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ABSTRACT 

Although the correlation between traumatic events and the development of posttraumatic 
stress disorder (PTSD) is by no means one to one, trauma and exposure to extreme stressors 
greatly increases a person’s vulnerability to developing mental illness. The symptoms of PTSD, 
though incredibly diverse, are generally characterized by prolonged and heightened reaction to 
traumatic events. Despite the fact that women are more than twice as likely to develop PTSD, 
much of the research on this disorder has largely relied on the use of male subjects. While one 
could argue that this gender discrepancy can be attributable to various social factors, 
investigation of the biological basis of such sex differences may prove to be crucial component 
in the development of novel and more targeted treatment options. This paper will review putative 
roles of steroid hormones, alterations in the neural circuits involving fear, and changes in 
neuroplasticity in the sex differences seen in PTSD and fear-related learning. Using a standard 
fear conditioning paradigm, our group has found that while female rats show similar levels of 
conditioned inhibition compared with that of their male counterparts, females also exhibited 
superior fear discrimination in both conditioning and recall tests. Analysis of specialized 
extracellular matrix structures called perineuronal nets (PNNs) revealed that females displayed a 
much higher density of PNNs in the basolateral amygdala (BLA) than males, but not in the 
prefrontal cortex.  
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INTRODUCTION 

Traumatic events or other significant uncontrollable stressors increase a person’s 

vulnerability to developing a mental illness, particularly anxiety and stress-related disorders. 

Posttraumatic stress disorder (PTSD) is typified by a constellation of symptoms (e.g. flashbacks, 

nightmares, dissociation, insomnia, etc.) that cause significant distress and interference with 

daily activities for those living with the disorder. According to the U.S. Department of Veteran 

Affairs, PTSD has a lifetime prevalence of around seven percent and affects over five million 

people in the United States alone. However, not everyone who undergoes a traumatic experience 

will develop PTSD. Risk factors that increase the chance of developing PTSD include prior 

history of mental illness, history of traumatic brain injury, nature of the trauma experienced, and 

gender. Women have nearly double the risk of developing PTSD compared to males, and while 

this may be partially explained by a higher rate of assaultive trauma towards women, social 

factors alone cannot explain this discrepancy (Breslau et al., 1999b; Fennema-Notestine et al., 

2002; Kessler et al., 1995). For such a large variation, there must be a host of biological 

processes at the origin.  

 Indeed, the difference in prevalence of PTSD between males and females is mediated by 

a number of factors including differing gonadal hormone levels, dysregulated neural circuits, and 

altered neurophysiology. Though discussion of the complete neural networks underlying fear-

related learning is beyond the scope of this paper, it will nonetheless examine recent literature on 

fear circuitry, neurobiology, neuroplasticity, and sex differences found in these domains. 

Additionally, this paper will review our group’s recent experimental findings regarding sex 

differences in fear discrimination in male and female rats.   
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Fear Conditioning and Discrimination 

Much of fear-related learning relies on classical conditioning and Hebbian learning 

mechanisms. In fear conditioning models, a neutral stimulus (CS+) is paired with an aversive 

stimulus (US) such that the CS+ eventually elicits a conditioned response even when presented 

without the US. For both humans and animals, a complex network of interconnected brain areas 

helps to mediate fear conditioning, as presentation of the CS+/US activates a number of 

structures crucial to the acquisition and expression of learned fear (Greco & Liberzon, 2015; 

Kim & Jung, 2006).  

As a structure crucial to the formation of emotional memories and a driver of 

physiological responses to stressful situations, the amygdala contains numerous afferent and 

efferent connections to various brain areas. The different processes performed by the amygdala 

are mediated by different regions, with the central amygdala (CeA) largely mediating behavioral 

output and the basolateral amygdala (BLA) mediating much of the sensory information 

processing (Orsini and Maren, 2012). Presentation of dangerous or aversive cues not only 

activates the amygdala as a whole, but induces neurophysiological changes that help drive fear 

learning. For example, Ostroff et al. (2010) demonstrated that fear conditioning causes an 

increase in synapse size, spine size, and post-synaptic density size in a subset of dendrites within 

the lateral amygdala (LA). These impressive morphological alterations are also accompanied by 

alterations in resultant neural activity and synaptic strength (Christianson et al., 2012). Both 

synapse and dendritic spine size influence neuroplasticity, with larger spines associated with 

enhanced long term potentiation (LTP) and smaller spines associated with enhanced long term 

depression (LTD) (Matasuzaki et al, 2004; Zhou et al., 2004). Fear conditioning also increases 

polyribosome numbers and dendritic spine apparatuses, a type of smooth endoplasmic reticulum 
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structure. These neuroplastic changes suggest that traumatic experiences may influence 

neurobiology by altering cellular capacity for protein synthesis, as well as dendritic and synaptic 

morphology.  

 PTSD patients often show considerable difficulty differentiating between safe and unsafe 

conditions, leading to exacerbation of hyperarousal symptoms (Jovanovic et al., 2012). Impaired 

fear discrimination capabilities can result from a number of different factors such as altered 

activity levels in various brain areas and aberrant neurotransmitter signaling. The orbitofrontal 

cortex (OFC) is critical to the processing of emotional events, and its inactivation has been 

correlated with impaired recall of safety signals (Sarlitto, Foilb, and Christianson unpublished 

observations). Surprisingly, the ventral hippocampus, which is involved in the acquisition and 

modulation of learned fear, is not crucial for fear discrimination nor recall of fearful stimuli (Bast 

et al., 2001; Chen et al., 2016). Within the amygdala, separate populations of neurons have been 

found to preferentially respond either safety cues or danger cues (Sangha, 2015). Although 

extinction training reversed this bias in some neurons, these results provide a direct cellular link 

to the excitatory-inhibitory balance needed for appropriate discriminative behaviors.  

With regards to sex differences, numerous studies have found functional and 

morphological differences in various brain areas (Labrenze et al., 2015; Lebron-Milad et al., 

2012). Within the infralimbic-basolateral amygdala (BLA), males with high levels of freezing 

following fear conditioning exhibit increased dendritic spine density and shorter spines, whereas 

females do not show these changes regardless of freezing level (Gruene et al., 2015b). 

Additionally, males show increased contextual conditioning and higher levels of perforant path 

LTP within the hippocampus than females. (Maren et al., 1994). Several studies have shown that 

males show superior context discrimination, whereas females tend to generalize their fear 
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responses to neutral contexts (Day et al., 2016; Lynch et al., 2013). However, when exposed to 

chronic stress, females show significantly less extinction impairment than chronically stressed 

males, and females not exposed to chronic stress (Baran et al., 2009; Ribeiro et al., 2010, Yuen et 

al., 2016). Serotonin (5-HT)-depleting agents such as para-chlorophenlalanine (PCPA) have been 

shown to abolish sex differences in contextual fear conditioning and exert anxiolytic effects in 

males but not females (Naslund et al., 2013; Pettersson et al., 2016). Other data from our group 

has found that 5-HT2C receptor antagonism enhances fear discrimination and recall of safety 

signals (Foilb et al., 2016b). Taken all together, this provides a basis for sexually divergent 

neurotransmitter modulation of neural activity. Furthermore, these data support the idea of 

developing more targeted therapies that account for sex differences such as these.  

Safety Learning 

  Another hallmark of PTSD is reduced safety learning (Jovanovic et al., 2012). Safety 

learning, or conditioned inhibition, is the ability to attenuate a fear response when a danger and a 

safety cue are simultaneously presented (Christianson et al., 2012). Because safety cues (CS-) are 

not paired with aversive stimuli, they come to predict the absence of danger and thus inhibit 

fearful behavior. 

 The various regions of the amygdala show divergent responses to safety signals. The 

BLA undergoes increased expression of immediate early genes after presentation of safety cues, 

and the LA has been shown to be both necessary and sufficient for conditioned inhibition (Kong 

et al., 2014). The CeA, however, is not required for conditioned inhibition (Falls et al., 1995; 

Kong et al., 2014). This aligns well with the fact that the BLA mediates information processing 

of emotional environmental stimuli and that the CeA mediates behavioral output of fearful 

responses. Additionally, conditioned inhibition reduces dendritic spine size and synaptic density 
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in the LA, thereby decreasing synaptic strength (Ostroff et al., 2010). Electrophysiological 

recordings obtained from LA neurons show decreased activity when fear-trained mice were 

simultaneously presented with danger and safety cues (Rogan et al., 2005). These results indicate 

that conditioned inhibition is at least partially mediated by reduced amygdala excitation and 

output in the presence of safety signals. Thus, as hyperactivity of the amygdala results in 

enhanced fearful behavior, a reduction of such activity may underlie and help combat the 

impaired conditioned inhibition seen in PTSD patients (Jovanovic et al., 2010, 2012). 

Although the amygdala is heavily involved in both the consolidation and acquisition of 

safety signals, it does not act in isolation (Christianson et al., 2012; Kong et al., 2014). Several 

neural circuits contribute to safety learning, and brain regions involved in conditioned inhibition 

include the extended amygdala complex, insular cortex (IC), ventromedial prefrontal cortex 

(vmPFC), basal ganglia, and hippocampus (Christianson et al., 2012).  Furthermore, the IC has 

been highly implicated in the pathology of anxiety disorders and PTSD (Hughes and Shin, 2011; 

Lin et al., 2013). This finding comes as no surprise considering that the IC receives a wealth of 

somatosensory information and has wide-reaching afferent and efferent connections with other 

cortical, thalamic, and amygdala regions (Nieuwenhuys, 2012; Rodgers et al., 2008). The 

posterior insular cortex, or sensory insula (Si), is especially necessary for safety learning to take 

place (Foilb et al., 2016a). Normally, the presence of safety signals increases levels of social 

exploration and mitigates the deleterious consequences of uncontrollable stressors (Christianson 

et al., 2008, 2011). However, pharmacological lesioning of the Si reduces the beneficial 

behavioral and physiological effects of safety signals after stressor exposure. Interestingly, the IC 

does not seem to be critical for the acquisition of fear learning, which suggests that, though 

similar, both safety and fear learning operate via independent processes (Shi and Davis, 1999).  
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Sex Hormones and Fear  

 Female gonadal hormones are known to greatly influence behavior as a whole; however, 

there is little agreement on their exact effects on fear learning and stress behavior. On one hand, 

estrogens have been linked to lower levels of freezing (i.e. reduced fear expression), enhanced 

hippocampal neurogenesis, increased dendritic spine density, and reduced contextual 

conditioning (Barha et al., 2010; Gupta et al., 2001; Woolley et al., 1993). Intact females have 

been shown to have nearly double the hippocampal dendritic spine density of males and intact 

females, with spine density peaking in the proestrus phase (Farrell et al., 2015; Woolley et al., 

1993). Additionally, ovariectomized (OVX) female rats treated with estrogen implants often 

perform comparably to intact females, while OVX females not supplemented with estrogen tend 

to resemble males in terms of increased freezing behavior (Gupta et al., 2001). Similar to the 

results reported by Baran et al. (2009), elevated estrogen in the prefrontal cortex (PFC) seems to 

protect against cognitive impairment during exposure to chronic stress (Yuen et al., 2016). On 

the other hand, these findings do not help to explain the increased incidence of PTSD and 

anxiety disorders among females. Several other groups have demonstrated that estrogens impair 

inhibition of fear, leading to increases in overall freezing levels (Lynch et al., 2013; Toufexis et 

al., 2007). OVX females not given estrogen replacement exhibit significantly less freezing to 

neutral contexts, while OVX + estrogen and intact females show substantial context 

generalization (Lynch et al., 2013). Intact males and OVX females without estrogen replacement 

have greater hippocampal LTP than OVX females supplemented with estrogen (Gupta et al., 

2001). Moreover, estrogens have been correlated with increased capacity for norepinephrine 

(NE) synthesis and decreased NE degradation (Bangasser et al., 2016). Female rats have not only 

been shown to have more NE neurons in the locus coeruleus (LC), but also more complex LC 
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dendritic morphology. The resulting distortion in overall NE tone could lead to heightened 

autonomic activation and at least partly mediate the morphological and behavioral changes that 

follow exposure to stressful stimuli. While these findings substantiate claims that sex hormones 

exert discrete changes within the brain, it may be possible that the role of estrogen in fear 

behaviors cannot be described in a general sense due to the widespread distribution of estrogen 

receptors throughout the body. Therefore, a clear link between estrogen and the neural 

mechanisms that mediate fear and stress-related disorders cannot be drawn at the present time.  

In addition to the estrogen controversy, several other counterarguments can be made 

regarding the validity of studies citing sex differences as a potential factor in the development of 

PTSD. For one, the accuracy of current animal models to study sex differences in fear expression 

has been called into question as male and female rats sometimes show very different responses to 

fearful stimuli (Gruene et al., 2015b). Researchers have recently found that while many females 

show the same type of freezing behavior that males do, some females are also prone to have 

more physically active responses (i.e. darting behavior). This observation may explain some of 

the discrepancies between studies reporting correlations between estrogen and fear, yet this 

cannot be definitively concluded as none of the studies previous to Gruene et al. (2015a) 

analyzed darting behavior. 

Perineuronal Nets 

While not technically part of the neuronal machinery, specialized extracellular matrix 

(ECM) structures have emerged as important players in the regulation of neural activity. One 

such type of structure, termed perineuronal nets (PNNs), serves a number of functions within the 

central nervous system, but is especially associated with the restriction of synaptic plasticity and 

stabilization of existing synaptic connections (Härtig et al., 1992; Miao et al., 2014; Sorg et al., 
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2016). PNNs are characterized as a dense mesh surrounding the soma and proximal dendrites, 

and preferentially localize to fast-spiking parvalbumin (PV)-containing GABAergic 

interneurons. However, they have been known to form around glutamatergic pyramidal neurons 

(Alpár et al., 2006; Carstens et al., 2016; Wegner et al., 2003). PNN levels have been positively 

correlated with levels of both PV and Kv3.1b subunit-containing neurons, suggesting that PNN 

clustering around fast-spiking elements has functional significance (Härtig et al., 1999, 2001). 

Increased PNN expression around GABAergic neurons helps to regulate regional excitatory-

inhibitory tone, and prevent activity-induced toxicity via mechanisms described below.  

The general structure of PNNs is relatively consistent, with hyaluronan (HA), tenascins 

(Tn-R), chondroitin sulfate proteoglycans (CSPGs), and linker proteins being the main 

constituents (Miao et al, 2014). Membrane-bound CSPG receptors help anchor CSPGs to the 

cell, while Tn-R and linker proteins facilitate and stabilize CSPG-HA cross-linkages. Although, 

it is worth noting that despite the regular overall structure of PNNs, their specific molecular 

makeup is subject to wide-variation (Sorg et al., 2016). The majority of PNN-associated CSPGs 

are made up of aggrecan protein cores connected to polysaccharide glycosaminoglycan (GAG) 

chains, however some can contain a combination of aggrecan, brevican, versican, and 

phosphocan (Kitagawa & Miyata, 2016; Sorg et al., 2016). Additionally, the number and length 

of the GAG chains is also highly variable, though the exact reason behind this variation has yet 

to be elucidated. 

The dense mesh formed by these protein aggregates typically emerges 2-4 weeks 

postnatal, and fully stabilize 6-7 weeks postnatal. During PNN formation, CSPGs undergo 

changes in sulfation patterns that increase the degree of inhibition on the neuron (Sorg et al., 

2016). The 6-O-sulfation typically seen in juvenile brains allows for higher levels of plasticity 
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compared to the 4-O-sulfation seen in adults, creating more permissive conditions for axonal 

regeneration after spinal cord lesioning (Lin et al., 2011). The shift towards increased 4-O-

sulfation products and resultant decrease in plasticity suggests that sulfation patterns at least 

partially mediate the closure of critical periods.  

Clearly, this modulatory relationship between neurons and PNNs is not purely 

unidirectional. Sensory deprivation has been shown to extend critical period plasticity and 

postpone activity-dependent formation of PNNs (Dityatev et al., 2007; Pizzorusso et al., 2002). 

Dark-rearing of juvenile rats, for example, leads to increased ocular dominance plasticity and 

inhibits PNN maturation in primary visual cortex. Additionally, inhibition of neurotransmitter 

release and blockade of Ca2+-permeable AMPA receptors have been shown to decrease the 

amount of pericellular CSPG aggregation, further supporting the notion of activity dependent 

formation (Dityatev et al., 2007). Furthermore, implantation of embryonic interneurons into the 

BLA has been shown to interfere with PNN formation and eliminate already existing PNNs 

(Yang et al., 2016). This reduced expression of PNNs results in enhanced plasticity of amygdalar 

circuitry and recovery of fear erasure capabilities commonly seen in juveniles. Unique 

behavioral phenotypes resulting from juvenile-like plasticity can also be brought about via 

chemical digestion of PNNs. The enzyme chondroitinase ABC (ChABC) abolishes PNNs in the 

area of administration, and the PNNs do not fully reform until 60 days after ChABC 

administration (Lensjø et al., 2016). Gogolla et al. (2010), demonstrated that PNN digestion 

within the BLA impaired consolidation of fear memories and increased fear memory erasure. 

Furthermore, PNN destruction in the prefrontal cortex and hippocampus has been shown to cause 

impaired consolidation of fear memories and context specific memory, respectively (Hylin et al., 

2013). One possible explanation is that the altered intrinsic excitability levels resulting from 
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ChABC administration promote decoupling of the synaptic connections established during fear 

conditioning, thus facilitating full memory erasure (as opposed to extinction) and reducing 

memory consolidation.  

PNNs are by no means static structures, and despite the stabilization that takes place after 

critical period closure, they are still subject to alteration. Chronic fluoxetine treatment, for 

example, has been shown to reduce both PV and PNN levels in the frontal cortex of adult mice 

(Ohira et al., 2015). Similarly, recurrent binge drinking in young adult mice leads to increased 

PNN expression in the insular cortex, but not primary motor cortex or anterior cingulate cortex 

(Chen et al., 2015). Studies on the role of PNNs in critical period plasticity provide a basis for 

modification of mature PNNs after the synaptic connections and the ECM have been established. 

Moreover, these results support the notion that neural activity continues to influence PNN 

expression even after maturation is complete. Although kainite-induced seizures have been found 

to increase levels of endogenous enzymes known to degrade PNNs, few studies have examined 

the effect of normal neural activity on mature PNN morphology or expression (Wang & Fawcett, 

2012). One group has found increased levels of cells double-labeled for c-Fos and PNNs after 

exposing rats to a drug-associated context (Slaker et al., 2013). They posit that the increase in c-

Fos in these PNN-associated neurons may be a compensatory response to the heightened 

pyramidal cell firing brought on by the context, however the long-term effects of increased c-Fos 

on PNNs were not examined. Perhaps long term changes in neural activity lead to the production 

of molecules that promote PNN remodeling, however, because the exact mechanisms mediating 

neuronal modulation of PNN formation are not well understood, more research is needed to 

clarify this relationship.  
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PNNs exert their effects on synaptic plasticity and neural activity in a multitude of ways. 

In addition to serving as a physical barrier to the formation for new synaptic contacts, PNNs 

have been found to impede neurite outgrowth and axonal sprouting (Wang & Fawcett, 2012; 

Wang et al., 2011). ChABC treatment in animals with spinal cord lesions increased generation of 

new axonal branches and enhanced functional recovery. The restriction of axon collateral 

generation is, in part, due to the fact that CSPGs impair axonal mitochondria function, a key part 

of the regulation of actin dynamics and filopodia formation (Sainath et al., 2016). CSPGs cause 

slight depolarizations in the membrane of axonal mitochondria, which leads to downstream 

inhibition of actin polymerization and transport of contactin. Acetyl-L-carnitine administration 

has been shown to counteract the deficits induced by CSPGs, presumably by upregulating 

mitochondrial respiration. PNNs also influence neural activity by acting as an ionic buffer 

around fast-spiking neurons (Härtig et al., 2001, 1999). CSPGs are highly negatively charged 

and inhibit free diffusion of cations. Creation of a buffering environment in the immediate 

vicinity of areas with high concentrations of ion channels (e.g. initial axon segment) allows 

CSPGs to act as cation exchangers and circumvents the need for other compensatory 

mechanisms against free ion diffusion. In addition to serving as a repository of sorts for Na+ and 

K+ ions, PNNs help to sequester proteins known to affect plasticity.  PNNs facilitate the transport 

of neuronal activity-regulated pentraxin (Narp) across the synaptic cleft and PNN digestion has 

been shown to interfere with Narp-PNN colocalization (Kitagawa & Miyata, 2016). Narp binds 

to GluR4 receptors post-synaptic to PV-positive cells, which results in subsequent upregulation 

of GluR4 expression and increased availability of sites for excitatory synaptic inputs. The 

chemorepulsive axon guidance molecule semaphoring 3A (Sema3A) is another plasticity-

modulating molecule and binds to CSPGs (Winter et al., 2016). High levels of pericellular 
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Sema3A are thought to impair the formation of new synaptic contacts and thus restrict plasticity. 

Finally, PNNs have been shown to inhibit lateral diffusion of AMPA receptors (Frischknecht et 

al., 2009; Sorg et al., 2016). Restriction of AMPA receptor mobility may contribute to 

stabilization of already existing synapses, as well as reduce short-term plasticity and the ability 

to consolidate new synaptic contacts.  

A growing body of evidence has implicated PNN malformation and dysfunction in a 

number of disease pathologies such as schizophrenia, Alzheimer’s disease, bipolar disorder, 

autism spectrum disorder, and epilepsy (Kitagawa & Miyata, 2016). Many of the aforementioned 

mechanisms of restricted synaptic plasticity also serve neuroprotective or important regulatory 

functions crucial to the formation and maintenance of healthy neural connections. With respect 

to Alzheimer’s disease, neurons surrounded by PNNs are less likely to be damaged by b-amyloid 

or neurofibrillary tangle accumulation, and areas expressing high levels of PNNs tend to show 

less degeneration than areas with lower expression levels (Kitagawa & Miyata, 2016). It is 

thought that the structural barrier formed by PNNs helps to counteract the oxidative properties of 

the b-amyloid protein accumulations and that the antioxidant properties of aggrecan-containing 

CSPG chains help to reduce levels of reactive oxygen species. Moreover, limiting the intrinsic 

excitability of GABAergic cells helps prevent activity-induced toxicity and oxidative stress. Yet 

it should be noted that PNNs do not provide absolute protection from the neurodegenerative 

effects of Alzheimer’s disease. Findings by Li et al. (2017) have demonstrated that tau pathology 

enhances disruption and reorganization of the ECM. Not only does this counteract PNN’s 

neuroprotective properties, but also leads to subsequent inhibition of PNN formation and neural 

plasticity.  
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Despite the literature supporting the role of PNNs in fear-learning, little research has been 

conducted on their role in mental illnesses such as PTSD or anxiety. Though it’s unlikely that 

widespread PNN digestion will be used as a therapeutic intervention given their varying roles in 

neural function and structural support, treatments promoting graded reductions in PNN 

expression could one day have clinical relevance. The resultant increase in synaptic plasticity 

may allow patients to overcome anxiety-inducing associations and bolster a rewiring of the 

aberrant neural circuitry underlying their symptoms. Thus, continued study of the relationship 

between extracellular matrix structures and neuronal activity, as well as the effects exogenous 

drug administration on such structures will provide invaluable insight into modulation of neural 

circuitry and creation of effective therapies.  

Research on ECM modulation of neural activity has expanded substantially within the 

past decade, although few studies have examined sex differences in PNN levels. One study by 

Cornez et al. (2015) examined PNNs in zebra finches and found that males expressed higher 

levels of PNNs in certain nuclei mediating song-production. However, no other animal studies 

have analyzed similar sex differences. In our experiments, we sought to relate known sex 

differences in fear learning to PNN expression in areas that have been highly implicated in PTSD 

pathology. Based on pilot study data and literature suggesting that males exhibit greater amounts 

of conditioned fear than females, we hypothesized that males would show higher levels of PNN 

expression in the amygdala, but lower levels in the PFC compared to females (Barker et al., 

2010; Gruene et al., 2015b). To do this, intact male and normally cycling female rats were given 

fear discrimination training, followed by summation testing 24 hours later. At the conclusion of 

our behavioral experiments, animals were sacrificed and PNN expression was analyzed in the 

BLA, PL, and IL.  
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MATERIALS AND METHODS 

Animals 

Male and female Sprague-Dawley rats (M = 34, F = 34) were housed in plastic tub cages 

(2 animals per cage) under a 12:12 light/dark cycle. Males and females were kept in the same 

vivarium and were allowed 7-10 days to acclimate to new environment. Food and water were 

given ad libitum. All procedures were approved by the Boston College Institutional Animal Care 

and Use Committee and complied with National Institutes of Health Guide for the Care and Use 

of Laboratory Animals.  

Apparatus 

All behavioral conditioning and testing was conducted in black plastic chambers with 

wire-mesh lids (10 x 11 x 6-in; L x W x H) and stainless steel shock grids (Model H10-11R-TC- 

SF, Coulbourn Instruments, Whitehall, PA). A 15 x 12 x 27-in (L x W x H) enclosure 

surrounded each chamber, with ventilation and masking noise (~55dB) provided by a small fan. 

Each enclosure was equipped with two infrared LED lights (CMVision Model IR30) and one 

overhead camera (Model VX-5000, Microsoft, Redmond, VA). Cameras were modified with 

infrared passing filters to allow for the detection of infrared light, and freezing level analysis 

using ANY-Maze software (version 4.98, Stoelting, Wood Dale, IL). A flashing white LED light 

array (Model LPL620WTHD) provided the visual cues and speakers affixed to the top of the 

enclosure provided the auditory cues.  

 

CS+/CS- Conditioning 



   Bals, 17 

Fear conditioning consisted of 15 presentations of both the CS+ (paired with footshock) 

and CS- (unpaired) cues in a quasi-random order so that no cue was presented more than 2 times 

in a row. A 5s 1kHz tone (75dB) was played before each CS presentation, after which a 15s 

presentation of the CS took place. 15s auditory (white noise pips, duration = 10 ms, rate 3 Hz, 75 

dB) or visual (flashing Led light, 264.0 Lux, 20 ms on/off) cues served as the CS. Footshock 

(500ms 1.2 mA) coterminated with each presentation of the CS+. An inter-trial interval of 70s 

separated each CS-trial, such that the conditioning sessions lasted 45 minutes. All conditioning 

sessions occurred in the morning.  

Summation Testing 

 A summation test was used to assess both fear discrimination and conditioned inhibition. 

After 2 minutes of baseline context exposure, CS+, CS-, and CS+/- (simultaneous presentation of 

the CS+ and CS-) cues were presented for 30s in quasi-random order. Experiments 1-4 consisted 

of 15 presentations of each cue. Experiments 5-6 consisted of 3 presentations of each cue. All 

summation tests were given during the afternoon, approximately 24 hours after training.  

Perineuronal Net Analysis 

 Animals were anesthetized with tribromoethanol and transcardially perfused with 4% 

formaldehyde solution. Brains were removed and stored in 30% sucrose solution. Brains were 

flash-frozen in 2-methylbutane in dry ice and 40 µm sections (B+5.26mm—B-6.12mm) were 

obtained with a cryostat (-20ºC). 1 out of 10 slices was placed on slides and coverslipped. 

Immunohistochemistry was performed at room temperature on BLA (B-1.56mm—B-3.36mm) 

and PFC (B+3.72mm—B+2.7mm) slices. Sections were washed in PBST (10% stock) and 

blocked in 5% normal goat serum. Sections were then incubated in WFA (1:400) overnight at 

4ºC. Sections were mounted onto unsubbed slides with Vectashield Hardset with DAPI. Tiled 
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20x (BLA) or 10x (PFC) images were acquired with a Zeiss AxioImager Z2 microscope, and 

PNN numbers were obtained with ImageJ software (National Institutes of Health). To measure a 

PNN density, a PNN : area ratio was calculated by dividing the number of PNNs by the area 

(pixels) of the region in question. In a select number of sections, stain intensity was analyzed 

using the ROI method detailed in Slaker et al. (2016). Due to the small subset of sections that 

were eligible for ROI method implementation, these data were not used in our interpretation.  

Statistics 

Two-way analysis of variance (ANOVA) was used to analyze by-trial behavioral data, as 

well as freezing scores averaged across entire testing and conditioning sessions, with sex as a 

between-subjects variable and cue as a within-subjects variable. For by-trial data, freezing levels 

to the CS+, CS-, and CS+/- were averaged in trial blocks from conditioning and testing sessions. 

Data was aggregated and sorted by cue presentation and each block contained data from 45s of 

cue presentation. During summation testing, cues were presented for 30s and data was analyzed 

in a similar fashion as above. For analysis of PNN density and discrimination index data, a 

student’s t-test was used. Statistical analyses were performed using GraphPad Prism 7.  

 

 

 

 

 

 

 

 



   Bals, 19 

RESULTS 

Fear Discrimination 

 

 

 

 

 

 

  

 Time spent freezing was analyzed in trial blocks for each 15s CS presentation, with each 

session containing 5 blocks. Each trial block consisted of 3 cue presentations, and freezing was 

determined by comparing freezing levels to the CS+ compared to the CS-; a significant 

difference in freezing between the two indicates the presence of fear discrimination. On Day 1 of 

conditioning (Figure 1A), discrimination was significant in females in trials 2-5 (T2 p = 0.0032; 

T3 p = 0.0002; T4, T5 p < 0.0001). Males showed discrimination in trials 4-5 (T4 p = 0.0059; T5 

= 0.0094). On Day 2 of conditioning (Figure 1B), females discriminated throughout the training 

session (T1 p < 0.0001; T2 p = 0.0079; T3 p = 0.0336; T4 p = 0.0019; T5 0.0326). Males, 

however, did not show discrimination in any trial.    

  

(A) (B) 

Figure 1. (A) Conditioning Session 1: Freezing averages (+SEM) to the CS+ and CS- averaged across trial 
blocks (3 cue presentations). Females rapidly reduce freezing to the CS- compared to males. (B) 
Conditioning Session 2: Freezing averages (+SEM) to the CS+ and CS- averaged across trial blocks (3 cue 
presentations). Females show consistently low freezing to the CS-, and males do not inhibit fear to the CS+. 
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  The data from Day 1 of conditioning across all experiments were aggregated (Figure 2) 

and analyzed in trial blocks in the same manner as the data in Figure 1. Females showed 

discrimination in all trials (T1 p = 0.0419; T2-T5 p <0.0001), and reduced freezing to the CS- 

compared to males (T1 p = 0.0233; T2-5 p < 0.0001). Males discriminated in trials 2-5 (T2 p = 

0.0127, T3-5 p < 0.0001). Females also showed reduced freezing to the CS+ in trial 5 (p = 

0.0136). 

 

On Day 1 of recall testing, freezing scores averaged across the testing session (Figure 

3A) show that females show reduced fear to the baseline context compared to males (p < 0.0001) 

and the CS- (p = 0.0003). Freezing scores to the CS+ and CS- were compiled from all 

experiments and averaged across trial blocks (Figure 3C). Females exhibited robust 

discrimination across all trials (T1-T10 p < 0.0001), and males showed discrimination in trials 2-

10 (T2 p = 0.0047; T3 p = 0.0031; T4 p = 0.0004; T5 p = 0.0021; T6-T10 p < 0.0001). Females 

also showed reduced freezing to the CS- compared to males on trials 1-6 (T1-T2 p < 0.0001; T3 

p = 0.0049; T4 p = 0.0011; T5 p = 0.0001; T6 p = 0.0105) and on trial 8 (p = 0.021). A 

discrimination index was computed by dividing the freezing scores (averaged across test 

Figure 2. Aggregated freezing averages (+SEM) for Day 1 of conditioning to the CS+ and CS- (across 
all experiments).   
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sessions) to the CS- by the CS+ (Figure 3B). Higher discrimination indices indicate impaired 

ability to differentiate between danger and safety cues, while lower discrimination indices 

indicate greater fear discrimination, and safety signal recall. The data from our female animals 

falls into the latter category, and further supports the data in Figures 3A and 3C.   

 

(A
) 

(B) 

(C
) 

Figure 3. (A)Aggregated freezing averages (+SEM) for day 1 of recall testing to the baseline context, 
CS+ and CS- (across all experiments). Females show less freezing to baseline context and the CS-. (B) 
Discrimination index across day 1 of all recall tests. (C) Aggregated freezing averages (+SEM) to the 
CS+ and CS- of day 1 of recall testing averaged across trial blocks. 
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Summation Testing (ST) 

 

In summation tests (Figure 4A-4E), females show superior recall of safety signals and 

reduced contextual fear conditioning, mainly during the initial tests. In test 1 and tests 3-5, 

females froze significantly less to the baseline context (ST1 p = 0.0045; ST3 p = 0.0015; ST4 p < 

0.0001; ST5 p = 0.0003) males. Females froze much less to the CS-, but only during test 1 (p < 

0.0001). Females exhibited discrimination in all tests, except test 4 (ST1-ST3 p < 0.0001; ST5 p 

= 0.009), while males showed discrimination in all tests except test 1 (ST2-5 p < 0.0001). In later 

sessions (tests 4 and 5) females show reduced freezing to the CS+ compared to males (ST4 p = 

0.047; ST5 p = 0.048). Males showed conditioned inhibition, but only during tests 4 and 5 (ST4 

Figure 4. (A-E) Freezing averages (+SEM) to the baseline context, CS+, CS-, and CS+/- cues for each 
summation test. 
 

(A) (B) Test 1 Test 2 (C) Test 3 

Test 5 
(E) (D) Test 4 
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p = 0.0224; ST5 p = 0.0043). Females, however, did not show conditioned inhibition in any 

testing session. 

Perineuronal Net Density 

 

 

Immunohistochemisty in PFC and BLA revealed successful labeling of PNNs and nuclei 

(Figures 5C, 5F). Student t-tests revealed that females had a higher PNN density in the BLA 

compared to males (p < 0.0001), but no sex difference was observed in the PL or IL (Figure 5A-

B). This sex difference is also evident in the sample BLA sections shown in Figure 5D and 5E.  

(A) (B) (C) 

(D) (E) (F) 

Figure 5. (A) PNN density in the BLA calculated as PNNs per square pixel. (B) PNN density in the prelimbic 
(PL) and infralimbic (IL) cortices. (C) 10x Tiled images of sample PFC section including PL/Il. Nuclei 
stained with DAPI (blue). PNNs and nonspecific white matter stained with WFA (green). (D-E) 20x tiled 
images of male (D. left) BLA and female BLA (E. right) showing sex difference in PNN (green) density. (F) 
PNNs (green) surrounding cell bodies, proximal dendrites, and initial axon segments in PL.  
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DISCUSSION 

After only a few cue presentations, our data show that females are able to distinguish 

between danger and safety cues with more accuracy than males while still demonstrating 

comparable levels of fear to the CS+ (Figures 1A & 2). This reduced freezing persists into 

following conditioning sessions (Figure 1B) and recall tests (Figures 3 & 4). Day et al. (2016) 

similarly reported that females acquire safety signals more rapidly than males did, but also found 

that females later generalized their fear whereas males did not. One could interpret the females’ 

rapid decrease in freezing to the CS- during the first conditioning session as evidence of 

differential learning between males and females. However, one significant caveat is that these 

results could also reflect a difference in the ability to express learned safety rather than a 

difference in acquisition and/or recall capabilities.  

Previous work by our group has found that conditioned inhibition does not take place 

until later testing sessions (Foilb et al., 2016a). In the results of this study, males showed 

conditioned inhibition during tests 4 and 5, but this effect was not seen in females during any 

testing session (Figure 4). This absence of conditioned inhibition in females may be partly due to 

a floor effect and the generally low levels of freezing in later testing sessions. During summation 

testing, all animals decreased their freezing to each cue with each progressive testing session, 

which may be due to extinction (Figure 4). It is possible that the animals learned that the absence 

of foot shock at the beginning of the session indicated that no shocks would be administered at 

all, almost as its own safety cue. The fact that females showed significant fear discrimination but 

not conditioned inhibition supports the notion that these processes occur via different neural 

mechanisms and that these mechanisms operate differently in males and females.  
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While a significant body of evidence has implicated PNNs in the neurobiology of fear, 

and while numerous studies have established sex differences in fear learning, few groups have 

proposed a possible link between the two. Our results show that while no sex difference was 

observed in the either of the PFC subdivisions, males showed a significantly lower density of 

PNNs within the BLA compared to that of females. These results ran contrary to our original 

hypothesis that the impaired acquisition and recall of safety cues seen in males would be 

correlated with higher PNN expression. In this line of thinking, it was supposed that higher PNN 

levels (which were also assumed to be mostly co-localized to GABAergic interneurons) would 

result in increased inhibition of these inhibitory cells, thus releasing other excitatory elements 

from inhibitory control. The resultant increase in excitation would have provided a reasonable 

explanation for the increased freezing levels seen in males. In light of our actual data, this 

reasoning obviously no longer stands.    

Given the wide-reaching behavioral and cellular effects of PNNs, the sex differences in 

PNN density seen in our results may be due to a multitude of factors. One potential explanation 

for the sex differences in PNN density and fear learning is that increased PNN expression in 

females causes a reduction in neuronal intrinsic excitability and subsequent alteration in 

excitatory-inhibitory tone. Upregulation of inhibitory elements may help to reduce “background 

noise” and facilitate superior fear discrimination. Additionally, it is possible that due to the 

reduced excitability of PNN-associated cells, safety cues are less likely to cause sufficient 

excitation of these GABAergic interneurons. The resulting decrease in inhibition would then 

release post-synaptic glutamatergic neurons from inhibitory control. As mentioned before, the 

BLA is important for the processing of danger and safety cues rather than just the output of fear 

responses (which is mostly mediated by the CeA and brainstem structures). Increases in 
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glutamatergic transmission within the BLA could facilitate superior Hebbian learning processes 

and LTP in non-PNN associated neurons. Additionally, it may be possible that danger cues, 

which are much more salient than safety cues, override PNN-mediated inhibition in the BLA, 

and interfere associative learning processes about safety cues. In short, PNNs may act as a 

dimmer on a light rather than a simple on-off switch. By inducing graded inhibition, PNNs may 

create favorable conditions for better processing of environmental stimuli and discrimination 

between danger and safety.  

Other putative cellular mechanisms may also help to explain our behavioral results, but 

likely do not act in isolation. As previously mentioned, estrogen has been shown to augment 

dendritic spine density, which is correlated with improved learning capabilities (Farrell et al., 

2015; Woolley et al., 1993). Furthermore, PNN formation is thought to be highly activity 

dependent (Dityatev et al., 2007). Therefore, higher levels of neural activity due to increased 

spine density may exert positive effects on PNN number, density, and thickness. Again it should 

be noted that the effects of estrogen are highly disputed, and no studies to date have been 

conducted on gonadal hormone regulation of ECM structures. Even if estrogens were shown to 

affect PNN numbers and morphology, PNN modification past critical period closure is still a 

poorly understood topic, so it is difficult to make conjectures on their precise effects. Another 

putative cellular mechanism involves PNN sequestration of Narp to its associated neuron. Since 

Narp is eventually transported across the synaptic cleft and upregulates GluR4 expression on the 

postsynaptic neuron (which is mostly likely a glutamatergic pyramidal neuron), increased PNN 

expression could cause increased glutamatergic transmission via increased GluR4 expression on 

excitatory neurons (Kitagawa & Miyata, 2016). Although, as previously mentioned, Narp is not 

the only plasticity-modulating molecule sequestered by PNNs. Other molecules such as Sem3A 



   Bals, 27 

would likely attenuate the effects of Narp, so it is unlikely that increased Narp localization to 

PNN-associated neurons would produce the sex differences seen in our behavioral data.  

Though numerous studies have tied PNNs to reduced neural plasticity, several groups 

have demonstrated that PNNs are actually necessary for adequate consolidation and acquisition 

of certain types of memories. For example, both Hylin et al. (2013) and Gogolla et al. (2009) 

showed that PNNs support the consolidation of fear memories. Furthermore, destruction of 

PNNs in the medial prefrontal cortex (mPFC) has been shown to impair the acquisition and 

maintenance of cocaine-induced conditioned place preference, as well as decrease inhibition of 

pyramidal neurons (Slaker et al., 2016). Moreover, the pattern of holes in PNNs are thought to 

contribute to the stabilization of memories, although this effect was only analyzed in the context 

of very-long term memories (Tsien et al., 2013). These findings refute the general notion that the 

altered plasticity caused by PNNs leads to reduced learning and provides a potential explanation 

for the rapid acquisition of safety signals seen in our females.  

It should be emphasized that PNNs are modulators of synaptic plasticity, not absolute 

controllers. Likewise, the findings regarding PNNs’ effects on neural activity are not in total 

agreement. PNN removal has been correlated with increases in fast-rhythmic activity in 

inhibitory interneurons in the anterior cingulate cortex (ACC) (Steullet et al., 2014). On the 

contrary, PNN removal in the primary visual cortex (V1b) has also been linked to reduced 

activity of inhibitory neurons and increase spiking variability (Lensjø et al., 2016). This suggests 

not only that the consequences of increased PNN expression are region specific, but that there 

may be other factors contributing to the overall effect of PNNs on neurons and neural circuitry.  

Nonetheless, mammalian fear circuitry is not limited to the BLA, PL, or IL. Follow-up 

studies on PNN expression in other areas like the IC, periaqueductal gray (PAG) and 
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hypothalamus would expand our current understanding of the role of PNNs in fear and anxiety 

behaviors (Canteras, 2002; Watson et al., 2016). Additionally, a major assumption of most 

experiments (including our own) is that only a negligible amount of PNNs will co-localize with 

non-inhibitory, PV-negative neurons. In order to totally rule out the contribution of 

glutamatergic-PNN associations, immuno-assays for GABA, PV, and/or glutamate would need 

to be conducted. Although the majority of PNNs will localize to GABAergic cells, co-

localization with glutamatergic cells occurs throughout the cortex and subcortical regions (Alpár 

et al., 2006). PNNs surrounding excitatory pyramidal neurons also tend to be thinner and more 

diffuse than PNNs surrounding inhibitory interneurons (Wegner et al., 2003). These 

morphological differences undoubtedly produce differential effects on cellular activity and the 

attenuated thickness of the pyramidal PNNs likely exerts less inhibitory control over their 

associated cells. The specific morphology of the PNNs in our experiment was not examined, yet 

in conjunction with data from immuno-assays, the results of such analyses would allow for the 

formulation of a more concrete mechanism of PNN modulation of fear expression. Moreover, 

additional follow-up experiments on the effects of PNNs on LTP and action potential kinetics 

would provide a more complete understanding the overall contribution of PNNs to learning 

processes. 

While it is tempting to reduce PTSD to the product of a few aberrant neurobiological 

processes, the etiology of this disorder is enormously complex, drawing from genetic 

mechanisms, trauma severity, environment, and several dysregulated neural circuits. Our 

knowledge of the biology of PTSD as a whole is still incomplete; however, several studies 

suggest that altered activity levels of various cortical and subcortical areas may play a large role. 

Still, this does not explain the greater prevalence of PTSD among women compared to men. 
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 In addition to the obvious differences in gonadal hormone levels between males and 

females, numerous studies, including our own, have provided neurobiological evidence of sex 

differences in behavior and brain activity tied to mental illnesses. The altered serotonergic and 

noradrenergic mediated activity can exacerbate anxiety-like behaviors and negative behavioral 

responses to stressful stimuli, which may explain the hyperarousal symptoms more frequently 

reported by women with PTSD. Aside from the fact that estrogen does have an effect on 

neurobiology, there is little agreement within the scientific community regarding the link 

between estrogen and fear-related behaviors. Female sex hormones do play a part in 

neuroplasticity, and the reduced hippocampal neuroplasticity due to gonadal hormone levels may 

contribute to the impaired fear extinction and inhibition present in individuals with PTSD. 

Finally, specialized extracellular matrix structures have shown to be powerful regulators of 

synaptic plasticity and activity. The fact that some findings regarding their mechanism of action 

seem to be at odds reflects a lack of complete understanding of their effects on neurobiological 

systems. Our findings regarding sex differences in PNN density in the BLA are among the first 

to demonstrate sex-dependent expression of these structures. In light of these results and well-

established behavioral data showing differential fear learning between males and females, 

subsequent studies on the effects of PNN digestion are needed to fully elucidate their role in 

fearful behaviors. In conjunction with continued research on the etiology of PTSD and fear-

learning in females, such studies may pave the way for future pharmacological therapies.   
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