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This dissertation comprises three papers that are concerned with the implications of

strategic interactions between a finite set of agents in private goods economies. One

form of strategic behavior I consider arises in a social network when the consumption

decisions of agents are influenced by those around them. The other form of strategic

behavior I consider arises when agents bargain with one another.

The first paper focuses on undirected networks in which consumers care about the

average of their neighbors’ consumption. The main contribution is to show how

social networks affect equilibrium prices. I show that if every consumer has the same

number of neighbors, then each consumer’s influence on the market is independent of

the number of neighbors. Due to the tradeoff between more neighbors responding and

less sensitive responses, greater network intensity may not result in greater average

influence of all consumers. In addition, I show that a consumer who is central in

the network may not have the highest influence on the market because of the need

to consider not only the number of neighbors that he has or his distances to other



consumers, but also the number of neighbors that his neighbors have.

The second paper examines strategic consumption in a directed network. The main

contribution is to show how directed networks affect equilibrium outcomes. I show

how the critical and promising links, and the key players in a social network can

be identified. In doing so, I introduce the impact centrality and reaction centrality

measures, and show how these measures are used to determine the effects on aggregate

centrality of removing any agent from the network, and of removing or adding any

directed link.

The third paper considers bargaining under two-sided incomplete information in a

market with multiple buyers and sellers, each with either high or low independent

private values. I show that there exists a mechanism that guarantees efficient trading

outcomes even when gains from trade are uncertain. The main contribution of this

paper to show that a large number of traders is not necessary to guarantee efficient

trading if there are at least as many sellers as there are buyers, and there is at least

one low valuation buyer.
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Miralles for taking the time to read and comment on one of my papers, Hideo Konishi

for introducing me to network economics and for teaching me game theory, Sanjeev

Goyal for his encouragement, and Eren Inci, Nicholas Sim, Arthur Lewbel, Tayfun

Sönmez, Nobuhiro Kiyotaki, Andrew Newman, Jawwad Noor, and Avinash Dixit for

their comments.

I would like to express my appreciation for the financial, research, and administrative

support given to me by Boston College.

Finally, I would like to thank my wife for her patience and understanding, and for

the sacrifices she has made for me over the past two years.



Paper 1
Prices in Networks

Abstract

When there is strategic complementarity of consumption between neighbors in a social
network, we find that certain consumers may have a bigger impact than other consumers
on the market demand and therefore the equilibrium price. The influence that a particular
consumer has on the market demand depends on the network structure and the consumer’s
location in the network. This analysis may, for example, shed light on the segment of
consumers that should be the target of selective advertisements or promotions.

1.1 Introduction

The recent decades have been marked by an increasingly interconnected world due

largely to advances in communication and transportation technology. The ubiquitous

cellular phone, the television, and the Internet have become almost indispensable to

present day living. They have, to an unprecedented extent, enabled interaction among

people who are physically separated. Cars and air travel have become much more

accessible forms of transportation, while mass transit systems have become common
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features of urban living throughout the world. Political and economic developments

in the European Union, Eastern Europe, and China have resulted in an explosion of

emigration and travel. As a result of all these technological and social developments,

people are becoming increasingly interconnected both within and between countries.

The consumption of fashion products, ostentatious products, gifts, game tickets, guns

and other forms of expenditures tend to be influenced by social or cultural norms

in a way that displays a high degree of conformism. For example, our decisions

to purchase a vacation package may be influence by whether our friends are also

going on the same trip, perhaps because the trip would be more enjoyable with

some friends. A household might keep up with the purchases of only those other

households it comes into social contact with and not the purchases of the rest of

the other households. However, because of the overlap of social circles, households

that are distantly connected through the network of neighbors can have an indirect,

though somewhat diminished, effect on one another’s purchases. It is useful to think of

this interaction among consumers occurring within a social network since consumers

would typically respond to only those other consumers in their social circle rather

than to respond to all other consumers. A network structure allows much richer

social interactions, rather than distinctly local or global interactions.

This paper investigates how equilibrium prices are affected by consumers interacting

strategically with their neighbors in a social network. In order to abstract from

issues of market power and to focus on consumer behavior, we consider an exchange

economy comprising many agents endowed with two goods. One of the two goods

involves strategic complementarity in consumption between neighbors in the social

network. However because no agent has market power over any good, the markets

for both goods are competitive. We use the vocabulary of graph theory and network
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games to describe the strategic interactions occurring within the social network. The

intention is neither to explain why strategic complementarity in consumption occurs

nor to explain the existence of a social network. Instead, we would like to focus on

the consequences of such phenomena, that is, to determine how the network structure

affects the market demand and the equilibrium price.

To examine the impact of a particular agent’s increased demand for a good, we analyze

the response of price to a change in the endowment of the agent under various network

structures. We find that the increase in supply of a good may in fact raise its relative

price. This effect depends on the structure of the network and the source of the supply

increase. This result suggests that goods that involve strategic complementarity in

consumption between neighbors may become more valuable even as they become more

abundant.

The idea that a consumer’s demand depends on the demands of other consumers has

been explored variedly in the literature. For example, a consumer’s demand for a good

may depend on the aggregate demand or network externalities, that is, the number of

consumers consuming [Duesenberry (1949); Leibenstein (1950); Becker (1991); Karni

and Levin (1994); Corneo and Jeanne (1997); Grilo, Shy, and Thisse (2001); Amaldoss

and Jain (2005)]. Alternatively, a consumer’s demand may be affected by the demands

of other consumers because his utility depends on how his consumption of the good

ranks against that of all other consumers [Frank (1985); Hopkins and Kornienko

(2004); Hopkins and Kornienko (2006)]. There are also models that incorporate both

local and global interactions but treat the effects distinctly [Glaeser and Scheinkman

(2002); Horst and Scheinkman (2005)]. However, these forms of social interactions do

not take into consideration how consumers not directly connected can be influenced

indirectly and mutually by other consumers via a network of social relations. There
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is a growing literature on network formation and network games, which show how the

structure of networks affects equilibrium outcomes [Galeotti, Goyal, Jackson, Vega-

Redondo, and Yariv (2006)]. Discrete choice interactions have been analyzed in a

network structure but not with reference to the price mechanism [Ioannides (2006)].

The rest of this paper is organized as follows. Section 1.2 presents the general model,

which includes a discussion of a few prominent network structures. Section 1.3 exam-

ines the equilibrium in the minimum consumption model under the various network

structures. Section 1.4 concludes. An appendix contains the proofs.

1.2 The General Model

1.2.1 Definitions

Given a set of agents N = {1, . . . , n}, an undirected network g is a set of pairs of

agents linked to each other. For any pair of agents i and j, ij ∈ g indicates that i

and j are linked in the network g.

A pair of agents are neighbors in a network g if and only if they are linked in the

network g. The set of agents with at least one neighbor in the network g is N(g) =

{j ∈ N : ∃ ij ∈ g}. The set of neighbors of agent i in the network g is Ni(g) = {j ∈

N : ij ∈ g}. The degree of agent i is ni(g) = |Ni(g)|, the number of neighbors that

agent i has in network g. Assume that every agent has at least one neighbor in the

network g so that N(g) = N and Ni(g) 6= {φ}.

A path in the network g connecting agents i and j is a sequence of distinct neighbors

i1, . . . , iK such that ikik+1 ∈ g for each k ∈ {1, . . . , K − 1} with i1 = i and iK = j.

The length of a path connecting agents i and j is the number of links connecting
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agents i and j on that path.

A network is connected if there exists a path connecting any agent to any other agent

in the network. A network g′ ⊂ g is a component of network g if it is a maximal

connected subnetwork of network g. That is,

(a) if i ∈ N(g′), j ∈ N(g′), and j 6= i, then there exists a path in g′ connecting i

and j, and

(b) if i ∈ N(g′), j ∈ N(g), j 6= i, and ij ∈ g, then ij ∈ g′.

The set of components of network g is C(g), so that g =
⋃

g′∈C(g) g′. Since neighbors

are in the same component of a network, the set of neighbors of agent i in the

component g′ of the network g is equivalent to the set of neighbors of agent i in the

network g. That is, Ni(g
′) = Ni(g).

The distance between any pair of agents i and j in the same component g′ is dij(g
′),

the length of the shortest path between the pair of agents. For any integer k ≥ 1, the

set of all other agents that are connected to agent i by a distance of k is Nk
i (g′) =

{j ∈ N(g′) : j 6= i, dij(g
′) = k}. Hence, N1

i (g′) = Ni(g
′). The cardinality of Nk

i (g)

is nk
i (g) = |Nk

i (g)|. The eccentricity of agent i is εi(g
′) = maxj∈N(g′) dij(g

′), the

maximum distance between agent i and any other agent in the same component g′.

The radius of a component is d(g′) = minij∈g′ dij(g
′), the minimum eccentricity of any

agent in the component. The diameter of a component is d̄(g′) = maxij∈g′ dij(g
′), the

maximum eccentricity of any agent in the component. The closeness of an agent i in

the component is ci(g
′) = 1P

j∈N(g′)\{i} dij(g′)
, the reciprocal of the sum of distances to all

other agents in the component. An agent is central in a component if its eccentricity

is equal to the radius of the component. The center of a component is the set of all

central agents. An agent is peripheral in a component if its eccentricity is equal to

the diameter of the component.
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1.2.2 Influence

There are two goods - 1 and 2. xi
` denotes agent i’s consumption of good `. ωi

` denotes

agent i’s endowment of good `. Both goods are traded throughout the economy so no

agent has market power over any good. The price of good 1, which is the numeraire,

is normalized to one and so the price of good 2, p, is also the price of good 2 relative

to good 1. The wealth level of agent i, mi = ωi
1 + pωi

2, is endogenously determined

by the equilibrium price and the pattern of endowments.

Agents have identical, continuous, strictly convex, and strongly monotone preferences

over goods 1 and 2. Hence, each agent i’s preferences can be represented by a strictly

quasiconcave and twice continuously differentiable utility function ui(xi
1, x

i
2, x

Ni(g)
2 ),

where x
Ni(g)
2 is the vector of good 2 consumptions by each of the agents in the set

of agents Ni(g). There is no restriction on whether the good 2 consumption of each

neighbor is a positive or negative externality, that is, there is no restriction on the

sign of ui
xj
2

per se, where j ∈ Ni(g). For any given level of good 2 consumption by each

of its neighbors, each agent chooses its consumption of goods 1 and 2 to maximize its

utility subject to its budget constraint. Formally,

∀ i ∈ N : max
{xi

1,xi
2}

ui(xi
1, x

i
2, x

Ni(g)
2 ) s.t. xi

1 + pxi
2 = mi = ωi

1 + pωi
2

There is strategic complementarity in the consumption of good 2 between each pair

of neighbors in that an agent would increase its consumption of good 2 if its neighbor

does so, holding all other factors, including the price, constant. Formally,

∀ i ∈ N, j ∈ Ni(g) : (
∂xi

2

∂xj
2

)x2,p,mi > 0
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Since we seek to determine the effect of a particular agent’s increased demand from a

change in the agent’s endowment, we assume that both goods are normal. Formally,

∀ i ∈ N : (
∂xi

`

∂mi
)x2,p > 0

The above two conditions depend on ordinal properties of the utility function because

the best response function, which is implicitly determined by the first order conditions,

is invariant to a monotonic transformation of the utility function. The best response

correspondences are in fact best response functions because the utility functions are

strictly quasiconcave.

Definition 1 (Nash-Walrasian Equilibrium) (xN
1 , xN

2 , p) is a Nash-Walrasian Equi-

librium if it satisfies every agent’s best response function and budget constraint, and

the market for good 2 clears. That is,



∀ i ∈ N : ui
xi
2

= pui
xi
1

which implicitly determines xi
2 = xi

2(x
Ni(g)
2 , p, mi)

∀ i ∈ N : xi
1 + pxi

2 = mi = ωi
1 + pωi

2

∑
i∈N

xi
2 =

∑
i∈N

ωi
2

Lemma 1 (Demand Correspondences) Given every agent’s best response func-

tion and budget constraint, each agent’s demand for each good is a correspondence of

the relative price of the two goods and the wealth levels of every agent in its component

of the network. That is,

∀ g′ ∈ C(g), i ∈ N(g′) : xi
1 ∈ xi

1(p, m
N(g′)) and xi

2 ∈ xi
2(p, m

N(g′))

Proof.
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∀ g′ ∈ C(g), i ∈ N(g′) : Ni(g) = Ni(g
′) and xi

2 = xi
2(x

Ni(g)
2 , p, mi)

⇒ xi
2 = xi

2(x
Ni(g

′)
2 , p, mi)

⇒ xi
2 ∈ xi

2(x
N2

i (g′)
2 , p, m{i}

S
Ni(g

′))

⇒ xi
2 ∈ xi

2(x
N3

i (g′)
2 , p, m{i}

S
Ni(g

′)
S

N2
i (g′))

...

⇒ xi
2 ∈ xi

2(x
N

εi
i (g′)

2 , p, m{i}
S

Ni(g
′)
S

N2
i (g′)

S
···
S

N
εi−1
i (g′))

⇒ xi
2 ∈ xi

2(p, m
{i}
S

Ni(g
′)
S

N2
i (g′)

S
···
S

N
εi
i (g′))

⇒ xi
2 ∈ xi

2(p, m
{i}
S

(
εi(g

′)S

k=1
Nk

i (g′))
)

⇒ xi
2 ∈ xi

2(p, m
N(g′))

⇒ xi
1 ∈ xi

1(p, m
N(g′)).

As long as there is a path connecting a pair of agents, their demands and therefore

their incomes would affect each other’s demand. Whether the demand correspon-

dences are in fact demand functions depends on the ordinal curvature properties of

the best response functions and their upper and lower bounds [Randon (2004)].

Without loss of generality, we can examine the effect of an increase in the endowment

of good 2 held by an agent by a perturbation of ω1
2, the endowment of good 2 held

by agent 1.

Proposition 1 (Equilibrium Price) Given a downward-sloping aggregate demand

for good 2, its price is increasing in the endowment of an agent’s endowment of the

good if and only if any resulting increase in aggregate demand exceeds the increase in

endowment.
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Proof.

2∑̀
=1

ui
xi
2xi

`
dxi

` +
∑

j∈Ni(g)

ui
xi
2xj

2

dxj
2 = p(

2∑̀
=1

ui
xi
1xi

`
dxi

` +
∑

j∈Ni(g)

ui
xi
1xj

2

dxj
2) + ui

xi
1
dp

dx1
1 + pdx1

2 + x1
2dp = dm1 = pdω1

2 + ω1
2dp

∀ i\1 : dxi
1 + pdxi

2 + xi
2dp = dmi = ωi

2dp

∑
i∈N

dxi
2 = dω1

2

⇒



2∑̀
=1

(ui
xi
2xi

`
− pui

xi
1xi

`
)dxi

` +
∑

j∈Ni(g)

(ui
xi
2xj

2

− pui
xi
1xj

2

)dxj
2 − ui

xi
1
dp = 0

dx1
1 = pdω1

2 + (ω1
2 − x1

2)dp− pdx1
2

∀ i\1 : dxi
1 = (ωi

2 − xi
2)dp− pdxi

2

∑
i∈N

dxi
2 = dω1

2

⇒



[u1
x1
2x1

2
− pu1

x1
1x1

2
− p(u1

x1
2x1

1
− pu1

x1
1x1

1
)]dx1

2 +
∑

j∈N1(g)

(u1
x1
2xj

2

− pu1
x1
1xj

2

)dxj
2

+[(ω1
2 − x1

2)(u
1
x1
2x1

1
− pu1

x1
1x1

1
)− u1

x1
1
]dp = −p(u1

x1
2x1

1
− pu1

x1
1x1

1
)dω1

2

∀ i\1 : [ui
xi
2xi

2
− pui

xi
1xi

2
− p(ui

x1
2xi

1
− pui

xi
1xi

1
)]dxi

2 +
∑

j∈Ni(g)

(ui
xi
2xj

2

− pui
xi
1xj

2

)dxj
2

+[(ωi
2 − xi

2)(u
i
xi
2xi

1
− pui

xi
1xi

1
)− ui

xi
1
]dp = 0

∑
i∈N

dxi
2 = dω1

2
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⇒



dx1
2

dω1
2

+
∑

j∈N1(g)

u1

x1
2x

j
2

−pu1

x1
1x

j
2

u1
x1
2x1

2

−pu1
x1
1x1

2

−p(u1
x1
2x1

1

−pu1
x1
1x1

1

)

dxj
2

dω1
2

+
(ω1

2−x1
2)(u1

x1
2x1

1

−pu1
x1
1x1

1

)−u1
x1
1

u1
x1
2x1

2

−pu1
x1
1x1

2

−p(u1
x1
2x1

1

−pu1
x1
1x1

1

)
dp

dω1
2

= −p
u1

x1
2x1

1

−pu1
x1
1x1

1

u1
x1
2x1

2

−pu1
x1
1x1

2

−p(u1
x1
2x1

1

−pu1
x1
1x1

1

)

∀ i\1 :
dxi

2

dω1
2

+
∑

j∈Ni(g)

ui

xi
2x

j
2

−pui

xi
1x

j
2

ui
xi
2xi

2

−pui
xi
1xi

2

−p(ui
xi
2xi

1

−pui
xi
1xi

1

)

dxj
2

dω1
2

+
(ωi

2−xi
2)(ui

xi
2xi

1

−pui
xi
1xi

1

)−ui
xi
1

ui
xi
2xi

2

−pui
xi
1xi

2

−p(ui
xi
2xi

1

−pui
xi
1xi

1

)
dp

dω1
2

= 0

∑
i∈N

dxi
2

dω1
2

= 1

⇒



dx1
2

dω1
2
−

∑
j∈N1(g)

(
∂x1

2

∂xj
2

)x2,p,m1
dxj

2

dω1
2
− (

∂x1
2

∂p
)x2

dp
dω1

2
= p(

∂x1
2

∂m1 )x2,p

∀ i\1 :
dxi

2

dω1
2
−

∑
j∈Ni(g)

(
∂xi

2

∂xj
2

)x2,p,mi
dxj

2

dω1
2
− (

∂xi
2

∂p
)x2

dp
dω1

2
= 0

∑
i∈N

dxi
2

dω1
2

= 1

where (
∂xi

2

∂p
)x2 = (

∂xi
2

∂p
)x2,ui + (

∂xi
2

∂mi )x2,p(ω
i
2 − xi

2) = (
∂xi

2

∂p
)x2,mi + (

∂xi
2

∂mi )x2,pω
i
2

which decomposes the substitution and income effects.

⇒ Ax = b

where

A =



1 −(
∂x1

2

∂x2
2
)x2,p,m1 . . . −(

∂x1
2

∂xn
2
)x2,p,m1 −(

∂x1
2

∂p
)x2

−(
∂x2

2

∂x1
2
)x2,p,m2 1

. . .
...

...

...
. . . . . . −(

∂xn−1
2

∂xn
2

)x2,p,mn−1

...

−(
∂xn

2

∂x1
2
)x2,p,mn . . . −(

∂xn
2

∂xn−1
2

)x2,p,mn 1 −(
∂xn

2

∂p
)x2

1 . . . . . . 1 0
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with ∀ j /∈ Ni(g) : (
∂xi

2

∂xj
2

)x2,p,mi = 0

and x =



dx1
2

dω1
2

...

dxn
2

dω1
2

dp
dω1

2


, b =



p(
∂x1

2

∂m1 )x2,p

0

...

0

1


⇒ dp

dω1
2

= |An+1|
|A|

where An+1 is the matrix formed by replacing the (n + 1)th column of matrix A with

the column vector b.

⇒ dp
dω1

2
=

|An+1|
Mn+1,n+1

|A|
Mn+1,n+1

where the minor Mn+1,n+1 of matrix A is the determinant of the matrix formed by

removing row n + 1 and column n + 1 of matrix A.

⇒ dp
dω1

2
= −

P

i∈N
(

∂xi
2

∂ω1
2
)p−1

P

i∈N

dxi
2

dp

.

This proposition is a generalization of that which would emerge if preferences were

independent. It holds for all network structures.

Definition 2 (Influence) Agent i’s influence on aggregate demand is equal to ∂p
∂ωi

2
,

the marginal effect of an increase in agent i’s endowment of good 2 on the price of

good 2.

Influence is a measure of the centrality of an agent in the network. We would like to

determine which agents in the economy have a higher influence on aggregate demand

and how the network structure affects their influence.
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1.2.3 Network Structures

Network structures can be categorized into those which are regular and those which

are irregular. Since there are very many possible regular and irregular networks,

we focus our attention on a few prominent network structures. The aim is to show

how aggregate demand and prices are affected by whether the network is regular or

not, and by the particular network structure in question. Within the class of regular

networks, we consider the complete network and the ring network. Within the class

of irregular networks, we consider the star network and the line network.

Regular Networks

A network is regular if all agents have the same number of neighbors. That is,

∀ i ∈ N : ni(g) = r where r is a non-negative integer

A network is complete if all agents are linked to one another. Hence, for any agent,

every other agent is a neighbor of the agent. This network structure in effect describes

the case of global interactions. Formally,

g = {ij : i ∈ N, j ∈ N, j 6= i}

⇒


∀ i ∈ N : εi(g) = 1

∀ i ∈ N : Ni(g) = {j ∈ N : j 6= i}

∀ i ∈ N : ni(g) = n− 1

A network is a ring if there is a single cycle through all agents. Hence every agent

has a pair of neighbors. Without loss of generality, assume that agent 1 is linked to
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agent 2, which is, in turn, linked to agent 3, and so on until agent n. In addition,

agent n is linked to agent 1, thereby completing the single cycle. Formally,

g = {ij : i ∈ N, j ∈ N, j = i± 1}
⋃
{1n}

∀ i ∈ N : εi(g) =


n
2

if n is even

n−1
2

if n is odd

∀ k ≤ n−1
2

:

Nk
i (g) =


{j ∈ N : j = i± k}

⋃
{i + (n− k)} if i = 1, . . . , k

{j ∈ N : j = i± k} if i = k + 1, . . . , n− k

{j ∈ N : j = i± k}
⋃
{i− (n− k)} if i = n− k + 1, . . . , n

∀ k = n
2

:

Nk
i (g) =

 {j ∈ N : j = i± k}
⋃
{i + (n− k)} if i = 1, . . . , k

{j ∈ N : j = i± k}
⋃
{i− (n− k)} if i = n− k + 1, . . . , n

∀ i ∈ N : ni(g) = 2

Irregular Networks

Turning to the class of irregular networks, we first consider the star network, which

is a maximally centralized network. A network is a star if it has one central agent

and all other agents are linked only to the central agent. Without loss of generality,

assume that the central agent is agent 1. Formally,

g = {ij : i = 1, j ∈ N\{1}}

13



∀ i ∈ N : εi(g) =

 1 if i = 1

2 if i ∈ N\{1}

Ni(g) =

 N\{1} if i = 1

{1} if i ∈ N\{1}

N2
i (g) =

 {φ} if i = 1

N\{1, i} if i ∈ N\{1}

ni(g) =

 n− 1 if i = 1

1 if i ∈ N\{1}

A network is a line if all agents form a single acyclic path. Without loss of generality,

assume that the path connects agent 1 to agent n through all other agents. It would

identical to the ring but for the absence of a link between agent 1 and agent n.

Formally,

g = {ij : i ∈ N, j ∈ N, j = i± 1}

∀ i ∈ N : εi(g) = max{n− i, i− 1}

∀ i ∈ N, ∀ k ≥ 1 : Nk
i (g) = {j ∈ N : j = i± k}

ni(g) =

 1 if i ∈ {1, n}

2 if i ∈ N\{1, n}

1.3 The Minimum Consumption Model

In order to impose more structure on each agent’s best response function, we consider

a specific model that introduces two sets of assumptions. First, assume that agents
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have identical Cobb-Douglas preferences symmetric in both goods. This assumption

is consistent with the requirement that both goods are normal. Second, assume

that every agent needs to consume an amount of good 2 that exceeds the fraction

α ∈ [0, 1) of the average good 2 consumption of its neighbors. This is similar to

the Stone-Geary utility [Stone (1954); Geary (1950-1951)], where consumption needs

to exceed a certain parameterized minimum level, except that the minimum level of

consumption here is not parameterized but is endogenously determined. Formally,

∀ i ∈ N : max
{xi

1,xi
2}

xi
1(x

i
2 − α

1

ni(g)

∑
j∈Ni(g)

xj
2) s.t. xi

1 + pxi
2 = mi = ωi

1 + pωi
2

As a result, the best response function of each agent is linear in the good 2 consump-

tion of each of its neighbors:

∀ i ∈ N : xi
2 =

1

2p
(mi + αp

1

ni(g)

∑
j∈Ni(g)

xj
2)

⇒ ∀ i ∈ N, j ∈ Ni(g) : (
∂xi

2

∂mi
)x2,p =

1

2p
, (

∂xi
2

∂xj
2

)x2,p,mi =
α

2ni(g)

This further implies that, holding the price and the demands of other agents constant,

an agent would increase its consumption of good 2 by half the increase of its endow-

ment of the good. Since the agent’s increase in demand is independent of its own

wealth and the consumption levels of the agent’s neighbors, this ensures that, before

taking into consideration the reaction of other agents, every agent responds symmet-

rically to an increase in its own endowment. Another implication is that, holding all

other factors constant, the response of an agent to the good 2 consumption of one of

its neighbors is decreasing in the number of neighbors that the agent has. This also

simplifies the situation because the response is hence independent of the price, the
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agent’s wealth, and the consumption levels of the agent’s neighbors.

1.3.1 Regular Networks

Proposition 2 (Regular Networks) In the minimum consumption model with a

regular network, the price of good 2 is decreasing in the endowment of good 2 held by

any agent and independent of the number of neighbors that every agent has.

Proof.

∀ i ∈ N : xi
2 = 1

2p
(mi + αp1

r

∑
j∈Ni(g)

xj
2)∑

i∈N

mi + αp1
r

∑
i∈N

∑
j∈Ni(g)

xj
2 = 2p

∑
i∈N

ωi
2∑

i∈N

mi + αp r
r

∑
i∈N

xi
2 = 2p

∑
i∈N

ωi
2∑

i∈N

ωi
1 + p

∑
i∈N

ωi
2 + αp

∑
i∈N

ωi
2 = 2p

∑
i∈N

ωi
2

p = 1
1−α

P
i∈N ωi

1P
i∈N ωi

2

∀ i ∈ N : dp
dωi

2
< 0.

In a regular network, since every agent has the same number of neighbors, an agent

i’s response to the an increased demand by any neighbor j ∈ Ni(g), (
∂xi

2

∂xj
2

)x2,p,mi , is

the same for every agent. Hence, the response of aggregate demand to an increase

in the endowment of good 2 is independent of the number of agents in the economy

because the multiplier 1

1−
P

j∈Ni(g)(
∂xi

2

∂x
j
2

)x2,p,mi

is independent of the number of neighbors

that every agent has. The greater the number of neighbors, the greater the number

of neighbors responding to the increase in demand for good 2 by agent i. However, at

the same time, every agent responds proportionately less to the increase in demand
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because every agent has more neighbors. The two opposing effects on the multiplier

exactly counteract each other.

Corollary 1 (Regular Networks) In the minimum consumption model with a reg-

ular network, every agent has the same level of influence on aggregate demand.

This follows from Proposition 2.

Since no agent has a higher influence than any other agent in a regular network, this

suggests that no segment of consumers would be favored over any other in being the

target of advertisements or promotions.

Complete Networks

Since complete networks are regular networks, according to Proposition 2, the price

of good 2 is decreasing in the endowment of good 2.

From the best response function of every agent, we have:

Ax = b

where A = (aij) ∈ Rn×n with aij =

 2 if i = j

− α
n−1

if i 6= j

x =


x1

2

...

xn
2

 , b =


m1

p

...

mn

p


Solving for x, we obtain the demand function for each agent:

17



∀ i ∈ N : xi
2 = 1

p
[ 2(n−1)−(n−2)α
4(n−1)−2(n−2)α−α2 m

i + α
4(n−1)−2(n−2)α−α2

∑
j∈Ni(g)

mj]

In the absence of the strategic complementarity in consumption of good 2 between

each pair of neighbors, that is, if α = 0, then each agent’s demand for each good de-

pends only on its own income. However, with the strategic complementarity between

neighbors, each agent’s consumption of each good depends not just on its own income

but also on the income of all other agents.

From the demand functions, we have:

∑
i∈N

(
∂xi

2

∂ω1
2

)p =
1

2− α
< 1.

Hence, the increase in aggregate demand for good 2 is less than the increase in

endowment of the good, and the extent of which is independent of the number of

agents.

Ring Networks

Since ring networks are regular networks, according to Proposition 2, the price of

good 2 is decreasing in the endowment of good 2.

From the best response function of every agent, we have:

Ax = b

18



where A =



2 −α
2

0 . . . 0 −α
2

−α
2

2 −α
2

0 . . . 0

0 −α
2

2 −α
2

. . .
...

... 0 −α
2

2
. . . 0

0
...

. . . . . . . . . −α
2

−α
2

0 . . . 0 −α
2

2


∈ Rn×n, a circulant matrix,

x =


x1

2

...

xn
2

 , b =


m1

p

...

mn

p


Solving for x, we obtain the demand function for each agent:

∀ i ∈ N : xi
2 = 1

p
[C1,1

|A| m
i +

εi(g)∑
k=1

Ck+1,1

|A|
∑

j∈Nk
i (g)

mj]

where the cofactor Ci,j of matrix A is (−1)i+j times the determinant of the matrix

formed by removing row i and column j of matrix A.

An agent’s sensitivity of demand to another agent’s income depends on the distance

between the pair of agents. The greater the distance between the pair of agents, the

less sensitive an agent’s demand is to the other agent.
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1.3.2 Irregular Networks

Star Networks

Turning to irregular networks, we begin with star networks. From the best response

function of every agent, we have:

Ax = b

where A =



2 − α
n−1

. . . . . . − α
n−1

−α 2 0 . . . 0

... 0 2
. . .

...

...
...

. . . . . . 0

−α 0 . . . 0 2


∈ Rn×n, x =


x1

2

...

xn
2

, b =


m1

p

...

mn

p

.

Solving for x, we obtain the demand function for each agent:

xi
2 =


1
p
( 2

4−α2 m
i + α

4−α2
1

n−1

∑
j∈N\{1}

mj) if i = 1

1
p
(4(n−1)−(n−2)α2

4−α2
1

2(n−1)
mi + α

4−α2 m
1 + α2

4−α2
1

2(n−1)

∑
k∈N2

i (g)

mk) if i ∈ N\{1}

A peripheral agent’s demand for good 2 is more sensitive to the central agent’s income

than the income of other peripheral agents because the central agent is a neighbor

whereas the other peripheral agents are connected by a distance of two.

Proposition 3 (Star Network) In the minimum consumption model with a star

network, the price of good 2 is increasing in the endowment of good 2 held by the

central agent if the fraction α is large enough.

Proof. Combining every agent’s demand function for good 2 and the market clearing

condition for good 2, we can solve for the price of good 2:
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p =
(n−1)[2+(n−1)α]ω1

1+[2(n−1)+α]
P

j∈N1(g)

ωj
1

(n−1)[2−(n−1)α−α2]ω1
2+[2(n−1)−α−(n−1)α2]

P

j∈N1(g)

ωj
2

dp
dω1

2
> 0 if α >

−(n−1)+
√

(n−1)2+8

2
.

The central agent has all other agents as neighbors and so has all other agents re-

sponding to its increase in demand for good 2. In addition, these other agents respond

sensitively to the central agent’s increased demand for good 2 because the central

agent is their only neighbor. As the number of peripheral agents approaches infinity,

the number of neighbors the central agent has approaches infinity and so the critical

value of α decreases and approaches zero.

In contrast, the price of good 2 is decreasing in the endowment of good 2 held by a

peripheral agent. This is because a peripheral agent has only one agent, the central

agent, responding to its increase in demand. In addition, the central agent does not

respond sensitively to the peripheral agent’s demand increase because it has many

other neighbors as well. As the number of peripheral agents increases, the number

of neighbors for each peripheral agent remains constant but the number of agents

connected to each peripheral agent by a distance of two increases.

Corollary 2 (Star Network) In the minimum consumption model with a star net-

work, the central agent has a higher influence than all other agents.

This follows from Proposition 3.

Since the central agent also has the highest closeness, the analysis of the minimum

consumption model with a star network seems to suggest that an agent’s closeness

is the key to its relative influence over market demand in the network. However, we

shall see, in the analysis of line networks, that closeness does not in fact determine

an agent’s influence.

21



Line Networks

From the best response function of every agent, we have:

Ax = b

where A =



2 −α 0 . . . . . . 0

−α
2

2 −α
2

. . .
...

0
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

...
. . . −α

2
2 −α

2

0 . . . . . . 0 −α 2


∈ Rn×n, a tridiagonal matrix,

x =


x1

2

...

xn
2

 , b =


m1

p

...

mn

p

 .

Proposition 4 (Line Network) In the minimum consumption model with a line

network, the price of good 2 is increasing in the endowment of good 2 held by a non-

peripheral agent if the fraction α is large enough.

Proof. From the best response of every agent and the market clearing condition, the

equilibrium price is implicitly determined by:

−

∣∣∣∣∣∣∣
A b

ιT 0

∣∣∣∣∣∣∣ = |A|
∑
i∈N

ωi
2

where ι is an n-vector of ones.

22



Assume n=3

p =
(4 + α)(ω1

1 + ω3
1) + (4 + 4α)ω2

1

(4− α− 2α2)(ω1
2 + ω3

2) + (4− 4α− 2α2)ω2
2

For i = 2 :
∂p

∂ωi
2

> 0 if 4− 4α− 2α2 < 0 ⇐⇒ α > 0.732

Assume n=4

Agent i’s demand function for good 2:

xi
2 =


1
p
[ (32−6α2)mi+α(16−2α2)mNi(g)+4α2mN2

i (g)+α3mN3
i (g)

64−20α2+α4 ] if i ∈ {1, n}
1
p
[ (32−4α2)mi+α(8−α2)mi−1+8αmi+1+2α2mi+2

64−20α2+α4 ] if i = 2

1
p
[ (32−4α2)mi+α(8−α2)mi+1+8αmi−1+2α2mi−2

64−20α2+α4 ] if i = 3

Although non-peripheral agents 2 and (n − 1), which are the agents next to the pe-

ripheral agents, each have a pair of neighbors, the income of their peripheral neighbor

has a smaller marginal effect on their demand for good 2 than the income of their

non-peripheral neighbor.

p =
(8 + 2α− α2)(ω1

1 + ω4
1) + (8 + 6α− 1

2
α3)(ω2

1 + ω3
1)

(8− 2α− 4α2 + 1
4
α4)(ω1

2 + ω4
2) + (8− 6α− 5α2 + 1

2
α3 + 1

4
α4)(ω2

2 + ω3
2)

∀ i ∈ {2, 3} :
∂p

∂ωi
2

> 0 if 8− 6α− 5α2 +
1

2
α3 +

1

4
α4 < 0 ⇐⇒ α > 0.828

Assume n=5

Agent i’s demand function for good 2:

xi
2 =



1
p
[
(16−4α2+ 1

8
α4)mi+α(8− 3

2
α2)mNi(g)+α2(2− 1

4
α2)mN2

i (g)+ 1
2
α3mN3

i (g)+ 1
8
α4mN4

i (g)

32−18α2+α4 ]

1
p
[
(16−3α2)mi+α(4− 3

4
α2)mi−1+α(4− 1

2
α2)mi+1+α2mi+2+ 1

4
α3mi+3

32−12α2+α4 ]

1
p
[
(16−3α2)mi+α(4− 3

4
α2)mi+1+α(4− 1

2
α2)mi−1+α2mi−2+ 1

4
α3mi−3

32−12α2+α4 ]

1
p
[
(4− 1

2
α2)2mi+α(4− 1

2
α2)
P

j∈Ni(g) mj+α2(1− 1
8
α2)
P

k∈N2
i
(g)

mk

32−12α2+α4 ]
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if i ∈ {1, n}, i = 2, i = 4, and i = 3 respectively.

p =
(16+4α−3α2− 1

2
α3+ 1

8
α4)(ω1

1+ω5
1)+(16+12α−2α2− 3

2
α3)(ω2

1+ω4
1)+(16+8α−α3− 1

4
α4)ω3

1

(16−4α−9α2+ 1
2
α3+ 7

8
α4)(ω1

2+ω5
2)+(16−12α−10α2+ 3

2
α3+α4)(ω2

2+ω4
2)+(16−8α−12α2+α3+ 5

4
α4)ω3

2

∀ i ∈ {2, 4} :

∂p
∂ωi

2
> 0 if 16− 12α− 10α2 + 3

2
α3 + α4 < 0 ⇐⇒ α > 0.851.

For i = 3 :

∂p
∂ωi

2
> 0 if 16− 8α− 12α2 + α3 + 5

4
α4 < 0 ⇐⇒ α > 0.927.

Assume n=6

∀ i ∈ {2, 5} :

∂p
∂ωi

2
> 0 if 32− 24α− 22α2 + 5α3 + 3α4 − 1

8
α5 − 1

16
α6 < 0 ⇐⇒ α > 0.856

∀ i ∈ {3, 4} :

∂p
∂ωi

2
> 0 if 32− 16α− 24α2 + 5

2
α3 + 7

2
α4 − 1

16
α6 < 0 ⇐⇒ α > 0.952

Assume n=7

∀ i ∈ {2, 6} : ∂p
∂ωi

2
> 0 if α > 0.857

∀ i ∈ {3, 5} : ∂p
∂ωi

2
> 0 if α > 0.959

For i = 4 : ∂p
∂ωi

2
> 0 if α > 0.979

Assume n=8

∀ i ∈ {2, 7} : ∂p
∂ωi

2
> 0 if α > 0.857

∀ i ∈ {3, 6} : ∂p
∂ωi

2
> 0 if α > 0.961

∀ i ∈ {4, 5} : ∂p
∂ωi

2
> 0 if α > 0.986

Assume n=9
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∀ i ∈ {2, 8} : ∂p
∂ωi

2
> 0 if α > 0.858

∀ i ∈ {3, 7} : ∂p
∂ωi

2
> 0 if α > 0.961

∀ i ∈ {4, 6} : ∂p
∂ωi

2
> 0 if α > 0.988

For i = 5 : ∂p
∂ωi

2
> 0 if α > 0.994, and so on.

The critical value of α is increasing in the number of agents because every non-

peripheral agent’s influence is correspondingly reduced. This is because an additional

agent linked to a peripheral agent decreases the hitherto peripheral agent’s response

to its hitherto only neighbor. This reduced response is translated across the line

network to other agents.

Corollary 3 (Line Network) In the minimum consumption model with a line net-

work, the agents with the kth highest influence are the non-peripheral agents connected

to the nearest peripheral agent by a distance of k.

The critical value of α is increasing in an agent’s distance to the nearest peripheral

agent but is asymptotic to a value less than one.

In the minimum consumption model with a line network, the influence of an agent

on aggregate demand is increasing in the agent’s degree but decreasing in the degree

of his neighbor. An agent with a higher degree has more other agents responding

to the agent’s increase in demand. This response is greater if the agents responding

have a lower degree. For example, in the six-agent line network, the central agents

(3 and 4) have the same degree and in fact a higher measure of closeness than agents

2 and 5. However, agents 2 and 5 each have a neighbor that has only one link

and so the neighbor provides a greater response to each of agents 2 and 5. This is

because, in the minimum consumption example, an agent responds to the average of
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its neighbors. Hence, the importance of an agent on market demand does not depend

on its centrality per se.

This analysis suggests that sellers of a product should want to focus their advertising

and promotional efforts on those consumers who have a relatively high influence on

the consumption of others, specifically those with many neighbors who in turn have

few neighbors themselves. A highly centralized network, such as a star, offers sellers

the opportunity to focus their promotional attempts at the central agent, which has

a large impact on market demand.

1.4 Conclusion

The analysis in this paper shows that where consumers tend to conform with the

average purchases of their neighbors in a social network, unless the network structure

is fairly regular, certain consumers, by virtue of their location in the network, would

tend to have a greater influence on aggregate demand than other consumers. Contrary

to what one might expect, it is not an agent’s closeness or degree per se that matters

for its relative influence on market demand. Instead, the number of neighbors of an

agent’s neighbors also matters for the agent’s influence. Since promotional efforts are

costly, producers would be better off focusing their efforts on those consumers who

have a relatively large influence on the purchase of others.

We have considered only connected networks in the analysis. Within the model in this

paper, we can also analyze how prices are affected when networks are disconnected,

comprising a number of components.

We have considered on a general equilibrium model to focus on the effect of consumer

26



behavior on prices. We can also incorporate firm behavior by considering a partial

equilibrium model. A variety of industry structures can be considered in this context,

including strategic interaction among firms.

It may also be possible to consider directed networks. Directed networks may be

especially relevant when considering the impact of celebrities and other prominent

figures whose consumption patterns are observed by many in the general public, but

who do not in turn observe the consumption patterns of those who observe their

consumption patterns.
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Paper 2
Critical and Promising Links in a Social

Network

Abstract

In the context of consumers interacting strategically in a directed social network, I measure
the importance of each consumer, each directed link in the network, and each potential
directed link that could be added to the network. A consumer’s impact centrality measures
the effect of a unit exogenous change in his demand on equilibrium aggregate demand.
A consumer’s reaction centrality measures the effect of a unit exogenous change in every
consumer’s demand on the consumer’s equilibrium demand. I show how the effect on
aggregate centrality of removing or adding a directed link from one consumer to another
depends on the impact centrality of the latter, the reaction centrality of the former, and
feedback effects from the latter to the former in the original network.
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2.1 Introduction

Some of our consumption decisions may be influenced by some but not all of those

around us. Whether due to cultural norms, social rivalry, or information sharing,

a consumer may be inclined to increase or decrease his consumption when another

consumer increases his.1 Furthermore, the extent of this interdependence may be

asymmetric and may vary across consumers.2 It is useful to think of these strategic

interactions as forming a directed social network among consumers. Some businesses

have information about how their consumers are connected to one another. Wireless

companies like Cingular and Verizon, Voice over Internet Protocol companies like

Skype, webmail providers like Yahoo and MSN, social networking service providers

like MySpace and Facebook, video sharing providers like YouTube, and photo sharing

providers like Flickr have information about how their customers are linked to one

another.3 Businesses using multi-level marketing know how their independent con-

tractors are connected to one another in the network. These contractors also consume

the products that they sell to their social contacts.

Which consumer is the most influential in terms of being able to generate the great-

est increase in aggregate demand? In light of the information available, businesses

may find it more profitable to focus their marketing efforts on only certain consumers

1For the special cases of a consumer’s demand for a good depending on either aggregate demand
or network externalities, that is, the number of consumers consuming it, see for example Duesenberry
(1949), Leibenstein (1950), Becker (1991), Karni and Levin (1994), Corneo and Jeanne (1997), Grilo,
Shy, and Thisse (2001).

2For example, a fashion victim may be inclined to increase his consumption of a product in
response to a rise in a trend setter’s consumption of the product, but the trend setter may be
inclined to decrease his consumption of the product in response to a rise in the fashion victim’s
consumption of the product.

3For example, wireless companies may be able to use phone records to estimate the extent to
which a customer would reciprocate a phone call from a particular phone number. Webmail providers
may have information about the length and frequency of emails exchanged between each pair of email
addresses. Social networking service providers may have information about the propensity for a user
to accept an invitation to download an application extended by the user’s friend.
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instead of all consumers, or allow other businesses the opportunity to target adver-

tisements at specific customers.4 Which consumer reacts the most to a change in

aggregate demand? Policymakers may also find it better to focus on only certain

consumers their campaign against a socially undesirable good.5 Which link is most

important to the average influence of consumers? Policymakers may seek to lower

the aggregate consumption of a socially undesirable good by hampering only certain

links if such efforts are costly. Which consumer is key to the average influence of

consumers? Policymakers may similarly seek to lower the aggregate consumption of

a socially undesirable good by targeting their efforts at certain consumers that would

make the greatest overall difference to these consumption spillovers.

Consider the Nash Equilibrium of a network game involving a finite set of consumers

with interdependent general utility functions and a budget constraint each. First,

I show that the effect of a unit exogenous change in a consumer’s demand on the

equilibrium aggregate demand is equal to the consumer’s impact centrality . Second,

I show that the effect of a unit exogenous change in every consumer’s demand on a

consumer’s equilibrium demand is the consumer’s reaction centrality . Next, I consider

changes to the structure of a network brought about by either the removal of a directed

link or the addition of a directed link. I show that the reduction in aggregate centrality

by removing a directed link is equal to the directed link’s arc importance, and the

increase in aggregate centrality by adding a directed link is equal to the directed link’s

arc impact . A directed link’s arc importance or arc impact depends on the weight of

the link, the reaction centrality of the consumer from whom the link begins, the impact

centrality of the consumer to whom the link ends, and the feedback effects from the

4For example, an application provider in Facebook obtains access to information about a Face-
book user when the user downloads the application.

5There is evidence to suggest that adolescent smoking may involve peer effects [Barber, Bolitho,
and Bertrand (1999), Centers for Disease Control and Prevention (1994)].
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the latter to the former in the original network. In particular, if there are no strategic

substitutes, then removing a directed link results in a smaller reduction in aggregate

centrality if this feedback effect is greater. In contrast, adding a directed link results

in a greater increase in aggregate centrality if this feedback effect is greater. Finally,

I show that the reduction in aggregate centrality by removing a consumer from the

network is equal to the consumer’s intercentrality . The consumer’s intercentrality is

the sum of the consumer’s impact centrality and the reduction in other consumers’

impact centrality from the removal of the directed links that begin or end with the

consumer who is deleted from the network.

I shall now discuss the three papers in the literature that are the most closely related

to this.6 Ballester, Calvo-Armengol, and Zenou (2006) show that in an undirected

network assuming linear-quadratic utility function, each agent’s contribution to the

aggregate equilibrium action is in proportion to his Bonacich centrality . They also

seek to determine the key player in an undirected network assuming linear-quadratic

utility function, there being no strategic substitutes, and all arcs having equal weight.

They propose a measure of each agent’s importance in a network based on the extent

to which removal of the agent from the network changes the equilibrium aggregate ac-

tion. The agent with the highest intercentrality is the agent whose removal causes the

biggest fall in equilibrium aggregate action. In contrast, I assume general C2 utility

functions and do not restrict all arcs to having equal weight. In addition, my analy-

sis is not restricted to undirected networks and there being no strategic substitutes.

Further, I provide a proof and a characterization of the an agent’s intercentrality

that is not limited to the case of an undirected network. Finally, I consider the ef-

6For seminal references to centrality measures in social networks, see Katz (1953), Bonacich
(1987). Other papers related to this include Bramoullé and Kranton (2007), Bloch and Quérou
(2008), Galeotti (2008), Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2008).
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fects of adding and removing directed links, which are not addressed in Ballester,

Calvo-Armengol, and Zenou (2006).

Tan (2006) examines how equilibrium prices are affected by strategic complementarity

of consumption in an undirected network. In a general equilibrium model with Cobb-

Douglas utility function and agents responding to the average of their neighbors’

consumption, he shows that an increase in the supply of a good involving strategic

complementarity in consumption between neighbors cannot raise its relative price if

all agents have the same number of neighbors. However, an increase in the supply of

such a good through an increase in the endowment of the central agent may raise the

relative price of this good in a star network if strategic complementarity is sufficiently

strong. In contrast, I focus here on the identifying the critical and promising links, and

the key player in arbitrary network structures and with general strategic interactions

and utility functions.

In a general equilibrium model with Cobb-Douglas utility function, Ghiglino and

Goyal (2008) illustrate with examples that a shift from social segregation to social

integration reduce the welfare of the poor but increase the welfare of the rich. They

also show that equilibrium prices and consumption allocations can be expressed as

a function of network centrality. When agents respond to the aggregate of their

neighbors’ consumption, the addition of undirected links to the network increases the

sum of centralities and thus equilibrium prices. When agents respond to the average

of their neighbors’ consumption, they show that equilibrium prices and consumption

allocations do not depend on the network if endowments are identical. However, in

contrast with this paper, Ghiglino and Goyal (2008) limit their attention to networks

that are undirected, where there are no strategic substitutes, and agents have a specific

form of utility function. Further, I consider the removal and addition of directed links,
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and the removal of agents from the network.

The rest of this paper is organized as follows: Section 2.2 presents the model and

discusses impact centrality; Section 2.3 discusses reaction centrality; Section 2.4 dis-

cusses the addition and deletion of arcs; Section 2.5 discusses the deletion of agents;

Section 2.6 concludes with some possible extensions.

2.2 Impact Centrality

Consider a non-empty finite set of agents N = {1, . . . , n} each with continuous,

strictly convex, and strongly monotone preferences over two normal goods x and y.

Good x is the good that induces strategic interactions and good y is the numeraire

good. Each agent i’s preferences can be represented by a strictly quasiconcave and

twice continuously differentiable utility function ui(x, yi), where x = (x1, . . . , xn) =

(xi,x−i). Each agent i simultaneously chooses xi and yi to solve the consumer opti-

mization problem

max
{xi,yi}

ui(x, yi) subject to pxi + yi ≤ wi, xi ≥ 0, yi ≥ 0,

where p is the price of x and wi is the income of agent i.

Definition 1 (x∗,y∗) is an interior Nash Equilibrium if

(i)
∂ui(x

∗, y∗i )

∂xi

= p
∂ui(x

∗, y∗i )

∂yi

, ∀i ∈ N,

(ii) px∗i + y∗i = wi, ∀i ∈ N.
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The best response correspondences are in fact best response functions because the

utility function is strictly quasiconcave. Each agent’s best response function, which is

implicitly determined by the agent’s first order condition, is invariant to a monotonic

transformation of the utility function.

For any i 6= j, let gij = (∂xi/∂xj)x−{i,j},y−{i,j},p,w be the marginal effect of agent j’s

consumption of x on agent i’s consumption of x ceteris paribus.7 For any agent i 6= j,

agent j’s consumption of x is a strategic complement to agent i’s consumption of x

if gij > 0, and a strategic substitute to agent i’s consumption of x if gij < 0. An arc

from j to i with weight gij is an ordered pair of agents (j, i). There exists an arc (j, i)

in the digraph if and only if gij 6= 0 for any j 6= i. For any i = j, let gij = 0.

The network of strategic interactions between agents can be described by a weighted

digraph, which consists of the set of agents N , a finite set of arcs

A = {(j, i) : j ∈ N, i ∈ N, j 6= i, and gij 6= 0}

in the digraph, and the set of weights for each arc. The weighted digraph can be

represented by the weighted adjacency matrix G = [gij], which is a zero-diagonal

square matrix. The spectral radius of G is ρ(G) = max{|λi(G)| : i ∈ N}, where λi is

the ith eigenvalue of G.

Definition 2 Consider any digraph G such that ρ(G) < 1. The vector of impact

centralities is

a(G) = 1TM(G)

7Note that gij holds constant the consumption bundles of all other agents other than i and j,
not just prices and incomes. It depends on ordinal properties of the utility function.
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where M(G) = (I −G)−1 = [mij(G)] is an n-square matrix, and I is the n-square

identity matrix.

The vector of impact centralities a = (a1, . . . , an) is comprised of each agent’s impact

centrality. Let ek be the standard basis vector with 1 for its kth component and 0

for every other component. Then agent k’s impact centrality ak(G) = 1TM(G)ek is

the kth component of the vector of impact centralities. It is simply the sum of the

kth column of M(G), that is ak(G) =
∑

i∈N mik(G).

The Nash Equilibrium should be interpreted as the steady state result of an adjust-

ment process in which agents simultaneously adjust their consumption choice each

period by choosing a best response to their neighbor’s consumption choice in the

previous period. The condition ρ(G) < 1 is required to ensure stability through the

convergence of the power sequence of G since lims→∞ Gs = 0 if and only if ρ(G) < 1.8

It does not restrict the value of any particular entry in G. Instead, it requires that

agents, as a whole, do not react too sensitively to a change in any agent’s consumption

of x. The matrix G depends on ordinal conditions and so it is potentially observable.

A seller may be interested in targeting advertisements or other promotion efforts at

a select group of consumers that have a bigger impact on aggregate demand. Hence,

I consider the effect of a unit exogenous change in agent k’s demand on equilibrium

aggregate demand, holding constant prices and the incomes of all other agents.9 The

exogenous change in agent k’s demand is induced by a change in agent k’s income

in order to keep the utility function unchanged. Let σk = (∂xk/∂wk)x−k,y−k,p,w−k
be

agent k’s marginal propensity to consume x ceteris paribus. Note that σk > 0 for

8If instead this convergence condition does not hold, then aggregate demand for x would not
converge to an equilibrium in response to an exogenous change in some agent’s demand for x.

9Note that the subscripts on partial derivatives indicate the variables that are being held con-
stant.
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all k because x is a normal good. Let µik = (∂xi/∂wk)p,w−k
be agent k’s marginal

propensity to consume x, holding constant only prices and the incomes of all other

agents.

Theorem 1 Consider any digraph G such that ρ(G) < 1. Then

∑
i∈N

µik

σk

= ak(G)

for any k.

Proof. Linearize the system about the Nash Equilibrium (x∗,y∗). Set dp = 0 and

substitute out dyi to obtain for each i

dxi −
∑
j 6=i

gijdxj = σidwi (2.1)

since

gij =
−(∂2ui/∂xj∂xi − p∂2ui/∂xj∂yi)

∂2ui/∂x2
i − p∂2ui/∂xi∂yi − p(∂2ui/∂yi∂xi − p∂2ui/∂y2

i )

and

σi =
−(∂2ui/∂yi∂xi − p∂2ui/∂y2

i )

∂2ui/∂x2
i − p∂2ui/∂xi∂yi − p(∂2ui/∂yi∂xi − p∂2ui/∂y2

i )
.

Set dwk = 1 and dwi = 0 for all i 6= k. Apply the Implicit Function Theorem to

obtain

(I−G)µk = σkek (2.2)

where µT
k = (µ1k, . . . , µnk).

Next, I show that if ρ(G) < 1, then det(I − G) > 0 and so I − G is nonsingular.

Note that, for all i, Gv = λi(G)v for some nonzero vector v. This implies that

(I−G)v = (1− λi(G))v and so λi(I−G) = 1− λi(G) for all i. Since ρ(G) < 1, it
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must be that −1 < λi(G) < 1 for all real eigenvalues of G, and 0 < λi(I−G) < 2 for

all real eigenvalues of I−G. Note that det(I−G) =
∏n

i=1 λi(I−G), and that complex

eigenvalues of real matrices occur in complex conjugate pairs. Hence, det(I−G) > 0.

Given that I−G is nonsingular, the unique solution is µk = σkM(G)ek. The effect

of a unit exogenous change in agent k’s demand for x on each agent’s equilibrium

demand for x is

σ−1
k µk = M(G)ek. (2.3)

Sum over all agents to obtain σ−1
k 1T µk = 1TM(G)ek.

Hence,
∑

i∈N µik/σk = ak(G).

That is, the effect of a unit exogenous change in agent k’s demand for x on the equi-

librium aggregate demand for x is equal to ak(G). The agent with the highest impact

centrality has the highest impact on equilibrium aggregate demand. An agent’s im-

pact centrality is a multiplier that measures the number of times by which equilibrium

aggregate demand for x would increase for a unit exogenous increase in the agent’s

demand for x. As the aggregate demand for x includes that of agent k, his exogenous

increase in demand has an expansionary effect on equilibrium aggregate demand for

x if ak(G) > 1, a contractionary effect if ak(G) < 1, and a neutral effect if ak(G) = 1.

Lemma 1 Consider any digraph G such that ρ(G) < 1. Then

µij

σj

= mij(G)

for all i and j.

Proof. According to (2.3), the effect of a unit exogenous change in agent j’s demand

for x on each agent’s equilibrium demand for x is σ−1
j µj = M(G)ej. Multiply both
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sides of the equation by the vector eT
i to obtain σ−1

j eT
i µj = eT

i M(G)ej. Hence,

µij/σj = mij(G).

That is, the effect of a unit exogenous change in agent j’s demand for x on agent i’s

equilibrium demand for x is equal to mij(G), which is the (i, j)th entry of M(G).

A walk of length s from agent j to agent i is an alternating sequence of agents and

arcs of the form

i0, (i0, i1), i1, (i1, i2), i2, . . . , is−1, (is−1, is), is

where j = i0 and i = is. Note that a walk may have repeated agents or arcs. Since gij

is the marginal effect of agent j’s demand on agent i’s demand, g
[s]
ij , which is the (i, j)th

entry of Gs, is the marginal effect of agent j’s demand on agent i’s demand through all

walks of length s from j to i. Since M(G) =
∑∞

s=0 Gs, mij(G) =
∑∞

s=0 g
[s]
ij is the total

of the marginal effects through all walks from j to i. Given that a(G) = 1TM(G),

ak(G) is the total of the marginal effects through all walks from k.

Agent k’s out-neighborhood N+
k (G) is the set of all agents to each of whom there is an

arc from k. The agents in k’s out-neighborhood are his out-neighbors. Let n+
k (G) be

the cardinality of k’s out-neighborhood, that is the number of out-neighbors that k

has. Agent k’s in-neighborhood N−
k (G), in-neighbors, and the number of in-neighbors

n−k (G) can be defined similarly.

Theorem 2 Consider any digraph G such that |g| < 1/r, where r is a nonnegative

integer, n+
k (G) = r for all k, and gij = g for all (j, i) in A. Then ak(G) = 1/(1− rg)

for all k.
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Proof. Use (2.2) and Lemma 1 to obtain

mkk(G)−
∑

i∈N−
k (G)

gkimik(G) = 1

and

mjk(G)−
∑

i∈N−
j (G)

gjimik(G) = 0

for all j 6= k.

Sum over the equations to obtain

∑
i∈N

[mik(G)−
∑

j∈N+
i (G)

gjimik(G)] = 1.

Since all agents have an equal number of out-neighbors,
∑

j∈N+
i (G) gji =

∑
j∈N+

i (G) g =

n+
i (G)g = rg. Hence,

∑
i∈N(1 − rg)mik(G) = 1, and so ak(G) = 1/(1 − rg). Note

that the stability condition ρ(G) < 1 requires that |g| < 1/r.

That is, in any digraph where all agents have the same number of out-neighbors and

all arcs have equal weight, all agents have equal impact centrality, which is increasing

in the number of out-neighbors and the arc weight but is independent of the number

of agents. One might expect that every agent’s impact centrality may be increasing

in the number of agents since each agent may be able to affect more agents if there

are more agents in the digraph. However, there are cycles, which give rise to walks

of infinite length, in digraphs where all agents have the same positive number of out-

neighbors. As a result, both the number of walks rs of length s ≥ 0 from each agent

and the marginal effect gs from a walk of length s are independent of n.
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2.3 Reaction Centrality

Definition 3 Consider a weighted adjacency matrix G such that ρ(G) < 1. The

vector of reaction centralities is

b(G) = M(G)1.

The vector of reaction centralities bT = (b1, . . . , bn) is comprised of each agent’s reac-

tion centrality. Agent k’s reaction centrality bk(G) = eT
k M(G)1 is the kth component

of the vector of reaction centralities. It is simply the sum of the kth row of M(G),

that is bk(G) =
∑

i∈N mki(G), and measures the total of the marginal effects through

all walks that end at k. Note that b(G) corresponds with the vector of Bonacich

(1987) centralities defined in Ballester, Calvo-Armengol, and Zenou (2006) except

that here G is not necessarily a matrix with every entry restricted to a value between

0 and 1.

Policymakers may be particularly concerned about those persons who react relatively

more sensitively to higher consumption by other consumers. In this regard, I estimate

the effect of a unit exogenous change in every agent’s demand on an agent’s equi-

librium demand. This is a useful measure when the issue of interest is to determine

which consumer responds most sensitively to a change in aggregate demand.

Theorem 3 Consider any digraph G such that ρ(G) < 1. Then

∑
i∈N

µki

σi

= bk(G)

for any k.
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Proof. From Lemma 1, µki/σi = mki(G). Theorem 3 is obtained by summing over

all agents i.

That is, the effect of a unit exogenous change in every agent’s demand for x on

agent k’s equilibrium demand for x is equal to bk(G). The agent with the highest

reaction centrality has the highest reaction to aggregate demand. An agent’s reaction

centrality is a multiplier that measures the number of times by which the agent’s

equilibrium demand for x would increase for a unit exogenous increase in every agent’s

demand for x. As every agent’s demand for x includes that of agent k, the exogenous

increase in demand of each agent has an expansionary effect on agent k’s equilibrium

demand for x if bk(G) > 1, a contractionary effect if bk(G) < 1, and a neutral effect

if bk(G) = 1.

An undirected graph is a symmetric digraph, that is a digraph such that gij = gji for

all i and j.

Lemma 2 Consider any undirected graph G such that ρ(G) < 1. Then bk(G) =

ak(G) for all k.

Proof. If gij = gji for all i and j, then GT = G and so (I − G)T = IT − GT =

I−G. Since M(G) = (I−G)−1 and the inverse of a symmetric matrix is symmetric,

mki(G) = mik(G) for all i and j. Hence, sum over all agents i to obtain bk(G) =

ak(G).

That is, for any undirected graph, each agent’s reaction centrality is equal to his

impact centrality. This is because the total of the marginal effects through all walks

that end at k is equal to the total of the marginal effects through all walks that

begin at k. Hence, the reaction of an agent’s equilibrium demand to the aggregate

demand also reflects his impact on equilibrium aggregate demand. This implies that
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the agent who increases his equilibrium demand the most in reaction to a change in

aggregate demand also causes the greatest increase in aggregate demand. Empirically,

this result provides an additional restriction that may be useful for identification.

Lemma 3 Consider any digraph G such that ρ(G) < 1 and gij > 0 for all (j, i) in

A. Then ak(G) ≥ 1 and bk(G) ≥ 1 for all k.

Proof. If gij > 0 for all (j, i) in A, then G ≥ 0. Since the product of any nonnegative

square matrix is also nonnegative, Gs ≥ 0 for any integer s ≥ 2, and so M(G) =∑∞
s=0 Gs ≥ I. Hence ak(G) ≥ 1 and bk(G) ≥ 1 for all k.

That is, if there are no strategic substitutes, then a unit exogenous increase in any

agent’s demand for x must result in at least a unit increase in the equilibrium aggre-

gate demand for x. Similarly, a unit exogenous increase in every agent’s demand for

x must result in at least a unit increase in each agent’s equilibrium demand for x.

However, in general, an agent’s impact centrality or reaction centrality may be less

than one and even negative if there are strategic substitutes.

Theorem 4 Consider any digraph G such that |gijgji| < 1 for any j 6= i and n = 2.

Then ai(G) > aj(G) if and only if bi(G) < bj(G).

Proof. Since mii(G) = 1/(1− gijgji) = mjj(G), therefore bi(G)− bj(G) = mij(G)−

mji(G) = aj(G)− ai(G). Hence aj(G) > ai(G) if and only if bi(G) > bj(G).

That is, if there are only two agents, then the agent who has the higher impact

centrality must have the lower reaction centrality. Note that the stability condition

ρ(G) < 1 requires that |gijgji| < 1 for any j 6= i. However, an agent may have both a

higher reaction centrality and a higher impact centrality than that of another agent

if there are more than two agents.
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Theorem 5 Consider any digraph G such that |g| < 1/r, where r is a nonnegative

integer, n−k (G) = r for all k, and gij = g for all (j, i) in A. Then bk(G) = 1/(1− rg)

for all k.

Proof. Consider a unit exogenous change in every agent’s demand for x. The

marginal effect through all walks of length 0 that end at k is equal to 1, the unit

exogenous change in k’s demand. Since all agents have an equal number of in-

neighbors, the marginal effect through all walks of length 1 that end at k is equal

to
∑

j∈N−
k (G) gkj =

∑
j∈N−

k (G) g = n−k (G)g = rg, where r is a nonnegative inte-

ger. The marginal effect through all walks of length 2 that end at k is equal to∑
j∈N−

k (G) gkjrg = (rg)2. The marginal effect through all walks of length s that

end at k is equal to
∑

j∈N−
k (G) gkj(rg)s−1 = (rg)s. Hence, the total marginal effects

through all walks that end at k is equal to bk(G) =
∑∞

s=0(rg)s = 1/(1 − rg). Note

that the stability condition ρ(G) < 1 requires that |g| < 1/r.

That is, in any digraph where all agents have the same number of in-neighbors and all

arcs have equal weight, all agents have equal reaction centrality, which is increasing

in the number of in-neighbors and the arc weight but is independent of the number

of agents. One might expect that every agent’s reaction centrality may be increasing

in the number of agents since each agent may be affected by more agents if there are

more agents in the digraph. However, the explanation for this result is analogous to

that for digraphs where all agents have the same positive number of out-neighbors

and all arcs have equal weight. There are cycles, which give rise to walks of infinite

length, in digraphs where all agents have the same positive number of in-neighbors.

As a result, both the number of walks rs of length s ≥ 0 to each agent and the

marginal effect gs from a walk of length s are independent of n.
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A digraph is regular if n+
k (G) = n−k (G) = r for all k, where r is a nonnegative

integer.10 Agent k’s neighborhood is the union of his out-neighborhood and his in-

neighborhood. The set of agents in k’s neighborhood are his neighbors .

Corollary 1 Consider any regular digraph G such that |g| < 1/r and gij = g for all

(j, i) in A. Then ak(G) = bk(G) = 1/(1− rg) for all k.

Proof. The proof follows from Theorems 2 and 5.

That is, in any regular digraph where all arcs have equal weight, all agents have equal

impact centrality and reaction centrality, both of which are increasing in the number

of neighbors and in the weight of each arc but is independent of the number of agents.

Example 6 Consider the regular digraph G in Figure 2.1 in which r = 1 and gij = g

for all (j, i) in A. From Corollary 1, every agent has reaction centrality and impact

centrality that is equal to 1/(1− g).
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i4

@
@
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Figure 2.1: A regular digraph

If instead each agent responds to the average of his in-neighbors’ demand for x such

that gij = g/r for all (j, i) in A. Then, ak(G) = bk(G) = 1/(1−g) for all k. That is, all

agents have equal impact centrality and reaction centrality, both of which are not only

independent of the number of agents but also independent of the common number

10Note that a regular digraph is not necessarily an undirected graph.
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of neighbors that each agent has. Consider a unit exogenous increase in any agent’s

demand for x. The marginal effect through all walks of length s ≥ 0 is simply gs.

The greater the number of out-neighbors, the greater the number of out-neighbors

responding to the increase in demand by an agent. However, at the same time,

every agent responds proportionately less to the increase in demand because every

agent also has more in-neighbors. The two opposing effects exactly offset each other.

This suggests that, in contrast to Ballester, Calvo-Armengol, and Zenou (2006), an

increase in network density due to an increase in every agent’s number of neighbors

may not increase the response of equilibrium aggregate demand to an increase in the

demand of any one agent if the network remains regular and each agent is affected

by the average consumption of his neighbors. With incomplete information of the

network structure, Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2008) find

that in every symmetric equilibrium, actions are increasing (decreasing) in the agent’s

number of neighbors if payoffs satisfy strategic complements (substitutes). However

this result does not hold if there is complete information of the network structure or

if agents respond to the average action of their neighbors rather than the aggregate

action of their neighbors.

A star graph is an undirected graph with the only arcs being from one central agent

to every other agent and from every other agent to the central agent, that is (j, i) in

A if and only if either j = k or i = k, where k is the central agent.

Theorem 7 Consider any star graph G such that |g| < 1/
√

n− 1 and gij = g for

all (j, i) in A. Then bk(G) = ak(G) = [1 + (n − 1)g]/[1 − (n − 1)g2] and bj(G) =

aj(G) = (1 + g)/[1− (n− 1)g2] for any j 6= k.
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Proof. Note that n+
k (G) = n−k (G) = n − 1 and n+

j (G) = n−j (G) = 1 for all j 6= k.

First, consider a unit exogenous change in agent k’s demand for x. The marginal

effect through all walks of length 0 that begin at k is equal to 1, the unit exogenous

change in agent k’s demand for x. Since every other agent is an out-neighbor of k,

the marginal effect through all walks of length 1 that begin at k is equal to (n− 1)g.

Since k is the only out-neighbor of the other agents, the marginal effect through all

walks of length 2 that begin at k is equal to (n− 1)g2. The marginal effects through

all walks of lengths 3 and 4 that begin at k are equal to (n − 1)2g3 and (n − 1)2g4

respectively. The marginal effect through all walks of length s ≥ 1 that begin at k

is equal to (n − 1)(s+1)/2gs if s is odd and (n − 1)s/2gs if s is even. Hence, the total

marginal effects through all walks that begin at k is equal to

ak(G) =
∞∑

s=0

[(n− 1)g2]s + (n− 1)g
∞∑

s=0

[(n− 1)g2]s = [1 + (n− 1)g]/[1− (n− 1)g2].

Note that the stability condition ρ(G) < 1 requires that |g| < 1/
√

n− 1.

Next, consider a unit exogenous change in the demand for x of any agent j 6= k. The

marginal effect through all walks of length 0 that begin at j is equal to 1, the unit

exogenous change in agent j’s demand for x. Since k is the only out-neighbor of j,

the marginal effect through all walks of length 1 that begin at j is equal to g. Since

every other agent is an out-neighbor of k, the marginal effect through all walks of

length 2 that begin at j is equal to (n− 1)g2. The marginal effects through all walks

of lengths 3 and 4 that begin at j are equal to (n− 1)g3 and (n− 1)2g4 respectively.

The marginal effect through all walks of length s ≥ 1 that begin at j is equal to

(n − 1)(s−1)/2gs if s is odd and (n − 1)s/2gs if s is even. Hence, the total marginal
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effects through all walks that begin at any j 6= k is equal to

aj(G) =
∞∑

s=0

[(n− 1)g2]s + g

∞∑
s=0

[(n− 1)g2]s = (1 + g)/[1− (n− 1)g2].

Finally, since G is symmetric, from Lemma 2, bi(G) = ai(G) for all i ∈ N .

That is, for any star graph where all arcs have equal weight and n ≥ 3, the central

agent has the highest impact centrality and reaction centrality if g > 0 and the

lowest impact centrality and reaction centrality if g < 0. Note that the convergence

requirement |g| < 1/
√

n− 1 implies that 1 + g > 0 for any n ≥ 2, and so aj(G) is

increasing in n.

If instead each agent responds to the average of his neighbors’ demand for x such that

gij = g/n−i (G) for all (j, i) in A. From a unit exogenous change in agent k’s demand

for x, the total marginal effect through all walks of length s ≥ 1 that begin at k is

equal to (n− 1)gs if s is odd and gs if s is even. Sum over all walks from k to obtain

ak(G) =
∞∑

s=0

g2s + (n− 1)g
∞∑

s=0

g2s = [1 + (n− 1)g]/(1− g2).

Note that the stability condition ρ(G) < 1 requires that |g| < 1. From a unit

exogenous change in agent j’s demand for x, the total marginal effect through all

walks of length s that begin at j is equal to gs/(n− 1) if s is odd and gs if s is even.

Sum over all walks from j to obtain

aj(G) =
∞∑

s=0

g2s + [g/(n− 1)]
∞∑

s=0

g2s = [1 + g/(n− 1)]/(1− g2)

for all j 6= k. Hence, it is still the case that, for any n ≥ 3, the central agent has

the highest impact centrality and reaction centrality if g > 0 and the lowest impact
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centrality and reaction centrality if g < 0. However, now aj(G) is decreasing in n if

g > 0 and increasing in n if g < 0.

All other agents are out-neighbors of the central agent. In addition, as the central

agent is the only in-neighbor of the other agents, the other agents respond relatively

sensitively to any increase in the central agent’s demand for x. In contrast, the central

agent is the only out-neighbor of each of the other agents. In addition, as all other

agents are in-neighbors of the central agent, the central agent does not respond as

sensitively to any increase in any of the other agents’ demand for x.

Example 8 Consider the star graph G in Figure 2.2 in which gij = g/n−i (G) for all

(j, i) in A. The reaction centrality and impact centrality of agent 1, the central agent,

is equal to (1 + 3g)/(1 − g2) compared to that of each of the other agents, which is

equal to (1 + g/3)/(1− g2).
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Figure 2.2: A star graph

A acyclic digraph is a digraph without a cycle so that every walk in the digraph has

distinct agents. The agents in a acyclic digraph can be indexed in a acyclic ordering

such that i < j for each (j, i) in A. Hence, any acyclic digraph can be represented

by a strictly upper triangular matrix G. Since a strictly upper triangular matrix is

nilpotent, all its eigenvalues are zero and so the convergence condition ρ(G) < 1 is

always satisfied for any acyclic digraph. Note that every acyclic digraph has at least
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one agent who has no out-neighbors and at least one agent who has no in-neighbors.

A tournament is an asymmetric and complete digraph, that is, for every j 6= i, either

(j, i) or (i, j) in A but not both. A acyclic tournament is a tournament without a

cycle. A tournament is acyclic if and only if it is transitive. A digraph is transitive if,

for every distinct i, j, and k in N , (k, j) and (j, i) in A implies that (k, i) in A. Since

a acyclic tournament is a binary relation that is transitive, antisymmetric, and total,

it represents, in the context of a social network, a linear order on N ranked according

to the number of out-neighbors that each agent has.

Theorem 9 Consider any acyclic tournament G such that gij = g for all (j, i) in A.

Then ak(G) = (1 + g)n+
k (G) and bk(G) = (1 + g)n−k (G) for all k.

Proof. In the acyclic ordering of agents, G is a strictly upper triangular matrix

with gij = g for all i < j and gij = 0 for all i ≥ j. First, consider any pair of

agents j and i ≥ j. Since there is no walk from any agent j to any agent i > j,

mij(G) = 0 for i > j. Since mij(G) = 1 for i = j, sum over all agents i ≥ j to obtain∑
i≥j mij(G) = 1, and sum over all agents j ≤ i to obtain

∑
j≤i mij(G) = 1. Next,

consider any pair of agents j and i < j. The number of ways to choose, regardless of

order, s− 1 agents from among the j− i− 1 agents that are indexed between i and j

is
(

j−i−1
s−1

)
. Hence, the number of walks of length s ≥ 1 from any agent j to any agent

i < j is equal to
(

j−i−1
s−1

)
where 1 ≤ s ≤ j − i. Note that there are no walks of length

s > j−1 from any j to any i < j. Therefore, the total of the marginal effects through

all walks that begin at j and end at i < j is
∑j−i

s=1

(
j−i−1
s−1

)
gs = g

∑j−i−1
s=0

(
j−i−1

s

)
gs.

Apply the binomial theorem to obtain mij(G) = g(1 + g)j−i−1 for i < j. Sum over
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all agents i < j to obtain

∑
i<j

mij(G) =

j−1∑
i=1

g(1 + g)j−i−1 = g

j−2∑
i=0

(1 + g)i = (1 + g)j−1 − 1,

and sum over all agents j > i to obtain

∑
j>i

mij(G) =
n∑

j=i+1

g(1 + g)j−i−1 = g

n−i−1∑
j=0

(1 + g)j = (1 + g)n−i − 1.

Hence,

ak(G) =
∑
i∈N

mik(G) = (1 + g)k−1 = (1 + g)n+
k (G)

and

bk(G) =
∑

i∈N mki(G) = (1 + g)n−k = (1 + g)n−k (G).

That is, in the acyclic ordering of agents for any acyclic tournament where all arc

weights are equal, the impact centrality of agent k is 1 + g times that of agent k − 1

and the reaction centrality of agent k − 1 is 1 + g times that of agent k.

2.4 Adding or Deleting Arcs

I consider in this section the addition of an arc to a digraph and the deletion of an

arc from a digraph. I show that the effect of such changes to the network depend on

the impact centrality and the reaction centrality of certain agents in the digraph.

Certain arcs may be considered more important than others in the sense that they

play a key role in the transmission of consumption spill-overs through the network.

A seller may wish to take care in preserving such arcs for a product she seeks to
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promote just as a policymaker may wish to hamper such arcs for a product that she

seeks to discourage. Note that the effect of a unit exogenous change in every agent’s

demand for x on equilibrium aggregate demand for x is equal to the aggregate impact

(or reaction) centrality
∑

i∈N ai(G) =
∑

i∈N bi(G). Let G−ij represent the digraph

obtained by deleting arc (j, i) from G.

Lemma 4 Consider any digraph G such that ρ(G) < 1. Then

bj(G) = bj(G−ij)[1 + gijmji(G)]

for all (j, i) in A.

Proof. From Lemma 1, the effect of a unit exogenous change in agent k’s demand for

x on agent j’s equilibrium demand for x in G is equal to mjk(G). It is the marginal

effect through all walks in G from k to j. Consider the removal from G of any (j, i)

in A. The effect of a unit exogenous change in agent k’s demand for x on agent

j’s equilibrium demand for x in G−ij is equal to mjk(G−ij). It is the marginal effect

through all walks in G−ij from k to j. The only difference between the walks from k to

j in G and the walks from k to j in G−ij is that the walks from k to j in G includes all

walks from k to j that pass through (j, i). The difference is the marginal effect through

all walks from k to j in G−ij, followed by the arc (j, i), and then all walks from i to j in

G. This is equal to mji(G)gijmjk(G−ij). Hence mjk(G) = mjk(G−ij)[1+ gijmji(G)].

Sum over all k in N to obtain bj(G) = bj(G−ij)[1 + gijmji(G)].

Definition 4 Consider any digraph G such that ρ(G) < 1. The arc importance of

(j, i) in A is

c−ij(G) =
gijbj(G)ai(G)

1 + gijmji(G)
.
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Theorem 10 Consider any digraph G such that ρ(G) < 1. Then

∑
k∈N

[ak(G)− ak(G−ij)] = c−ij(G)

for all (j, i) in A.

Proof. Deleting arc (j, i) from G affects the impact centrality of only those agents

for whom there is a walk in G that begins at the agent and ends at j. The total

marginal effect through all walks that end at j without passing through (j, i) in the

process is equal to bj(G−ij). The marginal effect through all walks that begin at

i, including those that pass through (j, i), is equal to ai(G). Hence, the decrease

in aggregate impact centrality from deleting arc (j, i) is equal to
∑

k∈N [ak(G) −

ak(G−ij)] = gijbj(G−ij)ai(G).

Now use Lemma 4 to obtain
∑

k∈N [ak(G)− ak(G−ij)] = c−ij(G).

That is, the decrease in aggregate impact centrality from deleting arc (j, i) is equal

to c−ij(G). Hence, the change in aggregate impact centrality from deleting an arc is

a function of the arc weight, the reaction centrality of the agent from whom the arc

begins, the impact centrality of the agent to whom the arc ends, and the feedback

effects through the arc. Note that each arc importance in any digraph G depends

only on M(G) and thus can be determined without having to compute the aggregate

impact centrality for each G−ij.

The critical link is the arc (j∗, i∗) the deletion of which results in the greatest decrease

in aggregate impact centrality, that is c−i∗j∗(G) ≥ c−ij(G) for all (j, i) in A.

Example 11 Consider the digraph G in Figure 2.3 in which gij = 1/2 for all (j, i) in

A. Since every agent has one out-neighbor, from Theorem 2, all agents have impact
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centrality equal to 2. Removing (4, 2) would decrease aggregate impact centrality by

as much as removing (1, 2) even though agent 4 has a higher reaction centrality than

agent 1. This is because there is a walk from agent 2 to agent 4 but none from agent

2 to agent 1. However, neither arc is a critical link. Instead, the unique critical link

in this example is (2, 3) because agent 2 has the highest reaction centrality.
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Figure 2.3: A digraph

Out of all the possible new arcs that can be added to a network, certain arcs may

be considered more important than others in the sense that the addition of such new

arcs could significant boost the transmission of consumption spill-overs through the

network. A seller may wish to develop certain new links between her customers for a

product she seeks to promote. Similarly, a policymaker may want to facilitate such

links for a product that she seeks to discourage. Let G+ij represent the digraph

obtained by adding arc (j, i) with weight gij = g 6= 0 to G.11

Lemma 5 Consider any digraph G such that ρ(G) < 1. Then

ai(G) = ai(G+ij)[1− gijmji(G)]

for all (j, i) not in A.

11Alternatively, if agents respond to the average consumption of their in-neighbors, it may be
appropriate to set gij = g/n−i (G) instead.
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Proof. From Lemma 1, the effect of a unit exogenous change in agent i’s demand for

x on agent k’s equilibrium demand for x in G is equal to mki(G). It is the marginal

effect through all walks in G from i to k. Consider the addition to G of any (j, i)

not in A. The effect of a unit exogenous change in agent i’s demand for x on agent

k’s equilibrium demand for x in G+ij is equal to mki(G+ij). It is the marginal effect

through all walks in G+ij from i to k. The only difference between the walks from

i to k in G and the walks from i to k in G+ij is that the walks from i to k in

G do not include all walks from i to k that pass through (j, i). This difference is

the marginal effect through all walks from i to j in G, followed by the arc from j

to i, and then all walks from i to k in G+ij. This is equal to mki(G+ij)gijmji(G).

Hence mki(G) = mki(G+ij)[1 − gijmji(G)]. Sum over all k in N to obtain ai(G) =

ai(G+ij)[1− gijmji(G)].

Definition 5 Consider any digraph G such that ρ(G) < 1. The arc impact of (j, i)

not in A is

c+ij(G) =
gijbj(G)ai(G)

1− gijmji(G)

if |gijmji(G)| < 1.

Theorem 12 Consider any digraph G such that ρ(G) < 1. Then

∑
k∈N

[ak(G+ij)− ak(G)] = c+ij(G)

for all (j, i) not in A.

Proof. Adding arc (j, i) to G affects the impact centrality of only those agents

for whom there is a walk in G that begins at the agent and ends at j. The total
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marginal effect through all walks that end at j without passing through (j, i) in the

process is equal to bj(G). The marginal effect through all walks that begin at i,

including those that pass through (j, i), is equal to ai(G+ij). Hence, the increase

in aggregate impact centrality from adding arc (j, i) is equal to
∑

k∈N [ak(G+ij) −

ak(G)] = gijbj(G)ai(G+ij). Now use Lemma 5 to obtain
∑

k∈N [ak(G+ij)− ak(G)] =

c+ij(G).

That is, the increase in aggregate impact centrality from adding arc (j, i) is equal to

c+ij(G). Hence, the change in aggregate impact centrality from deleting an arc is a

function of the arc weight, the reaction centrality of the agent from whom the arc

begins, the impact centrality of the agent to whom the arc ends, and the feedback

effects through the arc. Note that each arc impact in any digraph G depends only on

M(G) and thus can be determined without having to compute the aggregate impact

centrality for each G+ij.

The promising link is the arc (j∗, i∗) the addition of which, with weight gij = g 6= 0,

results in the greatest increase in aggregate impact centrality, that is c+i∗j∗(G) ≥

c+ij(G) for all (j, i) not in A.

Corollary 2 Consider any undirected graph G such that ρ(G) < 1. Then c−ij(G) =

gijbj(G)bi(G)/[1 + gijmij(G)] for all (j, i) in A. And if |gijmji(G)| < 1, then

c+ij(G) = gijbj(G)bi(G)/[1− gijmij(G)] for all (j, i) not in A.

Proof. The proof follows from Lemma 2.

Corollary 3 Consider any digraph G such that ρ(G) < 1 and gij > 0 for all (j, i).

Then c−ij(G) ≥ gij > 0 for all (j, i) in A. And if |gijmji(G)| < 1, then c+ij(G) ≥

gij > 0 for all (j, i) not in A.
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Proof. If gij > 0 for all (j, i) in A, then M(G) ≥ I and so mji(G) ≥ 0 for all (j, i)

in A. The proof then follows from Lemma 3.

That is, if there are no strategic substitutes, then deleting any (j, i) in A results in

a decrease in aggregate impact centrality that is greater or equal to the weight of

(j, i) in A, and adding any (j, i) not in A results in an increase in aggregate impact

centrality that is greater or equal to the weight of (j, i) not in A.

Note that c−ij(G) is decreasing in mji(G) whereas c+ij(G) is increasing in mji(G) if

there are no strategic substitutes. That is, if there are no strategic substitutes, then

removing an arc (j, i) results in a smaller reduction in aggregate impact centrality

if the marginal effect through all walks from i to j is greater. This is because the

greater the marginal effect through all walks from i to j, the smaller the marginal

effect through all walks to j that do not pass through (j, i). In contrast, adding an

arc (j, i) results in a greater increase in aggregate impact centrality if the marginal

effect through all walks from i to j is greater. This is because the greater the marginal

effect through all walks from i to j, the greater the marginal effect through all walks

from i that pass through (j, i).

Corollary 4 Consider any acyclic digraph G. Then

c−ij(G) = gijbj(G)ai(G)

for all (j, i) in A.

Proof. Consider the removal of any (j, i) from G. Since G has no cycles, there is

no walk from i to j in G. Hence, mji(G) = 0 and so c−ij(G) = gijbj(G)ai(G) for all

(j, i) in A.
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Example 13 Consider the acyclic digraph G in Figure 2.4 in which gij = 1/2 for

all (j, i) in A. Adding (5, 3) with weight g > 0 would increase aggregate impact

centrality more than by adding (3, 5) with weight g even though agents 3 and 5 have

equal impact centrality and reaction centrality in G. This is because there is a walk

from agent 3 to agent 5 but none from agent 5 to agent 3. However, (5, 3) is not a

promising link because of the relatively weak feedback effect from 3 to 5. Instead,

the promising links in this example are (3, 1), (3, 2), (4, 3), (5, 4), (6, 5), and (7, 5),

each with an arc impact equal to 4g/(1 − g/2). The critical links are (3, 4) and

(4, 5) because agents 3, 4, and 5 have both high impact centrality and high reaction

centrality in G.
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Figure 2.4: A acyclic digraph

Corollary 5 Consider any acyclic tournament G such that gij = g for all (j, i) in

A. Then c−ij(G) = g(1 + g)n−j (G)+n+
i (G) for all (j, i) in A.

Proof. The proof follows from Theorem 9.

Since n−j (G) + n+
i (G) = n − 1 + i − j in the acyclic ordering of agents, all the arcs

represented on the superdiagonal of G are the critical links in G if g > 0. In contrast,

arc (n, 1) has the lowest arc importance because removing arc (n, 1) affects only the

impact centrality of n by the marginal effect of the walk (n, 1).
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Example 14 Consider the acyclic tournament G in Figure 2.5 in which gij = g > 0

for all (j, i) in A. From Corollary 5, the critical links in this example are (4, 3), (3, 2),

and (2, 1), each with an arc importance equal to g(1 + g)2.
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Figure 2.5: A acyclic tournament

2.5 Deleting Agents

I now consider the deletion of an agent from a digraph. Certain agents may be

considered more important than others in the sense that they play a key role in the

transmission of consumption spill-overs through the network. Removing an agent

from a network may not only affect the aggregate impact centrality of the network

directly by subtracting the agent’s impact centrality but also affect the aggregate

impact centrality of the network indirectly by affecting the impact centralities of

other agents. Let G−i represent the digraph obtained by deleting agent i from G.

Lemma 6 Consider any digraph G such that ρ(G) < 1. Then

bi(G) = mii(G)[1 +
∑

j∈N−
i (G)

gijbj(G−i)]

for all i.
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Proof. From Lemma 1, the effect of a unit exogenous change in agent k’s demand for

x on agent i’s equilibrium demand for x in G is equal to mik(G). It is the marginal

effect through all walks in G from k to i. Note that each of these walks in G from k

to i must end with an arc from an in-neighbor of i to i himself. All the walks in G

from k to i can thus be expressed as the total marginal effect of all walks in G−i from

k to each j in N−
i (G), followed by the walk (j, i), and then all the walks in G from

i to himself. Hence mik(G) = mii(G)
∑

j∈N−
i (G) gijmjk(G−i). Sum over all k 6= i to

obtain
∑

k 6=i mik(G) = mii(G)
∑

j∈N−
i (G) gijbj(G−i). Add the term mii(G) to both

sides of the equation to obtain bi(G) = mii(G)[1 +
∑

j∈N−
i (G) gijbj(G−i)].

That is, the marginal effect through all walks that end at i is equal to the marginal

effect through all walks that end at an in-neighbor of i, followed by the arc from the

in-neighbor to i and followed by all walks from i to himself.

Definition 6 Consider any digraph G such that ρ(G) < 1. Agent i’s intercentrality

is

ci(G) =
bi(G)ai(G)

mii(G)
.

This definition of an agent’s intercentrality corresponds with that of Remark 5 of

Ballester, Calvo-Armengol, and Zenou (2006) for digraphs, except that here G is not

necessarily a matrix with every entry restricted to a value between 0 and 1 and here

arcs are not assumed to have all equal weight.

Theorem 15 Consider any digraph G such that ρ(G) < 1. Then

∑
k∈N

[ak(G)− ak(G−i)] = ci(G)

for all i.
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Proof. The direct effect on the aggregate impact centrality of deleting agent i from

G is the subtraction of i’s impact centrality ai(G). In addition, there may be indirect

effects on the aggregate impact centrality through the effects on the impact centralities

of other agents in G. These indirect effects are the marginal effects through all walks

that pass through i from each k 6= i. Deleting agent i from G affects the impact

centrality of only those agents for which there is a walk in G that begins at the agent

and ends at an in-neighbor of i. Each such walk has to pass through an in-neighbor

of i before it passes through i itself. For each j in N−
i (G), bj(G−i) is equal to the

marginal effect through all walks in G that end at j without passing through i in

the process, and so the indirect effect on aggregate impact centrality from deleting

i is equal to
∑

i∈N−
i (G) gijbj(G−i)ai(G). Since the reduction in aggregate impact

centrality from deleting agent i from G is the sum of the direct and indirect effects,

∑
k∈N

[ak(G)− ak(G−i)] = ai(G)[1 +
∑

i∈N−
i (G)

gijbj(G−i)].

Now use Lemma 5 to obtain
∑

k∈N [ak(G)− ak(G−i)] = ci(G).

That is, the change in aggregate impact centrality from deleting agent i is equal to

ci(G). Hence, the change in aggregate impact centrality from deleting an agent is

the sum of the agent’s impact centrality and the reduction in other agents’ impact

centrality from the deletion of the arcs that begin or end with the agent who is deleted

from the network. Note that each agent’s intercentrality in any digraph G depends

only on M(G) and thus can be determined without having to compute the aggregate

impact centrality for each G−i.

The key player is the agent i∗ the deletion of whom results in the greatest reduction

to aggregate impact centrality, that is ci∗(G) ≥ ci(G) for all i in N .
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Corollary 6 Consider any undirected graph G such that ρ(G) < 1. Then ck(G) =

[bk(G)]2/mkk(G) for all k.

Proof. The proof follows from Lemma 2.

This result corresponds with that in Ballester, Calvo-Armengol, and Zenou (2006)

for undirected graphs, except that here arc weights are not assumed to be all equal,

and there can be both strategic complements and strategic substitutes.

Corollary 7 Consider any digraph G such that ρ(G) < 1 and gij > 0 for all (j, i)

in A. Then ck(G) ≥ 1 for all k.

Proof. If gij > 0, then M(G) ≥ I and so mii(G) ≥ 1. The proof then follows from

Lemma 3.

That is, if there are no strategic substitutes, then removing any agent k from G would

reduce the aggregate impact centrality by at least one.

Corollary 8 Consider any acyclic digraph G. Then ci(G) = bi(G)ai(G) for all i.

Proof. Consider the removal of any i from G. Since G has no cycles, there is no

walk of length s ≥ 1 from i to itself. Hence, mii(G) = 1 and so ci(G) = bi(G)ai(G)

for all i.

That is, for any acyclic digraph, every agent’s intercentrality is simply the product

his reaction centrality and impact centrality.

Corollary 9 Consider any acyclic tournament G such that gij = g for all (j, i) in

A. Then ci(G) = (1 + g)n−1 for all i.
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Proof. From Theorem 9, ci(G) = (1+g)n−i (G)+n+
i (G) for all i. Since n−i (G)+n+

i (G) =

n− 1, hence ci(G) = (1 + g)n−1 for all i.

That is, for any acyclic tournament such where all arc weights are equal, all agents

have equal intercentrality. Although the number of out-neighbors and the number of

in-neighbors that each agent has varies across agents, all agents have an equal number

of neighbors. In a acyclic tournament, an agent who contributes relatively more to

aggregate impact centrality directly through a relatively higher impact centrality con-

tributes relatively less to aggregate impact centrality indirectly through a relatively

lower reaction centrality so that all agents make the same total direct and indirect

contribution to aggregate impact centrality.

2.6 Extensions

The measures suggest that estimating G should be of considerable interest to both

businesses and policy-makers. Where information of the weighted adjacency matrix

is imperfect or unavailable but the adjacency matrix is known, interested parties may

still find it useful to determine an estimate of the proposed measures by assuming

appropriate functional forms for each gij. Future research may unravel important

principles and relationships based on appropriate functional forms for gij, thus pro-

viding additional guidance without full knowledge of the weighted adjacency matrix.

Although this paper focuses on consumer networks and analyzes the effects of changes

in demand, the arc importance, arc impact, and intercentrality measures employed

here can be similarly applied to other social networks, which analyze action levels

with linear-quadratic utility function.
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Consider an undirected graph. An undirected link is a pair of arcs (j, i) and (i, j)

for any j 6= i. Removing an undirected link would be equivalent to removing such

a pair of arcs, and adding an undirected link would be equivalent to adding such a

pairs of arcs. One can then determine the critical undirected links and the promising

undirected links in an undirected graph.
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Paper 3
Bargaining under Two-Sided Incomplete

Information: Efficient Outcomes with

Multiple Traders

Abstract

Consider a market for an indivisible good comprising multiple buyers and at least as many
sellers. Sellers and buyers each have independent private costs or valuations of two types.
There is at least one low type buyer and this is common knowledge. I show that there exists
a trading mechanism that fully implements in sequential equilibrium the social choice cor-
respondence that satisfies ex post efficiency, ex post budget balance, and ex post individual
rationality.

3.1 Introduction

I propose a solution to the problem of designing a trading mechanism to guarantee

efficient outcomes, when there are multiple buyers and sellers with independent pri-
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vate values such that each trader either has a low or a high reservation price. I show

that such a mechanism exists if there are at least as many sellers as there are buyers,

and there is at least one buyer with a low reservation price. The implementation of

efficient trades under these assumptions suggests that it is not necessary for there to

be many buyers and many sellers in order for a market to guarantee efficient outcomes

with two-sided incomplete information. The mechanism also provides a descriptive

account of how efficient trades arise from a systematic and organized form of dynamic

bargaining in which buyers outbid one another.

A key issue in the mechanism design literature concerns the difficulty of obtaining

efficient outcomes when agents have private information and individual rationality

constraints are binding [Fudenberg and Tirole (1991), page 245]. When an agent’s

value for a good is his private information, he may have an incentive to lie about his

value for the good, or the behave as if his value for the good is different, in order to

obtain more favorable terms of trade at the risk of not trading. However, as explained

by Bolton and Dewatripont (2005) in the context of bilateral trading, the main diffi-

culty is not to find incentive compatible prices per se, but to find incentive compatible

prices that also satisfy individual rationality constraints. Budget balance is an im-

portant requirement as otherwise individual rationality can typically be satisfied by a

sufficiently large transfer to ensure participation in the mechanism. Budget balance

is also a natural requirement for bargaining problems where we expect transfers to

be made between the agents who trade.

This paper relates to the literature on bargaining under two-sided incomplete infor-

mation, which suggests that ex post efficient outcomes cannot generally be obtained

for bilateral trading, and the multiplicity of equilibria is large. Fudenberg and Tirole

(1983), Chatterjee and Samuelson (1983), Myerson and Satterthwaite (1983), Cram-
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ton (1984), Chatterjee and Samuelson (1987), Leininger, Linhart, and Radner (1989),

Satterthwaite and Williams (1989), Cho (1990), Ausubel and Deneckere (1992), and

Cramton (1992) considered the bargaining problem between a buyer and a seller for

an indivisible good, when the buyer and the seller have independent private valuation

or cost.

In the case of the buyer and the seller each having two potential types, Fudenberg

and Tirole (1983) showed that there is a continua of pooling, separating, and hybrid

equilibria with inefficient outcomes in a two-period bargaining game in which the seller

makes two offers, or the traders alternate making offers. Chatterjee and Samuelson

(1987) showed that there is a unique equilibrium with an inefficient outcome in an

infinite-horizon bargaining game in which the traders alternate making offers. As in

Fudenberg and Tirole (1983) and Chatterjee and Samuelson (1987), I consider the

case of each trader having two potential types. However, I do not assume bargaining

costs in the form of time discounting, and unlike Fudenberg and Tirole (1983), I do

not assume that there is always potential gains from trade.

In the case of the buyer and the seller each having a continuum of types, Chatterjee

and Samuelson (1983) showed that one cannot generally obtain ex post efficient out-

comes through a double auction, in which the buyer and the seller simultaneously bid

for the good and there is trade if the buyer’s bid exceeds the seller’s. More generally,

Myerson and Satterthwaite (1983) showed that, if there is both a positive probability

of gains from trade and a positive probability of no gains from trade, there exists

no mechanism that can result in an ex post efficient allocation of the good while

also satisfying interim individual rationality and ex post budget balance. Cramton

(1984), Cho (1990), Ausubel and Deneckere (1992), and Cramton (1992) showed that

there is multiple equilibria in an infinite-horizon bargaining game in which the seller
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makes all offers, or the traders alternate making offers. Satterthwaite and Williams

(1989) showed that, if both traders can influence the price, no equilibrium of the

double auction is ex ante efficient. In the case of uniform prior beliefs over types,

Leininger, Linhart, and Radner (1989) showed that the set of pure strategy equilibria

for a double auction is very large, and that the expected gains from trade may be as

low as zero.

Although the incentive to misrepresent may diminish with a large number of traders,

the literature suggests that ex post efficient outcomes cannot generally be obtained

even when there is a large but finite number of traders. Wilson (1985), Gresik and

Satterthwaite (1989), and Rustichini, Satterthwaite, and Williams (1994) considered

the bargaining problem between a large number of buyers and a large number of sell-

ers for an indivisible good, when the buyers and the sellers have independent private

valuations or costs. Wilson (1985) showed that, if there are sufficiently many buyers

and sellers, a double auction is interim efficient, in the sense that there is no other

trading mechanism that is sure to increase every trader’s expected gains from trade.

His result assumed the existence of an equilibrium in symmetric strategies that are

differentiable functions of reservation values and have uniformly bounded derivatives.

Gresik and Satterthwaite (1989) showed that an ex ante efficient mechanism that

satisfies interim individual rationality and ex post budget balance converges to ex

post efficiency as the number of traders tends to infinity. Rustichini, Satterthwaite,

and Williams (1994) showed that although a double auction results in multiple equi-

libria and inefficient outcomes, the extent of misrepresentation and thus the extent

of inefficiency is small, when the number of traders is large.

In contrast with the conventional wisdom that approximate efficiency is possible only

with a large number of traders, I show that appropriate restrictions on the prefer-
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ence domain ensure ex post efficiency even with a small number of traders, despite

uncertainty over potential gains from trade.

The revelation principle provides a necessary condition for full implementation. It

proposes that each equilibrium of any mechanism is equivalent to the truth-telling

equilibrium of an incentive-compatible direct-revelation mechanism [Gibbard (1973);

Green and Laffont (1977); Dasgupta, Hammond, and Maskin (1979); Myerson (1979)].

In the truth-telling equilibrium, no agent can do better by lying, if he anticipates that

all other agents will be honest. The revelation principle implies that no mechanism

can fully implement a social choice rule unless it is incentive compatible. However,

the revelation principle does not address the problem of multiple equilibria arising

from a direct-revelation mechanism. Incentive compatibility requires only that the

truth-telling equilibrium be one equilibrium of the direct-revelation mechanism. But

there may be other equilibria of the direct-revelation mechanism, which may not

correspond to equilibria of the original mechanism. Hence, although the revelation

principle is useful in determining if a social choice rule can be weakly implemented,

it does not ensure that a social choice rule can be fully implemented. Although weak

implementation requires only that every desired outcome be an equilibrium outcome,

full implementation requires in addition that every equilibrium outcome be a desired

outcome.

I consider a market for an indivisible good comprising multiple buyers and at least as

many sellers. Sellers and buyers each have independent private costs or valuations of

two types. There is at least one low type buyer and this is common knowledge. I show

that there exists an extensive-form mechanism that fully implements in sequential

equilibrium the social choice correspondence that satisfies ex post efficiency, ex post

budget balance, and ex post individual rationality.
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The implementing mechanism is a multi-stage game of observed actions and incom-

plete information. All buyers have an opportunity to indicate if they are wiling to buy

at the low price. If no buyer indicates that he is willing to buy at the low price, then

the game ends with no trade. If there are buyers who indicate that they are wiling

to buy at the low price (“low price buyers”), then all sellers have an opportunity to

indicate if they are willing to sell at the low price or higher (“low price sellers”). If

there are sellers who indicate that they are willing to sell at the low price, then the

low price buyers are randomly matched pairwise with the low price sellers. If there

are at least as many low price sellers as there are low price buyers, then the game

ends with the matched buyers are sellers trading at the low price. However, if there

are more low price buyers than there are low price sellers, then all the unmatched

low price buyers have an opportunity to indicate if they are willing to buy at the

high price or lower. If there are unmatched low price buyers who indicate that they

are willing to buy at the high price or lower (“high price buyers”), then all matched

sellers are randomly matched pairwise with the high price buyers. But this results in

low price buyers who were matched with these sellers to become unmatched. These

low price buyers then have the opportunity to indicate if they are willing to buy at

the high price or lower. The sellers, who had indicated that they were unwilling to

sell at the low price, have an opportunity to indicate if they are willing to sell at

the high price (“high price sellers”) only if there are unmatched high price buyers in

which case they would be randomly matched pairwise with the unmatched high price

buyers.

The mechanism provides traders with the incentive to behave according to their

preferences. It provides a low valuation buyer with an incentive to be a low price

buyer because he would have a positive probability of being matched at the low price.
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He has no incentive to be a high price buyer as he would obtain a negative payoff if

he were to be matched at the high price. A high valuation buyer also has an incentive

to be a low price buyer as he would otherwise not have an opportunity to trade. He

has an incentive to be a high price buyer as he would have a positive probability

of being matched at the high price. A low cost seller has an incentive to be a low

price seller because the mechanism provides low price sellers with priority over the

other sellers to be matched with high price buyers at the high price. The low cost

seller also has to consider that her decision to be a low price seller would raise the

probability of the game ending with her trading at the low price. However, she also

takes into account the fact that the game may end before she has the opportunity to

be a high price seller, and that she may face competition from other high price sellers

if she does have the opportunity. A high cost seller in choosing to be a low price

seller would increase her probability of being matched with a high price buyer at a

high price. However, she would in doing so also increase the risk of the game ending

with her trading at the low price. Furthermore, her potential gain from trading at

the high price is almost nothing compared with her potential loss from trading at the

low price. This prevents the high cost seller from mimicking the low cost seller.

The proof for the implementation of the desired social choice correspondence begins

by showing that, if given the opportunity to do so in the game, each seller would

indicate that she is willing to sell at the high price. Given this, I show that, if given

the opportunity to do so in the game, each low valuation buyer would indicate that

he is unwilling to buy at the high price, and each high valuation buyer would indicate

that he is willing to buy at the high price. It appears that, if given the opportunity

to do so in the game, a high cost seller may have an incentive to be a low price seller

if she believes that this would give her a higher probability of being matched with
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a buyer at the high price. Furthermore, it appears that, if given the opportunity to

do so in the game, a low cost seller may have an incentive to opt not to be a low

price seller if she believes that this would increase the probability that there would be

unmatched high price buyers. However, I show that a high cost seller does not have

an incentive to be a low price seller, and a low cost seller does not have an incentive

to opt not to be a low price seller. I then show that all high valuation buyers would

choose to be low price buyers. Given this, I show that all low valuation buyers would

also choose to be low price buyers.

If there are fewer sellers than there are buyers, and if sellers have prior beliefs that

the probability of high valuation buyers is relatively high, then some low cost sellers

may find it optimal not to be low price sellers, believing that it is likely that there

will be relatively many high price buyers. Similarly, if it is not certain that there is

at least one low valuation buyer, then some low cost sellers may find it optimal not

to be low price sellers to lower the risk of causing the game to end with no high price

buyers.

Since all traders have an incentive to behave according to their true preferences in

the implementing mechanism, an alternative direct-revelation mechanism can be used

to achieve the same equilibrium outcome. In this direct-revelation mechanism, all

traders simultaneously announce their types to the principal who then makes the

moves according to the equilibrium strategies in the implementing mechanism. This

alternative mechanism avoids the risk of play off-the-equilibrium path resulting in

renegotiation.

Section 3.2 describes the economic environment and the social choice rule that satisfies

ex post efficiency, ex post budget balance, and ex post individual rationality. Section

3.3 describes the implementing mechanism and demonstrates that it implements the
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social choice rule in sequential equilibrium. Section 3.4 concludes with some possible

extensions.

3.2 The Model

Consider a non-empty finite set of sellers M = {1, . . . ,m} and a non-empty finite set

of buyers N = {1, . . . , n}. There are at least as many seller as there are buyers, that

is m ≥ n. Each seller has one unit of an indivisible homogeneous good for sale, and

each buyer is looking to buy one unit of the good.

Outcomes are comprised of allocation of the goods available for sale and money trans-

fers from buyers to sellers. For any seller j in M , let tj ∈ R denote the transfer that

seller j receives, and let aj ∈ {0, 1} denote the quantity of the good allocated away

from seller j. The profile of transfers for sellers is t = (t1, . . . , tm) and the profile

of allocation changes for sellers is a = (a1, . . . , am). The set of transfer profiles for

sellers is given by Rm and the set of allocation changes for sellers is given by {0, 1}m.

For any buyer i in N , let t̃i ∈ R denote the transfer that buyer i pays, and let

ãi ∈ {0, 1} denote the quantity of the good allocated to buyer i. The profile of trans-

fers for buyers is t̃ = (t̃1, . . . , t̃n) and the profile of allocation changes for buyers is

ã = (ã1, . . . , ãn). The set of possible transfers for buyers is given by Rn, and the set

of possible allocation changes for buyers is given by {0, 1}n.

Preferences are comprised of the valuations of buyers and the costs of seller. Sellers

and buyers are risk neutral and have independent private costs or valuations. There

are two types of sellers. For any seller j, let ci ∈ {c, c}, where c < c, denote seller

j’s cost of the good. The prior probability of a low cost seller is equal to q > 0, and

the prior probability of a high cost seller is equal to 1 − q > 0. The profile of costs
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is c = (c1, . . . , cm), and the set of possible cost profiles is given by {c, c}m. Let Ml

denote the set of low cost sellers, and let Mh denote the set of high cost sellers. Let

ωj = tj − cjaj denote seller j’s quasilinear ex post payoff. There are two types of

buyers but there is at least one low valuation buyer. Let buyer 1 be the low valuation

buyer. Since valuations are private information, generally neither the other buyers nor

the sellers can identify buyer 1.1 For any other buyer i, let vi ∈ {v, v}, where v < v,

denote buyer i’s valuation for the good. The prior probability of a low valuation

buyer is equal to p > 0, and the prior probability of a high valuation buyer is equal

to 1 − p > 0. The profile of valuations is v = (v1, . . . , vn), and the set of possible

valuation profiles is given by {v, v}n. Let Nl denote the set of low valuation buyers,

and let Nh denote the set of high valuation buyers. Let nl denote the cardinality of

Nl and let nh denote the cardinality of Nh. Since there is at least one low valuation

buyer, nl ≥ 1. Let ω̃i = viãi − t̃i denote buyer i’s quasiliner ex post payoff.

There are two reservation prices. For any low valuation buyer, the low reservation

price p is the highest price for which he strictly prefers buying a unit of the good so

that v − p = ε > 0, where ε is infinitismally small. For any high valuation buyer, the

high reservation price p > p is the highest price for which he strictly prefers buying a

unit of the good so that v − p = ε. For any low cost seller, the low reservation price

p is the lowest price for which she strictly prefers selling a unit of the good so that

p − c = ε. For any high cost seller, the high reservation price p is the lowest price

for which she strictly prefers selling a unit of the good so that p − c = ε. Note that

v > c > v > c, which are the values for which establishing efficient trade is most

difficult [Bolton and Dewatripont (2005)]. Since v > c and c > v, there is both a

1The only exception is when there are only two buyers and buyer 2 is high type. In this case,
although the sellers would still not be able to identify buyer 1, buyer 2 would be able to deduce that
buyer 1 is low type.
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positive probability of gains from trade and a positive probability of no gains from

trade.

Definition 1 A social choice correspondence is a mapping F : {v, v}n × {c, c}m →

{0, 1}n × {0, 1}m × Rn × Rm.

That is, a social choice correspondence associates to each valuation profile and cost

profile, a non-empty subset of feasible allocations and transfers.

Definition 2 A social choice correspondence is ex post efficient if every allocation

(ã, a) of the social choice correspondence solves the social optimization problem

max
ã,a,t̃,t

∑
i∈N

ω̃i(ãi, t̃i) +
∑
j∈M

ωj(aj, tj)

subject to ∑
i∈N

ãi =
∑
j∈M

aj

That is, a social choice correspondence is ex post efficient if every allocation of the

social choice correspondence maximizes the total surplus of buyers and sellers subject

to the allocation being feasible.

Definition 3 A social choice correspondence is ex post budget balanced if every trans-

fer profile (t̃, t) of the social choice correspondence satisfies

∑
i∈N

t̃i =
∑
j∈M

tj.

Definition 4 A social choice correspondence is ex post individually rational if every
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allocation (ã, a, t̃, t) of the social choice correspondence satisfies

ω̃i(ãi, t̃i) ≥ 0

for all i in N , and

ωj(aj, tj) ≥ 0

for all j in M .

Definition 5 The Ideal Rule is a social choice correspondence W : V ×C → {0, 1}n×

{−1, 0}m × Rn × Rm which satisfies ex post efficiency, ex post budget balance, and

ex post individual rationality.

Definition 6 The Ideal Rule W is implementable in sequential equilibrium if there

exists a mechanism, such that the set of sequential equilibrium outcomes equals the

set of Ideal Rule outcomes in each possible state of the world.

The next section shows that there indeed exists a mechanim that implements the

Ideal Rule in sequential equilibrium.

3.3 The Mechanism

The mechanism Γe is a multi-stage game of observed actions and incomplete infor-

mation. At each stage of the game, buyers or sellers simultaneously choose from an

action set of “yes” or “no” to trading at either p or p. A buyer choosing “yes” to a

price commits himself to buying a unit of the good at that price if he is matched with

a seller at that price when the game ends. A buyer choosing “no” to a price commits

79



himself to not buying a unit of the good at that price or higher, and is not required to

take any further action. A seller choosing “yes” to a price commits himself to selling

a unit of the good at that price or higher, and is not required to take any further

action. A seller choosing “no” to a price commits herself to not selling a unit of the

good at that price if she is matched to a buyer at that price when the game ends. Let

γ and χ denote the action of a buyer or seller choosing “yes” and “no” respectively

to the price p. Similarly, let γ and χ denote the action of a buyer or seller choosing

“yes” and “no” respectively to the price p. All buyers and sellers observe the actions

that have been chosen at the end of each stage, and there is perfect recall.

Stage 1: Each buyer simultaneously chooses from the action set {γ, χ}. Let N denote

the set of buyers who choose γ and let n denote the cardinality of N .

1. If n = 0, then the game ends with no trade.

2. If instead n > 0, then the game proceeds to Stage 2.

Stage 2: Having observed the choices of all the buyers, each seller simultaneously

chooses from the action set {γ, χ}. Let M denote the set of sellers who choose y and

let m denote the cardinality of M .

1. If m = 0, then all buyers in N are unmatched and the game proceeds to Stage

3.

2. If instead m > 0, then all sellers in M are randomly matched pairwise with all

buyers in N .

(a) If n ≤ m, then the game ends with the matched buyers and sellers trading

at the price of p.
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(b) If instead n > m, then there are unmatched buyers in N and the game

proceeds to Stage 3.

Stage 3: Each unmatched buyer in N simultaneously chooses from the action set

{γ, χ}. Let N1 denote the set of buyers who choose γ at Stage 3 and let n1 denote

the cardinality of N1.

1. If n1 = 0 and m = 0, then the game ends with no trade.

2. If n1 = 0 and m > 0, then the game ends with the matched buyers and sellers

trading at the price of p.

3. If n1 > 0 and m = 0, then the game proceeds to Stage 5.

4. If n1 > 0 and m > 0, then all buyers in N1 are randomly matched pairwise with

sellers in M .

(a) If n1 > m, then n1 −m buyers in N1 are unmatched, and m buyers who

were matched with sellers at p become unmatched. The game proceeds to

Stage 4.

(b) If n1 ≤ m, then all n1 buyers in N1 are matched, and n1 buyers who were

matched with sellers at p become unmatched. The game proceeds to Stage

4.

Stage 4: Each buyer who was matched at p but became unmatched at Stage 3 simul-

taneously chooses from the action set {γ, χ}. Let N2 denote the set of buyers who

choose γ at Stage 4 and let n2 denote the cardinality of N2.

1. If n2 = 0 and there is at least one buyer who has chosen γ but is unmatched,

then the game proceeds to Stage 5.
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2. If n2 = 0 and all buyers who have chosen γ are matched, then the game ends

with all matched buyers and sellers trading at the prices that they are matched.

3. If n2 > 0, then all buyers in N2 are randomly matched pairwise with any sellers

in M who are matched with a buyer at p.

(a) If there are no sellers in M who are matched with a buyer at p, then the

game proceeds to Stage 5.

(b) If there is at least one seller in M who is matched with a buyer at p, then

all buyers in N2 are randomly matched pairwise with those sellers in M

who are matched with a buyer at p, and Stage 4 iterates until either the

game ends at Stage 4 or proceeds to Stage 5.

Stage 5: Each seller who is not in M simultaneously chooses from the action set

{γ, χ}. Let M denote the set of sellers who choose γ and let m denote the cardinality

of M .

1. If m = 0, then the game ends with the matched buyers and sellers trading at

the price at which they are matched, i.e. p.

2. If m > 0, then the sellers in M are randomly matched pairwise with those

buyers who chose γ but are unmatched. The game then ends with the matched

buyers and sellers trading at the price at which they are matched, i.e. p.

Let τ denote any terminal node in which seller j trades at p and let τ denote any

terminal node in which seller j trades at p. Hence, ωj(τ) = ε and ωj(τ) = 1+ ε for all

j in Ml and ωj(τ) = −1+ε and ωj(τ) = ε for all j in Mh. Note that ωj(τ) = 1+ωj(τ)

for any j in M .
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Let Si denote the set of all possible information states for i in Γe. Assume that infor-

mation states are labelled such that Si and Sj are disjoint sets whenever i 6= j, and

let S∗ =
⋃

i∈N+M Si denote the union of all these sets. For any i and any information

state s in Si, the set of actions or moves Ds available to i at information state s is

either {γ, χ} or {γ, χ}. Let ∆(Ds) denote the set of all probability distributions over

the set Ds.

Definition 7 A behavioral-strategy profile or scenario

σ = (σi)i∈N+M = (σi.s)i∈N+M,s∈Si
∈ ×s∈S∗∆(Ds) = ×i∈N+M ×s∈Si

∆(Ds)

specifies a probability distribution over the set of possible moves for each possible

information state of each buyer or seller.

A behavioral strategy σi = (σi.s)s∈Si
∈ ×s∈Si

∆(Ds) for i specifies a probability for

each possible move at every information state s of i. If s is an information state in

which i chooses from the set of moves {γ, χ}, then σi.s = (σi.s(γ), σi.s(χ)) ∈ ∆(Ds);

if s is an information state in which i chooses from the set of moves {γ, χ}, then

σi.s = (σi.s(γ), σi.s(χ)) ∈ ∆(Ds). The move probability σi.s(γ) denotes the conditional

probability under scenario σ that i would choose move γ if the path of play reached

a node that is controlled by i with information state s.

Let Ys denote the set of nodes belonging to i with information state s in Si. For

any information state s of any i, the belief-probability distribution πi.s ∈ ∆(Ys) for i

at information state s is a probability distribution over Ys, the set of nodes labelled

”i.s”. For each node x in Ys, πi.s(x) is the conditional probability that i would assign

to the event that he was making a move at node x, when he knew that he was making

a move at some node in Ys.
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Definition 8 A beliefs vector

π = (πi.s)i∈N+M,s∈Si
∈ ×s∈S∗∆(Ys) = ×i∈N+M ×s∈Si

∆(Ys)

specifies a belief-probability distribution for each information state of each buyer or

seller.

Consider any scenario σ and any two nodes x and y. If y follows x, then let P̄ (y|σ, x)

denote the conditional probability that the path of play would go through y after x

if all buyers and sellers chose their moves according to scenario σ and if the play of

the game started at x. It is the multiplicative product of all the chance probabilities

and move probabilities specified by σ for the branches on the path from x to y. If y

does not follow x, then let P̄ (y|σ, x) = 0.

Let Ω denote the set of all terminal nodes in Γe and let ωi(y) denote the payoff to i

at terminal node y. Then Ui(σ|x) =
∑

y∈Ω P̄ (y|σ, x)ωi(y) is the expected payoff to i

if the play of the game began in node x and all buyers and sellers thereafter choose

their moves as specified by σ.

Definition 9 Given a beliefs vector π, a scenario σ is sequentially rational for i at s

with beliefs π iff

σi.s ∈ argmaxρs∈∆(Ds)

∑
x∈Ys

πi.s(x)Ui(σ−i.s, ρs|x).

That is, σ is sequentially rational for i at information state s if and only if σi.s would

maximize i’s expected payoff when a node in Ys occurred in the path of play, given

the belief probabilities that i would assign to the various nodes in Ys when he learned
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that one of them had occurred, and assuming that all moves after this node would

be determined according to σ.

For any node y and any scenario σ, the prior probability P̄ (y|σ) of node y under

the scenario σ is the probability that the path of play, starting at the root, will

reach node y when all players choose their moves according to the scenario σ. Since

P̄ (y|σ) = P̄ (y|σ, x0), where x0 denotes the root or initial node of the tree, it is the

multiplicative product of all the chance probabilities and move probabilities specified

by σ for the branches on the path from the root to y.

Let ×s∈S∗∆0(Ds) denote the set of all scenarios in which all move probabilities are

positive. So if σ in ×s∈S∗∆0(Ds), then P̄ (y|σ) > 0 for every node y, and there is a

unique beliefs vector π that satisfies Bayes’s formula

πi.s(x) =
P̄ (x|σ)∑

y∈Ys
P̄ (y|σ)

, ∀x ∈ Ys.

Definition 10 A beliefs vector π is fully consistent with a scenario σ if and only if

there exists some sequence (σ̂k)∞k=1 such that

σ̂k ∈ ×s∈S∗∆0(Ds), ∀k ∈ {1, 2, 3, . . . },

σi.s(ds) = lim
k→∞

σ̂k
i.s(ds), ∀i ∈ N, ∀s ∈ Si, ∀ds ∈ Ds,

πs(x) = lim
k→∞

P̄ (x|σ̂k)∑
y∈Ys

P̄ (y|σ̂k)
, ∀s ∈ S∗, ∀x ∈ Ys.

That is, π is fully consistent with a scenario σ iff there exists scenarios that are

arbitrarily close to σ and that assign strictly positive probability to every move, such

that the beliefs vectors that satisfy Bayes’s formula for these strictly positive scenarios
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are arbitrarily close to π [Kreps and Wilson (1982); Myerson (1991)].

Definition 11 A sequential equilibrium of Γe is any (σ, π) in (×s∈S∗∆(Ds),×s∈S∗∆(Ys))

such that the beliefs vector π is fully consistent with σ and, with beliefs π, the sce-

nario σ is sequentially rational for every buyer or seller at every information state

[Kreps and Wilson (1982); Myerson (1991)].

A sequential equilibrium of this extensive-form game exists because it is finite [Kreps

and Wilson (1982)]. In particular, the sets of traders, actions, and types are finite.

The rest of this section demonstrates that the mechanism implements the Ideal Rule

in sequential equilibrium. Let Sj.5 denote the set of all possible information states for

seller j in which she makes a choice in Stage 5.

Lemma 1 Sequential rationality requires σj.s(γ) = 1 for all j in M and for all s in

Sj.5.

Proof. If any seller chooses χ, then she does not trade and her payoff is 0. Since

a seller who is not in M has the opportunity to choose γ only if there is a positive

number of unmatched buyers who have chosen γ and all sellers in M are matched

with buyers who have chosen γ, a seller has a positive probability of being matched

when she chooses γ. Since all sellers have a positive payoff from trading at p, every

seller has a positive expected payoff from choosing γ. Hence, sequential rationality

requires σj.s(γ) = 1 for all j in M and for all s in Sj.5.

Let Si.34 denote the set of all possible information states for buyer i in which he makes

a choice in Stage 3 or Stage 4.
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Lemma 2 Sequential rationality requires σi.s(χ) = 1 for all i in Nl, for all s in Si.34,

and σi.s(γ) = 1 for all i in Nh, for all s in Si.34.

Proof. If a buyer chooses χ, then he does not trade and his payoff is 0. If a buyer

chooses γ when there are sellers matched with buyers at p, these sellers are randomly

matched pairwise with the buyer and any other buyer who chooses γ at the same

time. If a buyer chooses γ when there are no sellers matched with buyers at p, since

n ≤ m, there has to be a positive number of sellers making a choice at Stage 5. From

Lemma 1, all these sellers making a choice at Stage 5 will choose γ and be randomly

matched pairwise with all these buyers choosing γ when there are no sellers matched

with buyers at p. Hence, regardless of whether or not there are sellers matched with

buyers at p, there is a positive probability that a buyer will be matched with a seller

at p if he chooses γ. Since a low valuation buyer has a negative payoff when he buys

at p and a high valuation buyer has a positive payoff when he buys at p, every low

valuation buyer would choose χ and every high valuation buyer would choose γ.

Lemma 3 Suppose that n = n > nh > m. Then the game enters Stage 5 with nh−m

unmatched buyers and all sellers in M trade at p.

Proof. Since n > m, there is a positive number of unmatched buyers and m pairs

of matched buyers and sellers. Since nh > m, there is a positive number of high

valuation buyers who are unmatched. From Lemma 2, every high valuation buyer

who is unmatched would choose γ and every low valuation buyer who is unmatched

would choose χ. Hence, n1 > 0. If m ≤ n1, then all sellers in M are matched at

p and so the expected payoff of any seller j is equal to ωj(τ). If instead m > n1,

then since there are n1 sellers who are matched at p, this causes n1 buyers who were

matched at p to become unmatched while m− n1 buyers remain matched at p. But
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nh − n1 high valuation buyers were matched at Stage 2. Given that nh > m, there

were more high valuation buyers who were matched at Stage 2 than there are buyers

who remain matched at p. Hence, there is a positive number of high valuation buyers

among the n1 buyers who have become unmatched and so n2 > 0. If m − n1 ≤ n2,

then all the remaining sellers in M are matched at p and so the expected payoff of

seller j is equal to ωj(τ). If instead m − n1 > n2, then since n2 additional sellers

are matched at p, this causes n2 additional buyers who were matched at p to become

unmatched while m − n1 − n2 buyers remain matched at p. But nh − n1 − n2 high

valuation buyers were matched at Stage 3. Given that nh > m, hence n3 > 0 and so

on until all sellers in M are matched at p. Since all sellers in M are matched at p

and nh > m, there are nh −m unmatched buyers when the game enters Stage 5.

Let Sj.1 denote the information state for seller j in Stage 2 after she observes n = n

in Stage 1.

Lemma 4 Suppose that n > nh > m and seller j is in Sj.1. Then seller j’s expected

payoff from choosing γ is equal to ωj(τ) and her expected payoff from choosing n is

equal to (nh −m + 1)ωj(τ)/(m−m + 1).

Proof. Consider first the expected payoff of any seller j when she chooses γ. From

Lemma 3, seller j would trade at p and so have an expected payoff equal to ωj(τ).

Consider now the expected payoff of seller j when she chooses χ. Let M − j denote

the set of sellers who choose γ when seller j chooses χ. Note that the cardinality of

M − j is equal to m−1 ≥ 0. Given that nh > m−1, from Lemma 3, the game enters

Stage 5 with nh −m + 1 high valuation buyers who are unmatched. From Lemma 1,

every seller not in M − j chooses γ at Stage 5. Since there are m−m + 1 sellers not

in M − j, seller j’s probability of trading at p is equal to (nh −m + 1)/(m−m + 1).
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Hence, by choosing n, seller j has an expected payoff of (nh−m+1)ωj(τ)/(m−m+1).

Lemma 5 Suppose that n > m ≥ nh and seller j is in Sj.1. If nh > 0, then seller j’s

expected payoff from choosing γ is equal to (n−m)/(n−nh+1)×nh/m+ωj(τ) and her

expected payoff from choosing χ is equal to 0 if m > nh and equal to ωj(τ)/(m−nh+1)

if m = nh. If nh = 0, then seller j’s expected payoff from choosing γ is equal to ωj(τ)

and her expected payoff from choosing χ is equal to 0.

Proof. Suppose that nh > 0. Consider the expected payoff of seller j when she

chooses γ. Since n > m, there is a positive number of unmatched buyers and m pairs

of matched buyers and sellers. From Lemma 2, every high valuation buyer who is

unmatched would choose γ and every low valuation buyer who is unmatched would

choose χ. Since m ≥ nh, there may or may not be any high valuation buyers who

are unmatched. Conditional on n = n > m ≥ nh > 0, the probability that there

are n1 high valuation buyers who are unmatched at p is equal to
(

n−m
n1

)(
m

nh−n1

)
/
(

n
nh

)
,

which is the probability mass function of a hypergeometric distribution. Note that

0 ≤ n1 ≤ min{n−m, nh}. Conditional on n1 high valuation buyers being unmatched,

the probability that a seller is matched with one of the n1 high valuation buyers at p is

equal to n1/m and with probability (m−n1)/m the seller is not matched with any of

the n1 high valuation buyers at p. Note that if n1 = nh, then all high valuation buyers

are matched at p and so any seller in M not matched at p would trade at p. If n1 < nh,

then there may or may not be any high valuation buyers who are unmatched. The

conditional probability that there are n2 high valuation buyers who are unmatched

at p is equal to
(

n1

n2

)(
m−n1

nh−n1−n2

)
/
(

m
nh−n1

)
. Note that 0 ≤ n2 ≤ min{n1, nh − n1}. The

conditional probability that a seller is matched with one of the n2 high valuation
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buyers at p is equal to n2/(m− n1) and with probability (m− n1− n2)/(m− n1) the

seller is not matched with any of the n2 high valuation buyers at p. If n1 + n2 = nh,

then all high valuation buyers are matched at p and the game ends. If n1 + n2 < nh,

then the game continues as there may or may not be any high valuation buyers who

are unmatched. Note that if ni = 0 for any i, then the game ends with buyers and

sellers trading at the prices at which they are matched.

Hence, the expected payoff for any seller j in Ml when she chooses γ is equal to

min{n−m,nh}∑
n1=0

(
n−m
n1

)(
m

nh−n1

)(
n
nh

) [
n1

m
ωj(τ) +

m− n1

m

×[

min{n1,nh−n1}∑
n2=0

(
n1

n2

)(
m−n1

nh−n1−n2

)(
m

nh−n1

) [
n2

m− n1

ωj(τ) +
m− n1 − n2

m− n1

×[

min{n2,nh−n1−n2}∑
n3=0

(
n2

n3

)(
m−n1−n2

nh−n1−n2−n3

)(
m−n1

nh−n1−n2

) [
n3

m− n1 − n2

ωj(τ) +
m− n1 − n2 − n3

m− n1 − n2

· · · × [

min{nz−2,nh−
Pz−2

i=1 ni}∑
nz−1=0

(
nz−2

nz−1

)(m−
Pz−2

i=1 ni

nh−
Pz−1

i=1 ni

)
(m−

Pz−3
i=1 ni

nh−
Pz−2

i=1 ni

) [
nz−1

m−
∑z−2

i=1 ni

ωj(τ) +
m−

∑z−1
i=1 ni

m−
∑z−2

i=1 ni

×[

(
nz−1

0

)(
m−
Pz−1

i=1 ni

1

)(m−
Pz−2

i=1 ni

nh−
Pz−1

i=1 ni

) ωj(τ) +

(
nz−1

1

)(
m−
Pz−1

i=1 ni

0

)(m−
Pz−2

i=1 ni

nh−
Pz−1

i=1 ni

) [
1

m−
∑z−1

i=1 ni

ωj(τ)

+
m−

∑z−1
i=1 ni − 1

m−
∑z−1

i=1 ni

ωj(τ)] . . . ]

=
1

m
(

n
nh

) min{n−m,nh}∑
n1=1

(
n−m

n1

)
[n1

(
m

nh − n1

)
+

min{n1,nh−n1}∑
n2=1

(
n1

n2

)

×[n2

(
m− n1

nh − n1 − n2

)
+

min{n2,nh−n1−n2}∑
n3=1

(
n2

n3

)
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×[n3

(
m− n1 − n2

nh − n1 − n2 − n3

)
+

min{n3,nh−n1−n2−n3}∑
n4=1

(
n3

n4

)

· · · × [nz−2

(
m−

∑z−3
i=1 ni

nh −
∑z−2

i=1 ni

)
+

min{nz−2,nh−
Pz−2

i=1 ni}∑
nz−1=1

(
nz−2

nz−1

)

×[nz−1

(
m−

∑z−2
i=1 ni

nh −
∑z−1

i=1 ni

)
+

(
nz−1

1

)(
m−

∑z−1
i=1 ni

0

)
] . . . ] + ωj(τ)

=
n−m

n− nh + 1
× nh

m
+ ωj(τ).

Next, consider the expected payoff of seller j from choosing χ instead. If m > nh, then

m−1 ≥ nh. From Lemma 2, every low valuation buyer would choose χ and every high

valuation buyer would choose γ. Hence, there would be at most nh buyers choosing γ.

Since each of these buyers choosing γ would be randomly matched pairwise with the

m− 1 ≥ nh sellers who chose γ, the game will not reach Stage 5 and so seller j would

not trade and would have a payoff of 0. If instead m = nh, then m−1 = nh−1 < nh.

Since there are more high valuation buyers than there are sellers in M−j, by Lemma 3,

the game enters Stage 5 with nh−m+1 = 1 unmatched buyer. Since, from Lemma 1,

every seller not in M − j chooses γ at Stage 5 and so seller j’s expected payoff from

choosing nj is equal to ωj(τ)/(m − nh + 1). In contrast, seller j’s expected payoff

from choosing γ is equal to (n− nh)/(n− nh + 1) + ωj(τ).

Finally, suppose that nh = 0. Since n = nl, by Lemma 2, each unmatched buyer

would choose χ. If seller j chooses γ, she would trade at p and have an expected

payoff equal to ωj(τ) > 0 if j in Ml and ωj(τ) < 0 if j in Mh. If seller j chooses χ

instead, she would not trade and her expected payoff would be equal to 0.

Lemma 6 Suppose that m ≥ n and seller j is in Sj.1. Then seller j’s expected payoff

from choosing γ is equal to nωj(τ)/m and her expected payoff from choosing χ is equal
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to 0.

Proof. If n = n ≤ m, then the game ends and seller j’s expected payoff from choosing

γ is equal to nωj(τ)/m > 0 if j in Ml and nωj(τ)/m < 0 if j in Mh.

Consider now seller j’s expected payoff from choosing χ instead. If n < m, then

n ≤ m − 1 and the game ends with seller j not trading and getting a payoff of 0.

If n = m, then m − 1 = n − 1 < n and so there is one unmatched buyer. Since

nl > 0, nh ≤ n − 1. By Lemma 2, every low valuation buyer would choose χ and

every high valuation buyer would choose γ. Hence, there would be no greater than

n − 1 buyers choosing γ. Since each of these buyers choosing γ would be randomly

matched pairwise with the sellers who chose γ, the game will not reach Stage 5 and

so seller j would not trade and would have a payoff of 0.

Lemma 7 Sequential rationality requires that σj.s(γ) = 1 for all j in Ml and s in

Sj.1, and σj.s(χ) = 1 for all j in Mh and s in Sj.1.

Proof. By Lemmas 4, 5, and 6,

Uj(σ
∗, [γ]|x) =



ωj(τ) if n > nh > m

n−nh

n−nh+1
+ ωj(τ) if n > m = nh > 0

n−m
n−nh+1

× nh

m
+ ωj(τ) if n > m > nh

n
m
× ωj(τ) if m ≥ n

where σ∗ is any behavioral-strategy profile in which each buyer chooses γ, each un-

matched buyer in Nh chooses γ, each unmatched buyer in Nl chooses χ, and each
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seller chooses γ; x is any of seller j’s decision node at Stage 2 after observing n = n.

Uj(σ
∗, [χ]|x) =



nh−m+1
m−m+1

× ωj(τ) if n > nh > m

1
m−nh+1

× ωj(τ) if n > m = nh > 0

0 if n > m > nh

0 if m ≥ n

Consider the case m ≥ n > nh > m. Since ωj(τ) > 0 for all j in M ,

nh −m + 1

m−m + 1
× ωj(τ) < ωj(τ)

for all j in M .

Consider the case n > m = nh > 0. Since n− nh ≥ 1 and n ≤ m,

1

m− nh + 1
≤ n− nh

n− nh + 1
< 1.

Given that ωj(τ) = ε, ωj(τ) = 1 + ε for all j in Ml, and ωj(τ) = −1 + ε, ωj(τ) = ε for

all j in Mh, hence

0 <
1

m− nh + 1
× ωj(τ) <

n− nh

n− nh + 1
+ ωj(τ)

if j in Ml and

1

m− nh + 1
× ωj(τ) > 0 >

n− nh

n− nh + 1
+ ωj(τ)

if j in Mh.
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Consider the case n > m > nh. Since 0 < (n−m)/(n−nh+1) < 1 and 0 ≤ nh/m < 1,

0 ≤ n−m

n− nh + 1
× nh

m
< 1.

Given that ωj(τ) = ε for all j in Ml and ωj(τ) = −1 + ε for all j in Mh, hence

n−m

n− nh + 1
× nh

m
+ ωj(τ) > 0

for any j in Ml, and

n−m

n− nh + 1
× nh

m
+ ωj(τ) < 0

for any j in Mh.

Consider the case n ≤ m.

n

m
× ωj(τ) > 0

for any j in Ml and

n

m
× ωj(τ) < 0

for any j in Mh.

Since Uj(σ
∗, [γ]|x) > Uj(σ

∗, [χ]|x) for any j in Ml, sequential rationality requires that

σj.s(γ) = 1 for all j in Ml and s in Sj.1.

The probability that there are i high valuation buyers among n − 1 buyers is equal

to B(i; (n− 1), (1− p)) =
(

n−1
i

)
pn−1−i(1− p)i, which is the probability mass function

of a binomial distribution. Similarly, the probability that there are j high cost sellers

among m − 1 sellers is equal to B(j; (m − 1), (1 − q)). Since sequential rationality

requires that all low cost sellers choose γ if all buyers choose γ, the remaining un-

certainty, as perceived by a high cost seller, rests in the choices made by each of the
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other high cost sellers, if any. In this regard, the probability that k among j high

cost sellers choose n is equal to B(k; j, (1− β)), where 0 ≤ β ≤ 1.

Noting that m = (m − 1 − j) + (j − k) + 1 = m − k, high cost seller g’s expected

payoff from choosing γ is equal to

n−1∑
i=0

B(i; (n− 1), (1− p))[
m−1∑
j=0

B(j; (m− 1), (1− q))[

j∑
k=0

B(k; j, (1− β))Ug(σ
∗, [γ]|x)]]

=
n−1∑
i=0

B(i; (n− 1), (1− p))[
m−1∑
j=0

B(j; (m− 1), (1− q))[

min{m−n,j}∑
k=0

B(k; j, (1− β))

× n

m− k
(−1 + ε)]]

+
n−2∑
i=0

B(i; (n− 1), (1− p))[
m−1∑

j=m−n+1

B(j; (m− 1), (1− q))[

min{m−1−i,j}∑
k=m−n+1

B(k; j, (1− β))

×(−1 +
n−m + k

n− i + 1
× i

m− k
+ ε)]]

+
n−1∑
i=1

B(i; (n− 1), (1− p))[
m−1∑

j=m−i

B(j; (m− 1), (1− q))[B((m− i); j, (1− β))

×(−1 +
n− i

n− i + 1
+ ε)]]

+
n−1∑
i=2

B(i; (n− 1), (1− p))[
m−1∑

j=m+1−i

B(j; (m− 1), (1− q))[

j∑
k=m+1−i

B(k; j, (1− β))ε]]

and her expected payoff from choosing n is equal to

n−1∑
i=0

B(i; (n− 1), (1− p))[
m−1∑
j=0

B(j; (m− 1), (1− q))[

j∑
k=0

B(k; j, (1− β))Ug(σ
∗, [χ]|x)]]

=
n−1∑
i=1

B(i; (n− 1), (1− p))[
m−1∑

j=m−i

B(j; (m− 1), (1− q))[B((m− i); j, (1− β))
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× 1

m− i + 1
ε]]

+
n−1∑
i=2

B(i; (n− 1), (1− p))[
m−1∑

j=m+1−i

B(j; (m− 1), (1− q))[

j∑
k=m+1−i

B(k; j, (1− β))

×i−m + k + 1

k + 1
ε]].

Since ε, but not p > 0 and q > 0, is infinitismally small, each high cost seller’s expected

payoff from choosing γ is strictly less than the expected payoff from choosing χ, that

is

n−1∑
i=2

B(i; (n− 1), (1− p))[
m−1∑

j=m+1−i

B(j; (m− 1), (1− q))[

j∑
k=m+1−i

B(k; j, (1− β))

×m− i

k + 1
ε]]

<
n−1∑
i=0

B(i; (n− 1), (1− p))[
m−1∑
j=0

B(j; (m− 1), (1− q))[

min{m−n,j}∑
k=0

B(k; j, (1− β))

× n

m− k
(1− ε)]]

+
n−2∑
i=0

B(i; (n− 1), (1− p))[
m−1∑

j=m−n+1

B(j; (m− 1), (1− q))[

min{m−1−i,j}∑
k=m−n+1

B(k; j, (1− β))

×(1− n−m + k

n− i + 1
× i

m− k
− ε)]]

+
n−1∑
i=1

B(i; (n− 1), (1− p))[
m−1∑

j=m−i

B(j; (m− 1), (1− q))[B((m− i); j, (1− β))

×(1− n− i

n− i + 1
− ε +

1

m− i + 1
ε)]].

Hence, sequential rationality requires that σj.s(χ) = 1 for all j in Mh and s in Sj.1.

Let Si.1 denote the information state in which buyer i chooses at Stage 1.
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Lemma 8 Sequential rationality requires σi.s(γ) = 1 for all i in Nh and s in Si.1.

Proof. The payoff from choosing χ is equal to 0 for any buyer. Consider the payoff

from choosing γ instead for any high valuation buyer i. Note that from Lemma 1,

the common belief is that any seller not in M would choose γ if the game proceeds

to Stage 5, and given that n ≤ m, any buyer choosing γ would be expected to end

the game matched at p. If n ≤ m, then the game ends with buyer i trading at p

and obtaining a payoff equal to 1 + ε. If n > m, then buyer i is either unmatched or

matched at Stage 2. If he is unmatched at Stage 2, he will choose γ to trade at p and

obtain a payoff equal to ε. If he is matched at Stage 2, he will either remain matched

at p, resulting in a payoff equal to 1 + ε, or subsequently unmatched and be allowed

to choose γ and obtain a payoff equal to ε. Hence, sequential rationality requires that

σi.s(γ) = 1 for all i in Nh and s in Si.1.

Lemma 9 Sequential rationality requires σ1.s(γ) = 1 for all s in S1.1.

Proof. Consistency requires that π1.s(x) = (1− p)n−1qm for s in S1.1, where x is the

chance node associated with all buyers except buyer 1 being high type and all sellers

being low type. Buyer 1’s payoff from choosing χ is equal to 0. From Lemma 8,

sequential rationality requires that all high type buyers choose γ. From Lemma 7,

sequential rationality requires that all low type sellers choose γ if all buyers choose

γ. Since n ≤ m, buyer 1’s expected payoff from choosing γ is greater or equal to

(1− p)n−1qmε > 0. Hence, sequential rationality requires that σ1.s(γ) = 1 for all s in

S1.1.

Lemma 10 Sequential rationality requires σi.s(γ) = 1 for all i in Nl − {1} and s in

Si.1.
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Proof. Consistency requires that πi.s(x) = (1− p)n−2qm for s in Si.1, where x is the

chance node associated with all buyers except buyer i and buyer 1 being high type

and all sellers being low type. Buyer i’s payoff from choosing χ is equal to 0. From

Lemma 9, sequential rationality requires that buyer 1 chooses γ. From Lemma 8,

sequential rationality requires that all high type buyers choose γ. From Lemma 7,

sequential rationality requires that all low type sellers choose γ if all buyers choose

γ. Since n ≤ m, buyer i’s expected payoff from choosing γ is greater or equal to

(1 − p)n−2qmε > 0. Hence, sequential rationality requires σi.s(γ) = 1 for all i in

Nl − {1} and s in Si.1.

Lemma 11 Sequential rationality requires σi.s(γ) = 1 for all i in N and s in Si.1.

Proof. The proof follows from Lemmas 8, 9, and 10.

Theorem 16 The Ideal Rule W is implementable in sequential equilibrium.

Proof. From Lemma 11, all buyers would choose γ in Stage 1. Hence, the game

would not end at Stage 1.

From Lemma 7, all low cost sellers would choose γ and all high cost sellers would

choose χ in Stage 2 having observed all buyers choosing γ in Stage 1. If n ≤ m,

then the game ends at Stage 2 with all buyers randomly matched with only low cost

sellers. Hence, the set of sequential equilibrium outcomes equals the set of Ideal Rule

outcomes in the state of the world in which ml ≥ n, i.e. there are at least as many

low cost sellers as there are buyers.

From Lemma 2, all low valuation buyers would choose χ and all high valuation buyers

would choose γ if given the opportunity to choose at Stage 3 or Stage 4. If the game
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ends at Stage 3 with no trade because n1 = 0 and n > m = 0, then all buyers have low

valuations and all sellers have high costs. Hence, the no trade sequential equilibrium

outcome equals the Ideal Rule outcome in the state of the world in which n = nl and

m = mh, i.e. all buyers have low valuations and all sellers have high costs.

If the game ends at Stage 3 with the matched buyers and sellers trading at p because

n1 = 0 and n > m > 0, then

1. all unmatched buyers have low valuations;

2. all unmatched sellers have high costs;

3. any high valuation buyer is matched; and

4. all matched sellers have low costs.

If the game ends at Stage 4 with matched buyers and sellers trading at the prices

that they are matched because nt = 0 for any t ∈ {2, . . . , n} and all buyers who have

chosen γ are matched, then

1. all unmatched buyers have low valuations;

2. all unmatched sellers have high costs;

3. all high valuation buyers are matched;

4. all matched sellers have low costs; and

5. all buyers matched at p have high valuations.

Given the above, if any game ends at Stage 3 or Stage 4 because nt = 0 for any

t ∈ {1, . . . , n}, n > m > 0, and any buyer who has chosen γ is matched, then there
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are more buyers than there are low cost sellers and there are at least as many low cost

sellers as there are high valuation buyers. Hence, the set of sequential equilibrium

outcomes equals the set of Ideal Rule outcomes in the state of the world in which

n > ml and ml ≥ nh, i.e. there are more buyers than there are low cost sellers and

there are at least as many low cost sellers as there are high valuation buyers.

The game proceeds to Stage 5 only if

1. At Stage 3, n1 > 0 and m = 0;

2. At Stage 4, nt = 0 for any t ∈ {2, . . . , n} and there is at least one buyer who

has chosen γ but is unmatched; or

3. At Stage 4, nt > 0 for any t ∈ {2, . . . , n} and there are no sellers in M who are

matched with a buyer at p.

Hence, the game proceeds to Stage 5 only if nh > ml. From Lemma 1, all sellers who

have chosen χ would choose γ at Stage 5. Since n ≤ m, there are high cost sellers

who would choose γ at Stage 5, and so m > 0. If the game ends at Stage 5 with

matched buyers and sellers trading at p, then

1. all unmatched buyers have low valuations;

2. all unmatched sellers have high costs;

3. all high valuation buyers are matched;

4. all matched buyers have high valuations;

5. all low cost sellers are matched; and

6. all low valuation buyers are unmatched.
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Hence, the set of sequential equilibrium outcomes equals the Ideal Rule outcomes in

the state of the world in which n > ml and nh > ml, i.e. there are more buyers than

there are low cost sellers and there are more high valuation buyers than there are low

cost sellers.

Since there exists a mechanism such that the set of sequential equilibrium outcomes

equals the set of Ideal Rule outcomes in each possible state of the world, the Ideal

Rule is implementable in sequential equilibrium.

3.4 Extensions

If n ≥ m, then the Ideal Rule is implementable in similar fashion as long as there

is at least one high cost seller, and this is common knowledge. The implementing

mechanism would begin by requiring all sellers to choose from the set {γ, χ} instead

of requiring all buyers to choose from the set {γ, χ}.

An obvious extension is to find a mechanism that implements the Ideal Rule with

more than two reservation prices. With more than two reservation prices, it becomes

more difficult to ensure that buyers and sellers would indirectly reveal their true

preferences even if it were common knowledge that there is at least one buyer at each

reservation price.
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