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Abstract 
 

Effects of Climate Nonstationarity on Low-Flow Models 

for Southern New England 
 

Benjamin J. Daniels 
 

Advisor: Dr. Noah Snyder 
 
 

Increasing attention has been drawn to the need for reliable streamflow estimates at 

ungaged locations under a range of climatic and hydrologic conditions.  Climate projections for 

the northeastern United States over the 21st century—which include significant increases in 

temperature and precipitation—could have broad impacts on streamflows, potentially reducing 

the accuracies of existing streamflow models for the region.  This thesis investigates recent 

changes in daily flow-durations in southern New England, and examines their influence on the 

reliability of the low-flow models for Massachusetts presented by Ries and Friesz (2000).  An 

analysis of discharge data collected at gaging sites through water year 2012 revealed increases in 

nearly all flow durations at sites across southern New England since the mid-20th century, 

whereas very low flows (quantiles at or above the 95-percent exceedance probability) generally 

showed decreases, especially since the 1990s. 

Twenty-year moving streamflow quantiles at each of ten selected exceedance 

probabilities were examined for the periods of record of 16 streamflow-gaging stations in 

southern New England.  The beginning of water year 1992 appeared to mark an inflection point 

in low-flow quantiles, before which very low flows were steady or increasing, and after which 

these flows showed near-universal decreases.  While the observed peak in 20-year low-flow 

quantiles around 1992 may be due to the statistical method used to calculate the quantile trends, 

  
   

  
    

  

 



 
 

the inflection point could also be an indicator of when increasing evapotranspiration surpassed 

increasing precipitation as the principal climatic driver of changes in low flows in southern New 

England.  The general upward translation of the flow-duration curve observed over the last 60 

years is very likely linked to increases in annual precipitation during this period, while the 

decreases in very low flows are likely due to changes in climatic variables (increasing summer 

temperatures and evapotranspiration rates), and amplified by anthropogenic factors (greater areas 

of impervious surfaces and increasing rates of surface- and ground-water withdrawal). 

The data suggest that increasing precipitation rates have already caused the Ries and 

Friesz (2000) equations for the median low flows (Q50 to Q75) to become biased towards 

underestimation, and decreases in very low flows threaten to render the models for these flows 

biased towards overestimation in the coming decades.  The streamflow quantile trends (for both 

the entire period of record of the gaging stations and just the post-1992 period) for each of the 

ten flow-durations of interest were extended into the future to the point where the corresponding 

Ries and Friesz (2000) model would fail (when actual flow durations would be outside the 90-

percent prediction intervals for the estimated flows for greater than 10% of sites).  The models 

for the lowest streamflows are estimated to lose validity by as early as 2018.  Climate change is 

predicted to have significant effects on streamflow characteristics in southern New England over 

the 21st century, and the results of this study indicate that the Ries and Freisz (2000) low-flow 

models should be reformulated using more recent streamflow data within the next decade, and 

validated every 20 years thereafter to ensure their accuracies are maintained despite the effects of 

regional nonstationarity.
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Introduction 

The development of methods for estimating streamflows in ungaged catchments has been 

an active area of research in hydrology for several decades (Dingman, 1972; Cervione et al., 

1982; Fennessey and Vogel, 1990; Ries and Friesz, 2000; Ahearn, 2010).  The transfer of 

streamflow statistics from gaged to ungaged stream sites facilitates effective water resources 

management, flood protection, pollution control, land-use planning, and environmental 

conservation.  Attention has recently been drawn to the need for streamflow estimates at ungaged 

locations under a variety of climatic and hydrologic conditions.  In 2003, the International 

Association of Hydrological Sciences launched the Predictions in Ungauged Basins Initiative to 

encourage collaborative research toward reducing uncertainty in hydrological predictions 

(Sivapalan et al., 2003).  The Hydrology Laboratory of the National Weather Service recently 

established the Distributed Model Intercomparison Project to compare hydrologic models and 

improve river forecasting methods (Smith et al., 2004).  Growing demands on global surface-

water resources and the vulnerability of those resources to the impacts of climate change have 

brought increasing attention to the need for reliable streamflow models in the 21st century 

(Vӧrӧsmarty et al., 2000; IPCC, 2007; Kundzewicz et al., 2008).   

Water resource managers have traditionally operated under the assumption of 

stationarity, the idea that natural systems fluctuate within an unchanging range of variability 

(Milly et al., 2008).  Under stationarity, model estimation errors are assumed to be reducible by 

additional observations or more accurate estimators (Milly et al., 2008).  Global climate change 

has rendered the stationarity assumption false by applying external forcing on naturally climate-

integrated systems, pushing their envelopes of variability (IPCC, 2007).  Changes in Earth’s 

climate—including alterations in the means and extremes of precipitation, temperature, 
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evapotranspiration, and humidity—are having substantial impacts on the runoff rates of 

unregulated watersheds, leading to greater frequency and severity of flood and low-flow events 

(Hayhoe et al., 2007; IPCC, 2007; USGCRP, 2009).  These hydroclimatic changes will pose new 

challenges to water managers as they design and implement plans that incorporate 

nonstationarity, now recognized as a fundamental characteristic of our planet’s climate system. 

Numerous studies have shown trends in regional climate indicators that signal future 

changes in climate in the northeastern US (Schwartz et al., 2006; Frumhoff et al., 2007; Hayhoe 

et al., 2007; Hayhoe et al., 2008; Guerra and Boutt, 2009; USGCRP, 2009).  Increases in 

temperature and precipitation in the region over the last century have been directly measured, 

and are evidenced by changes in many natural climate indicators, including last-frost dates, snow 

depth, bloom dates, snow-rain ratios, growing season durations, and lake ice-out dates (e.g., 

Hodgkins et al., 2003; Hodgkins et al., 2005; Hayhoe et al., 2007; Dudley et al., 2010).  

Hydroclimatic projections for New England over the 21st century indicate higher annual 

precipitation but relatively unchanged summer rainfall, increases in the magnitude and frequency 

of flood flows, increases in temperature during all seasons, and longer periods of drought 

between rainfall events (Hayhoe et al., 2007; Hayhoe et al., 2008; Collins, 2009; USGCRP, 

2009; Dudley et al., 2010; Betts, 2011; Campbell et al., 2011; Armstrong et al., 2012; Armstrong 

et al., 2013).  Because the dynamics of hydrologic systems are driven by climate variables, 

nonstationarity will be directly reflected by changes in the flow regimes of unregulated streams, 

with far-reaching consequences for aquatic biota and for people who live near or exploit surface 

waters (Hodgkins and Dudley, 2005).  Evidence of a hydroclimatic shift around 1970 has been 

found by Armstrong et al (2012) and others, who examined flood flows in New England and 

found a significant increase their magnitudes and frequency around 1970. 
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Conflicts between water supply and demand are most likely to occur during periods of 

prolonged dry weather, when the flow of water in streams is at its lowest (Smakhtin, 2001).  

Low-flow statistics describe the relationship between low flow magnitude and frequency at a 

location on a stream, e.g., the 7-day, 10-year low flow (the 7-day low flow with a 10-year return 

period) or the 95-percent duration flow (the daily streamflow equaled or exceeded 95% of the 

time).  These statistics are needed by federal, state, and local agencies for a range of water-use 

planning, management, and regulatory activities, including (1) developing environmentally 

sound watershed management plans, (2) siting and permitting new water withdrawals, interbasin 

transfers, and effluent discharges, (3) determining minimum streamflow thresholds to maintain 

aquatic habitats, and (4) land-use planning and regulation (Ries and Friesz, 2000).  Low-flow 

statistics are also needed by commercial and industrial facilities to determine availability of 

water for water supply, wastewater returns, and hydropower generation. 

Low-flow statistics can be computed from streamflow data collected at gaging stations 

with sufficiently long periods of record, but statistics are often needed at locations where no such 

data exist.  As a result, a number of methods have been developed to estimate streamflow 

statistics at ungaged sites, the most common of which is regional regression analysis.  In a U.S. 

Geological Survey (USGS) Water-Resources Investigations Report, Ries and Friesz (2000) 

presented regression equations for estimating flow-duration and low-flow frequency statistics for 

ungaged, natural-flow streams in Massachusetts, based on measurements of daily streamflow 

made at gaging stations prior to climatic year 1996.  The resulting equations are currently used 

by the USGS to estimate low-flow statistics for ungaged stream reaches in Massachusetts, and 

have been incorporated into StreamStats, a GIS-based Web application developed by the USGS 

for obtaining streamflow estimates for user-selected sites.  Nonstationarity threatens to decrease 
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the accuracies of the Ries and Friesz (2000) regression models as southern New England 

watersheds respond to potentially significant changes in precipitation and temperature over the 

21st century, thus making the models obsolete. 
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Purpose and Scope 

This thesis investigates changes in low flow-durations (quantiles of daily streamflow) 

in southern New England watersheds, and examines their effects on the accuracies of the Ries 

and Friesz (2000) regression models for natural, long-term streamflows in Massachusetts.  

Historical daily streamflow time series from gaging stations in Massachusetts and adjacent states 

are analyzed, and the Ries and Friesz (RF) estimation equations are tested using observed flow-

duration curves (FDCs) from selected periods of record.  Potential trends in flow-durations in 

southern New England catchments are evaluated towards projecting the future reliability of the 

RF models. 

 

Five research questions are addressed by this work: 

1. How well do the RF regression methods estimate streamflow for the period since 1995, when 

they were developed, both within Massachusetts and in adjacent states?   

2. How do the pre- and post-1996 flow-duration curves compare for unregulated streams in 

southern New England? 

3. Following on the work of Armstrong et al. (2012), how do low-flow quantiles compare for 

the periods before 1970, after 1970, between 1970 and 1996, and after 1996? 

4. What are the trends in low-flow quantiles for gages with more than 60 years of record, and 

what do they suggest about future streamflows in southern New England? 

5. Given the observed trends in low-flow quantiles, when can the RF equations expected to no 

longer be valid? 
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The answers to these research questions are pursued in four parts: 

• Part I is an analysis of 15 streamflow-gaging stations used in the RF regression analyses, and 

is divided into two subsections: a comparison of pre- and post-1996 FDCs, and an evaluation 

of model performance at the 15 sites for the post-1996 period. 

• Part II is an analysis of 21 streamflow-gaging stations in southern New England not used in 

the RF regressions, and is similarly divided into two subsections: a comparison of pre- and 

post-1996 FDCs, and an evaluation of model performance at the 21 sites for the post-1996 

period. 

• Part III is an examination of changes in flow-durations over time at 17 stations in southern 

New England with more than 60 years of record, using 1970 and 1996 as cut dates to divide 

the periods used to compute the FDCs. 

• Part IV is an analysis of trends in 20-year streamflow quantiles for 16 stations in southern 

New England with more than 60 years of continuous record, with the intention of projecting 

trends in streamflow quantiles and estimating future accuracies for the RF models. 

 

In addition to evaluating the effects of nonstationarity on the RF regression equations, 

this thesis explores an expanded geographic applicability for the models by applying them to a 

set of streamflow-gaging stations in states bordering Massachusetts, primarily Connecticut and 

Rhode Island.  An assessment of the RF models is warranted because these methods are used by 

the USGS and other public and private entities for a range of design and planning applications, 

and because projected climate trends suggest that the streamflow models will grow increasingly 

less accurate in the 21st century as New England watersheds respond to changes in climate 

variables. 
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Background 

The Flow-Duration Curve 

Streamflow—or discharge (Q)—is defined as the volume rate of flow of water in a 

channel, including any sediment or other solids suspended or dissolved in it (Buchanan and 

Somers, 1969).  Streamflow is typically expressed in cubic feet per second (cfs), cubic meters 

per second, or million gallons per day1 (Buchanan and Somers, 1969).  Continuous 

measurements of daily mean streamflow at a gaging site can be assembled into a flow-duration 

curve (FDC), which represents the relationship between the magnitude and frequency of 

streamflows over a specified period (Figure 1).  An FDC is the complement of the cumulative  

 

Figure 1. Daily flow-duration curve for the USGS streamgage on the North Nashua River at Fitchburg, 
MA, for water years 1981-2005. (A water year begins October 1 and ends September 30 of the year 
specified.)  
                                                
1 Because the USGS measures streamflow in units of cfs, and because the streamflow estimation equations 
investigated in this thesis use United States customary units as inputs and outputs, streamflows in this thesis are 
given in units of cfs.  1 cfs is 0.0283 cubic meters per second. 
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distribution function of daily streamflow.  When the period of record used to construct an FDC is 

sufficiently long (typically at least 10 years), the points along the curve are used as an indicator 

of the long-term exceedance probabilities of the specified discharges (Searcy, 1959).  An FDC 

provides a simple, yet comprehensive graphical view of the overall historical variability of 

streamflow at a site, without regard to sequence of occurrence (Fennessey, 1994). 

The points along an FDC are flow-durations, or exceedance quantiles.  For example, the 

95-percent duration flow (Q95) is the daily mean streamflow that is equaled or exceeded 95-

percent of the time.  Flow durations are calculated by first sorting the observed daily mean 

streamflows for a period of record from largest to smallest and assigning each streamflow value 

a rank, starting with 1 for the largest value (Ahearn, 2008).  The frequency of exceedance for 

each flow value is then computed using the Weibull plotting position formula (Helsel and 

Hirsch, 2002): 

 𝑃 = 100 ∗ [𝑀/(𝑛 + 1)] , (1) 

where P is the percent of time that a given flow was equaled or exceeded at the site, M is the 

ranked position of the streamflow value, and n is the number of observed streamflows for the 

period of record.  If a sufficiently long period of record is used to construct the FDC, then the 

value P for a specified streamflow represents the long-term exceedance probability for that flow 

(Searcy, 1959). 

The first use of an FDC is commonly attributed to Clemens Herschel in about 1880 

(Foster, 1934).  Their widespread use in the early 20th century is evidenced by Foster’s (1934) 

description of FDCs as one of the most important graphical tools available to the hydrologist.  

The characteristics of FDCs in North Carolina and Ohio were summarized by Saville and 

Watson (1933) and Cross and Bernhagen (1949), respectively.  Perhaps the most comprehensive 
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manual on the construction, interpretation, and application of FDCs was written by Searcy 

(1959).  Numerous studies have developed regional procedures for estimating daily FDCs at 

ungaged locations in southern New England (Dingman, 1978; Male and Ogawa, 1982; 

Fennessey and Vogel, 1990; Ries, 1994a, 1994b; Dingman and Lawlor, 1995; Ries and Friesz, 

2000; Flynn, 2003; Archfield et al., 2007; Ahearn, 2010).  The FDC has a wide range of 

regulatory, planning, and design applications and remains an extremely important tool in 

hydrologic research.  

 

Regional Regression Analysis 

Regional regression modeling is one of the most widely used techniques for estimating 

streamflow statistics at ungaged sites (Smakhtin, 2001).  In multiple linear regression analysis 

(regression analysis), a streamflow statistic (the dependent variable) for a group of streamflow-

gaging stations is statistically related to one or more physical or climatic characteristics of the 

upstream drainage basins for those stations (the independent variables).  The resulting equations 

enable the transfer of streamflow statistics from gaged to ungaged sites by determining the basin 

characteristics for the ungaged site used as explanatory variables in the regression equations, and 

solving the equations based on these input values.  The USGS has used regression analysis to 

develop equations for estimating streamflow statistics at ungaged sites for every state, Puerto 

Rico, and the island of Tutuila, American Samoa (Ries, 2007). 

Equations can be developed by use of several different regression analysis algorithms 

(Ries and Friesz, 2000).  The various algorithms use different methods for minimizing the 

differences between the values of the dependent variable for the stations used in the analysis (the 

observed values) and the corresponding values given by the resulting regression equation (the 
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estimated or fitted values) (Ries and Friesz, 2000).  The choice of one algorithm over another 

depends on the characteristics of the data used in the analysis and on the underlying assumptions 

for use of the algorithm (Ries and Friesz, 2000). 

Equations obtained by use of regression analysis take the general form 

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯+ 𝑏𝑛𝑋𝑛 + 𝜀𝑖  , (2) 

where Yi is the estimate of the dependent variable for site i, X1 to Xn are the n independent 

variables, b0 to bn are the n + 1 regression model coefficients, and εi is the residual error (the 

difference between the observed and estimated value of the dependent variable) for site i.  

Assumptions for the use of regression analysis are (1) the mean of the εi is zero, (2) the εi are 

normally distributed, (3) the variance of the εi is constant and independent of the values of Xn, 

and (4) the εi are independent of each other (Ries and Friesz, 2000). 

Measured streamflow and basin characteristics used in hydrologic regression are typically 

log-normally distributed (Ries, 1994b).  Logarithmic transformation of the variables is therefore 

necessary to linearize the relations between the dependent and independent variables and to 

normalize the distributions of the residual errors, satisfying assumptions 1 and 2.  Logarithmic 

(base 10) transformation results in an equation of the form 

 log𝑌𝑖 = 𝑏0 + 𝑏1 log𝑋1 + 𝑏2 log𝑋2 + ⋯+ 𝑏𝑛 log𝑏𝑛 + 𝜀𝑖  , (3) 

or, after retransforming by taking antilogs to obtain the algebraically equivalent form 

 𝑌𝑖 = 10𝑏0�𝑋1𝑏1��𝑋2𝑏2�… �𝑋𝑛𝑏𝑛�10𝜀𝑖  . (4) 
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In the early 1970s, the USGS began using ordinary least squares (OLS) regression to 

estimate the parameters of regional low-flow regression models (Thomas and Benson, 1970).  

However, hydrologic data commonly violate the assumption that the residual errors associated 

with the streamflow observations are constant and independently distributed (assumption 3), and 

regional streamflow data from a group of gaging stations will typically vary in length of record 

and may be spatially correlated for concurrent flows (violating assumption 4) (Stedinger and 

Tasker, 1985).  To address these deficiencies, Tasker (1980) proposed the use of weighted least 

squares (WLS) regression for regionalization of streamflow statistics, in which weights are 

assigned proportional to record length and inversely proportional to the variances of the observed 

streamflow statistics for the gaging stations.  WLS regression accounts for differences in record 

lengths among the stations used in the analysis, and has been shown to yield greater accuracy in 

results when compared to OLS procedures for hydrologic regression (Tasker and Stedinger, 

1986). 

Both OLS and WLS regression do not compensate for possible cross-correlation of 

concurrent streamflow records between sites; the spatial correlation of streamflows causes bias in 

the estimated coefficients of the parameters and in the estimated variance of the regression 

equations (Ries, 2007).  The problem is particularly significant where streamgages are located on 

the same stream, or in similar or adjacent watersheds (Jennings et al., 1994).  Generalized least 

squares (GLS) regression was proposed by Stedinger and Tasker (1985, 1986) to account for 

both the differences in record length and the possible correlation of streamflow statistics among 

gaging stations used in the analysis.  GLS analysis allows the prediction error for ungaged sites 

to be partitioned into model error and sampling error, and has been demonstrated to provide 

more accurate estimates of regression coefficients and better estimates of model error than OLS 
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procedures (Stedinger and Tasker, 1985).  Because GLS was developed specifically for 

regression with flow-frequency statistics, however, it requires substantial extra effort for use with 

flow-duration statistics (Ries and Friesz, 2000). 

GLS regression is theoretically the most appropriate for use in streamflow 

regionalization, but its superiority compared to WLS is marginal under certain circumstances, 

depending on the characteristics of the streamflow data used (Tasker and Stedinger, 1989).  

Stedinger and Tasker (1985) concluded that the WLS procedure performs nearly as well as GLS 

analysis when cross-correlations are modest and when standard errors are high.  In a study to 

develop regional regression equations for estimating low-flow frequencies in Massachusetts, 

Vogel and Kroll (1990) found that cross-correlation of the data they used in their analysis was 

only 0.35, and therefore equations for predicting low-flow statistics for Massachusetts streams 

using WLS should have model precision that is nearly the same as equations developed using 

GLS.  Moreover, the weights assigned to stations used in WLS analysis can be easily adjusted if 

necessary to compensate for non-constant variance of the regression residuals (Ries and Friesz, 

2000).  The current USGS state streamflow estimation equations are based on either WLS or 

GLS regression, although the GLS technique is the more popular of the two (Ries, 2007). 

 

Low-Flow Hydrology in Southern New England 

In 2005, an average of 3.5 billon liters per day of freshwater was withdrawn from streams 

and rivers in Massachusetts for various uses, including public water-supply, irrigation, and 

industrial activities (Kenny et al., 2009).  The eastern one-third of the state, where about 75 

percent of the population resides, is particularly vulnerable to water-supply shortages during 

droughts (Ries, 1994a).  Estimates of low-flow indices are used by state agencies, consultants, 



13 
 

local planners, and engineers for planning and management of activities related to water 

resources, such as waste-load allocation, aquatic habitat protection, water-supply management, 

and siting of treatment plants and sanitary landfills (Wandle and Randall, 1994).  Low-flow 

estimates are also used to make decisions regarding interbasin transfers, withdrawals for water 

supply, and minimum downstream-release requirements for hydropower, irrigation, and cooling-

plant facilities (Risley, 1994). 

The lowest streamflows in Massachusetts typically occur in July, August, and September 

because of the combined effects of evapotranspiration and aquifer depletion (Simcox, 1992; 

Armstrong et al., 2008).  Except during and for a short time after storm events, summertime 

streamflows in Massachusetts are derived from groundwater discharged by aquifers in 

unconsolidated deposits adjacent to streams (baseflow) (Ries and Friesz, 2000).  Numerous 

regression studies in New England have found drainage area to be the variable most highly 

correlated with low-flow statistics (Fennessey and Vogel, 1990; Vogel and Kroll, 1990; Risely, 

1994; Ries and Friesz, 2000; Archfield et al., 2007; Ahearn, 2010).  Differences in the magnitude 

of streamflow per unit basin area in southern New England have been found to be a function of 

differences in various geologic and topographic characteristics of the drainage basin, including 

area of stratified drift deposits (Ries, 1994a, 1994b; Archfield et al., 2007; Ahearn, 2010), area of 

lakes and swamps (Wandle and Randall, 1994), area of forest land (Hornbeck et al., 1993, 1997), 

mean basin slope (Vogel and Kroll, 1992; Ries and Friesz, 2000), and basin relief (Fennessey 

and Vogel, 1990; Vogel and Kroll, 1990; Risely, 1994). 
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Methods for Estimating Low-Flow Statistics for Massachusetts Streams 

The USGS report by Ries and Friesz (2000) entitled “Methods for Estimating Low-Flow 

Statistics for Massachusetts Streams” is the last of six reports in the Basin Yield study series.  

The Basin Yield studies, begun in 1988 in cooperation with the Massachusetts Department of 

Environmental Management, Office of Water Resources, were carried out to develop and 

evaluate methods for estimating low-flow statistics for ungaged stream sites in Massachusetts.  

The first three reports describe the development of equations for estimating low-flow statistics 

for ungaged sites (Ries, 1994a; Ries, 1994b; Ries, 1997).  The forth report describes and 

provides data for the network of 148 low-flow partial-record (LFPR) stations that was operated 

in Massachusetts during the summers of 1989 through 1996 (Ries, 1999).  The fifth report is a 

USGS Fact Sheet that describes Massachusetts StreamStats, a Web application for obtaining 

basin characteristics and streamflow estimates for user-selected sites in the state (Ries et al., 

2000). 

In the final Basin Yield studies report, Ries and Friesz (2000) describe methods for 

estimating flow-durations, low-flow frequency statistics, and August median flows for 

unregulated Massachusetts streams.  Regression equations were developed to estimate the 

natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent duration flows; the 7-

day, 2-year (7Q2) and 7-day, 10-year (7Q10) low flows; and the median August flow for 

ungaged sites in Massachusetts.  These equations have been incorporated into Massachusetts 

StreamStats, a GIS-based Web application for obtaining streamflow estimates for user-selected 

sites in Massachusetts, available online (http://streamstats.usgs.gov/massachusetts.html).  This 

thesis focuses on the regression models developed by Ries and Friesz (2000) to estimate ten 

streamflow quantiles on the lower half of the flow-duration curve at ungaged sites (Table 1).   
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These flow-durations were regressed against measured basin characteristics at continuous-record 

streamflow-gaging and LFPR stations in Massachusetts and adjacent states in southern New 

England.  The basin characteristics that were statistically significant in most or all of the final 

regression equations were drainage area, area of stratified drift deposits per unit stream length 

plus 0.1, mean basin slope, and an indicator variable that was 0 in the eastern region and 1 in the  

western region of Massachusetts.  These selected explanatory variables are essentially 

unchanging physical basin attributes, and do not include climate indices that could account for 

the effects of nonstationarity. 

The independent variables used in a regression analysis are typically chosen using a 

variable-selection algorithm that determines which combination of independent variables 

Statistic                              Equation 

Q50 0.955(DA)1.020 

Q60 0.763(DA)1.050(DR/ST + 0.1)0.123 

Q70 0.607(DA)1.070(DR/ST + 0.1)0.357100.121(REG) 

Q75 0.509(DA)1.080(DR/ST + 0.1)0.432100.158(REG) 

Q80 0.507(DA)1.060(SL)0.191(DR/ST + 0.1)0.693100.145(REG) 

Q85 0.365(DA)1.080(SL)0.255(DR/ST + 0.1)0.746100.159(REG) 

Q90 0.329(DA)1.080(SL)0.396(DR/ST + 0.1)0.985100.160(REG) 

Q95 0.171(DA)1.120(SL)0.457(DR/ST + 0.1)0.999100.190(REG) 

Q98 0.116(DA)1.130(SL)0.412(DR/ST + 0.1)1.030100.247(REG) 

Q99 0.082(DA)1.160(SL)0.427(DR/ST + 0.1)1.050100.255(REG) 

Table 1. Regression equations developed by Ries and Friesz (2000) to estimate ten flow-
durations at ungaged sites in Massachusetts.  QXX is the xx-percent duration flow in cubic feet 
per second; DA is drainage area (square miles); SL is mean basin slope (percent); DR/ST is area 
of stratified drift per unit of total stream length (square miles per mile); and REG is hydrologic 
region (0 for eastern, 1 for western). 
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provides the best estimates of the dependent variable.  Ries and Friesz (2000) used an algorithm 

that considers all possible combinations of the independent variables and ranks them with 

minimization of Mallows’ Cp as the selection criterion.  Mallows’ Cp is a statistic used to assess 

the fit of a regression model and select predictor variables for which the amount of model 

overfitting and/or underfitting is minimized (Mallows, 1973).  The selected subsets of 

independent variables were then analyzed by use of weighted least squares regression analysis, 

with weights assigned proportional to the years of record and inversely proportional to the 

variances of the computed streamflow statistics for the stations (Ries and Friesz, 2000). 

In a regression analysis, equation 3 above provides unbiased estimates of the mean 

response of the dependent variable, meaning that the expected value of εi is zero (Ries and 

Friesz, 2000).  However, retransformation of logarithm-base 10 estimates to estimates in their 

original units of measure using equation 4 predicts the median rather than the mean response of 

the dependent variable, and thus is biased.  For streamflow data, the median tends to be lower 

than the mean (Ries and Friesz, 2000).  A bias-correction factor (BCF) developed by Bradu and 

Mundlak (1970) has been shown to be optimal when the residual errors are normally distributed 

(Cohn et al., 1989).  This BCF provides minimum variance unbiased estimates (MVUE) of the 

dependent variable, and has the advantage of being unbiased regardless of the number of stations 

used in the analysis (Ries and Friesz, 2000).  Ries and Friesz (2000) employed the MVUE BCF 

in their final regression equations. 

The independent variables selected for the final equations were required to be statistically 

significant at the 95-percent confidence level, and the signs and magnitudes of the coefficients 

had to be hydrologically reasonable (for example, larger drainage areas would be expected to 

produce higher streamflows; Ries and Friesz, 2000).  The basin characteristics considered in the 
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regression analyses were selected based on their theoretical relation to differences in streamflow 

magnitudes, results of previous hydrologic studies in southern New England, and on the ability 

to measure them (Ries and Friesz, 2000).  Only physical basin characteristics were considered in 

the regressions, resulting in models that could be employed without reference to rainfall or other 

climate data.  The characteristics measured for use in the regressions were drainage area; area of 

stratified drift, wetlands, and water bodies; total stream length; maximum, minimum, and mean 

basin elevation; maximum, minimum, and mean elevation in stratified drift; and mean basin 

slope.  Several additional basin characteristics were determined using combinations of the 

measured characteristics.  For example, drainage density was considered as a potentially 

significant explanatory variable in the analyses, computed by dividing the total stream length by 

the drainage area (Ries and Friesz, 2000). 

Ries and Friesz (2000) determined flow-duration statistics and basin characteristics for 37 

continuous-record streamflow-gaging stations and 107 LFPR stations for use in the regression 

analyses (Figure 2).  The stations included in the analyses monitored streamflows that were  

considered to be essentially unregulated during low streamflow periods.  Discharge records 

through climatic year 1995 were used to compute the flow durations for the gaging stations.  (A 

climatic year is the 12-month period beginning April 1st of the year specified.)  Basin 

characteristics were determined from USGS and Massachusetts Office of Geographic 

Information (MassGIS) digital map data using an automated GIS procedure developed for the 

Basin Yield studies. 

The regression models developed by Ries and Friesz (2000) are not applicable to the 

southeast coastal region of the state, including the eastern part of the Buzzards Bay basin, Cape 

Cod, and the islands of Martha’s Vineyard and Nantucket (Figure 2).  These areas, which are   
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almost entirely underlain by coarse-grained stratified drift deposits, commonly have groundwater 

and surface-water divides that are not coincident (Archfield et al., 2010).  Additionally, flows for 

most streams in these areas are highly affected by regulation, diversions, or controls by cranberry 

bogs (Ries et al., 2000).  The Ries and Friesz (2000) equations apply only to locations with 

natural flow conditions; appropriate adjustments of streamflow estimates should be made for 

human influences if the equations are applied to regulated sites.  The models’ applicability is 

further limited by the ranges of basin characteristics used to develop them (Table 2).  

Extrapolation of the equations to sites with basin characteristics outside the ranges of those used 

to develop the equations will produce streamflow estimates with unknown and possibly very 

large errors (Ries et al., 2008). 

 

Previous Low-Flow Estimation Methods for New England 

Numerous regional regression models incorporating physical and climatic basin 

characteristics as independent variables have been developed for estimating low-flows at 

Basin Characteristic Minimum Mean Maximum 

Drainage area (mi2) ..........................  1.61 14.9 149 

Total basin stream length (mi) ..........  1.79 27.9 319 

Mean basin slope (percent) ..............  0.32 5.28 24.6 

Area of stratified drift per unit 
stream length (mi2/mi) .....................  0.00 0.144 1.29 

Region ..............................................  0 -- 1 

Table 2. Ranges of basin characteristics used by Ries and Friesz (2000) to develop equations 
for estimating low-flow statistics for ungaged Massachusetts streams.  
[mi, miles; mi2, square miles; --, not applicable] 
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ungaged sites in New England.  Johnson (1970) estimated low flows for sites in Massachusetts, 

New Hampshire, Rhode Island, and Vermont, using drainage area, mean annual precipitation, 

and January minimum temperature as predictor variables.  Tasker (1972) developed a low-flow 

regression model for southeastern Massachusetts using drainage area and a groundwater factor, 

related to the transmissivity and availability of water in the basin aquifers.  Dingman (1978) used 

drainage areas and mean basin elevations to synthesize flow-duration curves for unregulated 

streams in New Hampshire.  Cervione and others (1982) developed regionalization methods for 

Connecticut in which the area of coarse-grained stratified drift and the area of till were used as 

explanatory variables to estimate the 7-day, 10-year low flow (7Q10).  Male and Ogawa (1982) 

used a suite of basin geomorphic and climatic characteristics—including drainage area, mean 

annual precipitation, area of swamps and lakes, and a groundwater factor—to estimate low-flow 

duration discharges in Massachusetts.   

Vogel and Kroll (1990) used drainage area and basin relief to regionalize low-flow 

frequencies in Massachusetts, and Fennessey and Vogel (1990) used the same parameters to 

synthesize the lower half of the flow-duration curve for streams in the state.  In another study, 

Vogel and Kroll (1992) developed improved regression equations for estimating low-flow 

statistics in central western Massachusetts.  They found that low-flow statistics in this region 

were highly correlated with the product of drainage area, mean basin slope, and a base flow 

recession constant, with the recession constant acting as a surrogate for both basin hydraulic 

conductivity and drainable soil porosity.  Cervione and others (1993) described a regression 

equation relating the 7Q10 flow to the percentage of drainage area underlain by coarse-grained 

stratified drift and till-covered bedrock in nonurbanized catchments in Rhode Island.  Wandle 

and Randall (1994) applied regression techniques to define the relationship between low flows in 
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central New England watersheds and a suite of basin characteristics, including: drainage area; 

basin relief; mean basin elevation; main-channel length; and areal extent of till, alluvium, coarse- 

and fine-grained stratified drift deposits, swamps, and lakes. 

Risley (1994) presented a low-flow frequency model for estimating the 7Q2 and 7Q10 

flows at stream sites in Massachusetts using drainage area and basin relief as independent 

variables.  Dingman and Lawlor (1995) developed an approach for estimating low-flow quantiles 

in New Hampshire and Vermont by regression on basin characteristics.  They found that 

drainage area, mean elevation, and fraction of drainage basin underlain by sand and gravel 

deposits are significant predictors of quantiles of annual minimum seven-day-average flows.  

Vogel and others (1999) developed regression models for mean annual streamflow in 18 regions 

of the continental United States and found that the mean and variance of annual streamflow for 

natural-flow streams in the New England region could be estimated as a function of drainage 

area, mean basin precipitation, and mean basin temperature. 

As discussed above, the report by Ries and Friesz (2000) was the sixth and final in the 

Massachusetts Basin Yield study series.  Reports for the first two Basin Yield studies (Ries, 

1994a, 1994b) each provided equations for estimating the natural, long-term 95-,  

98-, and 99-percent duration streamflows for ungaged streams in Massachusetts.  The two sets of 

equations were developed by use of WLS (Ries, 1994a) and GLS (Ries, 1994b) regression 

procedures, and also differed in the number of stations used in the analyses (more stations were 

used in the GSL analysis).  Significant basin characteristics used in both studies were drainage 

area, area underlain by stratified drift deposits per unit of stream length, and a surrogate for the 

effective head on the aquifer in the stratified drift deposits, computed by subtracting the 

minimum basin elevation from the mean basin elevation (Ries, 1994a, 1994b).  The methods 
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developed by Ries and Friesz (2000) for estimating low-flow statistics in Massachusetts 

supersede those from earlier reports. 

 

Effects of Climate Change on Streamflows in New England 

Evidence of climate change in the northeastern US has been well documented 

(Trombulak and Wolfson, 2004; Hayhoe et al., 2007; Huntington et al., 2009; USGCRP, 2009).  

Analyses of long-term air temperature data show a warming trend of 0.8°C ±0.1°C over the last 

century (Hayhoe et al., 2007).  Precipitation is exhibiting changes in volume, intensity, and form 

(rain versus snow), and has increased by an average of 95 ±20 mm in the region during the 20th 

century (Hayhoe et al., 2007).  The greatest increases in air temperature have occurred during 

winter (Hayhoe et al., 2007), with a corresponding decline in the proportion of precipitation 

falling as snow (Huntington et al., 2004).  These changes, as well as climate characteristics that 

govern evapotranspiration (such as air temperature, air humidity, solar radiation, wind speed, and 

atmospheric CO2 concentration), have the potential to alter streamflow regimes in New England 

in complex ways (Campbell et al., 2011). 

Hodgkins and Dudley (2005) found significant increases in various annual percentile 

streamflows in New England between 1902 and 2002.  A reduction in winter snowpack and 

earlier spring arrival in New England has advanced the timing of spring freshets and caused a 

more uniform distribution of flow throughout the snowmelt period (Hartley and Dingman, 1993; 

Hodgkins et al., 2003; Hodgkins and Dudley, 2006; Campbell et al., 2011).  Huntington (2003) 

found that climate warming could significantly reduce runoff in New England due to increased 

evapotranspiration, but noted uncertainties in mitigating factors, such as increased precipitation 

and cloudiness, which could offset projected decreases in streamflow.  Hayhoe et al. (2007) 
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found nonstationarity leading to a redistribution of streamflows in the northeastern US over the 

last century, with a general tendency toward more streamflow in winter and spring, and less in 

summer and fall.  However, the author again noted that increases in precipitation may have 

compensated for increases in evapotranspiration, masking underlying trend towards decreasing 

summer low flows (Hayhoe et al., 2007).  Projections of 21st century streamflow quantiles point 

to increasing trends for the 50th quantile and above (higher flows) and decreasing trends for the 

25th quantile and below (low flows) (Hayhoe et al., 2007). 

Bradbury et al. (2002) examined the relationship between New England drought and 

large scale atmospheric circulation patterns, including the El Nino/Southern Oscillation (ENSO) 

and the North Atlantic Oscillation (NAO).  The authors found significant positive correlations 

between the NAO and monthly streamflows at western inland locations (Bradbury et al., 2002).  

Kingston et al. (2007) also explored the relationship between the NAO and New England river 

flows, and found streamflows more closely linked to the East Coast trough rather than the 

Icelandic low or Azores high.  Several recent studies have documented evidence of increasing 

flood frequencies and magnitudes in New England throughout the late 20th and early 21st century, 

and found a step change for these trends around the end of water year 1970 (Collins, 2009; 

Armstrong et al., 2012; Armstrong et al., 2013).  Collins (2009), Armstrong et al. (2012), and 

Armstrong et al. (2013) found evidence for a lagged positive relationship between the NAO and 

flood magnitude and frequency in New England, and Armstrong et al. (2013) found some 

evidence of greater flooding in the region during ENSO years.  These studies suggest that the 

timing and magnitude of streamflows in New England are to some extent related to cyclic 

variability in large-scale atmospheric circulation patterns. 
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Study Area Description 

Massachusetts encompasses an area of about 20,961 km2 (8,961 mi2) in the northeastern 

United States (Ries, 1994a).  The Massachusetts Office of Water Resources divides the state into 

27 major river basins for planning and regulatory purposes (Figure 2).  Ries (1997) defined three 

hydrologic regions in Massachusetts based on differences in August median streamflow per unit 

area: the western, the eastern, and the southeast coastal regions (Figure 2).  The western region is 

defined by all major basins that drain to the Connecticut River plus those west of the Connecticut 

River Basin.  The eastern region is defined by all basins east of the Western region, except Cape 

Cod, the islands, the southern part of the South Coastal basin, and the eastern part of the 

Buzzards Bay basin, which together define the southeast coastal region.  Low streamflows per 

unit drainage area are significantly higher, on average, in the western region than in the eastern 

region (Ries and Friesz, 2000).  These differences are likely due to the combination of lower 

mean annual temperatures, higher mean elevations, higher basin relief, higher precipitation, 

lower evapotranspiration, and lower areal percentages of wetlands and water bodies in western 

Massachusetts than in the eastern part of the state (Ries and Friesz, 2000). 

Massachusetts has a humid continental climate.  Precipitation in the state, which is 

distributed fairly evenly throughout the year, averages about 112 cm/yr (Simcox, 1992).  

However, average annual precipitation can vary by 25 cm or more from year to year and 

spatially within the state, with the highest precipitation typically occurring in the high-elevation 

areas of western Massachusetts (Randall, 1996).  Average annual temperatures range from 10°C 

in coastal areas to 7.2°C in the western mountains (Ries, 1994a).  Annual evaporation from 

wetlands and water bodies ranges from 66 cm in the west of the state to 71 cm in the east 

(Moody et al., 1986). 
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Topographic relief and mean basin slope, which are highly correlated, tend to increase 

with increasing elevation in Massachusetts (Ries and Friesz, 2000).  Elevations range from sea 

level along the coast to over 1000 m in the western mountains (Ries, 1994b).  Several other basin 

characteristics vary from east to west in Massachusetts, including areal percentage of lakes, 

ponds, and wetlands, and areal percentage of coarse-grained stratified drift deposits, which both 

generally decrease from east to west in the state (Ries and Friesz, 2000). 

The surficial geology in much of Massachusetts is characterized by unconsolidated 

glacial deposits, specifically till and stratified drift (Simcox, 1992).  The distribution of these 

hydrologically distinct glacial sediments greatly influences the flow characteristics of streams 

and rivers (Armstrong et al., 2008).  Glacial till, found primarily in upland areas, is an 

unstratified and unsorted deposit of material ranging in size from clay particles to large boulders, 

deposited directly by glaciers with little or no modification by meltwater (Ries and Friesz, 2000).  

Stratified drift, commonly found in river valleys and lowland areas, generally consists of fine 

sand, silt, or clay deposited in temporary lakes that formed during glacial retreat, or medium- to 

coarse-grained sand and gravel deposited by glacial streams (Ries, 1994b).  Till and fine-grained 

stratified drift deposits generally have smaller infiltration capacities and lower hydraulic 

conductivities than coarse-grained stratified drift deposits, which causes streams in till uplands to 

have relatively rapid runoff rates and low baseflows (Armstrong et al., 2008).  By contrast, 

rainfall on coarse-grained stratified drift infiltrates rapidly and is stored in aquifers, which causes 

streams in these areas to have relatively slow runoff rates and high baseflows (Ries, 1994b). 
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Methodology 

This investigation of changes in streamflows in southern New England and their effects 

on the accuracies of the Ries and Friesz (2000) (RF) regression models was conducted in four 

parts.  Part I examines discharge data from 15 of the 37 continuous-record streamflow-gaging 

stations that RF used in their regression analyses (Table 3, Figure 3).  These 15 stations were 

selected because, in addition to collecting streamflow data from periods prior to April 1st, 1996 

(which were used in the RF regressions), these gages monitored the continuous period of 

climatic years 1996 to 2011.  Two daily flow-duration curves (FDCs) were computed for each 

streamgage: one for the gage’s period of record prior to climatic year 1996, and one for the 16- 

year period of climatic years 1996 to 2011.  The curves were constructed from mean daily 

streamflow data downloaded from the USGS National Water Information System (NWIS) 

website (http://waterdata.usgs.gov/nwis).  Following construction of the observed FDCs, 

estimates of ten flow-durations on the lower half of the FDC were calculated for the gaging sites 

using the regression equations and basin characteristics (explanatory variables) provided in the 

Ries and Friesz (2000) report.  Prediction intervals at the 90-percent confidence level were 

calculated for the estimates using procedures also provided by RF. 

To increase the size of the gaging station sample set, Part II analyzes 21 streamgages in 

southern New England that were not used in the RF analyses (Table 3, Figure 3).  To ensure that 

the gages analyzed in Part II monitored essentially natural flow conditions, a criterion for their 

selection was that they were identified by Armstrong et al. (2008) as monitoring least-altered 

streams in southern New England.  The stations were also required to have basin characteristics 

within the ranges of those used in the RF regressions (Table 2).  As in Part I, FDCs were 

constructed from streamflow data downloaded from the NWIS website for the stations’ periods   
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Station 
Number Station Name 

Period of 
Record  

(water years) 
Drainage 
Area (mi2) 

Hydrologic 
Region 

Part I Gaging Stations       
01096000 Squannacook River near West Groton, MA 1950-2012 64.4 Eastern 
01097300 Nashoba Brook near Acton, MA 1964-2012 12.9 Eastern 
01101000 Parker River at Byfield, MA 1946-2012 21.4 Eastern 
01105600 Old Swamp River near South Weymouth, MA 1966-2012 4.47 Eastern 

01111300 Nipmuc River near Harrisville, RI 1996-1990,    
1994-2012 16.0 Eastern 

01162500 Priest Brook near Winchendon, MA 1919-2012 19.2 Western 
01169000 North River at Shattuckville, MA 1940-2012 89.8 Western 
01169900 South River near Conway, MA 1967-2012 24.1 Western 
01170100 Green River near Colrain, MA 1968-2012 41.3 Western 
01171500 Mill River at Northampton, MA 1939-2012 54 Western 

01174565 West Branch Swift River near Shutesbury, MA 1984-1985,    
1996-2012 12.5 Western 

01175670 Sevenmile River near Spencer, MA 1961-2012 8.69 Western 
01176000 Quabog River at West Brimfield, MA 1919-2012 149 Western 
01181000 West Branch Westfield River at Huntington, MA 1936-2012 94 Western 
01333000 Green River at Williamstown, MA 1950-2012 42.6 Western 
Part II Gaging Stations    
01073000 Oyster River near Durham, NH 1935-2012 12.21 Eastern 
01095220 Stillwater River near Sterling, MA 1994-2012 28.88 Eastern 
010965852 Beaver Brook at North Pelham, MA 1987-2012 47.79 Eastern 
01105730 Indian Head River at Hanover, MA 1967-2012 30.09 Eastern 
01109000 Wading River near Norton, MA 1926-2012 43.58 Eastern 
01111500 Branch River at Forestdale, RI 1940-2012 91.21 Eastern 

01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 1994-2011 4.95 Eastern 

01115187 Ponaganset River at South Foster, RI 1994-2012 14.38 Eastern 
01117468 Beaver River near Usqepaug, RI 1975-2012 9.18 Eastern 
01117500 Pawcatuck River at Wood River Junction, RI 1941-2012 99.34 Eastern 

01117800 Wood River near Arcadia, RI 1964-1980,    
1983-2012 35.17 Eastern 

01118000 Wood River at Hope Valley, RI 1941-2012 74.17 Eastern 
01118300 Pendleton Hill Brook near Clarks Falls, CT 1959-2012 4.01 Eastern 
01121000 Mount Hope River near Warrenville, CT 1941-2012 27.12 Eastern 
01123000 Little River near Hanover, CT 1952-2012 29.61 Eastern 
01184100 Stony Brook near West Suffield, CT 1981-2012 10.53 Western 

01187300 Hubbard River near West Hartland, CT 1939-1954,    
1957-2012 20.67 Western 

01188000 Burlington Brook near Burlington, CT 1932-2012 4.1 Western 
01193500 Salmon River near East Hampton, CT 1929-2012 104.74 Western 
01195100 Indian River near Clinton, CT 1982-2012 5.62 Western 
01199050 Salmon Creek at Lime Rock, CT 1962-2012 29.57 Western 
Table 3. Gaging stations analyzed in Parts I and II, their periods of record, drainage areas and hydrologic regions. 
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Figure 3. Gaging stations analyzed in Part I (R&F Set) and Part II (Expanded Set), and their upstream 
watersheds. The boundary separating the eastern and western hydrologic regions of Massachusetts 
defined by Ries (1997) was extended north and south to identify the hydrologic regions for gaging 
stations in the expanded set in New Hampshire and Connecticut, respectively. 
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of record prior to climatic year 1996 and for the period of climatic years 1996 to 2011.  Again, 

ten flow durations were estimated for each gaging location using the RF equations.  Basin 

characteristics for the gages were taken from Armstrong et al. (2008), or, for the case of station 

01188000 Burlington Brook near Burlington, CT, from an online USGS data-collection station 

report (http://streamstatsags.cr.usgs.gov/gagepages/html/01188000.htm).  To determine the 

hydrologic region variable for the stations outside of Massachusetts, the boundary defined by 

Ries (1997) separating the eastern and western hydrologic regions was extended north and south 

into New Hampshire and Connecticut, respectively (Figure 3).  The boundary was extended 

using the criteria given by Ries (1997) to define the hydrologic regions of Massachusetts. 

Part III of this study further examines changes in daily FDCs in southern New England 

watersheds over time.  In Parts I and II, the end of climatic year 1995 (March 31, 1996) was used 

as the “cut point,” or dividing date between time periods used to plot gaging stations’ FDCs.  

This date was chosen because this was last date for which streamflow data were used in the Ries 

and Friesz (2000) regression analyses, but different cut points dividing a gaging station’s period 

of record can equally be used to examine changes in the characteristics of a site’s FDC between 

periods.  Recent studies (e.g., Collins, 2009; Armstrong et al., 2012; and Armstrong et al., 2013) 

have found evidence of a hydroclimatic shift in New England around the beginning of water year 

1971 (October 1, 1970), which increased flood magnitudes and frequencies in the region.  This 

cut point was used to divide the FDCs of 17 gaging stations used in Parts I or II with more than 

60 years of record to investigate the potential effects of the hydroclimatic shift on the region’s 

low-flow characteristics.  The periods of record at the 17 stations were divided into two (pre- and 

post-1970) and three (pre-1970, 1971-1995, and 1996-2012) periods, and FDCs were calculated 

for each period. 
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For Part IV of the investigation, “moving quantiles” were computed for 16 of the 17 

gaging stations analyzed in Part III.  The one station in Part III that was not examined in Part IV 

(the gage on the Hubbard River near West Hartland, CT) was missing streamflow data for water 

year 1957 and was therefore not included in Part IV.  For each of the 16 stations, the ten daily 

streamflow quantiles of interest were computed from a 20-year period within the stations’ 

periods of record, beginning with the period of water years 1933 to 1952 (if the station’s period 

of record went back that far).  Quantiles were then calculated for the 20-year period beginning 

one year later (1934 to 1953).  In this way, 20-year moving quantiles were calculated for each 

twenty-year period in the stations’ periods of record through the 20-year period of water years 

1993 to 2012. 

To estimate when the RF regression equations would no longer be valid (i.e., when actual 

streamflows would be outside of the 90-percent prediction intervals for more than ten percent of 

stream sites), the 20-year quantiles at the 16 stations were projected into the future using a linear 

least-squares best fit line.  Trend lines for each of the ten flow-durations of interest were applied 

to the entire period of record at each station, and R2 and p-value measures of fitness were 

calculated for each trend line.  Some quantiles, especially at the highest exceedance probabilities, 

appeared to have increasing trends prior to water year 1992 and decreasing trends for the period 

of water years 1992 to 2012.  To investigate this, linear lines of best fit were also applied to all 

ten quantiles of interest for just the 21-year period of 1992 to 2012.  Trend lines for the period of 

record and post-1992 periods at each station were extended into the future to the point where 

they met the upper or lower bound of the prediction interval for the estimated flow-duration at 

that site.  The water year at which greater than 10% of the 16 stations (2 of 16) exhibited model 

failures was considered to be the approximate failure date for that flow-duration model. 
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Results 

Part I: Analysis and Validation using Original Stations 

Complete pre- and post-1996 (climatic year) flow-duration curves and RF model 

estimates for the 15 streamgages analyzed in Part I are provided in Appendix A, and an example 

plot for the Mill River at Northampton, MA gaging station is presented in Figure 4.  The 

sequential FDCs shown in the figure are typical of those observed at the other gaging sites 

analyzed in Part I.  Appendix B contains plots of observed pre- and post-1996 streamflow 

quantiles at the gaging stations, plotted as percentages of the upper or lower bounds of the 90-

percent prediction intervals for the RF estimates for the gaging sites.  An example plot for the 

Q70 flow is presented in Figure 5.  Note that the Q70 flow increased between the two periods at 

all 15 stations analyzed, and that the Q70 RF model underestimated the post-1996 Q70 flows at 

14 of the 15 stations.  Reference numbers and hydrologic regions for the gaging stations in 

Figure 5 are given in Table 4.  Geographical representations of the RF model performances at the 

15 gaging stations when compared to the observed post-1996 streamflows are provided in 

Appendix C, and an example figure for the Q70 flow is presented in Figure 6. 

Observed flow-durations at the 15 streamgages were generally higher for the post-1996 

period than for pre-1996, especially for streamflow quantiles between the 60-percent and 80-

percent exceedance probabilities.  Points on the stations’ FDCs increased by 50% or more 

between the two periods at five of the 15 stations, all of which were in the western hydrologic 

region.  Although similarly large increases were also seen at the gaging station on the West 

Branch Swift River near Shutesbury, MA (Appendix A, panel 11, or Figure A11), the pre-1996 

period of record at this station was only two years long and was therefore inadequate to 

characterize pre-1996 flow-durations at this site.  Some portion of the FDC for the post-1996  
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Figure 4. Flow-duration curves for pre- and post-1996 periods of record from the Mill River at 
Northampton, MA gaging station.  Also shown are the RF model estimates and the upper and lower 
bounds of the 90-percent prediction intervals for the estimates. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Observed Q70 flows at the 15 gaging stations analyzed in Part I for the pre- and post-1996 
periods, plotted as percentages of the upper or lower bounds of the 90-percent prediction intervals for 
the RF estimates. Model failure regions are shaded pink. Station reference numbers refer to Table 4. 
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Table 4. Station reference numbers and hydrologic regions for gaging stations analyzed in Part I, the 
streamflow data for which are plotted in Figure 5. 

Station 
Reference 
Number 

USGS Station 
Number USGS Station Name Hydrologic 

Region  

1 01096000 Squannacook River near West Groton, MA Eastern 
2 01097300 Nashoba Brook near Acton, MA Eastern 
3 01101000 Parker River at Byfield, MA Eastern 
4 01105600 Old Swamp River near South Weymouth, MA Eastern 
5 01111300 Nipmuc River near Harrisville, RI Eastern 
6 01162500 Priest Brook near Winchendon, MA Western 
7 01169000 North River at Shattuckville, MA Western 
8 01169900 South River near Conway, MA Western 
9 01170100 Green River near Colrain, MA Western 
10 01171500 Mill River at Northampton, MA Western 
11 01174565 West Branch Swift River near Shutesbury, MA Western 
12 01175670 Sevenmile River near Spencer, MA Western 
13 01176000 Quabog River at West Brimfield, MA Western 
14 01181000 West Branch Westfield River at Huntington, MA Western 
15 01333000 Green River at Williamstown, MA Western 

 

period crossed below the pre-1996 curve at eight of the 15 gaging stations in the analysis nearly 

always for the lowest flows (Appendix A).  The decreases in streamflow quantiles between the 

pre- and post-1996 periods were greater, more common, and extended along a longer length of 

the FDCs, on average, in the eastern hydrologic region than the western region.   

Low-flow quantiles at the 90-percent exceedance probability (Q90) and above decreased 

between the two time periods at 60% of gaging sites in the eastern hydrologic region, while this 

was true of only 10% of gages in the western region (Appendix A).  At the four gaging sites in 

the western hydrologic region where post-1996 FDCs crossed below the pre-1996 curves, it was 

always for the very lowest flows, with the average crossing point being the 94-percent 

exceedance probability (±2.3%, 1 standard deviation).  At the three sites in the eastern 

hydrologic region where post-1996 FDCs crossed below the pre-1996 curves for the lowest 
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Figure 6. Watersheds for the gaging stations analyzed in Part I, colored according to the values of the 
observed post-1996 Q70 flows, expressed as a percentage of the upper or lower bounds of the 90-
percent prediction intervals for the RF estimates. 
 

flows, the average crossing point was the 84-percent exceedance (±1.9%).  Decreases in flow-

durations between the two periods were greater on average in the eastern hydrologic region than 

the western region, with post-1996 streamflow quantiles in the eastern region being as little as 

24% of the pre-1996 values (Figure A5). 

Observed streamflow quantiles for the 1996 to 2011 period at the 50- to 90-percent 

exceedance probabilities were within the 90-percent prediction intervals for the estimated 

quantiles for more than 90% of the streamgages analyzed in Part I.  Specifically, the models 
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correctly estimated  (within the prediction intervals) the quantiles at all 15 gages  (100%) for the 

50-, 70-, 75-, and 80-percent duration flows, and at 14 of the 15 gages (93.3%) for the 60- and 

85-percent duration flows.  Failure rates were 13.3% (2 of 15 gages) for the 95-percent duration 

flow, and 20% (3 of 15 gages) for the 98- and 99-percent duration flows.  However, because of 

the relatively small size of the sample set (15 gaging stations), none of the models can be 

rejected as invalid with greater than 95% confidence (p = 0.184).  All model failures for the 85- 

to 99-percent duration flows were overestimates (observed flows were below the lower bound of 

the 90-percent prediction interval for the estimates).  In some cases, the models overestimated 

very low streamflows by more than an order of magnitude, but it should be noted that these gross 

overestimations were typically for relatively small catchments, where Q99 flows were less than 

one cfs (i.e., Figures A2, A3, and A5). 

While the RF models overestimated a majority of the very low (greater than 95-percent 

exceedance probability) flows at the 15 gaging sites, they tended to underestimate the more 

median flows for the post-1996 period.  For the 50- to 75-percent exceedances, the models 

underestimated streamflows at more than 85% of stations, although observed flows were nearly 

always within the prediction intervals for the estimates (with one exception at the 60-percent 

exceedance, Figure A8).  This tendency of the models towards underestimation of the 50- to 75-

percent duration flows is greater than would be expected by chance (p < 0.05), suggesting that 

increasing median and near-median streamflows in Massachusetts have caused the models to 

become biased towards underestimation of these flows.  In the one case where a model failed due 

to an underestimate (for the Q60 flow at the South River near Conway, MA streamgage, Figure 

A8), the Q60 flow increased between the pre- and post-1996 periods; in the cases where the RF 
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models failed due to overestimates (for the 85-, 90-, 95-, 98-, and 99-percent exceedance flows), 

those flows decreased between the pre- and post-1996 periods. 

 

Part II: Analysis and Validation using Additional Stations 

Pre- and post-1996 flow-duration curves and RF model estimates for the streamgages 

analyzed in Part II are provided in Appendix D, and an example plot for the gaging station on the 

Oyster River near Durham, NH is presented in Figure 7.  The sequential FDCs shown in the 

figure are typical of those observed at the other gaging sites analyzed in Part II.  Appendix E 

contains plots of observed pre- and post-1996 streamflow quantiles at the gaging stations, plotted 

as percentages of the upper or lower bounds of the 90-percent prediction intervals for the RF 

estimates for the gaging sites in Part II.  An example plot for the Q70 flow is presented in Figure 

8.  Note that the Q70 flow increased between the two periods at 19 of the 21 stations analyzed, 

and that the Q70 RF model underestimated the actual post-1996 Q70 flows at 18 of the 21 

stations.  Reference numbers and RF hydrologic regions for the gaging stations in Figure 8 are 

given in Table 5.  Geographical representations of the RF model performances at the 21 gaging 

stations when compared to the observed post-1996 streamflows are provided in Appendix F, and 

an example figure for the Q70 flow is presented in Figure 9. 

As at the original gaging stations analyzed in Part I, observed streamflow quantiles for 

the 21 additional gages in southern New England were generally higher for the post-1996 period 

than for the period before climatic year 1996, especially for the 60- to 80-percent duration flows.  

Flow-durations increased between the pre- and post-1996 periods by 50% or more at three of the 

21 stations, and the increases were greater in magnitude, on average, and more common in the 

western hydrologic region than the eastern region.  A portion of the post-1996 FDC crossed  
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Figure 7. Flow-duration curves for pre- and post-1996 periods of record from the Oyster River near 
Durham, NH gaging station.  Also shown are the RF model estimates and the upper and lower 
bounds of the 90-percent prediction intervals for the estimates. 
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Figure 8.  Observed Q70 flows at the 21 gaging stations analyzed in Part II for the pre- and post-1996 
periods, plotted as percentages of the upper or lower bounds of the 90-percent prediction intervals for 
the RF estimates. Model failure regions are shaded pink. Station reference numbers refer to Table 5. 
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below the pre-1996 curve at 13 of the 21 gaging stations in the analysis, nearly always for the 

lowest flows (Appendix D). 

 Low-flow quantiles decreased between the pre- and post-1996 periods at 83% of gages 

in the eastern hydrologic region, versus 46% of gages in the western region (Appendix D).  For 

the four gaging sites in the western hydrologic region where post-1996 FDCs crossed below the 

pre-1996 curves, the average crossing point was the 94-percent exceedance probability (±2.3%).    

Station 
Reference 
Number 

Station 
Number Station Name Hydrologic 

Region 

1 01073000 Oyster River near Durham, NH Eastern 
2 01095220 Stillwater River near Sterling, MA Eastern 
3 010965852 Beaver Brook at North Pelham, MA Eastern 
4 01105730 Indian Head River at Hanover, MA Eastern 
5 01109000 Wading River near Norton, MA Eastern 
6 01111500 Branch River at Forestdale, RI Eastern 
7 01115098 Peeptoad Brook at Elmdale Road near North Scituate, RI Eastern 
8 01115187 Ponaganset River at South Foster, RI Eastern 
9 01117468 Beaver River near Arcadia, RI Eastern 
10 01117500 Pawcatuck River at Wood River Junction, RI Eastern 
11 01117800 Wood River near Arcadia, RI Eastern 
12 01118000 Wood River at Hope Valley, RI Eastern 
13 01118300 Pendleton Hill Brook near Clarks Falls, CT Eastern 
14 01121000 Mount Hope River near Warrenville, CT Eastern 
15 01123000 Little River near Hanover, CT Eastern 
16 01184100 Stony Brook near West Suffield, CT Western 
17 01187300 Hubbard River near West Hartland, CT Western 
18 01188000 Burlington Brook near Burlington, CT Western 
19 01193500 Salmon River near East Hampton, CT Western 
20 01195100 Indian River near Clinton, CT Western 
21 01199050 Salmon Creek at Lime Rock, CT Western 

Table 5. Station reference numbers and hydrologic regions for gaging stations analyzed in Part II, and 
whose streamflow data are plotted in Figure 8. 
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For the six gaging sites in the eastern hydrologic region where post-1996 FDCs crossed below 

the pre-1996 curves at the lowest flows, the average crossing point was the 92-percent 

exceedance (±4.0%).  Decreases in flow-durations between the two periods were greater on 

average in the eastern hydrologic region than the western region, with post-1996 streamflow 

quantiles in the eastern region being as little as 54% of the pre-1996 values (Figure D4).  The 

greatest decreases in low-flow quantiles observed in the eastern hydrologic region were generally 

for smaller catchments, where very low streamflows were less than 1 cfs. 

Figure 9. Watersheds for the gaging stations analyzed in Part II, colored according to the values of the 
observed post-1996 Q70 flows, expressed as a percentage of the upper or lower bounds of the 90-
percent prediction intervals for the RF estimates. 
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Observed flows for the 1996 to 2011 period were within the 90-percent prediction 

intervals for the RF estimates at more than 90% of the 21 stations for each of the ten quantiles of 

interest.  Specifically, model success rates were 90.5% (Q50 and Q99), 95.2% (Q60, Q70, Q75, 

Q95, and Q98), and 100% for the remaining exceedances (Q80, Q85, and Q90).  As with the 

streamgages analyzed in Part I, the models tended to underestimate the median and near-median 

streamflows.  Streamflow quantiles at the 50- to 75-percent exceedance probabilities were 

underestimated at more than 85% of stations in the sample set, and the models for each of these 

flow-durations failed due to underestimation at one or more gaging sites.  This apparent tendency 

of the Q50 through Q75 models towards underestimation has a greater than 95% probability of 

being a true bias (p < 0.05), suggesting that increasing median and near-median streamflows are 

causing the models for these flows to become biased towards underestimation.  The regression 

models did not show a clear bias towards overestimating very low flows for the streamgages in 

Part II, either overall or in a particular hydrologic region.  However, model failures for the 95- to 

99-percent duration flows, where they occurred, were always overestimates. 

 

Part III: Flow-Duration Curve Analysis with 1970 and 1996 Cut Dates 

Flow-duration curves (FDCs) for the pre-1970, 1971-1995, and post-1996 (water year) 

periods at each of the 17 stations analyzed in Part III are provided in Appendix G, and an 

example plot for the gaging station on the North River at Shattuckville, MA is presented in 

Figure 10.  The data showed a general increase in quantiles of daily streamflow at the gaging 

stations between the pre- and post-1970 periods.  The greatest increases, on average, were for the 

60- to 80-percent flow durations.  A decrease in streamflow quantiles between the two periods 

was observed at four gages in the sample set, always for quantiles at the 95-percent exceedance  



41 
 

 

 

probability and above (the lowest flows).  Low-flow quantiles decreased between the two periods 

at 38% of streamgages (three of eight) in the eastern hydrologic region, while this was true of 

only 11% of gages (one of nine) in the western region.  Where flow-duration curves for the more 

recent period crossed below that of the older period, the average crossing point was the 96-

percent duration flow (±1.5%). 

When two cut dates were used to divide the gaging stations’ periods of record, there was, 

on average, a consecutive increase in streamflow quantiles between the three periods (pre-1970, 

1971-1995, and 1996-2012; Appendix G).  Again, the greatest increases between the three 

periods were seen in the 60- to 80-percent duration flows.  Despite the general increase in most 

streamflow quantiles, a portion of the FDC for the most recent period crossed below one or both 

of the older curves at 16 of the 17 stations, nearly always for the lowest flows.  The low-flow 
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Figure 10. Flow-duration curves for pre-1970, 1971-1995, and post-1996 periods of record from the 
North River at Shattuckville, MA gaging station.  Also shown are the RF model estimates and the upper 
and lower bounds of the 90-percent prediction intervals for the estimates. 



42 
 

quantile at which the FDC for the most recent period crossed below the 1971-1995 curve varied, 

with the average being about the 87-percent exceedance (±6.0%).  (This does not include gages 

where all or almost all of the post-1996 FDC was below the 1971-1995 curve, such as the Branch 

River at Forestdale, RI gage [Figure G4] and the Little River near Hanover, CT gage [Figure 

G8].)  At more than a quarter of gaging sites, the FDC for the most recent period was nearly 

indistinguishable from the 1971-1995 curve for most flow-durations other than very low flows, 

although both curves were generally higher than the pre-1970 FDCs. 

 

Part IV: Trend Analysis of 20-Year Quantiles 

Plots of 20-year moving streamflow quantiles for each of the 16 gaging stations analyzed 

in Part IV are provided in Appendix H, and an example plot for the gaging station on the 

Squannacook River near West Groton, MA is presented in Figure 11.  Figure 12 shows period-

of-record and post-1992 trend lines for 20-year quantiles at the Squannacook River near West 

Groton, MA streamgage.  R2 and p values, failure years, and slope direction (positive or 

negative) for all trend lines are provided in Appendix I, where p values <0.05 are shown in 

boldface.  A summary of the period-of-record and post-1992 quantile trend extension analyses is 

provided in Table 6. 

Trends in 20-year quantiles at the 50- to 99-percent exceedances varied in strength and 

direction at the gaging stations for their periods of record up to 2012 (last water year of the 20-

year period analyzed).  Linear best-fit lines for 20-year quantiles over this period were strongest 

for the more median flows, and had positive slopes for the vast majority of significant (p <0.05) 

trends at the 50- through 90-percent exceedance probabilities (Appendix I).  Trend lines had 

positive slopes for 92.9 % of significant trends in the Q50 flow, and 100% of significant trends   
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in the Q60 through Q90 flows.  Trends were weaker for the Q95 through Q99 flows (fewer 

stations showed significant trends for these flows than for the more median flows), and a greater 

proportion of stations showed downward trends in 20-year quantiles for these flows.  Significant 

trends, upward or downward, were present at only 68.8% of stations for the Q95 and Q99 flows, 

and 62.5% of stations for the Q98 flow. 

Between 1992 and 2012, the trends flattened or became downward trends for many of the 

higher exceedance probability quantiles (lower flows), with downward trends being greatest for 

the lowest flows (Figure 12; Appendices H and I).  Trends were stronger for the post-1992 than 

for the stations’ periods of record for the Q85 through Q99 flows—a greater proportion of  

Figure 11. Plot of 20-year streamflow quantiles for the gaging station on the Squannacook River near 
West Groton, MA over the station’s entire period of record through water year 2012. 
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Figure 12. Linear least-squares trend lines fitted to 20-year streamflow quantiles over the entire period 
of record (panel A) and just the post-1992 period (panel B) for the gaging station on the Squannacook 
River near West Groton, MA. 
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stations showed trends with p <0.05 for the post-1992 period for these flow-durations.  An equal 

number of stations (15 of 16) showed trends in the Q80 flow with p <0.05 for the post-1992 

period as for the gages’ entire periods of record.  Of significant trends (p <0.05) for the post-

1992 period, over 92% were downward for the Q95, Q98, and Q99 flows.  Specifically, best-fit 

lines had negative slopes for 92.3% of significant trends in the Q95 flow, 100% of significant 

trends in the Q98 flow, and 92.9% of significant trends in the Q99 flow.  The water years at 

which projected streamflow quantiles will be outside the RF model 90-percent prediction 

intervals for more than 10% of gaging sites in the sample set (the failure years) for the period-of-

record and post-1992 trend analyses are presented in Table 6.  

 

  

Streamflow 
Model 

Failure 
year 

(Period of 
Record 
trend) 

Percent 
of Trends 

with p 
<0.05 

Overestimate 
(O) or 

Underestimate 
(U) 

Failure  
year (Post-

1992 
trend) 

Percent of 
Trends 
with p 
<0.05 

Overestimate 
(O) or 

Underestimate 
(U) 

Q50 2081 87.5 U 2067 56.3 U 
Q60 2081 87.5 U 2041 75.0 U 
Q70 2118 87.5 U 2071 75.0 U 
Q75 2092 93.8 U 2070 81.3 U 
Q80 2158 93.8 U 2066 93.8 O 
Q85 2159 81.3 U 2052 93.8 O 
Q90 2155 75.0 U 2044 81.3 O 
Q95 2159 68.8 O 2032 81.3 O 
Q98 2126 62.5 O 2027 81.3 O 
Q99 2114 68.8 O 2018 87.5 O 

 
Table 6. Estimated failure years, percent of trends with p-values <0.05, and types of failure 
(overestimate or underestimate) for the Ries and Friesz (2000) streamflow models, calculated from 
period-of-record and post-1992 trend analyses. Best estimates of years at which the models will no 
longer be valid are highlighted. 
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Discussion 

The general upward translation of FDCs between the pre- and post-1996 (climatic year) 

periods observed at the original and additional gaging stations (Appendices A and D) is 

consistent with increasing mean precipitation in southern New England during these periods.  

Increasing streamflows are what would be expected in a region where historical records show a 

long-term trend in annual precipitation of about +9.5 millimeters per decade over the last century 

(Hayhoe et al., 2007).  The greater and more widespread increases in streamflow observed in the 

western hydrologic region (e.g., Figures A7, A8, A10, and D17) are consistent with a greater 

increase in precipitation in that region, which includes all watersheds to the west of and 

including the Connecticut River valley.  An analysis of monthly rainfall data from six 

precipitation-gaging stations in Massachusetts (three in each hydrologic region) for the period of 

calendar years 1950 to 2011 showed a greater average increase in monthly precipitation in the 

western region between the pre- and post-1996 periods (Massachusetts DCR, 2014).  A more 

rigorous statistical analysis of precipitation data is needed, but it is likely that the greater average 

increases in streamflow quantiles observed in the western hydrologic region are linked to greater 

increases in precipitation in that region between the pre- and post-1996 periods. 

The general increases in flow-durations between the two periods were lessened or 

reversed—becoming decreases—at the highest exceedances probabilities for gaging stations both 

within and adjacent to Massachusetts.  Very low flows showed smaller increases or decreases 

between the pre- and post-1996 periods, with the largest decreases observed for the lowest flows 

(e.g., Figures A2, A5, D1, and D6).  Very low daily streamflows in southern New England occur 

during the late summer months, when groundwater storage is depleted by the effects of 

evapotranspiration.  Steady increases in mean annual and summer temperatures (and 
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corresponding evapotranspiration), combined with little change or decreases in summer rainfall 

in the northeastern US since the mid-20th century (Hayhoe et al., 2007; USGCRP, 2009), are 

likely causing decreasing summer baseflows in watersheds across southern New England 

(Figures 13 and 14).  Forecasted increases in summer temperatures, combined with more 

frequent and more severe drought periods (Hayhoe et al., 2007; USGCRP, 2009), could have a 

significant impact on very low streamflows in southern New England, and pose a serious threat 

to aquatic ecosystems and water supplies in the region. 

  

Figure 13. Mean annual temperatures for the northeastern US from 1900 through 2000. The time series 
is an areally weighted average of temperature records from 56 stations in the region (after Clean-Air 
Cool Planet and Wake, 2005). 
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Low-flow quantiles decreased by an especially large factor between the pre- and post-

1996 periods at three gaging stations: the gages on the Nashoba Brook near Acton, MA, the 

Parker River at Byfield, MA, and the Nipmuc River near Harrisville, RI (Figures A2, A3, and 

A5, respectively).  The pronounced drops in low flows were particularly severe at the Parker 

River at Byfield, MA streamgage, where the post-1996 FDC above the 75-percent exceedance 

probability displayed a marked downward slope.  These anomalous changes in FDCs could in 

part be the result of human alterations of the natural streamflow regime, for which there is 

evidence in the Parker River watershed, where considerable increases in water withdrawals for 

public water supply and industrial uses since 1990 have been documented (Gomez and Sullivan, 

2003).  The three rivers with observed decreases in very low flows so severe as to appear as 

Figure 14. Total summer (July through September) rainfall for Massachusetts from 1950 through 2010. 
The time series is an average of precipitation records from six stations in the state (Massachusetts DCR, 
2014). 
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outliers were all situated in the eastern hydrologic region.  Human influences on low streamflows 

are more likely to arise in the eastern hydrologic region of Massachusetts, where more than two-

thirds of the state’s population resides (U.S. Census Bureau, 2011).  Increased water withdrawals 

and urban development (area of impervious surfaces) reduce baseflows, and could have 

significant impacts on low streamflows in southern New England during this century, above and 

beyond reductions already caused by increased evapotranspiration and more frequent droughts. 

When the RF regression equations were applied to 15 of the gaging stations used in their 

analyses (Part I) and 21 additional stations in southern New England (Part II) for the period of 

climatic years 1996-2011, the models performed well overall, accurately estimating 90-percent 

prediction intervals for more than 90-percent of gaging stations at most of the ten estimated 

flow-durations (Appendices A through F).  Flow-durations were accurately predicted at 94.4% of 

sites for the Q50 and Q60 flows, 97.2% of sites for the Q70, Q75, Q85, and Q90 flows, and 

100% of sites for the Q80 flows.  For the three models (Q95, Q98, and Q99) that failed at more 

than 10% of sites overall, the failure rates and sample set size were such that the models could 

not be rejected as inaccurate with greater than 95% certainty (p > 0.05).  However, the prediction 

intervals for the estimated streamflows were relatively wide, in many cases spanning more than 

an order of magnitude, with the widest prediction intervals being for the lowest flows.  By 

comparison, the entire FDC for streams in southern New England generally span only about 

three orders of magnitude.  The sizes of the models’ prediction intervals are directly related to 

their precisions, and thus their value to end users.  Although the RF models may be statistically 

accurate, their imprecision could detract from their utility as predictive tools for practical 

hydrologic applications.  The usefulness of the RF models, as with any model, is ultimately 

determined by user design thresholds and tolerances for imprecision. 
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While the RF equations were generally accurate in estimating flow-durations for the post-

1996 period, they displayed clear biases towards underestimating the Q50, Q60, Q70, and Q75 

flows (e.g., Figures B1, C1, E1, and F1).  The biases were present for streams in both hydrologic 

regions and for sites both within and outside of Massachusetts.  These model tendencies towards 

underestimation were likely caused by increases in annual precipitation in southern New England 

between 1950 and 2011, resulting in higher streamflows at the more median quantiles.  The RF 

regression equations, which were based on pre-1996 discharge data, cannot account for changes 

in climate variables since 1996 that have altered natural streamflow regimes.  Increasing 

precipitation over the 21st century is likely to amplify the existing RF model biases towards 

underestimation of the more median low-flow quantiles and increase the rate of model failures 

due to underestimation of these flows.  While there did not yet appear to be statistical biases 

towards overestimation of the lowest flows for the post-1996 period, projected decreases in 

summer baseflows in New England over the 21st century due to increasing temperatures and 

other regional climate changes, such as more severe and frequent droughts, have the potential to 

cause biases in the models towards overestimation of very low streamflows.  In watersheds 

increasingly influenced by water withdrawals and urban land use, as many basins in the eastern 

hydrologic region are, additional decreases in low flows over the coming decades are likely to 

occur, which would further decrease the ability of the RF regression equations to accurately 

estimate low flows. 

The increases observed in most streamflow quantiles between the pre- and post-1970 

(water year) periods, and consecutively between the pre-1970, 1971-1995, and 1996-2012 

periods (Appendix G), are not surprising given the observed increases in average precipitation in 

southern New England during these periods.  For 13 of the 17 gaging sites examined in the Part 
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III analysis, the increases in most streamflow quantiles between the pre-1970 and 1971-1995 

periods were greater than the increases between the 1971-1995 and 1996-2012 periods.  This is 

consistent with the findings of Hayhoe et al. (2007), who found greater increases in annual and 

seasonal precipitation in the northeastern US prior to 1970 than for the period since 1970.  The 

increases in most streamflow quantiles (excluding very low flows) across the time periods 

analyzed, although varying in degree and the parts of the FDC affected, were in evidence at all 

17 gaging stations in the sample set, and likely driven by the observed trend towards increasing 

precipitation in southern New England during these periods. 

As in the analyses of the streamgages in Parts I and II, which used the end of climatic 

year 1995 to divide the gages’ periods of record, the trend towards increasing streamflow 

quantiles at the gaging sites in Part III was slowed or reversed for the lowest flows.  These 

decreases—or smaller increases—in very low flows were more pronounced, more common, and 

affected a greater portion of the FDC for the 1996-2012 period than for either of the earlier 

periods, suggesting an accelerating downward forcing on these flows.  This distinct drop in the 

lowest streamflow quantiles for the most recent period could be the result of increasing 

temperatures and relatively unchanged summer precipitation in southern New England since 

1970, which in combination would depress summer baseflows.  Additionally, although one 

criterion for selection of a gaging station to be used in the analyses was that it monitored an 

unregulated or nearly unregulated stream, there are few watersheds in southern New England 

that are completely free of human influences, either by direct manipulation of streamflows or the 

presence of areas of impervious surfaces.  Therefore, the effects of anthropogenic factors on low 

flows should not be discounted as a possible source of the observed downward trends, especially 

in the more populated eastern hydrologic region of southern New England. 
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The plotting of 20-year streamflow quantiles for each of the ten flow-durations of interest 

for each of the 16 gaging stations in Part IV (Appendix H), revealed information about trends in 

low-flow quantiles at the gaging sites that would otherwise have remained hidden.  In addition to 

supporting the general findings of the first three parts of this study—that most flow-durations 

increased through the latter half of the last century, while very low flows increased to a lesser 

extent or decreased—the moving quantiles displayed an apparent inflection point around the 

beginning of water year 1992 (last year of the 20-year period for which the quantile was 

calculated).  Very low streamflows—particularly the Q98 and Q99 flows—showed increases or 

only very slight decreases prior to 1992, and decreases after 1992.  This flattening or reversal of 

trend direction for the lowest flows was evident to some extent at every station, always around 

the early 1990s. 

The existence of an inflection point in 20-year low-flow quantiles around 1992 is likely 

the result of a combination of climatic and anthropogenic factors, as well as the particular way 

the data were divided for analysis.  Annual and summer temperatures in the New England region 

have shown steady increases since the mid-20th century, offsetting the effects of increasing 

annual precipitation by increasing evapotranspiration rates (Hayhoe et al., 2007).  Moreover, 

summer precipitation at many locations in Massachusetts has been steady or shown decreasing 

trends since 1970 (Massachusetts DCR, 2014).  Increasing human influences in southern New 

England over the last half-century, including greater water withdrawals and urban land use, also 

contribute to reduced baseflows (Armstrong et al., 2008).  Finally, the peak in 20-year low-flow 

quantiles (typically observed at or around the 1973-1992 period) include both of the unusually 

wet years of 1973 and 1991.  As a result, the spike in low-flow quantiles is in part a consequence 

of the statistical method used to analyze the data.  Figure 15 shows 1-year Q99 flows for the 
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Wading River near Norton, MA streamgage from 1952 to 2012, with the local peak values at the 

beginning of the 1970s and 1990s being evident.  Additional wet or dry years would be expected 

to similarly affect 20-year quantiles, suggesting that this period may be too short to produce very 

robust trends. 

 

 

 

Trends in 20-year streamflow quantiles over the gaging stations’ entire periods of record 

(POR) were strongest for the more median flows (Q50 to Q75); the inflection point for very low 

flows around 1992 reduced the strength of POR trends for these quantiles (Appendix I, Tables 

I1-I4).  To better capture the more recent trends, especially in very low flows, lines of best fit 

were also applied to 20-year quantiles for just the period of water years 1992 to 2012 (Figure 

12b).  Trends for the post-1992 period were stronger than those for the entire POR for the Q85, 

Q90, Q95, Q98, and Q99 flows (Table 6).  To estimate when the RF equations will no longer by 

valid (when actual flows will be outside the 90-percent prediction intervals for the estimates), 

0 

2 

4 

6 

8 

10 

12 

14 

1952 1962 1972 1982 1992 2002 2012 

St
re

am
flo

w
 (c

fs
) 

Water Year 

1-year Q99 

Figure 15. One-year Q99 flows for the gaging station on the Wading River near Norton, MA for water 
years 1952-2012.  The two highest 1-year Q99 flows occurred in 1973 and 1991. 
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POR and post-1992 trend lines for all ten flow-durations were projected into the future to the 

point (failure year) where the flows met the upper or lower bound of the prediction interval.  A 

critical assumption of the POR and post-1992 best-fit line extensions is that these trends are 

linear and will continue to be over the foreseeable future.  The trend line projections cannot 

account for future non-linear changes in climate variables, but the estimates of failure dates 

provided by the trend analyses are generally consistent with the historic changes in streamflow 

quantiles observed in Parts I, II, and III of the investigation. 

Because two trend analyses were performed—for the station PORs and for the post-1992 

periods—two failure years were estimated for each flow-duration model, in addition to whether 

the failure would be due to overestimation or underestimation.  Which of the two estimated 

failure years should be considered a better approximation is dependent on the goodness-of-fit 

metrics (p values) for the trend lines.  The analyses that had a greater number of trend lines with 

significant p values (p <0.05) were considered to provide a better approximation (Table 6).  

Figure 16 presents an example of a POR trend-line extension for the Q50 flow at the Green River 

at Williamstown, MA streamgage, and Figure 17 presents an example of a post-1992 trend-line 

extension for the Q99 flow at the Squannacook River near West Groton, MA streamgage.  The 

quantile trends at these gages were typical of the general trends observed in the analysis.  For the 

Q50 through Q75 flows, stronger trends were seen in the POR analysis, while for the Q85 trends, 

there were a greater number of significant trends in the post-1992 analysis (Table 6).  This is not 

surprising given that the lower flows were more greatly affected by the apparent 1992 inflection 

point.  The Q80 analysis displayed an equal number of significant trends for both the POR and 

post-1992 analyses, so the more conservative (sooner) estimated failure year (2066) was chosen 

as the best first approximation (Table I5). 
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Figure 17. Post-1992 trend line extension for 20-year Q99 flows at the Squannacook River near West 
Groton, MA streamgage.  If the observed trend continues, the Q99 RF model will fail due to 
overestimation at this site in 2029. 

Figure 16. Period-of-record trend line extension for 20-year Q50 flows at the Green River at 
Williamstown, MA streamgage.  If the observed trend continues, the Q50 RF model will fail due to 
underestimation at this site in 2074. 
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Collectively, the four parts of this study present a picture of a hydro-climatologic system 

in southern New England in which increasing precipitation and temperature indices are driving 

multiple and sometimes opposing trends in streamflow statistics.  The results show that median 

low-flow quantiles (Q50 through Q80 flows) are generally increasing, moderately low flows 

(Q85 and Q90) are relatively steady, and very low flows (Q95, Q98, and Q99) are decreasing in 

the region.  While it is difficult to predict when the RF models will no longer be valid, changes 

in streamflow characteristics in southern New England since 1996 appear to have already 

generated a certain degree of bias in the models towards underestimation of more median low-

flows and overestimation of very low flows.  Despite these biases, many of the equations may 

continue to produce acceptable estimates for several decades to come because of the relatively 

wide prediction intervals associated with the estimates.  The results of this investigation indicate 

that the first models to lose validity will likely be those for the lowest flows (Q98 and Q99).  If 

the trends in these streamflow quantiles over the last two decades continue, the models for these 

flows could be rendered invalid by as soon as 2018, with other models losing validity within the 

following decades.  It is therefore recommended that the RF streamflow estimation equations be 

reformulated within the next decade using more recent streamflow data.  Given the significant 

changes in climate variables projected for the New England region over the 21st century, it is 

likely that the equations will need to be validated and recalibrated approximately every 20 years 

to account for the effects of nonstationarity on unregulated streamflows. 
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Conclusion 

 Increasing attention has been drawn to the need for accurate streamflow estimates in 

ungaged basins, which are required for effective water resources management, infrastructure 

design, and environmental protection.  Streamflow models, typically derived by regional 

regression techniques, transfer historic data from a group of gaging stations in a region to an 

ungaged basin of interest using physical basin characteristics as explanatory variables.  However, 

such streamflow models assume relatively unchanging climatic variables, such as air temperature 

and precipitation, which can have significant effects on a watershed’s streamflow characteristics.  

Climate projections for the New England region over the 21st century indicate higher annual 

precipitation but relatively unchanged summer rainfall, higher temperatures, and longer periods 

of drought between rainfall events.  These climatic changes—and the corresponding changes in 

streamflows they bring about—threaten to decrease the accuracies of existing streamflow 

estimation methods for the southern New England region. 

 The analyses of historic daily streamflow data carried out in this investigation revealed 

several changes in streamflows in southern New England watersheds since the mid-20th century.  

Periods of record of streamflow data were divided using both 1970 and 1996 as cut dates, and 

flow-duration curves for the gaging stations were computed using data from each of the shorter 

periods.  Additionally, 20-year moving quantiles were calculated for a set of 16 stations using 

their entire periods of record through water year 2012.  The results indicate that, on average, 

more median streamflows (Q50 through Q80 flows) have increased since the mid-20th century, 

moderately low flows (Q85 through Q90 flows) have been relatively unchanged, and very low 

flows (Q95 through Q99 flows) have decreased.  The beginning of water year 1992 appeared to 

mark an inflection point for very low flow characteristics in southern New England, before 
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which these flows were increasing or relatively unchanged, and after which these flows showed 

marked decreases.  The increases observed in the majority of streamflow quantiles are almost 

certainly the result of increasing average precipitation, while the decreases in very low flows are 

likely linked to increasing temperatures (causing greater evapotranspiration), steady or 

decreasing summer precipitation, and anthropogenic factors such as increasing urban 

development and areas of impervious surface.  The local peak in 20-year quantiles observed 

around the 1973-1992 period was also likely augmented by the wet years of 1973 and 1991. 

 The Ries and Friesz (2000) (RF) regression equations continue to estimate daily 

streamflow quantiles within a 90% confidence range, both within Massachusetts and in 

neighboring states, despite changes in streamflows in the region since the equations were 

developed.  Although observed flow-durations were generally within the prediction intervals for 

the estimated flows, watershed responses to regional climate change appear to have rendered the 

RF models biased towards underestimating more median streamflows and overestimating very 

low flows.  These biases are expected to increase with projected increases in mean precipitation 

and temperature in the New England region over the 21st century.  The confidence intervals for 

the RF equations are relatively wide—in many cases spanning an order of magnitude or more—

and their usefulness is ultimately dependent upon user design parameters and tolerances. 

 For the RF models to remain valid, actual streamflows must be within the estimated 90-

percent prediction intervals for more than 90% of stream sites.  If streamflows in southern New 

England continue their observed trends, the RF equations in their present form will begin to lose 

validity over the coming decades.  Exactly when the models will no longer be valid depends on 

the rate of change of regional climate variables, drainage basin responses to those changes, and 

the particular streamflow quantile being modeled.  It is likely that decreases in very low flows 
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due to increasing summer temperatures will cause the models for these flows to lose validity 

(due to overestimation) before increases in annual precipitation cause the models for the more 

median flows to no longer be valid (due to underestimation).  The trend analyses performed on 

period-of-record and post-1992 streamflow suggest that the regression equation for the Q99 flow 

could lose its stated accuracy by as early as 2018.  The trend analyses, in combination with the 

observed recent changes in streamflows in southern New England and climate projections for the 

region, suggest that the RF models, especially those for the lowest flows, should be reformulated 

within the next decade to account for changes in streamflows due to nonstationarity, and 

validated approximately every 20 years thereafter to ensure the model estimates continue to be 

reliable to end users.
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Part I Observed Flow-Durations as Percentage of  

Prediction Interval Bounds 
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Station 
Reference 
Number 

USGS 
Station 
Number 

USGS Station Name 
Station 

Reference 
Number 

USGS 
Station 
Number 

USGS Station Name 

1 01096000 SQUANNACOOK RIVER NEAR WEST GROTON, 
MA 9 01170100 GREEN RIVER NEAR COLRAIN, MA 

2 01097300 NASHOBA BROOK NEAR ACTON, MA 10 01171500 MILL RIVER AT NORTHAMPTON, MA 

3 01101000 PARKER RIVER AT BYFIELD, MA 11 01174565 WEST BRANCH SWIFT RIVER NEAR 
SHUTESBURY, MA 

4 01105600 OLD SWAMP RIVER NEAR SOUTH WEYMOUTH, 
MA 12 01175670 SEVENMILE RIVER NEAR SPENCER, MA 

5 01111300 NIPMUC RIVER NEAR HARRISVILLE, RI 13 01176000 QUABOG RIVER AT WEST BRIMFIELD, MA 

6 01162500 PRIEST BROOK NEAR WINCHENDON, MA 14 01181000 WEST BRANCH WESTFIELD RIVER AT 
HUNTINGTON, MA 

7 01169000 NORTH RIVER AT SHATTUCKVILLE, MA 15 01333000 GREEN RIVER AT WILLIAMSTOWN, MA 
8 01169900 SOUTH RIVER NEAR CONWAY, MA - - - 
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Station 
Reference 
Number 

USGS 
Station 
Number 

USGS Station Name 
Station 

Reference 
Number 

USGS 
Station 
Number 

USGS Station Name 

1 01096000 SQUANNACOOK RIVER NEAR WEST GROTON, 
MA 9 01170100 GREEN RIVER NEAR COLRAIN, MA 

2 01097300 NASHOBA BROOK NEAR ACTON, MA 10 01171500 MILL RIVER AT NORTHAMPTON, MA 

3 01101000 PARKER RIVER AT BYFIELD, MA 11 01174565 WEST BRANCH SWIFT RIVER NEAR 
SHUTESBURY, MA 

4 01105600 OLD SWAMP RIVER NEAR SOUTH WEYMOUTH, 
MA 12 01175670 SEVENMILE RIVER NEAR SPENCER, MA 

5 01111300 NIPMUC RIVER NEAR HARRISVILLE, RI 13 01176000 QUABOG RIVER AT WEST BRIMFIELD, MA 

6 01162500 PRIEST BROOK NEAR WINCHENDON, MA 14 01181000 WEST BRANCH WESTFIELD RIVER AT 
HUNTINGTON, MA 

7 01169000 NORTH RIVER AT SHATTUCKVILLE, MA 15 01333000 GREEN RIVER AT WILLIAMSTOWN, MA 
8 01169900 SOUTH RIVER NEAR CONWAY, MA - - - 
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USGS Station Name 
Station 

Reference 
Number 

USGS 
Station 
Number 

USGS Station Name 

1 01096000 SQUANNACOOK RIVER NEAR WEST GROTON, 
MA 9 01170100 GREEN RIVER NEAR COLRAIN, MA 

2 01097300 NASHOBA BROOK NEAR ACTON, MA 10 01171500 MILL RIVER AT NORTHAMPTON, MA 

3 01101000 PARKER RIVER AT BYFIELD, MA 11 01174565 WEST BRANCH SWIFT RIVER NEAR 
SHUTESBURY, MA 

4 01105600 OLD SWAMP RIVER NEAR SOUTH WEYMOUTH, 
MA 12 01175670 SEVENMILE RIVER NEAR SPENCER, MA 

5 01111300 NIPMUC RIVER NEAR HARRISVILLE, RI 13 01176000 QUABOG RIVER AT WEST BRIMFIELD, MA 

6 01162500 PRIEST BROOK NEAR WINCHENDON, MA 14 01181000 WEST BRANCH WESTFIELD RIVER AT 
HUNTINGTON, MA 

7 01169000 NORTH RIVER AT SHATTUCKVILLE, MA 15 01333000 GREEN RIVER AT WILLIAMSTOWN, MA 
8 01169900 SOUTH RIVER NEAR CONWAY, MA - - - 
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Appendix C 

 

Part I RF Model Performance Maps 

(Compared to 1996-2011 Data)
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Appendix D 

 

Part II Flow-Duration Curves 
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Appendix E 

 

Part II Observed Flow-Durations as Percentage of  

Prediction Interval Bounds



  
  

Station 
Reference 
Number 

Station 
Number Station Name 

Station 
Reference 
Number 

Station 
Number Station Name 

1 01073000 Oyster River near Durham, NH 12 01118000 Wood River at Hope Valley, RI 
2 01095220 Stillwater River near Sterling, MA 13 01118300 Pendleton Hill Brook near Clarks Falls, CT 
3 010965852 Beaver Brook at North Pelham, MA 14 01121000 Mount Hope River near Warrenville, CT 
4 01105730 Indian Head River at Hanover, MA 15 01123000 Little River near Hanover, CT 
5 01109000 Wading River near Norton, MA 16 01184100 Stony Brook near West Suffield, CT 
6 01111500 Branch River at Forestdale, RI 17 01187300 Hubbard River near West Hartland, CT 

7 01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 18 01188000 Burlington Brook near Burlington, CT 

8 01115187 Ponaganset River at South Foster, RI 19 01193500 Salmon River near East Hampton, CT 
9 01117468 Beaver River near Usquepaug, RI 20 01195100 Indian River near Clinton, CT 

10 01117500 Pawcatuck River at Wood River Junction, RI 21 01199050 Salmon Creek at Lime Rock, CT 
11 01117800 Wood River near Arcadia, RI - - - 
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Station 
Reference 
Number 

Station 
Number Station Name 

Station 
Reference 
Number 

Station 
Number Station Name 

1 01073000 Oyster River near Durham, NH 12 01118000 Wood River at Hope Valley, RI 
2 01095220 Stillwater River near Sterling, MA 13 01118300 Pendleton Hill Brook near Clarks Falls, CT 
3 010965852 Beaver Brook at North Pelham, MA 14 01121000 Mount Hope River near Warrenville, CT 
4 01105730 Indian Head River at Hanover, MA 15 01123000 Little River near Hanover, CT 
5 01109000 Wading River near Norton, MA 16 01184100 Stony Brook near West Suffield, CT 
6 01111500 Branch River at Forestdale, RI 17 01187300 Hubbard River near West Hartland, CT 

7 01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 18 01188000 Burlington Brook near Burlington, CT 

8 01115187 Ponaganset River at South Foster, RI 19 01193500 Salmon River near East Hampton, CT 
9 01117468 Beaver River near Usquepaug, RI 20 01195100 Indian River near Clinton, CT 

10 01117500 Pawcatuck River at Wood River Junction, RI 21 01199050 Salmon Creek at Lime Rock, CT 
11 01117800 Wood River near Arcadia, RI - - - 
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Station 
Reference 
Number 

Station 
Number Station Name 

Station 
Reference 
Number 

Station 
Number Station Name 

1 01073000 Oyster River near Durham, NH 12 01118000 Wood River at Hope Valley, RI 
2 01095220 Stillwater River near Sterling, MA 13 01118300 Pendleton Hill Brook near Clarks Falls, CT 
3 010965852 Beaver Brook at North Pelham, MA 14 01121000 Mount Hope River near Warrenville, CT 
4 01105730 Indian Head River at Hanover, MA 15 01123000 Little River near Hanover, CT 
5 01109000 Wading River near Norton, MA 16 01184100 Stony Brook near West Suffield, CT 
6 01111500 Branch River at Forestdale, RI 17 01187300 Hubbard River near West Hartland, CT 

7 01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 18 01188000 Burlington Brook near Burlington, CT 

8 01115187 Ponaganset River at South Foster, RI 19 01193500 Salmon River near East Hampton, CT 
9 01117468 Beaver River near Usquepaug, RI 20 01195100 Indian River near Clinton, CT 

10 01117500 Pawcatuck River at Wood River Junction, RI 21 01199050 Salmon Creek at Lime Rock, CT 
11 01117800 Wood River near Arcadia, RI - - - 
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Station 
Reference 
Number 

Station 
Number Station Name 

Station 
Reference 
Number 

Station 
Number Station Name 

1 01073000 Oyster River near Durham, NH 12 01118000 Wood River at Hope Valley, RI 
2 01095220 Stillwater River near Sterling, MA 13 01118300 Pendleton Hill Brook near Clarks Falls, CT 
3 010965852 Beaver Brook at North Pelham, MA 14 01121000 Mount Hope River near Warrenville, CT 
4 01105730 Indian Head River at Hanover, MA 15 01123000 Little River near Hanover, CT 
5 01109000 Wading River near Norton, MA 16 01184100 Stony Brook near West Suffield, CT 
6 01111500 Branch River at Forestdale, RI 17 01187300 Hubbard River near West Hartland, CT 

7 01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 18 01188000 Burlington Brook near Burlington, CT 

8 01115187 Ponaganset River at South Foster, RI 19 01193500 Salmon River near East Hampton, CT 
9 01117468 Beaver River near Usquepaug, RI 20 01195100 Indian River near Clinton, CT 

10 01117500 Pawcatuck River at Wood River Junction, RI 21 01199050 Salmon Creek at Lime Rock, CT 
11 01117800 Wood River near Arcadia, RI - - - 
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Station 
Reference 
Number 

Station 
Number Station Name 

Station 
Reference 
Number 

Station 
Number Station Name 

1 01073000 Oyster River near Durham, NH 12 01118000 Wood River at Hope Valley, RI 
2 01095220 Stillwater River near Sterling, MA 13 01118300 Pendleton Hill Brook near Clarks Falls, CT 
3 010965852 Beaver Brook at North Pelham, MA 14 01121000 Mount Hope River near Warrenville, CT 
4 01105730 Indian Head River at Hanover, MA 15 01123000 Little River near Hanover, CT 
5 01109000 Wading River near Norton, MA 16 01184100 Stony Brook near West Suffield, CT 
6 01111500 Branch River at Forestdale, RI 17 01187300 Hubbard River near West Hartland, CT 

7 01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 18 01188000 Burlington Brook near Burlington, CT 

8 01115187 Ponaganset River at South Foster, RI 19 01193500 Salmon River near East Hampton, CT 
9 01117468 Beaver River near Usquepaug, RI 20 01195100 Indian River near Clinton, CT 

10 01117500 Pawcatuck River at Wood River Junction, RI 21 01199050 Salmon Creek at Lime Rock, CT 
11 01117800 Wood River near Arcadia, RI - - - 
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Station 
Reference 
Number 

Station 
Number Station Name 

Station 
Reference 
Number 

Station 
Number Station Name 

1 01073000 Oyster River near Durham, NH 12 01118000 Wood River at Hope Valley, RI 
2 01095220 Stillwater River near Sterling, MA 13 01118300 Pendleton Hill Brook near Clarks Falls, CT 
3 010965852 Beaver Brook at North Pelham, MA 14 01121000 Mount Hope River near Warrenville, CT 
4 01105730 Indian Head River at Hanover, MA 15 01123000 Little River near Hanover, CT 
5 01109000 Wading River near Norton, MA 16 01184100 Stony Brook near West Suffield, CT 
6 01111500 Branch River at Forestdale, RI 17 01187300 Hubbard River near West Hartland, CT 

7 01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 18 01188000 Burlington Brook near Burlington, CT 

8 01115187 Ponaganset River at South Foster, RI 19 01193500 Salmon River near East Hampton, CT 
9 01117468 Beaver River near Usquepaug, RI 20 01195100 Indian River near Clinton, CT 

10 01117500 Pawcatuck River at Wood River Junction, RI 21 01199050 Salmon Creek at Lime Rock, CT 
11 01117800 Wood River near Arcadia, RI - - - 
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Station 
Reference 
Number 

Station 
Number Station Name 

Station 
Reference 
Number 

Station 
Number Station Name 

1 01073000 Oyster River near Durham, NH 12 01118000 Wood River at Hope Valley, RI 
2 01095220 Stillwater River near Sterling, MA 13 01118300 Pendleton Hill Brook near Clarks Falls, CT 
3 010965852 Beaver Brook at North Pelham, MA 14 01121000 Mount Hope River near Warrenville, CT 
4 01105730 Indian Head River at Hanover, MA 15 01123000 Little River near Hanover, CT 
5 01109000 Wading River near Norton, MA 16 01184100 Stony Brook near West Suffield, CT 
6 01111500 Branch River at Forestdale, RI 17 01187300 Hubbard River near West Hartland, CT 

7 01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 18 01188000 Burlington Brook near Burlington, CT 

8 01115187 Ponaganset River at South Foster, RI 19 01193500 Salmon River near East Hampton, CT 
9 01117468 Beaver River near Usquepaug, RI 20 01195100 Indian River near Clinton, CT 

10 01117500 Pawcatuck River at Wood River Junction, RI 21 01199050 Salmon Creek at Lime Rock, CT 
11 01117800 Wood River near Arcadia, RI - - - 
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Station 
Reference 
Number 

Station 
Number Station Name 

Station 
Reference 
Number 

Station 
Number Station Name 

1 01073000 Oyster River near Durham, NH 12 01118000 Wood River at Hope Valley, RI 
2 01095220 Stillwater River near Sterling, MA 13 01118300 Pendleton Hill Brook near Clarks Falls, CT 
3 010965852 Beaver Brook at North Pelham, MA 14 01121000 Mount Hope River near Warrenville, CT 
4 01105730 Indian Head River at Hanover, MA 15 01123000 Little River near Hanover, CT 
5 01109000 Wading River near Norton, MA 16 01184100 Stony Brook near West Suffield, CT 
6 01111500 Branch River at Forestdale, RI 17 01187300 Hubbard River near West Hartland, CT 

7 01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 18 01188000 Burlington Brook near Burlington, CT 

8 01115187 Ponaganset River at South Foster, RI 19 01193500 Salmon River near East Hampton, CT 
9 01117468 Beaver River near Usquepaug, RI 20 01195100 Indian River near Clinton, CT 

10 01117500 Pawcatuck River at Wood River Junction, RI 21 01199050 Salmon Creek at Lime Rock, CT 
11 01117800 Wood River near Arcadia, RI - - - 
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Station 
Reference 
Number 

Station 
Number Station Name 

Station 
Reference 
Number 

Station 
Number Station Name 

1 01073000 Oyster River near Durham, NH 12 01118000 Wood River at Hope Valley, RI 
2 01095220 Stillwater River near Sterling, MA 13 01118300 Pendleton Hill Brook near Clarks Falls, CT 
3 010965852 Beaver Brook at North Pelham, MA 14 01121000 Mount Hope River near Warrenville, CT 
4 01105730 Indian Head River at Hanover, MA 15 01123000 Little River near Hanover, CT 
5 01109000 Wading River near Norton, MA 16 01184100 Stony Brook near West Suffield, CT 
6 01111500 Branch River at Forestdale, RI 17 01187300 Hubbard River near West Hartland, CT 

7 01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 18 01188000 Burlington Brook near Burlington, CT 

8 01115187 Ponaganset River at South Foster, RI 19 01193500 Salmon River near East Hampton, CT 
9 01117468 Beaver River near Usquepaug, RI 20 01195100 Indian River near Clinton, CT 

10 01117500 Pawcatuck River at Wood River Junction, RI 21 01199050 Salmon Creek at Lime Rock, CT 
11 01117800 Wood River near Arcadia, RI - - - 
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1 01073000 Oyster River near Durham, NH 12 01118000 Wood River at Hope Valley, RI 
2 01095220 Stillwater River near Sterling, MA 13 01118300 Pendleton Hill Brook near Clarks Falls, CT 
3 010965852 Beaver Brook at North Pelham, MA 14 01121000 Mount Hope River near Warrenville, CT 
4 01105730 Indian Head River at Hanover, MA 15 01123000 Little River near Hanover, CT 
5 01109000 Wading River near Norton, MA 16 01184100 Stony Brook near West Suffield, CT 
6 01111500 Branch River at Forestdale, RI 17 01187300 Hubbard River near West Hartland, CT 

7 01115098 Peeptoad Brook at Elmdale Road near North 
Scituate, RI 18 01188000 Burlington Brook near Burlington, CT 

8 01115187 Ponaganset River at South Foster, RI 19 01193500 Salmon River near East Hampton, CT 
9 01117468 Beaver River near Usquepaug, RI 20 01195100 Indian River near Clinton, CT 

10 01117500 Pawcatuck River at Wood River Junction, RI 21 01199050 Salmon Creek at Lime Rock, CT 
11 01117800 Wood River near Arcadia, RI - - - 

-150% 

-100% 

-50% 

0% 

50% 

100% 

150% 

0 5 10 15 20 

Pe
rc

en
ta

ge
 o

f P
re

di
ct

io
n 

In
te

rv
al

 B
ou

nd
s 

Station Reference Number 

Observed Q99 as Percentage of Prediction Interval Bounds 

Pre-1996 

1996-2011 

E10 



 

 

 

 

 

Appendix F 

 

Part II RF Model Performance Maps 

(Compared to 1996-2011 Data)
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Appendix G 

 

Part III Flow-Duration Curves 
  



  

0.01 

0.1 

1 

10 

100 

1000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01073000 Oyster River near Durham, NH   

1935-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G1 

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01096000 Squannacook River near West Groton, MA 

1950-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G2 



  

1 

10 

100 

1000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01109000 Wading River near Norton, MA 

1926-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G3 

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01111500 Branch River at Forestdale, RI 

1941-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G4 



  

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01117500 Pawcatuck River at Wood River Junction, RI 

1941-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G5 

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01118000 Wood River at Hope Valley, RI   

1942-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G6 



  

0.1 

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01121000 Mount Hope River near Warrenville, CT 

1941-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G7 

0.1 

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01123000 Little River near Hanover, CT 

1952-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G8 



  

0.1 

1 

10 

100 

1000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01162500 Priest Brook near Winchendon, MA 

1917-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G9 

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01169000 North River at Shattuckville, MA 

1940-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G10 



  

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01176000 Quaboag River at West Brimfield, MA 

1913-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G11 

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01171500 Mill River at Northampton, MA 

1939-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G12 



  

1 

10 

100 

1,000 

10,000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01181000 West Branch Westfield River at Huntington, MA 

1936-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G13 

0.1 

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01187300 Hubbard River near West Hartland, CT 

1939-1956, 
1958-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G14 



  

0.01 

0.1 

1 

10 

100 

1000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01188000 Burlington Brook near Burlington, CT 

1932-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G15 

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01193500 Salmon River near East Hampton, CT 

1929-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G16 



  

0.1 

1 

10 

100 

1000 

10000 

0 20 40 60 80 100 

St
re

am
flo

w
 (c

fs
) 

Exceedance Probability (percent) 

01333000 Green River at Williamstown, MA 

1950-1970 

1971-2012 

1971-1995 

1996-2012 

Estimated Flow-
Durations 

Prediction 
Interval Bounds 

Observed Flow- 
Durations (years) 

G17 



 

 

 

 

 

Appendix H 

 

Part IV 20-Year Moving Quantiles 
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Appendix I 

 

Part IV Quantile Trend Analysis Data 
  



I1     Q50 

  

Station 
Number Station Name R2 p Failure 

year 

Overestimate 
(O) or Under-
estimate (U) 

Period of 
Record 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.366 <0.0001 2413 U 
01096000 Squannacook River near West Groton, MA 0.7048 <0.0001 2118 U 
01109000 Wading River near Norton, MA 0.3001 <0.0001 2430 U 
01111500 Branch River at Forestdale, RI 0.0006 0.8604 11732 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.1264 0.009 2921 O 
01118000 Wood River at Hope Valley, RI 0.002 0.7505 10246 O 
01121000 Mount Hope River near Warrenville, CT 0.6672 <0.0001 2081 U 
01123000 Little River near Hanover, CT 0.1041 0.0348 2233 U 
01162500 Priest Brook near Winchendon, MA 0.5905 <0.0001 2115 U 
01169000 North River at Shattuckville, MA 0.8444 <0.0001 2113 U 
01171500 Mill River at Northampton, MA 0.8108 <0.0001 2093 U 
01176000 Quabog River at West Brimfield, MA 0.514 <0.0001 2363 U 
01181000 West Branch Westfield River at Huntington, MA 0.7374 <0.0001 2166 U 
01188000 Burlington Brook near Burlington, CT 0.3812 <0.0001 2314 U 
01193500 Salmon River near East Hampton, CT 0.6192 <0.0001 2311 U 
01333000 Green River at Williamstown, MA 0.6786 <0.0001 2074 U 

Year at which Q50 model will fail at >10% of stations     2081 
  

Post-
1992 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.2159 0.0294 2235 U 
01096000 Squannacook River near West Groton, MA 0.0087 0.6797 3068 O 
01109000 Wading River near Norton, MA 0.0524 0.3055 2327 U 
01111500 Branch River at Forestdale, RI 0.3027 0.008 2249 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.1473 0.0778 2228 U 
01118000 Wood River at Hope Valley, RI 0.0784 0.2069 2148 U 
01121000 Mount Hope River near Warrenville, CT 0.0485 0.3247 2270 U 
01123000 Little River near Hanover, CT 0.6337 <0.0001 2100 O 
01162500 Priest Brook near Winchendon, MA 0.6379 <0.0001 2080 U 
01169000 North River at Shattuckville, MA 0.8444 <0.0001 2093 U 
01171500 Mill River at Northampton, MA 0.6778 <0.0001 2067 U 
01176000 Quabog River at West Brimfield, MA 0.0488 0.3232 2518 O 
01181000 West Branch Westfield River at Huntington, MA 0.6967 <0.0001 2098 U 
01188000 Burlington Brook near Burlington, CT 0.7595 <0.0001 2086 U 
01193500 Salmon River near East Hampton, CT 0.0561 0.2886 2732 U 
01333000 Green River at Williamstown, MA 0.5466 <0.0001 2051 U 

Year at which Q50 model will fail at >10% of stations     2067 
  

 

  



I2     Q60 

  

Station 
Number Station Name R2 p Failure 

year 

Overestimate 
(O) or Under-
estimate (U) 

Period of 
Record 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.4892 <0.0001 2282 U 
01096000 Squannacook River near West Groton, MA 0.8057 <0.0001 2111 U 
01109000 Wading River near Norton, MA 0.3381 <0.0001 2976 U 
01111500 Branch River at Forestdale, RI 0.2913 <0.0001 2391 U 
01117500 Pawcatuck River at Wood River Junction, RI 0.0067 0.5601 6277 O 
01118000 Wood River at Hope Valley, RI 0.0018 0.7629 7245 U 
01121000 Mount Hope River near Warrenville, CT 0.7337 <0.0001 2087 U 
01123000 Little River near Hanover, CT 0.1941 0.0031 2154 U 
01162500 Priest Brook near Winchendon, MA 0.5041 <0.0001 2157 U 
01169000 North River at Shattuckville, MA 0.8651 <0.0001 2105 U 
01171500 Mill River at Northampton, MA 0.8422 <0.0001 2081 U 
01176000 Quabog River at West Brimfield, MA 0.3168 <0.0001 2515 U 
01181000 West Branch Westfield River at Huntington, MA 0.7888 <0.0001 2152 U 
01188000 Burlington Brook near Burlington, CT 0.7785 <0.0001 2084 U 
01193500 Salmon River near East Hampton, CT 0.6641 <0.0001 2248 U 
01333000 Green River at Williamstown, MA 0.7552 <0.0001 2057 U 

Year at which Q60 model will fail at >10% of stations     2081 
  

Post-
1992 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.6954 <0.0001 2197 U 
01096000 Squannacook River near West Groton, MA 0.1098 0.1319 2594 U 
01109000 Wading River near Norton, MA 0.2512 0.0175 2432 U 
01111500 Branch River at Forestdale, RI 0.7725 <0.0001 2125 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.0001 0.9648 19563 O 
01118000 Wood River at Hope Valley, RI 0.0724 0.2259 2324 U 
01121000 Mount Hope River near Warrenville, CT 0.1912 0.0418 2175 U 
01123000 Little River near Hanover, CT 0.5183 0.0002 2122 O 
01162500 Priest Brook near Winchendon, MA 0.8244 <0.0001 2067 U 
01169000 North River at Shattuckville, MA 0.7768 <0.0001 2069 U 
01171500 Mill River at Northampton, MA 0.8196 <0.0001 2045 U 
01176000 Quabog River at West Brimfield, MA 0.3097 0.0071 2373 U 
01181000 West Branch Westfield River at Huntington, MA 0.8408 <0.0001 2068 U 
01188000 Burlington Brook near Burlington, CT 0.8323 <0.0001 2039 U 
01193500 Salmon River near East Hampton, CT 0.0472 0.3313 2648 O 
01333000 Green River at Williamstown, MA 0.6128 <0.0001 2041 U 

Year at which Q60 model will fail at >10% of stations     2041 
  

       

  

  



I3     Q70 

  

Station 
Number Station Name R2 p Failure 

year 

Overestimate 
(O) or Under-
estimate (U) 

Period of 
Record 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.5453 <0.0001 2216 U 
01096000 Squannacook River near West Groton, MA 0.8548 <0.0001 2132 U 
01109000 Wading River near Norton, MA 0.283 <0.0001 2739 U 
01111500 Branch River at Forestdale, RI 0.5282 <0.0001 2168 U 
01117500 Pawcatuck River at Wood River Junction, RI 0.0483 0.1138 3708 U 
01118000 Wood River at Hope Valley, RI 0.0068 0.5572 4508 U 
01121000 Mount Hope River near Warrenville, CT 0.8507 <0.0001 2118 U 
01123000 Little River near Hanover, CT 0.104 0.0349 2310 U 
01162500 Priest Brook near Winchendon, MA 0.3845 <0.0001 2282 U 
01169000 North River at Shattuckville, MA 0.8669 <0.0001 2177 U 
01171500 Mill River at Northampton, MA 0.8427 <0.0001 2164 U 
01176000 Quabog River at West Brimfield, MA 0.2904 <0.0001 2854 U 
01181000 West Branch Westfield River at Huntington, MA 0.739 <0.0001 2287 U 
01188000 Burlington Brook near Burlington, CT 0.7987 <0.0001 2080 U 
01193500 Salmon River near East Hampton, CT 0.7747 <0.0001 2391 U 
01333000 Green River at Williamstown, MA 0.6998 <0.0001 2139 U 

Year at which Q70 model will fail at >10% of stations     2118 
  

Post-
1992 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.7877 <0.0001 2157 U 
01096000 Squannacook River near West Groton, MA 0.1973 0.0384 2413 U 
01109000 Wading River near Norton, MA 0.0049 0.7569 3229 O 
01111500 Branch River at Forestdale, RI 0.9352 <0.0001 2096 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.0603 0.2707 2822 O 
01118000 Wood River at Hope Valley, RI 0.172 0.055 2388 O 
01121000 Mount Hope River near Warrenville, CT 0.3474 0.0039 2210 U 
01123000 Little River near Hanover, CT 0.3547 0.0035 2217 O 
01162500 Priest Brook near Winchendon, MA 0.8202 <0.0001 2098 U 
01169000 North River at Shattuckville, MA 0.8406 <0.0001 2101 U 
01171500 Mill River at Northampton, MA 0.733 <0.0001 2102 U 
01176000 Quabog River at West Brimfield, MA 0.3857 0.002 2709 U 
01181000 West Branch Westfield River at Huntington, MA 0.8574 <0.0001 2110 U 
01188000 Burlington Brook near Burlington, CT 0.8055 <0.0001 2045 U 
01193500 Salmon River near East Hampton, CT 0.0034 0.7966 11284 U 
01333000 Green River at Williamstown, MA 0.6891 <0.0001 2071 U 

Year at which model Q70 will fail at >10% of stations     2071 
  

 

  



I4     Q75 

  

Station 
Number Station Name R2 p Failure 

year 

Overestimate 
(O) or Under-
estimate (U) 

Period of 
Record 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.5743 <0.0001 2181 U 
01096000 Squannacook River near West Groton, MA 0.7907 <0.0001 2130 U 
01109000 Wading River near Norton, MA 0.2697 <0.0001 2615 U 
01111500 Branch River at Forestdale, RI 0.5376 <0.0001 2114 U 
01117500 Pawcatuck River at Wood River Junction, RI 0.1074 0.0166 2971 U 
01118000 Wood River at Hope Valley, RI 0.0472 0.1181 2606 U 
01121000 Mount Hope River near Warrenville, CT 0.7906 <0.0001 2092 U 
01123000 Little River near Hanover, CT 0.2107 0.002 2141 U 
01162500 Priest Brook near Winchendon, MA 0.2415 <0.0001 2426 U 
01169000 North River at Shattuckville, MA 0.8338 <0.0001 2167 U 
01171500 Mill River at Northampton, MA 0.8097 <0.0001 2180 U 
01176000 Quabog River at West Brimfield, MA 0.2328 <0.0001 2913 U 
01181000 West Branch Westfield River at Huntington, MA 0.7511 <0.0001 2275 U 
01188000 Burlington Brook near Burlington, CT 0.774 <0.0001 2075 U 
01193500 Salmon River near East Hampton, CT 0.7895 <0.0001 2367 U 
01333000 Green River at Williamstown, MA 0.6833 <0.0001 2136 U 

Year at which Q75 model will fail at >10% of stations 
  

  2092 
  

Post-
1992 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.474 0.0004 2189 U 
01096000 Squannacook River near West Groton, MA 0 1.000 None U 
01109000 Wading River near Norton, MA 0.1956 0.0393 2163 O 
01111500 Branch River at Forestdale, RI 0.9224 <0.0001 2084 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.1943 0.04 2908 O 
01118000 Wood River at Hope Valley, RI 0.3468 0.0039 2270 O 
01121000 Mount Hope River near Warrenville, CT 0.3109 0.007 4657 O 
01123000 Little River near Hanover, CT 0.1922 0.0413 2287 O 
01162500 Priest Brook near Winchendon, MA 0.7648 <0.0001 2149 U 
01169000 North River at Shattuckville, MA 0.7942 <0.0001 2089 U 
01171500 Mill River at Northampton, MA 0.5882 <0.0001 2145 U 
01176000 Quabog River at West Brimfield, MA 0.0512 0.3113 4069 U 
01181000 West Branch Westfield River at Huntington, MA 0.8517 <0.0001 2119 U 
01188000 Burlington Brook near Burlington, CT 0.787 <0.0001 2038 U 
01193500 Salmon River near East Hampton, CT 0.1542 0.0706 3236 U 
01333000 Green River at Williamstown, MA 0.6876 <0.0001 2070 U 

Year at which Q75 model will fail at >10% of stations     2070 
  

 

  



I5     Q80 

  

Station 
Number Station Name R2 p Failure 

year 

Overestimate 
(O) or Under-
estimate (U) 

Period of 
Record 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.5976 <0.0001 2158 U 
01096000 Squannacook River near West Groton, MA 0.6723 <0.0001 2160 U 
01109000 Wading River near Norton, MA 0.073 0.0247 3436 U 
01111500 Branch River at Forestdale, RI 0.4593 <0.0001 2176 U 
01117500 Pawcatuck River at Wood River Junction, RI 0.0472 0.1181 3972 U 
01118000 Wood River at Hope Valley, RI 0.0805 0.0395 2761 U 
01121000 Mount Hope River near Warrenville, CT 0.7816 <0.0001 2082 U 
01123000 Little River near Hanover, CT 0.1707 0.0059 2221 U 
01162500 Priest Brook near Winchendon, MA 0.2074 0.0003 2465 U 
01169000 North River at Shattuckville, MA 0.8566 <0.0001 2192 U 
01171500 Mill River at Northampton, MA 0.7907 <0.0001 2252 U 
01176000 Quabog River at West Brimfield, MA 0.1513 0.0003 2970 U 
01181000 West Branch Westfield River at Huntington, MA 0.7862 <0.0001 2271 U 
01188000 Burlington Brook near Burlington, CT 0.6445 <0.0001 2189 U 
01193500 Salmon River near East Hampton, CT 0.6868 <0.0001 2502 U 
01333000 Green River at Williamstown, MA 0.7106 <0.0001 2377 U 

Year at which Q80 model will fail at >10% of stations     2158 
  

Post-
1992 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.0322 0.4243 2694 U 
01096000 Squannacook River near West Groton, MA 0.4018 0.0015 2215 O 
01109000 Wading River near Norton, MA 0.567 <0.0001 2054 O 
01111500 Branch River at Forestdale, RI 0.9474 <0.0001 2066 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.4135 0.0012 2374 O 
01118000 Wood River at Hope Valley, RI 0.6242 <0.0001 2162 O 
01121000 Mount Hope River near Warrenville, CT 0.803 <0.0001 2475 O 
01123000 Little River near Hanover, CT 0.4488 0.0006 2175 O 
01162500 Priest Brook near Winchendon, MA 0.5663 <0.0001 2283 U 
01169000 North River at Shattuckville, MA 0.702 <0.0001 2141 U 
01171500 Mill River at Northampton, MA 0.4104 0.0013 2293 U 
01176000 Quabog River at West Brimfield, MA 0.355 0.0034 2263 O 
01181000 West Branch Westfield River at Huntington, MA 0.7776 <0.0001 2142 U 
01188000 Burlington Brook near Burlington, CT 0.66 <0.0001 2077 U 
01193500 Salmon River near East Hampton, CT 0.2749 0.0122 2739 U 
01333000 Green River at Williamstown, MA 0.7214 <0.0001 2188 U 

Year at which Q80 model will fail at >10% of stations     2066 
  

       

  

  



I6     Q85 

  

Station 
Number Station Name R2 p Failure 

year 

Overestimate 
(O) or Under-
estimate (U) 

Period of 
Record 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.5909 <0.0001 2205 U 
01096000 Squannacook River near West Groton, MA 0.5538 <0.0001 2194 U 
01109000 Wading River near Norton, MA 0.0373 0.1118 4145 U 
01111500 Branch River at Forestdale, RI 0.3519 <0.0001 2221 U 
01117500 Pawcatuck River at Wood River Junction, RI 0.0481 0.1146 3902 U 
01118000 Wood River at Hope Valley, RI 0.0249 0.2591 3313 U 
01121000 Mount Hope River near Warrenville, CT 0.6956 <0.0001 2091 U 
01123000 Little River near Hanover, CT 0.2285 0.0012 2159 U 
01162500 Priest Brook near Winchendon, MA 0.2087 0.0003 2512 U 
01169000 North River at Shattuckville, MA 0.8276 <0.0001 2212 U 
01171500 Mill River at Northampton, MA 0.7111 <0.0001 2299 U 
01176000 Quabog River at West Brimfield, MA 0.1053 0.0029 3017 U 
01181000 West Branch Westfield River at Huntington, MA 0.7494 <0.0001 2303 U 
01188000 Burlington Brook near Burlington, CT 0.4833 <0.0001 2241 U 
01193500 Salmon River near East Hampton, CT 0.6190 <0.0001 2619 U 
01333000 Green River at Williamstown, MA 0.7358 <0.0001 2404 U 

Year at which Q85 model will fail at >10% of stations     2159 
  

Post-
1992 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.2184 0.0283 2207 O 
01096000 Squannacook River near West Groton, MA 0.5468 <0.0001 2127 O 
01109000 Wading River near Norton, MA 0.6843 <0.0001 2042 O 
01111500 Branch River at Forestdale, RI 0.9537 <0.0001 2052 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.7017 <0.0001 2206 O 
01118000 Wood River at Hope Valley, RI 0.6687 <0.0001 2118 O 
01121000 Mount Hope River near Warrenville, CT 0.825 <0.0001 2116 O 
01123000 Little River near Hanover, CT 0.3682 0.0028 2260 O 
01162500 Priest Brook near Winchendon, MA 0.3296 0.0052 2408 U 
01169000 North River at Shattuckville, MA 0.4011 0.0016 2263 U 
01171500 Mill River at Northampton, MA 0.4002 0.0016 2316 U 
01176000 Quabog River at West Brimfield, MA 0.7309 <0.0001 2098 O 
01181000 West Branch Westfield River at Huntington, MA 0.6133 <0.0001 2224 U 
01188000 Burlington Brook near Burlington, CT 0.3934 0.0018 2153 U 
01193500 Salmon River near East Hampton, CT 0.0295 0.4447 5209 U 
01333000 Green River at Williamstown, MA 0.6484 <0.0001 2233 U 

Year at which Q85 model will fail at >10% of stations     2052 
  

       

  

  



I7     Q90 

  

Station 
Number Station Name R2 p Failure 

year 

Overestimate 
(O) or Under-
estimate (U) 

Period of 
Record 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.3485 <0.0001 2312 U 
01096000 Squannacook River near West Groton, MA 0.3143 <0.0001 2274 U 
01109000 Wading River near Norton, MA 0.0052 0.556 2656 O 
01111500 Branch River at Forestdale, RI 0.2762 <0.0001 2299 U 
01117500 Pawcatuck River at Wood River Junction, RI 0.0097 0.4829 5861 U 
01118000 Wood River at Hope Valley, RI 0.0235 0.2731 3085 O 
01121000 Mount Hope River near Warrenville, CT 0.5336 <0.0001 2126 U 
01123000 Little River near Hanover, CT 0.2373 0.0009 2155 U 
01162500 Priest Brook near Winchendon, MA 0.2351 <0.0001 2556 U 
01169000 North River at Shattuckville, MA 0.8398 <0.0001 2216 U 
01171500 Mill River at Northampton, MA 0.5508 <0.0001 2380 U 
01176000 Quabog River at West Brimfield, MA 0.0286 0.1288 3832 U 
01181000 West Branch Westfield River at Huntington, MA 0.6897 <0.0001 2339 U 
01188000 Burlington Brook near Burlington, CT 0.1847 0.0004 2415 U 
01193500 Salmon River near East Hampton, CT 0.5225 <0.0001 2720 U 
01333000 Green River at Williamstown, MA 0.7827 <0.0001 2488 U 

Year at which Q90 model will fail at >10% of stations     2155 
  

Post-
1992 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.7704 <0.0001 2054 O 
01096000 Squannacook River near West Groton, MA 0.72 <0.0001 2072 O 
01109000 Wading River near Norton, MA 0.7558 <0.0001 2022 O 
01111500 Branch River at Forestdale, RI 0.969 <0.0001 2044 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.6902 <0.0001 2137 O 
01118000 Wood River at Hope Valley, RI 0.8465 <0.0001 2085 O 
01121000 Mount Hope River near Warrenville, CT 0.9227 <0.0001 2060 O 
01123000 Little River near Hanover, CT 0.5817 <0.0001 2181 O 
01162500 Priest Brook near Winchendon, MA 0.0818 0.1969 3203 U 
01169000 North River at Shattuckville, MA 0.3771 0.0024 2321 U 
01171500 Mill River at Northampton, MA 0.0216 0.514 3115 O 
01176000 Quabog River at West Brimfield, MA 0.954 <0.0001 2057 O 
01181000 West Branch Westfield River at Huntington, MA 0.1391 0.0874 2795 U 
01188000 Burlington Brook near Burlington, CT 0.0539 0.2985 2508 O 
01193500 Salmon River near East Hampton, CT 0.2501 0.0178 2230 O 
01333000 Green River at Williamstown, MA 0.567 <0.0001 2384 U 

Year at which Q90 model will fail at >10% of stations     2044 
  

       

  

  



I8     Q95 
   

  

Station 
Number Station Name R2 p Failure 

year 

Overestimate 
(O) or Under-
estimate (U) 

   

Period of 
Record 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.1142 0.0089 2595 U 
   01096000 Squannacook River near West Groton, MA 0.2624 0.0003 2187 U 
   01109000 Wading River near Norton, MA 0.1182 0.0038 2159 O 
   01111500 Branch River at Forestdale, RI 0.045 0.1236 2765 U 
   01117500 Pawcatuck River at Wood River Junction, RI 0.00005 0.9599 23741 O 
   01118000 Wood River at Hope Valley, RI 0.0316 0.2029 2826 O 
   01121000 Mount Hope River near Warrenville, CT 0.1943 0.0009 2275 U 
   01123000 Little River near Hanover, CT 0.0828 0.0613 2130 U 
   01162500 Priest Brook near Winchendon, MA 0.318 <0.0001 2499 U 
   01169000 North River at Shattuckville, MA 0.7912 <0.0001 2251 U 
   01171500 Mill River at Northampton, MA 0.364 <0.0001 2434 U 
   01176000 Quabog River at West Brimfield, MA 0.0003 0.8773 6393 O 
   01181000 West Branch Westfield River at Huntington, MA 0.6102 <0.0001 2426 U 
   01188000 Burlington Brook near Burlington, CT 0.1349 0.0031 2467 O 
   01193500 Salmon River near East Hampton, CT 0.2912 <0.0001 3123 U 
   01333000 Green River at Williamstown, MA 0.6941 <0.0001 2604 U 
   

Year at which Q95 model will fail at >10% of stations     2159 
  

   

Post-
1992 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.7497 <0.0001 2046 O 
   01096000 Squannacook River near West Groton, MA 0.8902 <0.0001 2049 O 
   01109000 Wading River near Norton, MA 0.7188 <0.0001 2023 O 
   01111500 Branch River at Forestdale, RI 0.9612 <0.0001 2034 O 
   01117500 Pawcatuck River at Wood River Junction, RI 0.6902 <0.0001 2081 O 
   01118000 Wood River at Hope Valley, RI 0.8615 <0.0001 2068 O 
   01121000 Mount Hope River near Warrenville, CT 0.9368 <0.0001 2032 O 
   01123000 Little River near Hanover, CT 0.6993 <0.0001 2113 O 
   01162500 Priest Brook near Winchendon, MA 0.0031 0.8056 2472 O 
   01169000 North River at Shattuckville, MA 0.0763 0.2134 3407 U 
   01171500 Mill River at Northampton, MA 0.3598 0.0032 2109 O 
   01176000 Quabog River at West Brimfield, MA 0.9010 <0.0001 2035 O 
   01181000 West Branch Westfield River at Huntington, MA 0.0021 0.8395 4027 O 
   01188000 Burlington Brook near Burlington, CT 0.6021 <0.0001 2110 O 
   01193500 Salmon River near East Hampton, CT 0.2969 0.0087 2145 O 
   01333000 Green River at Williamstown, MA 0.3645 0.0029 2860 U 
   

Year at which Q95 model will fail at >10% of stations     2032 
  

   
          

     

  



I9     Q98 

  

Station 
Number Station Name R2 p Failure 

year 

Overestimate 
(O) or Under-
estimate (U) 

Period of 
Record 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.0238 0.2434 2452 O 
01096000 Squannacook River near West Groton, MA 0.2075 0.0017 2142 U 
01109000 Wading River near Norton, MA 0.3934 <0.0001 2076 O 
01111500 Branch River at Forestdale, RI 0.0307 0.2051 3894 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.0483 0.1138 2737 O 
01118000 Wood River at Hope Valley, RI 0.0313 0.205 2682 O 
01121000 Mount Hope River near Warrenville, CT 0.093 0.0249 2322 U 
01123000 Little River near Hanover, CT 0.029 0.2749 2791 O 
01162500 Priest Brook near Winchendon, MA 0.5254 <0.0001 2567 U 
01169000 North River at Shattuckville, MA 0.721 <0.0001 2232 U 
01171500 Mill River at Northampton, MA 0.1737 0.0015 2687 U 
01176000 Quabog River at West Brimfield, MA 0.0065 0.4715 2852 O 
01181000 West Branch Westfield River at Huntington, MA 0.3213 <0.0001 2707 U 
01188000 Burlington Brook near Burlington, CT 0.4117 <0.0001 2126 O 
01193500 Salmon River near East Hampton, CT 0.157 0.001 3595 U 
01333000 Green River at Williamstown, MA 0.6013 <0.0001 2750 U 

Year at which Q98 model will fail at >10% of stations     2126 
  

Post-
1992 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.8292 <0.0001 2030 O 
01096000 Squannacook River near West Groton, MA 0.87 <0.0001 2044 O 
01109000 Wading River near Norton, MA 0.5384 0.0001 2028 O 
01111500 Branch River at Forestdale, RI 0.9323 <0.0001 2029 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.0565 0.2868 2085 O 
01118000 Wood River at Hope Valley, RI 0.8539 <0.0001 2056 O 
01121000 Mount Hope River near Warrenville, CT 0.9349 <0.0001 2022 O 
01123000 Little River near Hanover, CT 0.4025 0.0015 2132 O 
01162500 Priest Brook near Winchendon, MA 0.1645 0.0611 2073 O 
01169000 North River at Shattuckville, MA 0.3031 0.0079 2293 O 
01171500 Mill River at Northampton, MA 0.9106 <0.0001 2050 O 
01176000 Quabog River at West Brimfield, MA 0.8409 <0.0001 2027 O 
01181000 West Branch Westfield River at Huntington, MA 0.5117 0.0002 2126 O 
01188000 Burlington Brook near Burlington, CT 0.8235 <0.0001 2057 O 
01193500 Salmon River near East Hampton, CT 0.8454 <0.0001 2050 O 
01333000 Green River at Williamstown, MA 0.1112 0.1294 4362 U 

Year at which Q98 model will fail at >10% of stations     2027 
  

       

  

  



I10     Q99 

  

Station 
Number Station Name R2 p Failure 

year 

Overestimate 
(O) or Under-
estimate (U) 

Period of 
Record 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.2521 <0.0001 2114 O 
01096000 Squannacook River near West Groton, MA 0.0431 0.1712 2267 U 
01109000 Wading River near Norton, MA 0.5199 <0.0001 2057 O 
01111500 Branch River at Forestdale, RI 0.0763 0.0432 2261 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.0754 0.0466 2612 O 
01118000 Wood River at Hope Valley, RI 0.0151 0.3807 2904 O 
01121000 Mount Hope River near Warrenville, CT 0.0685 0.0559 2318 U 
01123000 Little River near Hanover, CT 0.0123 0.4789 3659 O 
01162500 Priest Brook near Winchendon, MA 0.4798 <0.0001 2612 U 
01169000 North River at Shattuckville, MA 0.6882 <0.0001 2248 U 
01171500 Mill River at Northampton, MA 0.1247 0.0082 2664 U 
01176000 Quabog River at West Brimfield, MA 0.0019 0.6974 3549 O 
01181000 West Branch Westfield River at Huntington, MA 0.238 <0.0001 2889 U 
01188000 Burlington Brook near Burlington, CT 0.488 <0.0001 2132 O 
01193500 Salmon River near East Hampton, CT 0.1299 0.003 3856 U 
01333000 Green River at Williamstown, MA 0.6515 <0.0001 3006 U 

Year at which Q99 model will fail at >10% of stations     2114 
  

Post-
1992 
Trend 

Analysis 

01073000 Oyster River near Durham, NH 0.8314 <0.0001 2016 O 
01096000 Squannacook River near West Groton, MA 0.843 <0.0001 2029 O 
01109000 Wading River near Norton, MA 0.4701 0.0004 2028 O 
01111500 Branch River at Forestdale, RI 0.8784 <0.0001 2025 O 
01117500 Pawcatuck River at Wood River Junction, RI 0.8249 <0.0001 2074 O 
01118000 Wood River at Hope Valley, RI 0.7616 <0.0001 2051 O 
01121000 Mount Hope River near Warrenville, CT 0.0031 0.8056 2018 O 
01123000 Little River near Hanover, CT 0.0936 0.1661 2512 O 
01162500 Priest Brook near Winchendon, MA 0.3759 0.0024 2026 O 
01169000 North River at Shattuckville, MA 0.4571 0.0006 2143 O 
01171500 Mill River at Northampton, MA 0.8539 <0.0001 2039 O 
01176000 Quabog River at West Brimfield, MA 0.7611 <0.0001 2029 O 
01181000 West Branch Westfield River at Huntington, MA 0.4222 0.0011 2093 O 
01188000 Burlington Brook near Burlington, CT 0.7233 <0.0001 2053 O 
01193500 Salmon River near East Hampton, CT 0.7612 <0.0001 2038 O 
01333000 Green River at Williamstown, MA 0.2163 0.0292 3842 U 

Year at which Q99 model will fail at >10% of stations     2018 
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