-

lence bond order in the paramagnetic channel is a useful way to increase the

superconducting transition temperature Tc.
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Appendix A

From Hubbard Model to t-J

Model

In the strongly-coupling limit the Hubbard model can reduce to t-J model[137][138].

The derivation follows P.Fulde’s notation [139], and more detailed algebra can

be found in reference [140]. Starting from the Mott insulator, there are three

bands at present: the lower Hubbard band, the oxygen 2p band and the up-

per Hubbard band (see Figure 2.2). In order to consider the charge transfer

insulator nature of the cuprate parent compounds the oxygen 2p band can

be treated as the lower hubbard band and ∆ becomes Ueff in the Hubbard

Model when ∆ is large enough.

The Hubbard model Hamiltonian can be written into two parts, the hop-

ping part and the interaction part.

H = −
∑
i,j,σ

tijC
†
iσCjσ + U

∑
i

ni↑ni↓

H = Ht + HU (A.1)

There is a hopping matrix element tij between different sites and potential

U on the same site (for the purpose of simplicity I limit the hopping to the
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nearest neighbor tij ≡ t). The strong coupling limit is when U is large in

comparison with the system bandwidth, in this case U � t. The Hilbert

space can be divided into two subspaces: P denotes states with no double

occupancy, and Q denotes states with double occupancy .

H|Ψ > = H|Ψ >

|Ψ > = |Ψp > +|ΨQ > (A.2)

I write the Hamiltonian into four blocks. These four blocks act on different

states. HPP and HQQ act within the subspace P and Q, respectively. HPQ

and HQP connect these two.

HPP |Ψp > +HPQ|ΨQ > = E|Ψp >

HQP |Ψp > +HQQ|ΨQ > = E|ΨQ > (A.3)

Simple algebra will give us the effective Hamiltonian for |Ψp > and |ΨQ >

respectively (see Equation. A.5). This Schriffer-Wolff Transformation makes

it possible to just work on the subspace P only and the doubly occupied

subspace Q can be omitted from now on. I denote the effective Hamiltonian

to be H̃ = H̃PP .

H̃PP |ΨP > = E|Ψp >

H̃QQ|ΨQ > = E|ΨQ > (A.4)

H̃PP = HPP − HPQ
1

HQQ − E
HQP

H̃QQ = HQQ − HQP
1

HPP − E
HPQ (A.5)
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I define P to be a projection operator which projects states into reduced

Hilbert space. It follows P =
∏

i(1− ni↓ni↑) and Q = 1− P is the projector

which projects onto the space of configurations with doubly occupied states.

The effective Hamiltonian can be written as :

H̃ = PHP − PHQ
1

QHQ− E
QHP (A.6)

Also in the limit of large U, I can approximate QHQ ≈ U , and expanding

gives A.7
1

QHQ− E
' 1

U − E
=

1

U
(1 +

E

U
+ ...) ' 1

U
(A.7)

The effective Hamiltonian in the limit of large U is

H̃ = PHP − 1

U
PHQQHP (A.8)

From the definition of P and Q, I get the following relations:

PHP = −t
∑
ijσ

(1− niσ̄)c†iσcjσ(1− njσ̄)

QHQ = −t
∑
ijσ

niσ̄c
†
iσcjσnjσ̄

QHP = −t
∑
ijσ

niσ̄c
†
iσcjσ(1− njσ̄)

PHQ = −t
∑
ijσ

(1− niσ̄)c†iσcjσnjσ̄ (A.9)

I define the hole operator in analogy with the electron operator

ĉ†iσ = c†iσ(1− niσ̄)

ĉiσ = ciσ(1− niσ̄)

(A.10)
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After some algebra, I get the effective Hamiltonian, A.11

H̃ = H1 + H2 + H3

H1 = −t
∑

<ij>σ

(ĉ†iσ ĉjσ + h.c.)

H2 = −2t2

U

∑
<ijk>σ

(niσnjσ̄ − c†iσciσ̄c
†
jσ̄cjσ)

H3 = − t2

U
(ĉ†iσnjσ̄ ĉkσ − ĉ†iσc

†
jσ̄cjσ ĉkσ̄ + h.c.) (A.11)

The 3-site term H3 is usually not considered to be important, so it can be

ignored from now on. H2 can be written into a more conventional form using

the spin operator Si = 1
2

∑
αβ c†iασαβciβ, where σ is the Pauli matrix of a spin

1
2
.

Si · Sj −
1

4
ninj = −1

2
(niσnjσ̄ − c†iσciσ̄c

†
jσ̄cjσ) (A.12)

Finally the t-J model arises:

Htj = −t
∑

<ij>σ

(ĉ†iσ ĉjσ + h.c.)

+ J
∑

<i,j>σ

(Si · Sj −
1

4
ninj) (A.13)

This is exactly the same t-J model that was derived in chapter 2.
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