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ABSTRACT 

INSIGHTS INTO VECTOR CONTROL THROUGH THE MODULATION OF  

AN. GAMBIAE G PROTEIN-COUPLED RECEPTORS 
 

 

 

 

Kimberly Regna 

Thesis Advisor:  Professor Marc A.T. Muskavitch 

 

Malaria is a life-threatening infectious disease caused by inoculation of the 

apicomplexan Plasmodium parasite into vertebrate hosts.  Transmission of the parasite is 

mediated by the Anopheles mosquito, which has the capacity to efficiently transmit the 

parasite from host to host, as the disease vector.  There are many factors that make 

anopheline mosquitoes competent vectors for disease transmission.  The hematophagous 

(blood-feeding) behavior of the female mosquito is one of most fundamental factors in 

physical transmission of parasites, because the ingestion of blood from an infected host 

allows parasite entry into the mosquito and the completion of parasite sexual 

reproduction.  In addition to this blood-feeding behavior, there are a host of biological 

(i.e., parasite replication) and behavioral factors (i.e., mosquito chemosensation, host 

preference) that contribute to the high vectorial capacity of these vector species.  

There are over four hundred Anopheles species worldwide, approximately forty of 

which are considered epidemiologically critical human malaria vectors.  Anopheles 

gambiae, the primary vector in malaria-endemic sub-Saharan Africa, is responsible for 

the largest number of malaria cases in the world and is therefore one of the most 

important vectors to study and target with control measures.   Currently, vector-targeted 



! ii!

control strategies remain our most effective tools for reduction of malaria transmission 

and incidence.  Although control efforts based on the deployment of insecticides have 

proven successful in the past and are still widely used, the threat and continuing increases 

of insecticide resistance motivate the discovery of novel insecticides.   In this thesis, I 

provide evidence that G protein-coupled receptors (GPCRs) may serve as “druggable” 

targets for the development of new insecticides, through the modulation of developmental 

and sensory processes.  

In Chapter II, “A critical role for the Drosophila dopamine 1-like receptor 

Dop1R2 at the onset of metamorphosis,” I provide evidence supporting an essential role 

for this receptor in Drosophila melanogaster metamorphosis via transgenic RNA 

interference and pharmacological methods.  In An. gambiae, we find that the receptor 

encoded by the mosquito ortholog GPRDOP2 can be inhibited in vitro using 

pharmacological antagonists, and that in vivo inhibition with such antagonists produces 

pre-adult lethality.  These findings support the inference that this An. gambiae dopamine 

receptor may serve as a novel target for the development of vector-targeted larvicides.  In 

Chapter III, “RNAi trigger delivery into Anopheles gambiae pupae,” I describe the 

development of a method for injection directly into the hemolymph of double strand 

RNA (dsRNA) during the pupal stage, and I demonstrate that knockdown of the 

translational product of the SRPN2 gene occurs efficiently, based on reductions in the 

levels of SRPN2 protein and formation of melanized pseudo-tumors, in SRPN2 

knockdown mosquitoes.  This method was developed for rapid knockdown of target 

genes, using a dye-labeled injection technique that allows for easy visualization of 

injection quality.  This technique is further utilized in Chapter IV, “Uncovering the Role 
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of an Anopheles gambiae G Protein-Coupled Receptor, GPRGR2, in the Detection of 

Noxious Compounds,” where the role for GPRGR2 in the detection of multiple noxious 

compounds is elucidated.  We find that pupal stage knockdown of this receptor decreases 

the ability of adult Anopheles gambiae to identify multiple noxious compounds.  While 

these findings provide a strong link between GPRGR2 and a very interesting mosquito 

behavior, they may also provide opportunities to develop better field-based strategies 

(i.e., insecticides baited traps) for vector control.   

The goal of this thesis is to understand the functional roles of selected mosquito 

GPCRs that may serve as targets for the development of new vector-targeted control 

strategies.  Exploiting these GPCRs genetically and pharmacologically may provide 

insights into novel vector control targets that can be manipulated so as to decrease the 

vectorial capacity of An. gambiae and other malaria vectors in the field, and thereby 

decrease the burden of human malaria. 
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A.  Malaria as a Major Public Health Issue 

In 2013, the World Health Organization (WHO) reported that there were 

approximately 200,000,000 reported cases of malaria and nearly 600,000 malaria-induced 

deaths (Nájera et al. 2011; World Health Organization 2014; GBD 2013 Mortality and 

Causes of Death Collaborators 2015).  Among these reported deaths, approximately 78% 

percent were children under the age of five, and an estimated 96% percent of the total 

occurred in African countries (Petersen et al. 2011; World Health Organization 2014; 

Cheruiyot et al. 2014; Bartoloni & Zammarchi 2012).  In 14 sub-Saharan African 

countries, malaria was reported as the leading cause of death (Durand et al. 2001; GBD 

2013 Mortality and Causes of Death Collaborators 2015; Warhurst 2001).  In addition to 

Africa, malaria is still a major public health concern in other geographical regions, such 

as South Asia, Southeast Asia, Central America, South America, the Caribbean and the 

Middle East (P. G. Bray et al. 1998; Snow et al. 1999; GBD 2013 Mortality and Causes 

of Death Collaborators 2015) (Figure 1.1).  From a global perspective, approximately 3.2 

billion individuals are at risk for contracting malaria (World Health Organization 2014), 

representing almost half of the world’s current population. 

Malaria is an infectious disease that is characterized by an infection in a 

vertebrate host by apicomplexan Plasmodium parasites.  The vertebrate hosts currently 

known include humans, monkeys, rodents, birds and reptiles (Bashar et al. 2012).  There 

are four major species within the Plasmodium genus that are able to infect a human host, 

causing malaria: P. falciparum, P. vivax, P. ovale and P. malariae (Biamonte et al. 2013; 

Butcher et al. 1970; N. J. White et al. 2014).  Although historically considered a 

macaque-specific species, P. knowlesi has also been reported as a fifth species that is able 
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to infect humans (B. Singh & Daneshvar 2013; N. J. White et al. 2014).  Among these 

five species, P. falciparum is the most epidemiologically prevalent and yields the highest 

mortality rates (Snow et al. 1999; Gething et al. 2011).  In fact, P. falciparum is 

responsible for approximately 90% of malaria-related deaths in sub-Saharan Africa 

(World Health Organization 2014).  P. vivax, although not as prevalent a public health 

concern as P. falciparum, is responsible for 47% of malaria-related deaths worldwide 

(World Health Organization 2014) and is observed over a larger geographical area due to 

its ability to remain dormant for years (Zucker 2009; World Health Organization 2014; 

Biamonte et al. 2013).   

Malaria transmission almost exclusively occurs through the bite of an infected 

Anopheles mosquito, with rare transmissions occurring via blood transfusions or in utero 

transmission from mother to fetus (Bartoloni & Zammarchi 2012).  The symptoms of the 

disease often present as flu-like (e.g., fever and chills), but can include more severe 

symptoms (e.g., renal failure, retinopathy, cerebral malaria and hemolytic anemia), and 

can prove to be fatal (Beare et al. 2006; World Health Organization 2014; Laishram et al. 

2012).  In young children and pregnant women, symptoms are often much more severe 

(e.g., cerebral malaria and miscarriage) as a result of an underdeveloped or suppressed 

immune system (N. J. White et al. 2014; Laishram et al. 2012).  Given the potential 

severity of symptoms, and the risk of mortality, rapid diagnostics and prompt treatment 

are critical to decrease malaria case mortality rates.      

Currently, malaria diagnoses can be made by quantification of parasite loads in 

blood smears by simple microscopy or by antigen-based rapid diagnostic tests (RDT) 

(Murray & Bennett 2009; World Health Organization 2014).  Using RDT methods, it is 
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also possible to distinguish between P. falciparum and P. vivax by targeting lactate 

dehydrogenase (LDH) with specific antibodies (Murray & Bennett 2009; Makler et al. 

1998).  Because these two species show different drug resistance patterns in different 

geographical regions (Schneider & Escalante 2013), the ability to distinguish between 

these species is important, so that the appropriate drug can be administered.  In addition 

to aiding in diagnosis and treatment, these tests have been beneficial in surveying P. 

falciparum infection prevalence and parasite rate (PfPR) to assess trends over time and 

better identify populations at risk (World Health Organization 2014; Gething et al. 2011).  

Treatment for individuals with malaria was introduced as early as the seventeenth 

century, prior to understanding what actual microbial causative agent of the disease.  

Quinine, a compound that is found in the bark of the cinchona tree, was found to have 

medicinal properties that alleviate malarial fevers and was widely used for malaria 

treatment (Dinio et al. 2012).  The mechanism by which this drug functions is still not 

fully resolved, but the observation that it seems to inhibit heme detoxification via 

hemozoin biocrystallization suggests that quinine treatment results in the cytotoxic heme 

accumulation within the parasite (Hempelmann 2006).  Mutations in genes that encode 

transporter proteins such as the multidrug resistance transporter 1 (pfMDR) and 

sodium/proton exchanger 1 (pfNHE1) have rendered this drug less effective by inhibiting 

access to target sites by the rapid expelling of drugs (Petersen et al. 2011; Ibraheem et al. 

2014).  In the mid-1900s a new compound, chloroquine, was introduced to compensate 

for the decreased effectiveness of quinine (Nájera et al. 2011).  Chloroquine causes 

parasite lethality by preventing the detoxification of free heme by binding to hematin, 

which leads to the buildup of heme monomers and causes excess membrane 
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permeabilization (Petersen et al. 2011; Cheruiyot et al. 2014).  Unfortunately, within a 

few decades of its deployment, chloroquine-resistant parasites arose, particularly based 

on mutations in the P. falciparum chloroquine resistance transporter (PfCRT) gene 

(Durand et al. 2001; Warhurst 2001).  Mutations in this gene can cause the parasite to 

expel the drug from acidic food vacuoles approximately 40-50 times faster than drug-

sensitive parasites (P. G. Bray et al. 1998).  In response to the drug resistance issues 

observed with chloroquine, a new sulfadoxine-pyrimethamine (SP) combination therapy 

that utilizes an alternate mechanism of action was introduced.  Sulfadoxine and 

pyrimethamine are sulfa drugs that function by blocking folate biosynthesis though 

inhibition of dihydropteroate synthetase (PfDHPS) and dihydrofolate reductase 

(PfDHFR), respectively (Petersen et al. 2011; Cowman et al. 1988; Hyde 2002; Sibley et 

al. 2001).  These enzymes play critical roles in reactions that are essential for nucleotide 

provision during DNA synthesis and in the metabolism of specific amino acids (Hyde 

2002).  However, the success of this treatment was extremely short-lived, as a result of 

rapid selection for mutations in both of the target enzymes, PfDHPS and PfDHFR, 

resulting in altered drug binding and substantial decreases in parasite susceptibility 

(Petersen et al. 2011; Korsinczky et al. 2004).  Currently, artemisinin and artemisinin 

combination therapies (ACT) are the most widely used methods for the treatment of 

malaria (World Health Organization 2014).  Artemisinin, while not fully mechanistically 

understood, likely works by selectively inhibiting the calcium pump PfATP6, as 

mutations in the gene can modulate the affinity of this pump artemisinin (Eckstein-

Ludwig et al. 2003; Shandilya et al. 2013).  Recently, mutations in genes encoding 

proteins such as sarco–endoplasmic reticulum calcium ATPase6 (PfSERCA) and 
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multidrug resistance protein (PfMDR1),have been implicated  in artemisinin tolerance, 

provoking concerns regarding ACT’s efficacy (Petersen et al. 2011; Dondorp et al. 2009; 

Pandey et al. 1999; Eckstein-Ludwig et al. 2003).  Although there is significant concern 

surrounding artemisinin-resistance, ACTs still serve as frontline treatments and currently 

constitute the most effective approach for rapid clearance of parasites and symptomatic 

treatment (O’Neill et al. 2010). 

In addition to anti-malarial drugs, vector-targeted interventions that reduce vector-

host contact and have played significant roles in decreasing malaria rates have also been 

challenged by the development of insecticide resistance.  In fact, the control of malaria in 

many areas of the globe is attributed primarily to successful vector control strategies, 

rather than parasite-targeted treatments.  During the early 1950s, the United States 

eradicated malaria by applying both environmental and chemical measures.  

Environmental management largely focused on reducing vector breeding sites and larval 

habitats by water drainage in areas such as swamps and ponds (Smillie 1952).  Chemical 

control was implemented by interventions such as household indoor residual spraying 

(IRS) of the insecticide dichloro-diphenyl-trichloroethane (DDT) for mosquito control 

(Zucker 2009; L. L. Williams 1963; Andrews et al. 1950).  Given the success of these 

interventions in the United States, the WHO established the Global Malaria Eradication 

Program to implement control efforts based on the use of DDT worldwide during the 

mid-1950s (Greenwood et al. 2008; Nájera et al. 2011).  This program was unfortunately 

very short-lived and was ultimately discarded by early 1970s due to the emergence of 

insecticide resistance, as well as a lack of monetary and governmental resources in many 

of the endemic areas (Nájera et al. 2011; Greenwood et al. 2008).  Despite the 
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termination of this program, insecticide-based approaches have been critical in 

controlling malaria rates. The distribution of pyrethroid-based insecticide-treated nets 

(ITNs) and the deployment of DDT-based IRS applications have played extremely 

important roles in decreasing malaria incidence in many malaria-endemic areas (Enayati 

& Hemingway 2010; Martinez-Torres et al. 1998).  Similar to parasite-targeted drugs, 

vector control insecticides have also displayed decreased effectiveness due to the 

increasing prevalence of target-site mutations that confer insecticide resistance (see 

“Control Strategies, Implementation and the Battle of Insecticide Resistance,” below).    

Global malaria control efforts are currently being implemented through 

organizations such as the Malaria Eradication Research Agenda (malERA), the Roll Back 

Malaria (RBM) Partnership and the Bill & Melinda Gates Foundation (Nájera et al. 2011; 

Alonso et al. 2011).  With continuing advances in malaria research and information 

gained from previous eradication efforts, the ultimate goal is for worldwide eradication of 

malaria through intensive research and deployment of advanced control efforts in 

malaria-endemic countries.  The WHO reports that between 2000 and 2013, we have 

already observed a 47% world-wide decrease in malaria-related deaths, largely do to the 

implementation of vector-targeted control strategies (World Health Organization 2014).  

While these statistics are encouraging, the problem is far from resolved, as this mosquito-

borne disease still affects an exceedingly large number of individuals, and much more 

effort and many more resources will need to be deployed to reach the goal of complete 

malaria eradication.  
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B.  Malaria Life Cycle 

The life cycle of the Plasmodium parasite occurs in a vector-host system (Figure 

1.2) consisting of a primary host, the Anopheles mosquito vector, and a vertebrate 

secondary host (N. J. White et al. 2014).  The hematophagous (blood-feeding) nature of 

the female mosquito is a critical aspect of Plasmodium’s life cycle, as the action of blood 

feeding enables vector-host parasite transfer.  Only the female is involved in this biting 

behavior because she requires proteins obtained from the blood for egg development and 

completion of the gonotrophic cycle (Takken et al. 2006).  

The Plasmodium transmission cycle begins when an infected mosquito takes a 

blood meal from a human host and in doing so releases sporozoite-stage parasites into the 

human blood stream during the transfer of saliva (Figure 1.2, A), in a process in which 

the mosquito injects a small amount of saliva to introduce blood anticoagulants (Stark & 

James 1996).  Once this inoculation into a human host occurs, the sporozoites travel 

though the blood stream to invade the liver, where they replicate within hepatocytes 

(Figure 1.2, B) in the exo-erythrocytic cycle (Biamonte et al. 2013; N. J. White et al. 

2014; Sinden 2002).  In the liver, sporozoites will undergo maturation into the schizont 

stage and for most species will produce approximately 100,000 daughter merozoites 

within the span of roughly one week (N. J. White et al. 2014).  After multiple rounds of 

replication, the cell will expand to an extent where it will rupture and release 

merozoites that will then infect red blood cells (RBCs) (Figure 1.2, C), beginning the 

erythrocytic cycle.  While within the erythrocytic cycle, the parasites divide though 

asexual replication and then progress through morphologically distinct developmental 

stages, including ring, trophozoite, and schizont (mature and actively replicating) (Sinden 
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2002; N. J. White et al. 2014).  After multiple rounds of division, the RBC will physically 

increase in size and rupture, releasing daughter merozoites that can infect still other 

RBCs. The majority of these merozoites will remain in an asexual form and continue to 

reinfect new RBCs. This leads to parasitemia involving the development of trillions of 

asexual parasites during the course of a single human infection (N. J. White et al. 2014; 

Sinden 2002). However, a smaller proportion of these parasites can develop into a sexual 

stage called a gametocyte (N. J. White et al. 2014), which is then ingested by another 

blood-feeding mosquito.   

Entry into the sporogonic cycle begins within the stomach of the mosquito (Figure 

1.2, D), where production of zygotes occurs when the microgametes (male gametes) 

penetrate the macrogametes (female gametes) (N. J. White et al. 2014; Sinden 2002).  

The newly formed zygotes can then adopt an elongated and motile structure and enter the 

epithelial midgut lining as an ookinete (Sinden 2002; N. J. White et al. 2014).  The 

ookinete passes through the midgut epithelium and forms an oocyst on the outer surface 

of the midgut. After multiple rounds of replication, the oocyst will rupture to release 

motile sporozoites.  It is at this point that thousands of sporozoites move to the salivary 

glands (N. J. White et al. 2014) where upon another blood meal, a small fraction will be 

released into a new host via the salvia of the mosquito (Sinden 2002) and reinitiate the 

malaria transmission cycle.    

Parasite entry into erythrocytes is largely dependent on multiple pathways that are 

mediated by specific ligand-receptor interactions (Crosnier et al. 2011; Lo et al. 2015; 

Howes et al. 2011).  For example, in order to enter RBCs, P. falciparum requires basigin, 

a human blood group antigen, to bind the parasite ligand reticulocyte-binding protein 
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(PfRH5) (Crosnier et al. 2011).  In basigin-negative individuals, the parasite is unable to 

enter RBCs (Crosnier et al. 2011).  Additionally, for P. vivax, the Duffy blood group 

antigen is required for parasite entry into the RBC (Lo et al. 2015).  These differences in 

receptor-ligand mediated entry impact infection rates in African areas, particular West 

Africa, where Duffy-negative populations are high (Howes et al. 2011).  However, 

parasite entry is not the only critical requirement for a successful infection.  Research has 

shown that individuals who are heterozygous for the human globin gene mutation that 

causes sickle cell anemia have a very high tolerance for Plasmodium (T. N. Williams 

2006; Ferreira et al. 2011).    Each of these examples is related to a selection process by 

which these mutations confer a survival advantage to those individuals who reside in 

malaria-endemic areas, such as Africa, by inhibiting the life cycle of the parasite.   

 

C.  Malaria Vector:  Anopheles mosquito 

Anopheles mosquito development consists of four developmentally and 

behaviorally distinct stages:  embryo, larva, pupa and adult.  Development begins in an 

aqueous environment when a female mosquito lays a raft of approximately 50-200 

fertilized eggs in a body of water (Clements 1992).  Upon hatching, the larva will 

progress though four larval instars that are developmentally defined by cuticular molting 

events.  At the completion of the fourth larval instar, the pupa is formed, and the 

organism undergoes metamorphosis that involves extensive morphological remodeling, 

resulting in a fully formed and developmentally distinct adult (Clements 1992).  

Developmental transitions are regulated by precisely controlled levels of ecdysteroid 

hormones and juvenile hormone (JH) (Riehle et al. 2002; Truman & Riddiford 2007).  
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After emerging from the pupal case, the adult wings expand and the cuticle undergoes 

sclerotization (hardening) (Dewey et al. 2004; Charles 2010).  Within 48-72 hours after 

emergence, the adult is physiologically ready for mating (Clements 1999; Takken et al. 

2006).  The virgin female exhibits a pregravid state that necessitates the intake of more 

than one blood meal to complete the initial gonotrophic cycle (Gillies 1954).  While 

males continue to mate throughout adulthood, females become refractory after an initial 

mating, usually in response to peptides secreted by the male accessory glands, and will 

store the sperm in the spermathecae for subsequent fertilizations (Ringo 1996; Tripet et 

al. 2003).  Despite being able to perform subsequent fertilization using stored sperm, 

there is a requirement for an additional blood meal before egglaying, allowing infected 

mosquitoes to transmit malaria parasites they acquired during previous bloodmeals.   

There are approximately 465 known species within the Anopheles genus (Sinka et 

al. 2012).  To date approximately 70 are known to have the capacity to transmit malaria, 

and about 40 of these are considered major malaria vectors (World Health Organization 

2014; Sinka et al. 2012).  Among these species, the three malaria vectors that pose a 

severe health concern in the most endemic area of sub-Saharan Africa are An. gambiae, 

An. arabiensis, (a member of the An. gambiae species complex) and An. funestus (Sinka 

et al. 2012; Besansky et al. 2004).  An. gambiae is the most epidemiologically relevant 

vector, as it is responsible for approximately 90% of malaria cases in this region of Africa 

(World Health Organization 2014; Besansky et al. 2004).   

Vectorial capacity is the measurement of how efficient a vector species is at 

transmitting a disease between hosts (Ceccato et al. 2012; Garrett-Jones & Shidrawi 

1969).  This concept has been developed into a mathematical model that takes into 
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account factors that play major roles in vectorial capacity including frequency of bites, 

blood-feeding preference, population density, survival and extrinsic incubation periods 

(Garrett-Jones & Shidrawi 1969).  An. gambiae has the highest vectorial capacity in 

Africa due to its rapid breeding, ability to handle environmental changes, long life span 

and human biting preference (N. J. White et al. 2014).  The equation for vectorial 

capacity is (D. L. Smith & Ellis McKenzie 2004; Garrett-Jones & Shidrawi 1969): 

 

 

 

where: 
 

C = vectorial capacity (number of infective bites received daily by a single host) 

m = vector density with respect to host 

a = daily biting frequency 

p = daily survival probability of vectors 

n = extrinsic incubation period of parasite (days) 

 

 This model describes the capacity of a vector species to transmit malaria based on 

the number of potential secondary inoculations per day from an infected individual.  

Given the variability of different species (i.e., different biting frequencies and density), 

the values obtained can help to determine which local species need to be reduced in order 

to decrease the local intensity of malaria transmission.  With the ability to calculate 
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vectorial capacity based on this model, scientists are now better able to understand vector 

dynamics across species and geography (Ceccato et al. 2012).   

Environmental factors and seasonality play significant roles in the density and 

reproductive cycles of Anopheles mosquitoes, ultimately impacting malaria transmission 

rates.  Geographically speaking, An. gambiae prefer wet and humid climates, while An. 

arabiensis are more often found in areas that are drier. An. funestus can be found in both 

wet and dry areas (Ayala et al. 2009).  These ecological and environmental preferences 

allow all three species to co-dominate a large portion of western and southeastern Africa 

(Figure 1.1, green regions).  The substantial variations in climate across portions of 

Africa allow for each species to become dominant in certain areas such as An. gambiae 

species in the Democratic Republic of Congo or An. arabiensis in Ethiopia – with An. 

funestus frequently found with both of these species (Sinka et al. 2012).  An. gambiae is 

most often found in areas of Africa that are forest-free and maintain temperatures above 

5°C (Snow et al. 1999).         

Interestingly, the environmental temperature at which a vector processes a blood 

meal also greatly affects the ability of the parasite to replicate within the mosquito.  At 

temperatures below 22°C, the incubation period that encompasses the parasite sporogonic 

cycle begins to approach the time that a mosquito will survive in the field (Snow et al. 

1999).  For example, at 18°C, P. falciparum will take about 55 days to complete 

sporogonic development, and by that time following parasite uptake, the surviving 

proportion of a cohort of blood-fed mosquitoes becomes extremely low (Snow et al. 

1999; Martens 1998; Detinova 1962).  If the temperatures fall below 16°C, the parasite 

replication will cease (Snow et al. 1999). 
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Vectorial capacity can also vary due to the behaviors of hosts that are 

preferentially fed upon or environmental sites that harbor these hosts.  An. gambiae and 

An. funestus are highly endophagic (i.e., exhibit an indoor feeding preference) and 

anthropophagic (i.e., a biting preference for humans) (Githeko et al. 1996), making these 

species more likely to acquire human malaria parasites via blood feeding.  However, the 

actual transmission rates by An. funestus are much lower than An. gambiae due to its 

reduced susceptibility to Plasmodium infections (Charlwood et al. 1997).  An. arabiensis 

is considered to be a zoophilic species, having a biting preference for animals rather than 

humans (Githeko et al. 1996), decreasing the rate at which it  transmits human malaria 

parasites.  Given that An. gambiae exhibits anthropophagic and endophagic behaviors, as 

well as its susceptibility to Plasmodium infection and the ability of Plasmodium parasites 

to replicate at high rates within this primary host, this vector species displays high 

vectorial capacity. 

Mosquito mating strategies, sites and preferences play critical roles in the 

vectorial capacity of a species.  In particular, the mosquito population density is largely 

dependent on the reproductive success of the mosquito (S. N. Mitchell et al. 2015b).  By 

understanding mosquito reproduction, and the behaviors surrounding it, we can identify 

additional targets for vector control.  Both field and laboratory observation of An. 

gambiae mating reveal that copulation typically occurs around dusk (Dabire et al. 2013; 

Charlwood & Jones 1980), when large swarms (hundreds to thousands) of males form, 

awaiting the entry of a virgin female  into the swarm and her choice of a mating partner 

to form a copulae (mating pair) (Dabire et al. 2013; Charlwood & Jones 1980; Takken et 

al. 2006).  During this swarming process, an intricate set of auditory cues are used by 
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male and female mosquitoes, in a process called harmonic convergence, which involves 

reciprocal responses to acoustic tones that are generated by distinct wing beat frequencies 

(Gibson & I. Russell 2006; Cator et al. 2010).  Additionally, olfactory cues such as 

cuticular hydrocarbons (CHC) have been shown to be involved in mating partner 

selection (Polerstock et al. 2002), and volatiles emitted by conspecific larvae have been 

shown to be involved in the identification of oviposition sites (Sumba et al. 2008). 

Further findings regarding the biochemistry of reproduction, such as uncovering the role 

of the mating plug hormone 20-hydroxyecdysone (20E) in increasing egg production (S. 

N. Mitchell et al. 2015b; Baldini et al. 2013) and the requirement of seminal 

transglutaminase (TG3) in An. gambiae mating plug coagulation (Rogers et al. 2009), 

have provided valuable information regarding mosquito mating.  Understanding the 

biochemical factors and the underlying behaviors that are essential for mosquito mating 

provides opportunities for the discovery of novel insect control targets, by targeting 

reproduction.   

It has become increasingly apparent that the vectorial success of Anopheles 

mosquitoes relies on many intricate biological, physical and behavioral features.  From 

environmental preferences to acoustic control of mating, there are many interesting facets 

of mosquito biology of which we are currently aware and surely more to discover.  Not 

only are these aspects of mosquito bionomics interesting from a basic biological 

perspective, but also useful in providing avenues for vector control by modulation of 

factors that greatly impact the vectorial capacity of the Anopheles mosquito. 
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D. Control Strategies, Implementation and the Battle of Insecticide Resistance  

Current control strategies largely aim to either decrease vector-host contact by the 

deployment of insecticides and bed nets or target the parasite in humans by the 

deployment of antimalarial drugs.  While both of these strategies have proven to lessen 

human malaria incidence, the frequent use of such compounds in both strategies has 

increased the prevalence of resistance in the mosquito and the parasite.  In light of these 

issues, we need, as well, to understand the underlying genetic and molecular mechanisms 

that result in resistance and to discover novel compounds that can safely and efficiently 

reduce malaria transmission rates.  

The most widely used and effective intervention methods against malaria are 

targeted against the vector, such as lethal insecticides or insect deterrents.  In the field, 

these methods almost exclusively include the use of insecticide-treated bed nets (ITNs) 

and indoor residual spraying (IRS) (Enayati & Hemingway 2010; Martinez-Torres et al. 

1998).  The use of ITNs has proven to be more widely pursued in locations such as Africa 

due the operational ease of distributing pretreated nets, compared to the labor-intensive 

requirements for IRS deployment of insecticides (van den Berg et al. 2012).  Currently, 

there are four classes of chemical compounds that have been approved for use as 

insecticides:  organochlorines, organophosphates, carbamates and pyrethroids, which all 

function by inhibiting the insect nervous system (Ramphul et al. 2009; Hill et al. 2013; 

Hemingway & Ranson 2000).  Dichloro-diphenyl-trichloroethane (DDT) (an 

organochloride) and permethrin (a pyrethroid) have been two of the most commonly used 

insecticides, as they have been shown to be highly effective in vector control (ffrench-

Constant et al. 2004).  Pyrethroids and organochlorides act by inhibiting voltage-gated 
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sodium channels (Vgsc) in insect nerve cell membranes and impede the proper 

functioning of the nervous system, resulting in paralysis and death (Davies et al. 2007; 

Ranson et al. 2009; Hemingway & Ranson 2000). Both carbamates and 

organophosphates imped the functioning of the post-synaptic nerve membrane by 

targeting acetylcholinesterase (AChE), which is required to hydrolyze the excitatory 

neurotransmitter acetylcholine (Hemingway & Ranson 2000; Ranson et al. 2009).  With 

all of these chemical classes, resistance correlates with reduced sensitivity of the insect 

nervous system to these toxic molecules (Martinez-Torres et al. 1998; Hemingway & 

Ranson 2000), making these insecticides dramatically less effective. 

Insecticide resistance mechanisms become established in populations due to the 

action of  selective pressures that result from constant exposure of insecticides.  There are 

multiple mechanisms for resistance, including metabolic, target-site, behavioral and 

penetration/cuticular resistance (Ranson et al. 2011; Hemingway & Ranson 2000).  

Metabolic and target-site resistance are the more commonly observed mechanisms 

(ffrench-Constant et al. 2004; Ranson et al. 2011).   

In the case of metabolic resistance, mutation(s) are acquired that increase the 

ability to metabolize or detoxify insecticides (S. N. Mitchell et al. 2014; Ranson et al. 

2011).  Mutations often result in the ability to produce more detoxifying enzyme (e.g., 

increased gene copy number, gene duplication events, increased gene 

transcription/expression) (Daborn et al. 2002; Field et al. 1999; Schmidt et al. 2010), or 

by altering the kinetics and substrate specificity of the enzymes (C. J. Jackson et al. 

2013).  For example, mutations in glutathione S-transferase (e.g. Gste2) (Perry et al. 

2011; Daborn et al. 2012; S. N. Mitchell et al. 2014; Schmidt et al. 2010) and cytochrome 
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P450 (e.g. Cyp6) (Edi et al. 2014; Daborn et al. 2002) have been shown to confer 

resistance to organochlorine- and carbamate-based insecticides through detoxifying 

mechanisms.   

Target-site resistance occurs when the site of inhibitory compound binding to a 

target protein is altered, resulting in reduced inhibition due to inefficient inhibitor 

binding.  For pyrethroids and DDT, mutations that are associated with resistance have 

been shown to involve malfunctioning of voltage-gated sodium channels (Davies et al. 

2007; Ranson et al. 2011).  Most notably, multiple nonsynonymous mutations have been 

identified in para, a voltage-gated sodium channel protein, that confer resistance to DDT 

and pyrethroid insecticides (Pinto et al. 2007; Ranson et al. 2011; Davies et al. 2007; 

Saavedra-Rodriguez et al. 2007).  Mutations in γ-aminobutyric acid type A (GABA) 

channels have been reported to play a large role in resistance of insecticides that target 

the nervous system (Ramphul et al. 2009; ffrench-Constant et al. 1993).  One of the first 

characterized target site mutations, Rdl, is a mutation that alters the GABA-gated chloride 

channel, such that the binding affinity of dieldrin (an organochlorine) is decreased (Perry 

et al. 2011; ffrench-Constant et al. 1993).  With increased resistance to organochlorine 

and pyrethrioid compounds, the amounts of carbamate- and organophosphate-based 

insecticides used in the field have been increased (Essandoh et al. 2013).  These 

compounds have shown efficacy in reducing malaria transmission in the field, but recent 

mutations in the acetylcholinesterase target-site enzyme Ace-1 have been linked to 

increased insecticide resistance in An. gambiae (Essandoh et al. 2013; Edi et al. 2014).    

Although not identified as often as the previously mentioned mechanisms, 

behavioral and cuticular penetration resistance can play roles in reduced insecticide 
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efficacy (Ranson et al. 2011).  Behavioral resistance occurs when the insects avoid 

contact with an insecticide-treated area by altering previously normal behaviors.  

Behavioral changes (e.g., in resting sites, feeding locations, mating sites, breeding sites) 

can occur when the insect modifies its behavior to avoid physical contact (contact 

irritancy) or non-physical contact (spatial repellency) with insecticidal compounds 

(Chareonviriyaphap et al. 2013).   Compounds with high volatility (e.g., DEET) (Ditzen 

et al. 2008) and bitter taste qualities (e.g., quinine and caffeine) (Ignell et al. 2010) can 

contribute to behavioral resistance (Wada-Katsumata et al. 2013), and ultimately decrease 

the effectiveness of insecticides by reducing insecticide contact.  This type of resistance 

uncovers the importance of understanding not only the insecticidal compounds, but the 

underlying biology associated with chemosensation, as well (i.e., gustatory and olfactory 

systems).  Cuticular penetration resistance occurs when a barrier is formed on the insect’s 

outer cuticle, resulting in decreased insecticide absorption (Ranson et al. 2011).  An 

example of delayed cuticular penetration has been seen with Helicoverpa armigera 

(Cotton Bollworm) in response to the deltamethrin (Ahmad et al. 2006), a common 

pyrethroid used in field applications for mosquito control.  In An. gambiae and An. 

stephensi, microarray studies intended to identify differentially expressed genes in 

insecticide-resistant populations have revealed that a particular cuticular protein-coding 

gene, CPLC8, is significantly unregulated in resistant insect populations (Vontas et al. 

2007; Awolola et al. 2009).  Based on the sequence similarity to the D. melanogaster 

adult cuticle protein precursor (DACP1) gene, the function of CPLC8 is predicted to be 

involvement in thickening of the cuticle (Vontas et al. 2007).  While this process of 

cuticle thickening may not impact the efficacy of insecticides that are delivered via 
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ingestion, it certainly provides protection during the cuticular contact with insecticides in 

ITN and IRS applications (Ranson et al. 2009). 

 

E.  G Protein-Coupled Receptors (GPCRs):  Drug Targets 

G protein-coupled receptors (GPCRs) represent an extremely large family of cell 

surface receptors that function in many biological capacities, making them extremely 

attractive as pharmacological targets.  Within the human genome, over 800 GPCRs have 

been identified (Lagerström & Schiöth 2008; Ghosh et al. 2015), representing 

approximately 2-4% of human protein-coding genes (R. Zhang & Xie 2012; Allen & 

Roth 2011).  Likewise, GPCR families have been identified in multiple insect species.  In 

the An. gambiae genome, there are currently 276 bioinformatically identified GPCRs, 

making up roughly 2% of the protein-coding genes in the 278 megabase genome (Hill et 

al. 2002).  This percentage is comparable to the number of GPCRs represented in the D. 

melanogaster genome, many of which have putative orthologs within the An. gambiae 

genome (Hill et al. 2002).  Many D. melanogaster GPCRs have already been 

characterized, and this has enabled the development of readily available genetic tools 

(i.e., transgenic fly stocks) that can provide information pertaining to functions of 

putative GPCR orthologs in An. gambiae.  In this thesis, I utilized D. melanogaster 

GPCR family members Dop1R2 and Gr66a to gain insight into GPCR functions for the 

respective orthologous receptors GPRDOP2 and GPRGR2 in An. gambiae.   

The linear structure of a canonical GPCR family member includes seven 

transmembrane domain (7TMD) alpha helices that are linked by three extracellular and 

three intracellular loops (Allen & Roth 2011) (Figure 1.3).  The orientation within the 
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membrane is typically such that the amino-terminal end resides in the extracellular space 

and the carboxy-terminal end in the cytoplasm.  The arrangement of the seven TMD 

helices is stabilized by a series of intra-molecular interactions (Klabunde & Hessler 

2002), and the structured GPCR then interacts with an intracellular heterotrimeric 

guanine-nucleotide-binding protein (i.e., G protein) complex, made up of α, β, and γ 

subunits (Alfredo Ulloa-Aguirre et al. 1999).  Few GPCR crystal structures have been 

determined, due to the complexity of GPCR structures, as well as their insertion within 

lipid membranes.  However, using currently available sequences and structures, it is 

notable how highly similar GPCR transmembrane regions are.  For example, the β2-

adrenergic and rhodopsin receptors contain less than 20 percent sequence similarity, but 

are extremely similar in TMD structure (Tautermann & Pautsch 2011).  The sequence 

similarities within 7TMD regions allows for the classification of GPCRs into specific 

subfamilies.  In Anopheles, these classes include the rhodopsin-like (Class A), secretin-

like (Class B), metabotropic glutamate-like (Class C), atypical (Class D) and 

chemosensory (Class E) GPCRs (Hill et al. 2002).  The chemosensory GPCRs are the 

most abundant subfamily, including 155 receptors that are predicted to function in either 

olfactory or gustatory processes (Hill et al. 2002).  The second largest subfamily is the 

rhodopsin-like class, which includes 81 GPCRs belonging to biogenic amine, 

glycoprotein hormone, peptide, purine, $opsin or $orphan GPCR subfamilies (Hill et al. 

2002).    In this thesis, the GPCRs that are investigated belong to both the rhodopsin-like 

(e.g., GPRDOP2) and chemosensory classes (e.g., GPRGR2). 

GPCRs transduce signals when extracellular ligand binding initiates activation of 

the heterotrimeric G-protein complex.  Crystal structures of GPCRs reveal that the 
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primary regions of sequence diversity exist within the extracellular loop regions (i.e., 

diversity of secondary structures and patterns of disulfide crosslinking), which are 

essential for ligand binding (Katritch et al. 2013; Wheatley et al. 2012).  However, it is 

not exclusively the diversity of extracellular loops that is important for ligand binding.  

Changes in TMD regions and/or extracellular loops can alter the ligand-binding pocket 

dramatically in terms of shape, size and electrostatic properties (Katritch et al. 2013; 

Granier & Kobilka 2012).  The act of ligand binding also stabilizes receptor conformation 

and promotes the exchange of guanidine diphosphate (GDP) on the heterotrimeric G-

protein complex α subunit (Gα), for guanidine triphosphate (GTP), resulting in a 

conformational change and allowing for dissociation of the β-γ dimer (Gβγ) from Gα (R. 

Zhang & Xie 2012; Allen & Roth 2011; Vanden Broeck 2001; Lagerström & Schiöth 

2008; Katritch et al. 2013).  Uncoupled Gα can then activate downstream effector 

molecules [e.g., adenylyl cyclase (AC), phospholipase C beta (PLCβ), Rho guanine 

nucleotide exchange factor (RhoGEF)], which then can regulate the intracellular 

concentrations of second messengers [e.g., 3’, 5’-cyclic adenosine monophosphate 

(cAMP), inositol 1, 4, 5-triphosphate (IP3), diacylglycerol (DAG)] (Ritter & Hall 2009; 

R. Zhang & Xie 2012; Allen & Roth 2011).  The increased levels of second messengers 

ultimately yield physiological responses, often by regulating downstream gene 

transcription.  The dissociated Gβγ can also bind to and regulate downstream effector 

molecules (e.g., PLCβ and ion channels) (Ritter & Hall 2009).  This signal transduction 

will continue until the intrinsic GTPase activity of Gα leads to the hydrolysis of GTP to 

GDP, resulting in the reassociation of the heterotrimeric G-protein complex (Vanden 

Broeck 2001; R. Zhang & Xie 2012; Allen & Roth 2011).  
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Downstream signaling mechanisms and alterations in secondary messengers vary 

based on the type of α subunit that is activated by a given GPCR-agonist (ligand) 

interaction.   There are four major classes of α subunits, Gαs, Gαi, Gαq and Gα12/13, which 

will modulate different intracellular effector molecules (R. Zhang & Xie 2012; Ritter & 

Hall 2009).  GPCRs that are coupled to Gαs (stimulatory) activate AC, while those 

coupled to Gαi (inhibitory) inhibit it (X. Zhang et al. 2010; Allen & Roth 2011; Ritter & 

Hall 2009).  The levels of AC activity directly impact the levels of cAMP produced, as 

AC is an enzyme required for catalyzing the conversion of ATP to cAMP.  The formation 

of cAMP is important in a variety of cellular processes, such as activation of protein 

kinase A (PKA) (Beggs et al. 2011; Rosenbaum et al. 2009; Blenau et al. 1998; R. Zhang 

& Xie 2012; Mustard et al. 2003; Meyer et al. 2012; Reale et al. 1997; Ritter & Hall 

2009).  Gαq-coupled GPCRs activate PLC effector molecules, which cleave PIP2 and 

catalyze the synthesis of two secondary messengers, IP3 and DAG.   IP3 and DAG are 

important in modulating further downstream effectors such as Ca2+ and protein kinase C 

(PKC), respectively (Ritter & Hall 2009; R. Zhang & Xie 2012).  Finally, Gα12/13-coupled 

GPCR agonist binding results in modulation of RhoGEF effector molecules, in turn 

increasing the levels of RhoA (Ritter & Hall 2009; R. Zhang & Xie 2012). 

GPCRs can be bound by many different ligands that can be either endogenous or 

exogenous to the cell.  Endogenous ligands commonly include molecules such as 

biogenic amines, peptides, glycoproteins, amino acids, phospholipids, fatty acids, 

nucleosides, nucleotides and calcium ions, whereas exogenous ligands include molecules 

such as pheromones/odorants, tastants, and photons (Kristiansen 2004; Granier & 

Kobilka 2012).  The regions to which ligands bind to a given GPCR can be predicted, in 
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many instances, based on the structural subfamily within which a given receptor/ligand 

pair reside.  For example, the biogenic amine dopamine frequently binds within a 

transmembrane helix (TMH) pocket that includes TMH3-TMH7 (Kristiansen 2004; 

Liapakis et al. 2000).  This hydrophobic pocket is formed from the specific interactions 

of the transmembrane domains (Klabunde & Hessler 2002; Allen & Roth 2011).  Proteins 

and peptide hormones tend to bind the extracellular loops that connect TM domains, as 

well at the extracellular amino-terminal domain (Kobilka 2007).  

G-protein coupled receptors play very important biological roles by functioning in 

the cellular processing of extracellular signals to elicit intracellular responses (Neubig & 

Siderovski 2002; Lagerström & Schiöth 2008; Hearn et al. 2002).  The binding of 

specific ligands to these receptors regulates many important developmental and 

physiological processes, including development, sensory transduction and cell-cell 

communication (R. Zhang & Xie 2012; Gobeil et al. 2006; Ritter & Hall 2009).  

Understanding the roles of these receptors in mosquito development, behavior, survival 

and longevity can enhance our ability to develop vector-targeted pharmacological 

interventions, moving forward. 

G protein-coupled receptors are one of the most “druggable” cellular targets, and 

they account for approximately forty to fifty percent of human therapeutic small 

molecules that are currently on the market (Rozenfeld & Devi 2010; Allen & Roth 2011; 

Overington et al. 2006).  The ability to modulate GPCR-mediated signal transduction has 

enabled the identification of GPCRs and ligands that control many biologically relevant 

signaling pathways.  The work described in this thesis investigates the role of multiple 

GPCRs that play important roles in the vector competence and vectorial capacity of An. 



! 25!

gambiae.  The ultimate goal of this work is to identify potential targets for the discovery 

of new vector-targeted interventions that can be used in the field for vector control.  

These compounds include those intended to decrease mosquito survival (i.e., adulticides 

and larvicides), as well as those that may modulate behaviors (i.e. altering gustatory 

compound recognition or refractoriness to mating).  Thus, understanding the roles of 

these receptors can enable the development of new insecticides for vector control (R. 

Zhang & Xie 2012; Allen & Roth 2011). 

While the attractiveness of GPCRs as insecticidal targets is clear, very few 

advances have been made in this regard, to date.  The Purdue Insecticide Discovery 

Pipeline (PIDP) is currently undertaking efforts toward the discovery of new mode-of-

action insecticides for vector control using a genome-to-lead approaches (Hill et al. 2013; 

Nuss et al. 2015; Meyer et al. 2012).   In fact, through this pipeline the Aedes Aegypti 

(yellow fever vector) and Culex quinquefasciatus (West Nile virus vector) dopamine D1-

like GPCRs have been characterized at the molecular and pharmacological levels, in the 

attempt to advance vector insecticide development (Hill et al. 2013; Nuss et al. 2015).  

Given the availability of 16 recently released Anopheles reference genomes (Neafsey et 

al. 2015) and growing vector genome sequence data resources (i.e., VectorBase, 

http://www.vectorbase.org/) (Giraldo-Calderon et al. 2015), the implementation of target-

based approaches for insecticide discovery is moving in a positive direction.   

 Given that neurohormone GPCRs, such as biogenic amine-binding receptors, play 

critical roles in the regulation of many insect physiological processes, and share very 

limited homology with human GPCRs, they are considered to be good insecticide targets 

(Bai & Palli 2015; Hauser et al. 2006).  Within the scope of the dopamine (DA) GPCR 
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project, we provide evidence that the dopamine D1-like receptor, Dop1R2, is involved in 

pre-adult development and may serve as a promising target for insecticide development.  

In addition to DA being well-described as playing fundamental roles in insect behaviors 

(i.e., learning, locomotion, courtship) (Meyer et al. 2012; Mustard et al. 2005; Blenau & 

A. Baumann 2001), it is also known to be a precursor in the biochemical pathway for the 

production of melanin, which is required for invertebrate cuticle sclerotization (T. R. F. 

Wright et al. 1976; T. R. F. Wright 1987; Wittkopp et al. 2003; Shakhmantsir et al. 

2013). There is also evidence suggesting that dopamine is involved in the regulation of 

larval and pupal ecdysis, as well as in metamorphosis (Granger et al. 2000; Park et al. 

2004; Srivastava 2005; Bai et al. 2011; Meyer et al. 2012).   Given these insights from 

previous research, we used the model organism D. melanogaster to evaluate the roles of a 

specific D1-like (stimulatory Gαs) GPCR, Dop1R2, in development and survival.  By 

using a reverse genetic approach, we uncovered requirements for Dop1R2 activity during 

third instar larval and pupal development – resulting in lethality and cuticle 

abnormalities.  Investigation of the tissue/cell types associated with these phenotypes 

suggests that the function of this receptor in the salivary glands is critical for normal 

development.  Furthermore, we have identified a subset of genes that are differentially 

expressed in response to Dop1R2 knockdown, and are required for completion of 

development (i.e., cuticular, immune response and stress response genes).  

Pharmacological treatment of larvae with the established insect/mammalian D1-like 

receptor antagonist flupenthixol dihydrochloride (Beggs et al. 2011; Blenau et al. 1998; 

Mustard et al. 2003; Meyer et al. 2012; Reale et al. 1997) results in pre-adult 

developmental delay or arrest.  Given that this GPCR is well-conserved in arthropods, but 



! 27!

exhibits limited homology with mammalian dopamine receptors (Mustard et al. 2003; 

Mustard et al. 2005), Dop1R2 may serve as a promising candidate GPCR to control 

vector insects. 

The RNAi trigger delivery chapter (Chapter III) describes a method that I have 

developed for direct injection of dsRNA into An. gambiae pupae and illustrates the 

importance of this technology for functional genomics and vector biology.  Currently 

available methods for inducing non-transgenic RNA interference (RNAi) in mosquitoes 

involve direct injection of dsRNA into the adult hemolymph (Catteruccia & Levashina 

2009; Garver & Dimopoulos 2007) or larval feeding of RNAi trigger-coated 

nanoparticles (X. Zhang et al. 2010; X. Zhang et al. 2015; Mysore et al. 2014; Mysore et 

al. 2013).  Targeting the adult mosquito, while extremely valuable, can exclude a large 

number of genes that function during earlier developmental periods.  Larval feeding 

involves a more time consuming process of preparing nanoparticles and may yield 

inconsistent phenotypes during the adult stage, due in part to the potential for variable 

protein persistence through the pupal stage.  The SRPN2 target used for validation of this 

technique was chosen because of the easily identifiable melanotic pseudo-tumor 

phenotype in adult stage mosquitoes with reductions in SRPN2 levels (Michel et al. 2005; 

An et al. 2011), and the high expression levels of SRPN2 during the pupal stage 

(Suwanchaichinda & Kanost 2009).  Using this method, I demonstrate high efficiency, 

transstadial knockdown at the levels of SRPN2 protein and phenotypic effect.  The 

overall goal of this project was to develop a method for performing RNAi-mediated gene 

knockdown during pupal development, and for cell types that originate during 

metamorphosis, but are less accessible in adults.  
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The gustatory chapter of this thesis (Chapter IV) investigates behavioral, 

molecular and structural aspects of mosquito chemosensation.  Chemosensation is a 

highly specialized process that allows animals to identify and respond to chemosensory 

information (e.g., tastants) within the environment (K. Scott et al. 2001).  This study was 

initiated by assessing the spatial expression of An. gambiae GPRGR2 in tissues with high 

sensilla (hair-like sensory projections) densities (i.e., proboscis, palp, legs/tarsi, antennae) 

(K. Scott et al. 2001; Stocker 1994; Dahanukar et al. 2007; N. R. Singh 1997; 

Seenivasagan et al. 2009; Pitts et al. 2004; Pappas & Larsen 1976).  I show that GPRGR2 

is abundantly expressed in the proboscis, legs/tarsi and antennae, all of which have been 

demonstrated to function in gustatory processes in many species (B. K. Mitchell et al. 

1999; Pappas & Larsen 1976).  Utilizing the RNAi trigger delivery method mentioned 

above, I pursued a functional genetic assessment of GPRGR2 function and show that this 

receptor is involved in the recognition of specific, bitter-tasting compounds.  Reduced 

levels of GPRGR2 impede the ability of An. gambiae to avoid imbibing bitter and 

potentially harmful substances.  Our analysis of sensilla requirements for bitter taste 

sensation though ablation assays demonstrates the importance of these chemosensory 

structures on the labial palps.  These findings provide insights into some of the molecular 

aspects underlying of chemosensory behaviors in vector mosquitoes and may enable the 

development of better feeding-based vector-targeted interventions, such as enhanced 

attractive toxic sugar bait (ATSB) traps (Beier et al. 2012; Muller et al. 2010). 

The research presented in this thesis was undertaken to identify candidate GPCRs 

that may serve as novel targets for the development of new vector control strategies.  I 

provide show that the dopamine D1-like receptor is critical for development and may 
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serve as a candidate for insecticide development, particularly during pre-adult stages (i.e., 

larvicides).  I also describe the importance of chemosensation with regard to the detection 

of noxious compounds by the gustatory system and identify a receptor, GPRGR2, that is 

critical for the detection of various bitter compounds.  By modulating the ability of the 

mosquito to detect bitter insecticides, we may be able to create more effective insecticide 

deployment in the field.  Finally, I describe a novel method for RNAi-mediated 

knockdown during the An. gambiae pupal stage, which may provide vector biologists 

with a valuable tool for functional genomic analysis during additional developmental 

stages.     
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F.  FIGURES AND LEGENDS 

Figure 1.1:  Global distribution of malaria vector species.  Map depicting the 
geographic distribution of the major Anopheles vector species.   

 
Image credit: Sinka et al. (2012) 
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Figure 1.2:  Malaria Life Cycle.  Illustation of the dual-host life cycle of the Plamodium 
malaria parasite.  In the human host, the parasite remains in an asexual reproductive 
phase during the exo-erythrocytic cycle in the liver and erythrocytic cycle in the red 
blood cell.  Once infected blood is inbibed by a female Anopheles mosquito, the parasite 
enters a sexual reproductive sporogonic cycle within the midgut of the insect host, from 
which it will later migrate to the salivary glands, to be transmitted during an ensuing 
blood meal.     
 

 

Image credit:  N. J. White et al. (2014) 
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Figure 1.3:  G Protein-Coupled Receptor Signaling.  Schematic of GPCR signaling 
though the major transduction pathways:  Gαs, Gαi, Gαq and Gα12/13.  Boxes below 
indicate the primary effectors (purple), second messengers (blue) and downstream 
effectors (green).   

 

Image credit: Ritter & Hall (2009) 
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CHAPTER II 

A critical role for the Drosophila dopamine 1-like receptor Dop1R2  

at the onset of metamorphosis 
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A. ABSTRACT 

Insect metamorphosis relies on temporal and spatial cues that are precisely 

controlled.  Previous studies in Drosophila have shown that untimely activation of genes 

that are essential to metamorphosis results in growth defects, developmental delay and 

death.  Multiple factors exist that safeguard these genes against deregulated 

expression.  By using RNAi transgene-induced gene silencing coupled to spatio/temporal 

assessment, we have unraveled an essential role for the Drosophila dopamine 1(D1)-like 

receptor Dop1R2 in development.  We show that Dop1R2 knockdown leads to pre-adult 

lethality, as well as to cuticle and/or wing defects in flies that survive to adulthood.  Our 

genetic analyses support an important function for this GPCR in the salivary glands, 

during the larval stage. In addition, we show that larvae treated with the high affinity D1-

like receptor antagonist, flupenthixol, display developmental arrest, or morphological 

defects, as seen with ubiquitous or salivary gland knockdown of Dop1R2.  To probe the 

basis for pupal lethality in Dop1R2 RNAi flies, we carried out transcriptome and RT-

PCR analysis.  These studies revealed up-regulation of selected families of genes that 

respond to ecdysone, as well as regulate morphogenesis and defense/immunity.  Taken 

together, our findings suggest a role for Dop1R2 in the repression of genes that 

coordinate metamorphosis.  Premature release of this inhibition, and misexpression of 

corresponding genes, is harmful to the developing fly. 
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B. INTRODUCTION 

The naturally occurring catecholamine dopamine (DA) acts as a neurotransmitter 

and neurohormone in the central nervous system (CNS) of vertebrates and invertebrates. 

DA is a precursor in the biochemical pathway for the production of melanin, which is 

required for invertebrate cuticle sclerotization (T. R. F. Wright et al. 1976; T. R. F. 

Wright 1987; Wittkopp et al. 2003; Shakhmantsir et al. 2013).  Increasing evidence 

suggests that in insects, DA and DA receptors (DARs) are involved in the regulation of 

larval and pupal ecdysis, as well as in metamorphosis (Granger et al. 2000; Park et al. 

2004; Srivastava 2005; Bai et al. 2011; Meyer et al. 2012).  

DA metabolism has been studied extensively within many phylogenetic groups.  

The essential steps required for dopaminergic neurotransmission (i.e., DA synthesis, 

release, receptor activation, and reuptake) are conserved between flies and humans.  DA 

synthesis is controlled by the rate-limiting enzyme tyrosine hydroxylase (TH), which is 

encoded in Drosophila by the pale locus (T. R. F. Wright et al. 1976; Neckameyera & 

Quinna 1989; T. R. F. Wright 1987; Wittkopp et al. 2003; Shakhmantsir et al. 2013).  TH 

converts tyrosine to the precursor molecule L-DOPA, which is in turn converted to DA 

by the enzyme DOPA decarboxylase (DDC), encoded by the Ddc gene (Granger et al. 

2000; Livingstone & Tempel 1983; Park et al. 2004; Eveleth et al. 1986; Srivastava 2005; 

Bai et al. 2011; Meyer et al. 2012).  TH and DDC are required for normal development in 

Drosophila.  Null mutations targeting either biosynthetic enzyme result in late embryonic 

lethality (Budnik & K. White 1987; Valles & K. White 1986).  More recently, elegant 

studies have shown that selective depletion of TH in the nervous system is well tolerated 
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by the developing fly, and that corresponding adults have normal lifespan, albeit with 

some motor deficits (Riemensperger et al. 2010).  

 DA exerts its function by activating G protein-coupled receptors (GPCRs).  The 

fruit fly expresses both D1-like and D2-like DA receptors, which are distinguished based 

on the ability of the receptor to couple to either stimulatory Gαs (D1-like) or inhibitory 

Gαi/o (D2-like) G proteins, which in turn activate downstream signaling mechanisms 

(Yamamoto & Seto 2014).  The fly D1-like receptors include Dop1R1 (synonyms: 

DopR1, dDA1, dumb, Dmdop1, DA1) (Gotzes et al. 1994; Sugamori et al. 1995) and 

Dop1R2 (synonyms: DopR2, DAMB, DOPR99B) (Feng et al. 1996; Han et al. 1996), as 

well as the non-canonical DopEcR (synonym: dmDopEcR) (Ishimoto et al. 2005; Evans 

et al. 2014; Inagaki et al. 2012).  DopEcR has a unique in vitro pharmacological profile 

and can be activated either by dopamine or by the steroid hormone 20-hydroxyecdysone 

(20E) (Evans et al. 2014).  There is only one known Drosophila D2-like receptor, Dop2R 

(synonym: DD2R, D2R), which has also been cloned and characterized (Hearn et al. 

2002).  

In addition to modulating a range of receptor-mediated physiologies in insects 

(Draper et al. 2007; Kim et al. 2007; Andretica et al. 2008; Seugnet et al. 2008; Kong et 

al. 2010; Lebestky et al. 2009; Bang et al. 2011), DA acts as a precursor of metabolites 

involved in cuticle melanization (pigmentation) (Shakhmantsir et al. 2013), and is 

essential for the crosslinking of proteins and chitin during sclerotization (hardening) of 

the cuticle after eclosion (Friggi-Grelin et al. 2003; T. R. F. Wright 1987; Monastirioti 

1999; Neckameyer et al. 2001; Birman et al. 1994).  Although the importance of DA 

GPCRs as modifiers of adult fly behavior (including locomotor activity, memory, 
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arousal, temperature preference, courtship, gustation, olfaction and response to drugs of 

abuse) is well-documented (Draper et al. 2007; Kim et al. 2007; Andretica et al. 2008; 

Seugnet et al. 2008; Kong et al. 2010; Lebestky et al. 2009; Bang et al. 2011; Ueno & 

Kume 2014; Waddell 2013; Inagaki et al. 2012; Ishimoto et al. 2005), the contribution of 

DA receptors to the modulation of developmental processes has not been defined.  

DopEcR, which responds to both DA and ecdysone, has been shown to regulate sugar 

sensing, male courtship, and pheromone perception in adult insects (Abrieux et al. 2014; 

Evans et al. 2014; Inagaki et al. 2012). Overexpression or a significant reduction in the 

expression of this receptor, however, does not compromise normal development (Evans 

et al. 2014).  The focus of our study is to define the role of the D1-like Drosophila DA 

receptor, Dop1R2, during development.  This GPCR is well-conserved in arthropods, but 

exhibits limited homology with mammalian dopamine receptors (Mustard et al. 2003; 

Mustard et al. 2005), suggesting a unique function for Dop1R2 that is specific to 

invertebrate physiology.   

We have used transgenic Dop1R2 RNA interference (RNAi) Drosophila, and 

characterized the effects of Dop1R2 knockdown (KD) using the GAL4/UAS-mediated 

system.  We demonstrate that Dop1R2 activity is critical during the third larval instar and 

pupal stages to ensure completion of development through adult emergence.  Our 

investigations of the tissue/cell types that underlie the observed Dop1R2-mediated 

phenotypes suggest the involvement of Dop1R2 receptors expressed in the salivary 

glands.  The Dop1R2 RNAi-induced phenotypes observed in escaper adults are 

recapitulated in progeny exposed to a Dop1R2 small molecule antagonist.  We have 

identified a subset of genes that respond to Dop1R2 KD, and are essential in 
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development.  Our data provide the first indications that a peripheral dopamine receptor 

controls key developmental processes in Drosophila. 

 

C. RESULTS  
 

Dop1R2 RNAi flies exhibit decreased Dop1R2 transcript levels 

Crossing UAS-dsDop1R2 RNAi transgenic flies with the Act5C-GAL4 driver 

strain (Figures 2.1A and 2.1B) results in progeny that ubiquitously express Dop1R2 

double-strand (ds) RNA.  This leads to targeted degradation of the endogenous Dop1R2 

mRNA (i.e., Dop1R2 “knockdown”, or KD) in all tissues in which the receptor is 

normally expressed (Figure 2.1C). When primers were designed to amplify the 

endogenous Dop1R2 message, without amplifying the RNAi sequence, a significant and 

reproducible decrease in Dop1R2 expression was observed, in Dop1R2 RNAi vs. control 

flies (Figures 2.2A and 2.2B).  When PCR primers were designed to amplify the Dop1R2 

RNAi construct, a marked increase in transcript level was observed, confirming the 

expression of the RNAi transgene (Figure 2.2B).  To assess whether expression of the 

Dop1R2 RNAi construct could trigger off-target effects, expression of a series of other 

biogenic amine receptors with closest homology (36-43% identity as assessed at the 

nucleotide level via ClustalW alignment [Larkin et al. 2007]) with Dop1R2 were also 

assayed.  These included the second fly dopamine D1-like receptor Dop1R1, the 

dopamine D2-like receptor Dop2R, the octopamine receptor Oamb, the tyramine receptor 

Oct-TyrR and the serotonin receptor 5-HT1A.  There was no significant change in the 

expression level of each GPCR gene under study in Dop1R2 RNAi vs. control flies, 
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except for that of Dop2R (the D2-like dopamine receptor), for which a slight increase was 

observed (Figure 2.2B).  

 

Expression of dsDop1R2 RNAi in the developing fly results in reduced viability, 

wing malformation and cuticle melanization phenotypes 

Dop1R2 RNAi flies that are reared at 29°C and are ubiquitously express the 

Dop1R2 RNAi construct (Figure 2.3) develop normally throughout larval and early pupal 

stages, but fail to emerge from their pupal cases.  When the flies are reared at a lower 

temperature (i.e., 25°C), the GAL4/UAS-mediated RNAi gene silencing is attenuated 

(Duffy 2002) and ‘escaper’ adults emerge (23.4% males and 54.7% females vs. control 

flies expressing GAL4 alone) (Figure 2.4A).  The escaper flies display other phenotypes 

with varying degrees of penetrance, including premature death, abnormal melanization 

(e.g., abdominal patchiness or complete absence of melanization, Figure 2.4B), and/or 

failure to expand wings (e.g., curly wing, Figure 2.4C).  Males showed a more 

pronounced phenotype, with a higher penetrance, than females (data not shown).  Two 

independent Act5C-GAL4 driver lines (FBst0004414 and FBst0003954) led to lethal, 

melanization and wing phenotypes in the progeny.  The lethal phenotype was 

recapitulated using two additional UAS-dsDop1R2 lines (Figures 2.3 and 2.5) generated 

by the Vienna Drosophila RNAi Center (i.e., 3391-GD and 10524-KK, see Materials and 

Methods).  In addition, male escapers (obtained with VDRC driver line 3391-GD) 

displayed the melanization phenotype (data not shown). 
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Analysis of the temporal requirements for Dop1R2 expression suggests a role at the 

third larval instar and prepupal stage 

We have utilized the well-established temperature effect on the Gal4/UAS system 

(i.e., more efficient at higher 29°C, vs. lower 25°C, temperature (Duffy 2002) to probe 

whether Dop1R2 expression is required during a specific time interval for the flies to 

complete development.  Developing flies were shifted from high (29°C) to low (25°C) 

temperatures, and conversely, during different developmental stages (i.e., embryo, 

first/second instar larva, third feeding/wandering instar larva, early pupa, late pupa) 

(Figure 2.6A).  Regardless of which developmental stage, or direction (high to low vs. 

low to high), was selected to perform the transfer, flies that were kept at the high 

temperature throughout the third instar larval stage later arrested at the late pupal/pharate 

adult stage (Figure 2.6B).  These experiments indicate that expression of Dop1R2 at the 

third instar larval stage is critical for survival of the developing progeny (Figure 2.6C).    

 

A preliminary transcriptome analysis of Dop1R2 RNAi flies reveals up-regulation of 

tyrosine hydroxylase and ecdysone-related genes, as well as stress and immune 

response genes   

 Affymetrix GeneChipR Drosophila genome array transcriptome expression 

analysis was performed in duplicate on early pupal stage Dop1R2 RNAi flies expressing 

the interference construct ubiquitously under restrictive conditions, and compared to that 

of corresponding control pupae.  Significance was assessed using Genespring array 

analysis software (Silicon Genetics).  A total of 163 genes were identified as significantly 
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differentially expressed following assessment of the two independent transcriptome 

analyses (Dataset 2.1).  Among these, only eight genes were down-regulated, with a 

modest -1.1 to -1.5 fold-difference of expression compared to control flies. Our focus was 

then shifted to 101 genes that were up-regulated with a fold-difference of ≥ 1.6 

(compared to expression levels in control flies, Figure 2.7 and Dataset 2.1; arbitrary 

cutoff of 1.6).  Results include a 3-fold increase in expression levels of tyrosine 

hydroxylase (TH) in Dop1R2 RNAi vs. control flies.  The Affymetrix GeneChipR array 

data discussed in this publication have been deposited into the NCBI's Gene Expression 

Omnibus (GEO) data repository (Edgar et al. 2002) and are accessible through the GEO 

Series accession number GSE66496 (http://www.ncbi.nlm.nih.gov/geo/query 

/acc.cgi?acc=GSE66496).  FlyBase annotation (St Pierre et al. 2014) and DAVID 

bioinformatic analysis (Huang et al. 2009) of the genes that are differentially expressed in 

response to Dop1R2 KD revealed highly significant enrichment (Benjamini corrected p-

value range of 4.9E-2 to 4.8E-6) of genes falling under selected ontology (GO) term 

classes (i.e., heat shock response, immune response, salivary gland development, larval 

and pupal morphogenesis, Dataset 2.2). The related genes that exhibited up-regulation 

include seven members in the late ecdysone-induced Eig71E (L71) gene family, which 

were up-regulated ~3-to 6-fold.  The expression levels of multiple stress response genes 

(e.g., Hsp22, Hsp26, Hsp67Bb, Hsp67Bc, Hsp68, Hsp70Bbb, Hsp70Bc, Hsf), 

antimicrobial peptides/innate response genes (CecA1/A2, dro2/dro3, LysX, IM1, IM2, 

IM3, IM4, IM10, IM23) associated with gut immune responses (Buchon et al. 2009),  and 

structural components of the cuticle (Cpr72Eb, Cpr65Ec, PCP) also increased in the 

Dop1R2 RNAi arrested flies compared to controls (Figure 2.7 and Dataset 2.2).  A 
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parallel analysis carried out using WEB-based GEne SeT AnaLysis Toolkit 

(WEBGestalt) (J. Wang et al. 2013a; B. Zhang et al. 2005) revealed enrichment of genes 

falling under similar GO term classes (Figure 2.8).  The relatedness of these groupings is 

further supported by the many protein-protein interactions revealed using STRING 

analysis (Figure 2.9). 

To further assess results from the microarray analysis, a subset of genes was 

randomly picked across the main GO categories (Figure 2.7).  These included Hsp67Bc, 

Hsp70Bc (heat shock response), Cpr72Eb, Dro2, Dro3, CecA1, LysX (immune 

response), and Edg91 (ecdysone-dependent genes).  Gene expression was assessed by 

RT-PCR in RNA preparations isolated from independent biological replicates (the 

corresponding Dop1R2 RNAi and control fly progeny were derived from three novel 

independent biological replicates (i.e. independent from each other, and from those used 

for the transcriptome analysis).  This analysis confirmed increased transcript levels for all 

genes assessed [using RNA preparations from three independent Dop1R2 RNAi (and 

control) biological replicates, Figure 2.10].   We also included Rel in the RT-PCR 

validations (although it fell below the ≥ 1.6-fold cutoff in the microarray analysis) since 

the corresponding protein is a key effector in the IMD pathway/gut immune response 

(Erturk-Hasdemira et al. 2009).  Using RT-PCR, we observed a slight, but significant, 

increase in Rel expression, in dsDop1R2 RNAi (vs. control) animals, as was observed by 

microarray analysis.  Quantitative PCR confirmed an increase (4x) in TH transcript 

levels, in Dop1R2 RNAi flies compared to controls (Figure 2.11).   
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Analysis of the tissue-specific requirements for Dop1R2 expression suggests a role 

for receptor function in the salivary gland 

To identify the tissue type(s) that underlie the observed phenotypes, Dop1R2 

RNAi expression was directed to specific tissues/cell types utilizing a series of GAL4 

drivers, and the effects of these genetic manipulations were monitored (Table 2.1).   It is 

well established that Dop1R2 is abundantly expressed in the mushroom bodies (MB) 

(Han et al. 1996; K. Zhang et al. 2007).  However, elav-mediated pan-neuronal 

expression of the RNAi construct and Tab2-mediated expression specifically targeted to 

the MB failed to compromise viability or to induce gross morphological abnormalities.  

The vast majority of drivers tested led to progeny with wild-type (WT) phenotypes 

(Table 2.1).     

As a follow-up to this initial study, a more focused selection of candidate drivers 

was tested, based on the results of the transcriptome analysis.  Of particular interest was 

the Eig71 defensin-like peptides, which are highly expressed in one tissue – the salivary 

gland – during the L3 wandering/white prepupal stage (Gorski et al. 2003).  The 

P{GawB}332.3 line (FBst0005398), which expresses GAL4 in the salivary glands, was 

obtained and utilized to generate salivary gland-expressing Dop1R2 RNAi flies.  

P{GawB}332.3-directed Dop1R2 knockdown resulted in developmental arrest of the 

progeny at the pupal/pharate adult stage, as seen with ubiquitous knockdown of Dop1R2 

(Figure 2.12A and 2.12C).  The P{GawB}332.3 knockdown flies also exhibited poorly 

formed tergites and sternites, with line 1 displaying the most severe phenotype (Figure 

2.12B).  Because P{GawB}332.3 also targets amnioserosal cells, which have a role in 

germ band retraction and dorsal closure in the developing embryo (Scuderi & Letsou 
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2005), the fraction of Dop1R2 RNAi embryos hatching into first instar larvae was 

assessed and compared to that of corresponding control embryos.  No evidence of 

embryonic lethality was found in RNAi-expressing organisms (Figure 2.13).  In 

subsequent work, we identified two additional larval salivary gland driver lines (i.e., 

P{GawB}c729 – FBst0006983, which also targets glia and the proventriculus, and 

P{GawB}17A – FBst0008474, which also targets female follicle cells, male accessory 

glands, testis sheath and cyst cells) that induce semi-lethality (72.1% and 58.2% lethality, 

respectively) in the corresponding Dop1R2 RNAi progeny (Figure 2.14A and 2.14B).  

Importantly, FBst0005398 and FBst0006983 resulted in progeny displaying wing and/or 

cuticle abnormalities (Figure 2.14C) as was observed with ubiquitous KD of Dop1R2.  

For these drivers, the lethal and abnormal morphology phenotypes showed higher 

penetrance in male flies vs. female flies (data not shown), as was observed with 

ubiquitous KD of Dop1R2.  As indicated in Table 2.1, one tissue that is common to all 

three phenotype-positive GAL4 drivers is the salivary gland.  Follow-up experiments 

confirmed GAL4-driven GFP expression in the salivary glands of corresponding larvae 

(Figure 2.15), while other tissues displayed background fluorescence. A fourth salivary 

gland driver (FBst0006870, for which GAL4 is under the control of the sgs3 gene 

promoter) did not result in reduced viability (or other phenotypes) in corresponding 

Dop1R2 RNAi progeny (Table 2.1).  

Since Dop1R2 signals though the stimulatory G protein Gαs, we performed a 

complementary genetic analysis inducing G protein RNAi-mediated knockdown in vivo. 

Two different UAS-dsGαs (stimulatory G protein) lines, as well as one UAS-dsGαi 

(inhibitory G protein) line, were used to generate progeny at 29°C that express dsRNA 
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under control of the P{GawB}332.3-GAL4 driver.  Crossing either Gαs RNAi line with 

the P{GawB}332.3 resulted in pharate adult progeny that failed to eclose, as compared to 

the corresponding controls.  However, the Gαi RNAi progeny develop normally and 

emerge from their pupal cases as fully formed adults (Figure 2.16, Table 2.2).  These 

findings support the inferences that Gαs signaling in the salivary glands is required for 

progression to the adult stage, and that the cognate GPCR(s) play an essential role in this 

tissue/developmental process.  In contrast, the inhibitory G protein Gαi does not play a 

critical role for development in the salivary glands.  While this finding does not 

exclusively pinpoint Dop1R2 as the only essential Gαs-coupled protein in the salivary 

glands, it supports the premise that we are not targeting Dop2R, which signals via Gαi.  

As observed with Dop1R2 RNAi, Gαs RNAi under the control of the sgs3 promoter 

(FBst0006870) does not lead to compromised viability (data not shown).  A follow-up 

molecular analysis confirmed expression of Dop1R2 in salivary glands of wild type 

prepupae (Figure 2.17), as has been documented in other insect species (i.e., cockroach, 

locust, tick (Troppmann et al. 2014; Gifford 1991; O. Baumann et al. 2002; Šimo et al. 

2011; Šimo et al. 2014; Ali et al. 1993)). 

 

Delivery of a Dop1R2 antagonist to larvae results in reduced viability, abnormal 

melanization and cuticle defects 

Pharmacological assessment of Dop1R2 activity in vitro confirmed that 

flupenthixol dihydrochloride, with an IC50 of 2.6 x 10-7 M (Figure 2.18), is a potent 

antagonist of this dopamine receptor (Hearn et al. 2002; Troppmann et al. 2014; Hill et al. 

2002).  Given the in vitro results, this compound was used to manipulate Dop1R2-
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mediated signaling in vivo, thus providing a means to complement the RNAi genetic 

manipulations described above.  Administering flupenthixol (within a range of 0.25 mM 

to 4 mM) to Drosophila second instar larvae resulted in a dose-dependent decrease in 

adult eclosion with an EC50 of 0.8 mM (Figure 2.19A) and developmental delay (Figure 

2.19B).  When flupenthixol was administered to Drosophila third instar feeding larvae (at 

either 5 mM to 10 mM), emerging adults displayed abnormal melanization and cuticle 

defects (penetrance ~10%-13%, Figure 2.19C), and these phenotypes were not observed 

in corresponding control flies (fed H2O vehicle alone).  Importantly, the morphological 

defects resulting from drug-induced blockade of Dop1R2 are similar to those observed 

with genetic knockdown of Dop1R2 (Figures 2.4B, 2.12B and 2.14C).  

 

 

D. DISCUSSION 

Our understanding of the molecular mechanisms that orchestrate the development 

of an adult fruit fly continues to expand.  Insect metamorphosis relies on temporal and 

spatial cues that mediate the transition from the larval to the adult stage.  Numerous gene 

families are tightly regulated to ensure normal insect metamorphosis, including genes that 

trigger larval tissue histolysis and genes that are responsible for protecting the morphing 

organism against microbial assault, as well as genes that mediate the formation of new 

adult structures.  We show that a Drosophila dopamine receptor, i.e., the D1-like receptor 

Dop1R2, plays an important role in suppressing the expression of genes, which when up-

regulated, lead to developmental arrest. 
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By using a reverse genetic approach, we show that ubiquitous knockdown of 

Dop1R2 results in pre-adult lethality that is dependent on receptor function during the 

third instar larval stage (Figures 2.4 and 2.6). Dop1R2 RNAi adult flies that escape pre-

adult lethality display multiple morphological phenotypes including hypomelanization, 

abnormally shaped/curly wings and defects in the cuticle  (in the tergum) (Figures 2.4B, 

2.4C and 2.12B).  The curly wing phenotype displayed by Dop1R2 RNAi escapers is 

very similar to that seen in flies that overexpress (2-fold increase) tyrosine hydroxylase 

(TH) in dopaminergic cells (Friggi-Grelin et al. 2003).  In agreement with this 

observation, TH is among the genes that respond to reduction in Dop1R2 knockdown (2-

4 fold increase in expression levels vs. controls) (Figure 2.7, Figure 2.11, Dataset 2.1).  

This finding may suggest that: (i) Dop1R2 participates in the negative regulation of TH, 

or (ii) compensatory mechanisms are triggered to restore normal DA-mediated signaling 

in the dying Dop1R2 RNAi organisms.  Given that DA synthesis and secretion occurs in 

Drosophila epidermal cells during molting and eclosion (Yamamoto & Seto 2014), the 

wing and melanization abnormalities seen in Dop1R2 RNAi escapers could be the 

consequence of TH dysregulation in the epidermal dopaminergic cells of the wing and 

cuticle.  Under normal conditions, a peak of TH activity is detected in late L3 

larvae/white prepupae (M. M. Davis et al. 2007; Gelbart & Emmert 2013), consistent 

with a role for Dop1R2 during these stages of development.  

Decreased Dop1R2 function leads to increased transcription of several cuticular 

proteins (CPs), including Edg91 and PCP (Figures 2.7 and 2.10, Dataset 2.1).  Along 

with ecdysone, many CPs play critical roles in puparial cuticle formation and 

sclerotization (Charles 2010).  Proteins encoded by ecdysone-dependent genes (Edg) 
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include temporally regulated CPs that are induced by increased ecdysteroid levels in the 

hemolymph (Charles 2010; Fechtel et al. 1989).  In Drosophila, Edg91 responds to 20E 

pulses and is abundantly expressed in the epidermis during early pupal development, at 

the time of exocuticle synthesis (Apple & Fristrom 1991).  ‘Pupal cuticle protein’ (PCP) 

is also temporally regulated by 20E, and is required for a successful third larval instar to 

pupal developmental transition.  Notably, PCP is most tightly regulated via a small 20E 

titer rise around the time of head eversion (Charles 2010; Doctor et al. 1985).  

Deregulated expression of CPs in Dop1R2 RNAi flies may also contribute to the 

observed abnormal phenotypes, specifically in the tergum (Figure 2.12B).   

To better assess the spatial requirements underlying Dop1R2 RNAi-induced 

developmental arrest in Drosophila, we selectively drove Dop1R2 dsRNA in various 

tissues/cell types (Table 2.1).  Our microarray analysis, which showed up-regulation of 

salivary glands specific genes (e.g. the Eig71E genes), suggested involvement of this 

tissue in mediating Dop1R2 effects.  Consistent with this observation, although most 

tissue-specific drivers resulted in normal progeny, targeting Dop1R2 knockdown to 

salivary glands (using three different GAL4 drivers, Table 2.1) led to arrested 

development/abnormal tergum in corresponding pharate adults. In addition, the 

corresponding progeny that escaped lethality displayed melanization and/or wing defects 

that were highly reminiscent of the phenotypes seen following ubiquitous Dop1R2 

knockdown (Table 2.1, Figure 2.4).  A follow-up molecular analysis confirmed 

expression of Dop1R2 in salivary glands isolated from wild type prepupae (Figure 2.17).  

This finding correlates with previous studies in other insect species (i.e., cockroach, 

locust, tick), which have demonstrated dopaminergic innervation of peripheral secretory 



! 49!

cells in the acini, and along the ducts, of the salivary glands (Gifford 1991; O. Baumann 

et al. 2002; Šimo et al. 2011).  More recently, D1-like dopamine receptors were found in 

the salivary glands of adult ticks and cockroaches, where they may play a role during the 

feeding phase, as well as modulate salivary secretion, myoepithelial cell contraction and 

effects of neuropeptides (Šimo et al. 2011; Troppmann et al. 2014; Šimo et al. 2014).   

A function for Dop1R2 in salivary glands is consistent with: (i) the observed 

(Dop1R2 RNAi-induced) deregulation of genes that are selectively expressed in this 

organ (e.g., Eig71E genes), and (ii) the DAVID GO clustering analysis of differentially 

expressed genes (Figures 2.7 and 10, Dataset 2.1 and 2.2), which reveals enrichment in 

salivary gland biological processes.  A compelling example comes from the family of 

Eig71E (aka L71) puff genes that are (concomitantly) induced exclusively in salivary 

glands, and specifically during puparium formation (they are then repressed ~12 hours 

later) (L. G. Wright et al. 1996).  It is known that the corresponding L71 small defensin-

like polypeptides are secreted from the salivary glands between the prepupal cuticle and 

imaginal epidermis, to help protect the metamorphosing organism against infection (L. G. 

Wright et al. 1996). The Eig71E genes participate in the secondary response to 20E (i.e., 

as “late” genes), which itself depends on the expression of the early-late genes BR-C and 

E74 (Crossgrove et al. 1996).  BR-C expression is also up-regulated in Dop1R2 RNAi 

flies, and derepression of this gene could lead to subsequent induction of the Eig71E 

genes in Dop1R2 RNAi flies.  Our studies support the premise that Dop1R2 acts 

upstream of selected late genes.  Of note, the absence of phenotype in sgs3-GAL4;UAS-

dsDop1R2 progeny may be due to temporal discrepancy between the activity of the sgs3 

(glue gene) promoter and the time at which Dop1R2 is transcribed.  
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 Further supporting the role of this receptor in development, pharmacological 

treatment of larvae with the established D1-like receptor antagonist flupenthixol 

dihydrochloride (Beggs et al. 2011; Blenau et al. 1998; Mustard et al. 2003; Meyer et al. 

2012; Reale et al. 1997) results in pre-adult developmental delay/arrest (Figure 2.19A and 

2.19B), as well as induced abnormal melanization and cuticle defects (Figure 2.19C) that 

recapitulate those observed by genetic manipulation of Dop1R2 expression.  Notably, 

flupenthixol and other selected compounds that also inhibit the mosquito AaDOP2 

receptor, which is the Aedes aegypti ortholog of the fly Dop1R2 receptor, have emerged 

as promising candidate insecticides to control vector arthropods (Meyer et al. 2012; 

Conley et al. 2015).  Our analysis, which documents drug-induced morphological 

abnormalities in adults that escape lethality, further highlights the potential of this family 

of compounds as potential insecticides.  Such anatomical defects would likely 

compromise survival of these disease-transmitting vectors in the field. 

Notably, analysis of genes that are differentially expressed in response to reduced 

levels of Dop1R2 reveals that the vast majority of them (95%) are up-regulated (Figure 

2.7 and Dataset 2.1).  This observation suggests that Dop1R2 may play an important role 

in repressing gene expression.  Functional annotation analysis of the genes for which 

expression increases ≥ 1.6 times, using DAVID bioinformatic resources (Huang et al. 

2009), identifies enrichment in genes implicated in several biological processes for which 

quantitative regulation is critical (Figure 2.7).  Several of the gene clusters fall under the 

GO term categories defense response, immune response, and response to heat, as well as 

salivary gland morphogenesis and histolysis (Dataset 2.2).   
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Such de-regulated activation of the immune system (in response to Dop1R2 

knockdown) in the developing fly may contribute to the observed lethal phenotype.  It is 

well-established that in Drosophila the balance between repression and induction of the 

immune defense is tightly regulated, and ensures optimal growth and size at 

metamorphosis (Abdelsadik & Roeder 2010; K.-Z. Lee & Ferrandon 2011; Åkerfelt et al. 

2010).   Control of the innate immunity enables larval growth amidst the plethora of 

bacteria and fungi found in the natural larval feeding environment and ensures high 

tolerance for the larval gut commensal microbiota, which has been shown to promote 

development (Charroux & Royet 2012; Storelli et al. 2011; Shin et al. 2011).  

Conversely, de-regulated immune responses can alter normal fly growth and 

development.  Abdelsadik and Roeder (2010) have demonstrated that chronic activation 

of the immune system of larval salivary glands is detrimental to fly development and 

survival (Abdelsadik & Roeder 2010).  Similarly, Rynes et al. (2012) have shown that 

chronic inflammation of the larval gut epithelium results in developmental delay, growth 

retardation and lethality (Rynes et al. 2012).   

Recent advances in the field have unraveled an exquisite interplay of negative 

regulators of the immune deficiency (IMD) pathway that together adapt the immune 

response to the microbiome encountered by the developing fly (dietary/beneficial or 

pathogenic).  These factors are essential to larval growth and immune homeostasis 

(Erturk-Hasdemira et al. 2009; K.-Z. Lee & Ferrandon 2011; Aparicio et al. 2013; Rynes 

et al. 2012; Ryu et al. 2004; Myllymaki & Ramet 2013; Lhocine et al. 2008; Fernando et 

al. 2014; Maillet et al. 2008), and loss-of-function mutations in these negative regulators 

can result in larval death (Rynes et al. 2012).  Our results suggest that down-regulation of 
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Dop1R2 leads to up-regulation of multiple antimicrobial peptides (AMPs), including the 

cecropins CecA1 and CecA2 (Figures 2.7 and 2.10), which are gut peptides strongly 

induced upon infection in an IMD/relish-dependent manner (Buchon et al. 2009; 

Tryselius et al. 1992).  In non-pathogenic conditions, these AMPs are expressed during 

metamorphosis (Tryselius et al. 1992) and are regulated by ecdysone (Z. Zhang & Palli 

2009).  Two other AMPs, Dro2 and Dro3, together with LysX, Hsp70Bc, Hsp67Bb and 

Hsp22 (also on the microarray list), comprise a small group of genes that respond to 

changes in fly gut microbiota (Broderick et al. 2014)).  LysX is a known effector of IMD 

response (Broderick et al. 2014).  Increased expression of an entire set of Drosophila-

specific immune-induced molecules (IMs, i.e., IM1, IM2, IM3, IM4, IM10, IM23, 

CG18107, CG16836 and IM2-like/CG15065) is observed in Dop1R2 RNAi animals 

(Figure 2.7 and Dataset 2.1).  These short peptides, which are normally released into the 

hemolymph following septic injury, are postulated to act as chemokines (Levy 2003; 

Verleyen et al. 2006).  Importantly, IM1, IM2, IM3, IM4, IM10, IM23, along with Dro2 

and AttB (Figure 2.7 and Dataset 2.1), were recently identified within a group of 14 

AMPs and IMs that are markedly up-regulated in mutant Drosophila deficient in 

activating transcription factor 3, atf3.  Atf3 plays an essential role in larval growth, and is 

highly expressed in the larval gut, salivary glands and Malpighian tubules (Rynes et al. 

2012).  The overlap between the deregulated gene set (and associated adverse effects on 

development) induced by Dop1R2 deficiency, and that induced by atf3 deficiency, 

suggests an important role for Dop1R2 in the control of the immune response.  

In addition to antimicrobial peptides, our study shows that the expression levels of 

multiple heat shock/stress genes increase in response to Dop1R2 deficiency, including the 
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major heat-inducible proteins (Hsp70Bc, Hsp70Bbc, and Hsp68), and small heat shock 

proteins (Hsp22 Hsp26, Hsp67Bb and Hsp67Bc) (Figure 2.7 and Dataset 2.1).  These 

chaperones are postulated to play a role in normal development, and under non-heat 

shock conditions, exhibit a peak of expression during the late L3/ early pupal stages 

(Sirotkin & Davidson 1982; Mason et al. 1984).  Expression of small hsps is regulated by 

a rise in the molting hormone ecdysone (Irland et al. 1982; Takahashi et al. 2010).  

Hsp22, Hsp67Bb and Hsp67Bc belong to a group of four hsps that regulate 

morphogenesis, and buffer developmental processes from environmental assault.  

Interestingly, the genes that encode Hsp22, Hsp26, Hsp67Bb and Hsp67Bc all cluster 

within a short (~5.5Kb) genomic region at cytological location 67B on chromosome 3L 

[FlyBase, (Ayme & Tissieres 1985)], consistent with possible co-regulation of their 

expression.  High levels of Hsp70 in Drosophila (due to one extra copy of the gene) are 

sufficient to decrease organismal growth, development and survival to adulthood (Krebs 

& Feder 1997).  Up-regulation of this gene alone in developing Dop1R2 RNAi flies 

(Figures 2.7 and 2.10) may thus contribute to the observed lethal phenotype that results 

from reduced Dop1R2 function. 

A complementary DAVID GO clustering analysis (Huang et al. 2009) was used to 

identify previously published studies with data sets that best correlate with the set of 

differentially expressed genes in Dop1R2 RNAi flies.  Intriguingly, the two most 

significant reports (i.e. PMID 16990270/Benjamini E-15 and PMID 16264191/Benjamini 

E-11, respectively, Dataset 2.2) both investigate chromatin remodeling and 

transcriptional activity during metamorphosis (Badenhorst 2005; Zraly et al. 2006).  In 

both studies, the authors show that deficiency in an ecdysone-dependent transcription co-
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factor affects expression of a limited subset of immune-related genes.  The genes 

identified exhibit substantial overlap with those that respond to Dop1R2 knockdown 

(Figure 2.7, in ecdysone-related and immune diagrams).  In support of a potential role of 

Dop1R2 in the regulation of transcription, sequence analysis (http://nls-

mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) reveals the presence of a bipartite 

nuclear localization signal (the major class of NSL found in nuclear proteins), as well as a 

BAF1/ABF1 chromatin reorganizing factor motif (http://www.genome.jp/tools/motif/) 

(Figure 2.20), within the Dop1R2 protein.   Both features are found nested in the third 

intracellular loop of the receptor.  Interestingly, in mammals, internalization of selected 

GPCRs (e.g., adrenergic, catecholaminergic) in response to steroid hormone (Gonzalez-

Arenas et al. 2006), their localization at the nuclear membrane and their ability to 

modulate gene expression (Tadevosyan et al. 2012; Vaniotis et al. 2011; Boivin et al. 

2008; C. D. Wright et al. 2012) have been documented. 

Taken together, our analyses strongly suggest a role for Dop1R2 in the 

developmental control of genes at the onset of metamorphosis.  We postulate that under 

normal conditions, at the time of ecdysone-responsive early gene induction (i.e., during 

the L3 stage), Dop1R2 in the salivary glands participates in the co-repression of 

ecdysone-responsive late genes.  We propose that the premature release of the Dop1R2 

inhibitory effect (using RNAi approaches) translates into increased expression of the L71 

defensin-like polypeptides, as well as a series of antimicrobial peptides, stress 

proteins/chaperones, cuticle and morphogenesis proteins in a de-synchronized manner.  

This misexpression could be highly detrimental to the developing fly, in agreement with a 

number of studies discussed above (Abdelsadik & Roeder 2010; Rynes et al. 2012; Krebs 
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& Feder 1997).  During normal development, however, regulated expression of this set of 

genes during the molting period not only ensures the completion of adult metamorphosis, 

but may also provide ‘prophylactic’ protection against microbial assault and injury at a 

time of increased vulnerability.  

The late pupal death induced by knockdown of Dop1R2 in salivary glands is 

reminiscent of that observed in flies that down-regulate, in the same tissue, the low 

abundance ecdysone receptor minor subtype EcR-A (M. B. Davis et al. 2005).  Future 

studies comparing the levels of EcRs and their subcellular localization in Dop1R2 RNAi 

flies may prove informative.  Our study provides a framework to further probe the 

molecular mechanisms, and structural domains within the receptor, that contribute to 

Dop1R2-induced regulation of fly development.   

 

E. METHODS 

Drosophila stocks and culture  

Two independent UAS-dsDop1R2 homozygous RNAi stocks (lines 1 and 2) were 

originally generated at Tufts Medical Center, Boston, MA (Kopin Laboratory, the 

lethality phenotype was first documented with these lines).  Two additional UAS-

dsDop1R2 stocks (FBst0460369: w1118;P{GD703}v3391 and FBst0477151: 

w1118;P{KK110947}VIE-260B) were later obtained from the Vienna Drosophila RNAi 

Center (VDRC, Vienna, Austria).  Two UAS-dsGαs stocks (FBst0455666: 

w1118;P{GD8547}v24958 and FBst0477312: P{KK107742}VIE-260B) and one UAS-

dsGαi stock (FBst0457318: w1118;P{GD12576}v28150/TM3) were also acquired from the 
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VDRC.  The w1118 stock and all of GAL4 driver fly lines (with the exception of Bursicon-

α-GAL4) were obtained from the Bloomington Drosophila Stock Center (Indiana 

University, Bloomington, IN): FBst0003954: y1w*;P{Act5C-GAL4}17bFO1/TM6B, Tb1; 

FBst0004414: y1w*;P{Act5C-GAL4}25FO1/CyO, y+; FBst0000458: P{GawB}elavC155; 

FBst0004440: w1118;P{GawB}Tab2201Y; FBst0003739: P{GawB}c698a,w1118; 

FBst0006871: w1118;P{Eip71CD-GAL4.657}TP1-1; FBst0025685: y1w*;P{CCAP-

GAL4.P}16; FBst0037534: w*;P{GawB}30A/CyO; FBst0005398: w*;P{GawB}332.3; 

FBst0008474: w*;P{GawB}17A/CyO; FBst0006983:w*;P{GawB}c729; FBst0006994: 

w1118;P{GawB}l(2)T32T32/CyO; FBst0003734: w1118;P{GawB}c381; FBst0006870: 

w1118;P{Sgs3-GAL4.PD}TP1; FBst0006357: y1w1118;P{Lsp2-GAL4.H}3; FBst0007098: 

w1118;P{drm-GAL4.7.1}1.1/TM3,Sb1, FBst0006874: w*;P{UAS-2xEGFP}AH2.  The 

Bursicon-α-GAL4 stock was generously provided by Dr. W. Honegger (Vanderbilt 

University, Nashville, TN).  All stocks were maintained at 25°C in a 12 h light:12 h dark 

cycle on standard Drosophila medium (Newby & R. F. Jackson 1991).  *FBst0460369 is 

no longer available at VDRC; however, a corresponding RNAi line using the same RNAi 

target region is available: FBst0460377, w1118;P{GD703}v3392.  

 

Dop1R2 RNAi construct generation and corresponding UAS-dsDop1R2 transgenic 

flies 

The pUAS-dsDop1R2 RNA interference (‘RNAi’) construct includes the yeast 

Upstream Activator Sequence (UAS; the binding site for the yeast transcription factor, 

GAL4) (Brand & Perrimon 1993), inverted repeats of a 825 bp sequence corresponding 

to the 3’ coding region of the Dop1R2 receptor cDNA (bp 807–1631 of the Dop1R2 
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cDNA sequence, with bp 1 corresponding to the start of the translation initiation codon), 

and a SV40 polyadenylation site.  Cloning of the sense and antisense cDNA repeats in the 

pUAST vector was performed as described previously for a Dop2R RNAi construct 

(Draper et al. 2007).  The pUAS-dsDop1R2 RNAi transgene construct (250–300 µg/ml) 

was coinjected with the P helper plasmid pΠ25.7wc (100 µg/ml) into preblastoderm w1118 

Drosophila embryos, according to standard protocols (Rubin & Spradling 1982).  Seven 

independent transformant lines containing the UAS-dsDop1R2 transgene were obtained, 

and maintained as homozygotes for the P[UAS-dsDop1R2] transgene.   

 

Generation of Dop1R2 RNAi flies 

The interference construct was expressed under the control of the well-

characterized GAL4/UAS binary system (Brand & Perrimon 1993).  UAS-dsDop1R2 

homozygous flies, that were either generated in the laboratory or obtained from VDRC 

(i.e., 3391-GD and 10524-KK, see Materials and Methods), were crossed with each of the 

GAL4 driver lines listed in Table 2.1.  Developing progeny were reared at either 29°C or 

25°C.  Isogenic progeny derived from a cross between the w1118 control strain and the 

corresponding GAL4 driver line were used as control flies for all molecular and 

phenotypic analyses.  

 

Phenotypic assessment 

Viability, melanization and wing phenotype profiles of the Act5C-GAL4/UAS-

dsDop1R2 RNAi progeny were assessed versus those of Act5C-GAL4/w1118 control 
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progeny.  To delineate the temporal requirements of Dop1R2 expression for adult 

eclosion/viability, developing flies were transferred from 25°C (‘permissive’ condition) 

to 29°C (‘restrictive’ condition) during different developmental stages, and emergence 

was monitored (as a function of developmental stage at transfer).  In a complementary 

analysis, and to assess the spatial requirement of Dop1R2 expression for the organismal 

viability, Dop1R2 RNAi progeny that express the RNAi construct in specific tissues/cell 

types were generated at 29°C, and characterized (the corresponding GAL4 drivers used in 

the crosses are listed in Table 2.1).   

 

Assessment of transcript knockdown in Dop1R2 RNAi  

RT-PCR analysis was utilized to assess transcript levels in Dop1R2 RNAi flies 

that express the Dop1R2 RNA interference construct ubiquitously vs. control flies that 

express the GAL4 transcription factor alone.  RNA was extracted from 10-20 pooled 

Dop1R2 RNAi early/pale pupae and corresponding control pupae.  Total RNA was 

isolated using Trizol reagent (Invitrogen, Grand Island, NY), and purified using the 

RNeasy Kit with DNase treatment (Qiagen, Valencia, CA), according to the 

manufacturer’s recommendations.  The RNA concentrations were quantified by 

spectrophotometry.  First strand complementary DNA (cDNA) was generated from total 

RNA (5 ng/μl) using MultiScribe Reverse Transcriptase (Applied Biosystems, Carlsbad, 

CA).  PCR was performed using the GeneAmp PCR core kit (Applied Biosystems, 

Carlsbad, CA) and the AmpliTaq Gold enzyme (Invitrogen, Grand Island, NY).  

Amplification was done using the GeneAmp PCR system 9700 thermocycler (Applied 

Biosystems, Carlsbad, CA).  The conditions for PCR included: initial denaturation at 
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95°C x 10 min; followed by 32 cycles of amplification: 94°C x 30 sec, 58°C x 30 sec and 

72°C x 1:30 min.  The reaction was completed with a seven-minute final extension at 

72°C.  The sequences of gene specific primers are provided in Table 2.3.  Dop1R2 primer 

pairs were designed to amplify: (i) an amplicon localized within the interference 

sequence (i.e., both forward and reverse primers anneal within RNAi sequence – “in/in 

pair”) to confirm expression of the RNAi repeats, as well as (ii) an amplicon that 

corresponds to a region of Dop1R2 mRNA within and outside the RNAi sequence (i.e. 

the forward anneals within RNAi sequence and the reverse anneal outside) – “in/out 

pair”) enabling assessment of endogenous Dop1R2 mRNA levels.  To assess whether the 

RNAi construct exerted non-specific off-target effects, primer pairs corresponding to 

other biogenic amine receptors [i.e., Oamb (CG3856), Oct-TyrR (CG7485), 5-HT1A 

(CG16720), Dop1R1 (CG9652), Dop2R (CG33517)] were designed, so that the sequence 

with the most extensive homology (as assessed by NCBI BLAST analysis) between these 

transcripts and the Dop1R2 sequence was amplified for each, respectively.  The primers 

were synthesized at the Tufts University Molecular Core (Tufts University, Boston, MA) 

and are listed in Table 2.3.   PCR products were run on a 1% agarose gel with ethidium 

bromide, and photographed using a Multi Image Light Cabinet and camera (Alpha 

Innotech Corporation, San Leandro, CA).  Alphaimager 2200 v5.04 imaging software 

(Alpha Innotech Corporation, San Leandro, CA) was used to visualize the bands and 

determine band intensity and saturation point.  RT-PCR analysis was performed in 

triplicate using independent biological replicates.  For each GPCR gene/transcript 

assessed, the values of the PCR signal intensities in Dop1R2 RNAi and control flies were 

obtained and significance evaluated using a pooled variance t-test.   
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Transcriptome analysis and RT-PCR validation 

Gene expression analysis was performed on the GeneChipR Drosophila genome 

array (DrosGenome1) using Affymetrix Gene Array technology, according to standard 

Affymetrix protocols (http://www.affymetrix.com/support/technical/byproduct.affx?pro 

duct=fly). Total early pupal RNA was isolated and purified as described in ‘Assessment 

of transcript levels’ above, and double-strand cDNA was obtained using SuperScript 

Double Stranded cDNA Synthesis kit (Invitrogen, Grand Island, NY).  In vitro 

transcription and RNA labeling was performed using Enzo BioArray High Yield RNA 

transcript (Affymetrix, Santa Clara, CA), according to the manufacturer 

recommendations.  Data were analyzed using the Microarray Suite program (Affymetrix, 

Santa Clara, CA), as well as Genespring array analysis software (Silicon Genetics).  Only 

genes with expression signal called as “M” (marginal present) or “P” (present) in both 

replicates were selected for further statically analysis.  A t-test was performed to assess 

the significance of differential expression between the transgenic RNAi lines and the 

controls.  Only genes that exhibited significant differences (p <0.05) in expression levels 

compared to controls in both experiments were considered for further bioinformatic 

analysis using DAVID (see following ‘Bioinformatic analysis’).  The complete analysis 

is provided in Dataset 2.1.  RT-PCR analysis was used to further assess/validate selected 

differentially expressed genes.  Early pupae were collected, and total RNA was isolated 

using TRI reagent (Sigma-Aldrich, St. Louis, MO) according to manufacturer’s 

instructions.  Synthesis of first strand cDNA was performed using 25 ng/µl total RNA 

and MMuLV Reverse Transcriptase (Invitrogen, Grand Island, NY). All primers were 

designed to span exon boundaries (except in circumstances of single-exon transcripts), to 
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avoid gDNA amplification (primer sequences are provided in Table 2.3).  The conditions 

utilized for RT-PCR were:  95ºC for 2 min, followed by 30 cycles of 95ºC x 15 sec, 50-

55ºC x 30 sec, 68ºC x 10 sec, and completed with one cycle of 72ºC x 10 min.  Samples 

were run on a 2% agarose gel with ethidium bromide and imaged to measure band 

intensity using ImageJ software (NIH, Bethesda, MD).  The PCR products were 

confirmed by sequencing (Eton Bioscience Inc., Boston, MA) the corresponding 

amplicon excised from the gel. 

 

Bioinformatic analysis 

All of the identified differentially expressed genes were used for functional 

annotation analysis with the DAVID Bioinformatics Resource 6.7 (Huang et al. 2009).  

Using the functional annotation tool for Drosophila melanogaster, a total of 101 genes 

that were up-regulated by ≥ 1.6-fold were analyzed for GO class and pathway 

associations.  For any identified gene ontology (GO) term and pathway, enrichment was 

considered significant if the p-value observed was < 0.05 (Benjamini et al. 2001). 

Alternatively, the set of genes was analyzed using WEB-

based GEne SeT AnaLysis Toolkit (WebGestalt), designed for functional genomic, 

proteomic and large-scale genetic studies. The program uses the hypergeometric test for 

enrichment evaluation analysis, and Benjamini-Hochberg multiple test adjustment, to 

assess enrichment significance (P.-H. Wang et al. 2013b; B. Zhang et al. 2005).  In 

addition, protein-protein interaction analysis was performed with STRING 9.1 for all of 

the genes up-regulated by ≥ 1.6-fold (Szklarczyk et al. 2010). 
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Quantitative RT-PCR 

For quantitative RT-PCR, SYBR Green fluorescence using the Quantitect SYBR 

Green kit (Qiagen, Valencia, CA) was used to quantify production of a PCR-generated 

cDNA fragment (primers sequences are listed in Table 2.3).  Amplification and data 

analysis were performed using the ABI Prism 7700 (Applied Biosystems, Carlsbad, CA).  

The PCR conditions utilized for RT-PCR were: 50ºC x 2 min, 95ºC x 15 min, followed 

by 40 cycles of 95ºC x 15 sec, 64ºC x 45 sec.   

  

Analysis of Dop1R2 expression in prepupal tissues 

The brain and salivary glands were dissected from prepupal w1118 D. 

melanogaster.  For each tissue, total RNA was isolated, and cDNA was prepared using 

50 ng/µl total RNA (as detailed in ‘RT-PCR validations’, above).  Dop1R2 was amplified 

using primers that span nucleotide positions 1521-1637 (isoforms A and C) or 1598-1711 

(isoform B), with bp 1 corresponding to the start of the translation initiation codon.  As 

an endogenous control, Act5C (CG4027) was amplified and used for normalization.  To 

enable detection of tissue contamination, primers were designed to amplify repo 

(CG31240) cDNA (repo expression is enriched in glia) to provide a brain-specific probe 

(Watts et al. 2004)), and sgs5 (CG7596) cDNA, to provide a salivary gland-specific 

probe.  All primers were designed to span exon boundaries (sequences are listed in Table 

2.3) to avoid gDNA amplification.  PCR conditions and imaging were performed as 

mentioned in the validation portion of ‘Transcriptome analysis and RT-PCR validation.’  
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To confirm that the amplicon corresponded to Dop1R2, DNA bands were excised from 

the gel and sequenced. 

 

In vitro Dop1R2 pharmacology 

Luciferase assays were performed as previously described, with minor 

modifications (Harwood et al. 2013).  HEK293 cells in 96-well plates were grown in 

serum-free Dulbecco’s modified eagle medium with antibiotics.  After 48 hours, cells 

were transfected using PEI (1 μg/ml) with the following constructs: the Drosophila 

Dopamine 1 receptor 2 (Dop1R2) cloned into pcDNA1.1 (4 ng/well), a CRE-LUC-HCL-

PEST luciferase reporter gene (5 ng/well), and β-galactosidase-encoding plasmid (5 

ng/well) as a transfection control.  For agonist assays, cells were treated with the 

indicated concentrations of dopamine hydrochloride 24 hr after transfection (Product 

H8502, Sigma, Natick, MA).  For antagonist assays, butaclamol hydrochloride (Product 

D033, Sigma, Natick, MA) or flupenthixol dihydrochloride (Product 4057, Tocris 

Bioscience, Bristol, UK) was added to cells for 15 minutes prior to the addition of 1 μM 

dopamine.  For both agonist and antagonist assays, cells were treated with compound for 

4 hr at 37°C.  Luciferase activity was quantified as an index of Dop1R2 signaling.  

Activity data were normalized relative to β-galactosidase activity as a control for 

transfection efficiency. 
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In vivo treatment of larvae with a Dop1R2 small molecule antagonist  

Adult w1118 D. melanogaster were allowed to mate for 12 hours at 25°C to obtain 

developmentally synchronized eggs laid on Drosophila medium.  All adults were 

removed, and larval development was allowed to continue for ~48 or ~72 hours, to obtain 

L2 or L3 instar larvae.  Flupenthixol dihydrochloride (Product 4057, Tocris Bioscience, 

Bristol, UK) was prepared as a 25 mM stock solution in dH2O.  The concentration of the 

drug that was used to feed L2 larvae ranged from 4 mM (maximum) to 0.25 mM (using 

two-fold serial dilutions of the drug).  L3 larvae were fed flupenthixol at 5 mM or 10 

mM.  The drug solutions, or dH2O vehicle-only, were used to prepare instant fly food 

(Carolina Biological Supply Company, Burlington, NC) as follows: 0.5 g of fly food was 

placed into 25 x 95 mm polystyrene tubes (Dot Scientific Inc., Burton, MI) with 2 ml of 

solution (prepared in dH2O and 0.1% (v/v) including Fast Green Fast Green FCF dye 

(Product F7258, Sigma-Aldrich, St. Louis, MO).  Fifty L2 or thirty L3 instar larvae were 

inserted gently into tubes that were kept in a humid chamber at 25°C during the course of 

the treatment. 

 

 

 

 

 



! 65!

F. TABLES, FIGURES AND LEGENDS 

Figure 2.1. Dop1R2 cDNA and a corresponding interference construct.  (A) Coding 
sequences encompassing transmembrane domains (TMDs) 1-7 are shaded (dark gray).  
Knockdown region expanded, with TMDs 5-7 indicated (white boxes).  UTR regions 
(light gray).  (B) pUAS-dsDop1R2 interference construct, including the yeast Upstream 
Activator Sequence (UAS; binding site for the yeast transcription factor, GAL4), the 
Dop1R2 inverted repeats and an SV40 polyadenylation site.  (C) Crosses and knockdown 
schematic, including Dop1R2 inverted repeat (black). 

 

 

!

!

!

!

B Dop1R2  
inverted repeat 

SV40 polyA  

white  
(selection marker) 

P5� 

P3� 
UAS 

Hsp70 
TATA 

pUAS-dsDop1R2 
RNAi construct 

C
GAL4  
driver 

UAS-dsDop1R2  
RNAi responder 

GAL4 enhancer 825bp 
Dop1R2 UAS 

Double stranded RNA 

Degradation of Dop1R2 mRNA  

Decreased Dop1R2 expression 

X 

825bp 

Dop1R2 

Dop1R2 

Dop1R2 

G
4 

Dop1R2-RA 
Dop1R2-RB 
Dop1R2-RC 

dsDop1R2 (825 bps) 

A

 
TM 
6 

 
TM 
7 

 
TM 
5 



! 66!

Figure 2.2. Dop1R2 RNAi flies show decreased Dop1R2 transcript levels.  (A) 
Transcript levels assessed by RT-PCR.  RNA from Dop1R2 RNAi and control flies was 
reverse transcribed, and PCR was performed in triplicate using primer sets corresponding 
to endogenous Dop1R2 or to Dop1R1 (as a normalization control).  (B) Dop1R2 
transcript levels are significantly decreased in Dop1R2 RNAi flies (genotype: w1118;UAS-
dsDop1R2/+;Act5C-GAL4/+), compared to controls (genotype: w1118;UAS-
dsDop1R2/+;TM6B/+).  The average band intensity of the Dop1R2 RNAi PCR product 
was normalized to control PCR product for Dop1R1. Primers corresponding to Dop1R2 
as well as other biogenic amine receptors (Oamb, octopamine receptor; Oct-Tyr, 
tyramine receptor; 5-HT1A, serotonin receptor 1A; Dop1R1, other D1-like Dopamine 
receptor; Dop2R, D2-like dopamine receptor) and an Actin5C control were used (Table 
2.3). Error bars indicated standard variance of the mean for each gene. Significance was 
determined for the difference in intensity of the RNAi sample PCR band versus the 
control PCR band using a one-sided t-test. * p < 0.05, ** p ≤ 0.01, *** p ≤ 0.001.  Driver 
stock: Act5C-GAL4 (FBst0003954). 
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Figure 2.3. dsDop1R2 RNAi constructs.  Sequences of the three RNAi constructs 
utilized in the present study, and alignment on Dop1R2-RB mRNA GenBank reference 
sequence.  The RNAi sequences include those used to generate Vienna Drosophila RNAi 
Center (VDRC) stocks 3391-GD (FBst0460369) / construct 703 and 105324-KK 
(FBst0477151) / construct 110947, as well as Tufts Medical Center (TMC) Dop1R2 lines 
(Materials and Methods).  
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>Dop1R2_BL26018_RNAi 
CAGCACTGAGTTGCAATGGTGGACGACAATGGCTCGTCGCCGGAAGTGGAAGGAGCGGAAGGAGCCGGCGCGCCCCTCCT 
GGCGCTCCTCCGGGTGGATGGGCTCAATCAGACGCAGACCCGTTCTCCCTCGCCGTCGTTCTTCGGCAGCTACAACATCT 
CCGAGGATGTCTACTTCTACTTCAATGGGCTGCCGACGAGCACGGAGCTCGTGCTGAACGCCACCACCTCCGCCACCAGC 
GCCACCTTGAGTCCTGCGATGGTGGCAACAGGAGGTGGCGGCACCACCACGCCGGAACCCGATCTCTCCGAGTTCCTGGA 
AGCGCTGCCCAACGACCGTGTAGGCCTGCTTGCCTTCCTCTTCCTGTTCTCCTTCGCCACGGTTTTCGGCAACTCACTGG 
TCATCCTGGCCGTCATCCGGGAGCGGTACTTGCA 
 
>Dop1R2_VDRC3391_RNAi 
CTGCGAGGGATGGCGAGATGCCCGCCTACAAGTGCACCTTCACTGAGCACCTAGGCTATCTGGTCTTCTCGTCGACGATA 
TCCTTCTACCTGCCGCTTCTAGTGATGGTCTTCACCTACTGTCGCATCTACAGGGCAGCCGTCATCCAGACGAGATCTCT 
TAAGATTGGAACCAAGCAGGTGCTCATGGCCTCCGGGGAACTGCAGCTCACATTGCGCATTCATCGTGGTGGCACTACGC 
GGGATCAGCAAAACCAGGTCTCCGGAGGAGGAGGTGGCGGAGGAGGAGGTGGCGGTGGCGGAGGATCTCTGAGCCACTCG 
CACTCCCATTCGCAC 
 
>Dop1R2_TMC_RNAi 
TCTGGTCTTCTCGTCGACGATATCCTTCTACCTGCCGCTTCTAGTGATGGTCTTCACCTACTGTCGCATCTACAGGGCAG 
CCGTCATCCAGACGAGATCTCTTAAGATTGGAACCAAGCAGGTGCTCATGGCCTCCGGGGAACTGCAGCTCACATTGCGC 
ATTCATCGTGGTGGCACTACGCGGGATCAGCAAAACCAGGTCTCCGGAGGAGGAGGTGGCGGAGGAGGAGGTGGCGGTGG 
CGGAGGATCTCTGAGCCACTCGCACTCCCATTCGCACCACCATCATCACAATCACGGCGGTGGCACGACGACCTCCACGC 
CGGAGGAGCCGGATGATGAGCCGCTATCCGCTCTGCATAACAACGGACTGGCACGCCATCGGCACATGGGCAAGAACTTC 
TCGCTGTCCAGGAAACTGGCGAAGTTCGCCAAGGAGAAGAAAGCGGCCAAGACGCTGGGCATCGTGATGGGCGTGTTCAT 
CATCTGTTGGCTGCCCTTCTTCGTGGTCAACCTGCTGTCTGGGTTCTGCATCGAGTGCATCGAGCACGAGGAGATCGTCT 
CGGCAATCGTCACCTGGCTCGGCTGGATCAACTCCTGCATGAATCCTGTGATTTACGCCTGCTGGAGCAGGGACTTTCGC 
AGGGCCTTTGTGCGTCTGCTGTGCATGTGCTGTCCACGCAAGATTCGCCGCAAGTACCAGCCCACGATGCGTTCCAAATC 
GCAGAGATTCGCGACGCGGCGCTGCTACTCGACCTGCTCGCTGCACGGCATTCAGCACGTGCGACACAACTCCTGCGAGC 
AGACCTACATATAGTTTAGCGTAGA 
 
>Dop1R2_VDRC105324_RNAi 
GCAGGCGTAAATCACAGGATTCATGCAGGAGTTGATCCAGCCGAGCCAGGTGACGATTGCCGAGACGATCTCCTCGTGCT 
CGATGCACTCGATGCAGAACCCAGACAGCAGGTTGACCACGAAGAAGGGCAGCCAACAGATGATGAACACGCCCATCACG 
ATGCCCAGCGTCTTGGCCGCTTTCTTCTCCTTGGCGAACTTCGCCAGTTTCCTGGACAGCGAGAAGTTCTTGCCCATGTG 
CCGATGGCGTGCCAGTCCGTTGTTATGCAGAGCGGATAGCGGCTCATCATCCGGCTCCTCCGGCGTGGAGGTCGTCGTGC 
CACCGCCGTGATTGTGATGATGGTGGTGCGAATGGGAGTGCGAGTGGCTCAGAGAT 
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Figure 2.4. Ubiquitous knockdown of Dop1R2 results in reduced adult emergence 
and wing and/or melanization phenotypes.  (A) Ubiquitous knockdown of Dop1R2 at 
29°C results in 100% of Dop1R2 RNAi (genotype: w1118;UAS-dsDop1R2/+;Act5C-
GAL4/+) flies failing to emerge, compared to control flies (genotype: w1118;UAS-
dsDop1R2/+;TM6B/+)  At 25°C, 23.4-54.7% of Dop1R2 RNAi flies develop into adults 
(‘escapers’).  Escaper flies may exhibit two other phenotypes:  hypomelanization and 
curly wing.  (B) Hypomelanization phenotype appears as reduced melanization of 
abdominal cuticle (arrows).  25°C n = 699 and 29°C n = 117.  (C) Curly wing phenotype 
appears as bent/curved adult wing (arrows).  Driver stock: Act5C-GAL4 (FBst0003954). 
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Figure 2.5. dsDop1R2 knockdown-induced lethality is recapitulated with alternate 
RNAi constructs.  (A) and (B) Ubiquitous knockdown of Dop1R2.  (A) VDRC 3391-
GD (genotype: w1118;UAS-dsDop1R2/+;Act5C-Gal4/+) results in 98% lethality at 29°C 
(n = 58) and 94% lethality at 25°C, or viability (n = 44).  (B) VDRC 105324-KK 
(genotype: w1118;TM6B/+;UAS-dsDop1R2/+) results in 97% lethality at 29°C (n = 59), 
compared to control balancer siblings (genotypes: w1118;CyO/+;UAS-dsDop1R2/+ and 
w1118;CyO/UAS-dsDop1R2, respectively).  All male escaper flies (n=4) obtained when 
using the VDRC 3391-GD RNAi construct exhibited the hypomelanization phenotype 
(described in Figure 7).  (C) Salivary gland/amnioserosa targeted knockdown of Dop1R2 
VDRC 3391-GD results in 68% lethality at 29°C in experimental flies (genotype: 
w1118;UAS-dsDop1R2/+;P{GawB}c729-GAL4/+), compared to controls (genotype: 
w1118;P{GawB}c729-Gal4/+) (n = 53).  VDRC Dop1R2 knockdown stocks: 3391-GD 
(FBst0460369) and 105324-KK (FBst0477151).  Driver stocks: Act5C-GAL4 
(FBst0003954), P{GawB}17A-GAL4 (FBst0008474) and P{GawB}c729-GAL4 

(FBst0006983). 
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Figure 2.6. Down-regulation of Dop1R2 around larval-to-pupal ecdysis leads to 
developmental arrest.  (A) Schematic of the temperature shift assay of the developing 
progeny.   (B) Analysis of progeny that was switched from 29ºC to 25°C.   (C) Analysis 
of progeny that was switched from 25°C to 29°C.  Percent of Dop1R2 RNAi (line 1 or 
line 2) (genotype: w1118;UAS-dsDop1R2/+;Act5C-GAL4/+) that emerge vs. controls 
(genotype: w1118;UAS-dsDop1R2/+;TM6B/+).  Dop1R2 RNAi flies reared at 29°C 
throughout development fail to emerge as adults, while of those reared at 25°C 
throughout development show reduced emergence.  When flies are transferred between 
these two temperatures at different stages of development, the time course of lethality is 
revealed.  Growth at 25°C n = 1194 (line 1), n = 1107 (line 2), and growth at 29°C n = 
1969 (line 1), n = 2212 (line 2). 

!
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Figure 2.7. Transcriptome analysis of Dop1R2 RNAi arrested flies reveals up-
regulation of families of related genes.  Results indicate an increase in the expression of 
101 genes that were significantly up-regulated by ≥ 1.6 times in Dop1R2 RNAi flies 
(genotype: w1118;UAS-dsDop1R2/+;Act5C-GAL4/+), compared to control flies 
(genotype: w1118;UAS-dsDop1R2/+;TM6B/+).  The fold increase change in transcript 
level is indicated in parentheses.  Statistical significance was determined using a t-test on 
the average of two independent biological replicates, with a cutoff of p < 0.05.  Families 
were assigned by DAVID functional assignment and by manual annotation using 
FlyBase.  Driver stock: Act5C-GAL4 (FBst0003954). 
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Figure 2.8. WEB-based GEne SeT AnaLysis (WEBGestalt).  Analysis of dsDop1R2 
differentially expressed genes reveals enrichment in GO categories categorized by 
biological process, molecular function and cellular component.  The top 10 GO 
categories that have a Benjamini corrected p-value of < 0.05 (red) and p-value > 0.05 
(brown), as well as the non-enriched parents (black), are depicted.  Each node provides:  
GO category, gene number in category and the adjusted p-value indicating the 
significance of enrichment. 

 

 

 

!

!

!



! 73!

Figure 2.9. STRING analysis reveals protein-protein interactions.  Interactions 
indicated by connecting lines.  Interactions predicted based on genomic content high 
throughput expression, co-expression and/or text-mining via STRING database (version 
10) (Szklarczyk et al. 2010).  Legend indicates resource used in interaction prediction.   
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Figure 2.10.  RT-PCR analysis confirm differential expression of genes in Dop1R2 
RNAi flies.  (A) Transcript levels assessed by RT-PCR.  RNA obtained from Dop1R2 
RNAi (genotype: w1118;UAS-dsDop1R2/+;Act5C-GAL4/+) and control pupae (genotype: 
w1118;UAS-dsDop1R2/+;TM6B/+) was reverse transcribed, and PCR was performed in 
triplicate using primer sets corresponding to gene of interest or to Act5C (as a 
normalization control).  (B) Quantification of transcript levels. The average band 
intensity of Dop1R2 RNAi PCR products was normalized to control PCR products for 
Act5C.  Error bars indicate SEM, and significance was determined by comparing the 
difference in intensities of the RNAi PCR bands versus the control PCR bands using an 
unpaired t-test. * p < 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Driver stock: Act5C-GAL4 
(FBst0003954). 
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Figure 2.11. Tyrosine hydroxylase expression is increased in dsDop1R2 pupae.  
Dop1R2 knockdown pupae with the genotype w1118;UAS-dsDop1R2/+;Act5C-GAL4/+) 
exhibit increased TH transcript levels compared to controls (genotype: w1118;UAS-
dsDop1R2/+;TM6B/+).  Four-fold difference (i.e., two cycles of amplification) in TH 
expression is observed in Dop1R2 RNAi vs. controls using two independent biological 
replicates.  Driver stock: Act5C-GAL4 (FBst0003954). 
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Figure 2.12.  Dop1R2 down-regulation using the P{GawB}332.3 driver leads to 
developmental arrest at the pharate adult stage.  (A) Expression of Dop1R2 RNAi 
construct under the control of the P{GawB}332.3 driver (GAL4 expressed in the salivary 
glands and amnioserosa), induces 99.2% lethality before eclosion.  Survival of RNAi 
flies (genotype: w1118;UAS-dsDop1R2/P{GawB}332.3-GAL4) is expressed as percent 
control progeny (genotype: w1118;TM6B/GawB-GAL4).  n = 147 (line 1), n = 124 (line 2).  
(B) Images of pharate adults dissected out of the pupal case suggest a poorly formed 
abdomen (lines 1 and line 2) or incomplete cuticle formation (line 2).  (C) Analysis of 
progeny that wereas switched from 25°C to 29°C.  Percent of Dop1R2 RNAi (line 1) 
(genotype: w1118;UAS-dsDop1R2/P{GawB}332.3-GAL4) that emerge vs. controls 
(genotype: w1118;TM6B/GawB-GAL4).  Dop1R2 RNAi flies reared at 29°C throughout 
development fail to emerge as adults, while of those reared at 25°C throughout 
development show reduced emergence.  When flies are transferred between these two 
temperatures at different stages of development, the time course of lethality is revealed.  
n = 543.  Driver stock: P{GawB}332.3-GAL4 (FBst0005398).   
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Figure 2.13. Progression from egg to L1 instar.  Dop1R2 RNAi (line 1) or w1118 flies 
were crossed with the P{GawB}332.3 driver line [GAL4 expressed in the salivary glands 
and amnioserosa (Wodarz et al. 1995)] to assess completion of embryogenesis.  
dsDop1R2 flies (genotype: w1118;UAS-dsDop1R2/P{GawB}332.3-GAL4) showed similar 
progression into L1 compared to controls (genotype: w1118;P{GawB}332.3-GAL4/+) (n = 
50).  Driver stock: P{GawB}332.3-GAL4 (FBst0005398).   
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Figure 2.14. dsDop1R2 knockdown using alternate salivary gland driver results in 
semi-lethality.  (A) Knockdown of Dop1R2 via TMC line 1 resulted in semi-lethality 
when driven by an additional larval salivary gland driver line (FBst0008474 which also 
targets glia and the proventriculus).  At 29°C, 48.1% eclosion was observed in 
knockdown flies (genotype: w1118;UAS-dsDop1R2/P{GawB}17A-GAL4) vs. control 
siblings (genotype: w1118;CyO/UAS-dsDop1R2) (n = 397).  (B) At 29°C, 27.9% eclosion 
was observed in knockdown flies (genotype: w1118;UAS-dsDop1R2/P{GawB}c729-
GAL4) vs. control siblings (genotype: w1118;UAS-dsDop1R2) (n = 211).  (C) dsDop1R2 
escapers (genotype: w1118;UAS-dsDop1R2/P{GawB}17A-GAL4) display cuticle and 
wing abnormalities (left and center, arrows), or fail to fully eclose from pupal case 
(right).  Driver stocks: P{GawB}17A-GAL4 (FBst0008474) and P{GawB}c729-GAL4 

(FBst0006983).!
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Figure 2.15. Confirmation of salivary gland expression in tested driver stocks.  To 
confirm GAL4 expression in salivary glands, UAS-GFP crosses were generated using 
driver stocks: FBst0005398, FBst0008474, FBst0006983, FBst0006870 or w1118 as a 
control (genotype, respectively: w1118;UAS-EGFP/P{GawB}332.3-GAL4, w1118;UAS-
EGFP/P{GawB}17A-GAL4, w1118;UAS-EGFP/P{GawB}c729-GAL4 vs. control siblings 
(genotype: w1118;UAS-EGFP/+).  UAS-GFP responder stock: w*;P{UAS-2xEGFP}AH2 
(FBst0006874).  All drivers displayed GFP expression in salivary glands with no other 
overlapping tissue type.  All drivers tested resulted in marked GFP expression in salivary 
glands. No overlapping fluorescence was detected in other tissue/ cell type. Control flies 
showed dull (background) fluorescence only.  All images, magnification: 100X,image 
exposure: 5 msec. 

 

 
w*;P{GawB}17A 

 
w*;P{GawB}c729 

w*;P{GawB}332.3 

Brightfield 100X GFP 100X 

w1118 



! 80!

Figure 2.16.  Gαs-targeted, but not Gαi-targeted KD in the salivary glands results in 
pre-adult lethality. Expression of either of two Gαs (stimulatory G protein) RNAi 
constructs (Choi et al. 2012) under the control of P{GawB}332.3 driver induces lethality 
before eclosion (line 1 genotype: w1118;P{GawB}332.3-GAL4/+;UAS-dsGαs/+, line 2 
genotype: w1118;P{GawB}332.3-GAL4/UAS-dsGαs).  Expression of the Gαi (inhibitory G 
protein) RNAi construct, using the same driver, does not compromise viability (genotype: 
w1118;P{GawB}332.3-GAL4/+;UAS-dsGαi/+).  Survival is expressed as percent of 
balancer progeny.  Driver stocks: Gαs line 1: FBst0455666, Gαs line 2: FBst0477321, 
Gαi line: FBst0457318.  Gαs line 1: n = 141, Gαs line 2:  n = 100, Gαi: n = 416. 
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Figure 2.17.  Dop1R2 is expressed in prepupal salivary glands and brain.  (A) RNA 
obtained from the brain and salivary glands of w1118 prepupae was reverse transcribed, and 
PCR was performed in triplicate using primer sets corresponding to Dop1R2-RB, 
Dop1R2-RA/C or Act5C (as a normalization control).  Transcript variants A/C and B are 
detected in the brain, and transcript variant B is detected in the salivary glands (the 
presence of a low abundance Dop1R2-RA/C transcript in salivary glands cannot be 
excluded).   (B) Quantification of transcript levels (ImageJ software).  Expression is 
quantified as band intensity for three biological replicates of Dop1R2-RB, or Dop1R2-
RA/C, normalized to Act5C. 
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Figure! 2.18.! !Dop1R2! is! stimulated! by! dopamine! and! antagonized! by! two!
known! small! molecules! in# vitro.! ! (A)! Drosophila! Dop1R2! protein! displays!
concentration=dependent!activity!when!stimulated!with!dopamine!(EC50!=!2.7!x!10=7!
M).!!(B)!Dop1R2!is!antagonized!by!flupenthixol!dihydrochloride!(IC50!!=!2.6!x!10=7!M)!
and!butaclamol!(IC50!!=!21.6!x!10=7!M).! !Data!represent!the!mean!±!SEM!from!three!
independent!experiments,!each!performed!in!triplicate.!!!!
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Figure 2.19. Exposure of Drosophila melanogaster (w1118) larvae to flupenthixol 
dihydrochloride results in increased lethality and developmental abnormalities.  (A) 
Assessment of adult eclosion following larval exposure to flupenthixol dihydrochloride 
reveals a concentration-dependent effect (EC50 = 0.8 mM).  (B) Drug exposure results in 
developmental delay/reduced body size.  Image showing representative larval body size 
at each drug concentration, recorded at day 6 post-treatment onset.  (C) Introduction of 
flupenthixol pre-wandering L3 larval by feeding at 5 mM and 10 mM results in cuticle 
abnormalities in 13% and 10% of adults, respectively.  Images shown of two day old 
adults (5 days post-exposure onset).  n = 30 per concentration, 3 independent replicates. 
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Figure 2.20. Dop1R2 sequence motif.  (A) Sequence analysis via cNLS mapper 
(http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) reveals the presence of 
a bipartite nuclear localization signal.   (B) GenomeNet motif analysis via 
(http://www.genome.jp/tools/motif/) reveals homology to BAF1/ABF1 chromatin 
reorganizing factor. 
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Table 2.1.  Effect of tissue-specific down-regulation of Dop1R2.  A series of GAL4 
drivers was used to down-regulate Dop1R2 expression in specific tissue/cell types.  The 
lethality observed when down-regulating expression ubiquitously was recapitulated only 
when using the P{GawB}332.2 driver, which expresses GAL4 in the salivary glands and 
amnioserosa.  Semi-lethality was observed when using the P{GawB}17A and 
P{GawB}c729 drivers.  All of the above mentioned drivers resulted in abnormal 
melanization and cuticle phenotypes.   
 

GAL4 driver Symbol Expression Phenotype 

P{Act5C-GAL4}17bFO11,2,3 ubiquitous Lethal, melanization and 
wing defect (in escapers) 

P{Act5C-GAL4}25FO11,2,3,4 ubiquitous Lethal, melanization and 
wing defect (in escapers) 

P{GawB}332.31,2,3 salivary glands, amnioserosa Lethal, melanization and 
wing   defect (in escapers) 

P{GawB}17A1 salivary glands, glia, cardia  Semi-lethal 

P{GawB}c7291!
salivary glands, female follicle cells, 
male accessory glans, testis sheath, 
cyst cells!

Semi-lethal, melanization 
and wing defect (in 
escapers)!

P{GawB}elav[C155]1 pan-neuronal WT 

P{GawB}Tab2[201Y]1 primarily in mushroom bodies WT 

P{GawB}c698a1 3IL CNS, not in discs WT   

P{Eip71CD-GAL4.657}TP1-11 3IL brain and epidermis WT   

Bursicon-α- GAL41,3 bursicon-α positive cells WT  

P{Ccap-GAL4.P}161,3 crustacean cardioactive peptide-
secreting cells WT 

P{GawB}30A1 imaginal discs WT 

P{GawB}l(2)T32T321 amnioserosa, larval brain, wing discs WT 

P{GawB}c3811 
amnioserosa,  
embryonic PNS - stage 14 

WT 

P{Sgs3-GAL4.PD}TP11 salivary glands WT 

P{Lsp2-GAL4.H}31 3IL fat body WT 

P{drm-GAL4.7.1}1.11 
gastrointestinal tract, 
malpighian tubules 

WT 

• All phenotypes were assessed on progeny that developed at 29°C 
• 1 in combination with lab generated UAS-dsDop1R2 line 1  
• 2 in combination with lab generated UAS-dsDop1R2 line 2 
• 3 in combination with UAS-dsDop1R2 VDRC stock FBst0460369 
• 4 in combination with UAS-dsDop1R2 VDRC stock FBst0477151 
• WT: wild-type phenotype 
• 3IL: third instar larva 
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Table 2.2. Gαs, but not Gαi, knockdown targeted to salivary glands/amnioserosa 
leads to developmental arrest. 
 
UAS line Description  Phenotype 
UAS-dsGαs (FBst0455666) Gαs RNAi Lethal 
UAS-dsGαs (FBst0477312) Gαs RNAi Lethal 
UAS-dsGαi  (FBst0457318) Gαi RNAi WT 
• Phenotype assessed on progeny from parental Gal4 driver line P{GawB}332.3  

(FBst0005398, salivary glands/amnioserosa, see Table 2.1) and parental UAS line, as 
indicated 

• All phenotypes were assessed on progeny that developed at 29 °C 
• WT: wild-type phenotype 
• ds: double-stranded 
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Table 2.3.  Primer sequences. 
 
 

Gene  Forward Sequence (5’ !  3’) Reverse Sequence (5’ !  3’) 
Dop1R2-RA/C CAAATCGCAGTGTCACGTGG GTGCTGCAACTGCTCAGCT 
Dop1R2-RB CCTGCGAGCAGACCTACATA CGTGACACTTGCCATTGACT 
Dop1R2 (in/in) CACCTGGCTCGGCTGGATCAACT CGACTTGGAACGCATCGTG 
Dop1R2 (in/out) CACGGATCCCTTTAGCTATC CACCTGCTTGGTTCCAATCT 
Act5C (set 1) CAGCCAGCAGTCGTCTAATCC CGACAACCAGAGCAGCAACTT 
Act5C (set 2) AACGGCTCTGGCATGTGC ACTGGGTCATCTTCTCACGGT 
repo GTTCCTCCACGGTGGTTAAT AGTAAAGGTTCTCGTCTTC 
sgs5 GATTGCCACAGAGAGATTCTACAG CTGAATCCACCTCACTTAGAA 
TH (set 1) AGTTGCAGGAGATGTCCGAC CTTGCAGAGACCGAACTCAA 
TH (set 2) AGTTGCAGGAGATGTCCGAC AAGCTCTCGGCCACATAGTA 
Dop2R (set 1) CGAGCTGAGAGTGGTGGAC GCTTGGCGTACTTTATTGGC 
Dop2R (set 2) GCCATGAAGCCATTGTCCTT GTCGACGTTGTAGTACCTG 
Oct-TyrR TTGCATACAGGTCTGCGTGA ATGTAGCCCAGCCAGGTGA 
Oamb AACATCAAGGCGCAGGTGAA TTCAAGGAGACGGACTGGC 
5-HT1A CAGAGCCACGTAGCCGACA CGGAATCGCTGATCTGGCA 
Dop1R1 GCACCGGATTCTCCACGAAT CCGGTTCCTCACCAACTATT 
CecA2 ACCACCATGAACTTCTACAACA GGTTAACCTCGAGCAGTGG 
Hsp67Bc GGTCGTCGGTTCAACGAAC GACGGTCAGTTCACCTGGC 
Hsp70Bc GTGAACACGTCGCTAAGCG CCCTGGTCATTGGCGATAATCT 
Edg91 GAGTTGTATGCTGGCCCTT GAGTAACCTCCTCCTGGATAGT 
LysX GGTGTTTCTCGTGACCAGTT CTGTTGACCCAGGACCTTTAG 
Dro2 TTTCGTCTTCCTGGCTGTG AGTATGGATTCAGCATCCTTCG 
Dro3 CTATCTGGAACTTTCGGAGGTC CCTGAAAGGCAATGCTTACG 
Cpr72Eb GTTCACCACACTAGCAGCG GGGCAGATTGGAGGTTACATGG 
Rel GAAGTTCCGCTTTCGGTACAA GCCGCACCTGGTTCAAG 
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Dataset 2.1 – Summary of microarray data.  Spreadsheet available online in 
supplemental material at ProQuest.   
 
 
 
Dataset 2.2 – DAVID bioinformatic analysis of dsDop1R2 differentially expressed 
genes.  DAVID GO clustering functional analysis reveals statistically significant (yellow) 
genes (with Benjamin corrected p-value of < 0.05) for biological process, cellular 
component, molecular function, pathway, and rank order of previously published studies 
that most correlate with the set of differentially expressed genes with fold-increase of ≥ 
1.6.  Spreadsheet available online in supplemental material at ProQuest.   
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A. ABSTRACT 

RNA interference (RNAi), a naturally occurring phenomenon in eukaryotic organisms, is 

an extremely valuable tool that can be utilized in the laboratory for functional genomic 

studies.  The ability to knockdown individual genes selectively via this reverse genetic 

technique has allowed many researchers to rapidly uncover the biological roles of 

numerous genes within many organisms, by evaluation of loss-of-function phenotypes.  

In the major human malaria vector Anopheles gambiae, the predominant method used to 

reduce the function of targeted genes involves injection of double-stranded (dsRNA) into 

the hemolymph of the adult mosquito.  While this method has been successful, gene 

knockdown in adults excludes the functional assessment of genes that are expressed and 

potentially play roles during pre-adult stages, as well as genes that are expressed in 

limited numbers of cells in adult mosquitoes.  We describe a method for the injection of 

Serine Protease Inhibitor 2 (SRPN2) dsRNA during the early pupal stage and validate 

SRPN2 protein knockdown by observing decreased target protein levels and the 

formation of melanotic pseudo-tumors in SRPN2 knockdown adult mosquitoes.  This 

evident phenotype has been described previously for adult stage knockdown of SRPN2 

function, and we have recapitulated this adult phenotype by SRPN2 knockdown initiated 

during pupal development.  When used in conjunction with a dye-labeled dsRNA 

solution, this technique enables easy visualization by simple light microscopy of injection 

quality and distribution of dsRNA into the hemolymph.    
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B. INTRODUCTION 

Malaria is a mosquito-borne infectious disease that affects many millions of 

individuals every year.  The World Health Organization (WHO) reports that in 2013 there 

were approximately 584,000 deaths due to malaria, 78 percent of which occurred in 

children under the age of five years (World Health Organization 2014).  The pathogens 

that cause human malaria are apicomplexan parasites within the genus Plasmodium and 

are transmitted between their human hosts by female Anopheles mosquitoes.  

Transmission occurs when the mosquito takes a blood meal from an individual who is 

infected, and then deposits infective parasites into an uninfected individual in a 

subsequent blood meal.  Within the genus Anopheles, Anopheles gambiae is the species 

with the greatest vectorial capacity and is the most prominent malaria vector in sub-

Saharan Africa (World Health Organization 2014; Kelly-Hope & McKenzie 2009; The 

malERA Consultative Group on Vector Control 2011).   

Currently, mosquito vector control by deployment of insecticides continues to be 

the major method employed to reduce the burden of human malaria.  Although the use of 

insecticides since the 1960s has proven to be extremely successful, the rise of insecticide 

resistance has driven a need for development of novel insecticides and alternative vector 

control strategies (Enayati & Hemingway 2010; Edi et al. 2014; S. N. Mitchell et al. 

2014; Knox et al. 2014).  During 2010, a total of 49 of 63 countries reporting to the WHO 

indicated the occurrence of insecticide resistance in malaria vectors (World Health 

Organization 2014).  Additionally, the IR Mapper tool, which utilizes peer-reviewed 

literature to assess resistance data in Afrotropical regions, reports that between 2001 and 
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2012 there were 46% and 27% increases in resistance to pyrethroids and 

dichlorodiphenyltrichloroethane (DDT), DDT, respectively (Knox et al. 2014).   

RNA interference (RNAi) was identified in the early 1990s as a technique that 

could be employed to inactivate genes in the Petunia plant (Napoli et al. 2002; Sen & 

Blau 2006) and in the fungus Neurospora crassa (Sen & Blau 2006; Romano & Macino 

1992).  Shortly thereafter, in 1998, RNAi was first documented in Caenorhabditis 

elegans (Sen & Blau 2006; Fire et al. 1998) as a means of reducing gene expression in an 

animal model by introduction of antisense or double-strand RNA (dsRNA) via injection 

or feeding methods (Sen & Blau 2006; Fire et al. 1998).  Since its discovery, RNAi has 

revolutionized the pursuit of functional genomics by allowing researchers to utilize 

reverse genetics to rapidly investigate the functional roles of genes of interest via a highly 

selective post-transcriptional gene silencing mechanism.  In some organisms, such 

Drosophila melanogaster, the use of transgenic organisms that express interfering RNA 

constructs has been widely successful for gene knockdown (KD).  Although the use of 

transgenes in An. gambiae for RNAi has been utilized and may prove useful for large-

scale screens, the generation of transgenic mosquito strains is both labor intensive and 

time intensive, generally taking two to three months to go from the identification of a 

gene of interest to the generation of an appropriate transgenic stock (Catteruccia & 

Levashina 2009).  Currently, the primary method of gene KD in An. gambiae is by 

injection into the hemolymph, during the adult stage, of dsRNA specific for a given gene 

(Catteruccia & Levashina 2009; Garver & Dimopoulos 2007).  This process typically 

takes about one month to go from identification of a gene of interest to assessment of 

gene KD, proving to be much more rapid than transgenic methods (Catteruccia & 
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Levashina 2009).  A method for larval-stage RNAi has been established recently in An. 

gambiae and Aedes aegypti via nanoparticle feeding (Mysore et al. 2013; Mysore et al. 

2014; X. Zhang et al. 2010; X. Zhang et al. 2015), offering opportunities to perform 

functional genomic analysis during early stages of development.  In direct injection and 

nanoparticle delivery methods, dsRNA is taken up autonomously by the target cell and 

cleaved by the enzyme Dicer into ~21-25 nucleotide-long “short interfering RNAs” 

(siRNAs) (Huvenne & Smagghe 2010; Burand & W. B. Hunter 2013).  These siRNAs 

are then incorporated into the RNA-induced silencing complex (RISC), from which one 

strand will be discarded, allowing the RNA-bound RISC complex to bind to and cleave 

the target mRNA and thereby reduce its level and inhibit its translation (Huvenne & 

Smagghe 2010; Burand & W. B. Hunter 2013). 

Many intrinsic features of basic mosquito biology modulate vectorial capacity, 

including host preference (e.g., olfaction, gustation), mating, reproduction and immunity. 

Given the importance of these biological processes, it is likely that their modulation on a 

genetic or pharmacological level will offer new opportunities for vector control, 

including circumvention of insecticide resistance, and provide additional tools for more 

broadly integrated approaches to vector management.  The use of functional genomics to 

assess the roles of genes underlying these intrinsic biological features will enable 

identification of novel targets and provide new insights into how we can effectively 

create new, more effective control strategies.  We describe the development and use of a 

rapid method to induce RNAi during the pupal and adults stages of An. gambiae, based 

on pupal injection of an RNAi trigger that enables observation of resultant phenotypes in 

adults.  This methods enables gene knockdown beginning during the pupal 
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developmental interval and extending into adult stages, such that gene knockdown 

initiated during pupal development can persist and affect adult hemolymph-accessible 

cell types, as well as cell types that are more hemolymph-accessible during 

metamorphosis than in the adult, such as sensory neurons found in adult appendages 

following emergence. 

 

C. RESULTS  

Pupal injection for gene KD yields optimal results when injection is performed 

during the early pupal stage, when cuticle tanning levels are low (Figure 3.1A, left and 

1B).  Increased tanning and hardening of cuticle, generally after 24 hours, results in 

increased pupal death following injection (Figure 3.1A, center and right). The rate of 

pupal development can vary depending on insectary conditions and animal density 

(Lyimo et al. 1992; Benedict 2014); therefore, it is best to assess pigmentation visually.  

During the injection process, the capillary needle is inserted into the dorsal cuticle 

at an angle of approximately 30° in the anterior to posterior direction (Figure 3.2A).  

Once the needle is inserted and the dsRNA + 0.01% (w/v) FGD is dispensed, the 

distribution of dye is evident throughout the hemolymph (Figure 3.2B).   

Assessment of adult emergence for pupae injected with 0.01% (w/v) FGD 

revealed an average rate of 70% emergence, compared to 96.7% emergence of non-

injected controls (Figure 3A).   Of note, partial emergence from the pupal case was 

observed for a large number of non-surviving mosquitoes (Figure 3.3B).  Injected 

animals exhibit no delays in emergence time (Figure 3.4A) or biased impact on either 
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gender (Figure 3.4B).  Additional assessment of adult survival carried out up to day 10 

post-emergence reveals no evident impact on post-emergence adult survival (Figure 

3.4C).   

Validation of KD quality was assessed by the melanotic pseudo-tumor phenotype 

associated with SRPN2 knockdown (Michel et al. 2005; An et al. 2011) as a positive 

control for knockdown and the absence of phenotypes associated with dsLacZ injection 

as a negative control.  Adult mosquitoes that emerged were assessed at day 8 post-

injection.  Melanotic pseudo-tumors were observed through the cuticle of 93.5% of the 

dsSRPN2 vs. 0% of the dsLacZ adult mosquitoes (Figure 3.5A and 3.5B).  Clusters of 

darkly melanized tissue were identified upon dissection of pigmented patches (Figure 

3.5C).  Pseudo-tumors were also present in a subset of dsSRPN2 hemolymph and gut 

tissues (data not shown).     

 

 

D. DISCUSSION 

Current methods for inducing non-transgenic RNAi in mosquitoes involve direct 

injection of dsRNA into the adult hemolymph (Catteruccia & Levashina 2009; Garver & 

Dimopoulos 2007) or larval feeding of RNAi trigger-coated nanoparticles (X. Zhang et 

al. 2010; X. Zhang et al. 2015; Mysore et al. 2014; Mysore et al. 2013).  Targeting the 

adult mosquito, while extremely valuable, can exclude a large number of genes that 

function during earlier developmental periods.  Knockdown initiated by larval feeding 

may yield inconsistent phenotypes during the adult stage due, in part, to the potential of 
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variable protein persistence through the pupal stage.  Therefore, introducing an additional 

method that is aimed specifically at initiating RNAi during pupal development will 

provide a means to more fully assess gene functions during pre-adult developmental 

stages, as well as enhanced abilities to assess gene function during adult stages.  As with 

gene knockdown approach based on dsRNA injection or expression, the persistence of 

gene knockdown cannot be predicted. Therefore, transcript or protein levels should be 

assessed for gene of interest during developmental periods of interest. Although we 

observe a continuation of decreased protein levels at day 5 post-injection for SRPN2 in 

SRPN2 dsRNA-injected animals, factors such as protein turnover and half-life can differ 

for different targets.     

We describe a method for the initiation of RNA interference during the pupal 

stage of An. gambiae development.  This method relies on the introduction via 

microinjection of dsRNA directly into the hemolymph of an early pupae and allows for 

assessment of injection quality by the use of dye-labeled dsRNA. The ability to visualize 

injection quality constitutes a critical enhancement for ensuring successful knockdown 

and constitutes an aspect of injection-based gene knockdown that has not been considered 

in most previously reported dsRNA-based protocols focusing on the adult stage.  By 

targeting the pupa at the onset of this developmental period, genes that might play a role 

during this critical developmental interval, or during the early stages of adulthood can be 

evaluated functionally.  Additionally, this method may enable dsRNA delivery to cells, 

and establishment of RNA interference in cells that are accessible during metamorphosis, 

but less accessible in fully formed adult mosquitoes. 
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A recent microarray analysis by Harker et al. (2012) identified 560 An. gambiae 

transcripts that were up-regulated or down-regulated by at least 4-fold during distinct 

developmental stages, ranging from the embryo to adult.  Of the 560 transcripts 

identified, a set of 309 was up-regulated during pupal development (Harker et al. 2012).  

These findings suggest that there are many requirements for differential gene expression 

throughout mosquito development, including those that occur during the pupal stage, an 

interval during which the organism undergoes metamorphosis.  In many insect species, 

including An. gambiae, genes involved in processes such as development (i.e., pupal 

cuticular and chitin-binding proteins) (Harker et al. 2012; Dotson et al. 1998; Hopkins et 

al. 1999; Liang et al. 2010; Zhou & Riddiford 2002) and immune response (i.e., Toll 

receptor-like proteins) (Harker et al. 2012; Luna et al. 2002; Tauszig et al. 2000; 

Tryselius et al. 1992)  are highly expressed during the pupal stage.   Once a fully formed 

adult has emerged, there is continued gene expression in response to environmental and 

physiological changes (Goodisman et al. 2005).  Notably, during early adult 

development, there is an increase in the expression of developmental genes (i.e., adult 

cuticular and sarcoplasmic proteins) (Cook & Sinkins 2010), as well as other key genes 

(i.e., sperm specific protein and cytochrome P450 metabolism enzymes) (Harker et al. 

2012; Cook & Sinkins 2010).   

The positive control used in the development of this protocol, SRPN2, is an An. 

gambiae serine protease inhibitor (serpin). SRPN2 plays an important role in the negative 

regulation of insect melanization, a broad spectrum innate immune response in insects 

(Michel et al. 2005; An et al. 2011).  Knockdown of SRPN2 in adult mosquitoes results in 

pseudo-tumor formation (Michel et al. 2005; An et al. 2011), a phenotype that is easily 
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observed by use of light microscopy.  Given that this distinct phenotype can be easily 

scored in live insects, we used SRPN2 for initial pupal stage RNAi injections.  In 

addition, SRPN2 is expressed during all developmental stages (Suwanchaichinda & 

Kanost 2009), thereby providing a good target for pupal stage RNAi injection and 

assessment of function in the early adult.  We demonstrate that the method we have 

developed is capable of inducing adult melanotic pseudo-tumor formation as a 

consequence of dsRNA injections performed during the pupal stage of development.  In 

developing this protocol, we have observed that injection during early pupal development 

(i.e., the first 24 hours after the larval-pupal molt) is critical for obtaining optimal adult 

emergence. In the event that poor emergence is obtained post-injection, we recommend 

staging larvae with greater accuracy so as to obtain pupae with less extensive cuticle 

hardening and assure early pupal stage injection is achieved.     

With the extensive experiences of many laboratories with the performance of 

adult mosquito injections, previously identified microinjection approaches can be adapted 

with simple protocol modifications for use in pupal RNAi experiments.  Overall, the goal 

of this method is to provide researchers the ability to expand the timeframe during which 

reverse genetic analyses can be performed, further enabling research that will support the 

development of novel vector control strategies.  Interestingly, experiments in other 

species, such as Rhodnius prolixus and Spodoptera frugiperda, reveal that gene silencing 

effects tend to be much greater when initiated during pre-adult stages (Griebler et al. 

2008; Araujo et al. 2006).  During all stages of development, RNAi-mediated gene 

knockdown is subject to considerations regarding the rapidity and persistence of gene 

silencing, and the stability of proteins encoded by targeted genes.   The ideal RNAi target 
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genes tend to be those that encode a protein or RNA that has a short half-life and high 

turnover rate (J. G. Scott et al. 2013; Fire et al. 1998).  

While transgenic RNAi strategies can also be employed to address considerations 

regarding rapidity and persistence of RNAi during pre-adult stages, transgenic techniques 

have many drawbacks (e.g., time required for the generation of transgenic lines, 

experimental time-frames for mosquito matings to generate insects with regulated dsRNA 

expression, and maintenance of transgenic stocks).  By contrast, our protocol affords an 

easier and faster method for initiating gene knockdown during pupal development and in 

cell types that originate and are accessible during metamorphosis but are less accessible 

in adults.  The use of dye-labeled dsRNA suspensions allows for easy assessment of 

injection success and dispersal of introduced material within pupae.  This method enables 

initiation of gene knockdown during a previously under-studied developmental period 

(i.e., pupal development), and our dye labeling method may also prove useful for the 

development of new larval injection protocols, due to the translucent nature of the cuticle 

during all larval instars.  In summary, this method provides a valuable pupal stage RNAi 

protocol and expands the functional genomic tools available for use within the vector 

insect research community. 

 

E. METHODS (PROTOCOL) 

 

1. Synthesis and preparation dsRNA.  

1. Identify a 200 – 800 bp knockdown region (to generate the corresponding 

dsRNA) within the gene of interest that is predicted to have no identifiable off-
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target effects (e.g., no sequence homology ≥ 18 bp within another gene) and a 

negative control (e.g., a heterologous sequence that is not present within target 

insect genome, such as the Escherichia coli lacZ gene).  A positive control can 

also be used (e.g., which yields an easily observed phenotype, such as SRPN2).  A 

SRPN2 knockdown region is defined in Michel et al. (2005).  Note: E-RNAi is an 

open-source bioinformatic resource that is useful for the identification of such 

regions and for the process of designing oligonucleotide primers 

(http://www.dkfz.de/signaling/e-rnai3//) (Horn & Boutros 2010).   

2. Perform standard PCR amplification (i.e., performed with Taq DNA polymerase 

using ~30-35 cycles) using a genomic DNA or cDNA template to obtain insert 

DNA flanked by a T7 promoter sequence (5’–TAATACGACTCACTATAGGG–

3’) and proceed with dsRNA using a commercial kit, as per manufacturer’s 

instructions. SRPN2 PCR amplification conditions and primer information are 

presented in Michel et al. (2005). 

3. Quantify RNA amplicon yields by ultraviolet absorbance spectroscopy at 

wavelength of 260 nm and adjust to the desired concentration (e.g., 3 μg/μl) in 

RNase-free water. 

3.1. For troubleshooting low RNA concentrations, reduce liquid volume by 

spinning samples down in a vacuum centrifuge at room temperature or by 

lyophilizing samples and reconstituting in smaller volumes of water. The 

time required for sample lyophilization will vary depending on initial sample 

volumes and dsRNA concentrations. 
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4. Check the quality and length of the dsRNA on a 1% agarose gel prepared with 1X 

TBE or TAE buffer and stained with ethidium bromide (EtBr), along with the 

template DNA used for the transcription reaction. The dsRNA will migrate more 

slowly than template DNA.  Quality and length can be assessed by assuring there 

are no non-specific dsRNA products and by comparing products with a standard 

DNA marker, respectively.     Note:  The dsRNA is extremely concentrated and ≤ 

0.5 μl of the 3 μg/μl sample is sufficient for visualization.  

5. Store dsRNA at -20°C until needed.  Multiple freeze/thaw cycles can cause 

degradation, so aliquots should be prepared for large volumes of dsRNA. 

2. Prepare Fast Green FCF dye (FGD) tubes. 

1. Dilute Fast Green FCF dye (Product F7258, Sigma-Aldrich, St. Louis, MO) from 

stock solution (≥ 85% dye content) to 0.1% (v/v) (working solution) in RNase-

free water. 

2. Pipette 1 μl of dye into the bottom of a 1.5 ml microcentrifuge tube. 

3. Place tubes in a 65°C heat block for approximately 3 hours to evaporate liquid, 

then place tubes at room temperature for at least 30 minutes, to cool before using.  

This dry solid dye will reconstitute in dsRNA resuspension solution.  

3. Pull injection needles. 

1. Pull borosilicate glass needles (Product 3-000-203-G/X, Drummond, Broomall, 

PA) using a heated needle puller (Product: PB-7, Narishigne, East Meadow, 

NY) to a tip diameter of 10-30 microns.   Pull settings correspond to:  Heater 

adjustment no. 1 = 100, Heater adjustment no. 2 = 70. 
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2. To avoid damage to the fine tip of the needle, place all pulled needles in a Petri 

dish on a strip of molding putty. 

4. Prepare injection station.   

1. Collect materials required: glass microcapillary needles pulled to fine tip, 

Drummond Nanoject II microinjector (Product 3-000-204, Drummond, Broomall, 

PA), thin filter paper (Product 1001-090, GE Healthcare, Wilmington, MA) and 

thick filter paper (Product 107-3931, BioRad, Hercules, CA), Petri dishes 

(Product FB0875713A, Fisher Scientific, Pittsburg, PA), transfer pipettes 

(Product 1371150, Thermo Scientific, Tewksbury, MA), paint brush and 

dissecting light microscope. 

2. Prepare the microinjector as instructed in the microinjector manual, and set 

injection volume to desired volume per pulse (e.g., Nanoject II maximum of 69 nl 

per pulse).    

3. On a platform that is easy to maneuver under a microscope (e.g., flat side of a 

styrofoam tube rack), stack the two filter paper sheets with the thin filter paper on 

top, and secure with tape around the edges. 

4. Resuspend 10 μl of each dsRNA solution in separate colored dye tubes, and place 

on ice.   

5. Collect pupae for injection.   

1. Fill a small 60 mm x 15 mm Petri dish with 10 mL of deionized H2O, and collect 

~50 pale pupae (during the first 24 hours after pupation) from an insectary tray 

using a disposable plastic transfer pipette.   
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2. Remove any pupae that have medium to dark cuticle tanning.   Note:  Once the 

cuticle begins to tan, it becomes more difficult to penetrate the cuticle, and 

injection results in much higher lethality.  

6. dsRNA injection.  

1. Under the dissecting microscope, break off the distal tip of the injection needle 

with a pair of fine forceps. 

2. Prepare the injection needle by filling with mineral oil (using a syringe with a 3 

inch, 30 gauge needle) and expelling the oil with the microinjector.   

3. Fill injection needle with maximum amount of dsRNA, and eject one pulse under 

the microscope to ensure the dispensing of liquid.  In the event that no liquid is 

taken up and/or expelled, check the distal tip of the needle for any blockage and 

ensure that the needle is firmly secure in the microinjector. 

4. Pick 1-3 pupae, and place them onto the filter paper. 

5. Using the paintbrush, position the pupae on the filter paper with dorsal side facing 

upward, and use the paintbrush to push on filter paper and absorb of excess water. 

6. Stabilize the pupa with the tip of the paintbrush, and insert the needle into the 

dorsal cuticle between the thorax and abdomen at an angle of approximately 30° 

in relation to the dorsal surface of the pupa.  Injection should be directed toward 

the posterior end of the pupa.   

7. Inject two pulses (69 nl per pulse) of 3 μg/μl dsRNA solution into the 

hemolymph, and check for the distribution of color throughout the body.  If no 

color is identified, shift the injection needle position slightly to clear the tip from 

obstruction and repeat liquid delivery.     
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8. Use the wetted paintbrush to gently move pupa from the needle into water for 

culturing.  The pupa should stick to the paintbrush upon light contact. 

7. Post-injection conditions. 

1. Place Petri dish with injected pupae into a mosquito cage with suitable airflow 

(e.g., mesh cage or container with mesh lid).   

2. Prepare a 10% (w/v) glucose solution, and place a solution-saturated cotton ball 

on the mosquito cage mesh for adult feeding.  

8. Assess knockdown 

1. At desired time-point(s), assess phenotypes in experimental dsRNA-injected 

animals, compared to controls.   

1.1. dsSRPN2 and dsLacZ animals are assessed daily by chilling down adults for 

~2-3 minutes at -20 °C, transferring them to a cold plate at 2 °C and 

identifying any pseudo-tumor formation by utilization of a dissecting 

microscope with brightfield illumination.  After assessment, adults are 

returned to insectary conditions (27 °C and 80% humidity).     

1.2. The experimental and control dsRNAs employed in this protocol are 

dsSRPN2 and dsLacZ, respectively. There are many options suitable for 

controls; however, it is suggested that a positive control for which phenotype 

and/or expression is easily visualized (e.g., by dissecting microscopy) and/or 

quantified [e.g., quantitative real-time PCR (qRT-PCR), Western blot] should 

be used when learning this technique.  SRPN2 protein and transcript 

quantification via Western blot and qRT-PCR, respectively, are described in 

Michel et al. (2005). 
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F. FIGURES AND LEGENDS 

Figure 3.1: Developmental staging for pupal dsRNA injection.  Early pupal injection 
of dsRNA results in optimal survival and progression into adult stage.  Low levels of 
cuticle pigmentation (A, left and B) can be observed within the first 0-24 hours following 
pupation.  Tanning of the pupal cuticle preceding injection (A, center and right) results in 
moderate to poor survival. 

 

 

 

 

 

 

 

 

 

 

 



! 106!

Figure 3.2: Injection position and distribution of dye-labeled dsRNA.  (A) Capillary 
needle injection of dye-labeled dsRNA into the dorsal cuticle at an angle of 
approximately 30°, in anterior to posterior direction.  (B) The dye is visibly distributed in 
the pupal hemolymph.  dsRNA injection volume of 138 nl, labeled with 0.01% FGD 
(w/v). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B

In
je
ct
ed

$
N
on

5in
je
ct
ed

$

P$ A$

D$

V$



! 107!

Figure 3.3: Post-injection adult emergence.   (A) 70% of pupae injected with 0.01% 
FGD (w/v) successfully emerged (n = 60), compared to 96.7% of non-injected controls (n 
= 60).  Three biological replicates were performed.    (B) Partial emergence from the 
pupal case was observed for a large number of non-surviving mosquitoes.   
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Figure 3.4: Emergence rate, sex assessment and adult survival.   (A) Comparable 
emergence times were observed following pupal injection with 0.01% FGD (24hr: 80% 
and 48hr: 20%), as compared to non-injected pupae (24hr: 83% and 48hr: 17%).  (B) 
Approximately equal male and female adult emergence was observed for 0.01% FGD 
injected pupae (female: 48% and male: 52%) and non-injected pupae (female: 52% and 
male: 48%).  (C) Survival analysis reveals that injection with 0.01% FGD does not 
impact adult survival, assessed up to day 10 post-emergence.   Results represent data 
from three independent experiments with 0.01% FGD injected (n = 60) and non-injected 
(n = 60) pupae (equal numbers of males and females). 
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Figure 3.5: Pseudo-tumor positive control phenotype reflects successful knockdown. 
Pseudo-tumors were observed on the (A) abdominal and (B) thoracic cuticle of dsSRPN2-
injected, but not dsLacZ-injected adult mosquitos at day 8 post-injection.  (C) Higher 
magnification (400X) imaging (a) of cuticle and dissection of pigmented patches (b) 
reveals clusters of darkly melanized cells. 
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Figure 3.6: Quantification of pseudo-tumor formation and decreased SRPN2 
protein levels.   (A) Pupal stage injections result in pseudo-tumor formation in 93.5% of 
dsSRPN2 adults (n = 21) compared to 0% of dsLacZ controls (n = 19).  Results obtained 
day 8 post-injection.  (B) Western blot (left) shows decreased SRPN2 levels in dsSRPN2, 
but not dsLacZ or non-injected hemolymph protein isolates (day 5 post-injection).  
Results based on three independent experiments.  Anti-SRPN2 (Michel et al. 2005) and 
anti-SRPN3 (Michel et al. 2006) antibody dilutions used were 1:1000 and 1:2000, 
respectively.  Goat anti-rabbit IgG-HRP (Product sc-2004, Santa Cruz Biotechnology, 
Dallas TX) was used at 1:5000.  All protein levels were quantified (right) by band 
intensity (ImageJ Software, NIH, Bethesda, MD), normalized to SRPN3, and statistically 
compared by unpaired t test (GraphPad Software, La Jolla, CA).  P < 0.05: *, P ≥ 0.05: 
n.s. (not significant). 
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Chapter IV 

Uncovering the role of an Anopheles gambiae G protein-coupled receptor, GPRGR2,  

in the detection of bitter compounds 

 !
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A.!!ABSTRACT!

 

Investigating basic behaviors of mosquitos is essential for advancing our 

understanding of the bionomic factors that make these insects such competent vectors for 

the transmission of many infectious diseases.  G protein-coupled receptors (GPCRs) are 

known to mediate developmental, sensory and other physiological pathways that are 

fundamental to mosquito survival and vectorial capacity.  GPCRs that function as 

chemoreceptors play fundamental roles in mosquito gustation and olfaction, and are 

central to the abilities of insects to identify sugars, blood sources and detect 

bitter/noxious compounds in the environment.  Despite the importance of these 

behaviors, surprisingly little is known about mosquito gustation, particularly in the case 

of the major African malaria vector, Anopheles gambiae.  Here we investigate the ability 

of An. gambiae to detect various bitter compounds when given a choice between a sugar 

meal or a sugar/compound meal, employ spatial expression studies, and utilize RNAi-

mediated knockdown to identify GPRGR2 as an important gustatory receptor.  We 

characterize the set of currently annotated gustatory GPCRs phylogenetically, 

topologically and with regard to physiological response.  Our characterization of An. 

gambiae GPRGR2 provides insights into bitter compound recognition and may provide 

an avenue for advanced vector control strategies.  
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B.  INTRODUCTION  

The mosquito is one of the most successful arthropods that mediates the 

transmission of infectious diseases.  Malaria is among the most virulent diseases 

transmitted by the mosquito, resulting in substantial human morbidity and mortality every 

year. The World Health Organization (WHO) reports that during 2013 there were an 

estimated 600,000 deaths as a result of malaria.  Of these, 78 percent were in children 

under the age of five years (World Health Organization 2014).  Apicomplexan parasites 

within the genus Plasmodium are the pathogens that cause human malaria, and they are 

transmitted between their human hosts by female Anopheles mosquitoes.  Anopheles 

gambiae is the most epidemiologically relevant species due to its relationship to high 

human malaria morbidity rates, and it is the most prominent malaria vector in sub-

Saharan Africa (World Health Organization 2014; Kelly-Hope & McKenzie 2009; The 

malERA Consultative Group on Vector Control 2011).  Currently, insecticide delivery 

via indoor residual spraying of insecticide-treated bednets is the most successful method 

employed to reduce the burden of human malaria by decreasing vector mosquito 

populations and by reducing vector-human contact.  While vector-targeted approaches 

remain the most effective control strategy, the increase of insecticide resistance has 

driven the need for the discovery of novel methods for vector control (Enayati & 

Hemingway 2010; Edi et al. 2014; S. N. Mitchell et al. 2014).   

Chemosensory processes are fundamentally important to the relationship between 

an organism and its environment.  Chemoreception in insects, as in most vertebrate 

organisms, can be divided into two separate modalities that include gustation (taste) and 

olfaction (smell).  These two processes are critical for the ability of the organism to detect 
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soluble or volatile molecules, respectively (World Health Organization 2014; Stocker 

1994; Kelly-Hope & McKenzie 2009; Heimbeck et al. 1999; The malERA Consultative 

Group on Vector Control 2011).  Chemosensation is a highly specialized process that 

allows animals to identify and respond to chemosensory information within the 

environment (Enayati & Hemingway 2010; K. Scott et al. 2001; Edi et al. 2014; 

Bargmann 2006; S. N. Mitchell et al. 2014; Garcıa-Sainz et al. 2009).  Insects are 

dependent on chemosensation for many behaviors, such as foraging for food, 

reproduction, and avoidance of potentially harmful substances in the environment.  The 

olfactory system largely mediates recognition of volatile molecules (McIver et al. 1980; 

K. Scott et al. 2001; Dahanukar et al. 2007; N. R. Singh 1997) that are emitted by plants 

or animals, and provides information required for the location of a food source in the 

surrounding environment (Foster 1995; Kessler et al. 2013).  Upon locating a potential 

food source, gustatory chemoreception aids in deciding whether the mosquito imbibes a 

particular substance, after coming into physical contact with the compound(s) (N. R. 

Singh 1997; Pappas & Larsen 1978).  If a compound is perceived as bitter, a 

characteristic of many toxins, signaling to the central nervous system (CNS) by gustatory 

(taste) cells will likely result in feeding rejection (Weiss et al. 2011).   

The D. melanogaster gustatory receptors (GRs) Gr66a, Gr33a and Gr93a have 

been shown to mediate bitter compound recognition and aversive responses. Among the 

compounds evaluated, Gr66a has been shown to function in the identification of caffeine 

and the insecticide L-canavanine (Moon et al. 2006; Y. Lee et al. 2012), whereas Gr33a 

mediates detection of a larger range of bitter compounds (Thorne et al. 2004; Moon et al. 

2009).  Gr93 has been studied to a lesser extent, but has also been shown to function in 
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caffeine aversion (Y. Lee et al. 2012).  The ability to successfully locate an adequate 

sugar meal is critical for survival, as sugar is required to build metabolic energy reserves 

(Clements 1955; Louis-Clement Gouagna et al. 2010).  In D. melanogaster, two essential 

gustatory receptors have been shown to be essential for identifying sugars of specific 

classes.  Gr5a functions as a receptor for glucose and trehalose (Dahanukar et al. 2001; 

Chyb et al. 2003), whereas Gr64a is required for identification of fructose and sucrose 

(Dahanukar et al. 2007).  In addition to food recognition, insects utilize gustatory 

chemical cues to locate a mating partner and potential oviposition (egg-laying) sites 

(Freeman et al. 2014; Lacaille et al. 2007).  In D. melanogaster, Gr68a has been shown 

to be expressed in gustatory bristles on the forelegs and is important in deterring male-to-

male courtship (S. Bray & Amrein 2003) by sensing of male-specific bitter-tasting 

cuticular hydrocarbons (Lacaille et al. 2007), and the sweet taste receptor Gr5a has been 

shown to be essential for identification of oviposition sites (C. H. Yang et al. 2008).  By 

modulating behaviors such as food-seeking, compound aversion, and reproduction, these 

receptors exert substantial influences on insect survival and reproductive capacity (Stone 

et al. 2012; Ignell et al. 2010).  

The peripheral GRs that underlie the chemosensory system belong to a family of 

membrane-bound G-protein-coupled receptors (GPCRs) that mediate signal transduction 

through G-protein activation (Pitts et al. 2004; Takken et al. 2001; Hill et al. 2002; Sparks 

et al. 2013; Buck & Axel 1991; Clyne et al. 1999; Clyne 2000).  In the An. gambiae 

genome, 155 putative chemoreceptors have been identified, of which 76 are predicted to 

function as gustatory receptors and 79 as olfactory receptors (Hill et al. 2002).  Among 

the 76 gustatory receptors identified, 60 have been fully annotated within the major 
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vector bioinformatics resource VectorBase (Giraldo-Calderon et al. 2015).  The genome 

of D. melanogaster has a similar numerical makeup of 62 odorant receptors and 68 

gustatory receptors (Clyne et al. 1999; Vosshall et al. 1999), suggesting that fairly small 

numbers of receptors may be responsible for the intricate chemosensory processes that 

control many essential behaviors, in both species.   

Upon landing on a feeding surface (i.e., plant or vertebrate), contact is made by 

sensilla (sensory hairs) that are located on the terminal tarsal segments, and is followed 

by an exploratory phase during which the mosquito contacts the surface repeatedly with 

the tip of the labellum, for evaluation of available resources (Clements 1992).  Sensilla 

are chemosensory structures that are present on most insects and are widely dispersed on 

the exterior of the cuticle.  The body regions that tend to show the highest sensillar 

densities are the proboscis, maxillary palp, legs/tarsi, wings and genitalia (K. Scott et al. 

2001; Stocker 1994; Dahanukar et al. 2007; N. R. Singh 1997; Seenivasagan et al. 2009; 

Pitts et al. 2004; Pappas & Larsen 1976).   In most insects, the detection of volatile 

chemical signals occurs in neurons that innervate sensilla on the antenna and maxillary 

palps, while tastants tend to stimulate those that are located on the proboscis or tarsi 

(Stocker 1994; Ling et al. 2014; Meunier et al. 2003).   

The physical structure of a sensillum is made up of a hollow projection that is 

innervated with dendrites of sensory neurons surrounded by sensillum lymph (Galindo & 

D. P. Smith 2001). These sensory structures contain a dendritic chamber that is typically 

innervated with two to four sensory neurons and a single mechanosensory neuron (Falk et 

al. 1976; B. K. Mitchell et al. 1999).  At the distal tip of taste sensillum is a pore that 

allows chemicals to enter and come into contact with the dendrites that are located within 



! 117!

the sensillar lumen (Stocker 1994).  Tastants can activate one or more gustatory 

receptors, resulting in a neuronal response that will send action potentials down the 

axonal processes to suboesophageal ganglion (SOG), which is the primary gustatory 

center (Miyazaki & Ito 2010).  Gustatory receptor neuron (GRN) stimulation has been 

shown to mediate physiological responses in the presence of different compound types 

(e.g., sugars, bitter, pure water and salt) (Moon et al. 2006; Meunier et al. 2003; 

Rodrigues & Siddiqi 1978; Fujishiro et al. 1984).  

Extensive research has been employed to unravel the roles of GPCRs in bitter 

compound detection/aversion in D. melanogaster (Moon et al. 2009; Moon et al. 2006; 

Hiroi et al. 2004; Y. Lee et al. 2012; Y. Lee et al. 2009), however very little is known 

about how this process operates in the mosquito.  Recent chemosensory work 

investigating this process in the yellow fever vector, Aedes agepti, has started to answer 

some of these questions regarding aversive response to various bitter tastants.  The 

findings from this work have revealed that taste receptors that are located on mouthparts 

(i.e., the labellum) display sensitivity to compounds (e.g., quinine or the commonly used 

insect repellent DEET) and elicit a physiological and behavioral response by activating a 

bitter-sensitive gustatory cell (Sanford et al. 2013).  While it has been already established 

that DEET deters insects by interacting with the olfactory receptor cells (Vosshall et al. 

1999; Ditzen et al. 2008), these findings suggest that DEET also interacts with a specific 

gustatory receptor (Sanford et al. 2013).  In both An. gambiae and Ae. aegypti, expression 

data for the chemosensory GPCRs has become available recently and may provide 

opportunities to better investigate this critical family of proteins (Sparks et al. 2013; Pitts 

et al. 2011).  The An. gambiae array showed very low expression of the GR family, and 
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no evident expression of GPRGR2 in the tissues assessed (i.e., maxillary palps and 

antenna) (Pitts et al. 2011), which in part may be due to the selected tissue types, which 

are primarily olfactory tissues (Bargmann 2006).  Interestingly, the GPRGR2 and Gr66a 

Ae. Aegypti ortholog AeGPRGR14 displayed very high expression in the labellum 

(Sparks et al. 2013).    

Understanding how gustatory processes influence feeding and aversive behaviors 

is an important question in insect chemosensory biology.  Although extensive work in D. 

melanogaster has provided valuable insights into gustation-related behavioral and 

physiological responses at the neurological level, we still have little understanding 

regarding the genetics that underlie these aversive behaviors in the mosquito.  Here we 

investigate the behavioral aversion of An. gambiae to a series of known bitter compounds 

via colorimetric tastant detection. We have identified a mosquito gustatory receptor, 

GRPGR2, that shares sequence homology with the previously characterized D. 

melanogaster gustatory bitter receptor, Gr66a.  This fly receptor has been shown to play 

an important role in the detection of bitter compounds, particularly in the response to 

caffeine (Thorne et al. 2004; Y. Lee et al. 2009).  We have evaluated the membrane 

topology, spatial expression and functional genomics of GPRGR2 to assess alterations in 

aversive behaviors in receptor knockdown animals exposed to a subset of previously 

characterized bitter compounds.  Manipulating this aversive behavior of An. gambiae by 

targeting GRs that are essential to gustation may serve as method to decrease vectorial 

capacity, by increasing the effectiveness of attractive toxic sugar bait (ATSB) 

interventions currently being developed (Beier et al. 2012; Muller et al. 2010). 
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C.  RESULTS AND DISCUSSION  

 

Bioinformatic analysis of gustatory GPCR topology and identification of a 

candidate An. gambiae bitter receptor 

 Within the past decade, a great deal of work has been done to elucidate the 

chemosensory systems of insects by defining the functional roles of GPCRs.  This 

chemoreceptor family includes a large number of gustatory (GR) and odorant (OR) 

receptors from many insect species, including An. gambiae and D. melanogaster (Hill et 

al. 2002; Robertson et al. 2003).  All of the GR and a subset of OR protein sequences 

contain a signature motif of hh(G/A/S)(A/S)hhTYhhhhhQF, where “h” represents a 

hydrophobic residue (Louis-Clement Gouagna et al. 2010; Clyne 2000; K. Scott et al. 

2001; Robertson et al. 2003; Kent et al. 2007).  In fact, the presence of this motif in both 

GRs and ORs suggests that these chemosensory families have diverged from a single 

structural gene family, and further suggests that ORs evolved from the GR family (K. 

Scott et al. 2001; Robertson et al. 2003).  When assessing the phylogeny of vertebrate vs. 

insect chemoreceptors, the evolutionary origin is very distant (Bargmann 2006). In 

addition, vertebrate chemosensory GPCRs are structurally distinct, as insect receptor 

structure often consists of an inverted topology (i.e., intracellular amino terminus) 

(Benton 2009; Garcıa-Sainz et al. 2009) and have actually been described as possibly 

being more closely related to 6 TMD ion channels (Bargmann 2006). Given the vast 

differences in vertebrate vs. insect chemoreceptors, it is possible that sensory receptor-

targeted interventions that are targeted specifically toward insects can be employed.   
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 In 2006, Moon et al. identified the D. melanogaster receptor Gr66a as a GPCR that 

is required in the process of bitter compound detection (Moon et al. 2006).  To identify 

and study a probable ortholog of Gr66a in the An. gambiae, we utilized the OrthoDB 

database, which contains a catalog of orthologous protein-coding genes for arthropods 

and vertebrates (Kriventseva et al. 2015), as well as the National Center for 

Biotechnology Information (NCBI) HomoloGene database (Wheeler et al. 2007).  The 

results revealed the most likely An. gambiae ortholog of Gr66a to be GPRGR2, and 

revealed no vertebrate ortholog (Table 1).  We also looked for orthologs in two other 

major human malaria vectors, An. funestus and An. arabiensis, as well as the yellow fever 

vector Ae. Aegypti, and found AfGPRGR, AaGPRGR, and AeGPRGR14, respectively, to 

be the most likely candidates (Table 1).  All of these receptors fall into the same InterPro 

identification grouping of seven transmembrane (7TM) chemosensory receptors and have 

the same gene ontology (GO) biological process of sensory perception of taste (A. 

Mitchell et al. 2015a) (Table 1). We then performed NCBI BLASTP analysis using the 

BLOSUM62 scoring matrix (Altschul et al. 1990) with the Gr66a receptor as a query, to 

assess the similarity of the sequences of Gr66a and GPRGR2.  The query showed that the 

An. gambiae receptor GPRGR2 yields the highest sequence identity (35% protein 

identity, max score: 302, total score: 302, query coverage: 99%, E-value: 2e-95) with 

Gr66a.  A reciprocal best BLAST using GPRGR2 as the query likewise returned the D. 

melanogaster Gr66a as the top hit.  While this computational prediction does not directly 

imply that GPRGR2 functions in the same capacity as Gr66a, the extent of sequence 

identity encouraged us to further investigate GPRGR2 as a candidate bitter compound 

receptor.   
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 To better visualize the sequence homology of the two receptors, we used Geneious 

Software (Biomatters Inc., San Francisco, CA) to compare the identities of specific 

protein regions (e.g., transmembrane domains, intracellular space and extracellular 

space).  The protein region with the highest pairwise identity maps within the 

intracellular C-terminal region (Figure 4.1A).  This finding is not unexpected, as 

gustatory GPCRs exhibit a conserved C-terminal motif that contains an amino acid 

sequence of hh(G/A/S)(A/S)hhTYhhhhhQF (Louis-Clement Gouagna et al. 2010; Clyne 

2000; K. Scott et al. 2001; Robertson et al. 2003; Kent et al. 2007).  Both the GPRGR2 

and Gr66a receptor sequences contain this characteristic motif in the high-identity region 

encompassed by amino acids 449-463 and 464-478, respectively (Figure 4.1B).   

 Next we assessed the genetic relationships of GPRGR2 within the currently 

annotated gustatory family of GPCRs in An. gambiae.  We performed a phylogenetic 

analysis with Geneious Software (Biomatters Inc., San Francisco, CA) for the 60 An. 

gambiae GPRGRs annotated in VectorBase (Giraldo-Calderon et al. 2015), including the 

D. melanogaster Gr66a receptor.  We included, as well, three human bitter receptors 

TAS2R10, TAS2R14, and TAS2R46, which have been shown to be responsive to an 

extremely large set of bitter compounds (Meyerhof et al. 2010) and are expressed in the 

circumvallate papillae of the tongue, where taste recognition occurs (Behrens et al. 2007).  

The phylogenetic assessment shows that Gr66a is more closely related to the GPRGR2 

and that the human receptors are not closely related to the insect receptors (Figure 4.1C).  

It is likely that more than one GR is responsible for bitter gustation in An. gambiae, as 

has been demonstrated for Drosophila (Moon et al. 2009; Moon et al. 2006; Thorne et al. 

2004), and it will be of interest to explore whether there is any bitter GR clustering within  
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phylogenetic clades.  However, it is possible that we will observe phylogenetic dispersion 

of bitter receptors because unlike sugar receptors, which exist in phylogenetic clades, 

both bitter taste and pheromone receptors reside within divergent subfamilies (Garcıa-

Sainz et al. 2009).  

 To investigate the membrane topology of An. gambiae GRs, we used Geneious 

Software (Biomatters Inc., San Francisco, CA) and employed the transmembrane domain 

(TMD) algorithm TMHMM (Krogh et al. 2001) to predict the orientation within the 

membrane for the 60 annotated GR sequences.  Among the 60 annotated GRs, 53 are 

predicted to possess an intracellular N-terminus (Figure 4.2, Dataset 4.1), which is 

consistent with GR and OR topologies in other species (H.-J. Zhang et al. 2011; Benton 

2009; Garcıa-Sainz et al. 2009; Bargmann 2006).  GR2 is predicted to be within the 

smaller proportion of GRs that exhibit an extracellular N-terminus (including GPRGR2, 

GPRGR 5, GPRGR 13, GPRGR 15, GPRGR 43, GPRGR 44 and GPRGR 54), which is 

consistent with the typical topology of a GPCR (Brody & Cravchik 2000; H.-J. Zhang et 

al. 2011; Benton et al. 2006). Given that this algorithmic prediction is based on sequence 

characteristics, confirmation of the predicted membrane topology would require 

experimental validation.   

 

Spatial expression of GPRGR2 in adults 

The gustatory system of D. melanogaster has been extensively studied behaviorally, 

morphologically, physiologically and at the genetic level (Clyne 2000; Dunipace et al. 

2001; Falk et al. 1976; Glendinning 2008; Weiss et al. 2011; H.-J. Zhang et al. 2011).  
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Although we have some insights into the behaviors and morphology associated with 

gustation in the mosquito, we know very little regarding the underlying genetics that are 

responsible for these essential behaviors. In Drosophila, it has been shown that GR 

receptors are expressed predominantly in gustatory organs (i.e., proboscis and legs), and 

in some olfactory structures (i.e., antennae) (Garcıa-Sainz et al. 2009).  In D. 

melanogaster, Gr-GAL4 mediated expression based on Gr66a regulatory sequences has 

revealed that a distinct population of approximately twenty neurons respond to various 

bitter compounds that elicit aversive behaviors (Thorne et al. 2004; Z. Wang et al. 2004; 

Marella et al. 2006).  We know that the D. melanogster bitter receptor Gr66a is co-

expressed with a large number of other GRs, including Gr22b, Gr22e, Gr22f, Gr28bE, 

Gr32a, Gr33a, Gr39aD, Gr47a, Gr59b, Gr59f, Gr93a (Isono & Morita 2010).  Of these, 

Gr33a and Gr93a have been shown to be involved in bitter compound gustation (Moon et 

al. 2006; Y. Lee et al. 2009).  Given that these three bitter receptors are expressed in the 

same cell, it is possible that identification of multiple GRs expressed in the same cell as 

GPRGR2 may serve to identify additional An. gambiae bitter receptors.  Further 

assessment of GR co-expression, by immunohistochemical experiments would aide in 

identifying such receptors. 

A recent RNAseq-based transcriptome analysis of chemosensory receptor 

expression in An. gambiae identified GPRGRs that are expressed in specific 

chemosensory tissues (i.e., maxillary palps and antenna).  Of the sixty GRs assessed, very 

few showed expression that was detectable, including GPRGR1, GPRGR22, GPRGR23, 

GPRGR24, GPRGR33, GPRGR48, GPRGR49, GPRGR50 and GPRGR52 (Pitts et al. 

2011).  Work performed on Gr expression in Drosophila predicts that chemosensory GRs 
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expression would be highest in the proboscis and legs (Garcıa-Sainz et al. 2009).  Using 

these insights, we set out to evaluate GPRGR2 expression in a wider set of chemosensory 

tissue types that have high sensillar densities, which are expected to contain innervating 

chemosensory and often mechanosensory neurons (Figure 4.3A).  Our spatial expression 

analysis via quantitative RT-PCR (qRT-PCR) revealed significantly increased expression 

of GPRGR2 in gustatory chemosensory appendages.  The leg, antenna, proboscis and 

maxillary palp, respectively, showed 46-fold, 39-fold, 35-fold and 5-fold increased levels 

of expression, compared to the midgut, which lacks sensillar structures (Figure 4.3B).  

These findings imply that contact with the leg, antenna and/or proboscis may be 

important for identification of bitter compounds.  Lower expression of a GR in maxillary 

palp is not unexpected as this tissue has been described as a sensory organ that may 

function exclusively in olfaction (de Bruyne et al. 1999). 

  

An. gambiae compound aversion and physiological response 

 Behavioral observations imply that the mosquito makes an assessment of food 

and/or blood source via landing and repeatedly contacting the surface of the plant or 

animal host using the distal region of the labellum to evaluate nutritive resources 

(Clements 1992).  In addition to these behaviors, our observations of An. gambiae G3 

colony have revealed that this exploratory behavior frequently involves a brushing 

motion, in which the tips of labellum are swept over the feeding surface repeatedly (data 

not shown).  To assess the aversive response of An. gambiae to bitter tastants, we selected 

five compounds that have been previously characterized as bitter by assessment of their 

behavioral effects on multiple insect species and are known to be perceived as bitter by 
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humans (Table 4.2) (Z. Wang et al. 2004; Thorne et al. 2004; Meunier et al. 2003; 

Marella et al. 2006).  These compounds include three naturally occurring alkaloids 

(berberine chloride, caffeine, and quinine), one imide electrophilic small molecule (N-

methylmalemide) and an ammonium salt that is the most bitter compound currently 

known (denatonium benzoate).  Using a color-labeled meal assay (Figure 4.4A), we were 

able analyze the color-labeled contents of the gut though the abdominal cuticle by using 

light microscopy (Figure 4.4B) and by dissection of the gut (Figure 4.4C).  Experiments 

were designed to determine whether adult mosquitoes exhibited an aversive response to 

known bitter compounds (i.e., choosing to feed on sugar vs. sugar plus the bitter 

compound).  We observed significant aversion (as assessed by unpaired t-test) for both 

male and female adult mosquitoes for all five of these compounds when mosquitoes were 

provided with a choice between the bitter compound + 10% glucose and 10% glucose 

alone (Figure 4.5).  For NMM (10 mM), quinine (1 mM), denatonium benzoate (1 mM), 

berberine chloride (1 mM) and caffeine (10 mM) the percentage of combined male and 

female feeding adults that preferred the sugar meal ranged from 79% to 62% (Figure 4.5).  

This confirmation of bitter compound recognition supports the use these compounds for 

the physiological assessment of sensillum stimulation and in functional genomic assays 

to determine whether RNAi-mediated knockdown (KD) of GRPGR2 will interfere with 

bitter compound-induced aversion.     

 The stimulation of a given sensillum is completely dependent on the type(s) of 

neurons by which it is innervated.  For example, in D. melanogaster, most sensilla 

contain four taste neurons that respond to sugars, low concentrations of salt, water and 

bitter compounds/high concentrations of salt (Falk et al. 1976; Fujishiro et al. 1984; Hiroi 
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et al. 2004; Rodrigues & Siddiqi 1978; Weiss et al. 2011).  Structurally, there are three 

types of sensilla located on the Drosophila labellum, which are distributed in a 

stereotyped pattern and are categorized by length: long (l-type), intermediate (i-type) and 

short (s-type) (Weiss et al. 2011; Hiroi et al. 2002; Shanbhag et al. 2001).  Typically, the 

i- and s-type sensilla respond very strongly to bitter compounds, whereas the l-type 

sensilla produce stronger responses to sugars.  While research involving Ae. agepti has 

demonstrated taste receptors that respond to bitter stimulation (Sanford et al. 2013), the 

location and distribution of sensilla containing bitter-sensitive neurons is still unknown in 

the Anopheles mosquito.  Given these insights from D. melanogaster and Ae. aegypti 

studies, we assessed the structure and stimulation potential of sensilla located on the 

labellum of An. gambiae.  Our SEM images reveal a stereotyped distribution of ~24 

sensilla located on the labellum all of which have a size (~20-30 μm) and structure 

similar to those described as sensilla chaetica in Aedes albopictus !(Seenivasagan et al. 

2009) (Figure 4.6A).  This type of sensillar structure is described as a thick-walled and 

sharp-pointed sturdy bristle that protrudes from a socket.  We also observe sensilla 

chaetica on terminal tarsal segments in An. gambiae, with one distinct sensillum 

protruding beyond the claw (Figure 4.6B).  

Electrophysiology has been used extensively to evaluate chemically-induced 

neurological responses in Drosophila (Moon et al. 2006; Meunier et al. 2003; Rodrigues 

& Siddiqi 1978; Fujishiro et al. 1984).   Recently, Sanford et al. showed that sensilla on 

the labellum of Ae. aegypti can be stimulated by sugar and bitter compounds (Sanford et 

al. 2013).  We used similar techniques to evaluate if it is possible to stimulate various 

sensilla with a bitter compound.  Our result show that stimulation of labellum sensilla 
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results in a neurological response to 50 mM sucrose (Figure 4.6C, blue arrow indicates 

stimulated sensillum) and an initial test compound, 10 mM NMM (Figure 4.6B, blue 

arrow indicates stimulated sensilla).  This is the first report of stimulation of Anopheles 

sensilla by exposure to an initial bitter compound.  It will be interesting to assess further 

compounds, as well as to determine whether bitter compounds also inhibit activity of the 

sugar cells and water cells, which has been documented in Ae. aegypti (Sanford et al. 

2013).  Additionally, it will be of value to assess whether it is possible to stimulate tarsal 

sensilla, given that this is the initial contact tissue.   

 

Genetic manipulation of GPRGR2 in An. gambiae 

 During the search for a food source, insects utilize chemosensory cues to identify 

metabolites (e.g., sugars, salts, amino acids, alkaloids and quinolines) in places such as 

floral/extrafloral nectaries, rotting fruit, honeydew and tree sap (Weiss et al. 2011; Ignell 

et al. 2010; Foster 1995; Gary & Foster 2004; C. B. Russell & F. F. Hunter 2002).  

Among these metabolites, the latter two examples are chemical classes produced by a 

variety of plants and roots to ward off insects from feeding (Sala Junior et al. 2008; Ignell 

et al. 2010).   Chemosensory cues come into play when the mosquito is determining 

whether it should imbibe a sugar meal, relying heavily on the gustatory system to identify 

non-volatile substances.  The response of D. melanogaster to bitter substances has been 

extremely well-characterized for numerous compounds (Moon et al. 2009; Moon et al. 

2006; Thorne et al. 2004; Meunier et al. 2003; Hiroi et al. 2004).  Behavioral responses to 

a subset of our tested compounds have been described in mosquitoes, including 

denatonium benzoate, quinine and berberine An. gambiae aversion and quinine and 
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caffeine Ae. aegypti aversion (Kessler et al. 2013; Ignell et al. 2010).  Although we are 

beginning to understand mosquito behavior with regard to bitter compound aversion, it 

remains unclear which receptors may be involved in these processes.   

 To investigate the potential role of the An. gambiae GPRGR2 receptor in 

detection and aversion of bitter compounds, we proceeded in a functional genomic 

direction. A dsRNA was designed to target a 154 base pair region of the receptor mRNA, 

which displayed no off-target hits (i.e., no 18mer or greater matches within the genome).  

This region targets Exon 2, which encodes part of TMD 4 and all of TMD 5 (Figure 4.7A 

and 4.7B).  RNA interference was initiated during the early pupal stage (see Chapter III 

for methodology), as my previous attempts of KD during the adult stage were 

unsuccessful (data not shown), possibly due to the lack of access of injected dsRNA to 

required cells or other factors in adults.  Using whole head RNA isolation of adults 3 

days post-emergence, following dsRNA injection, we were able to detect a decrease on 

GPRGR2 mRNA levels of ~40% by qRT-PCR, compared to control heads 3 days post-

emergence.  Due to the variability in the four biological replicates assessed (dsLacZ: 

2.10, 3.08, 4.76, 8.92 and dsGPRGR2: 1.69, 2.19, 2.90, 4.77), additional experimental 

replicates must be performed to obtain a result with clear statistical significance. 

To address the question of whether this particular receptor plays a role in 

detection of bitter compounds, we selected a series of chemicals that have been 

previously used in D. melanogaster, Ae. aegypti, and An. gambiae behavioral and 

physiological assays (Kang et al. 2010; Weiss et al. 2011; Kessler et al. 2013; Ignell et al. 

2010) (Table 4.1).  GPRGR2 knockdown adults displayed decreased aversion to four of 

the five compounds tested, when compared to LacZ dsRNA-injected controls (Figure 
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4.8), based on assessment using our dye-labeled choice preference assay (Figure 4.4).  

The compounds for which significant reduction in aversion was observed were berberine 

chloride, N-methylmalemide, quinine, and denatonium benzoate.  Caffeine aversion did 

not appear to be altered significantly.  The results from these assays were unexpected 

since the D. melanogaster ortholog Gr66a has been shown to mediate caffeine detection 

(Moon et al. 2006), while Gr33a has been shown to mediate detection of all of the other 

compounds (except for NMM, which was not assessed for Gr33a) (Moon et al. 2009).  

Future RNA interference-based studies evaluating the role of the Gr33a mosquito 

ortholog, GPRGR43, alone and in combination with GPRGR2 knockdown in An. 

gambiae, would further elucidate the respective roles of these two receptors, highlighted 

based on orthology to Drosophila, in bitter compound gustation.  Co-expression of these 

two GRs may be required in some sensilla for bitter compound gustation, just as co-

expression of GPRGR22 and GPRGR24 in antennal sensilla has been demonstrated as a 

requirement for CO2 detection in An. gambiae (Isono & Morita 2010).  In addition to the 

proteins categorized as gustatory receptors, there may be other non-GR proteins involved 

in bitter gustation.  For example, in D. melanogaster the transient receptor potential 

cation channel protein TRPA1, has been shown to play a role bitter compounds mediated 

responses at the physiological and behavioral levels (Kang et al. 2011; Kwon et al. 2006), 

in addition to its previously characterized role in thermal-sensing (Kang et al. 2010).  

More interestingly, the two isoforms of the An. gambiae TRPA1 receptor have been 

shown to respond to respond to NMM when expressed in oocytes (Kang et al. 2011).   

Taken together, these data provide a foundation to better understand the genetics 

that underlie the detection of bitter compounds by An. gambiae and identify GPRGR2 as 
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an important component in this biological process, which is critical for insect survival.  

Not only will these insights prove useful in understanding the basic bionomics of this 

vector, but also may enable the development of tools for masking the sensing of 

compounds that would be otherwise aversive.  Applications utilizing these insights could 

help advance the development of enhanced attractive toxic sugar bait (ATSB) 

interventions (Beier et al. 2012; Muller et al. 2010), targeted against An. gambiae and 

other vector insects.  

 

D.  METHODS 

 

Rearing and maintenance 

Anopheles gambiae (G3 colony) were reared at 27 ± 3°C, 75 ± 5% humidity, under a 

light:dark cycle of 16:8 hours, including crepuscular periods.  Larvae were provided a 

diet of 1.4% (w/v) Tetramin fish flakes (United Pet Group, Blacksburg, VA) and 0.4% 

cichlid pellets (w/v) (Kyorin Food Ind. Ltd., Himeji, Japan) and 0.4% algae wafers (w/v) 

(Kyorin Food Ind. Ltd., Himeji, Japan), prepared in dH2O.  Adults were maintained on a 

diet of 10% (w/v) glucose (Sigma-Aldrich, St. Louis, MO) ad libitum, and females were 

periodically provided with human blood using a membrane feeing apparatus for egg 

development. Two days post-blood meal, oviposition cups were placed in cages, and eggs 

were collected at 24 and 48 hours to allow for hatching in trays containing dH2O. 
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RNA isolation and cDNA synthesis 

Total RNA was isolated from adult mosquito antenna, proboscis, maxillary palp, leg and 

midgut with TRI reagent (Sigma-Aldrich, St. Louis, MO) and treated with DNase I 

(Fisher Scientific, Pittsburg, PA). Synthesis of first strand cDNA was performed using 

total RNA, oligo(dT) primers and reverse transcriptase (Invitrogen, Grand Island, NY).  

Gene-specific cDNA was amplified using the primers listed in Table 4.3.  cDNA was 

cloned into pCR2.1-TOPO vector (Invitrogen, Grand Island, NY), and recombinant 

clones were identified via sequencing with M13 reverse primer.   

 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 

Amplifications were performed using one-step SYBR Green PCR mastermix 

(Affymetrix, Santa Clara, CA).  Experimental samples were run with An. gambiae 

RSP7 as an endogenous reference and control.  Expression levels were calculated by a 

relative standard curve method and quantified by using analysis software from Applied 

Biosystems (Foster City, CA).  Primers were designed to span intron junctions, to 

distinguish from gDNA and are listed in Table 4.3.  

 

Double-stranded RNA synthesis and delivery 

Template DNA was prepared using GPRGR2::pCR2.1-TOPO and amplified using 

dsRNA primers to add 5’ T7 promoter sequences (5’–TAATACGACTCACTATAGGG–

3’) onto dsDNA template.  dsRNA was prepared by using the dsDNA template and the 

Ambion MEGAscript RNAi Kit, following modified kit instructions.  Modification 
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included an increased transcription reaction time (~18 hours) and purification via 

phenol/chloroform extraction.  Pupal injections were performed using dsRNA at a 

concentration of 3 μg/μl, and injecting 2 pulses of 69 nl, with 0.1% Fast Green FCF Dye 

(Sigma-Aldrich, St. Louis, MO) to visualize injection quality (see Chapter III for detailed 

methodology).   

 

Dual-choice feeding assay  

Adult An. gambiae (48 hours post-emergence) were starved of sugar for 16-18 hours (to 

empty the gut and encourage feeding) and anaesthetized by exposure to cold (4°C).  

Adults were placed into a cardboard container with mesh netting on top and presented 

with each of two solutions via one-half of a bisected hollow-bodied cotton swab (Johnson 

& Johnson Co, City, State), respectively. A volume of 180 μl of sugar solution was 

introduced into the plastic stem and saturated the swab.  One blue swab and one yellow 

swab were placed through small openings in the netting, and containers were transferred 

immediately into a dark chamber for 6 hr under insectary conditions.  The inverse 

color/sugar combination was set up in a side-by-side assay to correct for possible dye 

bias.  The imbibed solutions were visually identified via midgut dissection by using blue 

and yellow dye.  In addition to external visual inspection, the gut was punctured with an 

insect pin on a piece of white filter paper to allow a more thorough assessment of dye 

color. For bitter compound-sugar combinations, sugar was presented at 10% (w/v) in both 

control (glucose only) and experimental (bitter compound + glucose) swabs.  Compounds 

were used at the following concentrations: 1 mM Berberine chloride (Sigma-Aldrich, St. 

Louis, MO), 10 mM N-methylmaleimide (Sigma-Aldrich, St. Louis, MO), 10 mM 
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caffeine (Fisher Scientific, Pittsburg, PA), 1 mM denatonium benzoate (Fisher Scientific, 

Pittsburg, PA) and 1 mM quinine (Fisher Scientific, Pittsburg, PA).   

 

Aversive Behavior Data Analysis  

Statistical software (Prism, GraphPad, La Jolla, California) was used to assess 

significance of the choice indices, based on the pairwise choices provided.  Using the 

data from three independent replicates (n = 100 per replicate) and performing a Welch’s 

t-test, the p-values were determined. p ≤ 0.05 was considered statistically significant.  To 

calculated the choice index (C.I.), the formula from Ignell et al. (Ignell et al. 2010) was 

used: 

  

C.I. A = [(nA)+(nA+B)]/ntotal    

C.I. B = [(nB)+(nB+A)]/ntotal 

 

 

Mosquitoes that died were not scored, and those that had refrained from feeding were 

scored as non-feeding (included in total number).  Mosquitoes were scored by gender, as 

well, to determine if any gender-bias could be observed. 

 

Phylogenetic Analysis 

Geneious software (Biomatters Inc., San Francisco, CA) was used to generate ClustalW 

alignments of the 60 annotated gustatory receptors (sequences obtained from VectorBase, 

http://www.vectorbase.org/), D. melanogaster Gr66a bitter receptor (sequences obtained 



! 134!

from FlyBase, http://flybase.org/) and three human bitter receptors TAS2R10, TAS2R14, 

TAS2R46 (sequences obtained from UniProt, http://www.uniprot.org/).  For genes 

encoding multiple splice variants, the longest open reading frame was used to generate 

the alignment.  ClustalW alignments were used to generate a phylogenetic tree using 

Jukes-Cantor genetic distance model and neighbor-joining with Geneious Software 

(Biomatters Inc., San Francisco, CA). 

 

Electrophysiology  

Gustatory sensilla on the labellum of female adults 0-24 hours post-emergence were used 

for electrophysiological recordings as previously described in Hodgson et al. (Hodgson et 

al. 1955). All recordings were performed from a single sensillum type near the distal tip 

of the labellum.  Recordings were performed by immobilization of the mosquito (wings 

and legs removed) on a glass slide by use of two-sided tape.  A tungsten wire electrode 

was inserted into the head to serve as a ground.  The recording/stimulating electrode was 

prepared by inserting a silver wire into a glass capillary pulled to a tip diameter just large 

enough to fit over the end of one single sensillum.  A contact chemoreceptive sensillum 

preamplifier (Taste Probe, Syntech, Kirchzarten, Germany) was used to generate 

electrical signals that were stored and analyzed using LabCharts software (ADI 

Instruments, Colorado Springs, CO).  Prior to any experimental recordings, sensilla were 

stimulated with the control solution of 10 mM KCl to ensure appropriate contact was 

made.  Recordings were performed for a minimum of 10 seconds to ensure continued 

stimulation and assess any stimulation as a result of physical contact.   
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Scanning electron microscopy (SEM) 

Tissues were fixed overnight with 2.5% glutaraldehyde in PBS, pH 7.4.  Following 

fixation, tissues were washed twice with PBS and twice with distilled water and 

subsequently, followed by dehydration in ascending grades of ethanol (70%, 95%, 100%; 

30 min each).  All tissues were stored in 100% ethanol until dried using a critical point 

dryer (Tousimis Autosamdri-815B, Rockville, MD).  Samples were immediately 

mounted on glass slides and coated in a thin film of gold (~5-10 nm) via Hummer 6.6 

sputter deposition (Anatech, Union City, CA).  Samples were imaged using scanning 

electron microscopy (SEM) with a NeoScope benchtop JCM-6000 SEM (JEOL, 

Peabody, MA).    

  

 

 

 

 

 

 

 

 



! 136!

E.  FIGURES AND LEGENDS 

 

Figure 4.1: GPRGR2 sequence motif, structure and phylogeny. (A) Protein sequence 
identity (green) for the D. melanogaster (GR66a) and An. gambiae (GPRGR2) orthologs. 
Transmembrane regions (blue).  (B) The GRs are defined by a conserved C-terminal 
motif: hh(G/A/S)(A/S)hh(T/S)YhhhhhQF, where ‘‘h’’ is a hydrophobic residue.  (C) 
Phylogenetic tree depicting the relationships among 60 annotated An. gambiae GPRGR 
receptors (blue), D. melanogaster Gr66a (orange) and human bitter GPCRs TAS2R10, 
TAS2R14, TAS2R46 (red).   
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Figure 4.2:  An. gambiae GPRGR membrane topology.  Of the 60 currently annotated 
An. gambiae GPRGRs, TMD predications using a TMHMM algorithm (Krogh et al. 
2001) revealed that the majority of receptors (53 of the 60) are oriented in an inverted 
manner (i.e., cytoplasmic N-terminal domain).  GPRGR2 is one of the few that exhibit a 
typical GPCR topology (i.e., extracellular N-terminal domain).   
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Figure 4.3:  An. gambiae GPRGR2 is highly expressed in multiple sensory 
appendages.  (A) Sensilla with potential innervating sensory neuron types.  (B) Spatial 
analysis of transcript levels shows that GPRGR2 is abundant in the proboscis, leg and 
antenna (all tissues containing sensilla), when compared to midgut (no sensilla).  * = P < 
0.05, ** = P ≤ 0.01, *** = P ≤ 0.001 

 

 

 

 

 

 

 

 

 

 

 
 

 

A" B"

P
al

p

P
ro

bo
sc

is

L
eg

A
n

te
n

n
a

M
id

g
u

t0

20

40

60

80
Palp
Proboscis
Leg
Antenna
Midgut

E
xp

re
ss

io
n

 
(n

or
m

al
iz

ed
 to

 R
S

P
7)

***"

***"
*"

*"



! 139!

Figure 4.4:  Choice preference assay.  (A) Dual-choice feeding apparatus.  Two sugar 
options are presented to the mosquitoes for a 6 hr time period (in a dark chamber) post-
starvation.  Colored dye allows for detection of sugar option(s) imbibed.  Inverse options 
(as depicted above) are provided to adjust for any potential color bias.  (B) Microscopy 
images of An. gambiae after imbibing dye-labeled sugar meal.  Illumination of the 
abdominal region shows colored sugar solution in the gut.  (a) Imbibed blue 10% glucose 
meal.  (b) Imbibed yellow 10% glucose meal + bitter compound.  (c) Imbibed both blue 
and yellow solutions (as indicated by green gut color).  (C) Dissection of gut post-
imbibition of a dye-labeled sugar meal.  Image show is a male scored as feeding on both 
blue and yellow meals.    
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Figure 4.5: An. gambiae bitter compound aversion.  Adult An. gambiae mosquito meal 
choice when provided 10% glucose (Glu) or 10% glucose + bitter compound.  
Compounds assessed are: (A) 10 mM NMM, (B) 1 mM berberine chloride (Ber), (C) 1 
mM denatonium benzoate (Den), 1 mM quinine (Qui) and (D) 10 mM caffeine (Caf).  
For each compound, three replicates were performed with n = 100 adults (equal numbers 
of males and females).  Colored bars represent proportion of male (blue) and female (red) 
that fed on meal.  Significance assessed via unpaired t-test, where * = P < 0.05, ** = P ≤ 
0.01, *** = P ≤ 0.001.     
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Figure 4.6: An. gambiae sensilla scanning electron micrographs (SEMs) and 
electrophysiology.  (A) SEM images showing sensilla chaetica of an adult An. gambiae 
mosquito labellum at 240X (left) and 1100X (right). Blue arrows indicate representative 
sensilla from which electrophysiological recordings were performed.  White asterisk 
indicates sensillum pore.  (B) SEM image of an adult terminal tarsal segment showing a 
sensillum chaetica protruding beyond the claw.  (C) Electrophysiological recordings 
using 50 mM sucrose.  (D) Electrophysiological recordings using 10 mM NMM.  Sensilla 
were stimulated with 50 mM KCl for normalization, prior to sugar or NMM exposure.   

 

 

 

 

 

 

 

 

 

0"

1"

2"

'1"

'2"
0" 5" 10"

m
V"

0" 5" 10"

0"

1"

2"

'1"

'2"

m
V"

sec" sec"

50"mM"sucrose"50"mM"KCl"

0"

1"

2"

'1"

'2"

m
V"0"

1"

2"

'1"

'2"

m
V"

10"mM"NMM"50"mM"KCl"
sec" sec"

0" 5" 10" 0" 5" 10"

A" C"

D"

"1100"X" 10"μm""240"X"

"1000"X"

50"μm"

B"

*"



! 142!

Figure 4.7: An. gambiae GPRGR2 knockdown.  (A) Schematic of GPCR indicating the 
location of the 154 bp knockdown region.  Dark blue: intra- and extra-cellular loops, light 
blue: TMDs, gray: membrane.  (B) GPRGR2 CDS with KD region (gray highlight) 
indicated.  (C) Quantitative PCR analysis following dsGPRGR2 injection shows 
approximately 40% reduction in transcript levels, compared to dsLacZ injection (control).   

 

 
 

 

 

 

 

 

 

 

 

 

dsGPRGR2"

A"

B"

0

2

4

6

8

dsLacZ
dsGPRGR2

dsLacZ
Y1

2.101195
Y2

3.077252
Y3

4.76105
Y4

8.920077

dsGPRGR2
Y1

1.690616
Y2

2.186730
Y3

2.899707
Y4

4.774076

Fold changes relative to RSP7 (ref gene)

dsLacZ
Mean
4.715

SEM
1.506

N
4

dsGPRGR2
Mean
2.888

SEM
0.676

N
4

E
xp

re
ss

io
n 

Unpaired t test results
  The two-tailed P value equals 0.3106 

Confidence interval:
  The mean of Group One minus Group Two equals 1.82711200
  95% confidence interval of this difference: From -2.21102841 to 5.86525241 

Intermediate values used in calculations:
  t = 1.1071
  df = 6
  standard error of difference = 1.650 

dsGPRGR2 
CDS: black 
KD region (154bps): gray highlight 
 
ATGTCCGTTAATCCGGTTCGCGGGTTGCTCGATTCGCTGTCCGTGCTGTTTTACATCTCC 
TCCATCTTTGGCGTCATTCCGTACTCGCTGTGGGCGTTTGCCAAGCGCACCGCAATACAG 
CTCTCCCTAGTCGGCAATGTGTGGGTAGTTGGCAGCCTGGTCGTCTACACGGGCCTGTAC 
CATGTGGCAACAATCAACTACACGAAAGACGATTGGGGATCGCAAAAGACGCTCACGAAT 
GCGATTGGCATCTTCATCATCTACATGGAACCGTTTATGATGGCGGTGGACATGGTGGCG 
GGTATGATCAATCAGAAACGACTGGCCCAGTGCTTCGATCGGCTGGCCCGCCTCGACAAC 
CATCTGGCCGGGGAGGGCGTGCTGATCAACAACGGGCGAATGCGCCGGTACAGCATCGTG 
CTGTTGCTGCTGATGCTGCTGTTCGAGGCGATCATCACCGTGTACAGCTTTGTGGCGTTT 
GAGGAAGAGTTTAACGCCTGGTCGCTGATCTGGTTCATCACGACCATACCGACCGCACTG 
AACTCGGTGTGCCGCATCTGGTACGTGATGCTGGTGTCCGCCATCCGGCAGCGCTTCAAC 
GCAATGAACGCGCACATGAACGCGATCGCCCACGGCATACTGCACTACAAGGACCAGTAC 
GCGGGCGAACCGGACGCCGACATTGCCGAGATACCGCTCGACTATCTGGAGAAGGAGATA 
TTCACCGTGTACACGCAGCGCCGCAAGCAGCTGACGGTGCCGACTCCTCCCAAGAAGACG 
AACTTCAATGCCACCACCAAGGTGATCACCCCGTGGCCCGCCGAAGCAGACGCAGTCGGG 
TACGGTCCGGCTCAGGAGTTCCTGCCGACCGATCGGCGGCTACGGCCCCACATCGAGCAA 
CGGCTGGACAACAAGCTGATACTGTTCTGCCGGACGCACGACGAGCTGTGCGAGATCGGC 
AAGGTCGTCAACCGGATGTACAGCGTGCAGATGCTGGTGGCGATGGCGCACGGGTTTGTC 
GCCATTACGGCCGAGTTTTACTTTCTCTACTGCAGCCTCACGCAGCAGGACGTGCCGATA 
CTGTTCCGAACGGCGGAAGTGTTTCTGCTCGGGCTGGCGTACATCGTCTACACGGCGCTC 
AAGTGTATCGTGCCGATCTTTGTGTGCTGGAGGACGAAAACCGACTCGCAGCGAACCGGC 
ATCGAGCTGCACTATCTGGCGAACGCGGTCGACGAGGTCCACTGTTACGAGGTGGTTAAC 
CATCTGTCGCTGAAGCTGCTAAACCATCAGCTTAACTTTAGTGCCTGTGGCTTTTTCGAC 
CTGGACATGACGACACTGTACGCGATAACCGGCGCAATCACCAGCTACCTGATCATACTG 
ATCCAGTTCAATCTTGCAGCGATACAGAAATCGAACAGCAACTCAACGATCGCCTCGAAT 
GGCAGCACCACGGCCATGGCGGTTGTGGAGGGCGTCGTTACCACCGCACTAACGACGTAC  
GTTTCCAATTGA 
 
!
!
AGACGCTCACGAATGCGATTGGCATCTTCATCATCTACATGGAACCGTTTATGATGG 
CGGTGGACATGGTGGCGGGTATGATCAATCAGAAACGACTGGCCCAGTGCTTCGATCGGC 
TGGCCCGCCTCGACAACCATCTGGCCGGGGAGGGCGTGCTGATCAACAACGGGCGAATGC 
GCCGGTACAGCATCGTGCTGTTGCTGCTGATGCTGCTGTTCGAGGCGATCATCACCGTGT 
ACAGCTTTGTGGCGTTTGAGGAAGAGTTTAACGCCTGGTCGCTGATCTGGTTCATCACGA 
CCATACCGACCGCACTGAACTCGGTGTGCCGCATCTGGTACGTGATGCTGGTGTCCGCCA 
TCCGGCAGCGCTTCAACGCAATGAACGCGCACATGAACGCGATCGCCCACGGCATACTGC 
ACTACAAGGACCAGTACGCGGGCGAACCGGACGCCGACATTGCCGAGATACCGCTCGACT 
ATCTGGAGAAGGAGATATTCACCGTGTACACGCAGCGCCGCAAGCAGCTGACGGTGCCGA 
CTCCTCCCAAGAAGACGAACTTCAATGCCACCACCAAGGTGATCACC 
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Figure 4.8:  An. gambiae GPRGR2 knockdown results in decreased bitter compound 
aversion.  (A-D) Knockdown adults (dsGPRGR2) exhibit no significant differences in 
feeding preference for sugar verses sugar + bitter compound, whereas control (dsLacZ) 
show significant aversion. (E) Both knockdown and control adults show significant 
aversion to bitter compound.  For each compound, three replicates were performed with 
adults that emerged after the injection of 50 pupae (see Chapter III for methodology).  
Number of emerged adults varied per injection round. As the number of adults tested 
varied for each assay, the significance was assessed by Welch’s t-test, to increase 
stringency.  * = P < 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001, ns = P > 0.05.  
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Table 4.1.  GPRGR2 orthologs. 

 

 

 

 

 

 

 

 

 

 

 

Organism Protein ID Gene Name InterPro ID GO Term: Biological Process

Drosophila melanogaster FBpp0289508* Gr66a IPR013604 (7TM chemoreceptor) Sensory perception of taste

Anopheles gambiae AGAP002275-PA# GPRGR2 IPR013604 (7TM chemoreceptor) Sensory perception of taste

Anopheles funestus AFUN002184-PA# GPRGR IPR013604 (7TM chemoreceptor) Sensory perception of taste

Anopheles arabiensis AARA004056-PA# GPRGR IPR013604 (7TM chemoreceptor) Sensory perception of taste

Aedes aegypti AAEL011571-PA# GPRGR14 IPR013604 (7TM chemoreceptor) Sensory perception of taste

*"FlyBase"iden3fica3on"number"
#"VectorBase"iden3fica3on"number"
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Table 4.2.  Bitter Compounds. 

 

 

 

 

 

 

 

Quinine 

 C20H18ClNO4 Berberine chloride 

Empirical Formula   Chemical Name Chemical Structure Chemical Properties 

C20H24N2O2  

C8H1010N4O2  Caffeine 

N-methylmalemide  C5H5NO2 

Denatonium 
benzoate C21H29N2O · C7H5O2 

· Alkaloid 
· Quaternary ammonium salt 
· Bitter tastant 
· Found in plant roots & bark 

· Alkaloid 
· Bitter tastant 
· Found in plant roots & bark 
· Known antimalarial 
 

· Ammonium beozoate 
· Quaternary ammonium salt 
· Bitter tastant 

· Alkaloid 
· Bitter tastant 
· Found in plants & fruits 

· Imide 
· Electrophilic small molecule 
· Bitter tastant 
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Table 4.3.  Primer sequences.   

Gene Primer Sequences 5’ -> 3’  
 

 

 cDNA                                                                               
GPRGR2 F’: GCGAGTGTGCAAAAATCATGTCCG   
 R’: GGAGGCATGCTGGCTTCAATTGG  
 

 

dsRNA* 
GPRGR2 F’: taatacgactcactatagggCACCGTGTACAGCTTTGTGG   
 R’: taatacgactcactatagggGTTCATTGCGTTGAAGCG 

 

 

LacZ# F’: taatacgactcactatagggCTCGAGGTCGACGGTATCG  
 R’: taatacgactcactatagggCGGCCGCTCTAGAACTAG  
   
 qRT-PCR 
GPRGR2 F’:  GCTGCTAAACCATCAGCTTAAC  
 R’:  CGGTTATCGCGTACTGTGTC 

 

 

Rsp7 F’:  TCGCTCTTTTTCCGGGCAT  
 R’:  TTGCCGGCTTTGATCACCTT  
   
 

* lowercase regions indicate T7 promoter site. 

#  primers designed using flaking regions in pLL10-GFP plasmid (containing LacZ) 

 

 

Dataset 4.1. TMHMM topology and TMD prediction data.  Spreadsheet available 

online in supplemental material at ProQuest.   
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Modulation of TRPA1 thermal sensitivity enables sensory discrimination in 
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A. ABSTRACT 

 

Discriminating among sensory stimuli is critical for animal survival. This discrimination 

is particularly essential when evaluating whether a stimulus is noxious or innocuous. 

From insects to humans, transient receptor potential (TRP) channels are key transducers 

of thermal, chemical and other sensory cues (Dhaka et al. 2006; Wu et al. 2010). Many 

TRPs are multimodal receptors that respond to diverse stimuli (Dhaka et al. 2006; Wu et 

al. 2010; Daniels & McKemy 2007), but how animals distinguish sensory inputs 

activating the same TRP is largely unknown. Here we determine how stimuli activating 

Drosophila TRPA1 are discriminated. Although Drosophila TRPA1 responds to both 

noxious chemicals (Kang et al. 2010) and innocuous warming (Hamada et al. 2008), we 

find that TRPA1-expressing chemosensory neurons respond to chemicals but not warmth, 

a specificity conferred by a chemosensory-specific TRPA1 isoform with reduced 

thermosensitivity compared to the previously described isoform. At the molecular level, 

this reduction results from a unique region that robustly reduces the channel’s 

thermosensitivity. Cell-type segregation of TRPA1 activity is critical: when the 

thermosensory isoform is expressed in chemosensors, flies respond to innocuous 

warming with regurgitation, a nocifensive response. TRPA1 isoform diversity is 

conserved in malaria mosquitoes, indicating that similar mechanisms may allow 

discrimination of host-derived warmth—an attractant—from chemical repellents. These 
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findings indicate that reducing thermosensitivity can be critical for TRP channel 

functional diversification, facilitating their use in contexts in which thermal sensitivity 

can be maladaptive.  

 

B. INTRODUCTION, RESULTS AND DISCUSSION 

 

Highly temperature-responsive TRP cation channels, thermoTRPs, mediate 

thermosensation from insects to mammals (Dhaka et al. 2006; Wu et al. 2010) and are 

important for human pain and inflammation (Patapoutian et al. 2009). Like mammalian 

thermoTRPs, Drosophila melanogaster TRPA1 is both a thermal and chemical sensor, 

responding to innocuous warmth (above ~25–27°C) (Hamada et al. 2008; Viswanath et 

al. 2003) and noxious chemicals (Kang et al. 2010). TRPA1 acts in thermosensors within 

the brain to modulate thermal preference over 18–32°C (Hamada et al. 2008), innocuous 

temperatures compatible with fly survival (Cohet 1975), and in gustatory chemosensors 

to inhibit ingestion of electrophiles (Kang et al. 2010), reactive chemicals like allyl 

isothiocyanate (AITC, found in wasabi) and N-methylmaleimide (NMM) that rapidly 

incapacitate flies (Figure A1.1). The responsiveness of TRPA1 to both innocuous and 

noxious stimuli raises the question of how these stimuli are distinguished to elicit distinct 

behavioral responses. Mammals face similar issues; for example, TRPM8 transduces both 

innocuous and noxious cold (Dhaka et al. 2006; Wu et al. 2010; Daniels & McKemy 

2007).  

We previously reported TRPA1-expressing chemosensors in the labral sense 

organ (Kang et al. 2010); using improved immunostaining conditions, we now also detect 
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specific TRPA1 protein expression in labellar chemosensors (Figure A1.2a, b). 

Extracellular tip recording (Hodgson et al. 1995) indicated these neurons were TRPA1-

dependent chemosensors; they responded to the electrophile NMM with robust spiking in 

wild type but not TrpA1 mutants (Figure A1.2c and Figure A1.3). The mutant defect was 

electrophile specific, as TrpA1 mutants responded like wild type to berberine chloride 

(Figure A1.2c), a bitter compound that also activates these neurons (Weiss et al. 2011). In 

contrast, warming to ~39°C, from innocuously warm to the noxious range, elicited no 

spiking in these cells (Figure A1.2d, e). This is notable as the effectiveness of TRPA1 in 

conferring warmth sensitivity has led to its use as a thermogenetic tool (Hamada et al. 

2008; Philipsborn et al. 2011). Thus, despite the known sensitivity of TRPA1 to both 

temperature and chemicals, these chemosensors are warmth insensitive.  

In addition to the previously characterized transcript, TrpA1(B), a transcript with 

an alternative 5’ end, TrpA1(A), has been annotated (Graveley et al. 2011) (Figure 

A1.4a). These transcripts encode protein isoforms with distinct amino termini, but the 

same ankyrin and transmembrane domains (Figure A1.4b). Polymerase chain reaction 

with reverse transcription (RT–PCR) demonstrated differential expression: TrpA1(A) was 

expressed in the proboscis, which houses the TRPA1-expressing chemosensors, whereas 

TrpA1(B) predominated elsewhere in the head, where TRPA1-expressing thermosensors 

are located (Figure A1.4c).  

Examined in Xenopus oocytes, TRPA1(A) was much less thermosensitive than 

TRPA1(B), as reflected in its temperature coefficient (Q10), the fold change in current per 

10°C change (Dhaka et al. 2006; Wu et al. 2010). Arrhenius plot analysis (Vyklicky� et 

al. 1999) yielded a Q10 of ~9 for TRPA1(A) versus ~116 for TRPA1(B) (Figure A1.4d–f). 
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In addition, whereas TRPA1(B) was essentially inactive at low temperatures, TRPA1(A)-

dependent currents were observed ≤15°C, further reducing the temperature-dependent 

activity differential of TRPA1(A) (Figure A1.5). The maximum heat-activated current for 

TRPA1(A) was also significantly lower (Figure A1.6). Lastly, the transition (or 

threshold) temperature for increased temperature responsiveness was 29.7 ± 0.3°C for 

TRPA1(A) versus 27.8 ± 0.4°C for TRPA1(B) (P < 0.01, t-test). As the innocuous warm 

temperature range in Drosophila is of particular behavioral relevance, the Q10 from 27–

37°C (below the ~38°C nociceptive threshold in Drosophila) (Tracey et al. 2003) was 

also calculated, yielding 6.2 ± 0.5 for TRPA1(A) and 90 ± 8 for TRPA1(B) (Figure 

A1.4f). Other properties were largely unaffected; both channels responded robustly to 

electrophiles and had similar voltage sensitivities (Figure A1.4g, h). TRPA1(A) and 

TRPA1(B) had similar maximum current amplitudes at 300 mM NMM, with half-

maximum effective concentration (EC50) values of 176 ± 12 and 128 ± 9 mM, 

respectively (Figure A1.4i).  

The reduced thermosensitivity of TRPA1(A) could account for the chemosensors’ 

warmth insensitivity. But although TRPA1(A) is less temperature sensitive than 

TRPA1(B), its Q10 resembles several TRPs implicated in warmth sensitivity (Talavera et 

al. 2005; Gracheva et al. 2011; Gracheva et al. 2010). To assess whether TRPA1(A) 

could confer warmth sensitivity upon Drosophila chemosensors, each isoform was used 

to rescue a TrpA1 mutant. We previously demonstrated that expressing TRPA1(B) in 

TRPA1-dependent chemosensors using Gr66a-Gal4 rescues the TrpA1 mutant behavioral 

defect (Kang et al. 2010). Using electrophysiology, we found both isoforms restored 

NMM responsiveness (Figure A1.7a and Figure A1.8a, b), but only TRPA1(B) conferred 
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warmth sensitivity (Figure A1.7b, c). These differences did not require properties unique 

to TRPA1-dependent chemosensors. Each isoform was expressed ectopically in sweet-

responsive chemosensors using Gr5a-Gal4 (Marella et al. 2006). Both isoforms conferred 

electrophile sensitivity upon these normally electrophile-insensitive neurons, but only 

TRPA1(B) conferred thermosensitivity (Figure A1.7d–f and Figure A1.9c, d). The 

inability of TRPA1(A) to confer warmth sensitivity on fly chemosensors emphasizes that 

although a Q10 above 5 makes TRPA1(A) more thermally sensitive than most ion 

channels, in vivo testing is important in evaluating whether a channel is sufficiently 

thermosensitive to make a specific neuron warmth responsive.  

These data support a model in which the specificity of TRPA1-expressing 

gustatory neurons for chemicals is established by their selective expression of 

TRPA1(A), an isoform unable to confer warmth sensitivity. In contrast, the chemical 

sensitivity of TRPA1(B) should render TRPA1-dependent thermosensors sensitive to 

reactive chemicals. However, the location of TRPA1-dependent anterior cell 

thermosensors inside the head (Hamada et al. 2008) should minimize exposure to 

environmental irritants. Interestingly, multiple TRPV1 and TRPM1 isoforms are present 

in humans and other mammals (Wu et al. 2010; Gracheva et al. 2011; Lu 2005; Vos et al. 

2006), suggesting the potential generality of isoform diversity in modulating TRP 

functions.  

The behavioral significance of discriminating noxious from innocuous TRPA1 

activators was examined by testing gustatory responses of TrpA1 mutants rescued by 

chemosensor expression of each isoform. TrpA1 mutants exhibit decreased avoidance of 

reactive-electrophile-containing food (Kang et al. 2010). Each isoform rescued this 
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behavior (Figure A1.7g). However, TRPA1(B) also triggered a nocifensive response to 

innocuous warming. When allowed to ingest water to satiation and warmed to ~32°C, 

neither wild-type nor TRPA1(A) rescue animals showed detectable gustatory responses 

(Figure A1.7h, i). However, warming TRPA1(B) rescue flies caused ~75% to regurgitate 

(Figure A1.7h, i.) Thus, substituting TRPA1(B) for TRPA1(A) in chemosensors disrupts 

discrimination of noxious from innocuous stimuli and demonstrates the negative 

behavioral consequence of misregulated thermosensitivity.  

To probe how the alternative N termini in TRPA1 confer distinct properties, 

conserved residues within these regions were mutated (Figure A1.9a). Mutating either a 

cysteine (C105) or two basic residues (R113, R116) in TRPA1(A) markedly increased 

temperature responsiveness (Figure A1.9a–c and Figure A1.10 and A1.11). Whereas the 

Q10 of wild-type TRPA1(A) was <10, the TRPA1(A) mutants exhibited Q10 values of >50 

(Figure A1.9b, c), greater than the reported Q10 values of canonical thermoTRPs like 

TRPM8 (~24) (Brauchi et al. 2004) and TRPV1 (~40) (Liu et al. 2003). In addition, the 

TRPA1(A) mutants conducted little current below the threshold, increasing the 

temperature-dependent activity differential (Figure A1.9c and Figure A1.12). The 

enhanced sensitivities of the mutants seemed to be temperature specific, as NMM 

sensitivity was not increased (Figure A1.12) These data indicate that TRPA1(A) retains 

all the requirements for robust thermosensation, but contains a modulatory region 

preventing those elements from exerting their full effect.  

For TRPA1(B), mutating either a conserved tryptophan or two basic residues in 

the N terminus yielded channels retaining robust thermo-sensitivity (Q10 >50; Figure 

A1.9b and Figure A1.10). The thresholds of the TRPA1(A) and TRPA1(B) mutants were 
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all ~30–34°C, within the innocuous warm range but above the ~28°C value for wild-type 

TRPA1(B) (Figure A1.9b, c). Thus, although TRPA1(B)-specific sequences are 

unnecessary for robust responsiveness to innocuous warming, they may tune channel 

threshold within this range.  

In insect disease vectors, TRPA1 orthologs have been implicated in detecting both 

warmth and chemical repellents (G. Wang et al. 2009; Maekawa et al. 2011; Kang et al. 

2010), cues with opposing effects on host seeking. We found the malaria mosquito 

Anopheles gambiae also contains TRPA1(A) and TRPA1(B) isoforms of differing 

thermosensitivity (Figure A1.9d–h). In oocytes, the Q10 of A. gambiae TRPA1(A) was ~4 

versus a Q10 of ~200 for A. gambiae TRPA1(B); from 27–37°C, the Q10 of A. gambiae 

TRPA1(A) was ~2 versus ~60 for A. gambiae TRPA1(B) (Figure A1.9h). A. gambiae 

TRPA1(A) yielded lower maximum heat-induced current than A. gambiae TRPA1(B) 

(Figure A1.6) and had a higher threshold (34.2 ± 1.8°C versus 25.2 ± 0.9°C, P < 0.01). A. 

gambiae TRPA1(A) also exhibited significant conductance below threshold (Figure 

A1.4f, g). Both channels responded to electrophiles (Figure A1.13). TRPA1(A) and 

TRPA1(B) are conserved in other haematophagous insects including Aedes aegypti and 

Culex quinquefasciatus mosquitoes and Pediculus humanus corporis lice (Figure A1.9a 

and Figure A1.14), which transmit dengue, West Nile fever and typhus, respectively. The 

functional diversity of TRPA1 provides a potential explanation for how insect vectors 

discriminate noxious chemicals from host-derived warmth, indicating that TRPA1 

presents two distinct molecular targets for disrupting pest behavior.  

TRPA1-based electrophile detection appears to have emerged ≥500 million years 

ago in a common vertebrate/invertebrate ancestor (Kang et al. 2010). However, the larger 
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TRPA family extends to choannoflagellates, separated from animals ≥600 million years 

(Kang et al. 2010). As divergent TRPA clades contain highly temperature-sensitive 

channels (Dhaka et al. 2006), thermosensitivity may be ancestral. In this scenario, the 

specialization of TRPA1 for noxious chemical detection would necessitate reducing 

thermosensitivity, consistent with the effect of the N terminus in TRPA1(A). The ability 

of N-terminal variation to sculpt channel properties is intriguing as the N terminus is the 

most divergent region of TRPA1 within insects and from insects to mammals (Hamada et 

al. 2008).  

TRPs are a large family of channels, with 27 human and 13 Drosophila members, 

which vary greatly in thermosensitivity and function (Wu et al. 2010). Considerable 

diversity is evident even among closely related TRPs. In mammals, for example, TRPM8 

(Q10 ~24; ref. 21) mediates thermosensation (Daniels & McKemy 2007), whereas the less 

thermosensitive TRPM4 and TRPM5 (Q10 ~8.5–10; ref. 15) mediate insulin secretion 

(Uchida & Tominaga 2011)and TRPM7 (with no reported thermal sensitivity) is 

implicated in ion homeostasis (Wu et al. 2010). The mechanisms underlying such 

diversification are unclear. Whereas studies of thermal sensing by TRPs have focused on 

identifying regions promoting thermosensitivity (Dhaka et al. 2006; Grandl et al. 2008; 

Grandl et al. 2010; F. Yang et al. 2010; Yao et al. 2011), our work indicates that regions 

reducing thermosensitivity are also critical. Here we find that selectively reducing the 

thermosensitivity of Drosophila TRPA1 facilitates its use in a context in which 

thermosensitivity is undesirable. Similar mechanisms could mediate functional 

diversification not only among isoforms of a single TRP, but also contribute to the 

remarkable functional diversification observed between different TRP family channels.  
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C. METHODS 

 

 

Fly Strains and Immunohistochemistry 

 

UAS-TrpA1(B) and Gr66a-Gal4 transgenic strains and the TrpA1ins mutant have been 

described (Kang et al. 2010).  The UAS-TrpA1(A) transgene was amplified from fly 

complementary DNA with an isoform-specific primer (5’-

TATAAAGCTTAAGCCACCATGATTACAGCTCCGG CCACGGCCA-3’) and a 

reverse primer (5’-GAGACTCGAGCTACATGCTCTTAT TGAAGCTCAGGGCG-3’).  

As detailed in Methods, the UAS-TrpA1(A) transgene was inserted in the same genomic 

location used for the UAS-TrpA1(B) transgene to control for transgene position effects.  

Anti-TRPA1 immunohistochemistry was as described(Kang et al. 2010), except that the 

secondary antibody was incubated for 3 days.   

 

 

 

Behavior 

 

The proboscis extension assay was conducted as previously described (Kang et al. 2010), 

with seven flies per experiment, three experiments per genotype.  For heat-sensitive 

regurgitation, >20 flies per genotype (2–3 days old) were starved overnight with water, 

then glued to glass slides.  After 2–3 h recovery, flies were satiated with water.  Only 

flies drinking longer than 5 s were tested. Drinking times did not significantly differ 

between wild-type and rescue flies (E.C.C. and P.A.G., unpublished data), consistent 

with similar ingestion behaviors.  Flies were heated with a radiant heater at 800 W (H-

4438, Optimus) and temperature was monitored by adjacent thermocouple microprobe 
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(IT-23, Physitemp Instruments) wrapped in fly cuticle. Chemicals used in incapacitation 

assays were sucrose (Calbiochem LC8510), sorbitol (Sigma S-1876), ficoll (Sigma F-

4375), agarose (Invitrogen 15510-027), caffeine (Sigma C0750), NMM (Sigma 389412), 

isopropanol (100%, J. T. Baker 9083-03), ethanol (100%, Decon Lab 2716) and allyl 

isothiocyanate (95%, Sigma 377430). 

 
 

 

Characterization of TRPA1 isoforms in Xenopus oocytes 

 

TRPA1 currents were recorded as described (Kang et al. 2010; Hamada et al. 2008). To 

evaluate temperature sensitivities, oocytes were perfused in the recording buffer (96!mM 

NaCl, 1!mM MgCl2, 4!mM KCl, and 5!mM HEPES, pH 7.6), the temperature of which 

was increased ~0.5!°C!s−1 from 10 to 45!°C by SC-20 in-line heater/cooler (Warner 

Instruments) with a CL100 bipolar temperature controller (Warner Instruments). 

Temperature-evoked current was recorded at −60!mV. From the recorded current, 

Q10 was calculated as described (Vyklicky et al. 1999; Gracheva et al. 2010). 

Arrhenius Q10 = 10(10(-Sarrhe)/(T2-T1)), where Sarrhe  is the slope of linear phase of an Arrhenius 

plot between absolute temperatures, T1 and T2. Transition temperature was assessed as the 

temperature at which the least-squares fit lines from the two linear phases intersect 

(Vyklicky ︎  et al. 1999; Gracheva et al. 2010).  Q10 from 27–37!°C was calculated from 

currents at temperatures of interest using the equation, Q10 = (I2/I2)
10/(T2-T1) 

where I1and I2 are currents observed at temperatures of T1 and T2, 

respectively. Q10 determinations were validated by using Crotalus atrox TRPA1 

(Gracheva et al. 2010) as a control with known Q10 (K.K. and P.A.G., unpublished data). 
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To assess sensitivity to NMM, voltage across the membrane was initially held at −80!mV, 

and a 300-ms voltage ramp (−80!mV to 80!mV) per second was applied. The oocytes 

were perfused for 1!min with the recording buffer containing indicated concentrations of 

NMM with 30-s washes between NMM applications. Current amplitudes at −80!mV after 

application of each NMM concentration were fitted to the Hill equation through 

Sigmaplot 10. The first coding exon of A. gambiae TrpA1(B) was chemically synthesized 

(Genscript). 

 

Gustatory neuron electrophysiology 

Extracellular recordings of gustatory neurons were obtained using the tip-recording 

method9. Adult female flies, aged 1–4 days, were prepared by inserting a glass reference 

electrode containing Drosophila Ringer’s solution into the thorax and advancing the 

electrode through the head to the labellum. A glass recording electrode with an ~15-µm 

opening was used to apply tastants to individual sensilla. Raw signals were amplified 

using a TasteProbe preamplifier (Syntech) and were digitized and analysed using a 

PowerLab data-acquisition system with LabChart software (ADInstruments). Amplified 

signals were digitized at a rate of 20!kb!s−1 and filtered using a 100–3,000!Hz band-pass 

filter before analysis. Individual action potentials were sorted using a visually adjusted 

threshold and average spike rate was calculated beginning 200!ms after electrode contact. 

Recording times varied by experiment: berberine chloride and sucrose positive controls, 

5!s; electrolyte only, 20!s; NMM on i-type bristles, 60!s; NMM on L-type bristles, 120!s; 

heat ramps, >60!s. For heat-ramp experiments, recordings were performed using 
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electrolyte only as tastant. After ~30!s of recording to determine baseline activity, heat 

was applied manually to the fly using a radiant heater (PRESTO HeatDish, National 

Presto Industries). Application of heat was maintained for ~10–30!s and the distance 

between the heat source and the preparation was reduced to obtain a temperature 

of!≥39!°C. Bristle temperature was estimated using thermocouple microprobe (IT-23, 

Physitemp Instruments) wrapped in fly cuticle. All tastants were dissolved in 30!mM 

tricholine citrate as the electrolyte to inhibit the activity of the water cell in L-type bristle 

(Weiczorek & Wolff 1988). Tastants were stored at −20!°C and aliquots maintained at 

4!°C for up to 1 week. For all experiments, a positive control was used to confirm the 

viability of the target bristle. For i-type bristles, 1!mM berberine chloride was used as 

control. For L-type bristles, 30!mM sucrose was used. Individual tastant presentations 

were separated by a minimum delay of 60!s. At least two animals and six bristles were 

examined for each condition. 

 

Molecular Biology 

 

Primers for RT–PCR reactions: D. melanogaster TrpA1(A) forward, 5′-GCCGG 

AACAGCAAGTATT3-3′; D. melanogaster TrpA1(B) forward, 5′-GTGGACTATCTG 

GAGGCG-3′; D. melanogaster TrpA1 common reverse, 5′-TATCCTTCGCATTAA 

AGTCGC-3′.  Mutagenesis of Drosophila TRPA1 was performed as described. Briefly, 

for a desired mutation, each of two mutually complementary mutant primers was paired 

for PCR with a primer (outer primer) that anneals outside of either SalI or HpaI 

restriction recognition site. The two resulting PCR fragments that overlap only in the 
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region of the two mutant primers were combined and served as template for the next PCR 

reaction that contained only outer primers. The second PCR product was digested by SalI 

and HpaI, and subsequently replaced the corresponding wild type region of TRPA1 

cDNA. The fragment between the two restriction sites was sequenced. Sequences were 

aligned using MUSCLE 3.7 (Edgar 2004). 
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D. TABLES, FIGURES AND LEGENDS 

 

Figure A1.1. Reactive electrophiles cause incapacitation in Drosophila.  In all 
experiment, 15-30 flies were exposed to chemicals in 15 mL conical tubes.  a, Solid 
chemicals were administered as ~50 mg powder for 5 min, tubes containing flies for 
testing were briefly vortexed to maximize exposure.  “No Chemical” tubes were also 
vortexed as control.  a, Undiluted Liquids were admistered as ~50μl drop applied to 
KimWipes for 1 min.  b.p. = boiling point.  a-b, **α=0.01, Turkey HSD.  All data are 
mean +/- s.e.m.  15-30 flies/experiment, n=3 experiments/condition.   
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Figure A1.2. TRPA1-dependent gustatory neurons do not respond to heat.  a. 
TRPA1 immunostaining of wild-type (top) and TrpA1ins (bottom) labella. Right, 
differential interference contrast overlay of labellar structures. Arrowheads, chemosensor 
cell bodies. Scale bar, 20 μm. b. Top, Drosophila gustatory organs: LSO, labral sense 
organ; OES, oesophagus. Bottom, labellar bristles. Brown, s-type; grey, L-type; black, i-
type; berberine-sensitive bristles were targeted for electrophysiology. c-d. Bristle 
responses to: berberine (1 mM) and NMM (10 mM) (c); warming (d). Temp., 
temperature. e, Average spike rate after subtracting electrolyte-only baseline. freq., 
frequency. **P < 0.01; NS, not significant (P > 0.05), t-test. All data are mean ± standard 
error of the mean (s.e.m.). Warming reached an average maximum temperature of $39.0 ± 
0.6°C (mean ± standard deviation).  
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Figure A1.3.  Example response from labellar gustatory bristles to electrolyte-only 
solution in wild type and Trpa1ins mutants.  Responses from berberine-sensitive i-type 
bristles. Arrow:  artifact caused by initial contact with bristle.  
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Figure A1.4. TRPA1 isoform diversity yields tissue-specific channels with different 
thermal sensitivities.  a. TrpA1 gene structure and primer locations.  b. TRPA1 proteins.  
Dark red and blue boxes denote isoform-specific sequences.  Dark grey, transmembrane 
(TM) region. a, ankyrin repeat; aa, amino acids.  c. RT–PCR analysis of dissected tissue.  
d-e. TRPA1(A)- and TRPA1(B)-dependent currents (d) and Arrhenius plots (e) in 
oocytes.  Ttr, transition temperature.  f. Q10 values from Arrhenius plot (left) or 27–37°C 
(right).$  g-h. Left panels, NMM responsiveness of TRPA1(A) (g) and TRPA1(B)$ (h). 
Right panels, I–V relationships at points marked at left.  i. Mean amplitudes at 300 μM 
NMM (left) and NMM dose–response (right). All data, $mean ±  s.e.m. **P < 0.01; NS, 
not significant, t-test.  
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Figure A1.5. TRPA1(A) currents below and above the transition temperature show 
similar reversal potentials and voltage dependences."a. Temperature-dependent activity 
of TRPA1(A) at 80 and -80 mV in Xenopus oocytes. Voltage ramps between -80 and 80 
mV were applied for 300 msec every second via two-electrode voltage clamp. 
Temperature was increased at ~0.5 ̊C/sec. Light blue line indicates current at 15 ̊C, while 
purple and orange lines currents at 25 and 30 ̊C, respectively. b. Current-voltage 
relationships of TRPA1(A) activity at 15, 25 and 30 ̊C marked in (a).  
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Figure A1.6. Comparison of maximum heat-responsive current amplitudes for wild 
type TRPA1(A) and TRPA1(B) channels from Drosophila melanogaster and 
Anopheles gambiae. a, b, Maximum TRPA1-dependent currents generated by 
temperature increase for Drosophila (a) and Anopheles (b) channels. Statistical 
comparisons by unpaired t-test  
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Figure A1.7. TRPA1 isoform diversity determines sensory specificity of gustatory 
neurons.  a-c. TrpA1 mutant, berberine-sensitive i-type bristles expressing different 
TRPA1 isoforms. a, b, Electrophysiological responses to NMM (a) and warming (b).  c. 
Quantification.  d-f.  L-type bristles expressing TRPA1 isoforms. Responses to NMM (d) 
and warming (e).  f. Quantification.  g. Rescue of TrpA1 mutant behavioral response to 
NMM-containing food. PER, proboscis extension response.  h. Warmth-induced 
regurgitation in TrpA1 mutant rescued with TRPA1(B).  i. Regurgitation upon warming 
from room temperature (~23°C) to 32°C. In (c, f, g and i, statistically distinct groups are 
marked by a, b and c. (Tukey honestly significant difference (HSD) test, α = 0.01). Data 
are mean ± s.e.m.  
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Figure A1.8.  Supplementary Figure 5: Example responses from labellar gustatory 
bristles for TRPA1 rescue and gain-of-function. a, b, Responses of TrpA1ins mutant, 
berberine-sensitive i-type bristles expressing different TRPA1 isoforms. a, c, Typical 
responses of bristles to electrolyte-only solution (30 mM tricholine citrate). b, d, Typical 
responses to positive control solutions used to confirm preparation viability. Berberine-
sensitive i-type bristles confirmed with 1 mM berberine chloride (b) and L-type bristles 
confirmed with 30 mM sucrose (d).  
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Figure A1.9.  Regulation of insect TRPA1 thermosensitivity by alternative N 
termini.  a. TRPA1 sequence alignments. Acyr. pisum, Acyrthosiphon pisum; Aedes ag., 
A. aegypti; Anopheles g., A. gambiae; Dros. mel., D. melanogaster; Dros. vir., D. virilis.  
b. Q10 values and transition temperatures (Trans. temp.) of wild-type (WT) and mutant 
TRPA1. Dm, D. melanogaster. a, b and c denote statistically distinct groups (Tukey 
HSD, α = 0.02).  c. Arrhenius plots of indicated channels.  d. A. gambiae (Ag)TrpA1 
gene structure.  e. AgTRPA1 isoforms. a, ankyrin repeat; aa, amino acids. Blue and dark 
red indicate isoform- specific amino acids. Dark grey indicates transmembrane (TM) 
region.$  f-h. Temperature sensitivity of AgTRPA1(A) and AgTRPA1(B). f, g, Traces (f) 
and Arrhenius plots (g) of temperature-dependent current recordings at 260 mV in 
Xenopus oocytes. h, Q10 values from Arrhenius plot (left) or 27– 37°C (right) (**P < 
0.01, t-test). Error bars, ± s.e.m.  
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Figure A1.10. Representative current recordings of wild type TRPA1 isoforms and 
TRPA1(A) mutants. Lower traces show temperature ramps from 15 to 45 ̊C (~0.5 ̊C/sec) 
applied to frog oocytes expressing TRPA1 channels as indicated. Currents were recorded 
at -60 mV held by two-electrode voltage clamp. a-d. The corresponding arrhenius plots 
are presented in Figure 4.  
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Figure A1.11. Comparison of maximum current responses for wild-type and mutant 
TRPA1 channels. Maximum TRPA1-dependent currents generated by temperature 
increase and by 300 μM NMM application in oocytes. For comparison to wild type 
channels, the heat responses of mutant channels that exhibited increased thermal 
sensitivity by Q10 (TRPA1(A)C105A and TRPA1(A) R113A/R116A) were 
normalized$by dividing maximum heat responses by maximum NMM responses.  
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Figure A1.12. NMM sensitivities of TRPA1(A) mutants are"similar to that of wild 
type TRPA1(A).  "A series of NMM concentrations from 50 to 300 μM was applied to 
Xenopus oocytes expressing wild type and mutant forms of TRPA1(A). The data were 
collected following 1-min perfusion of each NMM concentration at -80 mV, and fitted to 
the Hill equation. All data are means; error bars indicate +/-SEM  
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Figure A1.13. Both agTRPA1(A) and agTRPA1(B) robustly respond to reactive 
electrophiles. a. A frog oocyte expressing agTRPA1(A) was perfused with 40 μM 
allylisothiocyanate (AITC) for 1 min, and washed for 30 sec. Subsequently, the AITC-
evoked current was blocked by 100 μM ruthenium red (RuR). The current was recorded 
at -60 mV held by two-electrode voltage clamp (TEVC). b. Three concentrations of 
NMM from 50 to 200 μM were sequentially exposed to a oocyte expressing agTRPA1(B) 
with 30 sec washing intervals as indicated. Currents were recorded while 300 msec-
voltage swipes between$-80 and 80 mV were applied every second via TEVC.  
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Figure A1.14. Conservation of TRPA1 diversity in insect pests. Multiple sequence 
alignments of insect TRPA1 isoforms. Position of ankyrin repeat #1 in TRPA1 is noted.  
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CHAPTER AII 

CYP6 P450 Enzymes and ACE-1 Duplication Produce Extreme and Multiple 

Insecticide Resistance in the Malaria Mosquito Anopheles gambiae 
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A. ABSTRACT 

Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is 

declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of 

alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates 

are increasingly important. Emergence of a very strong carbamate resistance phenotype 

in Anopheles gambiae from Tiassalé, Côte d’Ivoire, West Africa, is therefore a 

potentially major operational challenge, particularly because these malaria vectors now 

exhibit resistance to multiple insecticide classes. We investigated the genetic basis of 

resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from 

Tiassalé. Geographically-replicated whole genome microarray experiments identified 

elevated P450 enzyme expression as associated with bendiocarb resistance, most notably 

genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes 

by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl 

butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. 

CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic 

expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT 

resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct 
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classes of insecticide although the biochemical mechanism for carbamates is unclear 

because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolize bendiocarb in 

vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the 

acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which 

confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S 

alleles. Our results are alarming for vector-based malaria control. Extreme carbamate 

resistance in Tiassalé An. gambiae results from coupling of over-expressed target site 

allelic variants with heightened CYP6 P450 expression, which also provides resistance 

across contrasting insecticides. Mosquito populations displaying such a diverse basis of 

extreme and cross-resistance are likely to be unresponsive to standard insecticide 

resistance management practices. 

  

B. INTRODUCTION 

Malaria mortality has decreased substantially in sub-Saharan Africa over the last 

decade, attributed in part to a massive scale-up in insecticide-based vector control 

interventions (WHO World Health Organization 2011). As the only insecticide class 

approved for treatment of bednets (ITNs) and the most widely used for indoor residual 

spraying (IRS), pyrethroids are by far the most important class of insecticides for control 

of malaria vectors (van den Berg et al. 2012). Unfortunately pyrethroid resistance is now 

widespread and increasing in the most important malaria-transmitting Anopheles species 

(Badolo et al. 2012; Ranson et al. 2009; Ranson et al. 2011) and catastrophic 

consequences are predicted for disease control if major pyrethroid failure occurs (WHO 

World Health Organization 2012). With no entirely new insecticide classes for public 
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health anticipated for several years (Ranson et al. 2011; WHO World Health 

Organization 2012) preservation of pyrethroid efficacy is critically dependent upon 

strategies such as rotation or combination of pyrethroids with just three other insecticide 

classes, organochlorines, carbamates and organophosphates (WHO World Health 

Organization 2012; Insecticide Resistance Action Committee 2011). In addition to 

logistical and financial issues, insecticide resistance management suffers from 

knowledge-gaps concerning mechanisms causing cross-resistance between available 

alternative insecticides, and more, generally how high-level resistance arises 

(Namountougou et al. 2012). With strongly- and multiply-resistant phenotypes 

documented increasingly in populations of the major malaria vector Anopheles gambiae 

in West Africa (Namountougou et al. 2012; Corbel et al. 2007; Edi et al. 2012) such 

information is urgently required.  

Of the four classes of conventional insecticide licensed by the World Health 

Organization (WHO), pyrethroids and DDT (the only organochlorine) both target the 

same para-type voltage-gated sodium channel (VGSC). This creates an inherent 

vulnerability to cross-resistance via mutations in the VGSC target site gene (Martinez-

Torres et al. 1998; H Ranson et al. 2000; Jones, Liyanapathirana, et al. 2012a), which are 

now widespread in An. gambiae (Ranson et al. 2011). In contrast, carbamates and 

organophosphates cause insect death by blocking synaptic neurotransmission via 

inhibition of acetylcholinesterase (AChE), encoded by the ACE-1 gene in An. gambiae. 

Consequently, target site mutations in the VGSC gene producing resistance to pyrethroids 

and DDT will not cause cross-resistance to carbamates and organophosphates. The 

carbamate bendiocarb is being used increasingly for IRS (Akogbéto et al. 2010; 
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Akogbeto et al. 2011), and has proved effective in malaria control programs across Africa 

targeting pyrethroid- or DDT-resistant An. gambiae (Akogbéto et al. 2010; Akogbeto et 

al. 2011; Kigozi et al. 2012). A single nucleotide substitution of glycine to serine at 

codon position 119 (Torpedo nomenclature; G119S) in the ACE-1 gene, which causes a 

major conformational change in AChE, has arisen multiple times in culicid mosquitoes 

(Weill et al. 2003; Weill et al. 2004), and is found in An. gambiae throughout West 

Africa (Djogbénou et al. 2008; Dabire et al. 2009; Ahoua Alou et al. 2010). The G119S 

mutation can produce carbamate or organophosphate resistance (Djogbenou et al. 2007) 

but typically entails considerable fitness costs (Lenormand et al. 1999; Labbé et al. 2007; 

Djogbénou et al. 2010; Labbe et al. 2007). This is beneficial for resistance management 

because in the absence of carbamates or organophosphates, serine frequencies should fall 

rapidly (Djogbénou et al. 2010; Gassmann et al. 2009). In Culex pipiens, duplications of 

ACE-1 create linked serine and glycine alleles, which, when combined with an 

unduplicated serine allele, creates highly insecticide resistant genotypes with near-full 

wild-type functionality, thus providing a mechanism that can compensate for fitness costs 

(Labbé et al. 2007; Gassmann et al. 2009). Worryingly, duplication has also been found 

in An. gambiae (Djogbénou et al. 2008) though the consequences of copy number 

variation for fitness in the presence or absence of insecticide are not yet known in 

Anopheles. Though far from complete, information is available for metabolic resistance 

mechanisms to pyrethroids and DDT in wild populations of An. gambiae (Ranson et al. 

2011; WHO World Health Organization 2012; Mitchell et al. 2012; Djogbénou et al. 

2008; Müller et al. 2008). Indeed, a specific P450 enzyme, CYP6M2, has been 

demonstrated to metabolize both of these insecticide classes, suggesting the potential to 
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cause cross-resistance in An. gambiae (Mitchell et al. 2012; Stevenson et al. 2011). By 

contrast little is known about metabolic mechanisms of carbamate resistance in 

mosquitoes and, as a consequence, potential for mechanisms of cross-resistance are 

unknown.  

A particularly striking and potentially problematic example of insecticide 

resistance has been found in one of the two morphologically identical, but ecologically 

and genetically divergent molecular forms comprising the An. gambiae s.s. species pair 

(M molecular form, recently renamed as An. coluzzii (Coetzee et al. 2013)) in Tiassalé, 

southern Côte d’Ivoire. The Tiassalé population is resistant to all available insecticide 

classes, and displays extreme levels of resistance to pyrethroids and carbamates (Edi et 

al. 2012). The VGSC 1014F (‘kdr’) and ACE-1 G119S mutations are both found in 

Tiassalé  (Edi et al. 2012; Ahoua Alou et al. 2010). Yet kdr shows little association with 

pyrethroid resistance in adult females in this population (Edi et al. 2012). ACE-1 G119S 

is associated with both carbamate and organophosphate survivorship (Edi et al. 2012), but 

this mutation alone cannot fully explain the range of resistant phenotypes, suggesting that 

additional mechanisms must be involved. Here we apply whole genome microarrays, 

transgenic functional validation of candidates, insecticide synergist bioassays, target-site 

genotyping and copy number variant analysis to investigate the genetic basis of (1) 

extreme bendiocarb resistance and (2) cross-insecticide resistance in An. gambiae from 

Tiassalé. Our results indicate that bendiocarb resistance in Tiassalé is caused by a 

combination of target site gene mutation and duplication, and by specific P450 enzymes 

which produce resistance across other insecticide classes.  
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C. RESULTS  

 

Whole Genome Transcription Analysis  

Our study involved two microarray experiments (hereafter referred to as Exp1 and 

Exp2), involving solely M molecular form An. gambiae, to identify candidate genes 

involved in bendiocarb resistance. In Exp1 gene expression profiles of female mosquitoes 

from bendiocarb-susceptible laboratory strains (NGousso and Mali-NIH) and a 

bendiocarb-susceptible field population (Okyereko, Ghana), none of which were exposed 

to insecticide, were compared to those of Tiassalé females. Two Tiassalé groups were 

used: either without insecticide exposure (Figure A2.1A), or the survivors of bendiocarb 

exposure selecting for the 20% most resistant females in the population (Edi et al. 2012) 

(Figure 2.1B). We used a stringent filtering process to determine significant differential 

expression (detailed in the legend to Figure A2.1), which included criteria on both the 

probability and consistency of direction of differential expression, and also required a 

more extreme level of differential expression in the Tiassalé-selected than Tiassalé 

(unexposed) vs. susceptible comparisons. Inclusion of this third criterion enhanced the 

likelihood that genes exhibiting differential expression are associated with bendiocarb 

resistance, rather than implicated via indirect association with another insecticide. 

Moreover, the requirement for significance in comparisons involving both bendiocarb-

exposed and unexposed Tiassalé samples (Figure A2.1A, B) negates the possibility that 

any differential expression identified was a result solely of induction of gene expression 

by insecticide exposure.  
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In Exp1 145 probes were significant, out of a total of 14 914 non-control probes, 

with almost all (143/145) expressed at a higher level in the resistant samples. Functional 

annotation clustering analysis detected two significant clusters within the significantly 

over-expressed genes. The larger cluster was enriched for several P450s and the 

functionally-related genes cytochrome b5 and cytochrome P450 reductase. Of these, 

CYP6P3, CYP6P4, CYP6M2 and cytochrome b5 are evident amongst the most significant 

and/or over-expressed probes in Figure A2.2A. Of the five physically-adjacent CYP6P 

subfamily genes in An. gambiae, CYP6P1 and CYP6P2 were also significant, and 

CYP6P5 only marginally non-significant according to our strict criteria (five out of the 

six comparisons q<0.05). The four probes for the ACE-1 target site gene exhibited the 

strongest statistical support (lowest q-values) for resistance-associated overexpression in 

the Exp1 dataset (Figure A2.2A).  

Experiment 2 employed a simpler design in which bendiocarb resistant samples 

from Kovié (Togo) were compared to the same Okyereko field samples used in Exp1 and 

to a second field population from Malanville (Benin). Significant differential expression 

was determined according to the first two criteria employed for analysis of Exp1 (Figure 

A2.1). The likelihood of specificity of results to the bendiocarb resistance phenotype was 

enhanced because all three populations used in Exp2 exhibit resistance to pyrethroids and 

DDT, all are susceptible to organophosphates, but only the Kovié population is resistant 

to bendiocarb. In Exp2 2453 probes were significantly differentially expressed; likely 

reflecting the lower number of pairwise comparisons available for stringent filtering than 

in Exp1. Consequently we do not consider results from Exp2 alone in detail. Nevertheless 

it is interesting to note that the lowest q-values and highest fold-changes were both for 
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alcohol dehydrogenase genes (Figure A2.3), and the latter is the physical neighbor and 

closest paralogue of the highly overexpressed alcohol dehydrogenase in Exp1 (Figure 

A2.2A). Sixteen probes, representing only seven genes, were significant in both Exp1 and 

Exp2 (Figure A2.2B), including all replicate probes for three of the CYP6 P450 genes 

highlighted previously. Of these, CYP6M2 was most highly over-expressed, second only 

to Ribonuclease t2. However, results for Ribonuclease t2 were much more variable, with 

differential expression dramatically high compared to lab strains, but moderate or low 

compared to wild populations. Evidence for specific involvement in bendiocarb 

resistance is suggested by significance of two of the CYP6M2 probes in the (relatively 

low-powered) direct comparison of bendiocarb selected vs. unselected samples within 

Exp1; the other two CYP6M2 probes and two of those for ACE-1 were marginally non-

significant (0.05<q<0.10; Figure A2.4).  

 

qRT-PCR Expression of Candidate Genes  

Five genes were chosen for further analysis: ACE-1 and CYP6P3 from Exp1; 

CYP6M2 and CYP6P4 from Exp1+Exp2; and CYP6P5, which we included because of a 

suspected type II error in the microarray analysis (see above). qRT-PCR estimates of 

expression, relative to the susceptible Okyereko population, showed reason- able 

agreement with microarray estimates albeit with some lower estimates (Figure A2.5). 

CYP6M2 and CYP6P4 exhibited up to eight and nine-fold overexpression, and ACE-1 

six-fold compared to Okyereko, though high variability among biological replicates for 

the P450 genes resulted in relatively few significant pairwise comparisons (Figure A2.6). 

Nevertheless the hypothesis that fold-changes should follow the rank order predicted by 
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the level of bendiocarb resistance in each comparison (i.e. Tiassalé selected>Tiassalé 

unexposed>Kovié) was met qualitatively for all genes (Figure A2.6).  

 

Insecticide Resistance Phenotypes of CYP6 Genes in Drosophila  

For functional validation via transgenic expression in D. melanogaster, we chose 

CYP6P3 and CYP6M2; both of which have been shown to metabolize pyrethroids 

(Müller et al. 2008; Stevenson et al. 2011), and CYP6M2 also DDT (Mitchell et al. 2012). 

The capacity of each gene to confer resistance to bendiocarb, to the class I and II 

pyrethroids permethrin and deltamethrin, respectively, and to DDT and was assessed by 

comparing survival of transgenic D. melanogaster, exhibiting ubiquitous expression of 

CYP6M2 or CYP6P3 (e.g. UAS-CYP6M2/ACT5C-GAL4 experimental class flies), to 

that of flies carrying the UAS-CYP6M2 or CYP6P3 responder, but lacking the ACT5C-

GAL4 driver (e.g. UAS-CYP6M2/CyO control class flies). For CYP6M2 the relative 

expression level of the experimental flies was 4.0 and for CYP6P3 4.3 (Table A2.2). As 

indicated by elevated LC50 values (Figure 2.7), expression of either CYP6M2 or CYP6P3 

produced pyrethroid resistant phenotypes, and CYP6M2 expression also induced 

significant DDT resistance (Table A2.1). Assays for CYP6P3 with DDT did not produce 

reproducible results (data not shown). Flies expressing the candidate genes exhibited 

greater survival across a narrow range of bendiocarb concentrations (Figure A2.7). 

However, at a discriminating dosage of 0.1 mg/ vial (NPIC 2002) a resistance ratio of 

approximately seven was exhibited for CYP6M2/ACT5C: CYP6M2/CyO flies (Mann-

Whitney, P=0.0002; Figure A2.8) with a much smaller, but still significant, ratio of 

approximately 1.4 (Mann-Whitney, P = 0.019) for CYP6P3/ACT5C: CYP6P3/CyO flies. 
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Caution is required in quantitative interpretation of the resistance levels generated, both 

because of the non-native genetic background and also ubiquitous expression of genes 

that may be expressed in a tissue-specific manner (Baker et al. 2011). Nevertheless, the 

bioassays on transgenic Drosophila show that each P450s can confer resistance to more 

than one insecticide class.  

 

In vitro Metabolism Assays " 

Recombinant CYP6M2 and CYP6P3 were expressed in E. coli with An. gambiae 

NADPH P450 reductase and cytochrome b5. An initial experiment, using 0.1 mM P450 

and 2 hour incubation with bendiocarb, demonstrated metabolism of bendiocarb by 

CYP6P3 (64.2% mean depletion 64.0% st.dev) but no metabolic activity of CYP6M2 

(0611.0%). Further investigation of CYP6P3 activity across a range of incubation times 

(Figure A2.9A) and enzyme concentrations (Figure A2.9B) supported the initial 

observation, with metabolism plateauing at a maximum of 50%.  

 

Resistance Phenotypes and Inhibition  

An. gambiae from Tiassalé are classified as resistant to all classes of WHO-

approved insecticides (<90% bioassay mortality 24 hours after a 60 min exposure), with 

resistance phenotypes stable across wet and dry seasons (Figure A2.10, Table A2.3). 

Nevertheless, resistance varies markedly among insecticides (Table A2.3), with notably 

higher prevalence for bendiocarb and DDT than the organophosphate fenitrothion. The 

synergist PBO, which is primarily considered an inhibitor of P450 enzymes, exerted a 
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significant influence on bioassay mortality (Table A2.3) for four of the five insecticides 

tested, with only DDT not significantly impacted (Figure A2.10). The synergizing effect 

of PBO was strongest for bendiocarb, with a near five-fold increase in mortality, 

equivalent to an odds ratio for PBO-induced insecticidal mortality exceeding ten (Figure 

A2.10). However, for all of the insecticides, apart from fenitrothion, over 20% of the 

population survived even with PBO pre-exposure.  

 

AChE Target Site Resistance  

The ACE-1 G119S substitution is the only non-synonymous target site mutation 

known in An. gambiae (Djogbénou et al. 2008), and the resistant (serine) allele is 

common in Tiassalé with an estimated frequency of 0.46 (N=306). All occurrences of 

serine are in heterozygotes (95% confidence limits for heterozygote frequency: 0.87–

0.94), which underlies a dramatic deviation of genotype frequencies from Hardy-

Weinberg equilibrium (42 = 135.5, P<0). To examine the independence of putatively 

P450-mediated resistance and AChE target site insensitivity, we typed the G119S locus 

in females from the diagnostic (60 min) bendiocarb assays with and without pre- 

exposure to PBO. In either case absence of the 119 serine allele appears to almost 

guarantee mortality to bendiocarb (Table A2.4), as previously observed for fenitrothion 

bioassays in Tiassalé (Edi et al. 2012). However, the strong bendiocarb resistance 

association of G119S was reduced significantly by PBO pre-exposure (homogeneity ÷2 = 

8.3, P = 0.004) with the probability of survival for heterozygotes reduced to 

approximately 50% (Table A2.4). To investigate whether heterozygote survivorship 

might be linked to copy number variation, via a difference in numbers of serine and 
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glycine alleles, we examined the qPCR dye balance ratio for live and dead individuals 

within the heterozygote genotype call cluster (Figure A2.11A). In many individuals 

called as heterozygotes, a markedly higher ratio of 119S: 119G dye label than the 1:1 

expected for a true heterozygote is evident (Figure A2.11A), and surviving heterozygotes 

exhibited a significantly higher serine: glycine dye signal ratio than those killed (t-test, P 

= 1.5x10-5). We designed an additional qRT-PCR diagnostic to investigate copy number 

more directly in a portion of the surviving and dead individuals typed as G119S 

heterozygotes. The difference in copy number was highly significant between survivors 

and dead (Figure A2.11B), with 15/16 survivors but only 5/16 dead females exhibiting a 

copy number ratio in excess of 1.5 (Table A2.4), consistent with possession of an 

additional allele. These results show that independent of the enzymes inhibited by PBO 

survival, females heterozygous for the G119S mutation (i.e. most individuals in Tiassalé) 

depends upon Ace-1 copy number variation and possession of additional resistant serine 

alleles.  

 

 

D. DISCUSSION 

Bendiocarb is an increasingly important alternative to pyrethroids for IRS, but 

with carbamate resistant malaria vectors now established in West Africa (Namountougou 

et al. 2012; Corbel et al. 2007; Edi et al. 2012; Oduola et al. 2012; Okoye et al. 2008) 

detailed understanding of the underlying mechanisms is urgently required to combat 

resistance and avoid cross-resistance (WHO World Health Organization 2012). 

Exhibiting the most extreme carbamate resistance and multiple insecticide resistance 
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phenotypes documented to date in An. gambiae (Edi et al. 2012), the Tiassalé population 

represents an especially suitable model to address this question. Our results show how 

P450s contribute to multiple resistance in Tiassalé, and couple with overexpression of 

ACE-1 resistant alleles to produce extreme bendiocarb resistance.  

 

P450s in Carbamate Resistance and Cross-resistance  

The major biochemical mechanisms of carbamate resistance in mosquitoes have 

previously been identified as modified AChE (via point substitutions, most notably 

G119S) and less frequently esterase-mediated metabolism (Insecticide Resistance Action 

Committee 2011). PBO-induced increases in carbamate mortality have been reported in 

wild mosquito populations exhibiting low to moderate resistance levels, including M 

form An. gambiae from West Africa (Oduola et al. 2012; Koffi et al. 2013; Brooke et al. 

2001). The significant synergizing effect of PBO in the present work and these previous 

studies is consistent with a role of P450s in carbamate resistance, but should not be taken 

alone as direct proof (Farnham 2015) because PBO exposure can also inhibit some 

esterases (Young et al. 2005; Gunning et al. 1998). However, our microarray data clearly 

identified over-expression of multiple CYP6 P450 genes, whereas only a single 

carboxylesterase gene (COEAE6G) was significant, and expressed at a lower level. Taken 

together, the synergist data and transcriptional profiles indicate that a substantial 

proportion of the Tiassalé population is dependent upon the action of P450s for resistance 

to bendiocarb. Near-equivalent synergism of permethrin and deltamethrin, coupled with 

identification and functional validation of shared candidate genes, suggests the same 

conclusion for pyrethroids. For fenitrothion, the effect of PBO is also consistent with 
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P450 involvement, but in the absence of specific candidate genes, additional supporting 

evidence will be required to confirm this hypothesis.  

Genes from the CYP6P cluster emerged as strong candidates for involvement in 

P450-mediated detoxification. CYP6P3 overexpression has been linked repeatedly with 

pyrethroid resistance in An. gambiae (Djogbénou et al. 2008; Müller et al. 2008), as has 

its ortholog in An. funestus CYP6P9 (Wondji et al. 2009; Riveron et al. 2013) and both 

enzymes can metabolize class I and II pyrethroids (Müller et al. 2008; Stevenson et al. 

2011; Riveron et al. 2013). We demonstrate that CYP6P3 can produce significant 

resistance to both classes of pyrethroid and, to a lesser extent bendiocarb, in D. 

melanogaster. We also show that recombinant CYP6P3 can metabolize bendiocarb in 

vitro; the third mosquito P450 to metabolize a carbamates, after An. gambiae CYP6Z1 

and CYP6Z2 which have been demonstrated to metabolize the insecticide carbaryl (Chiu 

et al. 2008). Interestingly CYP6P4, which, in contrast to CYP6P3, was also significantly 

overexpressed in the Togolese Kovié population, is the ortholog of the resistance-

associated CYP6P4 gene in An. funestus (Wondji et al. 2009), and along with CYP6P3 

was recently found to be overexpressed in DDT-resistant samples of both M and S 

molecular forms of An. gambiae from Cameroon (Fossog Tene et al. 2013). Although we 

were unable to obtain data for the impact of CYP6P3 expression on survival with DDT 

exposure in D. melanogaster, the potential of CYP6P genes to act on DDT merits further 

investigation. It is also interesting to note that both cytochrome b5 and cytochrome P450 

reductase, both important for P450-mediated insecticidal detoxification (Liu & Scott 

1996) are overexpressed in Tiassalé, suggesting a possible role in resistance for co- 

expression of these genes with the CYP6 P450s.  
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CYP6M2 was overexpressed in Tiassalé, Kovié, and also in the Tiassalé 

bendiocarb-selected vs. control comparison. CYP6M2 expression generated Drosophila 

phenotypes significantly resistant to bendiocarb, DDT, and class I and II pyrethroids. 

Overexpression of CYP6M2 has been linked repeatedly to pyrethroid (Djogbénou et al. 

2008; Müller et al. 2008) and DDT resistance (Mitchell et al. 2012; Fossog Tene et al. 

2013) in An. gambiae, and is known to metabolize both these classes of insecticide 

(Mitchell et al. 2012; Stevenson et al. 2011). Our data now suggest a role in bendiocarb 

resistance, and overall provide strong evidence for involvement in resistance to three 

classes of insecticide. The biochemical mechanism of involvement remains unclear 

however because CYP6M2 did not metabolize bendiocarb in vitro, though we cannot rule 

out the possibility that some unknown, and thus currently, absent co-factor might be 

required. Sequestration also seems unlikely since CYP6M2 does not appear to bind 

bendiocarb. A role in breakdown of secondary bendiocarb metabolites certainly remains 

plausible, though at present knowledge of such mechanisms for any insecticide in 

mosquitoes is very limited (David et al. 2013; Chandor Proust et al. 2013). High 

variability in CYP6M2 expression among biological replicates, especially evident in qRT-

PCR, suggests that the regulatory mechanism(s) generating overexpression is far from 

fixation in Tiassalé. Further work is required to determine whether the cause of 

overexpression might be gene amplification, as seen for insecticide-linked CYP6P genes 

in An. funestus (Wondji et al. 2009) and CYP6Y3 in the aphid Myzus persicae (Puinean et 

al. 2010) or a cis regulatory variant, or both, as documented for CYP6G1 in D. 

melanogaster (Schmidt et al. 2010). In either case, the actual level of expression in 

individuals possessing causal regulatory variant(s) may be much higher than we detected 
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from pooled biological replicates. As a consequence, it is possible that CYP6M2 (and 

other key P450s) might be expressed at too high a level for PBO to fully inhibit at the 

dosage applied, resulting in only partial synergy. Indeed it is interesting that CYP6M2 

generated significant DDT resistance in transformed Drosophila in our study and has 

been shown metabolize DDT (Mitchell et al. 2012) yet PBO provided only very slight 

and non-significant synergy for DDT-exposed Tiassalé females. An inadequate 

concentration of PBO might be important, but it is worth noting that levels of DDT 

resistance in West African An. gambiae can be extreme and are likely to be underpinned 

by additional mechanisms (Mitchell et al. 2012) such as the significantly resistance-

associated kdr L1014F target site mutation in Tiassalé (Edi et al. 2012). Whilst 

incomplete synergy of highly expressed P450 enzymes might be a partial explanation, 

our results point to target site mechanisms as a key factor underpinning survival 

following PBO and bendiocarb exposure.  

 

Target Site Insensitivity and Amplification  

Possession of the ACE-1 119 serine variant appears to be a near-prerequisite for 

bendiocarb-survival in Tiassalé, as documented previously for fenitrothion (Edi et al. 

2012). This is apparently not the case in all An. gambiae populations, with some 

individuals lacking the serine mutation surviving a standard 60 min exposure (Oduola et 

al. 2012; Koffi et al. 2013). Over 90% of Tiassalé mosquitoes are heterozygous for 

G119S, which could be consistent with fitness costs for individuals lacking a fully-

functional wild-type allele since the serine allele exhibits lowered activity (Labbé et al. 

2007). It is apparent though that possession of the ACE-1 G119S mutation represents 
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only a portion of the target site mediated resistance mechanism. Tiassalé females 

generally showed much higher expression of ACE-1 than all other populations in our 

experiments, reaching approximately six-fold in the highly resistant bendiocarb-selected 

group compared to the Okyereko susceptible group. Following PBO-mediated P450 

inhibition, survival of G119S heterozygotes was reduced to approximately 50% and our 

results show that individuals exhibiting a higher ACE-1 copy number and more copies of 

the serine allele had a significant survival advantage. Together these results indicate that 

the primary explanation for the ubiquitous heterozygosity found in Tiassalé is an elevated 

copy number of expressed ACE-1 alleles. At least in individuals possessing additional 

serine alleles, this enhances carbamate resistance, and can apparently generate resistance 

independently of P450 activity.  

Extra copies of ACE-1 alleles have been found in West African An. gambiae, and 

lack of sequence variation suggests that duplication is a very recent event (Djogbénou et 

al. 2008). Consequences of ACE-1 duplication have not been documented previously in 

Anopheles but Cx. pipiens possessing two G119S resistant alleles and a wild type 

susceptible allele can exhibit near maximal fitness in the presence and absence of 

organophosphate treatment (Labbé et al. 2007). If this fitness scenario is similar in An. 

gambiae ACE-1 duplicates could spread rapidly, or may have already done so but have 

been largely undetected by available diagnostics. The estimated copy numbers we 

detected in some individuals suggests that more ACE-1 copies may be present in An. 

gambiae than are known in Cx. pipiens, perhaps more akin to the high level of 

amplification found in spider mites Tetranychus evansi (Carvalho et al. 2012). This raises 

the possibility of a potentially multifarious set of resistant phenotypes dependent upon the 
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number and G119S genotype of the copies possessed by an individual, understanding of 

which will benefit from further application of the DNA-based qPCR diagnostic we have 

developed.  

 

Conclusion  

Extreme levels of resistance to single insecticides, and multiple resistance across 

different insecticidal classes represent major problems for control of disease vectors, and 

pest insects generally. Tiassalé An. gambiae show exceptionally high-level carbamate 

resistance and the broadest insecticide resistance profile documented to date. Our results 

indicate that overexpression of specific CYP6 enzymes and duplicated resistant ACE-1 

alleles are major factors contributing to this resistance profile. Results from the less 

resistant Kovié population show that at least some of the mechanisms are not restricted to 

Tiassalé and could be quite widespread in West Africa. The involvement of CYP6P3 and 

CYP6M2 in resistance to multiple insecticide classes parallels the cross resistance 

engendered by CYP6 genes in other insect taxa (Daborn et al. 2001; Lin & Scott 2011) 

and is extremely concerning because resilience to standard resistance management 

strategies is likely to be increased greatly. Further work is now required to understand the 

biochemical role of CYP6M2 in detoxification of bendiocarb and also to better 

understand any associated fitness costs of elevated CYP6P gene expression. In addition, 

whilst we have demonstrated involvement of elevated expression of the CYP6 P450s in 

insecticide resistance, the impact of structural variants within these genes remains to be 

investigated and is very poorly understood for P450-mediated insecticide resistance in 

mosquitoes. In spite of a major impact of PBO on three distinct insecticide classes, too 
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many females remained alive to suggest that PBO provides a resistance-breaking 

solution. Nevertheless, we suggest that this preliminary conclusion may be worth further 

testing: (i) using higher PBO concentrations; (ii) in females old enough to transmit 

malaria, which are usually less insecticide resistant (Chouaibou et al. 2012; Jones, Sanou, 

et al. 2012b; Lines & Nassor 1991); or (iii) in less resistant populations. Monitoring the 

spread of ACE-1 duplications should be an immediate priority, whereas modification of 

AChE-targeting insecticides to reduce sensitivity to the G119S substitution (Alout et al. 

2012; Wong et al. 2012) represents an important longer-term goal. 

 

E. METHODS 

 

Study Design and Samples 

Our study involved Anopheles gambiae samples for bioassays coupled with target site 

genotyping and copy number analysis, and two microarray experiments. The first (Exp1; 

see Figure A2.1A,B) compared samples from laboratory strains or field populations 

entirely susceptible to carbamates, with bendiocarb-resistant females from Tiassalé, 

which were also the subject of bioassays. Exp2 (see Figure A2.1C) involved a 

comparison of a population moderately resistant to bendiocarb (Kovié) with two fully 

carbamate susceptible field populations. For field populations, larvae were collected and 

provided with ground TetraMin fish food. Emerged adults were provided 10% sugar 

solution. All 3–5 day old females for subsequent gene expression analysis were preserved 

in RNALater (Sigma). With the exception of a selected group from the Tiassalé 
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population (below), all samples were preserved without exposure to insecticide. The 

Tiassalé selected group were survivors of exposure to 0.1% bendiocarb (using WHO 

tubes and papers) for 360 min which induces approximately 80% mortality after 24 h 

(11); unexposed controls were held for 360 min with control paper, which did not induce 

mortality. All mosquitoes used in the study were identified as An. gambiae s.s. M 

molecular form using the SINE-PCR method (Santolamazza et al. 2008).  

 

Synergist Bioassays, ACE-1 G119S Genotyping and Copy Number Analysis 

The effect of the insecticide synergist piperonyl butoxide (PBO), a primary action of 

which is to inhibit P450 monooxygenase enzymes (Farnham 2015), was evaluated using 

WHO bioassays. Eight replicates of 25 adult female An. gambiae emerging from larvae 

obtained from an irrigated rice field in Tiassalé were exposed to five insecticides 

(permethrin, deltamethrin, DDT, bendiocarb and fenitrothion). Immediately prior to each 

60 min insecticide exposure, mosquitoes were exposed to 4% PBO paper for 60 min. 100 

females were exposed to PBO alone as control. Chi-squared tests were used to compare 

the mortality with and without PBO. A TaqMan qPCR assay (Bass et al. 2010) run on an 

Agilent Stratagene real-time thermal cycler was used to genotype PBO-exposed samples 

for the ACE-1 G119S polymorphism, with qualitative calling of genotypes based on 

clustering in endpoint scatterplots. G119S genotype call data for samples not exposed to 

PBO was taken from a prior publication (Edi et al. 2012). Following qualitative genotype 

calling, endpoint dR values for each dye were exported, and the data from individuals 

called as heterozygotes was analyzed quantitatively to investigate the possibility of sub-

grouping within this genotype cluster. Specifically we tested whether surviving and dead 
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mosquitoes, heterozygous for G119S, might possess different numbers of serine and 

alleles by comparing FAM (serine label)/VIC (glycine label) dye ratios using an unequal 

variance t-test. To further quantify the copy number variation suggested by the TaqMan 

genotyping results we designed a qRT-PCR to amplify fragments from three different 

exons of the ACE-1 gene, with normalization (for varying gDNA concentration among 

samples) provided via comparison with amplification of a fragment from each of two 

single-copy genes CYP4G16 and Elongation Factor. Primer details are given in Table 

A2.5 and qRT-PCR conditions are the same as listed below for gene expression analysis. 

Relative copy number levels for Ace-1 were estimated relative to two pools of samples (N 

= 4 each) from the Kisumu laboratory strain by the ΔΔCT method (Schmittgen & Livak 

2008).  ΔΔCT values for each test sample are the mean for the three ACE-1 amplicons 

following normalization to both single copy genes and subtraction of the average 

normalized Kisumu values. Test samples were 16 ACE-1 G119S heterozygote survivors 

and 16 dead, chosen at random from those genotyped by the TaqMan assay. ΔΔCT 

values were compared between survivors and dead using an unequal variance t-test.  

 

Microarrays 

Total RNA was extracted from batches of 10 mosquitoes using the Ambion RNAqueous-

4PCR Kit. RNA quantity and quality was assessed using a NanoDrop spectrophotometer 

(Thermo Fisher Scientific) and a 2100 Bioanalyzer (Agilent Technologies) before further 

use. Three biological replicate extractions of total RNA from batches of 10 mosquitoes 

for each sample population or colony (except Ngousso where there were N = 2 replicates) 

were labelled and hybridized to Anopheles gambiae 8615 k whole genome microarrays 
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using previously described protocols (Mitchell et al. 2012). Exp 2 employed a fully-

interwoven loop design (Figure 2.12), optimal for study power (Cui & Churchill 2003) 

whilst, owing to the large number of comparisons and unbalanced replication, a pairwise 

full dye-swap design was used for Exp1 with indirect connection through the (resistant) 

Tiassalé groups (Fig. A2.1 A,B). Exp1 was analyzed using GeneSpring GX v9.0 software 

(Agilent), which is readily applied to dye swap experiments, while the R program 

MAANOVA (Wu et al. 2003), with LIMMA (Kooperberg et al. 2005) for normalization 

prior to ANOVA, was used to analyze the interwoven loop in Exp2, using previously-

described custom R-scripts (Mitchell et al. 2012). For both experiments, the basic 

significance threshold for any single pairwise comparison was a q-value with false 

discovery rate (FDR) set at 0.05 (i.e. an FDR-corrected threshold for multiple testing). 

Full details of the criteria applied to determine overall significance within and across 

Exp1 and 2 are given in Figure A2.1. Within Exp1, the direct comparison of Tiassalé 

bendiocarb-selected vs. Tiassalé control comparison was analyzed separately and not 

used to determine overall significance, owing to the lower power expected for a within-

population experiment involving the same level of replication as the cross-population 

comparisons (Müller et al. 2008). Significantly over-expressed genes emerging from 

Exp1 were studied at functional level using the software DAVID Bioinformatics 

resources 6.7 (Huang et al. 2007). Microarray data are deposited with ArrayExpress 

under accession numbers E-MTAB- 1903 (Exp1) and E-MTAB-1889 (Exp2).  
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qRT-PCR 

Quantitative real-time PCR was used to provide technical replication of results from the 

microarray experiments for a subset of significantly over-expressed genes. Samples were 

converted to cDNA using oligo(dT)20 (Invitrogen) and Superscript III (Invitrogen) 

according to the manufacturer’s instructions and purified with the QIAquick PCR 

Purification Kit. Three pairs of exon-spanning primers were designed for each gene of 

interest and from each triplicate a pair was chosen that produced a single peak from melt 

cure analysis, and PCR efficiency closest to 100%, determined using a cDNA dilution 

series obtained from a single sample. Primers details are listed in Table A2.6. All qRT-

PCR reactions were run on an Agilent Stratagene real-time thermal cycler and analyzed 

using Agilent’s MXPro software (Mx3005P). The PCR conditions used throughout were 

10 min for 95°C, 40 cycles of 10 s at 95°C and 60°C respectively, with melting curves 

run after each end point amplification at 1 min for 95°C, followed by 30 s increments of 

1°C from 55°C to 95°C. The same RNA samples used for microarrays from Tiassalé 

(selected and unexposed), Kovié and Okyereko plus an additional two replicates (N = 5 

for all but the Tiassalé selected group where N = 3) were used. Expression levels for each 

gene of interest were estimated relative to the Okyereko population (chosen as the 

reference bendiocarb susceptible group because it was present in both microarray 

experiments) by the ΔΔCT method following correction for variable PCR efficiency 

(Schmittgen & Livak 2008), and normalization using two stably-expressed genes (Rsp7 

and Elongation Factor); primers listed in Table A2.6. Statistical significance of over-

expression of each group relative to Okyereko was assessed using equal or unequal 

variance t-tests as appropriate, depending on results of F-tests for homoscedasticity.  
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Production of Transgenic Drosophila melanogaster 

cDNA clones containing the open reading frames for CYP6M2 and CYP6P3 (sequences 

from the An. gambiae Kisumu laboratory strain) were PCR-amplified using high fidelity 

AccuPrime Pfx polymerase (Invitrogen). PCR primers contained EcoRI and NotI 

restriction sites within the forward and reverse primers, respectively. PCR products were 

gel-purified using the GenElute Gel Extraction Kit (Sigma) and subsequently digested 

with the aforementioned restriction enzymes (New England Biolabs). The pUAST-attB 

plasmid (obtained from Dr. Konrad Basler, University of Zurich) digested with EcoRI 

and NotI was gel purified, as noted above, and incubated with PCR-amplified, restriction 

enzyme-digested products of the CYP6M2 or CYP6P3 clone and T4 DNA ligase (New 

England Biolabs). Ligation mixtures were transformed into competent DH5α cells, and 

individual colonies were verified using PCR. The EndoFree Plasmid Maxi Kit (Qiagen) 

was utilized to obtain large amounts of plasmids for subsequent steps. pUAST-attB 

clones containing the CYP6M2 or CYP6P3 insertion were sent to Rainbow Transgenic 

Flies, Inc. (Camarillo, CA, USA) for injection into Bloomington Stock #9750 (y1 w1118; 

PBac{y+-attP-3B}VK00033) embryos. The PhiC31 integration system in this stock 

enables site-specific recombination between the integration vector (pUAST-attB) and a 

landing platform in the fly stock (attP) (Wang et al. 2012). Upon receiving the injected 

embryos, survivors were kept at 25°C, and Go flies that eclosed were sorted by sex prior 

to mating. To establish families of homozygous transgenic flies, Go flies were crossed 

with w1118 flies, and G1 flies were sorted based on w+ eye color (as a marker for insertion 

events). G1 w+ flies were crossed inter se to obtain homozygous insertion lines. The 

following D. melanogaster stocks were obtained from the Bloomington Drosophila Stock 
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Center (Bloomington, IN, USA): y1 w1; P{Act5C-GAL4}25FO1/CyO, y+, w* (BL4414); 

P{GawB}Aph-4c232 (BL30828), and w1118 (BL3605). Virgin females from CYP6M2 or 

CYP6P3 insertion stocks were crossed with Act5C-GAL4/CyO (ubiquitous Actin5C 

driver) flies for expression studies.  

 

Transcript Expression Analysis  

For each class within a cross (control and experimental), 8–10 two-day-old flies were 

obtained and flash-frozen in liquid nitrogen, and then stored at -80°C in triplicate. Total 

RNA was extracted using TRI Reagent (Sigma), and 1 μg of RNA was treated with 

RNase-Free DNaseI (Fisher Scientific). For each synthesis, a 10 μL reaction was created 

using 1 μL DNase-treated RNA; three technical replicates were performed for each 

biological replicate. Primers for amplification of cDNA product, used at a concentration 

of 0.75 μM, were: Cyp6M2_Forward: 5’-ACGAGTTCGAGCTGAAGGAT-3’, 

Cyp6M2_Reverse: 5’-GTTACACTCAATGCCGAACG-3’, Cyp6P3_Forward:             

5’-TATTGCAGAGAACGGTGGAG-3’, Cyp6P3_Reverse: 5’-TACTTCCGAAGGG 

TTTCGTC-3’. Relative expression was compared using Actin primers (Ponton et al. 

2011) at a concentration of 0.50 μM. qRT-PCR reactions were performed using USB 

VeriQuest SYBR Green One-Step qRT- PCR Master Mix (2X) on a 7500 Fast Real-Time 

PCR System (Applied Biosystems). Cycling conditions used were 50°C for 10 minutes 

and 95°C for 10 minutes, followed by 40 cycles of 90°C for 15 seconds and 56°C for 30 

seconds, with the fluorescence measured at the end of each cycle.  
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Bendiocarb Metabolism Assays 

Recombinant CYP6M2 and CYP6P3 were commercially co- expressed with An. gambiae 

NADPH P450 reductase and cytochrome b5 in an E. coli system by Cypex (Dundee, 

UK). Using previously described methodologies (Stevenson et al. 2011) a first 

experiment showed that CYP6M2 was unable to metabolize bendiocarb (10 μM) after a 2 

hour incubation and thus only CYP6P3 was investigated in subsequent experiments. For 

time course measurements, reactions were performed in 200 μL with 10 μM insecticide, 

0.1 μM CYP6P3 membrane in 200 mM Tris-HCl pH 7.4 and started by adding the 

NADPH regenerating system (1 mM glucose-6-phosphate (G6P), 0.25 mM MgCl2, 0.1 

mM NADP+, and 1 U/mL glucose-6-phosphate dehydrogenase (G6PDH)). Reactions 

were incubated for a specified time at 30°C with 1200 rpm orbital shaking and stopped 

by adding 0.2 mL of acetonitrile. Shaking was carried for an additional 10 min before 

centrifuging the reactions at 20000 g for 20 min. 200 μl of supernatant was used for 

HPLC analysis. Reactions were performed in triplicate and compared against a negative 

control with no NADPH regenerating system to calculate substrate depletion. An 

additional experiment with different enzyme concentrations was performed, using the 

methods above, for 20 mins with P450 concentrations of: 0.2, 0.1, 0.075, 0.05, 0.025 and 

0.0125 mM. The reactions were performed in parallel against a negative control 

(2NADPH). In each experiment the supernatants were analyzed by reverse- phase HPLC 

with a 250 mm C18 column (Acclaim 120, Dionex) and a mobile phase consisting of 

35% acetonitrile and 65% water. The system was run at a controlled temperature of 42°C 

with 1 ml/min flow rate. Bendiocarb insecticide was monitored at 205 nm and quantified 

by measuring peak areas using OpenLab CDS (Agilent Technologies).  
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Insecticide Exposure Assays 

An appropriate amount of insecticide was added to 100 μl of acetone and placed into 

individual 16x200 mm glass disposable culture tubes (VWR Scientific). Tubes were then 

placed on their sides and rotated continuously, coating the entire interior of the tube, until 

all acetone was evaporated. A total of 8–12 control and 8–12 experimental transgenic 

flies, aged 3–5 days post-eclosion, were added to each tube. Flies from experimental and 

control classes were mixed in single insecticide-coated vials for assays, to ensure 

equivalent exposure to insecticide. The tubes were capped with cotton balls saturated 

with a 10% (w/v) glucose/water solution. Tubes were then incubated at 25°C for 24 h, 

after which mortality was assessed. Linear regression models were used to fit dose-

response curves, from which LC50 values (and confidence intervals) were estimated using 

Prism v5.0. However, for bendiocarb this was not possible owing to a very sharp 

inflection in the dose-response profile. Instead differences between lines were assessed at 

a diagnostic dose of 0.1 μg bendiocarb/vial, applied previously to Apis mellifera (Dulin et 

al. 2012; NPIC 2002), using Mann-Whitney U tests.  
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F. TABLES, FIGURES AND LEGENDS 

Figure A2.1. Microarray Experimental Design. Arrows indicate pairwise comparisons 
with direction indicating an increasing level of bendiocarb resistance, which was used to 
predict the expected direction of differential gene expression (only solid arrows were 
used to determine significance). Coloured boxes indicate samples resistant to bendiocarb; 
the red box indicates the only bendiocarb-selected sample. C. In Exp2 microarray probes 
were considered significantly differentially expressed in resistant samples if: (i) each sus 
vs. res comparisons showed a consistent direction of expression as predicted by arrow 
direction; and (ii) each sus vs. res comparison yielded corrected P<0.05. A-B. In Exp1 an 
additional criteria for significance was applied to increase specificity of results to the 
bendiocarb phenotype: (iii) fold-change for each Tiassalé-selected vs. sus comparison 
must be more extreme than the corresponding Tiassalé vs. sus comparison. Overall 
significance required significance in both Exp1 and Exp2.  
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Figure A2.2.  Genes Significantly Overexpressed (Relative to Susceptible Samples) 
in (A) Tiassalé Bendiocarb Resistant Samples in Exp1, and (B) Both Tiassalé and 
Kovié Samples. Plots show: A. Log2-transformed fold-changes (FC) plotted against –
log10 transformed q-values (multiple-testing-corrected probabilities) for bendiocarb-
selected Tiassalé samples versus the average of the three susceptible populations; B. 
Comparison of Kovié FC against Tiassalé-selected FC for probes significant in both 
experiments. For genes represented by multiple probes, numbers in parentheses indicate 
the number of probes significant/total.  
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Figure A2.3.  Probes significantly over-expressed in Kovié. Relative to Okyereko and 
Malanville (Exp2). Average log2-transformed fold- changes are plotted against average -
log10-transformed q-values (multiple-testing-corrected probabilities). An arbitrary cut-off 
of log2FC = 2 and –log q = 3 was used to determine probes to be labelled. 
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Figure A2.4. Microarray results for Tiassalé selected vs unexposed controls. 
Arbitrary cut-offs of log2FC = 0.6 and –log q = 1 are used to determine points to label. (n) 
indicates label represents >1 replicate probes. 
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Figure A2.5. Relationship between expression measured by qRT-PCR and 
microarrays for candidate genes. The overall correlation is r = 0.50 (P = 0.056). 
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Figure A2.6. qRT-PCR Expression Analysis of Candidate Genes. Bars show mean 
fold changes relative to the bendiocarb and organophosphate susceptible Okyereko 
population. Asterisks indicate significant over-expression. Expression differences 
between pairs of populations are significant where error bars do not overlap. N = 5 
biological replicates except for Tiassalé (N = 3).$ 
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Figure A2.7. Survival of transgenic D. melanogaster that express 
CYP6M2 or CYP6P3 in the presence of varied amounts of insecticides. Log-linear 
plots of insecticide concentration vs. survival are shown. Blue points show survival of 
transformed flies with the Act5C driver which exhibit ubiquitous expression; red points 
show CyO control class flies. Bars show SEM of percent survival. Owing to the sharp 
inflection for both bendiocarb plots the regression model could not be applied to 
either Act5C or CyO data. N = 5 for all insecticides and concentrations other than 
bendiocarb at 0.1 µg, for which N = 8 (see Fig. 4). The gap in the x-axis results from use 
of a log scale on which control vials (zero insecticide) have no value. 
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Figure A2.8. Survival of Transgenic Drosophila Expressing An. gambiae Cyp6M2 or 
CYP6P3 in the Presence of Bendiocarb. Boxes show interquartile ranges with median 
lines and whiskers (error bars) show 95th percentiles for test (Act5C driver) or control 
(CyO) lines following exposure to 0.1 μg bendiocarb. Note that whiskers and median 
lines coincident with interquartile limits are not visible. Individual points falling outside 
percentiles are marked as dots. Mann-Whitney tests: ***P<0.001; *P<0.05.  
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Figure A2.9. In vitro Metabolism of Bendiocarb by Recombinant CYP6P3 Expressed 
in E. coli. In both plots, which show the effect of (A) incubation time and (B) enzyme 
concentration, points show the mean of three replicates (following subtraction of no-
NADPH negative control values) ± one standard error.$ 
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Figure A2.10. Insecticide Resistance Phenotypes From Dry (Blue) and Wet (Red) 
Seasons With and Without the Synergist PBO. Bars are mean mortalities from four 
replicate bioassays (N = 25 each), with 95% binomial confidence limits. Odds ratios are 
shown above bars and represent the odds of mortality with PBO pre-exposure, compared 
to the odds of mortality with insecticide alone (data from the two seasons are pooled). 
*P<<0.001; NSnot significant (X2-test).  
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Figure A2.11. Role of Target Site Allelic Variation and Copy Number Variation in 
Bendiocarb Resistance. A. ACE-1 G119S TaqMan genotyping scatterplot of females 
exposed to bendiocarb, following PBO synergist exposure. Filled dots are genotypes 
called, unfilled are those excluded owing to ambiguous position. The line illustrates a 1:1 
Glycine (G): Serine (S) allele balance. Triangles are controls: S/S = mutant (resistant) 
allele homozygote; G/G = wild type (susceptible) allele homozygote. The line illustrates 
a 1:1 Gly:Ser allele balance. The dashed circle illustrates heterozygous genotypes. B. 
Ace-1 genomic DNA copy number ratio of survivors and dead (N = 16 each) from the 
heterozygote genotype cluster. Bars show mean ΔΔCT values relative to a standard 
susceptible laboratory strain (Kisumu) following normalisation against reference genes; 
error bars are 95% confidence intervals. In both plots blue denotes bioassay survivors and 
red denotes dead.  
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Figure A2.12. Interwoven microarray experimental loop. Design used in Exp2 
comparing field samples from Kovie (KOV) with Malanville (MAL) and Okyereko 
(OKY) Each pool, indicated by a circle, represents mRNA extracted from 10 female An. 
gambiae s.s. M form mosquitoes. Arrows indicate individual microarrays (N = 18 in 
total), with direction representing microarray cy dye labelling. 
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Table A2.1. Survival of transformed D. melanogaster expressing CYP6M2 and 
CYP6P3 exposed to the pyrethroids permethrin and deltamethrin, and for CYP6M2 
also DDT.  
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Table A2.2.  qRT-PCR expression results for transformed Drosophila melanogaster. 
Relative fold differences in expression between experimental and control flies (ΔΔCT) 
are highlighted for each gene. Biological replicates are in rows and technical replicates in 
columns. 

 

CYP6M2' !! CYP6M2/Act5C-Actin!Primers! CYP6M2!Primers! !! !! Experimental!

Replicate! Tech!1! Tech!2! Tech!3! mean! !! Tech!1! Tech!2! Tech!3! mean! ΔCT!

1! 24.19! 24.62! 24.71! 24.51!
!

26.57! 26.68! 26.61! 26.62! -2.11!

2! 20.24! 21.43! 21.79! 21.15!
!

27.31! 27.29! 27.20! 27.27! -6.11!

3! 20.94! 21.97! 22.70! 21.87!
!

27.63! 27.56! 27.51! 27.57! -5.70!

! ! ! ! ! ! ! ! !
mean! -4.64!

!! !! CYP6M2/CyO-Actin!Primers! CYP6M2!Primers! !! !! Control!

Replicate! Tech!1! Tech!2! Tech!3! mean! !!
Tech!
1! Tech!2! Tech!3! mean! ΔCT!

1! 18.97! 21.18! 21.05! 20.40!
!

27.04! 26.92! 27.07! 27.01! -6.61!

2! 21.48! 21.94! 22.49! 21.97!
!

29.40! 29.62! 29.73! 29.58! -7.61!

3! 24.35! 24.15! 23.41! 23.97!
!

29.56! 29.54! 29.90! 29.67! -5.70!

! ! ! ! ! ! ! ! !
mean! -6.64!

! ! ! ! ! ! ! ! !
ΔΔCT$ 4.00$

CYP6P3' !! CYP6P3/Act5C-Actin!Primers! CYP6P3!Primers! !! !! Experimental!

Replicate! Tech!1! Tech!2! Tech!3! mean! !!
Tech!
1! Tech!2! Tech!3! mean! ΔCT!

1! n/a! 26.10! 26.51! 26.31!
!

24.20! 24.06! 24.26! 24.17! 2.13!

2! 22.80! 22.98! 23.88! 23.22!
!

24.55! 24.81! 24.67! 24.68! -1.46!

3! 17.24! 18.25! 18.23! 17.91!
!

24.93! 25.48! 24.65! 25.02! -7.11!

! ! ! ! ! ! ! ! !
mean! -2.15!

!! !! CYP6P3/CyO-Actin!Primers! CYP6P3!Primers! !! !! Control!

Replicate! Tech!1! Tech!2! Tech!3! mean! !!
Tech!
1! Tech!2! Tech!3! mean! ΔCT!

1! 24.05! 24.79! 24.37! 24.40!
!

26.67! 26.66! 26.96! 26.76! -2.36!

2! 18.97! 19.41! 19.32! 19.23!
!

25.68! 25.70! 25.67! 25.68! -6.45!

3! 21.10! 21.49! 21.66! 21.42!
!

24.80! 25.63! 25.77! 25.40! -3.98!

! ! ! ! ! ! ! ! !
mean! -4.26!

! ! ! ! ! ! ! ! !
ΔΔCT$ 4.34$

 

 

 

 

 

 



! 218!

Table A2.3.  Generalized linear model testing the effects of insecticide type, season 
and PBO on bioassay mortality 

!

Model!terms!included! χ2! d.f.! P=value!

!

insecticide! 5353.2! 4! ≈!0!

PBO! 2101.2! 1! ≈!0!

season! 0.6!

!

0.42!

insecticide!x!PBO! 902.7! 4! ≈!0!

season!x!PBO! 12.7! 1! 0.0004!

insecticide!x!season! 5.0! 4! 0.29!

insecticide!x!season!x!PBO! 65.1! 4! 2!x!10=13!

!

! ! !Intercept included in model but not shown (P≈0). Full model shown: removal of the non-
significant insecticide x season interaction term had negligible impact on the results. 
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Table A2.4.  Resistance association of the G119S target site mutation, in the 
presence and absence of PBO following 60 min bendiocarb exposure. 

!

! ! ACE$1!G119S!genotype! χ2! P!

!

! S/S! G/S! G/G! ! !

bendiocarb! alive! 0! 49! 0! 43.46! 10-12!

! dead! 0! 12! 25! ! !

! ! ! ! ! ! !
bendiocarb!+!PBO! alive! 0! 38! 1! 3.07! 0.08!

! dead! 0! 35! 7! ! !

! ! ! ! ! ! !

! ! ! Homogeneity!test! 8.28! 0.004!
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Table A2.5.  qRT-PCR primer details for copy number variant analysis. 

$ !gene! AGAP! primer!name! primer!sequence! efficiency!(%)!

Elongation-Factor- AGAP005128! EF_gq_1F! AGCAGCTGTTCAGCAAAACG! 93.5!

! !

EF_gq_1R! TCTCCCGCACAGTGAAAGAC!

!CYP4G16- AGAP001076! CYP4G16gq_5F! ATTGCGCATACAGATGGCCT! 95.5!

!
!

CYP4G16gq_5R! CGGTCCAGGTATCCGTTCAG!

!ACE$1- AGAP001356! Ace-1_gq_5F! CCATGTGGAACCCGAACACG! 93.8!

! !

Ace-1_gq_5R! GTCGTACACGTCCAGGGTG!

!ACE$1- AGAP001356! Ace1_gq_12_F! TATCTGTACACGCACCGCAG! 97.2!

! !

Ace1_gq_12_R! TTCGCCGAACACGTAGTTGA!

!ACE$1- AGAP001356! Ace1_gq_1bF! CGGCGACCGTCAGATTCATA! 96.9!

! !

Ace1_gq_1bR! GTCCGCCACCACTTGTTTTC!

!!! !! !! !! !!
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Table A2.6.  qRT-PCR primer details for gene expression analysis. 

gene! AGAP! primer!name! primer!sequence! efficiency!(%)!

Rps7- AGAP010592! S7qf1! AGAACCAGCAGACCACCATC! 106.4!

!
!

S7qR1! GCTGCAAACTTCGGCTATTC!

!Elongation-Factor- AGAP005128! EFf1! GGCAAGAGGCATAACGATCAATGCG! 91.1!

!
!

EFr1! GTCCATCTGCGACGCTCCGG!

!ACE$1- AGAP001356! Ace-1_q3_F! CACGGCGACGAGATCAACTA! 106.3!

! !

Ace-1_q3_R! TGGGATTTGGATTGCCGGTT!

!CYP6M2! AGAP008212! M2qf1! TACGATGACAACAAGGGCAAG! 104.4!

! !

M2qr1! GCGATCGTGGAAGTACTGG!

!CYP6P3! AGAP002865! P3qf2! TGTGATTGACGAAACCCTTCGGAAG! 105.4!

! !

P3qr2! ATAGTCCACAGACGGTACGCGGG!

!CYP6P5! AGAP002866! CYP6P5_q3_F! AACCCGGACATTCAGGATCG! 90.7!

! !

CYP6P5_q3_R! TGCGTAACGTTTCGTTGATTACG!

!CYP6P4! AGAP002867! CYP6P4_9b_F! GTCTGCGGGAGGAAATCGAG! 102.3!

! !

CYP6P4_9b_R! TACTTGCGCAGGGTTTCATTG!

!!! !! !! !! !!
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CHAPTER AIII 

 

Metabolic and Target-Site Mechanisms Combine to Confer Strong DDT Resistance 

in Anopheles gambiae 
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A. ABSTRACT 

The development of resistance to insecticides has become a classic exemplar of evolution 

occurring within human time scales. In this study we demonstrate how resistance to DDT 

in the major African malaria vector Anopheles gambiae is a result of both target-site 

resistance mechanisms that have introgressed between incipient species (the M- and S-

molecular forms) and allelic variants in a DDT-detoxifying enzyme. Sequencing of the 

detoxification enzyme, Gste2, from DDT resistant and susceptible strains of An. gambiae, 

revealed a non-synonymous polymorphism (I114T), proximal to the DDT binding 

domain, which segregated with strain phenotype. Recombinant protein expression and 

DDT metabolism analysis revealed that the proteins from the susceptible strain lost 

activity at higher DDT concentrations, characteristic of substrate inhibition. The effect of 

I114T on GSTE2 protein structure was explored through X-ray crystallography. The 

amino acid exchange in the DDT-resistant strain introduced a hydroxyl group nearby the 

hydrophobic DDT-binding region. The exchange does not result in structural alterations 

but is predicted to facilitate local dynamics and enzyme activity. Expression of both wild-

type and 114T alleles the allele in Drosophila conferred an increase in DDT tolerance. 

The 114T mutation was significantly associated with DDT resistance in wild caught M-

form populations and acts in concert with target-site mutations in the voltage gated 
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sodium channel (Vgsc-1575Y and Vgsc-1014F) to confer extreme levels of DDT 

resistance in wild caught An. gambiae.  

 

B. INTRODUCTION 

Physiological resistance to insecticides often involves either mutations in the 

insecticide target site (target-site resistance), or elevated activity of detoxifying enzymes 

that metabolize and/or sequester insecticides (metabolic resistance). Resistance may 

result from selection upon standing genetic variation (Newcomb et al. 1997) or from a de 

novo mutation (ffrench-Constant et al. 1993). In Anopheles gambiae, a primary African 

malaria vector, a third route has been described, involving introgression of resistance 

mutation-bearing haplotypes between molecular forms which are thought to be in the 

process of speciation (Weill et al. 2000). There is overwhelming evidence that the 

mutation L1014F, a replacement change in the voltage-gated sodium channel (Vgsc), the 

target of both DDT and pyrethroid insecticides, is significantly associated with increased 

phenotypic resistance in both the donor S- and recipient M-form populations across 

Africa (Reimer et al. 2008; Jones et al. 2012; Weetman et al. 2010). However, what 

remains unknown is whether such introgressed resistance alleles interact with allelic 

variants in the recipient genetic background.  

In An. gambiae metabolic resistance has been linked to elevated expression of 

detoxifying enzymes through microarray-based analyses and quantitative PCR (David et 

al. 2005; Mitchell et al. 2012; Müller et al. 2008). An epsilon-class glutathione-S-

transferase in An. gambiae, GSTE2, and its ortholog in the dengue and yellow fever 



! 225!

vector Aedes aegypti, have been linked to DDT resistance through elevated gene 

expression (Prapanthadara et al. 1993; Lumjuan et al. 2005). Recombinant protein 

expression and in vitro assays also support a role for this enzyme in DDT metabolism 

(Lumjuan et al. 2005; Ranson et al. 2001). In previous studies, Gste2 was found to be 5–8 

fold over-expressed in An. gambiae of the ZAN/U strain, which displays DDT resistance 

in the absence of mutations in the voltage-gated sodium channel, compared to a 

susceptible East African mosquito colony (Kisumu) (Ranson et al. 2001; Ding et al. 

2003; Ding et al. 2005).  

The rationale for the current study arose from the serendipitous discovery of 

allelic differences in Gste2 in recently re-established colonies of Kisumu and ZAN/U 

(source www.MR4.org), which exhibited the expected DDT susceptibility/resistance 

profiles but not the level of differential expression observed previously (Ranson et al. 

2001; Ding et al. 2003). The ZAN/U colony showed only a 2.34-fold greater expression 

of Gste2 and less than a 2-fold difference in protein expression compared with the 

Kisumu colony (Figure A3.1 and Figure A3.2). Upon review of the crystal structure that 

was already resolved for GSTE2 from the susceptible Kisumu strain (Wang et al. 2008), 

it appeared that the alleles differed in codons proximal to the putative DDT-binding site, 

a hydrophobic pocket adjacent to the glutathione (GSH) binding site.  

Our study demonstrates how one substitution (I114T) is found commonly, and 

inferred to originate, in M-molecular form populations of An. gambiae where it is 

significantly associated with DDT resistance. In concert with target-site resistance 

mechanisms (Vgsc-1014F and Vgsc-1575Y), it explains a substantial fraction of the 

observed variation in DDT resistance. Recombinant protein expression, X-ray 
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crystallography and transgenic expression of allelic variants in Drosophila are also 

presented to provide a mechanistic insight.  

 

C. RESULTS  

Recombinant protein expression and DDTase activity screens  

Based upon amino acid sequence, three allelic variants were identified, two within 

the Kisumu colony and one in the ZAN/U colony (Table A3.1; GenBank accession 

numbers: JX840597-JX840599). The three alleles were expressed in E.coli and each 

exhibited activity with the substrate CDNB in the presence of GSH; confirming that the 

expressed proteins were glutathione-S-transferases (Table A3.1). DDT metabolism assays 

were performed to determine optimal conditions for kinetic analysis of each variant 

GSTE2 enzyme with a substrate (DDT) dilution series. At lower concentrations all three 

variant enzymes displayed comparable activity (Figure A3.3). However, the ZAN/U-

derived GSTE2 protein displayed a significantly higher mean enzyme rate than the two 

Kisumu proteins at the higher concentrations tested (Figure A3.3). Enzyme kinetic 

measurements did not produce markedly different values for maximum enzyme rate 

(Vmax) and the KM (substrate concentration at half maximum velocity) for the three 

variants (Table A3.2). However, the Kisumu alleles did not exhibit standard Michaelis-

Menten kinetics (Figure A3.3), but rather displayed profiles typical of enzymes 

experiencing substrate inhibition (Vincent 2005; Lin et al. 2001).  
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Structural analysis of non-synonymous changes in GSTE2  

Molecular modeling was used initially to investigate the mechanistic effect of the 

amino acid replacements on catalysis. Previously, Wang et al. (Wang et al. 2008) 

proposed that a hydrophobic pocket in close proximity to the GSH binding site was the 

site of DDT binding. Predicted to be of particular importance was the inclination of the 

C-terminal section of helix H4, which brought residues 112, 116 and 120 closer to the 

GSH cofactor. These residues also helped to form a pocket ‘cap’ for the putative DDT 

binding site, which would potentially increase hydrophobicity and therefore affinity for 

the highly hydrophobic DDT molecule. Our study focused upon two residue exchanges, 

I114T and F120L, which are located in the C-terminal section of helix H4 and, thus, have 

the potential to influence DDT binding.  

The variable mutation found at position 120, F120L, in the Kisumu strain had 

potential to affect the formation of the putative DDT pocket cap as the aromatic 

phenyalanine is replaced with the shorter aliphatic chain of leucine. F120 is predicted to 

make hydrophobic contact with one of the aromatic rings of the DDT molecule. A 

leucine residue at this position, being smaller, may not form as tight an interaction with 

the DDT and, thereby, weaken its binding. The importance of the phenylalanine residue 

at this position is supported by the likelihood that this is the ancestral allele, as it is fixed 

in an extensive collection of An. arabiensis from Sudan, Ethiopia, Tanzania and Malawi 

(collection details in (Donnelly & Townson 2000) (GenBank accession numbers: 

JX627247-JX627266). However, enzyme kinetics parameters (Table A3.2) indicate that 

the F120L exchange has little influence on substrate affinity or catalysis, suggesting that 

the aromatic group of phenylalanine is dispensable at this position and not deterministic 
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of DDT affinity.  

Position 114 is also situated in close proximity to the predicted DDT binding 

pocket. The effect of the change from isoleucine, inferred to be ancestral from 

comparisons with the same An. arabiensis data, to threonine at position 114 was difficult 

to estimate through modeling. In this case, a destabilizing polar hydroxyl group is 

introduced in a hydrophobic core region of the protein in ZAN/U, with the potential for 

marked effects on protein conformation. To better understand the effect of this 

substitution in enzyme activation, we elucidated the structure of ZAN/U:GSH using X-

ray crystallography (Figure A3.4). The structure, determined to 2.3 Å resolution (R-

factor/R-free 17.57/22.78 %), closely resembles that of the Kisumu enzyme previously 

reported (PDB entry 2IMI; (Wang et al. 2008)) (0.5 Å overall rmsd calculated using 

RAPIDO (Vincent 2005) (Figure A3.2) as well as that of GSTE2 from An. funestus most 

recently elucidated (PDB entry 3ZML). Similar to the Kisumu variant from An. gambiae, 

the latter carries Ile at position 114. Both enzymes share 93% sequence identity and their 

structures superimpose with an rmsd of 0.3 Å. The model of ZAN/U calculated in this 

study shows that the introduced hydroxyl group is stabilized by hydrogen bond formation 

to the main chain carbonyl group of R110 (calculated using HBOND, J. Overington, 

unpublished), so that the presence of this polar group in the hydrophobic core does not 

lead to structural alterations in the enzyme (Figure A3.4A; a comparison to GSTE2 from 

An. funestus is shown in Figure A3.5). Interestingly, inspection of electron density maps 

for all GSTE2 enzymes (Figure A3.6), calculated using PDB_REDO (Joosten et al. 

2012), reveal a disorder of residues F113 and Y133, which are involved in the mutual 

packing of two H4 helices across the dimer interface, at a spot that is immediately local 
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to the predicted DDT pocket. This suggests that this region, which constitutes the DDT 

pocket ‘cap’, has high intrinsic dynamics. Such dynamics could facilitate the motions that 

take place during substrate binding and/or product release and, thereby, influence 

catalytic turn-over. Our data suggest that mutations can influence catalysis even when not 

resulting in detectable structural alterations, most likely by affecting the molecular 

dynamics of this region.  

 

Heterologous expression of GSTE2 in Drosophila melanogaster  

Heterologous expression in Drosophila melanogaster was achieved for both the 

Gste2-ZAN/U and Gste2-Kisumu1B alleles (Figure A3.7). For both alleles ubiquitous 

expression of An. gambiae Gste2 resulted in an increase in resistance to DDT as assessed 

by resistance ratio of LC50s (LC50 transformed line/LC50 control). Although, contrary to 

the recombinant E.coli work (Figure A3.3), and our a priori expectations, the resistance 

ratios were apparently higher for Gste2-Kisumu1B (15.15) than Gste2-ZAN/U (5.24).  

 

Screening of I114T and Vgsc variants in wild-caught, DDT-phenotyped specimens of 

An. gambiae  

We screened for the presence of the I114T mutations in a number of collections of 

both molecular forms of An. gambiae. Unexpectedly, given that the ZAN/U colony is of 

the S-molecular form and originates from East Africa, the 114T allele was most common 

in M-form populations from West Africa (Figure A3.8). For example in both Benin and 

Burkina Faso 114T allele was significantly more frequent in M-form (Benin Freq = 0.79; 
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95% CIs 0.75–0.83: Burkina Faso Freq = 0.59; 95% CIs 0.54–0.63) than sympatric S-

form populations (Benin Freq = 0.05; 95% CIs 0.03–0.09: Burkina Faso Freq = 0.12; 

95% CIs 0.08–0.17) suggestive that the mutation originated in M-form populations. 

Consequently we focused genotype: phenotype studies on West African populations, 

where in addition we were able to investigate potential interactions between the Gste2 

variant and two known DDT-linked Vgsc variants that are rare or absent in East Africa. 

Female An. gambiae from Benin and Burkina Faso that survived or were killed by 60 

minute DDT exposure in standard WHO susceptibility tests (World Health Organization 

2012), were genotyped at the Gste2-114 codon and at the resistance-associated mutations 

in the voltage gated sodium channel (Vgsc-1014F, commonly termed kdr, and Vgsc -

1575Y)(Jones et al. 2012). In the M-form specimens from Benin there was a significant 

association between 114T and DDT survival (allelic test of association p = 8x10–4: Odds 

Ratio (OR) = 2.35 ; 95% CIs 1.42–3.88).The trend was similar in Burkinabe specimens 

but did not reach statistical significance (p = 0.28: OR = 1.27; 95% CIs 0.83–1.93). As 

expected the Vgsc-1014F mutation was associated with DDT resistance in both locations, 

Benin (p = 6x10-4: OR = 2.21; 95% CIs 1.40–3.50) and Burkina Faso (p = 5x10-7; OR = 

3.05 95% CIs 1.97–4.74).  

For the Benin data, where both Gste2-114T and Vgsc-1014F were significantly 

associated with DDT resistance in univariate analyses, we fitted a general linear model 

with a logistic link function. In this analysis both mutations remained significantly 

associated with the ability of mosquitoes to survive DDT exposure (Gste2-114T p = 

0.002: Vgsc-1014F p = 0.018). The additive effects of the resistance loci was revealed in 

both Benin and Burkina Faso by elevated odds ratio for a double mutant haplotype 
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relative to wildtype (OR Benin = 3.13 (95% CIs 1.59–6.15; p = 0.0012: OR Burkina Faso 

5.00 (95% CIs 2.51–9.98; p<<0.001: Figure A3.9). The third mutation, Vgsc-1575Y, is at 

low frequency in Benin (Freq = 0.035; 95% CIs 0.02–0.06) precluding association 

analysis but at a higher frequency in Burkina Faso (Freq = 0.12; 95% CIs 0.09–0.16). In 

Burkina Faso Vgsc-1014F was strongly resistance-associated (p = 6.6x10-7) whereas both 

Gste2-114T (p = 0.051) and Vgsc-1575Y (p = 0.039) were on the margins of significance. 

However, for the triple mutant (Gste2-114T: Vgsc-1014F : Vgsc-1575Y) the odds ratio 

relative to wild type rose to 12.99 (95% CIs 2.55–66.10; p<0.001; Dataset S2), which 

translates into an increase in probability of surviving a one hour DDT exposure from 50% 

to 93%. Nonetheless, over 50% of the variation remained to be explained and may reflect 

the effects of environmental factors or additional resistance mechanisms (e.g. (Mitchell et 

al. 2012)).  

Full-length Gste2 sequences were obtained from 18 M-form individuals used in 

the Burkinabe genotype: phenotype tests (Genbank accession numbers: KC533009-

KC533026). There were no additional non-synonymous mutations that segregated with 

the 114T mutation providing further evidence that mutation is causal, rather than merely 

a marker of DDT resistance.  

 

D. DISCUSSION 

Our data demonstrate how introgression of adaptively advantageous alleles 

between the molecular forms of An. gambiae can bring together combinations of alleles 

that enhance insecticide resistance phenotypes. This is yet another example of the 
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evolutionary plasticity of this species complex and vividly illustrates why its members 

are so extremely difficult to control. The triple mutant described in this study is almost 

completely resistant to DDT, as assessed using the standard World Health Organization 

exposure assay. There is no simple association between resistance phenotype and 

epidemiological outcomes but these data raise concerns about the efficacy of indoor 

residual spraying with DDT in parts of West Africa for controlling malaria.  

Insecticide resistance in mosquitoes (David et al. 2005; Müller et al. 2008; 

Lumjuan et al. 2005; Ranson et al. 2001; Djogbénou et al. 2008; Amenya et al. 2008), 

and other insects (Le Goff et al. 2003; Puinean et al. 2010), is commonly linked to 

elevated expression of detoxifying enzymes. Indeed Gste2 was first implicated in DDT 

resistance as a result of elevated expression rather than allelic variation (Ranson et al. 

2001; Ding et al. 2003). However, it seems that the ZAN/U strain used in earlier work 

bears little relation to that used in this study: in addition to the higher levels of Gste2 

expression observed, the amino acid at codon 114 was an asparagine (N) (Ranson et al. 

2001; Ding et al. 2003; Ortelli et al. 2003) not the threonine we identify here. The 

occurrence of the I114T mutant in our ZAN/U strain is probably a result of a 

contamination event, most likely from an M form colony, followed by selection during 

routine colony husbandry to maintain the DDT-resistant phenotype. Such inter-colony 

contamination events are a major problem when rearing morphologically identical 

mosquito strains (Wilkins et al. 2009). The involvement of metabolic allelic variants in 

conferring an insecticide resistance phenotype is not without precedent. In the sheep 

blowfly, Lucilia cuprina, Newcomb et al. (Newcomb et al. 1997) highlighted a G137D 

substitution within a carboxylesterase gene, E3, which conferred broad-spectrum 
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organophosphate (OP) hydrolase activity. The same mutation was subsequently found to 

confer OP resistance in the housefly Musca domestica (Claudianos et al. 1999). Next 

generation sequencing of individual An. gambiae (http://www.malariagen.net/node/287) 

will permit genome-wide association studies of insecticide resistance phenotypes to 

simultaneously uncover coding and regulatory variants.  

The data that were obtained from the heterologous expression of Kisumu and 

ZAN/U alleles in D. melanogaster are somewhat at odds with our contention that the 

ZAN/U allelic variant is DDT-resistance associated. However, these data may point to 

the influence of genotypic background in the penetrance of a resistance-associated 

variant, as has been observed previously in both An. gambiae and D. melanogaster 

(Weetman et al. 2010; Smith et al. 2011). In an earlier study Drosophila transformed with 

the Gste2-ZAN/U allele showed DDT LC50 values in excess of those observed here 

(Daborn et al. 2012).  

 

Mechanism of action of Gste2-114T! 

The importance of mutation I114T most likely arises from the creation of an 

enzyme with increased catalytic activity through predicted increased conformation 

dynamics and reduced product affinity, facilitating metabolic turnover. The relationship 

between structure, stability and catalysis of enzymes has been studied extensively in the 

context of protein thermostability (Sterner & Liebl 2001). Enzymes from 

hyperthermophiles, which grow optimally at elevated temperatures, are often barely 

active at room temperature but are as active as their mesophilic homologues at high 
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temperatures. It has been proposed that the low activity of the thermostable enzymes at 

mesophilic temperatures is due to a high structural rigidity, which is relieved at their 

elevated physiological temperatures. This concept of ‘‘corresponding states’’ highlights 

the importance of protein dynamics in catalysis (Jaenicke 1991). In agreement with this 

concept, rational protein design and directed evolution have shown that enzyme mutants 

with reduced stability often exhibit improved catalytic activity compared to the wild-type 

form, even though structural alterations are often minimal or undetectable (e.g. (Schlee et 

al. 2009; Merz et al. 2000)). The lack of notable structural differences between the 

Kisumu 2B and ZAN/U 1C variants and the intrinsic dynamics of the region vicinal to 

the catalytic site in GSTE2 enzymes led us to speculate an effect of the residue exchanges 

in protein stability. We predicted changes in stability that might result from mutation of 

amino acids, I114 and F120, to their smaller replacements, T114 in ZAN/U 1C and L120 

in Kisumu 1B. The I114T change was predicted as strongly destabilizing at 2.85 kcal/mol 

(Dehouck et al. 2011), while the F120L was classified as neutral at –0.98 kcal/mol. The 

destabilizing effect of the T114 exchange is likely due to the reduction in side chain 

volume, with the introduced polarity apparently well accommodated in the local 

environment. The change in volume is greater for position 120, but volume changes in 

protein cores are especially disruptive (Dehouck et al. 2011) and I114 is buried while 

F120 is largely solvent-accessible. It is position 114 that correlates better with activity 

and which was shown to associate with phenotype in the phenotypic work conducted in 

Benin and Burkina Faso (Figure A3.9). It appears that the 114 mutant drives DDT 

resistance through dynamic rather than static conformational changes.  
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Conclusion  

We describe a variant Gste2-114T that is significantly associated with DDT 

resistance in M molecular form females from West Africa. This mutation in concert with 

Vgsc mutations confers highly elevated resistance to DDT. Whilst individually the 

mutations may have a modest effect on resistance phenotype the effect of acquisition of 

these incremental changes relative to wild- type may be large.  

 

E. METHODS 

Strains 

The DDT resistant ZAN/U strain was derived from the ZANDS strain, colonized from 

Zanzibar and displaying resistance to DDT as larvae (Prapanthadara et al. 1993; 

Prapanthadara et al. 1995). ZAN/U was derived from this strain via selection of 1-day old 

adults with 4% DDT (Ranson et al. 2000). ZAN/U displays DDT resistance in the 

absence of known knockdown resistance (kdr) mutations in the sodium channel. The 

Kisumu strain is fully susceptible to DDT and originates from Kisumu in Western Kenya. 

Both of these laboratory colonies are of the S molecular form and originate from East 

Africa. These studies did not involve human participants or endangered or protected 

species and therefore no ethical clearance of specific permissions were required.  
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Sequencing of Gste2" 

Gste2 (GenBank accession number XM319968.3), for which only a single transcript has 

been reported, is situated on chromosome 3R at position 28,597,686–28,598,594 

(AgamP3.5 genome assembly of An. gambiae see www.vectorbase.org). To investigate 

non-synonymous changes between the strains, sequence data were obtained from ten 

individual female mosquitoes from both ZAN/U and Kisumu. Primers were designed to 

amplify a 680bp fragment encompassing the majority of the three exons. Total DNA was 

purified from single insects using the DNeasy Blood and Tissue spin column kit 

(Qiagen). All twenty DNA extracts were confirmed as the S-form of An. gambiae using a 

PCR-RFLP approach (Fanello et al. 2002). Gste2 amplicons were sent for direct 

sequencing (Macrogen, South Korea). Those individuals yielding poor quality data from 

direct sequencing were re-amplified and cloned in Escherichia coli using a pGEM-T 

Easy Vector (Promega) prior to sequencing. All sequences were aligned versus the full 

Gste2 genomic sequence obtained from VectorBase (http://www.vectorbase.org/) using 

CodonCode Aligner software (CodonCode Corporation) and synonymous and non-

synonymous polymorphisms identified.  

Full-length cDNA sequences for Kisumu and ZAN/U Gste2 were produced from 

RNA extracted from three batches of ten female mosquitoes from each strain using the 

PicoPure RNA Isolation Kit (Arcturus). RNA concentration was measured (NanoDrop 

spectrophotometer, Thermo) and approximately 2 μg from each pool used for cDNA 

synthesis (SuperScript III Reverse Transcriptase, Invitrogen). The cDNA sequence was 

amplified from cDNA pools using primers situated in the 5’ and 3’ untranslated regions 

(Table A3.3) to produce a 683 bp fragment. The amplified Gste2 fragment from each 
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cDNA pool was then cloned into a pGEM-T Easy holding vector (Promega) using 1 μl of 

PCR product. Positive clones from each cDNA pool were selected for sequencing. 

Selected clones were used to inoculate a 5 ml, over-night culture from which plasmid 

DNA was extracted (QIAprep Spin Miniprep Kit, Qiagen). An aliquot of each plasmid 

was then sent for sequencing (Macrogen, South Korea; GenBank accession numbers: 

JX840597- JX840599).  

 

Modeling of non-synonymous changes on to the GSTE2 protein structure 

The amino acid changes identified in the ZAN/U and Kisumu sequence data were 

interpreted in the context of the Kisumu GSTE2 crystal structure [ProteinDataBank 

(PDB) accession code 2IL3] and their potential importance in DDT binding inferred with 

respect to the residues highlighted by Wang et al. (Wang et al. 2008) as amino acid 

positions likely to be involved with DDT binding/metabolism, henceforth termed the 

catalytic triad. This in silico approach was used to select Gste2 haplotypes that were 

likely to have differing DDT-ase activity for further recombinant protein and 

crystallography work. PoPMuSiC (Dehouck et al. 2009; Dehouck et al. 2011) was used to 

predict protein stability changes occurring as a result of amino acid changes between the 

polymorphisms.  

 

Recombinant protein expression and DDTase activity screens  

Recombinant protein expression was performed for three Gste2 allelic variants 

that had non-synonymous changes proximal to the DDT binding site. Gste2 was re-
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amplified from clones of the cDNA extracts using primers that incorporated a 3’ NdeI site 

and a 5’ BamHI restriction site (Table A3.3). These restriction sites were exploited to 

clone the Gste2 alleles into protein expression vector pET15b (Novagen) before 

transformation into E. coli BL21 (DE3) (New England Biolabs). Cultures were incubated 

at 37°C (150RPM) until an optical density of ≈ 0.8 (wavelength 600 nm) was reached, 

then protein production was induced by addition of 1 mM isopropy-b-D-thiogalactoside 

(IPTG) at 30°C (150RPM). A pET15b encoded polyhistidine (6XHis) tag was exploited 

for purification of GSTE2 using nickel affinity chromatography. Bacterial lysates were 

prepared by sonication in buffer TSE (50 mM Tris-HCl pH 7.4, 1 mM EDTA, 150 mM 

NaCl, 10 mM β-mercaptoethanol (β-ME), 1.25 mM MgCl2 and 250 U benzonase) and 

cell debris removed through centrifugation (10,000 g for 20 minutes at 4°C) and filtration 

(0.2 μm filter). Crude cell lysate was then applied to a 1 ml nickel-nitrilotriacetate (Ni-

NTA) agarose (Qiagen) column and washed with 10 column volumes of buffer A (50 

mM sodium phosphate, 200 mM NaCl, pH 8.0) containing 20 mM imidazole. Protein 

was eluted in 10 ml of buffer B (50 mM sodium phosphate, 300 mM NaCl, pH 8.0) 

containing 250 mM imidazole. Purified GSTE2 was then applied to a PD-10 Desalting 

Column (GE Healthcare) and eluted in storage buffer [50 mM sodium phosphate, 20 mM 

Dithiothreitol (DTT), pH 7.4].  

Protein concentration was determined using a commercial protein quantification 

kit (Fluka – Sigma-Aldrich) based on the Bradford protein assay (Bradford 1976) and 

GST activity confirmed for each purified recombinant variant using the GST substrate 1-

chloro-2, 4-dinitrobenzene (CDNB) in a standard colorimetric activity assay (Harbig et 

al. 1974). The recombinant proteins produced for each of the three GSTE2 variants were 
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of extremely high and consistent purity (Figure A3.10).  

The DDT dehydrochlorinase activity of all GSTE2 variants was assessed using an 

enzymatic assay and High Performance Liquid Chromatography (Prapanthadara et al. 

1993). GSTE2 catalyzes the dehydrochlorination of DDT in the presence of glutathione 

(GSH) to produce 1,1- dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) (Ranson et al. 

2001). Reverse-phase HPLC using a silica based stationary phase and a 90%:10% 

methanol:water mobile phase was used to separate DDT, DDE and the spike-in control 

dicofol according to their polarity. Standard curves were produced for DDT, DDE and 

dicofol using a doubling dilution series (200–12.5 μg/ml). The mobile solvent phase was 

pumped through the HPLC system (Ultimate 3000) at a rate of 1 ml/minute and 20 μl of 

each sample injected. Data acquisition was set at 18 minutes as DDE elutes at 

approximately 14 minutes with DDT eluting at ≈ 12 minutes, and the UV wavelength 232 

nm selected. Compound concentration (μg/ml) was then plotted against the HPLC peak 

area to produce a standard curve with the intercept fixed at zero. The equation of this 

curve was employed to assess DDT, DDE and dicofol concentration in subsequent 

assays.  

 

Enzyme kinetics  

To compare enzyme activity between variants, a doubling dilution series of DDT 

from 200–3.125 μg/ml was employed using optimized reaction parameters. Each assay 

contained 60 mg of GSTE2 enzyme. All variant GSTE2 proteins were assayed at each 

DDT concentration and a series of three technical replicates performed. The DDE peak 
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area from the HPLC trace was normalised against the dicofol spike-in area and the 

adjusted area used to calculate micrograms of DDE produced per ml reaction using the 

DDE standard curve. The DDE concentration was used to calculate the enzyme rate, 

expressed as mmol DDE/mg GSTE2 protein/min. Michaelis-Menten and substrate 

inhibition plots were produced to compare the kinetics of each GSTE2 allele based upon 

initial substrate concentration (DDT) and rate of product (DDE) formation in R (R-Core-

Team 2012).  The maximum enzyme rate (Vmax), the point at which all enzyme active 

sites are bound to substrate, the Michaelis-Menten constant (KM), which is the substrate 

concentration for an enzyme at half its maximum velocity and Kcat, a measurement of 

overall catalytic turn-over rate, were derived from the fitted equations.  

 

X-ray crystallography and corresponding recombinant protein production  

The Gste2 variant ZAN/U was cloned into the expression vector pOPIN (Oxford 

Protein Production Facility-UK) via the In-Fusion PCR cloning system (Clontech). This 

vector incorporates His6- and SUMO-tags, as well as a SUMO protease cleavage site, N- 

terminal to the target insert. Protein expression was in E. coli BL21(DE3) Rosetta2 

(Novagen). Cultures were grown at 37°C up to an OD600 of 0.6 in Terrific broth 

supplemented with 50 μg/ml kanamycin and 34 μg/ml chloramphenicol. Expression was 

induced with 1 mM IPTG and cultures grown for a further 18hr at 25°C. Cells were 

harvested by centrifugation. The bacterial pellet was re-suspeNded in lysis buffer (25 

mM Tris- HCl pH 8.0, 500 mM NaCl, 5 mM β-ME) and supplemented with 1.25 mM 

MgCl2 and 250 units of benzonase before sonication on ice. The homogenate was 

clarified by centrifugation and affinity purified using a 3 ml Ni-NTA agarose (Qiagen) 
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column equilibrated in wash buffer (lysis buffer supplemented with 20 mM imidazole). 

Protein was eluted using 250 mM imidazole before over-night dialysis at 4°C against 25 

mM Tris-HCl pH 8.0, 200 mM NaCl, 5 mM β-ME to remove imidazole and reduce salt 

concentration. Tags were removed by incubation with SUMO protease overnight at 4°C 

(1.7 μl SUMO protease/mg fusion protein). Further purification used subtractive metal 

affinity and size exclusion chromatography in a Superdex 75 HR16/60 column (GE 

Healthcare) equilibrated in dialysis buffer. Purified samples were concentrated to 13 

mg/ml via Vivaspin column (GE Healthcare). As the apo enzyme was unstable and 

degraded rapidly, it was supplemented with GSH (1:1.2 molar ratio) and the stabilized 

complex stored at 4°C until further use.  

Crystals of ZAN/U:GSH were grown at 22°C in VDX 24-well plates in hanging 

drops. Drops consisted of 1 μl protein solution and 1 μl mother liquor containing 30% 

PEG 6000, 0.1 M Bis-Tris pH 6.5, 1 mM β-ME. Crystals grew within 3 days and 

exhibited rod morphologies with approximate dimensions of 0.2x0.05x0.05 mm3. 

Crystals were then soaked in mother liquor supplemented with 40% PEG 400 and DDE at 

saturation for 2 days. For X-ray data collection, crystals were retrieved and shock- frozen 

in liquid nitrogen. Diffraction data were collected at 100 K on beamline I04 at Diamond 

(Didcot, UK) and processed using XDS/XSCALE (McCoy et al. 2007). Processing 

statistics and crystallographic parameters are given in Table A3.4. The crystal form used 

in this study contained two biological dimers in its asymmetric unit (four molecular 

copies). Phasing was by molecular replacement in Phaser (McCoy et al. 2007) using a 

single molecular copy (A) from PDB entry 2IL3 (Wang et al. 2008). The model was 

manually rebuilt in COOT (Adams et al. 2002; Emsley & Cowtan 2004) and TLS refined 
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in Refmac5 using local NCS restraints (Murshudov et al. 2011).  Solvent building was in 

Phenix and COOT. In the final model, the four molecular copies of ZAN/U:GSH were 

virtually identical (0.42 Å overall rmsd calculated with RAPIDO (Mosca & Schneider 

2008)). DDE binding could not be identified in electron density maps. Model and 

refinement statistics are given in Table A3.4. Model coordinates and diffraction data have 

been deposited with the ProteinDataBank (PDB accession code 4GSN).  

 

Heterologous expression of GSTE2 in Drosophila melanogaster  

cDNA clones including the open reading frames for Gste2- ZAN/U and Gste2-

Kisumu1B, were PCR-amplified using high fidelity AccuPrime Pfx polymerase 

(Invitrogen). The PCR primers used contained EcoRI and NotI restriction sites within the 

forward and reverse primers, respectively (Table A3.3). PCR products were gel-purified 

using the GenElute Gel Extraction Kit (Sigma) and subsequently ligated into a 

pUASTattB plasmid (obtained from Dr. Konrad Basler, University of Zurich) using T4 

DNA ligase (New England Biolabs). Ligation mixtures were transformed into competent 

DH5α cells for plasmid production, and individual colonies were verified using PCR. 

The EndoFree Plasmid Maxi Kit (Qiagen) was utilized to obtain purified plasmid DNA 

for subsequent steps. pUAST-attB clones containing Gste2 inserts were sent to Rainbow 

Transgenic Flies, Inc. (Camarillo, CA, USA) for injection into Bloomington stock #9750 

(y1 w1118; PBac{y+-attP-3B}VK00033) embryos. This Phi integration system enables site-

specific recombination between the integration vector (pUAST-attB) and a landing 

platform in the fly stock (attP)(Venken et al. 2006).  
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Larvae were kept at 25°C, and GO flies that eclosed were sorted by sex prior to 

mating. To establish families of homozygous transgenic flies, GO flies were crossed with 

w1118 flies and G1 flies were sorted based on w+ eye color (as a marker for insertion 

events). G1 w+ flies were crossed inter se to obtain homozygous insertion lines. The 

following D. melanogaster stocks were obtained from the Bloomington Drosophila Stock 

Center (Bloomington, IN, USA): y1 w1; P{Act5C-GAL4}25FO1/CyO, y+ and w1118 

(BL3605). Virgin females from both types of Gste2 insertion stocks were crossed with 

Act5C-GAL4/CyO (ubiquitous Actin5C driver) flies. Control crosses were set up in 

parallel by crossing heterozygous (Act5C) GAL4 driver males to virgin w1118 females.  

To create dose response curves Drosophila adults were exposed to a range of 

DDT concentrations (Figure A3.7). DDT, dissolved in 100 μl of acetone, was added to 

16x100 mm glass disposable culture tubes (VWR Scientific). Tubes were placed on their 

sides and continually oscillated until the entirety of the interior of tube was coated and all 

acetone had evaporated. A total of 8–12 control and 8–12 experimental transgenic flies 

were added to each tube. The tubes were capped with cotton wool saturated with a 10% 

(w/v) glucose/water solution. Tubes were then incubated at 25°C for 24 hr. After 24 hr, 

mortality, (as indicated by absence of movement) was recorded and LC50 values 

calculated in the R language (R-Core-Team 2012).  
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Screening of allelic variants in wild-caught, DDT-phenotyped specimens of 

Anopheles gambiae  

Data from catalytic assays, modeling and X-ray crystallography suggested that 

one of the non-synonymous changes had a marked effect on DDTase activity. A TaqMan 

SNP genotyping assay was designed to screen for the mutation in individual mosquitoes 

(see Table A3.3 for primer and probe sequences). DNA extracts from adult female 

mosquitoes from a number of locations in sub-Saharan Africa were genotyped for the 

Gste2 allelic variants. In addition female mosquitoes with known DDT susceptibility 

phenotypes, as defined by the standard WHO protocol, were obtained from Burkina Faso 

(Badolo et al. 2012) and Benin. SNP genotyping assays were performed in 10 ml volume 

containing 1x Sensimix (Bioline), 1x primer/probe mix and 1 μl template DNA with a 

temperature profile of 95°C for 10min followed by 40 cycles of 92°C for 15s and 60°C 

for 1min on an Agilent MX3005 real-time PCR machine. VIC and FAM fluorescence 

was captured at the end of each cycle and genotypes called from endpoint fluorescence 

using the Agilent MXPro software. Specimens from Benin and Burkina Faso were also 

screened for known DDT-resistance associated variants in the voltage-gated sodium 

channel (Bass et al. 2007; Jones et al. 2012). Genotype: phenotype associations were 

assessed using a generalized linear model with a logit link function (R-Core-Team 2012), 

chi-squared tests Poptools 3.2 (Hood 2010), and sample haplotype frequencies estimated 

using Haploview 4.2 (Barrett et al. 2005).  
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F. TABLES, FIGURES AND LEGENDS 

 

Figure A3.1. Mean normalized expression of GSTe2 in female An. gambiae s.s. of the 
DDT resistant ZAN/U strain and susceptible Kisumu strain. Expression 
of GSTe2 and ribosomal S7 were assessed from ten RNA pools comprised of ten 3 day 
old female mosquitoes using the GeXP quantitative PCR system (Beckman-Coulter). The 
ZAN/U colony showed 2.34 fold greater expression of Gste2 compared with the Kisumu 
colony. GSTe2 expression was normalized against housekeeping gene ribosomal S7. 
Standard error of the normalized mean expression is also indicated.  
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Figure A3.2. Western blot comparison of GSTe2 protein level in the Kisumu (Kis) 
and ZAN/U (Zan) An. gambiae s.s. strains. Whole mosquito extracts from 10 unmated 
3 day old female mosquitoes from each strain was probed with An. gambiae 
GSTe2 polyclonal antibody. Approximately 1.7 times more GSTe2 protein was present in 
the ZAN/U extract as determined by background corrected pixel intensities using the 
ImageJ v1.43 software. Ae. aegypti recombinant GSTe2 was run as a positive control (+).  
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Figure A3.3. Comparison of GSTE2 catalyzed DDT metabolism for three variant 
recombinant proteins over a DDT dilution series. Three allelic variants of enzyme 
GSTE2 from An. gambiae are compared over a range of DDT concentrations and the 
mean production of DDE plotted from three replicate assays. Fitted curves used the 
Michaelis-Menten equation for the ZAN/U allele and a substrate inhibition equation for 
the two Kisumu alleles  
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Figure A3.4. Crystal structure of GSTE2 ZAN/U variant. a. Superposition of the 
crystal structure of ZAN/U determined in this study (orange) and the Kimusu 1B variant 
(grey; PDB entry IMI). A high degree of local and overall structural agreement is clearly 
noticeable. The location of the docked DDT is based on the computational prediction of 
Wang et al. (Wang et al. 2008). Some manual adjustments were made to relieve steric 
clashes and to better superimpose the DDT on the position of the hexyl group of bound S-
hexylglutathione. b. Close-up detail of the ZAN/U active site. c. Superposition of 
structure of ZAN/U and Kimusu 1B variant local to position 114 (colour code as in a. A 
superimposition of ZAN/U from An. gambiae with the GSTE2 from An. funestus is 
provided in Figure A3.5). 
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Figure A3.5. Superimposition of the GSTE2 enzymes of An. gambiae (ZAN/U 
variant generated in this study containing Thr114; orange) and An. 
funestus (containing Ile114; blue). The GSH ligand is shown in red. a. Overall view; b. 
close-up of the mutated region of helix H4 showing the altered residue in position 114, 
and Phe113 at the dimer interface.  
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Figure A3.6. Subunit Interface in GSTE2 variants. a. Close-up detail of interface 
groups in the GSTE2 dimer. Phenylalanine residues F113 contributed by the respective 
helices H4 as well as tyrosines Y133 from neighboring helices pack together to form a 
linear stack. b. Electron density map (contoured at 1.0 s) for the GSTE2 ZAN/U variant. 
The mutated residue T114 is shown. The preceding residue F113 is poorly ordered and 
has been modeled as adopting two alternate conformations (towards the front and back of 
the paper plane).  
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Figure A3.7. Dose-response curves for Drosophila melanogaster adults transformed 
with Anopheles gambiae Gste2 alleles. The left panel shows survival of control (CyO x 
UAS+Gste2-Kisumu1B; black circles) and Kisumu allele expressing lines (Actin-Gal4 x 
UAS+Gste2-Kisumu1B; open circle) together with 95% confidence intervals. The right 
panel shows survival of control (CyO x UAS+Gste2-ZANU; black circles) and ZAN/U 
allele (Actin-Gal4 x UAS+Gste2-ZANU; open circle) together with 95% confidence 
intervals.  
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Figure A3.8. Geographical variation in frequency of Gste2-I114T in the S and M 
molecular forms of An. gambiae across Africa. Blue represents the I114 and red the 
T114 frequency. The molecular form of the collection is indicated by the letter overlaid 
on each chart. Samples were from: Benin S-form n = 111; M-form n = 223. Burkina Faso 
S-form n = 115; M-form n = 216. Cameroon S-form n = 55; M-form n = 652. Ghana S-
form n = 29; M-form n = 758. Guinea-Bissau S-form n = 38; M-form n = 39. Mali S-
form n = 31; M-form n = 26. Uganda S-form n = 207. The base map was obtained from 
http://en.wikipedia.org/wiki/File:Africa_ satellite_orthographic.jpg and was created by 
NASA. Details of the locations are given in Table A3.5.  
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Figure A3.9. Summary of haplotypic association tests for the combination of four 
possible allele combinations at the Vgsc-1014 (kdr) and Gste2-114 loci with DDT 
susceptibility in An. gambiae M-form females from Benin (Panel A) and Burkina 
Faso (Panel B). Susceptibility to 4% DDT, was determined following a 1hr exposure to 
followed by 24hr recovery. Odds ratios are given with significance indicated by asterisks 
(*P = 0.0502, *P<0.05, **P<0.01, ***P<0.001). The arrow is oriented from least to most 
resistant. The allele combination in bold (Gste2-114T: kdr-Phe) is the double mutant 
which is significantly associated with DDT resistance. wt = wildtype.  
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Figure A3.10. SDS PAGE gel illustrating the purity of three recombinant variants 
of Gste2 isolated from An. gambiae s.s. The left panel represents 2.5 μg and the right 
1.25 μg of each glycerol stored protein. SDS PAGE performed as previously outlined.  
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Table A3.1. GSTE2 allelic variants from the An. gambiae Kisumu and ZAN/U strain 
used for recombinant protein expression. 
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Table A3.2. Enzyme kinetic parameters of three GSTE2 alleles with substrate DDT. 
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Table A3.3. PCR primers. Numbers 1 and 2 - Gste2 promoter region amplification and 
sequencing. Numbers 3 and 4-amplification of the Gste2 coding region. Numbers 5 and 
6- amplification of the coding region ofGste2 incorporating 
the NdeI and BamHI restriction enzyme sites for subsequent cloning into expression 
vector pET-15b (Novagen). Numbers 7 and 8 Heterologous expression of GSTE2 in 
Drosophila melanogaster. Numbers 9–12 primers and probes used in the Taqman assay 
for variants at the 114 codon. Probes 11 and 12 carried a non-fluorescent quencher at the 
3’end.  
 
!

! Primer/!probe!name! Primer/!probe!sequence!
!

1! AGU1!F! 5'=TTGCCGTACTATGAGGAGATCAAC=3'!

2! AGU1!R! 5'=TCTCTCTCAATCCCTTTACGTACC=3'!

3! GSTe2!cDNA!F! 5’=CGCTGCGAAAATGTCCAACC=3’!

4! GSTe2!cDNA!Rb! 5’=TACCTTTTTAAGCCTAGCATTC=3’!
5! !

GSTe2!cDNA_RE_F!
NdeI!

5’=TTTCATATGTCCAACCTTGTAC=3’!
6! !

GSTe2!cDNA_RE_R!
BamHI#

5’=TTTGGATCCTAAGCCTTAGCATTC=3’!
7! GSTe2_fEcoRI! 5’=GAATTCATGTCCAACCTTGTACTGTACACC=3’#
8! GSTe2_rNotI:! 5’=GCGGCCGCTTAAGCCTTAGCATTCTCCTCCTT!=

3’#
9! 114=Taqman!primer!F! 5’=CGAGTCCGGCGTACTGTT=3’#
10! 114=Taqman!primer!R! 5’=GGCGTTATGCTGGAACTGGAA#
11! 114!Taqman!probe!ILE! 5’=6FAM=ACGAAAATGAATCTC=3’#
12! 114!Taqman!probe!

THR! 5’=VIC=ACGAAAGTGAATCTC=3’#

!

! !
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Table A3.4.  Statistics for X-ray data and model refinement. The model contains all 
protein residues with the exception of Ala221 in chain A and C and Lys220-Ala221 in 
chain D that were disordered in the electron density maps.  
 
$

Diffraction-data-

X-ray!source! I04,!Diamond!(Didcot)!

Detector! ADSC!Quantum!315!

Wavelength!(Å)! 0.9763!

Spacegroup! P21!

Unit!cell! ! a=51.33!Å,!b=86.38!Å,!c=92.85!Å,!β=90.73!

Molecules!a.u.!/!solvent!content! 4!/!40%!

Resolution! 20.0-2.3!(2.35-2.30)!

Unique!reflections! 35941!! (2245)!

Rsym!(I)![%]! 10.4!! (50.7)!

I/σ!(I)! 10.4!! (3.3)!

Multiplicity! 3.72!! (3.82)!

Completeness!(%)! 99.4!! (99.2)!

! Refinement-statistics!

Nr!Reflections!in!working!/!test!sets! 34800!/!1123!

R-factor/Rfree!(%)
! 17.57!/!22.78!

Nr!protein!residuesa!/!ligands!/!solvent!atoms! 878!!/!4!x!GSH!/!198!

Total!number!of!atoms! 7260!

Average!B-factors!(Å2)! 38.0!

rmsd!bond!/!angle!(o)! 0.002!/!0.636!

Ramachandran!analysis!

Favoured!/!Allowed!/!Outlier!(%)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!97.7!/!1.8!/!0.5!

! !
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Table A3.5. Exact collection latitudes and longitudes of the collections used in figure 
A3.8. 
$

Country! Location!
name/com
ment!

Latitude! Longitude!

Benin! Cotonou!! 06°21'45”N!! 02°25’32”E!!

Benin! Pahou!! 06°22'60”N!! 02°13’00”E!!
Benin! Tori=Bossito!! 06°30'11”N!! 02°08'42”E!!
Benin! Bohicon!! 07°10'08”N!! 02°04’01”E!!

Benin! Sekou!! 06°37'00”N!! 02°13'00”E!!

Benin! Glazoue!! 07°58'25”N!! 02°14'24”E!!

Benin! Kandi!! 11°07'!43”N!! 02°56'13”E!!
! ! ! !
Benin! Malanville! 11°52'00”N! 03°22’60”E!
Burkina!
Faso!

Soumosso! 11°!01’!12”N! 04°!03’!00”W!

Burkina!
Faso!

Goundry! 12°!30’!00”N! 01°!20’!00”W!

Burkina!
Faso!

Koupela! 12°!11’!50”N! 00°!21’!21”W!

Burkina!
Faso!

Kuinima! 11°!08’!49”N! 04°!17’!00’’W!

Cameroon! ! 03°!52’!00’’N! 11°!31’!0”E!
Ghana! ! 05°!53’!00’’N! 00°00’!00’’W!
Guinea!
Bissau!

! 11°!53’!28”N! 15°!34’!55’’W!

Mali! ! 13°!24’!00”N! 7°!7’!48”W!
Uganda! ! 00°!41’!34’’N! 34°!10’!52”E!
!

!
!
!
!
!
!
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