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Thesis Advisor: Arthur Lewbel

The thesis includes two essays. The �rst essay, Inequality Moments in Estimation of

Discrete Games with Incomplete Information and Multiple Equilibria, develops a method

for estimation of static discrete games with incomplete information, which delivers consis-

tent estimates of parameters even when games have multiple equilibria. Every Bayes-Nash

equilibrium in a discrete game of incomplete information is associated with a set of choice

probabilities. I use maximum and minimum equilibrium choice probabilities as upper and

lower bounds on empirical choice probabilities to construct moment inequalities. In gen-

eral, estimation with moment inequalities results in partial identi�cation. I show that point

identi�cation is achievable if the payo�s are functions of a su�cient number of explanatory

variables with a real line domain and outcome-speci�c coe�cients associated with them.

The second essay, Tenancy Rent Control and Credible Commitment in Maintenance, co-

authored with Richard Arnott, investigates the e�ect of tenancy rent control on maintenance

and welfare. Under tenancy rent control, rents are regulated within a tenancy but not

between tenancies. The essay analyzes the e�ects of tenancy rent control on housing quality,

maintenance, and rehabilitation. Since the discounted revenue received over a �xed-duration

tenancy depends only on the starting rent, intuitively the landlord has an incentive to spruce

up the unit between tenancies in order to �show� it well, but little incentive to maintain the

unit well during the tenancy. The essay formalizes this intuition, and presents numerical

examples illustrating the e�ciency loss from this e�ect.
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3.1 Program Ŝ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Program D̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Program R̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Numerical Examples 54

4.1 Choice of functional forms and parameters . . . . . . . . . . . . . . . . . . . . 55

4.2 Numerical solution procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Examples without rehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Examples with rehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Conclusion 63

ii



Part I

Inequality Moments in Estimation of

Discrete Games with Incomplete

Information and Multiple Equilibria

1 Introduction

Empirical industrial organization literature often employs discrete games as a convenient

tool, which allows to model interaction between economic agents and has an advantage

of clear interpretation of structural parameters. However, the use of games in empirical

applications requires a careful choice of appropriate econometric techniques. In particular,

it is often necessary to address the problem of multiplicity of equilibria, which is common

in discrete games.

The sources of equilibrium multiplicity and the solutions to this problem di�er depending

on the type of the game. In this essay, I suggest an estimator for a particular type of

discrete games, namely static discrete games with incomplete information and uncorrelated

unobservables. The proposed estimator delivers consistent estimates of parameters even

when games have multiple equilibria. Robustness to the presence of multiple equilibria

is achieved by using moment inequalities, which hold in any equilibrium, forming upper

and lower bounds on empirical choice probabilities. In general, estimation using moment

inequalities results in the set identi�cation of parameters. I show that point identi�cation

is achievable if i) payo�s are functions of a su�cient number of explanatory variables with

a real line domain and ii) these expanatory variables are associated with outcome-speci�c

coe�cients.

A static discrete game with incomplete information is a simultaneous move game, in

which players choose between a �nite number of actions and each player has complete

knowledge of their own payo�s but only incomplete knowledge of other players' payo�s.
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Every Bayes-Nash equilibrium is associated with a set of equilibrium choice probabilities,

i.e. probabilities that a particular action is taken by a particular player in an equilibrium.

With multiple equilibria in the game, there are several sets of equilibrium choice probabil-

ities. I call an equilibrium choice probability extremal if it is a maximum or a minimum

one for a given player and action. Any equilibrium choice probability should lie between the

extremal ones. Also, an empirical choice probability, which is an estimate of the probability

that a particular action is taken by a particular player, should lie between the respective

extremal equilibrium choice probabilities. Empirical choice probabilities are not necessar-

ily consistent estimates of equilibrium choice probabilities. If the sample contains data on

outcomes of games where di�erent equilibria were played, empirical choice probabilities are

not the consistent estimates of equilibrium choice probabilities. Rather, they are weighted

averages of estimates of equilibrium choice probabilities associated with di�erent equilibria.

I suggest to estimate the payo�s of the game by using moment inequalities, which require

empirical choice probabilities to be smaller than maximal and greater than minimal equilib-

rium choice probabilities. Thus, even in the absence of consistent estimates of equilibrium

choice probabilities it becomes possible to estimate the parameters of the payo� functions

consistently.

There is a growing industrial organization literature that models strategic interaction of

economic agents as discrete games and then takes them to data. The examples include the

studies of entry in small monopoly markets (Bresnahan and Reiss (1990)), entry and quality

choice of motels (Mazzeo (2002)), location choice by video retailers (Seim (2002)), timing

of radio commercials (Sweeting (2008)), welfare impact of environmental regulations of the

cement industry (Ryan (2006)), airlines' entry decisions (Aguirregabiria and Ho (2008))1. In

empirical applications it is assumed that games of similar structure (with the same number

of players and actions, same timing, and same information structure) are played in many

di�erent markets/moments of time. The economist observes some characteristics of the

players in each of these instances but does not fully know the payo�s. Usually it is assumed

that payo�s have a speci�c parametric form that depends on observables. Then the problem

1See Berry and Reiss (2006) for the review of the empirical industrial organization literature employing
discrete games.
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is to estimate the parameters of the payo�s knowing the observable characteristics of the

players and assuming the structure of the game. Essentially, the economist deals with a

series of games that have the same structure but di�erent payo�s.

The choice of information type of the game is made by the economist. In some cases,

economic agents are likely to know so much about each other that the game of complete

information should be employed. In other cases, it is plausible that agents possess important

con�dential information about their own payo�s, and incomplete information framework is

more appealing. As pointed out by Bajari, Hong, Krainer, and Nekipelov (2007), a discrete

game of incomplete information is a generalization of a single agent discrete choice model

such as logit or probit, bringing in the strategic interaction between agents. Additionally,

games of incomplete information may have some technical advantages, such as guaranteed

existence of equilibrium in pure strategies (Seim (2006) discusses these issues in the context

of static games and Doraszelski and Satterthwaite (2007) in the context of dynamic games).

Payo�s in discrete games are usually modelled as functions of some observable charac-

teristics and of unobservable characteristics, which will be denoted ε. In games of complete

information ε is assumed to be unobservable to the economist but known to all players of

the game. In games of incomplete information unobservable characteristics εk of player k

are assumed to be unknown not only to the economist, but also to other players.

Both games of complete and incomplete information may have multiple equilibria. How-

ever, the structure of the equilibria is di�erent in two types of games, as well as the source of

the multiplicity of equilibria. In games of complete information, a Nash equilibrium in pure

strategies is characterized by a pro�le of actions. In contrast, in games of incomplete infor-

mation strategies are mappings from unobservables ε to actions, and equilibrium strategies

in a Bayes-Nash equilibrium are threshold-type rules. In games of complete information,

several equilibria may exist for some realizations of unobservables ε, and there can be such

realizations of ε that the equilibrium is unique. In games of incomplete information, the

number of equilibria is exactly the same for all realizations of ε, but there can be a unique

equilibrium for some realizations of observables and multiple equilibria for others.

Multiplicity of equilibria in games of incomplete information may lead to inconsistent

estimates of equilibrium choice probabilities if the economist does not know from which
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equilibrium each observation comes. Often economists do not have this information.

There are several approaches to avoid the multiplicity problem in discrete games. First,

it may be possible to concentrate on a particular equilibrium (e.g., Jia (2008) considers

extremal equilibria, Mazzeo (2002) speci�es the order of moves of the players, Berry (1992)

chooses the equilibrium which maximizes joint pro�ts of the �rms, etc.) One more approach

is to assume that all data come from the same equilibrium (e. g., Aguirregabiria and Mira

(2007), Pesendorfer and Schmidt-Dengler (2008), Pakes, Berry, and Ostrovsky (2007)). In

this case the economist may not know much about the equilibrium structure and relies on

data to tell which equilibrium is played, in contrast to the �rst approach.

Yet another route is to model the selection mechanism as parameterized by some proba-

bility λ (which can be a function of some exogenous variables) and estimate this probability

along with other parameters (Sweeting (2008)). A version of this approach is to �nd a vari-

able that shifts markets from one equilibrium to another (Bajari, Hong, and Ryan (2008),

and Bajari, Hong, Krainer, and Nekipelov (2007)). Else one may be able to �nd a feature

of the game, which is invariant across all equilibria and build the estimation around this

feature (Bresnahan and Reiss (1990), Tamer (2003), Aradillas-Lopez and Tamer (2008))2.

This essay contributes to the latter line of research with respect to static games of

incomplete information. My approach is to provide an estimation procedure which is robust

to the presence of multiple equilibria and remains valid without knowledge of `equilibrium

shifters'. In general, the refusal to assume that data come from a single equilibrium leads

to less e�cient estimates than in case of other approaches discussed above but the bene�t is

no misspeci�cation at the stage of modelling the selection mechanism or assumptions about

the equilibrium selection. This is a particular case of the tradeo� between e�ciency and

robustness.

The essay has the following plan. Section 2 discusses the equilibrium structure in discrete

games with incomplete information. Section 3 describes the related econometric problem of

payo�s estimation in discrete games, proposes estimation strategy, and states identi�cation

conditions. Section 4 presents Monte Carlo analysis of the suggested estimator and Section

5 concludes.

2See Berry and Tamer (2007) for an overview of various strategies used for identi�cation in entry games.
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2 A discrete game with incomplete information

First, I describe a general case of a static discrete game with incomplete information and its

equilibrium structure, and then I illustrate the nature of equilibrium multiplicity in games

with incomplete information using an example of a binary game with two players.

2.1 General case

In empirical studies in industrial organization literature economists sometimes model inter-

action between economic agents as a game and then estimate the payo�s of this game. For

this purpose one needs to observe similar situations of interaction repeatedly. The most

studied example of such a case in the literature is �rm entry in isolated geographic markets.

Clearly, two such markets, as well as their actual and potential entrants, will most certainly

di�er in their attributes. Still, one may be willing to assume that the entry in both markets

can be described by two games that have the same structure but di�er in their payo� values.

For brevity sake, further I refer to such related games as repetitions of a game.

Consider several repetitions of a game, indexed by n = 1, 2, ..., N (in the entry example

above each repetition corresponds to a single market). Alternatively, one may think that a

series of N related games is observed. The relation between these games is described below.

In each repetition of the game there are K players, indexed by k. Each of the players

simultaneously chooses one of the M + 1 actions, ak ∈ {0, 1, ...,M}. An action pro�le of

a game is described by vector a = (a1, a2, ..., aK), which belongs to the set of all possible

action pro�les A = {0, 1, ...,M}K .

A payo� of player k in repetition n of the game is modelled as a sum of two components:

uk,n(a) = vk,n(a) + εk,n(ak).

The �rst of them, vk,n(a), depends on the actions of all players of the game and is perfectly

known to them. The second component, εk,n(ak) is assumed to come independently from

distribution F (·). εk,n(ak) depends only on actions of player k and is known only to him

before he makes a move in the game. One may interpret εk,n(ak) as a piece of private
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information about the payo�s associated with a particular action ak that player k in game

n receives before choosing an action. Other players know only the distribution of εk,n.

Abusing notation, I sometimes refer to εk,n instead of εk,n(ak). Also, it is convenient to

introduce εn = (ε1,n, ε2,n, ..., εK,n), which contains all private information for game n, and

ε−k,n, which contains private information for all players except player k. Similarly, I refer to

a−k = (a1, ..., ak−1, ak+1, ...ak) and to A−k = {0, 1, ...,M}K−1, a set, to which a−k belongs.

Without knowledge of ε−k,n, player k cannot perfectly predict actions to be chosen by

other players and has to resort to his expectation (belief) to observe particular actions of

other players a−k. I denote this belief by πk,n(a−k). The expected payo� of player k from

choosing a particular action ak is

Uk,n(ak) =
∑

a−k∈A−k

[πk,n(a−k)vk,n(ak, a−k)] + εk,n(ak) (1)

where πk,n(a−k) is the belief held by player k that the actions a−k will be chosen by other

players in game n. Each player chooses an action maximizing his expected payo� given his

beliefs πk,n(a−k) about choice probabilities of other players in game n:

δk,n = arg max
ak∈{0,1,...,M}

Uk,n(ak). (2)

Like ak, δk,n takes values from the set {0, 1, ...,M} but, unlike ak, δk,n is a payo�-maximizing

action in game n, not an arbitrary action. In any Bayes-Nash equilibrium, the beliefs

πk,n(a−k) should be consistent with the (ex ante) probabilities to choose a particular action

(therefore, all players should have the same beliefs, so the π's subscript k is dropped below):

πn(ak) = Pr[δk,n = ak], (3)

∀k ∈ {1, 2, ...,K}, ∀ak ∈ {0, 1, 2, ...,M}.

Notice that the right-hand side of (3) is a function of beliefs πn(a−k), as they a�ect the

choice of the payo�-maximizing action δk,n. Thus, one can treat (3) as a system of equations

that should be satis�ed in any Bayes-Nash equilibrium and can be solved for πn(a). Further,

6



a2 = 0 a2 = 1

a1 = 0 (0, 0) (0, v2,0 − ε2)
a1 = 1 (v1,0 − ε1, 0) (v1,1 − ε1, v2,1 − ε2)

Table 1: Payo�s in a binary game with two players

I use a bar to denote the equilibrium beliefs: π̄(a).

Depending on the form of F (·) as well as on the values of the payo�s, the system (3)

may have a unique or multiple solutions. I assume that there is some unobservable to the

economist variable(s) η, which does not a�ect payo�s but allows players to coordinate on

a particular equilibrium in a given repetition of the game. Suppose there are En equilibria

in repetition n of the game. Then for each k = 1, 2, ...,K there exist En equilibrium beliefs

{π̄n,(1)(ak), π̄n,(2)(ak), ..., π̄n,(En)(ak)}, and among those one may choose the minimum and

maximum equilibrium beliefs for each particular player-action combination:

π̄n,min(ak) = min
q∈{1,2,...,En}

π̄(q)(ak), (4)

π̄n,max(ak) = max
q∈{1,2,...,En}

π̄(q)(ak).

I use this fact later in the estimation procedure.

2.2 Example: 2× 2 game with incomplete information

Using a simple game, I illustrate the issues with multiple equilibria in games of incomplete

information. Consider a game similar to the entry games studied by Bresnahan and Reiss

(1990, 1991), Tamer (2003), Sweeting (2008), and Aradillas-Lopez (2008). To simplify the

exposition, I suppress the subscript n throughout this section and normalize the payo�s by

setting one payo� of each player equal to zero (this leaves the action choices una�ected).

Also, I slightly simplify the notation compared to the general case.

There are two players, each making a choice between two actions, ak ∈ {0, 1}. The

players' payo�s are shown in Table 1.

Variables εk, k = 1, 2, are observed only by player k and unobserved by the other player;

εk comes independently from a distribution with the cdf F (·), which is known to both

players. As ε′s are private information in this setup, players cannot perfectly predict the
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actions of each other. They hold expectations about the behavior of the other based on their

knowledge of the distribution of ε's. I denote the belief of player k that the other player

chooses action 1 by π−k. As this is a game with only two actions, player k's belief that the

other player chooses action 0 is equal to 1− π−k.

Taking into account the unobservables εk, the expected payo� of player k from choosing

action 1 is vk,1π−k + vk,0(1 − π−k) − εk. If ak = 0 the expected payo� of player k is 0.

Therefore, the player k chooses action 1 if and only if

vk,1π−k + vk,0(1− π−k)− εk > 0.

The requirement that in a Bayes-Nash equilibrium the belief πk should be equal to the ex

ante probability that player k chooses action 1 results in the following system of equations:

π1 = F (v1,0 + (v1,1 − v1,0)π2) (5)

π2 = F (v2,0 + (v2,1 + v2,0)π1).

Thus, the decision of player k which action to choose depends on his belief about the behavior

of the other player, and vice versa. The system (5) states that the beliefs of the players

must be mutually consistent.

Even in this simple example, existence of multiple solutions to (5) is a general case.

For example, Sweeting (2008) shows that for a logit distribution of unobservables there

would be up to three symmetric equilibria in a version of this game. This fact highlights

the importance of the assumption about the common knowledge of F (·). Nevertheless, if

unobservables are distributed uniformly, there is only one equilibrium (Bajari et al., 2007).

Equation in the system (5) may be interpreted as two `best-response' functions that show

how the probability to choose action 1 by one player depends on the probability to choose

action 1 by the other player, π1(π2) and π2(π1). In Figure 1 several possible equilibrium

con�gurations are demonstrated in the space of beliefs (π1, π2).

Panels B and C show situations when the equilibrium is unique. Notice that in this

example the best response are continuous monotone functions. As a result, when one of the
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Panel A Panel B

Panel C Panel D

Figure 1: Di�erent equilibrium con�gurations in games with two players and two actions
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best responses is increasing and the other is decreasing, only one equilibrium is possible.

When both best responses are either increasing, or decreasing (the former case is shown

in Panels A and B, and the latter in Panel D), the number of equilibria depends on the

distribution F (·) and payo�s. In panel A there are three equilibria, while in Panel B there

is a unique equilibrium labelled by π̄∗ = (π̄∗1, π̄
∗
2).

3 Econometric problem

3.1 Observable variables

In cases when discrete games are employed in empirical work, a typical problem of the

economist includes estimation of the deterministic components of the payo�s vk,n(a). Usu-

ally it is assumed that vk,n(a) is a function of some observable (state) variables xn =

(x1,n, x2,n, ..., xK,n). Here xk,n is a row vector that contains observables a�ecting the payo�s

of player k. These observable variables may include a constant, variables which di�er across

players (e.g., �rm productivity), and variables common to all players in a given repetition of

the game (e.g., market size). All observations of state variables available to the economist

are denoted by x.

One approach to estimation of vk,n(a) is to treat it as a nonparametric function of

observables x (see Bajari et al. (2007) for the discussion of this issue). However, even if the

equilibrium is unique, nonparametric estimation of payo�s requires a formidable amount of

data. Moreover, there is an identi�cation problem as the number of payo�s vk,n(a) is larger

than the number of available restrictions. As a result, additional assumptions about the

structure of the problem are needed.

I follow an alternative approach to estimation of publicly known components of the

payo�s vk,n(a), which is based on a parametric speci�cation. I assume that a payo� vk,n(a)

is a linear function of the observables:

vk,n(a) ≡ vk,n(a;xk,n, β) = xk,nβ(a), (6)

where β(a) ∈ B is a vector of parameters, which depends on the pro�le of actions chosen by
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players, and B is a compact set. Thus, I assume that all coe�cients on observable factors

x may depend on action pro�le a chosen by players. Those elements of β(a) that di�er

depending on a are called outcome-speci�c. For instance, in entry games and coordination

games it is often assumed that actions of other players a�ect only a constant term of given

player's payo�, which would make only one component of β(a) outcome-speci�c. In my

setup, I allow for multiple outcome-speci�c coe�cients.

Besides x, the economist observes actions δk,n, k = 1, 2, ...,K, and n = 1, 2, ..., N of all

players in all repetitions of the game. For brevity, all observations of actions stacked in a

single vector will be denoted by δ.

3.2 Normalization of payo�s

For each agent, a payo� associated with action a = 0 is normalized to zero: vk,n(0, a−k) = 0

for k = 1, 2, ...,K. Indeed, adding the same constant to all payo�s of any agent does not

a�ect the agent's choice of action. The action's choice depends only on the di�erence in

expected payo�s from di�erent actions, so the addition of a constant to all payo�s leaves

the choice of action una�ected. Since only actions but not payo�s are observed, there is no

way for the economist to pin down the level of payo�s and the normalization is necessary.

The same logic applies to the variance of εn, which cannot be identi�ed separately from the

scale of β(a). Consequently, it is necessary to normalize variance of εn unless it is already

�xed (e.g., extreme value distribution).

3.3 Distributional assumptions

It is assumed that unobservables εk,n are uncorrelated with the observables xn and are in-

dependently and identically distributed with a cdf function F (·) known to the players and

the economist. Aradillas-Lopez (2008) suggests an estimation procedure for the parameters

of two-by-two games with incomplete information (under the assumption of unique equilib-

rium) with nonparametric distribution of the error term. Some exclusion restrictions and

normalizations are used in this procedure. The potential presence of multiple equilibria

complicates the situation signi�cantly, and further I proceed with a parametric assumption

about the distribution of the unobservables εn.

11



3.4 Estimation of the payo�s

The problem of the economist is to estimate β knowing x, δ, and the timing and structure

of the game. Assuming that in all repetitions of the game players use equilibrium strategies

implies the following set of equilibrium conditions:

π̄n(ak) = E[1{δk,n = ak}|x, η], (7)

∀k ∈ {1, 2, ...,K}, ∀ak ∈ {0, 1, 2, ...,M}

The economist observes actions δk,n of all players in all repetitions of the game. It would

be a straightforward task to estimate β using the equilibrium conditions (7) if one observed

the beliefs π̄n. Without them, one encounters the problem of potential multiplicity of solu-

tions to (7). While one may estimate empirical choice probabilities, they will not necessarily

be consistent estimates of equilibrium choice probabilities. In fact, if there are multiple

equilibria in data, empirical choice probabilities are consistent estimates of some weighted

average of equilibrium choice probabilities corresponding to di�erent equilibria. Further I

refer to this (population) weighted average as Eη[1{δk,n = ak}|x] where the unobservable

variable η essentially determines weights. As any weighted average of the equilibrium beliefs

is, by de�nition, smaller than the largest equilibrium choice probability and larger than the

smallest one, the following inequalities hold in any equilibrium:

π̄min(ak;xn, β)− Eη[1{δk = ak}|xn] ≤ 0 , (8)

Eη[1{δk = ak}|x]− π̄max(ak;xn, β) ≤ 0

∀k ∈ {1, 2, ...,K}, ∀ak ∈ {0, 1, 2, ...,M }

where π̄min(ak;x, β) and π̄max(ak;x, β) are de�ned in (4) and (6) is used as the de�nition of

the publicly known component of the payo�s.

The inequalities (8) can be used to form moments

g(x, b) =

 gmin(x, b)

gmax(x, b)

 , (9)
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where gmin(x, b) and gmax(x, b) are vectors of the size (K ×M × Sx) with Sx being the car-

dinality of set x (i.e., Sx is the number of repetitions of the game with di�erent observables;

if there are two markets with the same observables xn = xr, it means that there are two

observations but only one unique game characterized by observables xn, so in that case Sx

is smaller than N). The elements of the vectors gmin(x, b) and gmax(x, b) have the following

form:

gk,ak,min(xs, b) = (π̄min(ak;xs, b)− Eη[1{δk = ak}|xs])+ (10)

gk,ak,max(xs, b) = (Eη[1{δk = ak}|xs]− π̄max(ak;xs, b))+

for k = 1, ...,K, ak = 1, ...,M, s = 1, ..., Sx (11)

where (x)+ = max(0, x).

The solution to the following minimization problem contains all parameters b that satisfy

(8):

B0 = arg min
b∈B

Q(x, b) (12)

where Q(x, b) = g(x, b)′g(x, b).

Here B0 may be a set estimate that contains true parameter β along with other b ∈ B

satisfying (10).

Applying the analog principle to the optimization problem stated above, I suggest the

following two-stage semiparametric procedure.

In the �rst stage, the empirical choice probabilities π̂ are estimated non-parametrically.

One can use various techniques for this purpose, including sieve method, kernel method, or

local polynomial approximation method. It should be expected that parameter estimates

will be sensitive to the quality of the �rst-stage estimates π̂. Given the non-parametric

nature of these estimates, the larger the number of state variables in the model, the harder

it will be to obtain su�ciently precise �rst-stage estimates. This is an important practical

restriction on the size of games that can be estimated by the proposed method.

At the second stage, the sample analogs of (10) are formed with π̂'s standing for
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Eη[1{δk = ak}|xs]:

ĝn(x, b) =

 ĝmin(x, b)

ĝmax(x, b)

 (13)

ĝmin(x, b) = (π̄min(ak;x, b)− π̂(ak;x))+

ĝmax(x, b) = (π̂(ak;x)− π̄max(ak;x, b))+

and the sample analog Q̂(x, b) of Q(x, b) is minimized to obtain the (possibly) set estimates

B̂0. The consistency of the proposed estimator will not be a�ected and its e�ciency may

be improved if moments are weighted. In particular, it seems reasonable to assign large

weight to inequalities that are associated with small di�erence between maximal and minimal

equilibrium beliefs and vice versa. Indeed, if π̄min(ak;xs, b) = 0 and π̄max(ak;xs, b) = 1 for

some speci�c xn and b, the inequalities employing these equilibrium beliefs do not provide

any information at all, because whatever empirical choice probabilities π̂(ak;xs) are, the

inequalities in question will not be violated. Thus, such moments can be safely discarded

by assigning them zero weight. On the contrary, if π̄min(ak;xs, b) = π̄max(ak;xs, b) the

respective inequalities essentially amount to equality moments and should be given high

weights in estimation. I suggest using the estimator, which is similar to described above but

instead of (13) it employs weighted inequality moments:

ĝw,min(xs, b) = (π̄min(ak;xs, b)− π̂(ak;xs))+(1− (π̄max(ak;xs, b)− π̄min(ak;xs, b)))(14)

ĝw,max(xs, b) = (π̂(ak;xs)− π̄max(ak;xs, b))+(1− (π̄max(ak;xs, b)− π̄min(ak;xs, b))),

k = 1, ...,K, s = 1, 2, ..., Sx, .

In practical implementation of the estimators described in this section there is a necessity

to calculate π̄min(ak;x, b) and π̄max(ak;x, b) for each value of b. There is no explicit formula

for them, and, in general, �nding all solutions to (7) is a di�cult problem. While more

detailed discussion of alternative methods to �nd π̄min(ak;x, b) and π̄max(ak;x, b) is beyond

the scope of this essay, it should be pointed out the Bajari et al. (2007b) describe the

procedure to �nd all equilibria for the case of the extreme value distribution of unobservables
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ε, using the `all-solutions' Homotopy continuation method.

3.5 Parameter identi�cation

Despite the fact that, in general, B0 is a set estimate and is obtained using the inequality

moments, it can be a point estimate in some circumstances. Indeed, it is possible that

under true parameters β for some values of state variables xs there is a unique equilib-

rium. In this case the relevant inequalities in (10) `tighten', e�ectively acting as equalities.

Therefore, if the economist knew which xs characterize games with unique equilibria, he

could use these observations, essentially avoiding the problem of the potential multiplicity

of equilibria. But without knowledge of true β it is impossible to select such xs. In-

deed, π̄min(ak;xs, b) and π̄max(ak;xs, b) depend on b, and in general it can be the case that

π̄min(ak;xs, β) = π̄max(ak;xs, β) but π̄min(ak;xs, b) < π̄max(ak;xs, b). Still, if in the sample

there are observations of games with unique equilibria, it might be possible to achieve point

identi�cation of β.

De�nition. It is said that β is identi�ed relative to b ∈ B if there exists such x′ ∈ X,

k ∈ {1, ...,K}, and ak ∈ Ak that

π̄max(ak;x
′, b) < π̄min(ak;x

′, β)

or

π̄min(ak;x
′, b) > π̄max(ak;x

′, β).

Indeed, if this condition is satis�ed, then it means that any weighted average of the

extremal equilibrium beliefs under parameter β is either smaller than the minimum equilib-

rium belief or greater than the maximum equilibrium belief under b at least for one action

of one player. Therefore, provided that a consistent estimate of Eη[1{δk = ak}|xs] is avail-

able, it will fall beyond the bounds suggested by using the candidate parameter b, which is

inconsistent with the hypothesis that b is the true data generating parameter.

It is hard to �nd conditions that would guarantee identi�cation of β using the above

de�nition as there are no closed form expressions for the extremal equilibrium beliefs, but

the task becomes easier if there are unique equilibria under both β and b. Then it would be
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su�cient to show that

π̄max(ak;x
′, b) = π̄min(ak;x

′, b) 6= π̄min(ak;x
′, β) = π̄max(ak;x

′, β). (15)

Thus, if it is possible to �nd such x′ that (15) is satis�ed, then β is identi�ed relative

to b. It appears that if there is i) a su�cient number of state variables (which depends

on the number of players and number of actions in the game) that have su�ciently large

domain and support and ii) coe�cients on these state variables are outcome-speci�c, it is

possible to �nd such x′. The requirement of having su�cient number of outcome-speci�c

coe�cients is strong. Essentially it demands to make speci�c assumptions about the payo�s

that go beyond linear structure. Nevertheless, such assumptions may be quite plausible in

many cases. More importantly, the smaller the di�erence between these outcome-speci�c

coe�cients, the larger the domain of explanatory variables should be to identify them.

To understand how it is possible to choose such x′ that there is a unique equilibrium in

the relevant repetitions of the game, consider a choice probability for action ak if unobserv-

ables have extreme value distribution (which allows to integrate out unobservables from the

expression for an equilibrium choice probability):

π̄(ak;xs, β) =
exp(

∑
a−k⊂A−k π̄(a−k;xs, β)vk,s(ak, a−k;xk,s, β))

1 +
∑

aj∈A exp(
∑

a−k⊂A−k π̄(a−k;xs, β)vk,n(aj , a−k;xk,s, β))
, (16)

∀k ∈ {1, 2, ...,K}, ∀ak ∈ {0, 1, 2, ...,M}, s = 1, 2, ..., Sx,

and notice that if the righthand side of (16) does not depend on π̄(a−k) then only one value

value of π̄(ak) will satisfy (16). If one can �nd such x′ that π̄(a−k) cancel out in su�cient

number of equations in system (16), it will guarantee the uniqueness of equilibrium. Given

my speci�cation of the payo�s, the coe�cients on π̄(a−k) in (16) are some linear combinations

of the values of the state variables x and parameters b. Setting them equal to zero, one

obtains a system of linear equations that can be solved for x. There is at least one solution

if there is a su�cient number of variables (which translates into the exclusionary restrictions)

and these variables have a su�ciently large domain for the system to have a solution. Using
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a2 = 0 a2 = 1

a1 = 0 0, 0 0,
ν2βν + ξ2βξ,0
+ωβω,0 − ε2

a1 = 1
ν1βν + ξ1βξ,0
+ωβω,0 − ε1,

0
ν1βν + ξ1βξ,1
+ωβω,1 − ε1

,
ν2βν + ξ2βξ,0
+ωβω,1 − ε2

Table 2: Payo�s in a binary game with two players

this system, one can determine precisely what the domain should be, given the compact

space of parameters B. In practice, the economist would know the domain and support for

the available observables and, using the same system, could determine which b's may be

distinguished from each other.

For the purposes of my proof, I divide all observables into three groups: x = [ν, ξ, ω]

(parameters β are split into βν , βξ, and βω, respectively). Observables ν include those

variables that do not have outcome-speci�c coe�cients on them at all. For example, in an

often employed speci�cation for an entry game payo�s where only a constant term depends

on the actions of the opponents, all other variables would be grouped in ν. Both ξ and

ω include variables that have outcome-speci�c coe�cients. The di�erence between them is

that the second group, ξ, includes player- and game-speci�c variables, while the third group

ω includes only game-speci�c variables (such as market size, for instance). Only ξ and ω

are used in my proof. The reason is that if a variable has the same coe�cient whatever the

pro�le of actions is, it implies that this variable is not interacted with the beliefs about the

actions of other players because whatever they do, the e�ect of this variable on the payo�

does not change. As my proof relies on `varying' some state variables to �nd a game with a

unique equilibrium, variables from ν are of no use for this purpose. It is also important to

note that having only an outcome-speci�c constant is not enough, because it does not vary.

Here I provide only a proposition regarding point identi�cation in a binary game with

two players and relegate a more general case for extreme value distribution of unobservables

εn,k(ak), K players and M + 1 actions to Appendix A as the exposition becomes extremely

cumbersome in the general case.

Continuing with the example discussed in Section 2.2 and the speci�cation of the payo�s

as described above, the payo� matrix now looks as speci�ed in Table 2.
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The system that determines equilibrium beliefs πk, k = 1, 2 that player k chooses action

1 takes the following form:

π1 = F (ν1βν + ξ1βξ,0 + ωβω,0 + (ξ1(βξ,1 − βξ,0) + ω(βω,1 − βω,0))π2) (17)

π2 = F (ν2βν + ξ2βξ,0 + ωβω,0 + (ξ2(βξ,1 − βξ,0) + ω(βω,1 − βω,0))π1).

This system has a unique solution if either of the following equations holds:

ξ1(βξ,1 − βξ,0) + ω(βω,1 − βω,0) = 0, (18)

or

ξ2(βξ,1 − βξ,0) + ω(βω,1 − βω,0)) = 0.

Indeed, if, for example, ξ1(βξ,1 − βξ,0) + ω(βω,1 − βω,0) = 0, then π1 does not depend on π2,

resulting in a unique solution for π2.

Proposition 1. Suppose that in a simultaneous binary game of incomplete information

with two players indexed by k = 1, 2 and two actions characterized by a pro�le a ∈ {0, 1} ×

{0, 1}, the payo�s of the players are as speci�ed in Table 2 where ν1, ν2, ξ1, ξ2, and ω are row

vectors of observables and the Bayes-Nash concept of equilibrium is applied. If vectors i) ξ1,

and ξ2 have at least one continuously distributed element (with domain on R) associated with

outcome-speci�c coe�cients each, ii) ω has at least one element associated with outcome-

speci�c coe�cient, and iii) ν1 contains at least one continuously distributed element (with

domain on R) associated with a non-zero coe�cient, then for any b that satis�es the outcome-

speci�c requirement as stated above, b ∈ B, b 6= β, there exists a vector of observables x ∈ X

such that

πk,max(x, b) < πk,min(x, β) (19)

or

πk,min(x, b) > πk,max(x, β),

k = 1, 2
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and, therefore, β is identi�ed relative to b ∈ B.

While the proof of the proposition is given in the Appendix A, the reasoning behind this

result goes as follows. Three explanatory variables required by the proposition are necessary

i) to guarantee a unique equilibrium under the true parameter β, ii) to guarantee a unique

equilibrium under any candidate parameter b and iii) to guarantee that these two equilibria

do not coincide (the outcome-speci�c coe�cients on these variables are necessary to insure

that variation in them indeed a�ects the equilibrium beliefs).

If one is willing to assume some minimal di�erence in the outcome-speci�c coe�cients

on the explanatory variables required for the proposition, then one could limit the required

domain of the explanatory variables. If an equilibrium is unique, then the upper and lower

bounds on observed probabilities in (8) coincide, and unless they are the same under two

di�erent parameters, these parameters can be empirically distinguished from one another.

With a unique equilibrium, a frequency of an action should be almost surely equal to the

bounds under the true parameter (given unique equilibrium). If under every other candidate

parameter b the bounds do not coincide with those under the true parameter β, the di�erence

between the estimate of the expected frequency of actions and bounds will be minimized at

true β.

The idea of the proof is illustrated in Figure 2. Suppose that under some x ∈ X there are

three equilibria under both β and b. The panel A shows what happens when x′ is considered

instead of x. The probability of the �rst player to choose action 1 does not depend on π2 and

looks like a straight line on a graph.The Panel B of Figure 2 shows the what happens when

one explanatory variable is chosen so that there is a unique equilibrium under b. The third

regressor is used to guarantee that these two unique equilibria under di�erent parameter

values do not coincide.

Incidentally, if one is willing to assume some minimal di�erence between outcome-speci�c

coe�cients on the explanatory variable that are required for Proposition 2, one may limit the

domain of the explanatory variables required in Proposition 1. Consider a further simpli�ed

example where ξ1, ξ2 and ω have one element each, and two parameters ∆βξ and ∆βω that

stand for the di�erences between outcome-speci�c coe�cients (similar to βξ,1 − βξ,0 and

βω,1 − βω,0). The conditions analogous to those used in the proof of Proposition 2 require
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Panel A Panel B
Figure 2

that

ξ1∆βξ + ω∆βω = 0

ξ2∆bξ + ω∆bω = 0.

Disregarding trivial (and useless for identi�cation purposes) zero solution, it is clear that if

domains of ξ1, ξ2 and ω are �nite and ∆βω is �xed, there is a limit on what absolute minimal

∆βξ can be.

When number of players and/or actions are greater than two, the nature of the require-

ments for a su�cient condition of point identi�cation is similar but the number of necessary

explanatory variables increases dramatically, as it is proportionate to both number of players

and number of actions, and the same requirements about the outcome-speci�c coe�cients

apply.

3.6 Consistency

A technically inconvenient property of the suggested estimator is that its objective function

is not continuous in the space of parameters B. Indeed, all moments include extremal beliefs

π̄min(ak;x, b) and π̄max(ak;x, b) which are not continuous in B but may have jumps at the

points where the number of equilibria changes. Together with the fact that, in general,
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the estimator provides set estimates, this makes the derivation of its asymptotic properties

a very di�cult problem. Here I only provide a proof of its consistency in case of point

identi�cation. Further I make use of a norm ‖·‖ on a �nite-dimensional space.

Assumption 1. (Compactness.) The parameter space B is compact.

Assumption 2. (Identi�cation.) β is point identi�ed: there is a unique β such that

g(x, β) = 0

where g(x, β) is de�ned in (9). Moreover, for any δ > 0 and B(δ) = [b ∈ B : |b− β| ≥ δ]

inf
b∈B(δ)

||g(x, b)|| > 0

Practically this assumption means that for any b 6= β, b ∈ B at least one of the inequality

conditions (10) is violated, i.e. at least one of the elements of the vector g(x, β) is positive.

Assumption 3. (Random sampling.) The unobservables εk,n(ak), n = 1, ...,∞, k =

1, 2, ...,K are independent realizations from their distribution F (·).

Proposition 2. Assume that Assumptions 1-3 hold and the method of moments estimate

B̂0 is non-empty for all N. Then

lim
N→∞

sup
b∈B̂0

||b− β|| = 0, almost surely.

The proof of Proposition 2 is given in Appendix B, and here I only discuss the importance

of some of the assumptions and the main idea of the proof. The identi�cation is the most

crucial for the result. It says that for every parameter b di�erent from the true parameter

β there exists such xn in the sample that either π̄min(ak;xn, b)−Eη[1{δk,n = ak}|xn] > 0 or

Eη[1{δk,n = ak}|xn]− π̄max(ak;xn, b) > 0, which is a strong requirement. The compactness

of the parameter space is a technical assumption. The random sampling assumption is much

more restrictive but is maintained throughout this essay.

The logic of the proof is as follows. First, I prove a lemma that the uniform law of
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a2= 0 a2= 1

a1= 0 (0, 0) (0, β01+β11x2+β21z − ε2)
a1= 1 (β01+β11x1+β21z − ε1, 0) (β02+β12x1+β22z − ε1, β02+β12x2+β22z − ε2)

Table 3: Matrix of payo�s in the game used for Monte Carlo experiments

large numbers holds in this problem, so that limN→∞ supb∈B ||ĝn(x, b)− g(x, b)|| = 0 almost

surely. Then, I consider the compact sets B(δ) that expand as δ → 0. On each such set,

by the identi�cation assumption the in�mum of ||g(x, b)|| is greater than zero. Together

with the ULLN it implies that in�mum of ĝn(x, b) is also greater than zero on B(δ) for

su�ciently large N . It also follows that in�mum of Q̂n(x, b) = ĝn(x, b)′ĝn(x, b) is separated

from zero for su�ciently large N . Therefore, B̂0 does not belong to B(δ) and should belong

to B −B(δ), which contracts to β as δ → 0, which concludes the proof.

4 Monte Carlo evidence

In this section, I present the results of simulations illustrating the performance of the sug-

gested estimator in a very simple setup. The model is a binary game with two players. The

payo�s of the players are given in Table 3.

I consider three setups that di�er in the number of unique xn observations and in the

version of estimator. In setup 1 1500 triples of (x1, x2, z) are randomly sampled and the

empirical choice probabilities are estimated using the kernel method with normal density

and bandwidths. In setups 2 and 3 a di�erent approach to constructing a sample is taken.

For each of the randomly chosen 150 xn points I draw 10 εn per player so as to see how the

�rst stage estimates a�ect the estimation. When there are several equilibria in the market,

I randomize between the extremal ones. The domains of x1 and x2 are [−80, 80] and the

domain of z is [−5, 5]. In setup 2 I use an unweighted method of moments estimator, and in

setup 3 I weight moments as described in (14). Table 4 shows the parameter values chosen

for the simulation as well as the estimates.

Surprisingly, while the average absolute error in the �rst stage estimates thrice as high

in kernel setup 1 as in frequency setups 2 and 3, it is not clear that the quality of estimates

is signi�cantly worse in the former case. On the contrary, it is comparable for most of the
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Setup 1 Setup 2 Setup 3 True

β01 0.78 1.22 1.35 1
β11 1.40 0.95 1.00 1.2
β22 0.72 0.4 0.43 0.7
β02 -1.81 -1.97 -1.99 -2
β12 0.09 0.10 0.10 0.1
β22 0.52 0.49 0.48 0.5

N 1500 1500 1500

Percent of observations
with multiple equilibria
under true parameters

17% 18% 18%

Average absolute error
in empirical choice
probabilities

0.042 0.014 0.014

Table 4: True values of the parameters and the parameter estimates in 3 Monte Carlo setups

parameters, better for one of them, and worse for another one. Similarly, the performance of

the estimator in setups 2 and 3 is similar with slight improvements for most of the parameters

in setup 3 outweighed by its worse performance in case of β01.

5 Conclusion

This essay suggests a method of estimation of a simultaneous discrete choice static game

with incomplete information, which is robust to the presence of multiple equilibria in data. I

suggest using conditions that hold in any equilibrium. Since these conditions have the form

of inequalities, robustness usually comes at a price of point identi�cation. Still, it appears

that point identi�cation may be achievable if there are outcome-speci�c coe�cients on ex-

planatory variables, whose number is proportional to the number of players and actions in

the game. Further exploration of statistical properties of the proposed estimator is in order,

as well as �nding a way to incorporate heterogeneity and correlation between unobservables

of the players.
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Appendix A

Proof of Proposition 1. The proof strategy is to show that for any parameter b ∈ B

it is possible to �nd such observables ξ1, ξ2, ω ∈ x, x ∈ X that three conditions hold

simultaneously: the equilibrium under parameter β is unique; ii) the equilibrium under

parameter b is unique; iii) the equilibria under parameters β and b are di�erent:

πkmax(x, β) = πkmin(x, β) 6= πkmax(x, b) = πkmin(x, b), k ∈ {1, 2}. (20)

First the conditions are found that guarantee the uniqueness of the equilibrium under β and

under b; then, it is checked that the unique equilibria under β and b are di�erent.

Using (17), construct a system of equations that guarantees that equilibria under both

β and b are unique:

ξ1(βξ,1 − βξ,0) + ω(βω,1 − βω,0) = 0 (21)

ξ2(bξ,1 − bξ,0) + ω(bω,1 − bω,0) = 0

If ω has only one element and it is a constant, then (21) has at most one solution. If ω

does not include a constant, the system (21) has (in�nitely many) solutions if in the matrix

βξ,1 − βξ,0 0 βω,1 − βω,0

0 bξ,1 − bξ,0 bω,1 − bω,0


the vectors βξ,1 − βξ,0, bξ,1 − bξ,0, βω,1 − βω,0, and bω,1 − bω,0 have at least one non-zero

element each.

If it appears that given the chosen x

πkmax(x, β) = πkmin(x, β) = πkmax(x, b) = πkmin(x, b), k ∈ {1, 2},

it is possible to change ν1 so that it a�ects only the equilibrium probabilities of the �rst

player.
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Point identi�cation in a game with K players and M + 1 actions

Suppose that in a simultaneous game of incomplete information there are K players

indexed by k = 1, 2, ...,K, taking one of M + 1 actions characterized by a pro�le a ∈

{0, 1, ...,M}K , and receiving private signals εk,n distributed independently according to the

extreme value distribution. The expected payo� of player k from taking action ak is

∑
a−k⊂A−k

π̄(a−k;xn, β)vk,n(ak, a−k;xk,n, β) + εk,n(ak)

and the equilibrium choice probabilities satisfy the following conditions:

π̄(ak;xn, β) =
exp(

∑
a−k⊂A−k π̄(a−k;xn, β)vk,n(ak, a−k;xk,n, β))

1 +
∑

aj∈A
aj 6=0

exp(
∑

a−k⊂A−k π̄(a−k;xn, β)vk,n(aj , a−k;xk,n, β))
, (22)

∀k ∈ {1, 2, ...,K}, ∀ak ∈ {0, 1, 2, ...,M}, n = 1, 2, ..., N.

Let's arrange all observables into three groups: x = [ν, ξ, ω] (parameters β are arranged,

respectively, into βν , βξ, and βω). Observables ν include those variables that do not have

outcome-speci�c coe�cients at all. Both ξ and ω include variables that have outcome-

speci�c coe�cients, with ξ including player and game (market) speci�c variables and with

ω including only game speci�c variables (such as market size). Then the expected payo� of

player k from taking action ak can be rewritten as follows:

∑
a−k⊂A−k

π̄(a−k;x, β)vk,n(ak, a−k;xk, β) + εk(ak) (23)

= νkβν + π̄(ã−k;x, β)(ξkβξ(ã−k) + ωβω(ã−k) + εk(ak)

+
∑

a−k⊂A−k
a−k 6=ã−k

(π̄(a−k;x, β)− π̄(ã−k;x, β)) [ξk(βξ(a−k)− βξ(ã−k)) + ω(βω(a−k)− βω(ã−k)]

where ã−k is some action pro�le of all the players except for the kth. From the above formula

it is clear that if

ξk(βξ(a−k)− βξ(ã−k)) + ωn(βω(a−k)− βω(ã−k) = 0

for all a−k ⊂ A−k, a−k 6= ã−k,
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then the expected payo� of player k from choosing action ak does not depend on the strate-

gies of others. The form of (22) suggests that if there are (ξk, ω) that solve the system of L

equations (L is the number of elements in A−k minus one)

ξk(βξ(a−k)− βξ(ã−k)) + ω(βω(a−k)− βω(ã−k)) = 0, (24)

a−k ⊂ A−k, a−k 6= ã−k

then there is a unique vector of equilibrium beliefs π̄(ak;xn, β) for player k. Analogously,

given parameters b, divided respectively into bν , bξ, and bω, there is a system of L equations

similar to (24):

ξk(bξ(a−k)− bξ(ã−k)) + ω(bω(a−k)− bω(ã−k)) = 0, (25)

a−k ⊂ A−k, a−k 6= ã−k (26)

Suppose that i) vectors ξ1 and ξ2 have at least L (cardinality of A−k minus one) and, if

K > 2, ξk, k = 3, ...,K, each have at least 2L continuously distributed components (with

domain on R) associated with outcome-speci�c coe�cients, and denote vectors that contain

only these components, respectively, ξ̃1, ξ̃2,..., ξ̃K ; ii) vector ω has at least one component

associated with outcome-speci�c coe�cient and denoted by ω̃ and iii) vector ν1 contains at

least one continuously distributed element (with domain on R) element associated with non-

zero coe�cient and denoted by ν̃1. Denote the coe�cients associated with ξ̃k, k = 1, 2, ...,K,

and ω̃ in (24) by, respectively, β̃ξ(a−k) − β̃ξ(ã−k) and β̃ω(a−k) − β̃ω(ã−k) and in (25) by,

respectively, b̃ξ(a−k)− b̃ξ(ã−k) and b̃ω(a−k)− b̃ω(ã−k). Let's rewrite (24) and (25) together
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in matrix form:

Bξ,1 0 ... 0 0 Bω,1

0 Bξ,2 ... 0 0 Bω,2

... ... 0 ...

0 0 ... Bξ,K−1 0 Bω,K−1

0 B̃ξ,2 ... 0 0 B̃ω,2

... ...

0 0 ... B̃ξ,K−1 ...

0 0 ... 0 B̃ξ,K B̃ω,K





ξ1,n

ξ2,n

...

ξK−1,n

ξK−,n

ωn


= 0,

where matrix Bξ,k contains coe�cients βξ(a−k)−βξ(ã−k), B̃ξ,k contains coe�cients b̃ξ(a−k)−

b̃ξ(ã−k), Bω,k contains coe�cients βω(a−k)−βω(ã−k), and B̃ω,k contains coe�cients b̃ω(a−k)−

b̃ω(ã−k) with the rows corresponding to a−k ⊂ A−k, a−k 6= ã−k. If rank(Bξ,1) = rank([Bξ,1

Bω,1]), rank(B̃ξ,K) = rank([B̃ξ,K B̃ω,K ]), rank


Bξ,k
B̃ξ,k


 = rank


Bξ,1 Bω,1

B̃ξ,k B̃ω,1


, then

there is a unique equilibrium given parameters β and there is a unique equilibrium given

parameters b. If they coincide for all actions and players, one can use ν1 to a�ect equilibrium

under β but not under b. This would guarantee that β can be distinguished from b.

Appendix B

Lemma. Assumptions 1 and 3 imply the uniform law of large numbers (ULLN):

lim
N→∞

sup
b∈B
||ĝn(x, b)− g(x, b)|| = 0, a.s.

where ĝn(x, b) is de�ned in (13) and g(x, b) is de�ned in (9).

Proof. Consider b ∈ B and a particular element of vector ĝn(x, b)−g(x, b), for example,
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ĝmax(xn, b)− gmax(xn, b):

ĝmax(xn, b)− gmax(xn, b)

= π̂(ak;xn)− πmax(ak;xn, b)− Eη[1{δk,n = ak}|xn] + πmax(ak;xn, b)

= π̂(ak;xn)− Eη[1{δk,n = ak}|xn]. (27)

The similar cancellations occur within any element of ĝn(x, b) − g(x, b), so neither of them

depend on b. Therefore, ||ĝn(x, b)− g(x, b)|| does not depend on b and depends only on true

parameter β. From assumption of Random Sampling and the strong law of large numbers

it follows that for any η > 0 there almost surely exists a �nite Nη such that for N > Nη

max
b∈Bη

||ĝn(x, b)− g(x, b)|| < η. (28)

Due to (27), (28) is true for any b ∈ B. As η → 0, the lemma's claim follows.

Proof of Proposition 2. This proof closely follows the proof of Theorem 1 (Ch. 7) in

Manski (1987).

Recall that B(δ) = [b ∈ B : ||b − β|| ≥ δ]. Fix δ and denote ε = infb∈B(δ) ||g(x, b)||. By

the identi�cation assumption, ε > 0. Given that and the fact that, by condition of ULLN

proved in Lemma above,

lim
N→∞

sup
b∈B
||ĝn(x, b)− g(x, b)|| = 0, a.s.,

it follows that there almost surely exists a �nite N2 such that if N > N1, then

inf
b∈B(δ)

||ĝn(x, b)|| > ε/2.

Also, let's introduce an origin-preserving transformation r(T ) = T ′T and η = inf ||T ||>ε/2 r(T ).

By construction of the transformation, η > 0. Therefore, if N > N1

inf
b∈B(δ)

r [ĝn(x, b)] > η > 0.
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From the identi�cation assumption, ULLN, and the properties of r(·) it follows that there

almost surely exists a �nite N2 such that if N > N2, then

r [ĝn(x, b)] < η.

Therefore, for N > max(N1, N2)

B̂0 ⊂ B −B(δ).

Thus, if δ → 0, B −B(δ) contracts to β, which completes the proof.
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Part II

Tenancy Rent Control and

Credible Commitment in Maintenance

(co-authored with Richard Arnott)

1 Introduction

Tenancy rent control is a form of rent control in which rents are regulated within a tenancy

but may be raised without restriction between tenancies; more speci�cally, the starting rent

for a tenancy is unregulated but the path of nominal rents within a tenancy, conditional on

the starting rent, is regulated, typically causing rents to rise less rapidly over the tenancy

than they would in the absence of controls3. Many, perhaps most, jurisdictions around the

world that previously had traditional �rst- and second-generation rent control programs

(Arnott (1995)) have moved in the direction of tenancy rent control as a method of partial

decontrol4.

In jurisdictions that have stricter forms of rent control, tenancy rent control may be an

attractive method of partial decontrol. Because the starting rent adjusts to clear the market,

tenancy rent control does not generate the excess demand phenomena (such as key money,

waiting lists, and discrimination) of stricter rent control programs, and should have less

adverse e�ects on tenant mobility and the matching of households to housing units5. Tenancy

3This de�nes the �ideal type�, which is what will be modelled in this paper. Many jurisdictions have
forms of rent control that are intermediate between tenancy rent control, according to the above de�nition,
and more traditional forms of rent control. In some, rent increases are regulated both within and between
tenancies, but less severely between tenancies than within tenancies. In others, rent increases are unregulated
between tenancies but are subject to a variety of regulatory provisions within a tenancy, such as a guideline
rent increase (which allows rents to rise by a certain percentage per year) with a cost-pass through provision
(which allows the landlord to apply for a rent increase above the guideline rent increase if justi�ed by cost
increases).

4Basu and Emerson (2000, 2003) and Arnott (2003) list some of these jurisdictions. Borsch-Supan (1996)
models the current German system and Iwata (2002) the current Japanese system, both of which are termed
�tenant protection� systems.

5There is a large literature on the adverse e�ects of rent control. Three particularly good papers that
avoid polemical rent-control bashing are Frankena (1975), Glaeser and Luttmer (2003), and Olsen (1988).
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rent control continues to provide sitting tenants with improved security of tenure; for one

thing, rent regulation within tenancies precludes economic eviction; for another, because

tenancy rent control, like other forms of rent control, provides landlords with an incentive

to evict tenants, it is invariably accompanied by conversion (rehabilitation, demolition and

reconstruction, and conversion to condominium) restrictions6. As well, tenancy rent control

may be a politically attractive method of partial decontrol since it continues to provide rent

protection to sitting tenants, who are typically the strongest opponents of decontrol. These

bene�ts must be weighed against the costs. The most obvious costs are the tenant lock-in

created by tenancy rent control and the unfairness of the preferential treatment of sitting

tenants. There are also less obvious costs. The workability of tenancy rent control makes it

more di�cult to move to complete decontrol, should this be deemed desirable. Also, because

a rent control administration is kept in place, it is relatively easy to return to harder controls

should the political winds change. Landlords, fearing this, may curtail investment7.

This paper focuses on another less obvious cost of tenancy rent control � its adverse

e�ect on maintenance, construction, demolition and reconstruction, and rehabilitation. Pol-

lakowski (1999) provides an empirical analysis of the e�ects of New York City's rent control

system on housing maintenance there. Arnott and Johnston (1981) provides an informal,

diagrammatic discussion of the e�ects of several rent control programs (though not ten-

ancy rent control) on housing quality and maintenance. This paper will adapt the model of

Arnott, Davidson, and Pines (1983) to examine how the application of tenancy rent control

to a single atomistic landlord-builder a�ects his pro�t-maximizing behavior8.

Assume, as we will throughout the paper in order to abstract from the tenant lock-in

e�ect, that tenancy duration is exogenous. There are two con�icting intuitions concerning

the e�ects of tenancy rent control on the atomistic landlord's behavior. A lay person with

good economic intuition would probably argue that tenancy rent control gives the landlord

6Miron and Cullingworth (1983) and Hubert (1991) examine the e�ects of rent control on security of
tenure.

7These less obvious costs are evident in the Ontario experience with rent control (e.g., Smith, 2003).
8Since the analysis is �very� partial equilibrium, it will ignore the e�ects of tenancy rent control on the

level of rents and on other markets such as the labor market.
While the paper focuses on tenancy rent control, the techniques employed can be applied to examine the

e�ects of other forms of rent control on the landlord's optimal program (indeed, Arnott and Johnston (1981)
does so, albeit informally).
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an incentive to spruce up his units between tenancies so that they �show� well and hence

can be let at a higher starting rent, but little incentive to maintain the units well during

tenancies since, after the starting rent has been agreed upon, maintaining well has no e�ect

on the rent stream during the tenancy. An economist might however reasonably object that,

with tenancy duration exogenous, there is nothing to prevent the landlord from following the

program that is pro�t maximizing in the absence of tenancy rent control � which we shall

term the e�cient program. If the landlord follows this program, the tenant should be willing

to pay as much over her tenancy as she would have for an uncontrolled unit. This line of

reasoning suggests that, were it not for the tenancy lock-in, the landlord's pro�t-maximizing

program would be una�ected by the application of tenancy rent control.

The resolution of the two con�icting intuitions lies in the ability of the landlord to

credibly commit to the e�cient program. If he is able to credibly commit to a maintenance

program, he will credibly commit to the e�cient program and the tenant will agree to pay

the same in rent in discounted terms over the duration of the tenancy as in the absence of

rent control. The landlord will therefore be making the same revenue and incurring the same

costs as in the absence of rent control, and can surely do not better than this. If, however,

the landlord is unable to credibly commit to pursuing the e�cient program, once the lease

is signed he has an incentive to pursue a di�erent maintenance program, which we term the

opportunistic program. Since the signing of the lease �xes the discounted rent the landlord

will receive over the current tenancy, the only incentive he has to maintain is to improve the

quality of the unit at the end of the lease, as this will increase the discounted rent he receives

on subsequent tenancies. Compared to the e�cient program, the opportunistic program

entails both a reduction in average maintenance and a postponement of maintenance within

a tenancy. Before the lease is signed, a prospective tenant should in this situation realize

that under tenancy rent control the landlord will pursue the opportunistic rather than the

e�cient maintenance program and hence not be willing to pay as high a starting rent as she

would if he were to pursue the e�cient program.

The crux of the matter is therefore the landlord's ability, under tenancy rent control,

to commit to a particular maintenance program. Three commitment mechanisms might be

partially e�ective. The �rst is contracting on maintenance. One problem with this com-
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mitment mechanism is that, since maintenance is such an amorphous concept, maintenance

clauses in the lease would be highly incomplete; for example, if the contract were to re-

quire the landlord to replace appliances every ten years, he might replace with appliances

that are used and reconditioned or of minimal quality. Another problem is that it would

be costly for a tenant to document that her landlord had not met the maintenance terms

of the contract. The second commitment mechanism, reputation, is likely to be ine�ective

since the typical prospective tenant knows little or nothing about di�erent landlords' main-

tenance performance when she is searching for a unit. The third mechanism, maintenance

regulation, su�ers from problems similar to those for contracting on maintenance. In our

judgment, such commitment devices are generally ine�ective, and in our analysis we shall

assume them to be completely ine�ective. The e�ciency costs that we identify are reduced

to the extent that these commitment mechanisms are indeed e�ective.

Section 2 analyzes the landlord's pro�t-maximizing program in the absence of rent con-

trol. Section 3 examines how tenancy rent control in the absence of credible commitment

in maintenance distorts the pro�t-maximizing program. Section 4 provides some calibrated

examples focusing on the magnitude of the e�ciency loss caused by tenancy rent control.

Finally, section 5 concludes.

2 The Pro�t-Maximizing Program without Rent Control

A competitive landlord owns a vacant lot of �xed area on which only a single unit of housing

can be constructed9. Housing is durable and its quality is endogenous. Four quality-changing

technologies are available: construction, maintenance, rehabilitation, and demolition. The

economic environment is stationary over time and described by the quality-changing tech-

nologies, the rent function relating market rent to quality, and the interest rate. The main-

tenance technology is autonomous � the unit's rate of quality change depends on its current

quality and the current level of maintenance expenditure but not on the unit's age per se.

The landlord chooses the pro�t-maximizing program. Under these assumptions, phase plane

analysis may be employed.

9The analysis can be extended to endogenize structural density (Arnott, Davidson, and Pines (1986)).
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A rather thorough analysis of this problem is presented in Arnott, Davidson, and Pines

(1983). Here we focus on a special � but also probably the most realistic � case, in which, in

the absence of controls, at the beginning of the program it is pro�t maximizing to construct

and downgrade. Three qualitatively di�erent active programs may be pro�t maximizing:

1. Initial construction, followed by downgrading to saddlepoint quality (program S).

2. A construction-downgrading-demolition cycle (program D).

3. Initial construction followed by a downgrading-rehabilitation cycle (program R).

2.1 Program S

Under program S, at time 0 the landlord constructs a single housing unit of quality qc on

his lot and then downgrades the unit asymptotically to saddlepoint quality qS . Where q(t)

is quality at time t, P (q) the exogenous rent function, m(t) maintenance expenditure at

time t, r the interest rate, α construction cost per unit of quality, g(q,m) the depreciation

function, and T the terminal time, the pro�t-maximizing program is the solution to

max
qc,m(t)

∞́

0

(P (q (t))−m (t)) e−rtdt− αqc

i) q̇ = g (q,m)

s.t. ii) qc ≡ q (0) free

iii) limT↑∞ q (T ) free

(29)

Note that quality is measured as some fraction of construction costs, and that tenant mainte-

nance is not considered. We impose non-negativity conditions on q and m. Where ′s denote

derivatives and subscripts partial derivatives, we also impose reasonable restrictions on the

functions P and g: i) P (0) = 0, P ′(q) > 0 and P ′′(q) < 0; and ii) gq < 0, gm(q, 0) = ∞,

g(q, 0) < 0, gm(q,∞) = 0, gm > 0, gmm < 0. Thus, rent increases with quality but at a

diminishing rate; there are positive but diminishing returns to maintenance; holding �xed

the rate of quality deterioration, more has to be spent on maintenance as quality increases;

and with zero maintenance, the unit deteriorates. In our numerical examples, the �rst-order

conditions of the S program will de�ne a unique interior maximum.
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We solve the problem using optimal control theory (Kamien and Schwartz (1991)). The

current-value Hamiltonian corresponding to (29) is

H◦ = P (q (t))−m (t) + φ (t) g (q (t) ,m (t)) , (30)

where φ(t) is current-value co-state variable on
·
q = g (q,m) . The �rst-order condition10 for

maintenance is

−1 + φ (t) gm (q (t) ,m (t)) = 0. (31)

Since φ(t) is the marginal value of quality at time t, and gm(q(t),m(t)) the amount by which

quality is increased by an extra dollar's expenditure on maintenance, φgm is the marginal

bene�t from maintenance. Thus, at each point in time, maintenance should be such that

marginal bene�t equals marginal cost. The conditions imposed on gm guarantee that there

is a unique, interior optimal level of maintenance expenditure for all non-negative values of

q and φ; thus, we may write m = m(q, φ) with mφ > 0. Inserting this function into (30)

yields the maximized current-value Hamiltonian:

H (q, φ) = P (q)−m (q, φ) + φg (q,m (q, φ)) . (32)

The equation of motion of the co-state variable is

·
φ = rφ−Hq = rφ− P ′ − φgq. (33)

The assumptions thus far have not ruled out the possibility that the optimal saddlepoint

program entails upgrading to saddlepoint quality via maintenance alone. We assume that the

maintenance and construction technologies are such that the optimal saddlepoint program

entails construction at the start of the program. The transversality condition with respect

to qc is then

φ (0) = α; (34)

10Throughout the analysis we shall omit second-order conditions as we compare the pro�t-maximizing
programs with and without rent controls, for which the second-order conditions will hold. We shall also omit
non-negativity conditions. In the numerical examples of section 4, we explicitly verify that non-negativity
conditions hold.
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Figure 1: Phase plane for construction with downgrading to the steady state. Construction
cost (α · 105) is $60,000.

construction quality should be increased up to the point where the marginal value of quality

equals its marginal cost.

We are now in a position to construct the phase plane corresponding to this program.

We assume that: i) the q̇ = 0 locus is positively sloped; ii) the φ̇ = 0 locus is negatively

sloped; and iii) the q̇ = 0 locus and φ̇ = 0 locus intersect in the positive orthant. Thus,

there is a unique saddlepoint, S = (qS , φS). We assume furthermore that φS > α, unless

otherwise noted. Figure 1 displays a phase plane consistent with these assumptions. As is

the case for all the �gures, Figure 1 is drawn for the functional forms and parameters used

in the series of numerical examples presented in Section 4.

We also have the in�nite horizon transversality conditions associated with terminal qual-

ity and terminal time. Arnott, Davidson, and Pines (1983) proves that, under the assump-

tions made, these conditions imply that the optimal trajectory must terminate at the sad-

dlepoint. Putting together the necessary conditions for optimality, we obtain that the S

program entails construction at that quality at which the right stable arm intersects the φ
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= α line, followed by downgrading along the stable arm to the saddlepoint.

For an autonomous optimal control problem with discounting, the value of the program

at any time along an optimal trajectory equals the value of the Hamiltonian at that time

divided by the interest rate:

V (t) =
H (q(t), φ(t))

r
.

The economic interpretation is that the value of the Hamiltonian gives the economic

return per unit time from owning the program, which includes the net (of expenses and

depreciation) earnings stream it generates plus capital gains, and competitive asset pricing

requires that the net return per unit time from owning an asset equal the asset price times

the discount rate.

With some abuse of notation, we denote the value of the maximized Hamiltonian at a

point labeled X in the phase plane by H(X). The value of the program immediately after

initial construction is then H(A)
r , so that the value of the program immediately before initial

construction, which is the value of the S program, is V S = H(A)
r − αqA.

2.2 Program D

Consider next program D, which entails a construction-demolition cycle, where qs is the

starting quality for each cycle. The landlord's pro�t-maximizing program is the solution

to11

max
qs,qT ,T,m(t)

1

1− e−rT

{
T́

0

(P (q (t))−m (t)) e−rtdt− αqs

}

i)
·
q = g (q,m)

s.t. ii) qs ≡ q (0) free

iii) qT ≡ q (T )free

iv) T free

(35)

Let J(qs, qT , T ) denote the maximized value of the expression in curly brackets, which is the

present value of net revenue from a single cycle as a function of qs, qT , and T . Then (35)

11The analysis can be straightforwardly extended to treat demolition costs.
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can be rewritten as

max
qs,qT ,T

1

1− e−rT
J (qs, qT , T ) .

We assume that the D program entails construction at the beginning of each cycle. Eqs.

(30) through (34) continue to apply. The transversality condition for qT is

φ(T )q(T ) = 0, (36)

which indicates that the building's quality should be run down until the optimal trajectory

intersects one of the axes in the phase plane. If the optimal trajectory intersects the q-

axis, as will be the case in all our numerical examples, the condition is that φ(T ) = 0; the

building's quality should be run down until, at the end of the cycle, the marginal value of

quality is zero. The transversality condition for T is

H (q (T ) , φ (T )) + rαqs = H (q (0) , φ (0)) ; (37)

the left-hand side is the marginal bene�t from postponing demolition and reconstruction,

the right-hand side the marginal cost. We can provide a useful geometric depiction of this

transversality condition. Now,

H (q (0) , φ (0))−H (q (T ) , φ (T )) =

qsˆ

qT

(
Hq +Hφ

(
dφ

dq

))∗
dq,

where ∗ indicates evaluation along a phase plane trajectory connecting the starting and end

points. Since (dφ/dq)∗ =

( ·
φ
·
q

)∗
and Hφ =

·
q, using (33) the above expression reduces to

H (q (0) , φ (0))−H (q (T ) , φ (T )) =

qsˆ

qT

rφ∗ (q) dq. (38)

Combining (37) and (38) gives

αqs =

qsˆ

qT

φ∗ (q) dq. (39)
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Figure 2: Phase plane for a construction-demolition cycle. Construction cost (α · 105) is
$30,000.

Figure 2 displays the phase plane for a D program. As drawn, the trajectory CDEF satis�es

the three transversality conditions: it starts on φ = α, it terminates at φ = 0, and it satis�es

(37). Eq. (39) has the interpretation in the phase plane that the area under the optimal

trajectory from the starting to the end point equals αqs, that Area ZCDEF = Area OXCZ.

Subtracting the common area ZCEF from both these areas gives the equivalent condition

that Area CDE = Area OXEF. A necessary and su�cient condition for the existence of a

trajectory that satis�es all three transversality conditions is that Area ASW > Area OXWB,

where SWB is the unstable arm from the saddlepoint to its intersection with the q- or φ-axis,

as the case may be. We refer to this as the D-areas condition. If the D-areas condition is

satis�ed, we say that a D program exists, and if it is not that a D program does not exist.

Since increasing α decreases Area ASW and increases Area OXWB, there is a critical value

of α, above which the D-areas condition is not satis�ed, and below which it is. Thus, a D

program exists for construction costs below a critical level, but not otherwise.

If a D program exists, which is more pro�table, the D program or the S program? We

have already demonstrated that the value of the S program immediately prior to construction
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is V S = H(A)
r − αqA. An analogous line of reasoning establishes that the value of the D

program is V D = H(C)
r −αqC . Now, HA −HC =

´ qA
qC
Hq (q, α) dq =

´ qA
qC

(
rα−

·
φ

)
dq (from

(33)). Thus,
(
HA
r − αqA

)
−
(
HC
r − αqC

)
=
´ qA
qC
−
·
φdq along φ = α, which can be seen to

be negative. Thus, if a D program exists, it is more pro�table than the S program. It can

also be shown that if a D program does not exist, the optimal S program is more pro�table

than any construction-demolition cycle program. Thus, the construction-demolition cycle

program is more pro�table than the saddlepoint program when construction costs are below

the critical value, and the saddlepoint program is more pro�table than any construction-

demolition cycle program when construction costs are above the critical value, which accords

with intuition.

2.3 Program R

The �nal option is a rehabilitation cycle, which entails constructing at quality qc, down-

grading to quality qT , rehabbing up to quality qs, and then repeating the downgrading-

rehabilitation cycle. Discounted net rents

max
qc,qs,qT ,Tc,T,m(t)

Tcˆ

0

(P (q (t))−m (t)) e−rtdt− αqc

+
e−rTc

1− e−rT

 T̂

0

(P (q (t))−m (t)) e−rtdt−R (qs, qT )

 ,
are maximized with respect to qc, qs, qT , Tc, T, and m (t) where Tc is the length of time from

construction to the �rst rehab, T the length of the rehabilitation cycle, and R (qs, qT ) the

cost of rehabbing a unit of quality qT to quality qs. It is assumed that it remains pro�table to

construct initially, so that (31) through (34) continue to apply. The transversality conditions
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Figure 3: Phase plane for a rehabilitation cycle. Construction cost (α · 105) is $20,000.

are

qc : φc = α

T : H (qT , φT ) + rR (qs, qT ) = H (qs, φs)

qs : φ (0) = φs =
∂R

∂qs

qTc , qT : φ(Tc) = φ(T ) = φT =
∂R

∂qT

Tc : H(qTc , φTc) = H(qT , φT )

In our numerical examples, we shall assume that the function R(qs, qT ) is strongly sep-

arable in qs and qT , i.e. R(qs, qT ) = R1(qs)− R2(qT ). Figure 3 plots a con�guration of the

phase plane for which the rehabilitation cost function is linear in the two quality levels. Here

too the timing transversality condition can be displayed as an equal areas condition, that

Area NQR equals Area RTUV. Adapting the argument used in the previous two subsections,

it can be shown that the value of the R program is HM/r − αqM .

Applying the same line of reasoning as in the previous subsection, it can be shown that
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if the R program exists, it is more pro�table than the S program, and that if the R program

does not exist, the S program is more pro�table than any program entailing rehabilitation.

It remains to compare the pro�tabilities of the R program and the D program, if both exist.

Both start on the φ = α line between where it intersects the right stable arm and the φ̇ = 0

line. The argument employed in the previous subsection to prove that, if the D program

exists, it is more pro�table than the S program, can be adapted to prove that if both the

D and the R program exist, the one which starts further to the left on the φ = α line is the

more pro�table. An upward shift of the R1(qs) function or a downward shift of the R2(qT )

function reduces the pro�tability of the R program relative to the S program and the D

program.

In section 4 we shall present a series of related numerical examples, indicating di�erent

sets of parameter values for which each of programs S, D, and R, are pro�t maximizing.

3 The Pro�t-maximizing Program with Tenancy Rent Control

We model tenancy rent control as a ceiling on the time path of rents over the duration of a

tenancy, conditional on the starting rent12. Letting ps denote the starting rent, u the length

of time into the tenancy, and F (ps, u) (with ∂F/∂ps > 0) the rent control function � the

maximum allowable rent u years into a tenancy, conditional on ps � a tenancy rent control

program imposes the constraint that P̂ (u) ≤ F (ps, u), where P̂ (u) is the rent charged by

the landlord u years into the tenancy.

We shall examine the e�ects of tenancy rent control applied to a single housing unit

when all other units are uncontrolled; the analysis is therefore partial equilibrium. We make

a number of simplifying assumptions:

Assumption A.1. The length of a tenancy is exogenous at L.

This assumption is made for two reasons. First, we wish to abstract from the e�ect

of tenancy rent control on tenancy duration, in order to focus on its e�ects on landlord

12There are tenancy rent control programs that restrict the percentage increase in rent from one year to
the next. Under such a program, a landlord might �nd it pro�t maximizing to charge less than the maximum
allowable rent increase for some time interval during a tenancy, in which case the ceiling on the time path of
rents would thereafter be determined by the rent level at the time the percentage increase regulation again
becomes binding. Thus, our modeling of tenancy rent control entails a simpli�cation.
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maintenance and conversion. Second, the assumption takes into account that tenancy rent

control is invariably accompanied by restrictions on eviction13. Since tenancy rent control

front-end loads rent over a tenancy, shorter tenancies are more pro�table for landlords.

In the absence of restrictions on eviction, tenancy rent control would therefore provide

landlords with an incentive to evict tenants14. Under the assumption, the landlord is able

to rehabilitate or to demolish-and-reconstruct only between tenancies.

Assumption A.2. The rent control function is such that the landlord �nds it pro�t

maximizing to charge the maximum controlled rent over the duration of a tenancy, i.e.

P̂(u) = F (ps , u).

This assumption states that, under the opportunistic program, the time path of con-

trolled rents over a tenancy are su�ciently �front-end loaded� relative to the time path of

market rents that the tenancy rent control constraint binds strictly throughout the tenancy.

While not primitive, this assumption greatly simpli�es the analysis since otherwise the pos-

sibility would have to be considered that the rent control constraint binds over some quality

intervals of a tenancy but not over others.

Assumption A.3. Tenants are identical.

Assumption A.4. Tenants face perfect capital markets and discount �nancial �ows at the

same rate as the landlord.

With identical tenants, the market rent as a function of quality adjusts so that a renter

receives the same utility at all quality levels. Thus, under tenancy rent control, a tenant is

indi�erent between living in a controlled and uncontrolled unit if and only if the discounted

value of controlled rents over the tenancy equals the discounted value of market rents for

the same quality path, discounted at her discount rate. The assumption that the tenant's

discount rate is the same as the landlord's is made to simplify the analysis.

Under the above assumptions, the opportunistic program is independent of the form

of the rent control function. A proof runs as follows. Suppose that the pro�t-maximizing

13We use the term eviction to mean that the tenant is required to leave her unit even though she would
prefer not to, rather than in the legal sense.

14Tenancy rent control rules out economic eviction (raising rents to force a tenant out) but at least in
North America, where annual tenancies are the norm, a landlord can evict a tenant in some jurisdictions
simply by choosing not to renew the lease, and in others by citing as just causes minor lease violations or
his intention to lease the unit to a family member, convert it to owner occupancy, or rehabilitate it.

45



program with a particular rent control function has been solved for. Now modify the rent

control function, holding constant the program but allowing the starting rents for each

tenancy to adjust so that tenants remain indi�erent between controlled and uncontrolled

housing. The pro�tability of the program remains unchanged and the landlord cannot

improve pro�tability by altering the program. Without ambiguity, we may then let q̂(u; qs)

denote the time path of quality over a tenancy under the opportunistic program, conditional

on starting quality qs. And the condition that, with the opportunistic program, over each

tenancy the discounted value of controlled rents equals the discounted value of market rents

may be written as

L̂

0

F (ps, u)e−rudu =

L̂

0

P (q̂(u; qs))e
−rudu.

Thus, under the above assumptions, it is the imposition of tenancy rent control rather than

its severity15 that matters since it is the imposition of tenancy rent control that undermines

the credibility of the e�cient program.

In the analysis of the previous section, without rent control, there were three qualitatively

di�erent optimal programs for the landlord, the S program, the D program, and the R

program. The same three qualitatively di�erent optimal programs are present under tenancy

rent control.

3.1 Program Ŝ

Program Ŝ under tenancy rent control is the analog of program S in the absence of rent con-

trol. Under our assumptions concerning the characteristics of the maintenance and construc-

tion technologies, program S entails construction followed by downgrading to steady-state

quality. Program Ŝ, too, entails construction followed by downgrading from one tenancy

to the next, but maintenance follows a sawtooth pattern, increasing within each tenancy

15A tenancy rent control program is more severe than another if it permits a lower nominal percentage
increase in rent every year during a tenancy.

Assumption A.2 is that the tenancy rent control program is su�ciently severe that the landlord
�nds it pro�t maximizing to charge the maximum controlled rent over the duration of the tenancy. If the
tenancy rent control program is su�ciently �lax� that the landlord �nds it pro�t maximizing to charge the
maximum controlled rent over no portion of the tenancy, the program has no e�ect. Intermediate situations
are analytically messy.
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and then falling discontinuously from the end of one tenancy to the start of the next. The

program converges to a steady-state tenancy maintenance cycle in which quality is highest

at the beginning and end of each tenancy, rather than to a steady-state quality.

We decompose solution of the opportunistic program under tenancy rent control during

a single tenancy into two stages. In the �rst stage, we solve the program taking as given

not only the initial quality of the unit and the duration of the tenancy but also the terminal

quality. In the second stage, we solve for the pro�t-maximizing terminal quality. The

landlord decides on this program after the lease has been signed, and therefore after his

discounted rent over the tenancy has been determined. The �rst-stage problem entails the

minimization of discounted maintenance expenditures needed to achieve terminal quality, qL,

taking as given the starting quality, qs, and the tenancy duration, L. This is an elementary

optimal control program with a well-known solution. De�ne J(qs, qL, L) to be the value of

this program. We shall use three properties of the solution:

∂J/∂qs = φ(0) ∂J/∂qL = −φ(L)e−rL φ̇ = rφ− φgq (40)

where φ(t) is the current value of the co-state variable on q̇ = g(q,m). The �rst solution

property indicates that φ(0) is the marginal value of quality at the start of the tenancy, after

the tenancy contract has been signed. The second indicates that φ(L) is the marginal value

of terminal quality at terminal time, so that φ(L)e−rL is the marginal value of terminal

quality discounted to the beginning of the tenancy. Since the �rst stage of the problem

entails deciding on the maintenance path over the tenancy, after the contract has been

signed, we refer to φ as the marginal value of quality via maintenance or the ex post (viz.,

after the tenancy contract has been signed) marginal value of quality. The last solution

property is that over a tenancy the marginal value of quality via maintenance grows16 at

the rate r − gq through the tenancy.

The second stage of the solution of the opportunistic program entails the choice of qL.

To derive this, we work with a value function. Under tenancy rent control, the value of

16Suppose the landlord buys an extra unit of quality today at a price of φ. Instantaneously, he must
make the competitive return on that unit, rφ, and the return comprises two components, the capital gain,
φ̇, minus the depreciation, −φgq.

47



a housing unit is a function not only of quality but also of how much time remains in

the current tenancy contract17. Let V̂ (q) denote the value of a housing unit of quality q

between tenancies, and Z(qs) the revenue received over a tenancy contract, discounted to

the beginning of the tenancy contract. The landlord decides on the maintenance program,

and hence qL, after signing the tenancy contract, and therefore after the revenue received

over the tenancy has been determined. Then the value function for V̂ (q) may be written as

V̂ (qs) = Z(qs) +maxqL [J(qs, qL, L) + V̂ (qL)e−rL]. (41)

Terminal quality is chosen to maximize the expression in square brackets. The corresponding

�rst-order condition is

∂J/∂qL + V̂ ′(qL)e−rL = 0. (42)

Comparing the second equation in (40) and (42) yields

φ(L) = V̂ ′(qL). (43)

Di�erentiaing (41) with respect to qs yields

V̂ ′(qs) = Z ′(qs) + ∂J/∂qs (using the envelope theorem)

= Z ′(qs) + φ(0). (44)

Eq. (44) requires some care in interpretation. V̂ ′(qs) is the ex ante (before the tenancy

contract has been signed) marginal value of quality at the start of a tenancy, while φ(0) is

the ex post (after the tenancy contract has been signed) marginal value of quality at the

start of a tenancy. Eq. (44) indicates that, at starting quality, the ex ante marginal value of

quality exceeds the ex post marginal value of quality by Z ′(qs), marginal discounted revenue.

Thus, there is a downward jump discontinuity in the marginal value of quality at the time

17Since the housing market remains competitive under rent control, it must still be the case that owning the
program for an increment of time between u and u+du within a tenancy provides income of rV (q(u), u), where
V (q(u), u) is the market value of a controlled housing unit of quality q u units of time into a tenancy. From

this relationship, the rent control function, and the boundary condition that V̂ (qs) = V (qs, 0), V (q(u), u)
may be calculated.
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Figure 4: Phase plane for construction-downgrading to the steady-state cycle under rent
control. Construction cost (α · 105) is $40,000.

the lease is signed. Now return to (43). It states that, in contrast, the marginal value

of quality immediately before the termination of the tenancy equals the marginal value of

quality immediately afterwards, in both cases equaling the increase in the property price

from a unit increase in terminal quality.

The value of the Ŝ program immediately prior to construction is

V̂ Ŝ = max
qc

[
V̂ (qc)− αqc

]
. (45)

Assuming an interior solution, the corresponding �rst-order condition for pro�t-maximizing

construction quality is

V̂ ′(qc)− α = 0 (46)

Comparing (44) and (46), for the �rst tenancy, since qc = qs,

φ(0) = α− Z ′(qc). (47)
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Construction occurs at that quality level, for which the ex ante marginal value of quality

via construction equals the marginal cost, while the ex post marginal value of construction

quality falls short of marginal construction cost by Z ′(qc).

In the steady state, quality varies within a tenancy, but the starting and terminal qual-

ities remain constant from one tenancy to the next. Let qσ denote the optimal starting and

terminal quality of a steady state cycle. Since in a steady-state tenancy qs = qL = qσ,

V̂ (qσ) =
1

1− e−rL
{Z(qσ) + J(qσ, qσ, L)}.

Figure 4 displays the phase diagram of the Ŝ program for the numerical example, and

plots the optimal trajectory for two tenancies, the �rst tenancy that occurs immediately

after construction and the steady-state tenancy. For comparison it also plots the optimal

(stable arm) trajectory without rent control. With the depreciation function we employ,

maintenance expenditures are positively related to φ and independent of q. The diminished

incentive to maintain under tenancy rent control is re�ected in the lower position, on average,

of the optimal trajectory under tenancy rent control. The incentive under tenancy rent

control to postpone maintenance expenditures towards the end of the tenancy is also evident.

3.2 Program D̂

Program D̂ under tenancy rent control is the analog of program D in the absence of rent

control. Recall that, under our assumptions concerning the construction and maintenance

technologies, program D entails constructing at a quality above saddlepoint quality, down-

grading smoothly to demolition, and then repeating the cycle, which has an endogenous

length of T . Recall, too, that if an optimal demolition program exists, it is more pro�table

than the optimal saddlepoint program. The program D̂ di�ers from program D in two im-

portant respects. First, because of the assumed �xed duration of a tenancy under tenancy

rent control, demolition can occur only between tenancies, so that the length of the demo-

lition cycle must be some integer multiple of L. Thus, there are two types of cycles, the

construction-demolition cycle and the maintenance cycle within each tenancy. Since termi-

nal time is not, therefore, a continuous variable, there will not be a timing transversality
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condition. Instead, optimal cycle length can be computed by comparing the pro�t obtained

when demolition occurs after every tenancy, after every second tenancy, and so on. Second,

under tenancy rent control the commitment problem arises.

Our solution of the D̂ program proceeds in two stages18. In the �rst stage, the pro�t-

maximizing program is calculated conditional on the number of tenancies in a construction-

demolition cycle. Let V̂ n(qc) denote the value of a housing unit that has just been con-

structed at quality qc, conditional on n tenancies in the cycle, and Vn the value of the

optimal program conditional on n tenancies within a demolition cycle. In the second stage,

the corresponding pro�t levels are compared for di�erent numbers of tenancies within the

cycle. In this subsection, we ignore the complications that would arise if the non-negativity

constraint on q would bind.

We start by solving for the optimal program, conditional on the unit being demolished

after each tenancy. Once the tenancy contract has been signed, the landlord has no incentive

to maintain. Spending on maintenance does not increase the revenue received over the

tenancy and the value of the structure is zero at the end of the cycle since it is about to be

demolished. The value of the program is

V1 = max
qc

{
V̂ 1(qc)− αqc

}
= max

qc

1

1− e−rL
{Z(qc)− αqc},

from which the �rst-order condition for pro�t-maximizing construction quality is straight-

forward to obtain.

We now solve for the optimal program, conditional on the structure being demolished

after two tenancies. It is pro�t maximizing for the landlord to spend nothing on maintenance

during the second tenancy. Let superscript i on q denote the order of tenancy within a

demolition cycle, so that q1L is terminal quality for the �rst tenancy, for example. Then

V̂ 2(qc) = Z(qc) + max
q1L

[J(qc, q
1
L, L) + Z(q1L)e−rL] + (V̂ 2(qc)− αqc)e−2rL.

18Eqs. (41) - (47) apply to the demolition case as well. We proceed as we do in order to provide more
insight into the economics, and to motivate the numerical solution algorithm we employ.
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Thus,

V̂ 2(qc) =
1

1− e−2rL
{Z(qc) + max

q1L

[J(qc, q
1
L, L) + Z(q1L)e−rL]− αqce−2rL}.

Calculate �rst Z(q1L). Then solve the maximization problem in square brackets, which yields

q1L as a function of qc, from which an expression for V̂ 2(qc) is obtained. Since the value of

the program prior to construction, conditional on construction at quality qc, is V̂
2(qc) −αqc,

the �nal step is to choose qc to maximize V̂
2(qc) −αqc.

This line of reasoning suggests an algorithm for solving for the pro�t-maximizing program

with n tenancies during a construction-demolition cycle. Let vi(qis, n) be the value of revenue

net of maintenance expenditures received from the beginning of tenancy i until the structure

is demolished, discounted to the beginning of tenancy i, conditional on qis and the number

of tenancies within a demolition cycle. Proceed by backward recursion19. First, calculate

vn(qns , n) ( = Z(qns )). Second, solve

max
qns

J(qn−1s , qns , L) + vn(qns , n)e−rL.

Denote by qns (qn−1s ) the value of qns that solves this maximization problem, as a function of

qn−1s . Then

vn−1(qn−1s , n) = Z(qn−1s ) + J(qn−1s , qns (qn−1s ), L) + vn(qns (qn−1s ), n)e−rL.

Return to step 2, but replacing n by n−1, and n−1 by n−2. Proceed recursively backwards

until v1(q1s , n) � the value discounted to construction time of the net revenue received over

the life of the building as a function of q1s = qc, conditional on n tenancies � is obtained.

Then20

Vn = max
qc

1

1− e−rnL
{v1(qc, n)− αqc}.

If the optimal number of tenancies is �nite, then n∗ = arg maxn{Vn}, and Vn
∗
is the value

19This algorithm is inapplicable to the optimal saddlepoint program, since the optimal saddlepoint program
contains an in�nite number of tenancies.

20Alternatively, we may write V̂ n(qc) = v1(qc, n) + (−αqc + V̂ n(qc))e
−rnL, and obtain Vn as the value of

V̂ n(qc)− αqc maximized with respect to qc.
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Figure 5: Phase plane for a demolition cycle under tenancy rent control. Construction cost
(α · 105) is $30,000.

of the D̂ program. If the optimal number of tenancies is in�nite, we say that an optimal

demolition program does not exist.

Figure 5 plots one cycle of the D̂ program for the numerical example for which the

pro�t-maximizing number of tenancies within a demolition cycle is four. Note that φ = 0

throughout the last tenancy.

3.3 Program R̂

Program R̂ under rent control is the analog of program R in the absence of rent control.

Recall that, under our assumptions concerning the construction and maintenance technolo-

gies, program R entails constructing at quality qc above saddlepoint quality, downgrading

the unit to quality qT , upgrading it via rehabilitation to quality qs, downgrading it along the

original trajectory from qs to qT , and then repeating the rehabilitation cycle ad in�nitum.

We also showed that if program R exists, it is more pro�table than program S, and that,

if both program R and program D exist, the one with the lower construction quality is

the more pro�table. Program R̂ di�ers from program R in two respects. First, because
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under tenancy rent control rehabilitation is permitted only between tenancies and because

tenancy duration is L, the period from initial construction to the �rst rehabilitation must

be some integer multiple of L, as must the period between subsequent rehabilitations. Be-

cause of this, the starting and terminal quality of a rehabilitation cycle will in general vary

from one rehabilitation to the next. Second, as with the other two rent control programs,

downgrading does not occur smoothly because of the commitment problem.

In the optimal demolition program with rent control, all the cycles are the same. This

is not in general true of the optimal rehabilitation program; the number of tenancies may

be di�erent for di�erent rehabilitation cycles. In our numerical examples, however, since we

assume that the marginal bene�t of increasing quality via rehabilitation is independent of

the quality level from which rehabilitation is undertaken, the �rst rehabilitation is followed

by the stationary rehabilitation cycle. In this case, the construction of a solution algorithm

is relatively straightforward. First, one solve for the opportunistic stationary rehabilitation

cycle, conditional on one, two, etc. tenancies between rehabilitations, and then for the

unconditional opportunistic stationary cycle. And second, solve for the optimal program up

to the �rst rehabilitation, conditional on one, two, etc. tenancies to that point, and then

for the unconditional optimal program.

Among the Ŝ, D̂, and R̂ programs, the overall optimal program is the one with the

highest value. The deadweight loss due to rent control is simply the di�erence between the

value of the optimal program without rent control minus the value of the optimal program

with rent control.

4 Numerical Examples

This section presents a series of related numerical examples with the aim of quantifying the

e�ects of tenancy rent control. The e�ciency cost caused by the commitment problem is of

special interest.
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Figure 6: Phase plane for a rehabilitation cycle under tenancy rent control. Construction
cost (α · 105) is $20,000.

4.1 Choice of functional forms and parameters

We had hoped to draw on the empirical literature in our choice of functional forms and

parameters. Unfortunately, there seem to be no empirical studies that have employed the

Arnott, Davidson, and Pines (1983) conceptual framework as the basis for empirical anal-

ysis. As a result, we adopt the more modest goal of developing numerical examples whose

parameters and functional forms are �reasonable�. We choose the functional forms so as to

obtain equations of motion that are the solutions to linear di�erential equations, as well as

(for the case of rent control) closed-form value functions. And we choose the parameters to

generate plausible results for the steady-state, demolition, and rehabilitation programs.

As in the theoretical analysis, we measure quality as proportional to construction costs.

We assume the following functional forms for the rent function, the construction cost func-

tion, and the maintenance/depreciation function:

P (q) = eq − fq2

2
C(q) = α q̇ = −δq + 2am1/2
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The rent equation generates a linear, downward-sloping marginal-willingness-to-pay-for-

quality function. The maintenance/depreciation function is about the simplest possible.

In the absence of maintenance, quality depreciates exponentially at the rate δ. A given level

of maintenance expenditure slows down the rate of quality depreciation by an amount that

is independent of quality, and there are diminishing returns to maintenance. The optimal

expenditure on maintenance is given by a2φ2; maintenance expenditure is therefore increas-

ing in φ and independent of q. Substituting the expression for optimal maintenance into the

depreciation function gives the maximized depreciation function,

q̇ = −δq + 2a2φ. (48)

In the absence of rent control, these equations imply a co-state equation of the form

φ̇ = (r + δ)φ− e− fq, (49)

and with tenancy rent control21,

φ̇ = (r + δ)φ. (50)

In the absence of rent control, these equations of motion correspond to a phase plane

with a linear, upward-sloping q̇ = 0 line and a linear, downward-sloping φ̇ = 0 line, whose

intersection point, the saddlepoint is at

qS =
2a2e

δ(r + δ) + 2a2f
φ =

eδ

δ(r + δ) + 2a2f
.

With rent control, the φ̇ = 0 line coincides with the q-axis, so that the q̇ = 0 and φ̇ = 0

lines do not intersect in the interior of the phase plane.

We take as our units of measurement years and hundreds of thousands of dollars. We

21Thus, both with and without rent control, the state and co-state equations are together a pair of linear
�rst-order di�erential equations in q and φ. In the absence of rent control, substituting one into the other
generates linear, second-order di�erential equations for q alone and φ alone. And with rent control, (50) is
a linear, �rst-order di�erential equation in φ alone, and substituting the solution to (50) into (48) results in
a linear, �rst-order di�erential equation in q alone.
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start by setting the following parameters:

δ = 0.03, r = 0.0375, a = 0.2121, e = 0.055, f = 0.005, and L = 10.

These parameters imply a saddlepoint quality of 2.0, saddlepoint maintenance of 0.02 ($2000

per year), saddlepoint rent of 0.10 ($10000 per year), and a value of the co-state variable

(the marginal value of quality) at the saddlepoint of 0.667. α is varied across examples.

Our rehabilitation function has a very simple form: R(qs, qT ) = β1qs − β2qT = β2(qs −

qT )− (β1−β2)qs, where β1 = 0.25, β2 = 0.24. Thus, besides a linear cost of quality upgrade,

the landlord has to pay a fee proportional to the `target' quality qs.

4.2 Numerical solution procedures

The details of the numerical solution procedures employed are presented in the Appendix.

Here we just describe in broad terms the general approaches. In the absence of rent control,

the solution procedure centers on solving for the solution parameters of the second-order

linear di�erential equation for φ, since everything else may be solved for once these param-

eters are obtained. One parameter is obtained from the initial condition that φ(0) = α.

How the other parameter is determined depends on the type of program. In the case of

the saddlepoint program, the second parameter is obtained from the φ-coordinate of the

saddlepoint; in the case of the demolition program, the second parameter and the period

of the demolition cycle are solved simultaneously from φ(T ) = 0 and the terminal time (or

equal-areas) transversality condition; in the case of the rehabilitation program, the second

parameter, as well as φs and φT , are solved simultaneously from the transversality conditions

for φs, φT , and the terminal time transversality condition.

The approaches taken to solve the optimal programs with tenancy rent control are more

complex. It is convenient to express the unknown parameters in the functions φ(t) and

q(t) in terms of q(0) and q(L). This allows us to obtain the discounted revenue received

over a tenancy, Z(q0), and the net value of a tenancy cycle, J(q0, qL, L). For program

Ŝ, we make a conjecture about the form of V̂ (q). Then, using (42) to �nd qL(qs) and

plugging it into (41), we apply the method of undetermined coe�cients to solve for V̂ (q).

57



The �nal step is to �nd the construction quality qc using (46). The solution algorithm

for the demolition program with rent control was described in Section 3.2 and that for the

rehabilitation program sketched in Section 3.3.

4.3 Examples without rehabilitation

In this subsection, we assume that rehabilitation is unpro�table and that α is not so high as

to make initial construction unpro�table. In the absence of rent control, the optimal program

is therefore either the optimal saddlepoint program or the optimal demolition program, with

the saddlepoint program being optimal for α above 0.4166 and the demolition program for

α below that level. With rent control, the optimal program entails either convergence to

a steady-state cycle or a demolition program, with the former occurring when construction

costs are high relative to maintenance. We proceed by lowering α from one example to the

next.

� α = 0.695

The fourth panel of Figure 7 displays the phase diagram for this example, both with

and without rent control. The φ̇ = 0 locus in the absence of rent control is shown as

the dotted line; with rent control, it coincides with the q-axis. Recall that the level of

maintenance is proportional to φ. In the absence of rent control, the optimal program

entails construction at q = 1.416, followed by upgrading to steady-state quality, qS = 2.0.

Construction occurs at that quality at which the marginal value of quality, α, equals the

marginal cost of construction. The value of the program is 0.751. With rent control, the

optimal program entails a steady-state tenancy cycle, with construction at q = 1.542. As

explained earlier, φ jumps downwards discontinuously immediately after a tenancy contract

is signed, re�ecting the commitment problem, and then rises continuously within the tenancy.

With increasing maintenance over the tenancy, quality initially falls and then rises until it

reaches construction quality by the end of the tenancy. The value of the program is 0.694.

Thus, the e�ciency loss due to tenancy rent control is 7.6% of the value of the uncontrolled

program. Observe that the average quality of housing is lower under rent control, consistent

with intuition.

58



Figure 7: Phase planes with and without rent control. No rehabilitation.
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� α = 0.667

The third panel of Figure 7 shows the optimal trajectories for this example without and

with rent control. The optimal program in the absence of rent control entails constructing at

saddlepoint quality and holding quality constant at that level. The value of the Hamiltonian

at the saddlepoint is 0.08 (rent of 0.10 minus maintenance costs of 0.02 and of course no

depreciation). Housing value is 2.133 and construction costs are 1.333, so that the value of

the program prior to construction is 0.800 and the land to housing value ratio 0.375. Are

these numbers reasonable? The �cap rate� (the percentage of net rent to value) is low, under

the model's assumptions simply equaling the interest rate; if uncertainty and property taxes

were considered, the cap rate would be reasonable. Maintenance expenditures are 0.94% of

housing value, which accords broadly with the 1-percent rule that maintenance expenditures

are typically about 1% of property value. The Figure shows two rent-control trajectories.

The path on the right is for the �rst tenancy, that on the left for the steady-state tenancy.

Construction occurs just above saddlepoint quality. Maintenance increases within each

tenancy, but starting quality falls from one tenancy to the next, converging to steady-state

starting quality below saddlepoint quality. The value of the program is 0.746, implying a

deadweight loss due to tenancy rent control of 6.8% of value.

� α = 0.4

It was noted earlier that, with the assumed functional forms and parameter values, in

the absence of rent control the optimal demolition program is more pro�table than the

optimal saddlepoint program when α is below 0.4166. Thus, in this example, displayed in

the second panel of Figure 7, the optimal program without rent control is a demolition cycle.

Construction occurs at a quality considerably above saddlepoint quality. This is followed by

downgrading to demolition quality, at which point the structure is demolished and the cycle

exactly repeated. The value of the program is 2.058. In contrast, with tenancy rent control,

convergence to a steady-state cycle remains optimal22. Construction occurs at high initial

22The critical construction cost level below which the optimal program entails demolition is therefore
lower with rent control than without. With α = 0.4, the deadweight loss due to the commitment problem
is therefore higher with the optimal demolition program than with the optimal steady-state program.
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Panel A: Value of the optimal Panel B: Absolute deadweight Panel C: Relative deadweight

programs without rent control as a loss due to rent control, $105 loss due to rent control, %

function of construction cost, $105

Figure 8: Values of optimal programs without rent control,
and deadweight loss due to rent control - Case without rehabilitation

quality, followed by downgrading from one tenancy to the next (but with rising maintenance

within each tenancy) converging to a steady-state cycle. The value of the program is 2.030,

so that in this case the deadweight loss due to rent control is only 1.4% of the uncontrolled

program value.

� α = 0.1

In this example, shown in the �rst panel of Figure 7, construction is su�ciently cheap

relative to maintenance that a demolition cycle is pro�t maximizing both with and without

rent control. The range of qualities over a demolition cycle is similar for the two programs.

The level of maintenance is lower under rent control at every quality level; as a result,

depreciation is more rapid and the demolition cycle shorter. The values of the program

without and with rent control are 5.663 and 5.549, respectively, implying a deadweight loss

due to rent control of 2.0% of the value of the uncontrolled program.

Figure 8 focuses on the deadweight loss resulting from the application of rent control.

Panel A shows the value of the optimal program without rent control as a function of α.

There is a slope discontinuity in the value of this optimal program at α = 0.4166, where the

switch occurs between the range of qualities where the saddlepoint program is optimal and

where the demolition cycle is optimal. There are several slope discontinuities in the value

of the optimal program with rent control.23 The one corresponding to the highest value of

α corresponds to the switch point between the range of qualities for which the steady-state

23This function is not drawn since to the naked eye, it is hard to distinguish for that drawn in Panel A.
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Panel A: Values of the optimal Panel B: Absolute deadweight Panel C: Relative deadweight

programs without rent control as a loss due to rent control, $105 loss due to rent control, %

function of construction cost, $105

Figure 9: Values of optimal programs without rent control,
and deadweight loss due to rent control - Case with rehabilitation

cycle is optimal and for which the demolition cycle is optimal. The ones at lower values of

α correspond to switch points for which di�erent numbers of tenancies within a demolition

cycle are optimal. Panel B shows the absolute loss in program value from the application of

tenancy rent control, and Panel C the corresponding proportional loss.

4.4 Examples with rehabilitation

In examples with rehabilitation, we consider a limited range of α (0 < α < 0.24). Due to

our choice of the functional form, for higher values of α construction becomes unreasonably

expensive compared to rehabilitation. Figure 9 presents the value of the optimal program

without rent control as a function of α, and the absolute and relative deadweight loss due

to rent control.

For α ≤ 0.112 the optimal program with or without rent control is demolition (programs

D and D̂). Under rent control: for α ≤ 0.011, the D̂ program has only one tenancy cycle

between demolitions; for 0.011 < α ≤ 0.077, two tenancy cycles; and for 0.077 < α ≤ 0.112,

three tenancy cycles. This explains the non-smoothness of deadweight loss when demolition

is optimal. For 0.112 < α ≤ 0.141, D is still the optimal program without rent control

but under rent control rehabilitation is more pro�table. For 0.141 < α ≤ 0.24, the optimal

program is rehabilitation with or without rent control. For 0.141 < α ≤ 0.168, the R̂

program entails three tenancies before the �rst rehab, while for 0.168 < α ≤ 0.24 only

two tenancies precede the �rst rehab. As a result, there is a `kink' in panels B and C at
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α = 0.168. At these relatively low values of α steady-state programs are never optimal.

The relative loss is limited and does not exceed 2.5% of the value of an optimal program.

Absolute loss may reach $12,000 per unit per year.

5 Conclusion

In recent years an increasing number of jurisdictions around the world have adopted what

has come to be known as tenancy rent control, typically as a method of partial decontrol of

a previously stricter form of rent control. Under tenancy rent control, rents are controlled

within a tenancy but are free to vary between tenancies. Tenancy rent control appears

attractive, as a way of providing security of tenure to sitting tenants without the excess

demand distortions created by stricter control programs. How attractive tenancy rent control

in fact is depends on the magnitude of the distortions it creates. Since tenancy rent control

typically results in the contract rent exceeding the market rent in the early years of the

tenancy and falling short of it in later years, it provides an incentive for tenants to stay in

their apartments longer than they otherwise would. In this paper we examined the e�ects

of tenancy rent control on a landlord's choice of the quality path of his housing units, which

includes his decisions on construction quality, maintenance, rehabilitation, and demolition

and reconstruction, under the assumptions that tenancy duration is exogenous and that

the controls are applied to only a single housing unit. We showed that the application of

tenancy rent control gives rise to a potential commitment (or time inconsistency) failure. We

contrasted two programs, the e�cient program and the opportunistic program. The e�cient

program is the pro�t-maximizing program in the absence of rent control. The opportunistic

program is the pro�t-maximizing program over a tenancy once the tenancy contract has

been signed. The signing of the contract results in the present value of revenue from the

tenancy being independent of the landlord's maintenance expenditure, and hence reduces

his incentives to maintain. Before the tenancy contract is signed, the landlord would like to

commit to following the e�cient program, but none of the commitment mechanisms available

� contract, reputation, and regulation � is likely to be very e�ective. In our analysis, we

assumed that these mechanisms are completely ine�ective, so that the landlord follows the
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opportunistic program. Building on the Arnott-Davidson-Pines model of housing quality

and maintenance, we compared the properties of the e�cient and opportunistic programs.

Section 4 presented a series of related numerical examples, with the aim of quantifying the

deadweight loss due to the commitment failure. For reasonable parameter values, we found

that the deadweight loss is modest but not insigni�cant, ranging from zero to eight percent

of the pre-control value of the program.

There are several open questions left for future research.

1. The paper considered the application of tenancy rent control to a single housing unit

when the rest of the market is uncontrolled. How do the results change when the entire

market is controlled?

2. The paper built on the Arnott-Davidson-Pines �ltering model. Since there is no empir-

ical work based on this model, the numerical examples used simple functional forms and

�reasonable� parameter values. How would the results change if estimated functional forms

were used instead?

3. The paper assumed, under tenancy rent control, that tenancy duration is exogenous. But,

by front-end loading rents, tenancy rent control should increase tenancy duration. How im-

portant is this distortion compared to the commitment-in-maintenance distortion considered

here, and how do the two distortions interact?

4. The paper noted that tenancy rent control improves security of tenure for tenants. What

is the social value of doing so?

5. The paper compared the unrestricted market equilibrium to the market equilibrium un-

der tenancy rent control. But since tenancy rent control has typically been employed as a

method of partial decontrol, it is perhaps more relevant to ask: What is the magnitude of

the e�ciency gain when a stricter form of rent control is replaced by tenancy rent control?
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Appendix

In this appendix we �nd optimal programs without and with rent control assuming the

functional forms used in our numerical examples. As was stated in Section 4, in the nu-

merical examples we employ the following rent function, construction cost function, and

maintenance/depreciation function:

P (q) = eq − fq2

2
= 0.055q − 0.005q2

2

C(q) = αq

q̇ = −δq + 2am1/2 = −0.03q + 2(0.045φ2)1/2.

No-rent-control programs

We start by solving the system of di�erential equations (20) and (21):

q̇ = −δq + 2a2φ,

φ̇ = (r + δ)φ− e+ fq.

This system can be reformulated as follows:

φ̈− rφ̇− (2a2f + δ(r + δ))φ+ δe = 0,

q =
φ̇+ e− φ(r + δ)

f
. (51)

The solution to the second order di�erential equation for φ has the following form:

φ(t) = C1e
γ1t + C2e

γ2t +B (52)

where

B =
δe

2a2f + δ(r + δ)
= φS ,
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γ1 =
r +

√
r2 + 4(2a2f + δ(r + δ))

2
,

γ2 =
r −

√
r2 + 4(2a2f + δ(r + δ))

2
.

With φ(t), we can �nd q(t) using (51):

q(t) =
1

f

[
C1e

γ1t(γ1 − r − δ) + C2e
γ2t(γ2 − r − δ) + e−B(r + δ)

]
.

Recalling that

qS =
2a2e

δ(r + δ) + 2a2f

and rearranging e−B(r+δ)
f , we obtain that

q(t) =
1

f
[C1e

γ1t(γ1 − r − δ) + C2e
γ2t(γ2 − r − δ)] + qS . (53)

Whether the S or D program is optimal, the transversality condition (6) holds:

φ(0) = α.

Using this condition, we solve for C2:

C1 + C2 + φS = α,

C2 = α− C1 − φS .

The other transversality condition that allows us to solve for C1 is di�erent for the S and

D programs, which we consider in turn.

Program S

The steady-state program implies that

lim
t→∞

q(t) = qS (54)

lim
t→∞

φ(t) = φS .
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Notice that γ1 > 0 while γ2 < 0. Therefore, (54) can hold only if C1 = 0. This condition

completely de�nes q(t) and φ(t):

φ(t) = C2e
γ2t + φS ,

q(t) =
1

f
C2e

γ2t(γ2 − r − δ) + qS ,

C2 = α− φS .

Program D

To �nd C1, we use the transversality condition φ(T ) = 0:

C1e
γ1T + C2e

γ2T +B = 0,

C1 = −B + C2e
γ2T

eγ1T
.

The last unknown is T . It is determined by the equal-areas condition:

H(T ) = H(0)− rαq(0) (55)

where

H(t) = eq(t)− fq(t)2

2
+ a2φ(t)2 − δq(t)φ(t). (56)

Equation (55) involves sums of exponents of T , so it cannot be solved analytically. We

�nd its solution numerically for a given value of α. It appears that this equation has two

solutions in the region where T is positive. We choose the one that results in the higher

value of the program.

Program R

Our rehabilitation technology is R(qs, qT ) = 0.25qs − 0.24qT . In this problem, there are two

di�erent pairs of laws of motion for q and φ, {qc(t), φc(t)} for a tenancy immediately after

construction, which we call a construction cycle, and the other, {q(t), φ(t)}, for all subse-

quent tenancies, which we call rehabilitation cycles. Both pairs are described by (53) and
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(52), respectively, but with di�erent unknown constants, which we will denote as {Cc1, Cc2}

for a construction cycle and {C1, C2} for rehabilitation cycles. We start by �nding the laws

of motion for rehabilitation cycles. The transversality conditions

φ(0) =
∂R(qs, qT )

∂qs
= 0.25,

φ(T ) = −∂R(qs, qT )

∂qT
= 0.24

allow us to solve for the unknown constants on which q(t) and φ(t) depend. Then we �nd

the optimal duration of the rehabilitation cycle T , using the equal-area condition:

(H(0)−H(T ))/r = R(q(0), q(T )). (57)

Here H(·) is de�ned in (56) and depends on the laws of motion for the rehabilitation cycle.

We solve this equation numerically using Maple 9.5 and obtain that the optimal duration of

the rehabilitation cycle is (approx.) 16.61 years. We verify that there are no other solutions

for positive T by examining behavior of the left-hand side and the right-hand side of (57).

Notice that T does not depend on the cost of construction. Then we �nd the laws of motion

qc(T ) and φc(T ) for the construction cycle using the following transversality conditions:

φc(0) = α,

φc(Tc) = φ(T ).

Finally, we numerically solve for the length of the construction cycle Tc for each speci�c α

using the following equation:

qc(Tc) = q(T ).
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Programs with rent control

Under programs with rent control, the di�erential equation for φ is di�erent from that

without rent control. Solving the system (20) and (22)

q̇ = −δq + 2a2φ,

φ̇ = (r + δ)φ,

we obtain the following solutions:

φ(t) = c1e
(r+δ)t,

q(t) =
2a2c1
r + 2δ

e(r+δ)t + c2e
−δt.

We solve for c1 and c2 in terms of initial and terminal quality of a tenancy cycle, qs and qL:

q(0) =
2a2c1
r + 2δ

+ c2 = qs,

c2 = q0 −
2a2c1
r + 2δ

.

Since the analytical solutions to programs with rent control contain quite messy expressions,

we give only solutions for the values of parameters used in our numerical examples and round

all values to the third digit.

q(t) =
qL − qse−δL

e(r+δ)L − e−δL
(
e(r+δ)t − e−δt

)
+ q0e

−δt

= 0.817(e0.0675t − e0.03t)qL + (−0.606e0.0675t + 1.606e0.03t)qs ,

φ(t) = c1e
(r+δ)t =

(
qL − qse−δL

)
(r + 2δ)(

e(r+δ)L − e−δL
)

2a2
e(r+δ)t

= (−0.656qs + 0.886qL)e0.0675t.
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Recall that optimal maintenance is m(t) = a2φ2. Thus, the value of a tenancy cycle is

J(qs, qL, L) = −
ˆ L

0
m(t)e−rtdt = −

ˆ L

0
a2φ(t)2e−rtdt.

It is straightforward to calculate the integral from the righthand side but the expression is

cumbersome; for exposition purposes, we just say that J(qs, qL, L) can be presented in the

following form:

J(qs, qL, L) = G1q
2
s +G2q

2
L +G3qsqL.

where G1, G2, and G3 are some known functions of parameters.

Using the de�nition of the rent function P (·), we also calculate the discounted present

value of rent received over a tenancy:

Z(qs, L) =

ˆ L

0
[eq̂ (t; qs)−

f

2
q̂ (t; qs)

2]e−rtdt,

with

q̂ (t; qs) =
qL(qs)− qse−δL

e(r+δ)L − e−δL
(
e(r+δ)t − e−δt

)
+ qse

−δt

where a �nal quality of a cycle, qL(qs), is optimally chosen and is a function of an initial

quality of a cycle, qs. The functional form of q(t) implies that

Z(qs, L) = B1q
2
s +B2qL(qs)

2 +B3qsqL(qs) +B4qs +B5qL(qs).

Again, {Bi}5i=1 are some known functions of the parameters.

Program Ŝ

In case of the Ŝ program, the problem of the landlord boils down to an in�nite horizon

dynamic programming problem, in which the state variable is the initial quality while the

control variable is the terminal quality of a unit. Thus, we have the following Bellman
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equation:

V̂ (qis) = Z(qis) + max
qiL

[J(qis, q
i
L, L) + V̂ (qi+1

s )e−rL] (58)

s.t. qi+1
s = qiL, i = 1, 2, ... is the number of the tenancy cycle.

We apply the `guess-and-verify' method. Notice that J is quadratic in qiL. If q
i
L is a linear

function of qis, then Z is also quadratic in qiL. Notice also that qiL is a linear function of qis

if V̂ is quadratic. Thus, we make a guess that V̂ is quadratic:

V̂ (q) = A0 +A1q +A2q
2. (59)

We �nd A0, A1 and A2 by the method of undetermined coe�cients. First we need to �nd

qiL as a function of qis. Assuming that J(qis, q
i
L, L) + V̂ (qi+1

s )e−rL is concave, we use the �rst

order condition:

∂

∂qiL

[
J(qis, q

i
L, L) + V̂ (qi+1

s )e−rL
]

= 2G2q
i
L +G3q

i
s + e−rLA1 + 2e−rLA2q

i
L = 0,

qiL = − G3q
i
s + e−rLA1

2(G2 + e−rLA2)
≡ K1q

i
s +K2. (60)

Substituting (59) and (60) into the Bellman equation (58) and suppressing the index for the

cycle i, we obtain

A0 +A1qs +A2(qs)
2 = B1q

2
s +B2(K1qs +K2)

2 +B3qs(K1qs +K2) (61)

+B4qs +B5(K1qs +K2)

+G1q
2
s +G2(K1qs +K2)

2 +G3qs(K1qs +K2)

+ e−rL[A0 +A1(K1qs +K2) +A2(K1qs +K2)
2].

One can see that (61) is quadratic in qs. We �nd the unknown constants A0, A1 and A2 by

rewriting (61) in the form

W0 +W1qs +W2q
2
s = 0
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and solving the system

W0 = 0 (62)

W1 = 0

W2 = 0

for A0, A1 and A2.

After some simpli�cation and rounding, the system (62) can be rewritten as

A2 + 0.336 +
0.779

1.375A2 − 1.195
+

0.473− 0.539A2

(1.375A2 − 1.195)2
= 0

A1 − 0.254 +
0.175 + 1.213A1

1.375A2 − 1.195
+

0.734A1 − 0.837A1A2

(1.375A2 − 1.195)2
= 0

0.313A0 +
0.136A1 + 0.472A2

1

1.375A2 − 1.195
+

0.285A2
1 + 0.325A2A

2
1

(1.375A2 − 1.195)2
= 0.

This system of (cubic) equations has three solutions:

A0 = 3.012, A1 = −1.634, A2 = 0.567,

A0 = 34.012, A1 = −12.235, A2 = 0.861,

A0 = 0.635, A1 = 0.772, A2 = −0.025.

Only the third solution results in a concave value function while other solutions have A2 > 0.

Indeed, one can check that the �rst and second solutions are spurious, since they result in

convex J(qis, q
i
L, L) + V̂ (qi+1

s )e−rL. We proceed further with the third solution

V̂ (q) = 0.635 + 0.772q − 0.025q2.

To complete the solution of the problem, we use the the �rst-order condition for the maxi-
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mization of the value of the program:

d

dq0

(
−αq0 + V̂ (q0)

)
= −α+A1 − 2A2q0 = 0.

Therefore,

q0 =
A1 − α

2A2
.

Program D̂

Recall that program D̂ entails an in�nite number of repetitions of a contruction-demolition

cycle, each of which comprises of n tenancy cycles. Conditional on pursuing program D̂,

the problem of the landlord is not only to choose an optimal trajectory for each tenancy

cycle but also to choose optimal n. Given n, the problem of the landlord is to �nd the

optimal maintenance path and optimal construction quality. To �nd optimal maintenance,

the landlord solves a �nite-horizon dynamic programming problem similar to (58):

v(qis) = Z(qis) + max
qiL

[J(qis, q
i
L, L) + v(qi+1

s )e−rL], (63)

s.t. qi+1
s = qiL, i = 1, 2, ..n is the number of the tenancy cycle,

v(qn+1
s ) = 0.

Given our particular functional form, we show the solution for n = 1. v(q2s) = 0, so q1L is a

solution to the �rst-order condition:

d

dq1L

[
−0.328(q10)2 + 0.886q1Lq

1
0 − 0.598(q1L)2

]
= 0.

Thus,

q1L = 0.741q10.

Given q1L,

v(q1s) = 0.4q1s − 0.016(q1s)
2.
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Knowing v(q1s), the landlord optimizes with respect to q1s :

max
q1s

(−αq1s + v(q1s)), (64)

which gives

q1s = −31.31α+ 12.522. (65)

The value of program D̂ for n = 1 is

V̂ 1(q1s) =
1

1− e−rL
(v1(q1s , 1)− αq1s)

= −40.044α+ 16.016− (0.051 + 3.198α)(−31.31α+ 12.522).

Following the same strategy we solve for V̂ n(q1s) for n from 1 to 20.

One more complication we encounter is that for su�ciently high values of α (for α > 0.55)

the non-negativity condition q ≥ 0 binds for an optimal D̂ program. We say that the

demolition program under rent control does not exist for α > 0.55 given our choice of

functional forms and parameters.

Program R̂

The pro�t-maximizing rehabilitation program under tenancy rent control requires �nding

the sequence of initial and terminal qualities in each tenancy cycle that maximizes the

landlord's net income stream and solves:

max
{qis,qiL}

∞
i=1

[−αq1s + Z(q1s) + J(q1s , q
1
L, L)

+

∞∑
i=2

e−(i−1)rL(−(R(qis, q
i
L))+ + Z(qis) + J

(
qis, q

i
L, L

)
)]

where (x)+ = x if x > 0 and (x)+ = 0 if x ≤ 0. The superscripts on q stand for the number

of the tenancy cycle. In this case the main problem is to guess the solution. We make two
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conjectures. First, consider the following value function:

W (q1s) = max
q1L,{qis,q

i
L}
∞
i=2

[−αq1s + Z(q1s) + J(q1s , q
1
L, L)

+

∞∑
i=2

e−(i−1)rL(−(R(qis, q
i
L))+ + Z(qis) + J

(
qis, q

i
L, L

)
)].

Our �rst conjecture is that W (·) is quadratic. This is suggested by the functional form

of Z(·) and J(·, ·) which are quadratic. But even knowing that W (·) is quadratic is not

su�cient to get the complete solution as there is another issue: when does the landlord

rehabilitate and when not? We look for the program that has the following form:

−αq1s +
M∑
i=1

e−(i−1)rL
[
Z(qis) + J(qis, q

i
L, L)

]
+ e−MrLV̂ K(qML )

where

V̂ K(qML ) =

∞∑
j=1

e−(j−1)rKLY (qML ;K)

and

Y (qML ;K) = −R(qM+1
s , qML ) +

K∑
i=1

e−(i−1)rL
[
Z(qM+i

s ) + J(qM+i
s , qM+i

L )
]
.

Thus we are looking for programs that have two parts, a `non-stationary' and a `stationary'

one. A stationary part V̂ (qML ;K) consists of in�nite repetition of the same cycle Y (qML ;K),

which starts with rehabilitation followed by K tenancy cycles without rehabilitation. The

non-stationary part of the program is the initial part, which comprises M tenancy cycles

without rehabilitation.

To �nd V K(qML ), we consider the following system:

V1(q
0
L;K) = max

q1s
[−R(q1s , q

0
L) + V2(q

1
s ;K)], (66)

V2(q
1
s ;K) = Z(q1s) + max

q1L

[J(q1s , q
1
L) + e−rLV3(q

1
L;K)], (67)

...

VK+1(q
K
s ;K) = Z(qKs ) + max

qLK
[J(qKs , q

K
L ) + e−rLV1(q

K
L ;K)], (68)
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qis = qi−1L , i = 2, ..K.

Assuming that Vi, i = 1, ..,K + 1 is quadratic (Vi(x;K) = Ai +Bix+Cix
2), one can notice

that we have two types of equations. Let us examine the optimal choices for each equation

type. First, we consider maximization in equation (66).

max
qs1

[−β1q1s + β2q
0
L +A2 +B2q

1
s + C2(q

1
s)

2].

Provided that C2 < 0,

q1s =
β1 −B2

2C2
,

i.e. q1s is just a constant. Note that q
1
s would be a constant when the rehabilitation function

is additively separable in its two arguments. Additive separability of the rehabilitation

function implies that as soon as the landlord �nds it pro�table to rehabilitate for the �rst

time, the system loses memory about its history. This fact suggests that the solution indeed

should contain a stationary cycle of the kind described above. Also, the loss of memory

after rehabilitation implies that the non-stationary part of the solution may not contain

rehabilitation and, therefore, necessarily consists of a sequence of tenancy cycles without

rehabilitation.

Given that Vi(x) = Ai+Bix+Cix
2, it is straightforward to obtain the solutions to (67)-

(68). We do not present the explicit solutions as they involve quite cumbersome expressions.

Having obtained the solutions for optimal choices of the q's, we substitute them into the

system(66)-(68) and construct a new system that has 3(K + 1) equations in the coe�cients

on Vi(·), i = 1, ...,K+1. The properties of the system that we obtain are described in Table

1.

Fortunately, this system boils down to linear equations and has a solution. First, we

solve for C1, then for CK+1, CK , ..., C2. Then we are able to solve for B1 and combining this

solution with solutions for C1 we solve for BK+1, BK , ..., B2. Substituting all these solutions

into the the rest of equations involving Ai's, we obtain a system of linear equations that has

exactly one solution. Having the solution for the stationary part of the problem, it is easy

to solve the problem completely by working backwards starting from the stationary part.
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Equation for the coe�cient on
q0 q q2

Variables that enter the equation
linearly nonlinearly linearly nonlinearly linearly nonlinearly

Eq. 1 A1, AK+1 B2, C2 B1 � C1 �
Eq. 2 A2, A3 B3, C3 B2 B3, C3 C2 C3

... ... ... ... ... ... ...
Eq. K + 1 AK+1, A1 BK+1, CK+1 BK+1 B1, C1 CK+1 C1

Table 1: Properties of the system of equations for the coe�cients of value functions

To �nd the optimal program, the programs with K,M = 1, 2, ..., 20 were considered. It

appears that, under the chosen values of parameters, the stationary part of the program

has two tenancies in one rehabilitation cycle. The optimal number of tenancies in the non-

stationary part depends on α and can be 2 or 3.

Depending on α, the value function for this program has the following form:

V̂ =



6.887− 15.103α+ 10.554α2,

if 0.003 < α ≤ 0.168, (3 tenancies in a non-stationary cycle)

6.851− 15.056α+ 11.527α2,

if 0.168 < α ≤ 0.25 (2 tenancies in a non-stationary cycle)

(we do not consider α > 0.24). It is clear why we have more non-stationary cycles for lower

α : the lower the cost of construction, the higher the initial quality the landlord chooses and

the longer it takes to downgrade to the quality where it is pro�table to rehabilitate. Figure

6 shows the optimal trajectories for α = 0.2.
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