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HIDEO KONISHI

TAYFUN SÖNMEZ

M. UTKU ÜNVER

My doctoral dissertation contains three essays on menu auction and its related

applications. The first chapter is a theoretical generalization of classical menu

auction model, and the second and the third chapters are applications to a

resource allocation problem and an industrial organization problem.

Menu auction (Bernheim and Whinston, 1986) is a first-price package auction

with complete information. They show that every Nash equilibrium under

some refinements always leads to an efficient outcome. Therefore, this becomes

a natural efficiency benchmark for package auction designs (e.g., Ausubel and

Milgrom 2002). Menu auction can also be viewed as a model of economic in-

fluence where the auctioneer is going to choose an action which affects bidders

payoff so that each bidder tries to influence the outcome by monetary trans-

fer to the auctioneer. This framework is widely adopted in political lobbying

models where the special interest groups lobbying the government over trade

policies (e.g., Grossman and Helpman 1994). However, the applicability is



limited by quasi-linear preferences and the absence of budget constraints. In

my first chapter, “Menu Auctions with Non-Transferable Utilities and Budget

Constraints”, I extends Bernheim and Whinston’s (1986) menu auction model

under transferable utilities to a framework with non-transferable utilities and

budget constraints. Under appropriate definitions of equilibria consistent with

subgame perfection, it is shown that every truthful Nash equilibrium (TNE)

is a coalition-proof Nash equilibrium (CPNE) and that the set of TNE pay-

offs and the set of CPNE payoffs are equivalent, as in a transferable utility

framework. The existence of a CPNE is assured in contrast with the possible

non-existence of Nash equilibrium under the definition by Dixit, Grossman,

and Helpman (1997). Moreover, the set of CPNE payoffs is equivalent to the

bidder-optimal weak core.

The second chapter relates menu auction to a resource allocation problem.

Kelso and Crawford (1982) propose a wage-adjustment mechanism resulting

in a stable matching between heterogeneous firms and workers. Instead of

a benevolent social planner, in “Profit-Maximizing Matchmaker” (w. Hideo

Konishi), we consider a profit-maximizing auctioneer to solve this many-to-

one assignment problem. If firms can only use individualized price, then the

auctioneer can only earn zero profit in every Nash equilibrium and the sets

of stable assignments and strong Nash equilibria are equivalent. Otherwise,

the auctioneer might earn positive profit even in a coalition-proof Nash equi-

librium. This reinforces Milgroms (2010) argument on the benefit of using

simplified message spaces that it not only reduces information requirement

but also improves resource allocation.

The third chapter applies menu auction in an industrial organization prob-

lem. In “Choosing a Licensee from Heterogeneous Rivals” (w. Hideo Konishi

and Anthony Creane), we consider a firm licensing its production technology



to rivals when firms with heterogeneous in production costs competing in a

Cournot market. While Katz and Shapiro (1986) show that a complete transfer

in duopoly can be joint-profit reducing, we show that it is always joint-profit

improving provided that at least three firms remain in the industry after trans-

fer. While transfers between similarly efficient firms may reduce welfare, the

social welfare must increase if the licensor is the most efficient in the indus-

try, contrast with Katz and Shapiro (1985) in the duopoly environment. This

has an important implication in competition regulation. Then we investigate

relative efficiency of the licensee under different licensing auction mechanisms.

With natural refinement of equilibria, we show that a menu auction licensee,

a standard first-price auction licensee, and a joint-profit maximizing licensee

are in (weakly) descending order of efficiency.
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Chapter 1

Menu Auctions with

Non-Transferable Utilities and

Budget Constraints

1.1 Introduction

The menu auction model with transferable utilities introduced by Bernheim

and Whinston (1986) is a complete-information principal-agent problem with

multiple principals (bidders) and one agent (auctioneer), in which the auction-

eer’s action affects her own and bidders’ payoffs. A menu auction game has

two stages: in the first stage, each bidder simultaneously submits a bidding

menu that is a list of contingent payments for each action to the auctioneer; in

the second stage, given the submitted bidding menus, the auctioneer selects an

action. Due to coordination problems among bidders, there are usually numer-

ous Nash equilibria, many of which are implausible. Bernheim and Whinston

(1986) propose truthful Nash equilibrium (TNE) as a refinement and prove

1



that there is always a TNE in every menu auction game.1 They show that

every TNE is a coalition-proof Nash equilibrium (CPNE),2 and that the set of

TNE payoffs is equivalent to the set of CPNE payoffs and the bidder-optimal

strong core.3

Although the menu auction game has been widely applied to political-economy

models of economic influence,4 Dixit, Grossman, and Helpman (1997) argue

that assumptions of quasi-linear preferences and the absence of budget con-

straints in Bernheim and Whinston (1986) limit its applications in practice.

Under quasi-linearity, the auctioneer does not care about the distribution of

payoffs among bidders, and marginal utility of payment is always a constant.5

Without budget constraints on bidders, it is hard to apply the model to sit-

uations with certain institutional restrictions on payments.6 For these rea-

sons, Dixit, Grossman, and Helpman (1997) relax the above two assumptions.

Defining truthful Nash equilibrium (TNE) for generalized menu auction games,

they show that every TNE is strongly Pareto efficient for the auctioneer and all

bidders. However, their definition does not guarantee the existence of a TNE.

Indeed, Example 1 discussed below illustrates that even Nash equilibrium may

fail to exist under their definition. This paper proposes an alternative defini-

1A TNE is a Nash equilibrium where each bidder submits a truthful bidding menu such
that the bidder obtains the equilibrium payoff for every other action whenever possible.

2A CPNE is a Nash equilibrium immune to every credible joint deviation by any subset
of bidders, where credibility of a coalitional deviation is recursively defined.

3Bernheim and Whinston (1986) do not mention the term “core” directly. However,
following the auction literature, a coalitional game among the auctioneer and bidders can
be defined from a menu auction game. An allocation is in the weak core if there exists
no other allocation that weakly improves all members in a coalition and strictly improves
some members in the coalition. The strong core is defined similarly but requires strict
improvements on all members in the coalition. The bidder-optimal strong core is a strong
core allocation and there is no other strong core allocation that weakly improves all bidders
and strictly improves some bidders.

4In particular, Grossman and Helpman (1994) popularize strategic lobbying models.
5In a public good provision problem, the government (auctioneer) may care about how

much each one contributes to the project, and the income effect is usually not independent
of the level of public good provided.

6For example, in United States, there are legal restrictions on political contributions.
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tion that guarantees the existence of equilibrium and fully characterizes the

sets of TNEs and CPNEs.

One of the key consequences of imposing budget constraints on Bernheim and

Whinston’s (1986) definition is that when budget constraints are binding, bid-

ders cannot provide additional incentive to induce a favorable outcome among

several actions to which the auctioneer is indifferent.7 Dixit, Grossman, and

Helpman (1997) overcome this problem by implicitly assuming that budget

constraints are never binding when bidders consider possible deviations. How-

ever, when the budget constraint is binding, some sort of “optimism” by the

bidder is required to justify a deviation when the auctioneer is indifferent.

Unfortunately, this optimism is the very reason that Nash equilibrium fails

to exist. Therefore, we need an alternative definition of equilibrium that im-

plies risk aversion on the part of the budget-constrained bidders: they are not

willing to deviate when the new outcome, depending on the particular action

eventually chosen by the auctioneer after the deviation, could be worse than

the existing outcome even though there are better outcomes that could be

chosen by the auctioneer.

Unlike Bernheim and Whinston (1986), in our model, the strong core might be

empty (Example 1), and even if it is non-empty, Example 3 shows a TNE under

our definition may not be strongly Pareto efficient, in contrast with Dixit,

Grossman, and Helpman (1997). As the difference is driven by binding budget

constraints, it is natural to modify the strong core, which we call the Budget-

Constraint core (BC-core), and the bidder-optimality by requiring a strict

improvement from a budget-unconstrained bidder.8 Theorem 1 shows the main

7This is different from standard assumptions in principal-agent models where bidders
can always offer infinitesimally more to break ties.

8This is parallel to the alternative definition of Nash equilibrium: budget-constrained
bidders by themselves are unable to induce favorable outcomes.
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result of this paper that every TNE is a CPNE and the set of TNE payoffs,

the set of CPNE payoffs, the bidder-optimal BC-core, and the bidder-optimal

weak core are equivalent. With indispensability of private good (Mas-Collel

1977), the equivalence of the bidder-optimal weak core and the bidder-optimal

strong core is reestablished, which coincides with Bernheim and Whinston

(1986) (Corollary 2).

The extension to non-transferable utilities and budget constraints opens the

door for new applications. For example, we can now deal with lobbying models

without monetary transfers. Lobbies often reward politicians not by campaign

contributions but by political support during elections. Since most elections

are winner-take-all, marginal payoff of political support is non-linear, which

is hard to capture through quasi-linearity. Moreover, the political support

provided by any lobby is often limited, so budget constraints are needed to

allow reasonable predictions.

The rest of the paper is organized as follows. Section 2 describes the model.

Section 3 presents the results. Section 4 concludes. The proof of the main

theorem (Theorem 1) is relegated to the appendix.

1.2 The Model

The model follows Dixit, Grossman, and Helpman (1997). There are N bidders

and an auctioneer (denoted by 0). The auctioneer chooses an action from a

finite set A.9 Bidder i ∈ N submits a bidding menu Ti : A → R+ to the

auctioneer such that 0 ≤ Ti (a) ≤ ωi (a) for each a ∈ A, where ωi (a) is the

highest possible amount of contingent payment for action a. An important

9This assumption is made for ease of exposition only. All of our results hold when A is
a compact set.
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difference from Bernheim and Whinston (1986) is that bidder i faces budget

constraint ωi (a) when the auctioneer chooses action a ∈ A. Another departure

is the relaxation of quasi-linear preferences: (1) the auctioneer’s payoff function

U0(a, (Ti (a))i∈N) is continuous and strictly increasing in Ti (a) for all a ∈ A

and i ∈ N , and (2) bidder i’s payoff function Ui (a, Ti (a)) is continuous and

strictly decreasing in Ti (a) for all a ∈ A. A menu auction game Γ ≡

(N, (Ui, ωi)i∈N , (U0, A)) is a two-stage complete information game such that

all bidders submit bidding menus simultaneously in stage 1 and the auctioneer

chooses an action in stage 2. Let Ti ≡ {Ti : 0 ≤ Ti (a) ≤ ωi (a) for all a ∈ A},

the collection of bidding menus of bidder i, and T ≡ (Ti)i∈N , the collection of

bidding menus of N bidders. An outcome of a menu auction game Γ is (a, T )

where a ∈ A and T ≡ (Ti)i∈N ∈ T . Define M (T ) ≡ arg maxa∈A U0 (a, T (a)),

the auctioneer’s best response set given bidding menus T and m (T ) ≡

maxa∈A U0 (a, T (a)), the corresponding payoff.

Definition 1. An outcome (a∗, T ∗) is a Nash equilibrium in Γ if and only

if (i) T ∗ ∈ T , (ii) a∗ ∈ M (T ∗), (iii) for all i ∈ N there exists no T̃i ∈ Ti and

ã ∈ M(T̃i, T
∗
−i) such that (a) Ui(ã, T̃i (ã)) > Ui (a

∗, T ∗i (a∗)) and (b) T̃i (ã) <

ωi (ã).

Condition (iii-b) T̃i (ã) < ωi (ã) deserves further explanation as this is an

important difference between this paper and Dixit, Grossman, and Helpman

(1997).10 Without condition (iii-b), bidders are assumed to be optimistic in

the sense that bidder i would deviate to T̃i when it is possible to gain from

deviation, without worrying about whether there might be another unfavor-

able action â ∈M(T̃i, T
∗
−i) with Ui(a

∗, T ∗i (a∗)) > Ui(â, T̃i (â)) to be chosen by

10Bernheim and Whinston (1986) adopt Definition 1 without condition (iii-b) since they
do not have budget constraints.
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the auctioneer. Without budget constraints, this optimism is not restrictive

because any bidder could resolve the indifference of the auctioneer by pay-

ing infinitesimally more, as in standard principal-agent models.11 However,

a budget-constrained bidder cannot pay more to persuade the auctioneer, so

there is no way to ensure that the auctioneer will choose the desirable action.

Therefore, omitting condition (iii-b) implicitly assumes this kind of optimism,

which restricts the set of Nash equilibria. Example 1 below shows that such

an optimism might lead to the non-existence of Nash equilibrium.

Remark. It can be shown that condition (iii) requires that at a Nash equi-

librium no bidder is able to convincingly persuade the auctioneer to choose

another action. Hence, Definition 1 can be stated equivalently as follows: An

outcome (a∗, T ∗) is a Nash equilibrium in Γ if and only if (i) T ∗ ∈ T , (ii)

a∗ ∈M (T ∗), (iii) for all i ∈ N there exists no T̃i ∈ Ti and ã = M(T̃i, T
∗
−i) such

that Ui(ã, T̃i (ã)) > Ui (a
∗, T ∗i (a∗)).

Example 1. Consider N = {1, 2} and A = {a1, a2}. Assume quasi-linear

preferences such that for all a ∈ A, Ui (a, T (a)) = Vi (a)−Ti (a) with ωi (a) = 2

for all i ∈ N and U0 (a, T (a)) = V0 (a) +
∑

i∈N Ti (a) where

a1 a2

V1 (a) 6 1

V2 (a) 1 6

V0 (a) 0 0

11When the auctioneer is indifferent between a and ã, a bidder can pay ε > 0 more to
induce one of outcomes.
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No Nash equilibrium exists if condition (iii-b) is omitted, because no matter

which action is chosen, one of two bidders will prefer another action.12 How-

ever, there exists a Nash equilibrium with condition (iii-b). Consider T such

that T1 (a1) = 2, T1 (a2) = 0, T2 (a1) = 0 and T2 (a2) = 2. Outcomes (a1, T )

and (a2, T ) are Nash equilibria.

Example 2 below shows that condition (iii-b) implies risk-averse behaviors of

bidders.

Example 2. Consider N = {1, 2} and A = {a1, a2, a3}. Assume quasi-linear

preferences such that for all a ∈ A, Ui (a, T (a)) = Vi (a)−Ti (a) with ωi (a) = 2

for all i ∈ N and U0 (a, T (a)) = V0 (a) +
∑

i∈N Ti (a) where

a1 a2 a3

V1 (a) 6 1 4

V2 (a) 1 6 4

V0 (a) 0 0 −2

Consider T such that T1 (a1) = 2, T1 (a2) = 0, T1 (a3) = 2, T2 (a1) = 0,

and T2 (a2) = T2 (a3) = 2. Outcomes (a1, T ), (a2, T ), and (a3, T ) are Nash

equilibria. For outcome (a3, T ), suppose bidder 1 is considering whether to

deviate from T1 to T̃1 (a1) = 2, T̃1 (a2) = T̃1 (a3) = 0. If bidder 1 is risk averse,

the bidder would not deviate because although a1 is more favorable than a3,

the auctioneer might choose a2 and a2 is less favorable than a3. The argument

is similar for bidder 2.

12Here we have T̃i = Ti for all i ∈ N . However, if one could slightly modify this example
to include action a3, which is never preferred by the auctioneer and any bidders, then one
can have T̃i 6= Ti by altering Ti (a3).
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Similar to Bernheim and Whinston (1986), there are usually a large number of

Nash equilibria in a menu auction game due to coordination problems among

bidders. They argue that not all of them are equally plausible and propose

truthful Nash equilibrium (TNE) as a refinement. In this class of equilibrium,

each bidder submits a bidding menu that mirrors the relative payoffs which

the bidder attaches to various actions. However, in our model, bidders cannot

pay more than budget constraints, so we have to accommodate those cases in

our definition.

For bidder i ∈ N , a bidding menu Ti is a truthful bidding menu relative

to payoff ui if for all a ∈ A,

Ti (a) =


0 if Ui (a, 0) < ui

τi (a, ui) if Ui (a, ωi (a)) ≤ ui ≤ Ui (a, 0)

ωi (a) if ui < Ui (a, ωi (a))

where τi (a, ui) is implicitly defined by Ui (a, τi (a, ui)) = ui.
13 Denote T uii to

be the truthful bidding menu relative to payoff ui and T u ≡ (T uii )i∈N to be the

truthful bidding menus relative to payoffs u = (ui)i∈N . A TNE is a refinement

on a Nash equilibrium such that all bidders choose truthful bidding menus

relative to their equilibrium payoffs.

Definition 2. An outcome (a∗, T ∗) is a truthful Nash equilibrium (TNE)

in Γ if it is a Nash equilibrium and T ∗ are the truthful bidding menus relative

to equilibrium payoffs u∗ = (Ui (a
∗, T ∗i (a∗)))i∈N .

13Dixit, Grossman and Helpman (1997) define Ti (a) = min{ωi (a) ,max{0, τi (a, ui)}} to
be the truthful bidding menu relative to ui. However, τi (a, ui) may be undefined. For

example, consider A = {0, 1} and Ui (a, Ti (a)) = a+ (Ti (a) + 1)
−1

. It is clear that τi (1, 1)
is unbounded.

8



Bernheim and Whinston (1986) argue that a TNE may be quite “focal” be-

cause truthful bidding menus are simple. A further support is that a bidder

suffers no loss in using truthful bidding menus because there is always a truth-

ful bidding menu in the set of best responses. Proposition 1 in the next section

shows that this still holds. The strongest justification for TNE is the strong

stable property: every TNE is a coalition-proof Nash equilibrium (CPNE) and

the set of TNE payoffs is the same as the set of CPNE payoffs. A CPNE is

a Nash equilibrium immune to any credible joint deviation by any subset of

bidders, where credibility of a coalitional deviation is defined recursively. The

main result of this paper (Theorem 1) shows that this important property is

still true.

Formally, we define coalition-proof Nash equilibrium as follows. Given

any non-empty subset of bidders J ⊆ N and bidding menus (Ti)i∈N\J ,

a J-component game relative to (Ti)i∈N\J is defined as Γ\ (Ti)i∈N\J ≡

(J, (Uj, ωj)j∈J , (Ũ0, A)) where Ũ0(a, (T̃j (a))j∈J) ≡ U0(a, (T̃j (a))j∈J , (Ti (a))i∈N\J).14

Definition 3. (i) An outcome (a∗, T ∗j ) is a coalition-proof Nash equilib-

rium (CPNE) in Γ\T−j if and only if it is a Nash equilibrium in Γ\T−j.

(ii-a) An outcome (a∗, (T ∗j )j∈J) is self-enforcing in Γ\ (Ti)i∈N\J if for all non-

empty S ( J , (a∗, (T ∗j )j∈S) is a CPNE in Γ\((Ti)i∈N\J , (T ∗j )j∈J\S).

(ii-b) An outcome (a∗, (T ∗j )j∈J) is a CPNE in Γ\ (Ti)i∈N\J if it is self-

enforcing in Γ\ (Ti)i∈N\J , and there exists no other self-enforcing (ã, (T̃j)j∈J)

in Γ\ (Ti)i∈N\J such that (α) Uj(ã, T̃j (ã)) ≥ Uj(a
∗, T ∗j (a∗)) for all j ∈ J , and

(β) Uj′(ã, T̃j′ (ã)) > Uj′(a
∗, T ∗j′ (a

∗)) and T̃j′ (ã) < ωj′ (ã) for some j′ ∈ J .

14Therefore, an outcome (a, (T̃j)j∈J) in Γ\ (Ti)i∈N\J gives the same payoffs to the auc-

tioneer and all bidders in J as in an outcome (a, (T̃j)j∈J , (Ti)i∈N\J) in Γ.
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Comparing the above definition with the one in Bernheim and Whinston

(1986), the only difference is condition (ii-b-β): a strict improvement is needed

from a budget-unconstrained bidder. It should not be too surprising because

since a budget-constrained bidder cannot provide extra incentives to persuade

the auctioneer to choose a favorable action, a group of budget-constrained

bidders cannot provide extra incentives even if they act together.

1.3 Results

As suggested in the previous section, we will show that there is always a

truthful bidding menu in the set of best responses.15 Following our definition

of Nash equilibrium, a bidding menu Ti is a bidder i’s best response to

other bidder’s bidding menus T−i if there exists a ∈ M (T ) such that there

exists no T̃i ∈ Ti such that Ui(ã, T̃i (ã)) > Ui (a, Ti (a)) with T̃i (ã) < ωi (ã) and

ã ∈M(T̃i, T−i).

Proposition 1. In every menu auction game Γ, for all i ∈ N , there exists a

truthful bidding menu being a bidder i’s best response.

Proof. Consider Ti to be a best response to T−i such that there exists

a ∈ M (T ) such that there exists no T̃i ∈ Ti such that Ui(ã, T̃i (ã)) >

Ui (a, Ti (a)) with T̃i (ã) < ωi (ã) and ã ∈ M(T̃i, T−i). Consider a truth-

ful bidding menu T uii with ui = Ui (a, Ti (a)). If a = M (T uii , T−i),

15Strictly speaking, without knowing how the auctioneer chooses among payoff-equivalent
actions, the set of best responses for a bidder is not well defined. Bernheim and Whinston
(1986) argue (in their footnote 11) that such a problem disappears if payment has some
smallest unit (however small). Milgrom (2005) argues that a bidding menu can be loosely
defined as a best response of a bidder if for some ε > 0, the bidder will not choose another
bidding menu assuming that the auctioneer considers the bidder is paying ε more on the
bidders’ favorable action when choosing an action, but the bidder’s payoff is evaluated
without paying ε more.
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then T uii is already a best response to T−i. Hence, consider that there

exists ā 6= a with ā ∈ M (T uii , T−i). There are two cases: (Case 1)

Ti (ā) > T uii (ā): it implies U0 (ā, T (ā)) > U0 (ā, T uii (ā) , T−i (ā)). As

ā ∈ M (T uii , T−i), we have U0 (ā, T uii (ā) , T−i (ā)) ≥ U0 (a, T uii (a) , T−i (a)).

Hence, U0 (ā, T (ā)) > U0 (a, T uii (a) , T−i (a)) = U0 (a, T (a)), which contra-

dicts a ∈M (T ); (Case 2) Ti (ā) ≤ T uii (ā): it implies either T uii (ā) = τi (ā, ui)

or T uii (ā) = ωi (ā) but both imply Ui (ā, T
ui
i (ā)) ≥ ui = Ui (a, Ti (a)) so that

T uii is at least as good as Ti. Therefore, T uii is a best response to T−i.�

Following the auction literature, we can construct a coalitional game between

the auctioneer and N bidders from a menu auction game Γ.16 In Bernheim and

Whinston (1986), every TNE is a CPNE and the set of TNE/CPNE payoffs is

the bidder-optimal strong core. Theorem 1 will show this is still true with some

modifications. As we have seen the presence of budget constraints requires

alternative definitions of Nash equilibrium and CPNE, it is not surprising

that we need alternative definitions of the core and bidder-optimality.17

In our model, a non-transferable utility coalitional game (N∪{0}, (UΓ (S))S⊆N∪{0})

constructed from a menu auction game Γ is a coalitional game between the

auctioneer and N bidders such that UΓ (S) is the set of payoffs achievable by

S ⊆ N ∪ {0} in Γ. Since bidders cannot generate meaningful payoffs without

the auctioneer, define UΓ (S) ≡ {(ui)i∈S ∈ RS : there exists (a, T ) ∈ A × T

such that u0 = U0(a, (Ti (a))i∈S) and ui = Ui (a, Ti (a)) for all i ∈ S } if

16This is different from the menu auction literature. Bernheim and Whinston (1986) do
not mention “core”. Laussel and Le Breton (2001) consider transferable utility coalitional
games generated from menu auction games between bidders only.

17Day and Milgrom (2008) discuss the importance of the core and bidder-optimality in
auction mechanisms (with transferable utilities). They argue that auctions selecting core
allocations have the advantages that bidders have no incentive to merge bids, submit bids
under other identities, or renege after the auction is conducted. Furthermore, if the selected
allocation is in the bidder-optimal core, then bidders have minimal incentives to misreport
among all core-selecting auctions and the auctioneer would not have incentive to disqualify
bidders.
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{0} ∈ S, and UΓ (S) = {(ui)i∈S ∈ RS : ui = infa∈A Ui (a, 0) for all i ∈ S} if

{0} 6∈ S. To save notation, let S0 ≡ S ∪ {0}, a set comprising the auctioneer

and all bidders in S ⊆ N , and uS0 ≡ (u0, (ui)i∈S), a list of their payoffs. A

list of payoffs uN0 is an allocation if uN0 ∈ UΓ (N0).18 An allocation u is

supported by an outcome (a, T ) if u0 = U0 (a, T (a)) and ui = Ui (a, Ti (a))

for all i ∈ N .

Definition 4. An allocation u is weakly blocked by S if there exists ũS ∈

UΓ (S) such that (i) ũi ≥ ui for all i ∈ S and (ii) ũi > ui for some i ∈ S. An

allocation u is in the strong core (ScoreΓ) if it is not weakly blocked by any

S ⊆ N ∪ {0}.

In Bernheim and Whinston (1986), the strong core is non-empty and includes

the set of TNE payoffs. However, this does not extend to our model. Example

1 shows that the strong core can be empty,19 though it will be shown that

there is always a TNE. Moreover, Example 3 below shows that even when the

strong core is non-empty, there is an allocation supported by a TNE but not

in the strong core.

Example 3. Consider N = {1, 2} and A = {a1, a2, a3}. Assume quasi-linear

preferences such that for all a ∈ A, Ui (a, T (a)) = Vi (a)−Ti (a) with ωi (a) = 2

for all i ∈ N and U0 (a, T (a)) = V0 (a) +
∑

i∈N Ti (a) where

a1 a2

V1 (a) 6 6

V2 (a) 6 1

V0 (a) 0 2

18Without confusion, we drop the subscript N0 when a list of payoffs is an allocation.
19In Example 1, every allocation, except those weakly blocked by some bidders only, is

weakly blocked by allocations (2, 4, 1) or (2, 1, 4).

12



Consider T such that T1 (a1) = T1 (a2) = 0, T2 (a1) = 2 and T2 (a2) = 0.

Outcomes (a1, T ) and (a2, T ) are TNEs. However, the allocation supported

by (a2, T ) is not in the strong core.

As hinted above, it seems natural to modify the definition of weak blocking

by taking budget constraints into account.

Definition 4. An allocation u is BC-blocked (Budget-Constraint blocked)

by S if there exists ũS ∈ UΓ (S) supported by an outcome (ã, T̃ ) such that (i)

ũi ≥ ui for all i ∈ S, and (ii) either ũ0 > u0, or ũi > ui and T̃i (ã) < ωi (ã) for

some i ∈ S\{0}. An allocation u is in the BC-core (Budget-Constraint core,

BCcoreΓ) if it is not BC-blocked by any S ⊆ N ∪ {0}.

Since the strong core and the weak core are equivalent in Bernheim and Whin-

ston (1986), it is interesting to see how the BC-core is related to the weak core

in our model.

Definition 5. An allocation u is strongly blocked by S if there exists

ũS ∈ UΓ (S) such that ũi > ui for all i ∈ S. An allocation u is in the weak

core (WcoreΓ) if it is not strongly blocked by any S ⊆ N ∪ {0}.

At the first glance, one may conjecture that BC-blocking is more effective than

strong blocking, but Proposition 2 shows that they are equivalent.

Proposition 2. In every menu auction game Γ, we have

WcoreΓ = BCcoreΓ.
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Proof. By definition, if there is a strong blocking deviation for u ∈ UΓ (N0),

then it is also a BC-blocking deviation for u because there is a strict improve-

ment for the auctioneer.20 Therefore, we have WcoreΓ ⊇ BCcoreΓ. Now

suppose u ∈ WcoreΓ but u is BC-blocked by S0.21 There exists ũS0 ∈ UΓ (S0)

supported by an outcome (ã, T̃ ) ∈ A× T such that ũi ≥ ui for all i ∈ S0, and

ũj > uj and T̃j (ã) < ωj (ã) for some j ∈ S. Let S̃ ≡ S\{i ∈ S : T̃i (ã) = 0}

and K ≡ {j ∈ S̃ : ũj > uj and T̃j (ã) < ωj (ã)}. There exists εi > 0 for all

i ∈ S̃ such that ūS̃0
∈ UΓ(S̃0) supported by (ã, (T̃i′)i′∈N\S̃, (T̄i)i∈S̃) ∈ A × T

strongly blocks u by S̃0 where for all j ∈ K, T̄j (ã) = T̃j (ã) + εj < ωj (ã) and

T̄j (a) = 0 for all a ∈ A\ {ã}, and for all i ∈ S̃\K, T̄i (ã) = T̃i (ã)− εi > 0 and

T̄i (a) = 0 for all a ∈ A\ {ã}.22 Thus, WcoreΓ ⊆ BCcoreΓ.�

Dixit, Grossman, and Helpman (1997) prove that every TNE under their defi-

nition is strongly Pareto efficient for the auctioneer and all bidders.23 However,

Example 3 shows that (a1, T ) weakly Pareto dominates (a 2, T ), both of which

are TNEs. This arises because budget-constrained bidders are unable to pro-

vide incentives to the auctioneer to induce a Pareto improvement. Therefore,

we have to incorporate the implication of budget constraints into the bidder-

optimality.24

20If a strong deviation comes from some bidders only, then it is easy to construct a BC-
blocking deviation by those bidders.

21If the BC-blocking deviation comes from some bidders only, then it is also a strong
blocking deviation by some of those bidders. Similarly, if the BC-blocking deviation comes
from the auctioneer only, it is also a strong blocking deviation by the auctioneer. Both cases
contradict u ∈WcoreΓ.

22If S̃ is empty, then ũ BC-blocks u by the auctioneer only so that ũ also strongly blocks
u.

23An allocation u is strongly Pareto efficient for the auctioneer and all bidders if there
exists no ũ ∈ UΓ(N0) such that ũi ≥ ui for all i ∈ N0, and ũi > ui for some i ∈ N0.

24The standard definition of the bidder-optimality is strongly Pareto efficiency for all
bidders without taking budget constraints into account.
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Definition 6. An allocation u is in the bidder-optimal BC-core (BCcoreΓ)

if there exists no ũ ∈ BCcoreΓ supported by an outcome (ã, T̃ ) such that

ũi ≥ ui for all i ∈ N , and ũi > ui and T̃i (ã) < ωi (ã) for some i ∈ N . The

bidder-optimal strong core (ScoreΓ) and the bidder-optimal weak core

(WcoreΓ) are defined similarly.

While ScoreΓ may be empty, Proposition 3 below shows that BCcoreΓ and

WcoreΓ are always non-empty. As Theorem 1 shows that BCcoreΓ is equiv-

alent to the set of TNE/CPNE payoffs, the existence of a TNE/CPNE is

assured.

Proposition 3. In every menu auction game Γ, the bidder-optimal BC-core

is non-empty.

Proof. Scarf (1967) proves that in a coalitional game (N∪{0}, (UΓ (S))S⊆N∪{0})

if for all S ⊆ N ∪ {0}, UΓ (S) is comprehensive and closed, and satisfies bal-

ancedness, and {uS ∈ UΓ (S) : ui ≥ supUΓ ({i}) for all i ∈ S} is non-empty

and bounded, then WcoreΓ 6= ∅. It is easy to check that all conditions are

satisfied. As WcoreΓ is compact and dominance relationship in the bidder-

optimality is weaker than strongly Pareto efficiency, we have WcoreΓ 6= ∅,

and hence BCcoreΓ 6= ∅ by Proposition 2.�

The following theorem is the main result of this paper.

Theorem 1. In every menu auction game Γ, every truthful Nash equilibrium

(TNE) is a coalition-proof Nash equilibrium (CPNE) and

ScoreΓ ( WcoreΓ = BCcoreΓ = UTNEΓ = UCPNEΓ
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where UTNEΓ and UCPNEΓ are the sets of TNE payoffs and CPNE payoffs in Γ.

The proof of this theorem is complex and we defer it to the appendix. It is

interesting to compare this result with the existing literature. Dixit, Grossman,

and Helpman (1997) show that under similar settings as this paper, the set

of TNE payoffs under their definition is included in the set of strongly Pareto

efficient allocations with respect to all bidders and the auctioneer.25 Bernheim

and Whinston (1986), under the assumptions of quasi-linear preferences and

the absence of budget constraints, show that every TNE is a CPNE and

ScoreΓ = WcoreΓ = UTNEΓ = UCPNEΓ .26

Therefore, Theorem 1 almost completely extends the results by Bernheim and

Whinston (1986) to the generalized framework. The only difference is that in

our framework ScoreΓ does not coincide with WcoreΓ. This is unavoidable

since WcoreΓ is non-empty, whereas ScoreΓ can be empty. However, it is pos-

sible to reconcile our result with Bernheim and Whinston (1986) with one of

the following two additional assumptions. Bidders’ preferences satisfy indis-

pensability of private good if for all i ∈ N , Ui (a, ωi (a)) = Ui (ã, ωi (ã))

for all a, ã ∈ A (Mas-Colell 1977). Alternatively, bidders are deep-pocketed if

for all i ∈ N , for all a ∈ A, Ui (a, ωi (a)) < minã∈A Ui (ã, 0). Either assump-

tion implies that BC-blocking and weak blocking are the same, so we have

BCcoreΓ = ScoreΓ. Thus, Theorem 1 implies the following result.

Corollary 1. In every menu auction game Γ, if bidders’ preferences satisfy

indispensability of private good or bidders are deep-pocketed, then every TNE

25Note that condition (iii-b) is absent in their definition of Nash equilibrium.
26Though our bidder-optimality takes budget constraints into account, it is the same as

the standard definition of the bidder-optimality when bidders have no budget constraints.
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is a CPNE and

ScoreΓ = WcoreΓ = UTNEΓ = UCPNEΓ .

Corollary 1 implies the main result of Bernheim and Whinston (1986).

Corollary 2. In every menu auction game Γ, if the auctioneer and all bid-

ders have quasi-linear preferences (U0 (a) = V0 (a) +
∑

i∈N Ti (a) and Ui (a) =

Vi (a)− Ti (a) for all i ∈ N), and bidders have no budget constraint, then ev-

ery TNE is a CPNE, the auctioneer chooses a∗ ∈ maxa∈A V0 (a) +
∑

i∈N Vi (a)

in every TNE/CPNE, and UTNEΓ = UCPNEΓ = ScoreΓ = WcoreΓ = {u ∈

UΓ (N0) :
∑

i∈S ui ≤ W (N) − W (N\S) for all S ⊆ N} where W (S) ≡

maxa∈A V0 (a) +
∑

i∈S Vi (a) for all S ⊆ N .

1.4 Concluding Remarks

In this paper, we generalize Bernheim and Whinston’s (1986) menu auction

game to the class of non-transferable utility game with budget constraints.

This extension is useful since it allows more applications, as discussed in Sec-

tion 1. However, there is another reason to study this extension. The efficiency

result in menu auctions under a restricted domain has been used as a bench-

mark in general package/combinatorial auction designs. For example, Ausubel

and Milgrom (2002) propose a generalized ascending package auction, which

allows non-quasi-linear preferences and budget constraints. After bidders re-

port their preferences, the auction mechanism uses an algorithm to determine

an allocation that is shown to be in the weak core with respect to reported pref-

erences.27 This paper provides the theoretical basis for a comparison: every

27There might be equilibria where bidders do not report their actual preferences.
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allocation in the bidder-optimal weak core with respect to actual preferences

is implemented by a generalized menu auction game in CPNEs, irrespective of

reported preferences.28

28Note that bidder-optimality is slightly modified for budget constraints as defined in
section 3.
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Appendix: Proof of Theorem 1

First, Proposition 5 shows every TNE is a CPNE. Second, we estab-

lish BCcoreΓ = UTNEΓ = UCPNEΓ by BCcoreΓ ⊆ UTNEΓ (Proposition 4),

UTNEΓ ⊆ UCPNEΓ (Proposition 5) and UCPNEΓ ⊆ BCcoreΓ (Proposition 6). By

Proposition 2, WcoreΓ = BCcoreΓ. By definition, we have ScoreΓ ⊆ WcoreΓ

but Example 3 shows it is possible to have ScoreΓ = ∅ and WcoreΓ 6= ∅, so in

general ScoreΓ ( WcoreΓ, which completes the proof.

Proposition 4. In every menu auction game Γ, every allocation u∗ ∈

BCcoreΓ can be supported by a truthful Nash equilibrium.

Proof. Consider u∗ ∈ BCcoreΓ supported by (a∗, T ) ∈ A× T . Suppose that

for all i ∈ N , bidder i chooses the truthful bidding menu T ∗i relative to u∗i ,

that is, T ∗i = T
u∗i
i . It suffices to check (a∗, T ∗) is a Nash equilibrium since

the resulting allocation is u∗ by construction. Clearly, T ∗ ∈ T . Suppose a∗ 6∈

M (T ∗). There exists ã ∈ A such that U0 (ã, T ∗ (ã)) > U0 (a∗, T ∗ (a∗)). Let

K ≡ {i ∈ N : Ui (ã, 0) < u∗i } so that U0(ã, (T ∗i (ã))i∈N\K) > U0 (a∗, T ∗ (a∗)).

Truthful bidding menus imply Ui (ã, T
∗
i (ã)) ≥ Ui (a

∗, T ∗i (a∗)) for all i ∈ N\K.

Then u∗ is BC-blocked by N0\K, which contradicts u∗ ∈ BCcoreΓ. Hence,

a∗ ∈M(T ∗).

Suppose for some j ∈ N , there exists (ā, T̄j) ∈ A×Tj such that ā ∈M(T̄j, T
∗
−j),

Uj(ā, T̄j (ā)) > Uj(a
∗, T ∗j (a∗)) and T̄j (ā) < ωj (ā). There are two cases.

(Case 1): m (T ∗) ≤ m(T̄j, T
∗
−j). Let K̄ ≡ {i ∈ N : Ui (ā, 0) < u∗i }, ū0 =

U0(ā, (T ∗i (ā))i∈(N\K̄)\{j} , T̄j (ā)), ūj = Uj
(
ā, T̄j (ā)

)
and ūi = Ui(a

∗, T ∗i (a∗))

for all i ∈ (N\K̄)\{j}. Then ūN0\K̄ BC-blocks u∗ by N0\K̄, which contradicts

u∗ ∈ BCcoreΓ. (Case 2): m (T ∗) > m(T̄j, T
∗
−j). Note that a∗ ∈ M (T ∗) im-

plies T ∗j (a∗) > 0. There exists εj > 0 such that T̂j (a∗) = T ∗j (a∗)− εj > 0 and
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T̂j (a) = 0 for all a ∈ A\ {a∗} so that a∗ ∈ M(T̂j, T
∗
−j) and Uj(a

∗, T̂j (a∗)) >

Uj(a
∗, T ∗j (a∗)). Denote û0 = U0(a∗, T̂j (a∗) , T ∗−j (a∗)), ûj = Uj(a

∗, T̂j (a∗)) and

ûi = Ui (a
∗, T ∗i (a∗)) for all i ∈ N\ {j}. Note that ûi ≥ u∗i for all i ∈ N

and ûj > u∗j . If û ∈ BCcoreΓ, then u∗ 6∈ BCcoreΓ, which is a contradiction.

Hence, û 6∈ BCcoreΓ holds. Then for some S ⊆ N , there exists ¯̄uS0 ∈ UΓ (S0)

such that ¯̄uS0 BC-blocks û and ¯̄uS0 6= u∗S0
.29 Since û and u∗ are supported

by (a∗, T̂j, T
∗
−j) and (a∗, T ∗), it must be ¯̄u0 ≥ u∗0.30 However, this implies ¯̄uS0

BC-blocks u∗, which contradicts u∗ ∈ BCcoreΓ. �

Before stating Proposition 5 and Proposition 6, it is useful to prove the fol-

lowing two lemmas.

Lemma 1. In every menu auction game Γ, if an allocation u∗ is supported by

a truthful Nash equilibrium (a∗, T ∗) in Γ, then u∗J0 ∈ BCcoreΓ\(T ∗k )k∈N\J for all

non-empty J ⊆ N where u∗J0 ≡ (u∗0, (u
∗
i )i∈J).

Proof. First, we show u∗J0 ∈ BCcoreΓ\(T ∗k )k∈N\J for all non-empty

J ⊆ N . Suppose u∗J0 6∈ BCcoreΓ\(T ∗k )k∈N\J for some non-empty J ⊆ N .

For some non-empty S ⊆ J , there exists ũS0 ∈ UΓ\(T ∗k )k∈N\J (S0) sup-

ported by (ã, (T̃i)i∈S) ∈ A × (Ti)i∈S such that ũi ≥ u∗i for all i ∈ S0

and ũj > u∗j with T̃j (ã) < ωj (ã) for some j ∈ S,31 where ũ0 =

U0(ã, (T̃i (ã))i∈S, (T
∗
k (ã))k∈N\J), u∗0 = U0 (a∗, T ∗ (a∗)), and for all i ∈ S, ũi =

Ui(ã, T̃i (ã)) and u∗i = Ui (a
∗, T ∗i (a∗)). There exists εj > 0 such that T̂j (ã) =

T̃j (ã) + εj < ωj (ã) and T̂j (a) = 0 for all a ∈ A\ {ã} so that Uj((ã, T̂j (ã)) >

Uj(a
∗, T ∗j (a∗)) and U0(ã, T̂j (ã) , T ∗−j (ã)) > U0(ã, T̃j (ã) , T ∗−j (ã)). For all

i ∈ S, since T ∗i is a truthful bidding menu, we have T ∗i (ã) ≥ T̃i (ã) so

29If ¯̄uS0
= u∗S0

, then ûi ≥ ¯̄ui for all i ∈ S0. This implies ¯̄uS0
cannot BC-block û.

30Otherwise, we can construct û such that it is not BC-blocked by any ¯̄uS̃0
for all S̃ ⊆ N .

31The auctioneer is not maximizing if there is no j ∈ S such that ũj > u∗j with T̃j (ã) <
ωj (ã).
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that U0(ã, T̃j (ã) , T ∗−j (ã)) ≥ U0(ã, (T̃i (ã))i∈S, (T
∗
k (ã))k∈N\J). Therefore,

U0(ã, T̂j (ã) , T ∗−j (ã)) > U0 (a∗, T ∗ (a∗)) implies ã ∈ M(T̂j, T
∗
−j), which contra-

dicts (a∗, T ∗) being a Nash equilibrium.

It remains to show u∗J0 ∈ BCcoreΓ\(T ∗k )k∈N\J for all non-empty J ⊆ N . Sup-

pose not. There exists ˜̃uJ0 ∈ BCcoreΓ\(T ∗k )k∈N\J supported by (˜̃a, ( ˜̃Ti)i∈J) ∈

A × (Ti)i∈J such that for all i ∈ J , ˜̃ui ≥ u∗i and for some j′ ∈ J , ˜̃uj′ > u∗j′

and ˜̃Tj′(˜̃a) < ωj′(˜̃a). By Proposition 4, ˜̃uJ0 can be supported by a TNE

(˜̃a, (T
˜̃ui
i )i∈J) in Γ\ (T ∗k )k∈N\J implying m (T ∗) ≥ m((T

˜̃ui
i )i∈J , (T

∗
k )k∈N\J). There

are two cases, both of which contradict (a∗, T ∗) being a Nash equilibrium.

(Case 1): m (T ∗) = m((T
˜̃ui
i )i∈J , (T

∗
k )k∈N\J). There exists εj′ > 0 such that

T̄j′
(
˜̃a
)

= T
˜̃uj′

j′

(
˜̃a
)

+ εj′ < ωj′(˜̃a) and T̄j′ (a) = 0 for all a ∈ A\
{

˜̃a
}

so

that ˜̃a ∈ M(T̄j′ , T
∗
−j′) and Uj′(˜̃a, T̄j′(˜̃a)) > Uj′(a

∗, T ∗j′ (a
∗)). This contradicts

(a∗, T ∗) being a Nash equilibrium; (Case 2): m (T ∗) > m((T
˜̃ui
i )i∈J , (T

∗
k )k∈N\J).

Then m (T ∗) > m(T
˜̃uj′′

j′′ , T
∗
−j′′) for some j′′ ∈ J . Note that a∗ ∈ M (T ∗)

implies T ∗j′′ (a
∗) > 0. There exists εj′′ > 0 such that ¯̄Tj′′ (a

∗) = T ∗j′′ (a
∗) −

εj′′ > 0 and ¯̄Tj′′ (a) = 0 for all a ∈ A\ {a∗} so that a∗ ∈ M( ¯̄Tj′′ , T
∗
−j′′) and

Uj′′(a
∗, ¯̄Tj′′ (a

∗)) > Uj′′(a
∗, T ∗j′′ (a

∗)) and ¯̄Tj′′ (a
∗) < ωj′′ (a

∗). This contradicts

(a∗, T ∗) being a Nash equilibrium.�

Lemma 2. In every menu auction game Γ with |N | ≥ 2, if an outcome (a∗, T ∗)

is self-enforcing in Γ, then for all non-empty S ( N , u∗S0
∈ BCcoreΓ\(T ∗k )

k∈N\S

where u∗S0
∈ UΓ (S0) is supported by (a∗, (T ∗i )i∈S) in Γ\ (T ∗k )k∈N\S.

Proof. Consider |N | = 2. For all i ∈ N , (a∗, T ∗) is self-enforcing in Γ if

(a∗, T ∗i ) is a CPNE in Γ\T ∗−i. By definition, (a∗, T ∗i ) is a CPNE in Γ\T ∗−i if and

only if it is a Nash equilibrium in Γ\T ∗−i. If (u∗0, u
∗
i ) 6∈ BCcoreΓ\T ∗−i

for some

i ∈ N , then (a∗, T ∗) cannot be a Nash equilibrium in Γ. The rest of argument

will be completed by induction.

21



Consider |N | > 2. By the induction assumption, u∗S0
∈ BCcoreΓ\(T ∗k )

k∈N\S
for

all S ⊆ N with |S| < |N | − 1. Suppose u∗
S̃0
6∈ BCcoreΓ\(T ∗k )

k∈N\S̃
for some

S̃ ⊆ N with |S̃| = |N | − 1. There exists ũS̃0
∈ BCcoreΓ\(T ∗k )

k∈N\S̃
supported

by (ã, (T̃i)i∈S̃) ∈ A × (Ti)i∈S̃ in Γ\ (T ∗k )k∈N\S̃ such that ũi ≥ u∗i for all i ∈ S̃,

and ũj > u∗j and T̃j (ã) < ωj (ã) some j ∈ S̃. By Proposition 4, (ã, (T ũii )i∈S̃)

is a TNE in Γ\ (T ∗k )k∈N\S̃. Then, by Lemma 1, for all non-empty J ⊆ S̃,

ũJ0 ∈ BCcore
Γ\((T ∗k )k∈N\S̃ ,(T

ũi
i )i∈S̃\J )

. Hence, (ã, (T ũii )i∈S̃) is self-enforcing in

Γ\ (T ∗k )k∈N\S̃ as there is no credible deviation in Γ\((T ∗k )k∈N\S̃ , (T
ũi
i )i∈S̃\Ŝ)

for all Ŝ ⊆ S̃. Since Uj(ã, T
ũj
j (ã)) > Uj(a

∗, T ∗j (a∗)) and T
ũj
j (ã) < ωj (ã), the

outcome (a∗, T ∗) cannot be a CPNE in Γ\ (T ∗k )k∈N\S̃. This contradicts (a∗, T ∗)

being self-enforcing in Γ. Hence, u∗
S̃0
∈ BCcoreΓ\(T ∗k )

k∈N\S̃
for all S̃ ( N . By

induction, Lemma 2 is proved.�

Lemma 1 shows that every allocation supported by a TNE is also in the bidder-

optimal BC-core of every component games, and Lemma 2 shows that every

allocation supported by a self-enforcing outcome is also in the bidder-optimal

BC-core of every component games. Since every CPNE is self-enforcing,

Proposition 5 can be shown readily.

Proposition 5. In every menu auction game Γ, every truthful Nash equilib-

rium is a coalition-proof Nash equilibrium.

Proof. It is trivial when |N | = 1. Consider |N | ≥ 2. Let (a∗, T ∗) be a

TNE in Γ. We proceed by induction on S ⊆ N . By induction assumption,

for all non-empty J ⊆ S, (a∗, (T ∗j )j∈J) is self-enforcing in Γ\ (T ∗k )k∈N\J . By

Lemma 1, for all non-empty J ⊆ S, if u∗J0 ∈ UΓ\(T ∗k )k∈N\J (J0) is supported

by a TNE (a∗, (T ∗j )j∈J) in Γ\ (T ∗k )k∈N\J , then u∗J0 ∈ BCcoreΓ\(T ∗k )k∈N\J . By

Lemma 2, a self-enforcing allocation must be in the bidder-optimal BC-core

in every component games. Therefore, for all non-empty J ⊆ S, there exists
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no self-enforcing allocation ũJ0 ∈ UΓ\(T ∗k )k∈N\J (J0) supported by (ã, (T̃i)i∈J) ∈

A × (Ti)i∈J in Γ\(T ∗k )k∈N\J such that ũi ≥ u∗i for all i ∈ J , and ũi′ > u∗i′

and T̃i′ (ã) < ωi′ (ã) for some i′ ∈ J . Hence, (a∗, (T ∗j )j∈S) is a CPNE in

Γ\(T ∗k )k∈N\S. By induction, (a∗, T ∗) is a CPNE in Γ.�

Proposition 6. In every menu auction game Γ, every allocation u∗ supported

by a coalition-proof Nash equilibrium is in the bidder-optimal BC-core.

Proof. Suppose not. There exists ũ ∈ BCcoreΓ supported by (ã, T̃ ) ∈ A×T

such that ũi ≥ u∗i for all i ∈ N , and ũj > u∗j and T̃j (ã) < ωj (ã) for some

j ∈ N . From Proposition 4 and Proposition 5, ũ is supported by a CPNE

so ũ is also supported by a self-enforcing outcome. However, the allocation

u∗ supported by a CPNE implies that there exists no self-enforcing allocation

weakly improves all bidders and strictly improves some budget-unconstrained

bidders. This is a contradiction.�
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Chapter 2

Profit-Maximizing Matchmaker

2.1 Introduction

In their influential paper, Shapley and Shubik (1971) introduce an assignment

problem that is a transferable utility (cooperative) game in a two-sided one-to-

one matching problem. Kelso and Crawford (1982) generalize the assignment

model to a many-to-one setting: they allow firms to choose how many work-

ers to hire, and they analyze the resulting market equilibrium and the core.

They consider a central planning authority that matches up firms and workers

and propose a price adjustment mechanism by generalizing the Gale-Shapley

deferred acceptance algorithm (Gale and Shapley 1962; Roth and Sotomayor

1990). Their algorithm finds the firm-optimal stable assignment that is a mar-

ket equilibrium and a core allocation. As in many centralized market clearing

mechanisms successfully used in the real world, such as entry-level medical

markets and school choice problems, Kelso and Crawford (1982) assume that

the matchmaker is a benevolent central planner who tries to achieve a desirable

allocation—a market equilibrium.

25



By contrast, in this paper, we consider another matching mechanism that

utilizes an auctioneer (matchmaker) who chooses a matching of firms and

workers that maximizes profit in an environment of heterogeneous firms and

workers. Specifically, we consider a two-stage noncooperative game in a many-

to-one assignment problem with a matchmaker. In the first stage, each firm

proposes how much it is willing to pay workers if they are matched, and each

worker proposes what salary she is willing to accept from each firm if they

are matched. These proposals are made simultaneously. Then, in the second

stage, the matchmaker matches up firms and workers in order to maximize

profits (the sum of the differences between the offering and asking salaries

from each matched firm-worker(s)). This matchmaker game can be regarded

as a resource allocation mechanism with an auctioneer in a two-sided matching

problem.

Recently, Milgrom (2010) proposes a framework that analyzes the effect on

equilibria of restricting the message space of a game. He defines a certain “out-

come closure property” on a simplification of message space, and shows that

if the condition is satisfied, then every (ε)-Nash equilibrium in the simplified

mechanism is an (ε)-Nash equilibrium of the original mechanism. Moreover,

he illustrates the benefits of working with the simplified mechanism by noting

that the set of Nash equilibria is intact by simplifying message space through

adopting simple (individualized price) strategies in a combinatorial auction

game, and also that the Gale-Shapley algorithm selects the same outcome

even with individualized prices in the Kelso-Crawford assignment game under

(gross)-substitute assumption. Thus, it is interesting to investigate the per-

formance of using simple (individualized price) strategies in our matchmaker

game, which combines a two-sided matching problem and a combinatorial auc-

tion game.
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Our matchmaker game can be considered a two-sided version of a combi-

natorial auction game. It satisfies the outcome closure property, so a Nash

equilibrium in simple (individualized price) strategies is a Nash equilibrium

in general (package price) strategies. However, in contrast to Milgrom’s ob-

servation on a combinatorial auction game and the Gale-Shapley algorithm,

restricting the message space significantly reduces the set of Nash equilibria

in our matchmaker game. In particular, all Nash equilibria in simple strate-

gies generate zero profit for the matchmaker (Theorem 1), but Nash equilibria

in general strategies may generate positive profits (Example 3). This result

shows that while the simple strategy restriction excludes some of Nash equi-

libria in our matchmaker game, the performance of the mechanism improves

with the restriction since profit for the matchmaker is a waste of resource. We

also use a stronger equilibrium concept and investigate how the equilibrium

outcomes differ under strategy restriction. A coalition-proof Nash equilibrium

is a strategy profile that is immune to every credible coordinated change in

strategies for any coalition (Bernheim, Peleg, and Whinston, 1987; Konishi,

Le Breton and Weber 1999). In our matchmaker game, a coalition-proof Nash

equilibrium in simple strategies is a coalition-proof Nash equilibrium in gen-

eral strategies as well (Proposition 1). We show that every coalition-proof

Nash equilibrium outcome in simple strategies is a stable assignment (a core

allocation) (Theorem 3). However, perhaps somewhat surprisingly, in general

strategies, even coalition-proof Nash equilibria may still yield positive profits

to the matchmaker (Example 3). Thus, in our matchmaker game, restrict-

ing the message space to simple strategies not only reduces the information

requirement but also enhances efficiency.

Applying the above theorems, we obtain results on the implementation of

popular social choice correspondences in the Kelso-Crawford many-to-one as-
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signment problem with monetary transfers. Alcalde et al. (1998) show that the

stable correspondence (competitive equilibrium correspondence) is subgame-

perfect-Nash-implementable by a simple two-stage game. Hayashi and Sakai

(2009) characterize the stable correspondence by Nash implementation. Note

that their results cannot treat the one-to-one problem or a many-to-one prob-

lem with quotas. By noting that the set of Nash equilibrium outcomes is

equivalent to the set of acceptable assignments, we can show that the accept-

able correspondence is Nash-implementable by our simple matchmaker game

by applying Theorem 1 (Corollary 1). Theorem 2 directly shows that a stable

correspondence is coalition-proof-Nash-implementable in a simple matchmaker

game (Corollary 3). These results are not dependent on the presence of mon-

etary transfers (Theorem 4) or quotas.1

Our matchmaker game is related to the menu auction game introduced by

Bernheim and Whinston (1986), although the results in the literature of the

menu auction game do not have much to do with ours except for the one-to-one

problem. In a menu auction game, there are multiple principals (players) and

an agent, and a set of actions. All players and the agent have preferences over

actions, and each player offers a contribution schedule to the agent, which is

a function from the action set to a monetary contribution. The agent sees the

players’ contribution schedules and chooses the action with the highest total

payoff. We show that the class of our matchmaker games in general (pack-

age price) strategies can be embedded into that of the menu auction games

(Proposition 2). In this sense, our game is related to the menu auction game.

However, many important results in the literature of menu auction games have

something to do with Nash equilibrium in restricted strategies: truthful strate-

gies as defined in Bernheim and Whinston (1986). Unfortunately, in general,

1The effect of quota can be muted by setting quota equal to the size of the labor force.
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truthful strategies and simple (individualized price) strategies are incompat-

ible with each other except for a special domain of one-to-one assignment

problems, and we cannot apply the results to our many-to-one assignment

case. Still, our Theorem 1 implies that the one-to-one assignment problem is

a new domain that satisfies the no-rent property introduced by Laussel and Le

Breton (2001), under which many nice results hold.

The rest of the paper is organized as follows. In Section 2, the (many-to-one)

Kelso-Crawford assignment problem and our matchmaker game are introduced

with a few examples. Section 3 presents our main results. Section 4 provides

applications of our main results to the implementation of acceptable and stable

matchings and discusses the relationship of our results with menu auction

games. Section 5 contains the proof of the main theorem.

2.2 The Model

2.2.1 A Many-to-One Matching Problem

We consider the Kelso-Crawford many-to-one assignment problem without

imposing complementarity or substitutability of workers (Kelso and Crawford

1982). There are two disjoint finite sets of players: the set of firms F and the

set of workers W . Let N = F ∪W . Each firm f ∈ F has a finite quota qf and

each of qf positions can hold one worker. Production technology is described

by a function Y : F×2W → R+ such that Y (f,Wf ) ≥ 0 is the output that firm

f can produce by hiring Wf ⊆ W workers. We assume that Y (f,Wf ) = 0 when

Wf = ∅ or |Wf | > qf for all f ∈ F . Let Y be the set of all possible production

technologies. Each worker w ∈ W hired by firm f has some disutility from

working dwf independent of his or her position. If unemployed, then w receives
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zero disutility (dwφ = 0). We assume that dwf ≥ 0 for all f ∈ F and all w ∈ W .

Let D = (dwf )w∈W,f∈F∪{∅} be a disutility matrix, and let D be the set of all

possible disutility matrices. A many-to-one matching µ : W ∪F � W ∪F

is a mapping such that (i) µ (f) ⊆ W and µ (w) ∈ F ∪ {∅} for all f ∈ F

and all w ∈ W ; (ii) |µ (f)| ≤ qf for all f ∈ F ; (iii) w ∈ µ (f) if f = µ (w);

(iv) µ (w) = f for all w ∈ µ (f). Let M be the set of all matchings µ. An

efficient matching is µ∗ ∈ arg maxµ∈M
∑

f∈F

[
Y (f, µ (f))−

∑
w∈µ(f) dwf

]
.

We denote payoffs of firm f and worker w by vf and uw, respectively. Let

v = (vf )f∈F and u = (uw)w∈W be firms’ and workers’ payoff vectors. A

(nonwasteful) allocation is a list (v, u, µ) ∈ RF × RW × M such that (i)

vf = 0 for all f ∈ F with µ (f) = ∅, (ii) uw = 0 for all w ∈ W with µ (w) = ∅

and (iii) vf +
∑

w∈µ(f)uw = Y (f, µ (f)) −
∑

w∈µ(f)dwf for all f ∈ F . An

allocation (v, u, µ) is efficient if µ is an efficient matching. An allocation is

individually rational if for all f ∈ F and all w ∈ W , vf ≥ 0 and uw ≥ 0. An

allocation is an acceptable assignment if (i) it is individually rational and

(ii) Y (f,Wf )−
∑

w∈Wf
dwf ≤ vf +

∑
w∈Wf

uw for all f ∈ F and all Wf ⊂ µ(f).

Condition (ii) of acceptability requires that firm f cannot be better off by

firing some of its workers. Note that individual rationality is equivalent to

acceptability in the one-to-one assignment problem, but not in the many-to-

one problem. An allocation is a stable assignment if (i) it is individually

rational and (ii) there is no pair (f,Wf ) ∈ F × 2W with |Wf | ≤ qf such

that Y (f,Wf ) −
∑

w∈Wf
dwf > vf +

∑
w∈Wf

uw. Clearly, stability requires

acceptability.
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2.2.2 The Matchmaker Game

Consider a mechanism by which a matchmaker matches up firms and workers

under complete information. This matchmaker can be regarded as an auc-

tioneer, or as a central planning authority who chooses a matching based on

information submitted by firms and workers. In the first stage, a matchmaker

asks each worker what salary she demands from each firm, and asks each firm

how much it is willing to offer workers if they are matched. Thus, each worker

w ∈ W submits sw : F → R (or sw = (sw(f))f∈F ). However, the strategy

for the firm has two possible formulations. One is a simple strategy (or an

individualized price strategy) such that each firm f ∈ F submits σf : W → R

(or σf = (σf (w))w∈W ). That is, irrespective of other workers assigned to firm

f , f always pays σf (w) to the matchmaker for getting worker w. The other is

a general strategy (or a package price strategy) such that each firm f ∈ F

submits σ̃f : Sf → R where Sf = {Wf ⊆ W : |Wf | ≤ qf}. Clearly, simple

strategies are special cases of general strategies. The matchmaker is allowed

to take the difference between σf (w) and sw(f) if she matches f and w in the

case of simple strategies, and the matchmaker is allowed to take the difference

between σ̃f (Wf ) and
∑

w∈Wf
sw(f) from matching up f and Wf in the case

of general strategies. Needless to say, the matchmaker would not match a

pair (f, w) if σf (w) < sw(f) in the case of a simple strategy, and would not

match (f,Wf ) if σ̃f (Wf ) <
∑

w∈Wf
sw(f) in the case of a general strategy: the

matchmaker would rather leave them unmatched.

In the second stage, using these submitted strategies, the matchmaker chooses

a matching µ ∈ M. This game is called a matchmaker game, and the

matching games with firms’ simple and general strategies are called simple

and general matchmaker games, respectively.
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In a simple matchmaker game, the matchmaker has a payoff function U :

RF×W × RW×F ×M → R with U(σ, s, µ) =
∑

f∈F
∑

w∈µ(f) (σf (w)− sw(f)).

Let the set M(σ, s) ⊂ M be M(σ, s) ≡ argmaxµ∈M U(σ, s, µ). Each firm f ,

worker w, and the matchmaker obtain the following payoffs under µ ∈M(σ, s):

vf (σ, s, µ) = Y (f, µ(f))−
∑

w∈µ(f) σf (w), uw(σ, s, µ) = sw(µ(w))− dwµ(w), and

U(σ, s, µ) =
∑

f∈F
∑

w∈µ(f) (σf (w)− sw(f)), respectively.

In a general matchmaker game, the matchmaker has a payoff function Ũ :

R×f∈FSf×RW×F×M→ R with Ũ(σ̃, s, µ) =
∑

f∈F

(
σ̃f (µ(f))−

∑
w∈µ(f) sw(f)

)
.

Let the set M̃(σ̃, s) ⊂ M be M̃(σ̃, s) ≡ argmaxµ∈M Ũ(σ̃, s, µ).Each firm f ,

worker w, and the matchmaker obtain the following payoffs under µ ∈ M̃(σ̃, s):

ṽf (σ̃, s, µ) = Y (f, µ(f)) − σ̃f (µ(f)), uw(σ̃, s, µ) = sw(µ(w)) − dwµ(w), and

Ũ(σ̃, s, µ) =
∑

f∈F

(
σ̃f (µ(f))−

∑
w∈µ(f) sw(f)

)
, respectively. Note that each

firm f cares only about µ(f). The rest of the matching is irrelevant. Similarly,

each worker w cares only about µ(w).

A list (σ∗, s∗, µ∗) is a Nash equilibrium in a simple matchmaker game if

(i) µ∗ ∈ M(σ∗, s∗), (ii) there is no f ∈ F such that σf : W → R and

µ ∈ M(σf , σ
∗
−f , s

∗) such that vf (σf , σ
∗
−f , s

∗, µ) > vf (σ
∗, s∗, µ∗), and (iii) there

is no w ∈ W such that sw : F → R and µ ∈ M(σ∗, sw, s
∗
−w) such that

uw(σ∗, sw, s
∗
−w, µ) > uw(σ∗, s∗, µ∗).2 While a Nash equilibrium is immune to

any unilateral deviation such that the deviant is strictly improved, a (strictly)

strong Nash equilibrium (SNE) is immune to any coalitional deviation

such that all members weakly are improved and at least one member is strictly

improved, and a (strictly) coalition-proof Nash equilibrium (CPNE) is

immune to any credible coalitional deviation such that all members weakly

are improved and at least one member is strictly improved, where credibility

2Although strictly speaking the game is a two-stage game, because the second stage is
a mere maximization problem by the matchmaker, we can regard the game as static (see
Bernheim and Whinston 1986; Laussel and Le Breton 2001).
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is defined recursively by fixing strategies of outsides of a coalition.3 An out-

come of a Nash equilibrium (σ∗, s∗, µ∗) in a simple matchmaker game is a list

(v, u, µ) ∈ RF ×RW ×M such that vf = Y (f, µ∗ (f))−
∑

w∈µ∗(f) σ
∗
f (w) for all

f ∈ F , uw = s∗w(µ∗(w)) − dwµ∗(w) for all w ∈ W and µ = µ∗. An outcome of

a strong Nash equilibrium and a coalition-proof Nash equilibrium in a simple

matchmaker game are defined similarly. Corresponding definitions in a general

matchmaker game are given in the same manner.

2.2.3 Examples

In this subsection, we illustrate what Nash equilibria and coalition-proof Nash

equilibria look like. We start with a very simple one-to-one matching example.

Example 1. There are two firms {f1, f2} and one worker {w1}. Each firm

has one position qf1 = qf2 = 1. Let Y (f1, {w1}) = 2, Y (f2, {w1}) = 3 and

dw1f1 = dw1f2 = 0. Even in this simple example, there are multiple Nash

equilibria with different matchings. Let σf1(w1) = 1 and σf2(w1) = 0, and

sw1(f1) = 1 and sw1(f2) = 4. See Fig. 1 (a). Under this strategy profile, the

matchmaker chooses µ(f1) = w1 and µ(f2) = ∅, and makes no profit. This is a

Nash equilibrium, but the resulting matching is inefficient. This inefficiency is

due to a coordination failure. Firm f2 has no incentive to hire w1 by changing

its strategy unilaterally since w1 is asking an unreasonable salary, while worker

w1 has no incentive to try to be hired by changing her strategy unilaterally

since f2 is offering zero salary. However, if both firm f2 and worker w1 jointly

3Strictly speaking, we need to allow the matchmaker to have preferences over matchings.
The standard definition of a CPNE requires that all reduced games (where the outsiders of a
coalition keep their strategies fixed, and the members of the coalition play the game) belong
to the same class of games. However, if outsiders make their salary offers and demands to
coalition-members, then the matchmaker will have preferences over the matchings it chooses.
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(a) NE can be inefficient. (b) CPNE achieves efficiency.

Figure 2.1: Illustration for Example 1.

change their strategies, then both can be better off by being matched up, thus

achieving efficiency.

In contrast, let σf2(w1) = x and σf1(w1) = 2, and sw1(f1) = x and sw1(f2) = x,

where x ∈ [2, 3]. See Fig. 1(b). If the matchmaker chooses µ′(f2) = w1 and

µ′(f1) = ∅ (indeed, unless x = 2, it must choose µ′), this is a coalition-

proof Nash equilibrium, since there is no profitable deviation. Thus, any

salary x ∈ [2, 3] can be supported by a coalition-proof Nash equilibrium, and

efficiency is achieved. Note that each of these allocations is a stable assignment.

Example 1 shows that Nash equilibria in matchmaker games can generate

inefficient matchings. The matchmaker’s profit is zero in all Nash equilibria.

In the next example, we consider more general situations and show that the

matchmaker’s profit is still zero.

Example 2. There are two firms {f1, f2} and two workers {w1, w2}. Each

firm has one position qf1 = qf2 = 1. Let Y (f1, {w1}) = Y (f2, {w2}) = 3 and

Y (f1, {w2}) = Y (f2, {w1}) = 0, and let dwjfi = 0 for all i, j = 1, 2. Clearly,

the efficient matching is µ(f1) = w1, and µ(f2) = w2. Suppose that the match-

maker is earning a positive profit in a Nash equilibrium at least from the pair

{f1, w1} by choosing µ, that is, σf1(w1) > sw1(f1). If σf2(w2) = sw2(f2), we

have σf1(w1)− sw1(f1) = σf2(w1)− sw1(f2) and σf1(w1)− sw1(f1) = σf1(w2)−
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sw2(f1) to prevent firm f1 from offering less salary and worker w1 from asking

more salary. Then, a matching µ′ with µ′(f1) = w2, and µ′(f2) = w1 gen-

erates a higher profit than µ. Hence, σf2(w2) > sw2(f2). Note that unless

σf1(w2) > sw2(f1) or σf2(w1) > sw1(f2), f1 can gain by reducing σf1(w1) be-

cause the matchmaker would still choose µ. Without loss of generality, assume

σf1(w2) > sw2(f1). Then f1 can earn more by reducing σf1(w1) and σf1(w2)

by the same amount without affecting the resulting matching. As a result,

σf1(w1) = sw1(f1) must hold in every Nash equilibrium. Thus, in this exam-

ple again, the matchmaker’s profit must be zero in every Nash equilibrium.

It is easy to see that the set of coalition-proof Nash equilibrium outcomes is

equivalent to the set of stable assignments.

Now we consider a many-to-one problem. The following simple example illus-

trates a very important point: in general matchmaker games, a strong Nash

equilibrium may yield a positive profit to the matchmaker.

Example 3. There are two firms {f1, f2} and three workers {w1, w2, w3}. All

firms and workers are symmetric. Each firm has two positions qf1 = qf2 = 2.

For all i = 1, 2 and all j, k = 1, 2, 3 (j 6= k), dwjfi = 0 and Y (fi, {wj}) = 2

and Y (fi, {wj, wk}) = 4. In a simple matchmaker game, the wage offered to

each worker is individualized, and similar arguments as above follow, since

the matchmaker cares only about how much it can earn from each match of

a firm with a worker. Thus, we can show that all Nash equilibria in this sim-

ple matchmaker game generate zero profit to the matchmaker. The unique

coalition-proof Nash equilibrium (up to permutations) in the simple match-

maker game is (σ, s, µ) such that σfi(wj) = 2 and swj
(fi) = 2 for all i and j, and

µ(f1) = {w1, w2} and µ(f2) = {w3}. See Fig. 2(a). The salaries are pinned

down owing to excess demand for workers. Note that this coalition-proof
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Nash equilibrium generates a stable assignment. Clearly, there is no profit

for the matchmaker in the coalition-proof equilibrium of the simple match-

maker game. From the above coalition-proof Nash equilibrium in a simple

matchmaker game, let σ̃fi(wj) = 2 and σ̃fi({wj, wk}) = 4, and swj
(fi) = 2 for

all i, j, and k. This is indeed a coalition-proof Nash equilibria in this general

matchmaker game. However, in the general matchmaker game, there are other

coalition-proof Nash equilibria with positive profits. Consider the following

strategy profile (σ̃, s, µ): σ̃fi({wj}) = 1 for all i and j, and σ̃fi({wj, wk}) = 3

(if firm fi is willing to pay 3 in total if it is matched with subset {wj, wk}) for

all i, j, and k, and swj
(fi) = 1 for all i and j. This results in µ(f1) = {w1, w2}

and µ(f2) = {w3} (up to permutations). See Fig. 2(b). This is a coalition-

proof Nash equilibrium,4 and firms are indifferent between hiring one or two

workers. However, the matchmaker receives a profit of 1 from f1. Note that

firms are better off in this coalition-proof Nash equilibrium in the general

matchmaker game: they obtain positive profits. Note also that Nash equilib-

rium may generate a positive profit in the general matchmaker game, since a

coalition-proof Nash equilibrium is also a Nash equilibrium.

This example shows that unlike the one-to-one matching problem, restrictions

on firms’ strategy sets may affect the outcomes of a matchmaker game. A “sim-

ple” matchmaker game selects zero-profit Nash equilibria and coalition-proof

Nash equilibrium equilibria from the larger sets of equilibria in the general

matchmaker game.

4The set of CPNE would be σ̃fi(wj) = x ∈ [0, 2] for all i and j, and σ̃fi({wj , wk}) =
2 + x for all i and distinct j and k, and swj

(fi) = x for all i and j, and (µ(f1), µ (f2)) ∈
{({wi, wj}, {wk}) , ({wi, wj}, {wk})} for all distinct i, j and k.
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(a) Unique SNE with zero profit (b) A CPNE with positive profit

in simple matchmaker game. in general matchmaker game.

Figure 2.2: Illustration for Example 3.

In the next section, we will investigate whether the above observations hold

in general.

2.3 The Results

2.3.1 Preliminaries

We first review Milgrom’s recent contribution. Let (N,X, ω) be a normal-

form mechanism where N is the set of players, X = (Xi)i∈N is the set of

strategy profiles, Ω is the set of possible outcomes where Ω is endowed with

a topology, and ω : X → Ω is an outcome function. A normal-form game

can be constructed given utility functions u = (ui)i∈N where ui : Ω → R.

A normal-form mechanism (N, X̂, ω|X̂) is a simplification of (N,X, ω) if

X̂ ⊆ X. A simplification (N, X̂, ω|X̂) of (N,X, ω) has the outcome closure

property if, for every i, every x̂−i ∈ X̂−i, every xi ∈ Xi, and every open

neighborhood O of ω (xi, x̂−i), there exists x̂i ∈ X̂i such that ω (x̂) ∈ O. The

simplification (N, X̂, ω|X̂) of (N,X, ω) is tight if, for every continuous function

u and every ε ≥ 0, every pure strategy profile x that is an ε-Nash equilibrium
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of (N, X̂, ω|X̂) is also an ε-Nash equilibrium of (N,X, ω). Milgrom (2010)

shows the following simplification theorem.

Theorem 0. (Milgrom 2010) Any simplification (N, X̂, ω|X̂) of (N,X, ω) that

has the outcome closure property is tight.

In a matchmaker game, the set of players is the set of firms and workers,

N = F ∪ W . For player w ∈ W , a strategy is sw : F → R and Xw is a

collection of all strategies for w. For player f ∈ F , a (general) strategy is σ̃f :

Sf → R, and Xf is the collection of all possible general strategies for f . The

restriction X̂f is the set of all general strategies that can be created from simple

strategies.5 The set of possible outcomes is denoted by Ω = RF × RW×M,

where ω = (v, u, µ) ∈ Ω, and an outcome function is ω : X → Ω such that

vf = Y (f, µ(f)) − σ̃f (µ(f)) for all f ∈ F , uw = sw(µ(w)) − dwµ(w) for all

w ∈ W , and µ ∈ M̃(σ̃, s). A simple matchmaker game is a simplification of a

general matchmaker game, and the simplification satisfies the outcome closure

property. Then the following observation immediately emerges by selecting

the appropriate outcome function to support each Nash equilibrium:6

Observation. Every Nash equilibrium in a simple matchmaker game is a

Nash equilibrium in the general matchmaker game.

5Setting σ̃f (S) =
∑

w∈Sσf (w) for all S ⊆ W with S 6= ∅, we can create a general
strategy σ̃f : Sf → R from a simple strategy σf : W → R.

6In a Nash equilibrium of a (simple and general) matchmaker game, the matchmaker is
indifferent among at least two actions.
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2.3.2 Main Result

Given the above Observation, it makes sense to analyze the Nash equilibrium

in the simple matchmaker game. The first and most important result of this

paper is as follows.

Theorem 1. In every simple matchmaker game, the matchmaker’s profit is

zero in every Nash equilibrium.

The proof of this theorem is complicated, and we defer it to the last section of

the paper. If there is only one firm, it is not surprising that the firm can reduce

wages without changing the matching if the matchmaker is getting a positive

profit as in Example 1. However, if multiple firms are competing for workers,

a firm’s reducing its wage offers may not improve the firm’s payoff, since the

matchmaker may match other firms with workers whom the firm could have

had if it had not reduced wages. Thus the result of Theorem 1 is more subtle

than the argument that leaving the profit margin to the matchmaker is never a

best response. To provide some intuition behind this result, we briefly describe

the proof for a special case of a one-to-one assignment problem: qf = 1 for all

f ∈ F (the formal proof is postponed to Section 5). Suppose that there is a

Nash equilibrium with a positive profit, and let (σ, s, µ) be a Nash equilibrium

with the highest profit. Pick a firm-worker pair f and w such that µ(f) = w

and σf (w) > sw(f). Since µ is the outcome of a Nash equilibrium, firm f

and worker w do not deviate for the fear of µ not being chosen. Since the

matchmaker is profit-maximizing, if f deviates, the matchmaker chooses a

matching µ′ 6= µ with µ′(w) 6= f that generates exactly the same profit as

µ does (see Corollary 4 in Section 5 for the formal statement). Similarly, if

w deviates, the matchmaker chooses matching µ′′ 6= µ with µ′′(f) 6= w that
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generates exactly the same profit as µ does. By combining µ′ and µ′′ with

some adjustments we can create a new matching without a match between f

and w, which generates an even higher profit than µ. Then the matchmaker

can improve its profit by choosing the new matching, which contradicts that

(σ, s, µ) is a Nash equilibrium. Thus, even with interactions among firm-worker

pairs, leaving the profit margin to the matchmaker cannot be supported by a

Nash equilibrium of a simple matchmaker game.

The result of Theorem 1 provides a stark contrast with Nash equilibria in the

general matchmaker game. Example 3 in the previous section showed that

there might be Nash equilibria that give a positive profit to the matchmaker.

Thus, unlike the Nash equilibrium in a (one-sided) combinatorial auction game

and the Gale-Shapley algorithm in the two-sided matching problem, restricting

the message space to simple strategies has a real impact on the set of Nash

equilibria. Is this result bad news for simple strategies? We think that it is

actually good news. In a resource allocation problem, a positive profit for

the matchmaker (or the auctioneer) is a waste of resources. If a restriction

in message space eliminates profit made by the matchmaker, thus achieving a

nonwasteful allocation, then it should be considered a desirable property.

Although this result is somewhat surprising by itself, it also turns out to be

quite useful when we consider a refinement of Nash equilibrium. With the zero

profit result for Nash equilibrium, we will have coalition-proof Nash versions

of Observation.

Proposition 1. Every coalition-proof Nash equilibrium in a simple match-

maker game is a coalition-proof Nash equilibrium in the general matchmaker

game.
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Proof. Suppose that a coalition-proof Nash equilibrium in a simple match-

maker game is not immune to a credible coalitional deviation with general

strategies. Then, at least one player improves by the credible deviation. Sup-

pose that firm f is such a player. Then, after the deviation, f is matched

with a subset of workers Wf . Clearly, all w ∈ Wf cannot be made worse off

by the deviation. That is, Y (f,Wf )−
∑

w∈Wf
dwf must achieve a higher value

than the sum of their Nash equilibrium payoffs. However, by Theorem 1, ev-

ery Nash (and thus coalition-proof Nash) equilibrium leaves zero profit to the

matchmaker. Thus, all output is divided up by firms and workers, and the

coalition-proof Nash equilibrium outcome is a nonwasteful allocation. Since

Y (f,Wf ) would improve over the allocation, the original matching is not a

stable assignment. This is a contradiction (see Theorem 3 below). The same

logic applies to the case where no firm is strictly better off (but there is a

worker who is better off).�

That is, “simple” strategies refine the Nash equilibrium and the coalition-proof

Nash equilibrium in a general matchmaker game. From previous examples,

it is easy to observe that every Nash equilibrium outcome is an acceptable

assignment.

Theorem 2. In every many-to-one assignment problem, the set of Nash

equilibrium outcomes in the simple matchmaker game is equivalent to the set

of acceptable assignments.

Proof. Let (v, u, µ) be the outcome of a Nash equilibrium (σ, s, µ). It is

clearly individually rational, as negative payoffs can be avoided. Suppose
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for firm f there exists some C ⊂ µ(f) such that Y (f, C) −
∑

w∈Cdwf >

vf +
∑

w∈Cuw. From Theorem 1, that the matchmaker earns zero profit im-

plies vf +
∑

w∈µ(f)uw = Y (f, µ (f)) −
∑

w∈µ(f)dwf and σf (w) = sw (f) =

uw + dwf for all w ∈ µ (f). Consider σ′f (w) = σf (w) + ε for all w ∈ C and

σ′f (w) = 0 for all w 6∈ C, where ε > 0 satisfies ε < 1
|C|

[
Y (f, C)−Y (f, µ (f))+∑

w∈µ(f)\C (uw + dwf )
]
. The matchmaker can make a positive profit by match-

ing f and C. Hence, (σ, s, µ) cannot be a Nash equilibrium. Thus, a Nash

equilibrium outcome is an acceptable assignment.

Consider an acceptable assignment (v, u, µ). For every matched firm f , con-

sider for all w ∈ µ(f), σf (w) = sw(f) = uw + dwf , and for all w′ /∈ µ(f),

σf (w
′) = 0 and sw′(f) is prohibitively high. For each single firm, let its salary

offer be zero for all workers, and for each single worker, let her salary de-

mand be at a prohibitively high level. It is easy to see (σ, s, µ) is a Nash

equilibrium.�

We notice in Example 3 that if a Nash equilibrium is refined by a coalition-

proof Nash equilibrium, then a stable assignment is achieved. The next the-

orem shows that this is not a coincidence. Using Theorem 1, we obtain the

following.

Theorem 3. In every many-to-one assignment problem, the set of coalition-

proof Nash equilibrium in the simple matchmaker game is equivalent to the

set of stable assignments.

Proof. From Theorem 1, the matchmaker earns zero profit in every Nash

equilibria, hence earns zero profit in every coalition-proof Nash equilibrium.

Let (v, u, µ) be a coalition-proof Nash equilibrium outcome, and suppose that

it is not a stable assignment. Then, there is a pair (f,Wf ) ∈ F × 2W with
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|Wf | ≤ qf such that Y (f,Wf ) −
∑

w∈Wf
dwf > vf +

∑
w∈Wf

uw. Consider

σ′f (w) = uw+dwf +Y (f,Wf )−
∑

w∈Wf
dwf−

(
vf +

∑
w∈Wf

uw

)
for all w ∈ Wf

and σ′f (w
′) = 0 for all w′ /∈ Wf , and s′w(f) = uw + dwf for all w ∈ Wf

and s′w′(f) is prohibitively high for all w′ /∈ Wf . If this deviation is credible,

then (v, u, µ) cannot be a coalition-proof Nash equilibrium outcome. Hence,

this deviation is not credible because there exists C ⊂ {f} ∪Wf can credibly

further deviate. However, this deviation by C is feasible at the original game

so that (v, u, µ) cannot be a coalition-proof Nash equilibrium outcome. Thus,

a coalition-proof equilibrium outcome is a stable assignment.

Now, let (v, u, µ) be a stable assignment. Consider the following strategy. For

all matched firms f ∈ F and all w ∈ µ(f), σf (w) = sw(f) = uw + dwf and

σf (w
′) = 0 and sw′(f) is prohibitively high for w′ /∈ µ(f). For each single firm,

let its salary offer be zero for all workers, and for each single worker, let her

salary demand be at a prohibitively high level. The matchmaker chooses µ and

gets zero profit. Given the strategy (σ, s), the matchmaker would create a new

match only when a pair (f ′,Wf ′) ∈ F×2W with |Wf ′| ≤ qf ′ provides a positive

profit. However, by the definition of a stable assignment, there is no pair

(f ′′,Wf ′′) ∈ F × 2W with |Wf ′′ | ≤ qf ′′ such that Y (f ′′,Wf ′′)−
∑

w∈Wf ′′
dwf ′′ >

vf ′′ +
∑

w∈Wf ′′
uw. Thus, there is no subset of players who agree to offer a

positive profit to the matchmaker to create a new matching. Therefore, a

stable assignment is supportable by a coalition-proof Nash equilibrium. �

From Example 3 in the previous section, we know that some coalition-proof

Nash equilibria in a general matchmaker game leave positive profits to the

matchmaker, which implies that some coalition-proof Nash outcomes are not

nonwasteful allocations. This implies that in a general matchmaker game,

the outcomes of coalition-proof Nash equilibria are not necessarily stable as-
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signments.7 Thus, using simple strategies refines the set of coalition-proof

Nash equilibria, and this refinement selects socially desirable allocations: non-

wasteful allocations. We conclude that in matchmaker games, restricting the

strategy space to simple ones is socially beneficial.

2.4 Discussion

In this section, we discuss the issues of implementation in matching problems.

We then discuss the relationship between our matchmaker games and the menu

auction games in Bernheim and Whinston (1986).

2.4.1 Implementation

Here we discuss the implementation of popular social choice correspondences

by using our matchmaker games. We then show how our results can be con-

nected with the literature on matching problems without money. Let us first

introduce some notation. A mapping ϕ : Y × D � RF∪W ×M is a social

choice correspondence if ϕ(Y,D) 6= ∅ for all (Y,D) ∈ Y × D. An indi-

vidually rational correspondence ϕIR : Y × D � RF∪W ×M is a social

choice correspondence such that ϕIR(Y,D) ⊂ RF∪W × M is the set of all

individually rational allocations (v, u, µ) for (Y,D). An acceptable corre-

spondence ϕA : Y ×D � RF∪W ×M is a social choice correspondence such

that ϕA(Y,D) ⊂ RF∪W ×M is the set of all acceptable allocations (v, u, µ)

for (Y,D). A stable correspondence ϕS : Y × D � RF∪W ×M is a social

7However, we can say that the resulting matching of a coalition-proof Nash equilibrium
is always efficient even in a general matchmaker game by using results from Bernheim and
Whinston (1986: see Section 4.2).
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choice correspondence such that ϕS(Y,D) ⊂ RF∪W ×M is the set of all stable

assignments (v, u, µ) for (Y,D).

By Theorem 2, we know that the set of Nash equilibrium outcomes and the

set of acceptable assignments are equivalent. Thus, we have the following

implementation result.

Corollary 1. In every many-to-one assignment problem, the acceptable corre-

spondence ϕA : Y×D � RF∪W×M is implemented by the simple matchmaker

game in Nash equilibria.

In the one-to-one matching problem, the acceptable allocations and individual

rational allocations are the same, and there is no difference between simple

and general strategies. Thus, the above corollary implies the following.

Corollary 2. In every one-to-one assignment problem, the individually ra-

tional correspondence ϕIR : Y × D � RF∪W × M is implemented by the

matchmaker game in Nash equilibria.

Theorem 3 directly implies the following.

Corollary 3. In every many-to-one assignment problem, if workers are gross

substitutes for each firm, then the stable correspondence ϕS : Y×D � RF∪W×

M is implemented by the simple matchmaker game in coalition-proof Nash

equilibria.

Without the gross substitutability assumption, ϕS may be empty valued. This

is why we require the assumption. Note that Corollaries 1 and 2 are not

affected by the presence of quotas. Hayashi and Sakai (2009) characterize the
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stable correspondence by Nash implementation. Note that their results cannot

treat the one-to-one problem or a many-to-one problem with quotas.

Finally, we connect our results with the implementation literature in a match-

ing problem without money: a many-to-one assignment problem when salaries

between each firm and worker are fixed exogenously.8 Roth (1985) and Shin

and Suh (1996) show that under any stable mechanism, the individually ra-

tional (acceptable matching, in our definition) correspondence and the stable

correspondence are implemented in Nash and strong Nash equilibria, respec-

tively.9

Our simple matchmaker game can generate similar results. Suppose for each

firm f and each worker w, the salary has been fixed at xfw. Then if firm f

hires Wf ⊆ W workers, the payoff for f is Y (f,Wf )−
∑

w∈Wf
xfw. Similarly,

if worker w works for firm f , the payoff for w would be xfw − dwf . Firms

without any workers pay no salary, and unemployed workers receive no salary,

so that being unmatched would still result in a payoff of 0. Under this setting,

it is easy to see that the definitions in Section 2.1 can be expressed in similar

fashion in models of matching without money. Since salaries are fixed here, a

firm’s offer and a worker’s demand are considered as an additional monetary

transfer. The matchmaker takes the difference between these two bids. For

simplicity, we assume preference orderings are strict. Firm f ’s preference �f

is a linear ordering over subsets of workers Sf , while worker w’s preference

�w is a linear ordering over firms F . An NTU matching problem is a list

{F,W, (�f )f∈F , (�w)w∈W}. A many-to-one matching µ : W ∪ F � W ∪ F

is a mapping such that (i) µ (f) ⊆ W and µ (w) ∈ F ∪ {∅} for all f ∈ F and

8See, say, Chapters 5 and 6.1 in Roth and Sotomayor (1990).
9Sonmez (1997) generalizes these results to the class of all efficient and individually

rational mechanisms. The results by Suh and Shin (1996) and Sonmez (1997) are on one-
to-one matching problems.
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for all w ∈ W ; (ii) |µ (f)| ≤ qf for all f ∈ F ; (iii) w ∈ µ (f) if f = µ (w);

(iv) µ (w) = f for all w ∈ µ (f). A matching µ is individually rational if

µ(f) �f ∅ for all f ∈ F and µ(w) �w ∅ for all w ∈ W . A matching µ is

acceptable if it is individually rational and µ(f) �f C for all C $ µ (f). A

matching µ is stable if there is no pair (f,Wf ) ∈ F × 2W with |Wf | ≤ qf such

that Wf �f µ(f) and f �w µ(w) for all w ∈ Wf .
10 Let Chf : 2W → Sf be firm

f ’s choice function such that Chf (C) = {S ⊆ C : S ∈ Sf and S �f S ′ for all

S ′ ⊆ C with S ′ ∈ Sf}. Firms’ preferences are substitutable if for all f ∈ F ,

all C ∈ 2W , and all w ∈ Chf (C), Chf (C)\{w} ⊆ Chf (C\{w}) holds.

We restrict available monetary transfers by firms and workers to the set

{−L, 0, K}, where L > maxw∈W maxf∈F (xfw − dwf ) and K > maxf∈F

maxWf⊆W (Y (f,Wf )−
∑

w∈Wf
xfw). Each firm’s offer will be chosen from the

set {−L, 0}, since for any firm K is an amount of money that is not worthwhile

to pay to any worker. Similarly, each worker’s request will be chosen from

{0, K}, since for any worker −L is an amount of money that is not worthwhile

to request from any firm. We assume the following tie-breaking rule: the

matchmaker matches up a pair of a firm and a worker if she is indifferent

between matching them up or not.11 What remains is exactly the same as

a simple matchmaker game. Call this game a simple NTU matchmaker

game. We can show the following result.

Theorem 4. In every many-to-one matching problem without transfer, if

firms’ preferences are substitutable, then the set of Nash equilibrium matchings

in the simple NTU matchmaker game is equivalent to the set of acceptable

10With strict preferences, this definition is the same as requiring no (f,Wf ) such that
firm f and all workers in Wf are weakly better off and at least one of them is strictly better
off.

11This tie-breaking rule is sufficient to pin down the Nash equilibrium under strict pref-
erences. However, if indifference in preferences is allowed, more careful treatment is needed
in the NTU setting. See Ko (2011) for further discussion.
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matchings, and the set of coalition-proof Nash equilibrium matchings in the

simple NTU matchmaker game is equivalent to the set of stable matchings.

Proof. First, we show that a Nash equilibrium matching is individually ra-

tional and acceptable. A Nash equilibrium matching is individually rational

because, by construction, every worker will not be matched up with a firm if

she requests K > 0 from it, and every firm will not be matched with a worker

if it offers −L < 0 to her. This implies that in every Nash equilibrium the

matchmaker earns zero profit. We can show that for every Nash equilibrium

((σ, s), µ), the matching µ is an acceptable matching. Suppose not. Then,

there exist a firm f and a subset of workers C $ µ (f) such that C �f µ (f).

However, firm f can improve its payoff by switching its strategy to σ′f such

that σ′f (w) = 0 if w ∈ C and σ′f (w) = −L if w 6∈ C, which is a contradiction.

Second, an acceptable matching can be implemented by a Nash equilibrium.

Consider an acceptable matching µ. For each matched firm f , consider for

all w ∈ µ (f), σf (w) = sw (f) = 0, and for all w′ 6∈ µ (f), σf (w′) = −L and

sw′ (f) = K. Given the tie-breaking rule by the matchmaker, the matching µ

is chosen given the strategy profile (σ, s). This is a Nash equilibrium because

all unmatched pairs would never be matched up by choosing other strategies.

Third, we show that a coalition-proof Nash equilibrium matching is stable.

Let (σ, s, µ) be a coalition-proof Nash equilibrium. Suppose it is not a stable

matching. Then there is a pair (f,Wf ) ∈ F × 2W with |Wf | ≤ qf such that

Wf �f µ(f) and f �w µ(w) for all w ∈ Wf (strict preference). Consider a

deviation by (f,Wf ) such that (i) σ′f (w) = 0 for all w ∈ Wf and σ′f (w) = −L,

otherwise, and (ii) for all w ∈ Wf , s
′
w (f) = 0 and s′w(f ′) = K for f ′ 6= f . Since

the matchmaker would still make zero profit by matching (f,Wf ) and no player

in {f}∪Wf can be matched with outsiders, the matchmaker matches them up
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by the tie-breaking rule. If it is credible deviation, then ((σ, s), µ) cannot be a

coalition-proof Nash equilibrium. Hence, it is not a credible deviation because

there is a coalition C ⊂ {f} ∪Wf that can credibly further deviate. However,

this deviation by C is feasible at the original game so that (σ, s, µ) cannot be

a coalition-proof Nash equilibrium.

Finally, we show that a stable matching can be implemented by a coalition-

proof Nash equilibrium. Let µ be a stable matching. Consider the following

strategy. For each matched firm f , consider a strategy profile (σ, s) such that

σf (w) = sw (f) = 0 if and only if w ∈ µ (f). Given the tie-breaking rule,

matching µ is chosen by the matchmaker. Since this is a stable matching, it

is immune to coalitional deviations, which implies that (σ, s, µ) is a coalition-

proof Nash equilibrium.�

2.4.2 Relationship with Menu Auction Games

A menu auction game is a complete information multi-principal-one-agent

game, introduced by Bernheim and Whinston (1986). The agent is going

to choose an action, which will affect her own payoff as well as the payoffs

to principals. Principals can affect the agent’s decision by offering a menu of

side payments: a side payment schedule for each possible action. The agent

maximizes the sum of her own utility and side payments from the principals

when choosing an action. We can consider our matchmaker’s problem as a

menu auction game by interpreting a matching µ as an action, and letting the

matchmaker be intrinsically indifferent over µ (except for side payments).

A menu auction problem Γ ≡
{
A, (Vk)k∈N∪{0}

}
is described by (N + 2) tu-

ples where A is the set of actions, Vk : A→ R is k’s (quasi-linear) payoff func-

tion, 0 denotes the agent, and N is the set of principals. In the extensive form
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of the game, the principals simultaneously offer contingent payment schedules

to the agent, who subsequently chooses an action that maximizes her total

payoff. A strategy for each principal k ∈ N is a function Tk : A → [bk,∞),

which is a monetary reward (or punishment) of Tk(a) to the agent for se-

lecting a, where bk is the lower bound for payment from principal k. For

each action a, principal k receives a net payoff: Uk(a, T ) = Vk(a) − Tk(a),

where T = (Tk′)k′∈N is a strategy profile. The set of all possible strategies

for principal k is denoted by Tk. The agent chooses an action that maxi-

mizes her total payoff: the agent selects an action in the set M (T ), where

M (T ) ≡ argmax
a∈A

[
V0(a) +

∑
k∈N Tk (a)

]
.

A menu auction game (Γ, T ) is a pair consisting of a menu auction problem

Γ and a set of strategies for all principals T =(Tk)k∈N . This menu auction

game is merely a game among principals, although, strictly speaking, a tie-

breaking rule among M(T ) needs to be specified for the agent.

Let T Ik ≡ {Tk ∈ Tk : Tk(a) = Tk(a
′) for all a, a′ ∈ A with Vk(a) = Vk(a

′)} be

the restricted domain of strategies that requires principal k must bid the same

amount for all actions among which principal k is indifferent. If all principals’

strategy spaces belong to this domain, then we say that the principals’ strategy

spaces belong to the set of strategy spaces T I =
(
T Ik
)
k∈N .12

An outcome of a menu auction game (Γ, T ) is (a, T ). An outcome (a∗, T ∗)

is a Nash equilibrium if a∗ ∈ M (T ∗) and there is no k ∈ N such that

Tk : A→ [bk,∞) and a ∈ M
(
Tk, T

∗
−k
)

such that Uk
(
a, Tk, T

∗
−k
)
> Uk (a∗, T ∗).

However, the set of Nash equilibria in a menu auction game is quite large

owing to coordination problems. So, Bernheim and Whinston (1986) propose

12Although this restriction is needed for the formal statement of Proposition 1, the set
of Nash equilibrium payoffs with the restriction is the same as the set of Nash equilibrium
payoffs without the restriction.
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a refinement of Nash equilibrium by using what they call “truthful strategies.”

A strategy Tk is truthful relative to ā if and only if for all a ∈ A either

(i) Uk (a, T ) = Uk (ā, T ) or (ii) Uk (a, T ) < Uk (ā, T ) and Tk (a) = bk. Clearly,

truthful strategies belong to the domain T I . An outcome (a∗, T ∗) is a truthful

Nash equilibrium (TNE) if and only if it is a Nash equilibrium, and T ∗k is

truthful relative to a∗ for all k ∈ N .

It is clear that if workers are objects (with no preferences), and if firms are

bidding on workers, then we can easily formulate a combinatorial auction

game by this menu auction.13 In the following, we show that our general

matchmaker game can also be embedded in the class of menu auction games

by reinterpreting players’ strategies. In a general matchmaker game, firm f ’s

strategy σ̃f : Sf → R+ is truthful relative to Wf if and only if for all S ∈ Sf

either (i) Y (f, S) − σ̃f (S) = Y (f,Wf ) − σ̃f (Wf ) or (ii) Y (f, S) − σ̃f (S) <

Y (f,Wf )− σ̃f (Wf ) and σ̃f (S) = 0.

Proposition 2. A general matchmaker game can be embedded in the class of

menu auction games with strategy space T I . A strategy in a general match-

maker game is truthful if and only if the corresponding strategy is a truthful

strategy in the corresponding menu auction game.

Proof. Let the matchmaker be the agent, and firms and workers be principals.

LetM be the set of actions A. Firm f receives monetary payoff Vf :M→ R

where Vf (µ) ≡ Y (f, µ(f)), worker w receives monetary payoff Vw : M → R

with Vw(µ) ≡ −dwµ(w), and the matchmaker’s (denoted by 0) monetary payoff

is V0(µ) = 0 for all µ ∈M.14

13Milgrom (2004) discusses menu auction games in the context of a combinatorial auction
problem.

14We normalize V0 (µ) = 0 because the matchmaker has no preferences over the matchings
themselves.
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Under T I , principals are able to choose any contribution menu over potential

partners but not over the entire matching. A strategy for firm f that is

generated from σf is a function Tf : M → R+, where Tf (µ) ≡ σf (µ(f)). A

strategy for worker w that is generated from sw is a function Tw :M→ R−,

where Tw (µ) ≡ −sw (µ (w)). We can set a lower bound for the value for Tw(µ)

without losing anything, since worker w would not be matched anyway, if

Tw(µ) < −Y (f, µ(f)) holds. Thus, we assume that for each k ∈ N = W ∪ F ,

there is a lower bound bk: Tk(µ) ≥ bk that must be satisfied for all k ∈

N . Thus, a matchmaker game can be represented as a menu auction game.

Clearly, a truthful strategy σ̃f or sw trivially can be extended to a truthful

strategy Tk, and vice versa. This completes the proof.�

Remark. Note that in a one-to-one assignment problem, the general strategy

and the simple strategy are equivalent. Thus, Proposition 2 together with

Theorem 1 implies that the agent earns zero rent in every Nash equilibrium in

a menu auction game that is generated from a matchmaker game in a one-to-

one assignment problem.

Laussel and Le Breton (2001) define a menu auction game as possessing the

no-rent property if and only if all truthful Nash equilibrium (TNE) outcomes

leave no profit to the agent. They prove that if a cooperative game from a menu

auction game Γ is convex,15 then Γ possesses the no-rent property. However,

although convexity is satisfied in interesting classes of menu auction games

such as the public good provision game, in our assignment problem convexity

is clearly not satisfied.16 Moreover, the following example shows that even if

15A system (v(S))S⊆N is convex if and only if for all S, T ⊆ N , v(S ∪ T ) + v(S ∩ T ) ≥
v(S) + v(T ) holds.

16For example, imagine N = {f1, w1, w2} with y11 = y12 = 1. Letting S = {f1, w1} and
T = {f1, w2}, we can see a violation of convexity.
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convexity holds, there exists a Nash equilibrium such that the agent earns a

positive profit.

Example 4 (discrete public good provision). Consider a public good pro-

vision problem with two principals (consumers) N = {1, 2} and an agent (the

government) with two actions A = {a1, a2}. Actions a2 and a1 are regarded

as provision and no provision of a discrete public good. Consumers prefer a2

to a1 but a2 is more costly for the government: Vi (a1) = 0 and Vi (a2) = 5

for i = 1, 2 and V0 (a1) = 0 and V0 (a2) = −1 (public good provision cost

is 1). This creates a transferrable utility cooperative game (N, v) such that

v({1, 2}) = 9, v({1}) = v({2}) = 4, and v(∅) = 0, where v(S) is the value

of coalition S ⊆ N . This is a convex game, and Le Breton-Laussel’s no-rent

property holds. Consider T1 (a1) = 2, T1 (a2) = T2 (a1) = 0, and T2 (a2) = 3.

Then (a2, T ) is a Nash equilibrium where the agent earns a positive profit.

However, the set of truthful Nash equilibria is {(a2, T̃ ) : T̃1 (a1) = T̃2 (a1) = 0

and T̃1 (a2) + T̃2 (a2) = 1} since the game satisfies the no-rent property.

In contrast, in our one-to-one matchmaker game, the matchmaker always earns

zero profit not only in all truthful Nash equilibria but also in all Nash equilibria.

Since the simple strategy and the general strategy are the same in the one-

to-one matchmaker game, Theorem 1 provides another interesting class of

menu auction games that possess the no-rent property. Thus, we can extend

Theorem 3 in the domain of the one-to-one matching problem.17 However, we

cannot obtain the same result by Proposition 2 (and Example 3).

17Bernheim and Whinston (1986) show that TNE and CPNE are equivalent in a utility
space. Under the no-rent property, Laussel and Le Breton (2001) and Konishi, Le Breton,
and Weber (1999) show the equivalences of CPNE and the core of underlying TU game,
and CPNE and SNE, respectively.
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Theorem 3’. Suppose that the matchmaker is allowed to have preferences

over matchings. Then, in every one-to-one assignment problem, the sets of

truthful Nash equilibrium outcomes, strong Nash equilibrium outcomes, and

coalition-proof Nash equilibrium outcomes in the matchmaker game, and the

set of stable assignments (the core) are all equivalent.

2.5 Proof of Theorem 1

In this section, we prove Theorem 1. First, we introduce some notation.

For all S ⊆ N , let C(S, µ) ≡ {k ∈ S : µ(k) ∈ S and µ(k) 6= ∅}. That

is, C(S, µ) is the set of members of S who have partners in S under

matching µ (coupled). Given a strategy profile (σ, s) ∈ RF×W × RW×F ,

let R(S, σ, s, µ) ≡
∑

f∈C(S,µ)∩F (σf (µ(f)) − sµ(f)(f)) be the profit (rent)

generated in S under µ. Let R∗(S, σ, s) ≡ maxµ∈MR(S, σ, s, µ) and

A∗(S, σ, s) ≡ argmaxµ∈MR(S, σ, s, µ) be the maximum profit generated

in coalition S given firms’ strategies σ and workers’ strategies s, and its

associated matching µ, respectively. We can characterize Nash equilibrium in

an interesting way.

Proposition 3. In every simple matchmaker game, in every Nash equilibrium

(σ, s, µ), (1A) for all f ∈ F with µ(f) = ∅, R∗(N, σ, s) = R(N, σ, s, µ) =

R∗(N\{f}, σ, s); (1B) for all f ∈ F with µ(f) 6= ∅, and all w ∈ µ(f), there

exists µ′ such that (i) µ′ (f) j µ(f)\ {w}, and (ii) R∗(N, σ, s) = R(N, σ, s, µ′);

and (2) for all w ∈ W , there exists µ′′ such that (i) µ′′ (w) = ∅, and (ii)

R∗(N, σ, s) = R(N, σ, s, µ′′) = R∗(N\{w}, σ, s).

Proof. Since (2) is a special case of (1), we focus on case (1).
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Case (1A) is trivial, since we can use the same matching µ to achieve the

same profit. Thus, we will work on case (1B). Clearly, if σf (w) = sw (f) for

all w ∈ µ (f), then we can find a µ′ that satisfies all three conditions: the

matchmaker makes no money by matching f with workers, so she might as

well cancel the matching (let µ′(f) = ∅). Thus, let us focus on µ (f) ∈ W and

σf (w) > sw (f) for some w ∈ µ (f) for the rest of the proof.

Consider σ′f (w) = σf (w) − ε, σ′f (w′) = max{σf (w′) − ε, 0} for all w′ 6∈ µ (f)

and σ′f (w′′) = σf (w′′) for all w′′ ∈ µ (f) \ {w}. Let µ′ ∈ A∗(N, (σ′f , σ−f ), s).

By construction, R(N, (σ′f , σ−f ), s, µ
′) = R (N, σ, s, µ′) − ε |µ′ (f) \µ (f)| and

R(N, (σ′f , σ−f ), s, µ) = R (N, σ, s, µ) − ε. By optimalities of µ and µ′, we

have R (N, σ, s, µ) ≥ R (N, σ, s, µ′) and R(N, σ′f , σ−f , µ
′) ≥ R(N, (σ′f , σ−f ), µ).

Since |µ′ (f) \µ (f)| > 1 leads to a contradiction, either |µ′ (f) \µ (f)| =

1 or |µ′ (f) \µ (f)| = 0. Suppose |µ′ (f) \µ (f)| = 1. This implies

R(N, (σ′f , σ−f ), s, µ
′) = R(N, (σ′f , σ−f ), s, µ). However, if this is the case,

then firm f can improve its payoff by ε > 0 by choosing σ′′f such that

σ′′f (w) = σf (w) − ε, σ′′f (w′) = 0 for all w′ 6∈ µ (f) and σ′′f (w′′) = σf (w′′)

for all w′′ 6∈ µ (f) \ {w} as the matchmaker is forced to choose µ. This is a

contradiction. Hence, we have |µ′ (f) \µ (f)| = 0 or µ′ (f) j µ(f). Hence,

R (N, σ, s, µ′) = R(N, (σ′f , σ−f ), s, µ
′).

(i) Suppose w ∈ µ′ (f). By construction, R ({f, µ′ (f)} , σ, s, µ′) > R({f,

µ′ (f)}, (σ′f , σ−f ), s, µ′) and R(N\ {f, µ′ (f)} , σ, s, µ′) = R(N\{f, µ′ (f)}, σ′f ,

σ−f , s, µ
′). Since R (N, σ, s, µ′) = R ({f, µ′ (f)} , σ, s, µ′) + R(N\ {f, µ′ (f)} ,

σ, s, µ′) and R(N, (σ′f , σ−f ), s, µ
′) = R({f, µ′ (f)} , (σ′f , σ−f ), s, µ′) + R(N\{f,

µ′ (f)}, (σ′f , σ−f ), s, µ′), we have R (N, σ, s, µ′) > R(N, (σ′f , σ−f ), s, µ
′). This is

a contradiction. Thus, µ′ (f) j µ(f)\ {w}.
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(ii) Suppose not. Then R∗(N, σ, s) > R(N, σ, s, µ′). Consider δ ≡ R∗(N, σ, s)−

R(N, σ, s, µ′) > 0. Since R(N, σ, s, µ′) = R(N, (σ′f , σ−f ), s, µ
′), firm f can

improve its payoff by ε < δ by choosing σ′′′f such that σ′′′f (w) = σf (w) − ε,

σ′′′f (w′) = 0 for all w′ 6∈ µ (f) and σ′′′f (w′′) = σf (w′′) for all w′′ 6∈ µ (f) \ {w}.

This is a contradiction.�

Although Theorem 1 deals with a simple matchmaker game in a many-to-one

matching problem, it is more convenient to start with a one-to-one matching

problem, since the result of a one-to-one matching problem can be extended

to the case of a many-to-one matching problem. Let qf = 1 for all f ∈ F . In

the one-to-one matching problem, Proposition 3 becomes the following simple

statement.

Corollary 4. In every one-to-one matchmaker game, in every Nash equilib-

rium (σ, s, µ), R∗(N, σ, s) = R∗(N\{k}, σ, s) for all k ∈ N .

Let Sk = {k′ ∈ N\{k} : µ(k′) 6= ∅}. This implies that R∗(Sk, σ, s) =

R(Sk, σ, s, µ) = R∗(N\{k}, σ, s). Then, Corollary 4 says that in every Nash

equilibrium (σ, s, µ), for all k ∈ N , there exists Sk ⊆ N\{k} such that the

following equation holds:

R∗(N, σ, s) = R∗(Sk, σ, s).
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This system of Nash equations characterizes a Nash equilibrium (σ, s, µ)

of the one-to-one matchmaker game.18 The following is the first main result

of this section.

Proposition 4. In every one-to-one matchmaker game, the matchmaker’s

profit is zero in every Nash equilibrium.

Proof. We will prove the theorem by contradiction. Assume that there is

a Nash equilibrium allocation (σ, s, µ) with a positive profit (R(N, σ, s, µ) =

R∗(N, σ, s) > 0), and we will reach a contradiction.

First, note that R(N, σ, s, µ) =
∑

f∈C(N,µ)∩F R({f, µ(f)}, σ, s, µ). Pick up a

pair (f1, w1) ⊂ N that generates the highest positive profit under (σ, s) and µ:

R({f1, w1}, σ, s, µ) > 0. (∗)

The relevant Nash equations for f1 and w1 can be written as

∑
f∈C(Sf1

,µ′)∩F

R({f, µ′(f)}, σ, s, µ′) =
∑

f∈C(N,µ)∩F

R({f, µ(f)}, σ, s, µ),

∑
f∈C(Sw1 ,µ

′′)∩F

R({f, µ′′(f)}, σ, s, µ′′) =
∑

f∈C(N,µ)∩F

R({f, µ(f)}, σ, s, µ)

where µ′ ∈ A∗ (Sf1 , σ, s) and µ′′ ∈ A∗ (Sw1 , σ, s).

Our first lemma is the following.

18Our system of Nash equations is inspired by the system of fundamental equations given
by Laussel and Le Breton (2001). However, these two systems of equations are very differ-
ent from each other. Laussel and Le Breton’s (2001) system of fundamental equations is
constructed from each coalition’s value (the maximal value of the sum of the payoffs of the
agent and the principals in the coalition), and all truthful equilibrium payoff vectors satisfy
the same system of equations. In contrast, our system of Nash equations is constructed from
the matchmaker’s (the agent’s) total profit for each coalition when a Nash strategy profile
is picked.
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Lemma 1. We have w1 ∈ Sf1 and R({µ′(w1), w1}, σ, s, µ′) > 0. Similarly,

f1 ∈ Sw1 and R({f1, µ
′′(f1)}, σ, s, µ′′) > 0.

Proof of Lemma 1. We will prove the first half (the second half follows by

a symmetric argument). Suppose w1 /∈ Sf1 or µ′(w1) = ∅. Then, we can con-

struct a new matching µ∗ such that µ∗(k) = µ′(k) for all k ∈ Sf1 , µ∗(f1) = w1,

and µ∗(k) = ∅ for all k ∈ N\ (Sf1 ∪ {w1, f1}). Then, we have R (N, σ, s, µ∗) =

R (Sf1 , σ, s, µ
′) + R ({w1, f1} , σ, s, µ) > R (Sf1 , σ, s, µ

′) = R (N, σ, s, µ). Note

that the last equality comes from the Nash equation. This is in contradiction

with µ ∈ A∗(N, σ, s).

Now, suppose R({w1, µ
′(w1)}, σ, s, µ′) = 0 (if profit is negative, the match-

maker would rather leave them unmatched). Then, we have R (Sf1 , σ, s, µ
′) =

R (Sf1\ {w1, µ
′(w1)} , σ, s, µ′)+R({w1, µ

′(w1)}, σ, s, µ′) = R(Sf1\ {w1, µ
′(w1)} ,

σ, s, µ′). Then we could construct µ∗ such that µ∗(k) = µ′(k) for all k ∈ Sf1 ,

µ∗(f1) = w1, and µ∗(k) = ∅ for all k ∈ N\ (Sf1 ∪ {w1, µ
′(w1)}). Then we

have R (N, σ, s, µ∗) = R (Sf1\ {w1, µ
′(w1)} , σ, s, µ′) + R ({w1, f1} , σ, s, µ′) =

R (Sf1 , σ, s, µ
′) + R({w1, f1}, σ, s, µ) > R (N, σ, s, µ). This violates µ ∈

A∗(N, σ, s).�

Recall µ′ and µ′′ are matchings that achieve values R∗ (Sf1 , σ, s) and

R∗ (Sw1 , σ, s), respectively. By using Lemma 1, we will construct chains

of pairs from matchings µ, µ′, and µ′′. Let f`+1 ≡ µ′ (w`) and w`+1 =

µ(f`+1) for ` = 1, 2, ...L, where L is such that µ(f`) ∈ C(N,µ) ∩ W and

µ′(w`) ∈ C(N,µ) ∩ F for all ` < L and µ(fL) /∈ C(N,µ) ∩ W . Similarly,

let w̃`+1 ≡ µ′′(f̃`) and f̃`+1 = µ(w̃`+1) for ` = 1, 2, ..., L̃, where L̃ is such

that µ(w̃`) ∈ C(N,µ) ∩ F and µ′(f̃`) ∈ C(N,µ) ∩ W for all ` < L̃ and

µ(w̃L̃) /∈ C(N,µ) ∩ F . The following is our key lemma.
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Lemma 2. Either
∑L

`=1R ({w`, f`} , σ, s, µ) >
∑L−1

`=1 R ({w`, f`+1} , σ, s, µ′) or∑L̃
`=1R({w̃`, f̃`}, σ, s, µ) >

∑L̃−1
`=1 R({w̃`+1, f̃`}, σ, s, µ′′) holds.

Proof of Lemma 2. Optimality of µ implies:
∑L

`=1R ({w`, f`} , σ, s, µ) ≥∑L−1
`=1 R ({w`, f`+1} , σ, s, µ′) and

∑L̃
`=1R({w̃`, f̃`}, σ, s, µ) ≥

∑L̃−1
`=1 R({w̃`+1,

f̃`}, σ, s, µ′′). Thus, suppose to the contrary that

L∑
`=1

R ({w`, f`} , σ, s, µ) =
L−1∑
`=1

R ({w`, f`+1} , σ, s, µ′) ,

L̃∑
`=1

R({w̃`, f̃`}, σ, s, µ) =
L̃−1∑
`=1

R({w̃`+1, f̃`}, σ, s, µ′′).
(∗∗)

There are two cases: (Case 1)
(
∪L−1
`=1 {w`, f`+1}

)
∩ (∪L̃−1

`=1 {w̃`+1, f̃`}) = ∅, and

(Case 2)
(
∪L−1
`=1 {w`, f`+1}

)
∩ (∪L̃−1

`=1 {w̃`+1, f̃`}) 6= ∅. We will analyze the two

cases by noting {w1, f1} = {w̃1, f̃1}. Let us start with the simpler case.

(Case 1) Suppose
(
∪L−1
`=1 {w`, f`+1}

)
∩ (∪L̃−1

`=1 {w̃`+1, f̃`}) = ∅. See Figure 3.

Summing the two equations in (∗∗), we have

L−1∑
`=1

R ({w`, f`+1} , σ, s, µ′) +
L̃−1∑
`=1

R({w̃`+1, f̃`}, σ, s, µ′′)

=
L∑
`=1

R ({w`, f`} , σ, s, µ) +
L̃∑
`=1

R({w̃`, f̃`}, σ, s, µ)

=

 L∑
`=1

R ({w`, f`} , σ, s, µ) +
L̃∑
`=2

R({w̃`, f̃`}, σ, s, µ)


+R({w1, f1}, σ, s, µ)

where the last equality comes from {w̃1, f̃1} = {w1, f1}. Let A ≡(
∪L−1
`=1 {w`, f`+1}

)
∩ (∪L̃−1

`=1 {w̃`+1, f̃`}). There is no double counting of players
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Figure 2.3: Illustration of (Case 1). Solid, dashed, and dotted lines represent
matchings µ, µ′, and µ′′, respectively. Arrows represent µ∗.

(a) w3 = w̃3, f3 = f̃3. (b) Construct B1. (c) Remove B1.

Figure 2.4: Illustration of (Case 2) when `′ = ¯̀= 3. Solid, dashed, and dotted
lines represent matchings µ, µ′, and µ′′, respectively. Arrows represent µ∗.

in A. Let µ∗ ∈ M be such that µ∗(w`) = f`+1 for ` = 1, ..., L − 1 and

µ∗(f̃`) = w̃`+1 for ` = 1, ..., L̃ − 1. Replacing µ by µ∗, the total value

in A increases by R({w1, f1}, σ, s, µ). By the prevailing assumption (∗),

R({w1, f1}, σ, s, µ) > 0. This contradicts the optimality of µ.
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(Case 2)
(
∪L−1
`=1 {w`, f`+1}

)
∩ (∪L̃−1

`=1 {w̃`+1, f̃`}) 6= ∅. Let ¯̀ be such that for

all 1 ≤ ` < ¯̀, w̃`, f̃` /∈ ∪L`=1 {w`, f`}, and w̃¯̀, f̃¯̀ ∈ ∪L`=1 {w`, f`}. Hence,

{w̃¯̀, f̃¯̀} = {w`′ , f`′} for some `′ ∈ {2, ..., L}. See Figure 4(a) for the case when

`′ = ¯̀ = 3. Denote the set of players B1 ≡ (∪`′`=1 {w`, f`}) ∪ (∪¯̀−1
`=2{w̃`, f̃`})

as in Figure 4(b). There is no double counting in B1. Now, consider two

matchings in B1: µ and µ∗ such that µ∗(w`) = µ′(w`) for ` = 1, ..., `′ − 1,

and µ∗(f̃`) = µ′′(f̃`) for ` = 1, ..., ¯̀− 1 (note f̃1 = f1 and w̃¯̀ = w`′). We now

compare the values of these two. First,

R(B1, σ, s, µ
∗)

=
`′−1∑
`=1

R ({w`, f`+1} , σ, s, µ′) +

¯̀−1∑
`=1

R({w̃`+1, f̃`}, σ, s, µ′′)

=

L−1∑
`=1

R ({w`, f`+1} , σ, s, µ′) +
L̃−1∑
`=1

R({w̃`+1, f̃`}, σ, s, µ′′)


−

L−1∑
`=`′

R ({w`, f`+1} , σ, s, µ′) +
L̃−1∑
`=¯̀

R({w̃`+1, f̃`}, σ, s, µ′′)


and

R(B1, σ, s, µ)

=
`′∑
`=1

R ({w`, f`} , σ, s, µ) +

¯̀−1∑
`=2

R({w̃`, f̃`}, σ, s, µ)

=

 L∑
`=1

R ({w`, f`} , σ, s, µ) +
L̃∑
`=1

R({w̃`, f̃`}, σ, s, µ)


−

 L∑
`=`′

R ({w`, f`} , σ, s, µ) +
L̃∑
`=¯̀

R({w̃`, f̃`}, σ, s, µ)


− [R({w1, f1}, σ, s, µ)−R ({w`′ , f`′} , σ, s, µ)]
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=

L−1∑
`=1

R ({w`, f`+1} , σ, s, µ′) +
L̃−1∑
`=1

R({w̃`+1, f̃`}, σ, s, µ′′)


−

 L∑
`=`′

R ({w`, f`} , σ, s, µ) +
L̃∑
`=¯̀

R({w̃`, f̃`}, σ, s, µ)


− [R({w1, f1}, (σ, s), µ)−R ({w`′ , f`′} , (σ, s), µ)]

where the last equality follows from (∗∗). Thus, we have

R(B1, σ, s, µ
∗)−R(B1, σ, s, µ)

= R({w1, f1}, σ, s, µ)−R ({w`′ , f`′} , σ, s, µ)

+

[
L∑
`=`′

R ({w`, f`} , σ, s, µ)−
L−1∑
`=`′

R ({w`, f`+1} , σ, s, µ′)

]

+

 L̃∑
`=¯̀

R({w̃`, f̃`}, σ, s, µ)−
L̃−1∑
`=¯̀

R({w̃`+1, f̃`}, σ, s, µ′′)

 .
Note that the contents in both brackets must be nonnegative since µ max-

imizes the total value in N . Since {w1, f1} generates the highest profit un-

der (σ, s) and µ, R({w1, f1}, σ, s, µ) ≥ R ({w`′ , f`′} , σ, s, µ) must hold. Thus,

R(B1, σ, s, µ
∗) ≥ R(B1, σ, s, µ) must hold. If R(B1, σ, s, µ

∗) > R(B1, σ, s, µ),

we have a contradiction, so assume that R(B1, σ, s, µ
∗) = R(B1, σ, s, µ). For

this to happen, the following three conditions must hold:

(i) R({w1, f1}, σ, s, µ) = R ({w`′ , f`′} , σ, s, µ) .

(ii)
∑L

`=`′ R ({w`, f`} , σ, s, µ) =
∑L−1

`=`′ R ({w`, f`+1} , σ, s, µ′) .

(iii)
∑L̃

`=¯̀R({w̃`, f̃`}, σ, s, µ) =
∑L̃−1

`=¯̀ R({w̃`+1, f̃`}, σ, s, µ′′).

Recall that {w`′ , f`′} = {w̃¯̀, f̃¯̀}. Rename w`, f`, w̃`, f̃`, L, and L̃ as w`−`′+1,

f`−`′+1, w̃`−¯̀+1, f̃`−¯̀+1, L − `′ + 1, and L̃ − ¯̀ + 1, respectively. Then, we
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again have exactly the same problem as before:
∑L

`=1R ({w`, f`} , σ, s, µ) =∑L−1
`=1 R ({w`, f`+1} , σ, s, µ′) and

∑L̃
`=1 R({w̃`, f̃`}, σ, s, µ) =

∑L̃−1
`=1 R({w̃`+1,

f̃`}, σ, s, µ′′) as in Fig. 4(c).

If (Case 1) applies, then we have a contradiction. If (Case 2) applies, then

we again find {w`′ , f`′} = {w̃`, f̃`}, and we can again find a cycle set B2. If

the cycle achieves a strict improvement, we reach a contradiction. So, assum-

ing equalities, firms and workers that remain after taking B2 out still satisfy

the above three conditions. Applying this procedure repeatedly, eventually,

(Case 1) applies (by a finite number of players). Hence, we conclude that∑L
`=1R ({w`, f`} , σ, s, µ) >

∑L−1
`=1 R ({w`, f`+1} , σ, s, µ′) or

∑L̃
`=1R({w̃`, f̃`},

σ, s, µ) >
∑L̃−1

`=1 R({w̃`+1, f̃`}, σ, s, µ′′) holds.�

The last part of the proof of Proposition 4. Now we will com-

plete the proof of Proposition 4. Suppose, without loss of generality, that∑L
`=1 R({w`, f`} , σ, s, µ) >

∑L−1
`=1 R({w`, f`+1} , σ, s, µ′) holds. There are two

possibilities: (1) Sf1 = ∪L−1
`=1 {w`, f`+1}, or (2) Sf1 % ∪L−1

`=1 {w`, f`+1}. In the

first case, R(Sf1 , σ, s, µ
′) < R(N, σ, s, µ). This contradicts the Nash equation.

In the second case, the new matching created from µ and µ′ is broken in the

middle. There are two subcases: (i) µ(fL) = ∅, and (ii) µ′(wL) = ∅. In either

subcase, R(N\
∑L

`=1 {w`, f`} , σ, s, µ) = R(N\
∑L

`=1 {w`, f`} , σ, s, µ′).19 This

again implies R(Sf1 , σ, s, µ
′) < R(N, σ, s, µ). Hence, assumption (∗) cannot

be true. Thus, no pair can generate a positive profit.�

The proof of Proposition 4 utilizes only Corollary 4 and the matchmaker’s

profit-maximizing behavior given the system of profit on each pair of firms

and workers (generated from σ and s). As the Nash equations apply to each

position instead of each firm, we can extend our Proposition 3 to the simple

19This is a slight abuse of notation: in subcase (i), wL does not exist, since fL is single.
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matchmaker game in the many-to-one assignment problem. Let us separate

firm f into qf positions f ′ =
{
f ′1, . . . , f

′
qf

}
where each position offers the

same wages. Denote F ′ ≡
⋃
f∈F

{
f ′1, . . . , f

′
qf

}
as the set of positions (decom-

posed firms). Then, we can generate a one-to-one matching of positions and

workers. Let µ-decomposed matching µ̄ : W ∪ F ′ → W ∪ F ′ be a bijec-

tion such that (i) µ̄ (f ′i) = w if there exists f ′ 3 f ′i such that w ∈ µ (f); (ii)

µ̄ (w) = f ′i if µ (w) = f ; (iii) µ̄ (f) ∈ F ′ implies µ̄ (f ′i) = f ′i for all f ′i ∈ f ′

and µ̄ (w) ∈ W implies µ̄ (w) = ∅. Since Proposition 3 implies that Corollary

4 applies to µ-decomposed matching in the artificial one-to-one assignment

problem, Proposition 4 directly implies that the zero-profit result for the sim-

ple matchmaker game will hold in the many-to-one assignment problem. This

completes the proof of Theorem 1.
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Chapter 3

Choosing a Licensee from

Heterogeneous Rivals

3.1 Introduction

We examine a firm licensing its production technology to a rival in a product

market, but relax the standard assumption that the rivals are homogeneous

in their production technologies. Specifically, the firms compete in Cournot

competition differing in their constant marginal cost of production and a tech-

nology transfer reduces a licensee’s marginal cost to the level of the licensor.

This implies that the size of the technology transfer varies with the licensee’s

efficiency (a less efficient rival receives a larger transfer). As is standard in the

licensing literature, the production decisions of the firms remain independent

with any transfer agreement. That is, we are interested in the direct effects

from the licensing and so abstract from any possible effects from collusion.

As we allow for heterogeneous rivals and for corner solutions (some firms may

choose to shut down: zero production), we focus on the case where a single
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licensor chooses an exclusive licensing partner and assume complete informa-

tion, though we allow negative externalities of licensing to third party firms.1

We first analyze the gains in joint profit for the licensor and a licensee from

licensing, and then social welfare gains. Then, we consider two auction games

to determine the licensee, and investigate how efficient the resulting licensee

is.

We begin, following the seminal work by Katz and Shapiro (1985), by analyzing

whether such a transfer is always jointly profitable in a Cournot model.2 Katz

and Shapiro (1985) have shown that a complete technology transfer (so that

the licensee has the same cost as the innovator) could reduce joint profit in a

duopoly if the licensor has a near-monopoly position because then the transfer

would reduce the licensor’s near-monopoly profit. Further, in our setting a

partial technology transfer (so that the licensee does not have the same cost

as the innovator) can reduce joint profit. Despite this we are able to show

that a complete technology transfer is always jointly profitable so long as the

demand curve is weakly concave and there are at least three firms in the market

after the transfer (Theorem 1). That is, a complete transfer is always jointly

profitable no matter its absolute size. The licensor does not have to be the

most efficient firm for this result to hold.

We then focus on which partner would maximize joint profit. One might at first

glance expect then that this would be the most inefficient rival. We find that

for weakly concave demand, it is neither a very inefficient nor a very efficient

rival that maximizes joint profit (Observation 1). With heterogeneous firms,

the less efficient the licensee, the greater is the technology transfer. Thus,

1For example, Jehiel et al (1996) and Jehiel and Moldovanu (2000) in examining a single
transfer allow for the presence of private information in auction stage. In this paper, we
analyze auction methods in licensing, but we concentrate on the effects of having (negative)
externalities on auction outcomes.

2This is also equivalent to fixed fee licensing examined in Kamien and Tauman (1986).
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a technology transfer to a nearly equally efficient rival is very small and has

little benefit on the rival’s profit, although such a transfer does not reduce the

market price much and the licensor’s profit. On the other hand, a technology

transfer to a very inefficient firm benefits the licensee greatly, while reduces

the licensor’s output and profit through a large reduction in the market price.

Given that profit is convex in output, the licensor’s profit reduction is large if

a technology transfer is made to a very inefficient firm. Hence, the licensor is

better off by choosing a partner who is neither very efficient nor very inefficient.

Turning to the welfare effects of a technology transfer, it is known that making

an inefficient firm slightly more efficient can reduce welfare (Lahiri and Ono

1988). This implies that, as a corollary of Theorem 1, a jointly profitable

transfer can reduce social welfare if there are more than two firms and if both

the licensor and licensee are sufficiently similar and inefficient (Observation

2). This is in contrast to Katz and Shapiro (1985) who found that profitable

transfers are never welfare reducing in a duopoly, hence, the importance of con-

sidering non-duopoly markets. This is also in contrast to Katz and Shapiro

(1986) and Sen and Tauman (2007) who find that with homogeneous firms,

licensing always raises welfare and so heterogeneity is also important in evalu-

ating the welfare implications of licensing. Despite the fact that a transfer from

a sufficiently inefficient licensor can reduce welfare, we show that if the most

efficient firm makes a complete transfer then social welfare always increases

under general demand (Theorem 2). However, the joint-profit maximizing li-

censee is not necessarily the social welfare maximizing licensee because the

joint-profit maximizing selection does not take into account the negative ex-

ternality imposed on other firms. Or, to put it differently, because technology

transfers affect the rival firms’ production decisions, including efficient rivals,

total costs can be lower with a more efficient licensee. The conclusion for a
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policy maker that maximizes social welfare is that most efficient firm should

not be discouraged from licensing their technology to rivals, but technology

transfers between marginal firms could bear some scrutiny.

Analyzing the joint-profit maximizing licensee is a natural benchmark, allows

comparison to Katz and Shapiro (1985) as well as work that examines fixed-fee

setting licensing (e.g., Kamien and Tauman 1986), and, as we will see, is useful

for later analysis.3 However, with more than one rival, the above mechanism

does not exploit the entire possible gains for the licensor if it can credibly

threaten to change partners while negotiating with a potential licensee. That

is, letting potential licensees compete over the technology transfer should be

more profitable in the presence of externalities. Katz and Shapiro (1986) and

others since,4 take this into account when they examined an auction game in

a homogeneous licensee environment by endogenizing the number of licenses.

We follow their approach, but in a setting with heterogeneous firms and ask

which firm would win the right to use the technology and how much would the

licensor collect from licensing. Specifically, we examine what happens when the

most efficient firm (the natural analogy to when rivals are homogeneous) uses

the first-price auction mechanisms to sell the right to use its technology. In the

first-price auction method (a simple auction game), which is a modification

of the method by Katz and Shapiro (1986) so as to take into account the

heterogeneous firm environment, each potential licensee submits a bid and only

the winner pays for the bid. Since there are many Nash equilibria and most

of them are less plausible, we refine the set of Nash equilibrium by requesting

3This can also be justified by noting that often a licensee is selected and then the two
parties negotiate the contract. Since negotiating a technology transfer is not trivial, at that
point it may be too costly for the licensor to credibly threaten to use a different firm in the
bargaining and so the fee should be determined as a function of the increase in their joint
profit. In this case, the joint-profit-maximizing licensee should be selected by the licensor
as the recipient of the technology.

4For a review of auctions in licensing see Giebe and Wolfstetter (2007)
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that non-licensees would not be worse-off if the licensor happens to choose it:

truthful Nash equilibrium (TNE in simple auction). Roughly speaking this is

akin to a trembling-hand refinement. In this refined set of Nash equilibrium,

licensing fee can be pinned down and the licensee is the partner that maximizes

the joint profit of the licensee, the licensor and any other potential rival.

Given the complex negative externalities created by a technology transfer, even

if a firm is not willing to bid enough to win the license it might find it profitable

to bribe the licensor so as to affect which of its rivals does obtain the license.5

For this reason, we also consider a menu auction (Bernheim and Whinston

1986), in which each potential licensee submits a menu that offers a payment

to the licensor depending on which rival is the licensee (i.e., specifies a payment

for each possible licensee the licensor might select). Similar to the simple

auction, we refine the set of Nash equilibrium by truthful Nash equilibrium

(TNE in menu auction).6 We show that a simple auction licensee is at least as

efficient as the joint-profit-maximizing partner, and a menu auction licensee

is at least as efficient as simple auction licensee (Theorem 3). Furthermore, if

only the menu auction licensee pays in a menu auction game, then the same

licensee also win the license in simple auction, and in particular, if the number

of firms is three then these two auction mechanisms generate the same outcome

(Proposition 6).

In the next section we introduce the basic modeling assumptions. Section 3

examines the effect the amount of technology transferred has on profit while

section 4 examines the effect of the type of partner. Section 5 identifies which

5For example, recently, when it looked that Google would acquire bankrupt Nortel’s
patents a coalition of Apple, EMC, Ericsson, Microsoft, Research In Motion, and Sony
out-bid Google (Claburn, 2011).

6Truthful Nash equilibria in simple auction and in menu auction appear to be similar
in their definitions, but their implications are somewhat different. In simple auction, TNE
is a rather innocuous refinement of Nash equilibrium, while in menu auction, TNE has an
implication for communication-based refinement (Bernheim and Whinston 1986).
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firm will get the right to use technology in license auction games. Section 6

contains the welfare analysis and section 7 concludes.

3.2 The Model

We consider the basic Cournot market structure. There is a commodity besides

a numeraire good, and its inverse demand is a continuous function P (Q) in

[0, Q̄] that is twice continuously differentiable with P ′(Q) < 0 for all Q ∈

(0, Q̄) and P (Q̄) = 0. There are K firms in the market with no fixed cost of

production.

Firms are indexed as i ∈ {1, ..., K} and differ in their constant marginal cost

ck. We order firms by their degrees of efficiency: c1 ≤ c2 ≤ ... ≤ cK . With a

little abuse of notation, let the set {1, 2, . . . , K} be denoted by K as well.

Each firm i’s production level is denoted by qi. Firm i’s profit function is

written as

πi(qi, q−i) = (P (Q)− ci) qi,

where Q =
∑

i∈K qi. The first order condition for profit maximization (assum-

ing interior solution) is

P ′(Q)qi + P (Q)− ci = 0.

This implies

qi =
(P (Q)− ci)
−P ′(Q)

,
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and firm i’s profit is written as

πi(qi, q−i) =
(P (Q)− ci)2

−P ′(Q)
.

We assume the strategic substitutability condition throughout the pa-

per: for all i ∈ K:

P ′′(Q)qi + P ′(Q) ≤ 0.

Note that the second order condition for profit maximization (P ′′(Q)qi +

2P ′(Q) ≤ 0) is guaranteed by the strategic substitutability. The strategic

substitutability is weaker than requiring that the inverse demand is weakly

concave P ′′(Q) ≤ 0.7 In proving some of our main results, we strengthen the

strategic substitutability by the weak concavity of inverse demand.

The strategic substitutability condition guarantees the uniqueness of equilib-

rium of this game. Let C =
∑

i∈K ci denote the aggregate marginal cost. With

this we can establish a standard result, whose derivation will be useful for later

analysis.

Lemma 1. Under the strategic substitute condition, equilibrium is unique.

Moreover, keeping other firms’ marginal costs intact, an increase in cj decreases

equilibrium total output level Q if cj < P (Q), and has no effect, otherwise.

Proof. First note that equilibrium output of firm i, qi, is expressed by equation

qi =
(P (Q)− ci)
−P ′(Q)

,

7That is, the weak concavity of inverse demand implies the second order condition for
profit maximization.
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if P (Q) > ci, and qi = 0 if P (Q) ≤ ci. Recall that c1 ≤ c2 ≤ ... ≤ cK .

Summing up the first order conditions for profit maximization over firms in

subset L ⊂ K, and assuming these firms produce positive outputs, we obtain

P ′(Q)Q+ LP (Q) =
∑
`∈L

c`,

where L also denotes the number of firms in set L. If the solution of the above

equation Q satisfies P (Q) ≥ c` for all ` ∈ L, and P (Q) < ck for all k ∈ K\L,

then Q is the aggregate equilibrium output. Rewriting the above equation, we

obtain

P ′(Q)Q+
∑
`∈L

(P (Q)− c`) = 0,

or

P ′(Q)Q+
∑
k∈K

max {0, P (Q)− ck} = 0.

The LHS of the above equation is continuous in Q, although it is not con-

tinuously differentiable since firms stop producing in order as Q increases.

However, for each L ⊂ K, the LHS is differentiable for Q satisfying P (Q) ≥ c`

for all ` ∈ L, and P (Q) < ck for all k ∈ K\L, and the derivative is

d (LHS)

dQ
= P ′′(Q)Q+ (L+ 1)P ′(Q)

Summing the strategic substitutability conditions up over firms ` ∈ L, we

obtain

P ′′(Q)Q+ LP ′(Q) ≤ 0.

This implies that the LHS of the aggregated first order condition is decreasing

in Q since P ′(Q) < 0. This implies that equilibrium aggregate output Q is

uniquely determined for every marginal cost profile (c1, ..., cK).
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Now, we conduct a comparative static analysis with respect to cj. By the

above analysis, it is easy to see that Q decreases as cj increases if P (Q) > cj,

and Q is intact otherwise.�

3.3 Production Technologies and Transfers

Each firm i has its own technology of producing the commodity (the marginal

cost of production is ci), and it has the property right to its own technology

(e.g., it holds a patent). We focus on a firm that has a single unit of technology

to transfer and assume that the output decisions remain independent after any

transfer as the independence of production decisions is usually a condition

imposed by competition authorities as well as being the standard assumption

in the literature. Firm i can license its technology with an exclusive usage

agreement to another firm . As is standard in the literature (Katz and Shapiro

1986, etc.), we assume complete technology transfer throughout the paper:

the obtaining firm j (licensee) reduces its marginal cost to that of firm i. That

is, if firms i and j have technologies with marginal costs ci and cj with ci < cj,

respectively, then firm j can reduce its marginal cost of production to ci by

adopting firm i’s technology.

The following simple lemma plays a key role in the subsequent analysis. As

the proof is straightforward, it is left to the appendix.

Lemma 2. Suppose that there are initially K firms engaging in production.

Pick three firms i, j, and j′ with ci < cj < cj′ , and consider two scenarios: (i)

firm i transfers its technology to firm j, and (ii) firm i transfers its technology to

firm j′. Then, equilibrium aggregate output Q̂ in scenario (i) is not more than

equilibrium aggregate output Q̃ in scenario (ii), resulting in P (Q̂) ≥ P (Q̃).
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3.3.1 Jointly Profitable Transfers

Katz and Shapiro (1985) show that complete transfers could reduce joint prof-

its in a duopoly and we examine if this result can extend to markets with

more than two firms. We can show that under weakly concave demand (which

includes linear demand) a complete technology transfer is always profitable

as long as there is a third firm. This result is somewhat surprising not only

because Katz and Shapiro (1985) found such transfers could be unprofitable

but also because Creane and Konishi (2009b) show that partial transfers (i.e.,

the licensee’s cost is not completely reduced to the licensor’s cost) when firms

are heterogeneous could reduce joint profit. Due to this fact that a small

transfer may reduce joint profit, we cannot simply rely on comparative statics

on technology transfers: we need to utilize an artificial economy to prove the

theorem. The proof is involved, and found in the appendix.

Theorem 1. Pick firms i, j ∈ K with ci < cj. Assume that firm i is in

operation originally, and that even after firm i transfers technology to firm j,

there is still another firm k in operation (qk > 0) with ck 6= ci. If demand is

weakly concave (P ′′(Q) ≤ 0), then a complete technology transfer from firm i

to firm j is joint profit improving.

Notice that we assume that at least three firms remain in the market after the

technology transfer. Although Katz and Shapiro (1985) obtain conditions for

a complete technology transfer to reduce joint profit, they examine a duopoly

case. The existence of at least a third firm drives the theorem as part of the

gain to the licensee comes from lost profits of the non-licensor firm(s). Thus,

while the licensor’s profits decrease from the transfer, the licensee’s gain is
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sufficient to offset the loss to the licensor. However, since a partial technology

transfer could reduce joint profit, one may wonder how it can be guaranteed

that a complete transfer does not reduce joint profit. To intuitively see the

reason, consider what happens when a partial technology transfer would reduce

joint profit. In this case, consider what happens if, instead, the licensee’s cost

is increased (thereby raising joint profit) until the licensee is driven out of

the market. Joint profit has now increased. At this point we note from the

divisionalization literature (Baye, et al 1996) that if the licensee could create

a second, identical division then its profits increase.

3.3.2 The Joint-Profit-Maximizing Partner

While in the previous section we considered the profitability of technology

transfers, in this section we consider which partner would maximize joint profit.

That is, for firm i, which firm j would create the greatest increase in joint profit

from a technology transfer? Recall that the licensee choosing a less efficient

partner leads to a larger technology transfer.

Since we need to compare the point profits when a different partner has been

chosen, for heuristic reasons it is more convenient for us to use linear demand

with explicit solutions and assume that all firms are in operation: qk > 0 for

all k ∈ K. Let P (Q) = a− bQ. With this demand curve we have Q = (aK−C)
(K+1)b

,

P = a+C
(K+1)

, and qi =
a+C

(K+1)
−ci

b
. Then the change in the joint profit by firms i

and j from the technology transfer is

(joint profit after transfer)− (joint profit before transfer)

=
2

b

(
a+ C − (cj − ci)

K + 1
− ci

)2

− 1

b

(
a+ C

K + 1
− ci

)2

− 1

b

(
a+ C

K + 1
− cj

)2
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=
1

b

(
a+ C

K + 1
− ci −

cj − ci
K + 1

)2

− 1

b

(
a+ C

K + 1
− ci − (cj − ci)

)2

︸ ︷︷ ︸
increase in firm j’s profit

+
1

b

(
a+ C

K + 1
− ci −

cj − ci
K + 1

)2

− 1

b

(
a+ C

K + 1
− ci

)2

︸ ︷︷ ︸
decrease in firm i’s profit

=
1

b

(
2
a+ C

K + 1
− 2ci −

(K + 2) (cj − ci)
K + 1

)(
K

K + 1
(cj − ci)

)
− 1

b

(
2
a+ C

K + 1
− 2ci −

cj − ci
K + 1

)(
cj − ci
K + 1

)
=

2

b

(
a+ C

K + 1
− ci

)
(cj − ci)−

(K (K + 2)− 1) (cj − ci)2

b(K + 1)2
.

This is a quadratic function in the difference in marginal costs cj − ci. The

first positive term increases if firm j is a less efficient partner, while the second

negative term gains its magnitude as firm j is a less efficient partner. Hence,

this implies that the gain is highest when cj is neither too big nor too small.

Firm i should choose some firm in the middle. Although the above analysis is

based on linear demand assumption, a quantitatively similar result applies for

general demand (see Creane and Konishi 2009b).

Observation 1. With a complete transfer, the joint-profit maximizing partner

for a firm is neither too efficient nor too inefficient relative to the firm under

weakly concave demand.

This condition is intuitive: you cannot make a rival who is efficient that much

more efficient. Thus, there is a benefit from picking a less efficient rival as there

is a greater transfer and so increase in profit of the licensee from the transfer.

However, you do not want to pick too inefficient of a rival. The reason is that

as you pick a more inefficient rival the technology transfer causes the price to

fall more, harming you as well as the rival. At the same time, when considering

sufficiently inefficient firms, a slightly more inefficient firm does not have that
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much less profit (since its output is approaching zero, i.e., marginal cost is

approaching the price) and the gain from selecting a slightly more inefficient

rival approaches zero.

The following simple example illustrates this observation. We denote by

πk(i, j) firm k’s (equilibrium) profit when firms i and j are the licensor and

licensee for all j, k = 1, ..., K. Notation πk(i, i) means firm k’s profit when the

licensor i does not license its technology to any firm.

Example 1. Consider a market with four firms with marginal costs c1 = 0,

c2 = .05, c3 = .15 and c4 = .25, and the licensor is the most efficient firm:

i = 1. Demand function is linear P (Q) = 1−Q. In the following table are the

resulting profits for each firm from a transfer to firm j (with j =1 implying

no transfer has occurred).

i = 1 P π1 π2 π3 π4

j = 1 0.29 0.0841 0.0576 0.0196 0.0016

j = 2 0.28 0.0784 0.0784 0.0169 0.0009

j = 3 0.26 0.0676 0.0441 0.0676 0.0001

j = 4 0.24 0.0576 0.0361 0.0081 0.0576

As is easily seen, if j = 2 then the gains in joint profit is 2 × 0.0784 −

(0.0841 + 0.0576) = 0.0151; if j = 3 then it is 2×0.0676− (0.0841 + 0.0196) =

0.0315; and if j = 4 then it is 2× 0.0576− (0.0841 + 0.0081) = 0.023. Thus,

firm 3 maximizes joint profits.
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3.4 Welfare Effects

We now investigate the effect of technology transfers on social welfare, which

we define as the sum of the firms’ profit and consumer surplus. Since tech-

nology transfers reduce production cost, social welfare tends to increase in

the amount of technology transferred. Indeed, Katz and Shapiro (1985) show

that with a duopoly, licensing that increases joint profit always increases wel-

fare (and welfare decreasing licensing always decreases joint profit). Likewise

Sen and Tauman (2007) find licensing to be welfare improving under general

licensing schemes.

Despite previous results, profitable licensing could reduce welfare when firms

are heterogeneous. This possibility arises because if a very inefficient firm ob-

tains a technology transfer that reduces its cost only slightly, then its resulting

increase production will displace the production of more efficient firms, thereby

reducing social welfare. This result has already been observed by Lahiri and

Ono (1988). The question then is whether this implies that jointly profitable

licensing can reduce welfare contrary to previous results. By the use of The-

orem 1 combined with Lahiri and Ono’s result we are able to state that the

previous results do not generalize to when there are more than two firms and

firms are heterogeneous: profitable licensing can be welfare reducing.

Given this result one may wonder if there are conditions that guarantee that

a technology transfer raises welfare. We then show that if the most efficient

firm makes a complete technology transfer, then welfare increases. The policy

implications of these results appear straightforward: competition authorities

should be scrutinous of technology transfers (through licensing, joint venture,

or merger) between marginal firms (in the technological efficiency sense) in an
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industry. On the other hand, the most efficient firm within an industry should

not be discouraged from making a technology transfer to a rival.

3.4.1 Welfare-reducing profitable licensing

We begin by presenting Lahiri and Ono’s condition for when an improvement

in the marginal cost of an inefficient firm reduces social welfare.

Observation 2. (Lahiri and Ono 1988): When firm j’s marginal cost (cj)

decreases, social welfare decreases if cj is sufficiently high, though consumer

welfare (surplus) increases.

From this observation there is an immediate corollary to Theorem 1 that

yields a result contrary to previous ones in the literature: there are profitable

technology transfers that reduce total welfare though benefiting consumers.

Corollary 1. Suppose that demand is weakly concave and that there are more

than two firms. Then, if firm j has sufficiently high marginal cost (cj) and

firm i’s marginal cost is sufficiently close to firm j’s, then firm i licensing its

technology to firm j is jointly profitable and welfare reducing though consumer

welfare (surplus) increases.

The following example shows that the social welfare can indeed decrease by a

jointly profitable technology transfer.

Example 2. Consider a market with five firms with marginal costs c1 = 0,

c2 = .075, c3 = .15, c4 = .225 and c5 = .29. Demand function is linear

P (Q) = 1−Q. Consider two cases: (i) firm 3 licenses its technology to firm 5
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(i = 3 and j = 5), and (ii) firm 4 licenses its technology to firm 5 (i = 4 and

j = 5). Numbers in the table below are rounded to two decimal places.

P π1 π2 π3 π4 π5 CS SW

none 0.29 0.084 0.046 0.020 0.004 0 0.252 0.406

i = 3, j = 5 0.267 0.071 0.037 0.014 0.002 0.013 0.269 0.406

i = 4, j = 5 0.279 0.078 0.041 0.017 0.003 0.003 0.260 0.402

In both cases, although the joint profit improves (case (i): from 0.020 to

2 × 0.014; case (ii): from 0.004 to 2 × 0.003), the social welfare goes down.

Note that consumer surplus (CS) improves by technology transfer. The social

welfare goes down by technology licensing because relatively high marginal

cost firms crowd out more efficient firms’ production. (Although before the

technology transfer, firm 5 is producing zero since its marginal cost and the

market price are the same, this is just for convenience of calculations. We can

make π5 positive by setting c5 a slightly lower than 0.29, and still have welfare

decreasing in both cases.)

There are previous results in the literature that may at first glance appear to

be similar even though they are quite distinct. First, Katz and Shapiro (1985)

have shown that in a duopoly a technology transfer can reduce welfare, but

only when it reduces joint profit. Hence, such transfers would never actually

occur. In contrast, here there can be technology transfers that reduce welfare,

but increase joint profit. Second, Fauĺı-Oller and Sandońıs (2002) have shown

that in a duopoly profitable licensing can reduce welfare, but this requires

the use of a royalty (raising the recipient’s marginal cost) and only occurs

in price competition. As they note, the royalty works as a collusive device”

and so reduces welfare. More generally, licensing contracts can reduce welfare
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through their collusive effects (Shapiro 1985 and others), which do not exist

here.

3.4.2 Welfare-improving profitable licensing

Since technology transfers between inefficient firms can reduce welfare, the

next question is whether there are conditions for transfers to increase welfare.

Since the social welfare reduction occurs only because relatively inefficient

firms’ production crowd out more efficient firms’ production, we can naturally

guess that if the licensor is the most efficient firm then the social welfare should

improve. Indeed, we can show that it is the case. For this result, we need no

condition on demand function (see the appendix for the proof and all following

proofs).

Theorem 2. Suppose that the most efficient firm (firm 1) makes a complete

transfer to any firm j (c1 ≤ c2 ≤ ... ≤ cj ≤ ... ≤ cK and c1 < cj). Then, the

social welfare improves.

Somewhat interestingly, the social welfare maximizing partner is not neces-

sarily the least efficient firm. Although it is true that aggregate output and

consumer surplus are maximized by choosing the least efficient firm as the

partner, industry profit is also part of social welfare. The following example

illustrates how the harm to industry profit means that welfare is not maximized

by licensing to the least efficient firm.

Example 3. Consider a market with five firms with marginal costs c1 = 0,

c2 = 0.05, c3 = 0.1, c4 = 0.14, and c5 = 0.2. Demand function is linear

P (Q) = 1 − Q. Firm 1 is the unique licensor (i = 1). Numbers in the table

83



below are rounded to two decimal places.

i = 1 P π1 π2 π3 π4 π5

∑
π CS SW

j = 1 0.248 0.061 0.039 0.022 0.011 0.002 0.137 0.282 0.419

j = 2 0.24 0.058 0.058 0.020 0.01 0.001 0.146 0.289 0.435

j = 3 0.232 0.05 0.033 0.0537 0.008 0.001 0.150 0.295 0.445

j = 4 0.225 0.051 0.031 0.016 0.051 0.001 0.148 0.300 0.448

j = 5 0.215 0.046 0.027 0.013 0.006 0.046 0.138 0.308 0.446

The social welfare maximizing partner is firm 4, the consumer surplus maxi-

mizing partner is firm 5, and the industry-profit maximizing partner is firm 3.

A different way to see why firm 4 maximizes social welfare is to note that social

welfare is consumers’ total benefit less the cost of production (which appears

in industry profit). Licensing to the least efficient firm (firm 5) does result in

the greatest cost reduction, however, there are two countervailing effects that

result in lower total costs when firm 4 is licensed. First, total production by

the lowest cost firms is greater when firm 4 is licensed (the price is higher).

Second, when firm 4 is licensed, the least efficient firm still produces (firm 5),

but its production is quite small so its contribution to total cost is negligible

while when firm 5 is licensed firm 4’s production is several times larger. As a

result, in the above example while licensing instead firm 5 increases output by

.01, total cost increase by .004 giving a “marginal cost” of .4 well above the

price.
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3.5 Choosing a Licensee Through Auctions

In this section we study i) which firm wins the right to use the technology and

ii) how much is paid when the technology is licensed by auction. When there

is a duopoly, as in Katz and Shapiro (1985), there is only one potential licensee

and so a fixed-price licensing fee (calculated as the difference between the li-

censee’s post-transfer profit minus its original profit) is optimal. However, if

there are multiple potential licensees, then they compete over the exclusive li-

cense. As noted by Katz and Shapiro (1986), if one firm obtains the license, its

rivals suffer from the market price reduction caused by the licensing. A firm’s

auction bid, then, must take this externality into consideration. However,

unlike in Katz and Shapiro (1986), here the potential licensees are heteroge-

neous and so the non-licensees differ in the harm from a given firm winning

the license and so in their willingness-to-pay.

We consider two types of auctions: The first is that each potential licensee

bids for the right to use the technology and when a winner is selected, only

the winner pays the license fee according to its bid (simple auction). The

second is that each potential licensee offers a menu that describe how much

it will pay the licensor depending on which of the potential licensees gets the

technology; when a winner is selected all potential licensees pay the licensor

according to their bids for that particular winner (menu auction). These two

license auctions have advantages and disadvantages. A simple auction can be

considered as a natural auction, since only the winner of the license auction

pays for the license. However, the externalities created by potential licensees

are not identical. If a firm is harmed more by rival j getting the license than

rival k, it obviously would prefer firm k instead of j to obtain the license and

so might be willing to pay to have firm k instead of j obtain the license. Given

85



this, a menu auction also makes sense in a licensing market, although it is

less natural at first glance (and for this reason may be viewed disfavorably by

competition authorities).

For the rest of the paper we will assume that the licensor is the most efficient

firm, firm 1: i.e., c1 < c2 ≤ c3 ≤ ... ≤ cK . This is a natural setup for

the licensing problem as it is (trivially) the structure in the literature when

the licensees as homogeneous, and as Theorem 2 assures, such licensing will

certainly improve the welfare. Given that the licensor i is firm 1, we simplify

our notation πk(1, j) by πk(j) which means the profit of firm k when firm j

obtains the license from firm 1 for k, j = 1, .., K.

3.5.1 Simple Auction

A simple auction is a version of the first-price auction played by firms

2, 3, ..., K, in which each firm k ∈ {2, .., K} simultaneously offers Tk ≥ 0 to

be the unique licensee to the licensor who chooses as a licensee the firm (say,

firm j) that maximizes the sum of firm 1’s profit and Tj: i.e., j ∈ M(T ) ≡

arg maxk∈{1,...,K} (π1(k) + Tk), where T = (T1, T2, ..., TK) (Recall that when

j = 1, firm 1’s technology is not transferred to any firm.). Knowing this, each

firm in {2, ..., K} chooses its bid Tk. In a simple auction, an outcome (j∗, T ∗)

is a Nash equilibrium if j∗ ∈ M (T ∗) and there is no k ∈ {2, ..., K} such

that k ∈ M
(
Tk, T

∗
−k
)

and Uk (k, T ) > Uk (j∗, T ), where Uk(j, T ) = πk(k)− Tk

if j = k.

Note that Nash equilibrium in simple auction is different from competi-

tive equilibrium outcome (jc, T c), which is also the joint-profit maximiz-

ing outcome, that is described by the list of each potential licensee’s offer

to pay for the technology (comparing with the status quo) and the winning
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licensee whose offer is most attractive to firm 1: formally, it is defined by

jc ∈ M(T c) ≡ arg maxk∈{1,...,K} (π1(k) + T ck ) where T ck = πk(k) − πk(1) for all

k = 1, ..., K. In order to see the difference between competitive price and Nash

equilibria, the following simple example would be helpful.

Example 4. There are K = 3 firms with marginal costs c1 = 0 and c2 =

c3 = 0.2. Note that this example corresponds to the standard assumption in

the literature: the potential licensees are homogeneous. Demand function is

P (Q) = 1 − Q. Without technology transfer (j = 1), equilibrium allocation

is described by P (1) = 0.35, q1(1) = 0.35, q2(1) = q3(1) = 0.15, and π 1(1) =

0.1225 and π2(1) = π3(1) = 0.0225. With firm 2 (symmetrically, firm 3 with

permutation) being chosen as the licensor, the equilibrium allocation becomes

P (2) = 0.3, q1(2) = q2(2) = 0.3, q3(2) = 0.1, and π 1(2) = π2(2) = 0.09 and

π3(2) = 0.01.

P π1 π2 π3

j = 1 0.35 0.1225 0.0225 0.0225

j = 2 0.3 0.09 0.09 0.001

j = 3 0.3 0.09 0.01 0.09

If licensing is done through competitive pricing, both firms 2 and 3 are willing

to pay T c2 = π2(2)− π2(1) = 0.0675 which is the amount of additional profits

generated by acquiring license. Firm 1 improves its profit from π1(1) to π1(2)+

T c2 by 0.035. Is Tc a Nash equilibrium licensee fee? It is not. To see this,

assume that firm 2 got the licensee with fee Tc. However, firm 3’s profit after

licensing is π3(2) = 0.01, but if it offers a fee more than 0.0675, it can earn

π3(3) = π2(2) = 0.09. Firm 3 is willing to pay up to T ∗3 = 0.09− 0.01 = 0.08.

Indeed, if T ∗2 = T ∗3 = 0.08, the rival firm will not challenge its bid; they form

a Nash equilibrium. Conversely, if the bid by a firm is lower than 0.08, the
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other firm has an incentive to lower its bid, though both firms are willing to

pay 0.08. Thus, this is unique Nash equilibrium of this simple auction (with

permutation: both firms 2 and 3 can be selected as the licensee). The reason

that T ∗2 > T c2 is the negative externality effect from licensing on the rival firm.

We now turn to characterizing the Nash Equilibrium. The first question is

whether there is a unique equilibrium in the simple auction. In the above

example there was, but the potential licensees (firms 2 and 3) were symmetric

(homogeneous) as is the standard assumption in the literature. However, once

potential licensees are heterogeneous, then the uniqueness of Nash equilibrium

may be lost as is shown in the following example.

Example 5. There are K = 3 firms with marginal costs c1 = 0, c2 = 0.16,

and c3 = 0.24. Demand function is P (Q) = 1−Q. Then, we have the following

table.

P π1 π2 π3

j = 1 0.35 0.1225 0.0361 0.0121

j = 2 0.31 0.0961 0.0961 0.0049

j = 3 0.29 0.0841 0.0169 0.0841

Suppose that firm 2 receives the license: j = 2. Then, firm 3 receives 0.0049,

although it earns 0.841 if it gets the license. Thus, firm 3 is willing to pay

0.0841−0.0049 = 0.0792. Now suppose that firm 3 receives the license: j = 3.

Then, firm 2 receives 0.0169, although it earns 0.961 if it gets the license. Thus,

firm 2 is also willing to pay 0.0961−0.0169 = 0.0792 (the values are the same: it

is just a coincidence). However, firm 1 prefers to give the license to firm 2 if the

license fee is the same since the equilibrium price is higher with firm 2 instead

of firm 3 as the licensee (a smaller transfer). Given the situation, one would

expect firm 2 to get the license, and firm 3 to offer T ∗3 = 0.0792, i.e., firm 3’s
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bid less the gain to firm 1 from having firm 2 obtain the license. Then, in order

to get the license, firm 2 can offer a little more than T ∗3 − (π1(2)− π1(3)) =

0.0672. Since firm 3 cannot match such T ∗2 , and it is a Nash equilibrium.

Is this the only Nash equilibrium? Unfortunately, it is not the only equi-

librium without any additional refinements. Recall firm 2’s gain from win-

ning the license over firm 3 is 0.0792. If firm 3 somehow bid T ∗3 = 0.0792 +

(π1(2)− π1(3)) = 0.0912, firm 2 is willing to offer T ∗2 = 0.0792. Of course, firm

3 does not want to pay that much, but as long as firm 2 matches the offer,

and firm 1 selects firm 2, firm 3 does not lose anything. Thus, this allocation

is also a Nash equilibrium. In fact, there is a continuum of Nash equilibria in

this example.

Notice that, among all Nash equilibria (a continuum of equilibria), firm 3 will

suffer if the license were somehow granted to it by accident (so it has to pay its

bid) except for the equilibrium with T ∗3 = 0.0672. In all other equilibria, the

only role of firm 3’s offer is to induce firm 2 pay more to the licensor. In the

light of this, we consider a reasonable refinement of Nash equilibrium that is a

version of truthful equilibrium. The idea is vaguely related to trembling-hand

argument for the licensor. The licensor may make a slight mistake in choosing

a potential licensee. Hence, each firm would be better-off by making a weakly

dominant offer relative to the equilibrium outcome. For firm j ∈ K\{1},

a strategy Tj is said to be truthful relative to j̄ if and only if either (i)

Uj (j, T ) = Uj (j̄, T ) or (ii) Uj (j, T ) < Uj (j̄, T ) and Tj (j) = 0. A truthful

Nash equilibrium (TNE) is a Nash equilibrium (j∗, T ∗) such that each firm

chooses a truthful strategy relative to j∗. With this refinement we can pin

down and characterize the unique equilibrium in the above example.
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Proposition 1. No licensing is a TNE of the simple auction game if and only

if π1(1) + πj(1) ≥ π1(j) + πj(j) for all k = 2, ..., K. Suppose that no licensing

is not a TNE. Then, a profile (j∗, T ∗) is a TNE with licensing (j∗ > 1), if and

only if T ∗j∗ = maxj∈K\{1}{π1 (j)−π1 (j∗)+πj (j)−πj (j∗)}, T ∗j = πj(j)−πj(j∗)

for all j 6= j∗, and π1 (j∗) + πj∗ (j∗) + πj (j∗) ≥ π1 (j) + πj (j) + πj∗ (j) for all

j 6= 1.

The last condition means that firm j∗ is willing to challenge firm j by paying

more if firm j gets the license. Suppose firm j receives the license. Then firm

j∗’s payoff is πj∗(j), and firms 1 and j are jointly earning π1(j) + πj(j). That

is, the sum of these three firms’s payoffs is π1 (j) + πj (j) + πj∗ (j). Now, if

firm j∗ receives the license then the total profit of these three firms is π1 (j∗)+

πj∗ (j∗) + πj (j∗). If this value exceeds π1(j) + πj(j) + πj∗(j), firm j∗ can

beat firm j. If firm j∗ can beat all other potential licensees, firm j∗ wins the

licensing auction. As a corollary of the first part of Proposition 1 and Theorem

1 (joint profit increases), we can state the following.

Corollary 2. Under weakly concave demand, no-licensing is not a TNE of the

simple auction game if at least three firms remain in operation after licensing.

We call the licensee in a truthful Nash equilibrium outcome a simple auction

licensee. Without negative externalities, the joint-profit-maximizing partner

is the simple auction licensee. Taking externalities into account, a firm is

the simple auction licensee if and only if such a transfer maximizes the joint

profit of the licensor, the licensee and any one potential licensee firm. That

is, if the licensor’s profit plus the licensee’s gain from not another potential

licensee getting the license is greater than the licensor’s profit and the gain

of this other potential licensee. Comparing a simple auction licensee and the
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joint-profit-maximizing partner, it turns out that the simple auction licensee,

if exists, is at least as efficient as the joint-profit-maximizing partner.

Proposition 2. Under weakly concave demand, the simple auction licensee

(if it exist) is at least as efficient as the joint-profit-maximizing partner.

From the characterization of TNE (Proposition 1), it is easy to see that a Nash

equilibrium in pure strategy must satisfy many inequalities. If there are only

two potential licensees (K = 3), then it is easy to show the existence of TNE

and to characterize it. However, if there are more than two potential licensees,

finding Nash equilibrium (in pure strategies) is hard. Although we are unable

to show the existence of a TNE in a simple auction game under weakly concave

demand, we can show it always exists under the linear demand assumption.

Proposition 3. (1) Suppose that K = 3. Then, a profile (j∗, T ∗) is a TNE

with licensing (j∗ > 1), if and only if (i) j∗ ∈ arg maxj∈{2,3} (π1(j) + π2(j) + π3(j)),

and (ii) T ∗j∗ = π1 (j) + πj (j)− π1 (j∗)− πj (j∗) where j 6= 1, j∗. (2) Under the

linear demand, there exists a TNE in a simple auction game.

Note that if K = 3, the TNE licensee in simple auction maximizes the indus-

try’s aggregate profit, and equilibrium is unique unless potential licensees are

identical.

3.5.2 Menu Auction

Consider the effect firm 1 (the most efficient firm) has on the licensees when

it chooses to license its technology to a firm (licensee) j ∈ N = K\{1} =

{2, . . . , K}. Since there is a negative externality from the technology transfer,
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the other firms not receiving the transfer (non-licensees N\{1, j}) would like

to influence the licensing decision and may be willing to offer firm 1 not to

license to firm j. We try to capture such strategic interaction using the menu

auction framework proposed by Bernheim and Whinston (1986).

A menu auction game Γ is described by (N + 2) tuples:

Γ ≡
{
A, (Vk)k∈N∪{1}

}
,

where A is the set of actions, Vk : A→ R is k’s (quasi-linear) payoff function,

0 denotes the agent, and N is the set of principals. In the extensive form

of the game the principals simultaneously offer contingent payments to the

agent who subsequently chooses an action that maximizes her total payoff.

A strategy for each principal k ∈ N is a function Tk : A → [bk,∞), which

is a monetary reward (or punishment) of Tk(a) to the agent for selecting a,

where bk is the lower bound for payment from principal k. For each action a,

principal k receives a net payoff:

Uk(a, T ) = Vk(a)− Tk(a),

where T = (Tk′)k′∈N is a strategy profile. The agent chooses an action that

maximizes her total payoff: the agent selects an action in the set M (T ) with:

M (T ) ≡ arg max
a∈A

[
V0(a) +

∑
k∈N

Tk (a)

]
.

The menu auction game is merely a game among principals, although, strictly

speaking, a tie-breaking rule among M(T ) needs to be specified for the agent.

An outcome of a menu auction game Γ is (T, a). An outcome (a∗, T ∗) is a Nash
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equilibrium if a∗ ∈M (T ∗) and there is no k ∈ N such that Tk : A→ R+ and

a ∈ M
(
Tk, T

∗
−k
)

such that Uk (a, T ) > Uk (a∗, T ). Unfortunately, with many

coordination problems amongst the many players (principals), there are too

many Nash equilibria in menu auction game.

In order to get plausible predictions among the many allocations supported

by Nash equilibrium, Bernheim and Whinston (1986) consider a reasonable

refinement on the set of Nash equilibria and they argue that truthful strate-

gies are quite crucial in menu auction. A strategy Tk is said to be truthful

relative to ā if and only if for all a ∈ A either (i) Uk (a, T ) = Uk (ā, T ) or

(ii) Uk (a, T ) < Uk (ā, T ) and Tk (a) = bk. An outcome (a∗, T ∗) is a truthful

Nash equilibrium (TNE) if and only if it is a Nash equilibrium, and T ∗k is

truthful relative to a∗ for all k ∈ N . They show that in menu auction games,

the set of truthful Nash equilibria (TNE) and the set of coalition-proof Nash

equilibria (CPNE) are equivalent in utility space. Bernheim and Whinston

(1986) show that efficient action (the industry-profit-maximizing licensee in

our context) is chosen by the agent in every TNE outcome in a menu auction:

if (a∗, T ∗) is a TNE, then we have a∗ ∈ argmaxa∈A[
∑

i∈N Vi (a) + V0 (a)].

We let the set of principals be the set of potential licensees, N = K\{1}, and

the set of actions be the set of potential licensees as well, A = K\{1}. The

agent is the licensor firm 1. As any potential licensee cannot extract payment

from the licensor, we have bk = 0 for all k. We call the licensee in a TNE

of menu auction as a menu auction licensee. We can show the following

result.

Proposition 4. A menu auction licensee is at least as efficient as a simple

auction licensee.
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The underlying intuition of this proposition is that as the menu auction li-

censee is the industry-profit-maximizing partner and simple auction licensee

is the three-firm-profit-maximizing partner. Thus, the negative externality of

the technology transfer would make the industry-profit-maximizing firm more

efficient than the three-firm-profit-maximizing partner to counteract the effect

of the greater negative externality. Propositions 2 and 4 can be summarized

as the licensing partners’ efficiency ranking among different regimes in the

following Theorem.

Theorem 3. Suppose that firm 1 is licensing technology to another firm. Un-

der weakly concave demand, the licensing partner that maximizes the gains in

their joint profit is weakly less efficient than the partner determined in a sim-

ple auction, and the latter is weakly less efficient than the partner determined

by a menu auction: i.e.,

menu auction licensee ≤ simple auction licensee ≤ joint-profit-maximizing

partner,

where firms are ordered by its efficiency in a descending manner.

The following example illustrates that joint-profit-maximizing (competitive

equilibrium) partner, simple auction licensee and menu auction licensee can

be different.

Example 3 (revisited). Consider a market with five firms with marginal

costs c1 = 0, c2 = 0.05, c3 = 0.1, c4 = 0.14, and c5 = 0.2. Demand function is
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linear P (Q) = 1−Q.

P π1 π2 π3 π4 π5

k = 1 0.24833 0.06167 0.03934 0.022 0.01174 0.00234

k = 2 0.24 0.0576 0.0576 0.0196 0.01 0.0016

k = 3 0.23167 0.05367 0.033 0.05367 0.0084 0.001

k = 4 0.225 0.05063 0.03063 0.01563 0.05063 0.00063

k = 5 0.215 0.04623 0.02723 0.01323 0.00563 0.04623

It is easy to see that firm 3 is the menu auction licensee, since it is the industry-

profit-maximizing partner as we have seen before. With the characterization

in Proposition 1, we can check that firm 4 is the simple auction licensee. It is

also easy to see that firm 5 is the joint-profit-maximizing partner (maximizes

π1(k) + πk(k)− π1(1)− πk(k) over k = 2, ..., 5). Finally, for comparison, recall

that firm 4 maximized social welfare.

We conclude this section by providing additional results on menu auction

licensees under more restrictive demand functions. Proposition 5 shows that

under linear demand the menu auction results in the technology being licensed,

even though no licensing can be a Nash equilibrium in general. Proposition 6

provides a sufficient condition for the licensees in simple and menu auctions to

coincide. Since in a menu auction, non-licensing firms may be paying to have

a particular licensee so as to prevent a more inefficient firm from obtaining the

license, it is natural to conjecture that when the licensee is the only paying

firm, the licensee is also the licensee under the simple auction.

Proposition 5. If demand is linear and K ≥ 3, then licensing must occur in

a truthful Nash equilibrium in menu auction.
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Proposition 6. If firm j∗ is a menu auction licensee and only j∗ is paying for

the license, then j∗ is a simple auction licensee. If K = 3, the menu auction

allocation coincides with the simple auction outcome.

3.6 Conclusion

In this paper we have analyzed which rival a licensor would choose as a part-

ner when rivals are heterogeneous. We assume that the technology transfer

is complete when licensing is made, and first show that a technology transfer

between any pair of firms would improve joint profit (thus licensing is prof-

itable) as long as there are more than two firms in the industry. However,

jointly profitable licensing can be welfare reducing. These results are in con-

trast with the ones in the duopoly case examined by Katz and Shapiro (1985)

as well as the welfare results others have found with homogeneous rivals (Katz

and Shapiro 1986 and Sen and Tauman 2007). However, we also show that li-

censing the most efficient firm’s technology is always social welfare-improving,

though the licensor may not select the welfare maximizing licensee. We also

analyze the licensee when either a simple or a menu auction is used and find

that the licensor may not select the welfare maximizing licensee under these

schemes too. However, we can order efficiency of the licensee by the licensing

method: the joint profit maximizing licensee is less efficient than the simple

auction licensee which in turn is less efficient than the menu auction licensee.

Note that in our welfare results we implicitly assumed that firms do not pay any

recoverable fixed costs so that if a firm shuts down it does not save any fixed

cost. If instead a fixed cost are recoverable, then the firm can avoid paying it

by exiting the market. This would change the characterization because then
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the market price jumps up if a firm exits the market since the firm produces

positive output at the time of exit. Although Theorems 1 and 2 will not be

affected by the presence of annual fixed costs (as long as the fixed cost is

common across firms), the results on licensing can be affected, since there will

be a predation effect on the inefficient firms by licensing superior technology to

other firms. This idea has been analyzed by Creane and Konishi (2009a) in the

case where the technology transfer is made without monetary transfer. With

a licensing fee, this motivation may be strengthened since potential licensees

compete over technology more vigorously since their survival in the industry

is at stake. Moreover, the licensor (and surviving firms) might prefer licensing

technology to a very inefficient firm to push the market price sufficiently low to

predate many other firms. Once firms exit, the market price jumps up again,

increasing the pie to share. Although the idea is interesting, this extension

brings further complications. For one thing, we assumed complete technology

transfer in this paper,8 but it is possible that partial technology transfer is

more beneficial if predation by licensing is the licensor’s motivation (especially

if the licensor and the licensee are the only firms that can survive). Thus, the

analysis will be significantly more complicated by allowing for predations. This

extension will be left for future research.

8Complete transfer is a very reasonable assumption in the current paper’s framework.
It is not only a standard assumption in the literature (Katz and Shapiro 1986), but also is
justifiable by the following observation. If demand is linear, there are at least three firms,
and solutions are interior, complete technology transfer always dominates partial technology
transfer as long as partial technology transfer is profitable. It is also possible that a partial
transfer is harmful while complete transfer is profitable. Thus, under the above assumptions,
we do not lose anything by considering complete transfer only.
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Appendix A

Lemma 2. Suppose that there are initially K firms engaging in production.

Pick three firms i, j, and j′ with ci < cj < cj′ , and consider two scenarios: (i)

firm i transfers its technology to firm j, and (ii) firm i transfers its technology to

firm j′. Then, equilibrium aggregate output Q̂ in scenario (i) is not more than

equilibrium aggregate output Q̃ in scenario (ii), resulting in P (Q̂) ≥ P (Q̃).

Proof. In scenario (i) cj goes down to ci, while in scenario (ii) cj′ goes down to

ci. Suppose that in scenario (i), firms ` ∈ L remain in operation: q` > 0 (and

firms k ∈ K\L chooses qk = 0). Clearly, firms i and j will be in operation after

technology transfer: i, j ∈ L. First consider the case where j′ ∈ L in scenario

(i). Then, the aggregate output Q̂ in scenario (i) is described by (recall that

firm j’s cost is ci)

0 = P ′(Q̂)Q̂+
∑
`∈L

(
P (Q̂)− c`

)
= P ′(Q̂)Q̂+

∑
`∈L\{j,j′}

(
P (Q̂)− c`

)
+
(
P (Q̂)− ci

)
+
(
P (Q̂)− cj′

)
< P ′(Q̂)Q̂+

∑
`∈L\{j,j′}

(
P (Q̂)− c`

)
+
(
P (Q̂)− ci

)
+
(
P (Q̂)− cj

)
.

Since P ′(Q)Q +
∑

k∈K max {0, P (Q)− ck} is decreasing function in Q, the

equilibrium aggregate output Q̃ in scenario (ii) satisfies Q̂ < Q̃.

Second, consider the case where j′ /∈ L in scenario (i). Since cj < cj′ and

P (Q̂) < cj′ , the aggregate output Q̂ in scenario (i) is described by

0 = P ′(Q̂)Q̂+
∑
`∈L

(
P (Q̂)− c`

)
= P ′(Q̂)Q̂+

∑
`∈L\{j}

(
P (Q̂)− c`

)
+
(
P (Q̂)− ci

)
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≤ P ′(Q̂)Q̂+
∑

`∈L\{j,j′}

(
P (Q̂)− c`

)
+ max

{
0, P (Q̂)− cj

}
+
(
P (Q̂)− ci

)
.

Thus, as before, the equilibrium aggregate output Q̂ in scenario (ii) satisfies

Q̂ < Q̃ if P (Q̂)− cj > 0, and Q̂ = Q̃, otherwise.�

Theorem 1. Pick firms i, j ∈ K with ci < cj. Assume that firm i is in

operation originally, and that even after firm i transfers technology to firm j,

there is still another firm k in operation (qk > 0) with ck 6= ci. If demand is

weakly concave (P ′′(Q) ≤ 0), then a complete technology transfer from firm i

to firm j is joint profit improving.

Proof. The proof utilizes an artificial market. This device is useful by observ-

ing the fact that transferring technology partially can reduce the joint profit.

Instead, we replace firm j with an artificial (public: not profit-maximizing)

firm i′ with marginal cost ci, but we control its output level so that the joint

profit between firms i and i′ increases monotonically. After that, we go back

to the original economy. This is the strategy to prove the theorem.

Consider an artificial market parametrized by α ∈ [0, 1], in which firm j

(ci < cj) is replaced by an artificial firm i′ that satisfies (i) ci′ = ci, (ii)

qi′(α) = αqi(α), and (iii) (qk(α))k 6=i′ is a solution of the system of equations,

qk(α) = max
{

0, P (Q(α))−ck
−P ′(Q(α))

}
for all k 6= i′ and Q(α) =

∑
k 6=i′ qk(α) + αqi(α).

That is, although the output decision by firm i′ is linked with that of firm

i, firms k 6= i′ do not use this information by choosing the best response to

Q−k(α) =
∑

` 6=k q`(α) (the standard Cournot behavior: not the Stackelberg

one). Note that when α = 1, Q(1) is the aggregate Cournot equilibrium

output after the complete technology transfer from firm i to firm j, since the

best response by firm i′ is identical to the one by firm i when α = 1.
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In the following, we will show that in this artificial market, the joint profit of

firms i and i′, ΠJ(α) = (1 + α)πi(α) = (1+α)(P (Q(α))−ci)2
−P ′(Q(α))

, increases monotoni-

cally as α goes up (step 1). Then, we connect this artificial economy with the

original economy before technology transfer (step 2).

(Step 1) The best response by firm k 6= i′ is described by

qk(α) = min

{
0,
P (Q(α))− ck
−P ′(Q(α))

}
.

Since firm i will be in operation after technology transfer, we have

qi(α) =
P (Q(α))− ci
−P ′(Q(α))

,

thus we can write

qi′(α) = α× P (Q(α))− ci
−P ′(Q(α))

.

Let L(α) ≡ {k ∈ K : qk(α) > 0}. As before, we denote the cardinality of L(α)

by L(α) as well. Summing up these equations, we have

∑
`∈L(α)

q`(α) = (1 + α)
P (Q(α))− ci
−P ′(Q(α))

+
∑

`∈L(α)\{i,i′}

P (Q(α))− c`
−P ′(Q(α))

,

or

P ′(Q(α))Q(α) + (L(α)− 1 + α)P (Q(α))−

 ∑
`∈L(α)

c` − (1− α)ci

 = 0.

Totally differentiating the above, we have

(P ′′Q+ P ′ + (L(α)− 1 + α)P ′) dQ+ (P − ci)dα = 0

dQ

dα
=

P (Q(α))− ci
−P ′′(Q(α))Q(α)− (L(α) + α)P ′(Q(α))

.
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Since Q(α) =
∑

`∈L(α) q`(α) and P ′′(Q)q` + P ′(Q) ≤ 0 holds for all ` ∈

L(α)\{i′}, we have

− P ′′(Q(α))Q(α)− (L(α) + α)P ′(Q(α))

= −
∑

`∈L(α)\{i,i′}

(P ′′(Q(α))q`(α) + P ′(Q(α)))− (1 + α) (P ′′(Q(α))qi(α) + P ′(Q(α)))

> 0.

The inequality is strict as long as there is at least a firm with a different

marginal cost from others’ (i.e., if P ′′(Q)qk +P ′(Q) = 0 holds then P ′′(Q)q` +

P ′(Q) < 0 must hold due to the strategic substitute assumption). That is, for

each L ⊂ K with L = L(α) for some range of α ∈ [0, 1], dQ
dα

> 0 holds for

the range of α. This implies that Q(α) monotonically increases as α increases,

resulting in monotonic reduction of P (Q(α)). Since firms shut down their

production in order from higher marginal cost ones (if any firm does it), the

set of active firms L(α) shrinks in nested manner: L(α′) ⊆ L(α) for all α′ > α.

Now, we will show ΠJ(α) = (1+α)(P (Q(α))−ci)2
−P ′(Q(α))

changes as α increases. We

consider

dΠJ

dα

=
(P − ci)2

−P ′
+ (1 + α)× 2(P − ci)P ′(−P ′) + P ′′ (P − ci)2

(−P ′)2
× P − ci
−P ′′Q− (L(α) + α)P ′

= A×
[
(−P ′)(−P ′′Q− (L(α) + α)P ′) + (1 + α)

{
−2 (−P ′)2

+ P ′′ (P − ci)
}]

= A×
[
(−P ′)(−P ′′Q− (L(α) + α)P ′) + (1 + α)

{
−2 (−P ′)2

+ P ′′ (P − ci)
}]

= A×
[
{(L(α) + α)− 2(1 + α)} (−P ′)2 + (−P ′′) {−P ′Q− (1 + α) (P − ci)}

]
= A×

[
(L(α)− 2− α) (−P ′)2 + (−P ′′) {(−P ′) (Q− (1 + α)qi)− (1 + α) (P ′qi + P − ci)}

]
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where A = (P−ci)2
(−P ′)2(−P ′′Q−(L(α)+α)P ′)

> 0. We can determine the sign of dΠJ

dα
.

Note that P ′ < 0 and P ′′ ≤ 0. Since L(α) ≥ 3, L(α) − 2 − α ≥ 0 must

follows, and the first term in the bracket of the last line is nonnegative for all

α ∈ [0, 1]. Since L(α) ≥ 3 with interior solution, we have Q > (1 + α)qi, and

P ′qi + P − ci = 0 holds by firm i’s first order condition. This implies that

the second term is positive. Thus, we can conclude that dΠJ

dα
> 0 holds for all

α ∈ (0, 1).9

(Step 2) Now, we show that the equilibrium allocation with firm j is mimicked

by an equilibrium allocation in our artificial market at a certain α̂ ∈ (0, 1).

Let (P̂ , (q̂k)
K
k=1) be the Cournot equilibrium allocation before firm j received

a complete technology transfer. Let α̂ =
q̂j
q̂i

. Since cj > ci, we have q̂i > q̂j ≥ 0

and 0 < α̂ < 1. Thus, (P̂ , (q̂k)
K
k=1) = (P (α̂), (qk(α̂))Kk=1) holds, and the initial

equilibrium allocation is mimicked by the equilibrium in an artificial market

with α = α̂. Since q̂j = α̂q̂i = α̂qi(α̂), we have

π̂i + π̂j =
(
P̂ − ci

)
q̂i +

(
P̂ − cj

)
q̂j

= (P (α̂)− ci) qi(α̂) + (P (α̂)− cj) α̂qi(α̂)

< (P (α̂)− ci) qi(α̂) + (P (α̂)− ci) α̂qi(α̂)

= ΠJ(α̂).

Since ΠJ(α) is monotonically increasing in α, we have ΠJ(α̂) < ΠJ(1). Since

ΠJ(1) is the same as the joint profit by firms i and j after the complete

technology transfer from firm i to firm j, we can conclude that the joint profit

by firms i and j must increase after the complete technology transfer.�

9At αs with P (Q(α)) = ck for some k ∈ K, ΠJ is not continuously differentiable (the
right and left derivatives are different), though it is a continuous function. However, it is
clear that ΠJ is monotonically increasing in α.
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Theorem 2. Suppose that the most efficient firm (firm 1) makes a complete

transfer to firm j (c1 ≤ c2 ≤ ... ≤ cj ≤ ... ≤ cK and c1 < cj). Then, the social

welfare improves.

Proof. By Lemma 1, we know that if a technology transfer is made from a

technologically superior firm to a technologically inferior firm, the equilibrium

total output Q increases. Now, consider firm k. If C decreases keeping ck

constant, Q increases while qk shrinks. We can write the relationship between

Q and qk (through changes in C behind) as follows:

qk(Q) =
P (Q)− ck
−P ′(Q)

.

Let us denote the original (before transfer) equilibrium by “hat,” and the new

equilibrium by “tilde.” Since firm j’s marginal cost cj only goes down from

ĉj = cj to c̃j = ci keeping all other marginal costs constant, we have Q̂ < Q̃ and

q̂k > q̃k for all k 6= j. Then, we necessarily have q̂j < q̃j and q̃j − q̂j > Q̃− Q̂.

Since the social welfare is written as

SW = (total benefit)− (total cost) =

∫ Q

0

P (Q′)dQ′ −
K∑
k=1

ckqk,

we have

S̃W =

∫ Q̃

0

P (Q′)dQ′ −
K∑
k=1

ckq̃k

=

∫ Q̂

0

P (Q′)dQ′ +

∫ Q̃

Q̂

P (Q′)dQ′ −
∑
k 6=j

ckq̃k − c1q̃j

=

∫ Q̂

0

P (Q′)dQ′ +

∫ Q̃

Q̂

P (Q′)dQ′ −
∑
k 6=j

ckq̃k − c1(Q̃− Q̂)− c1

(
q̃j − (Q̃− Q̂)

)
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=

∫ Q̂

0

P (Q′)dQ′ −
∑
k 6=j

ckq̃k − c1

(
q̃j − (Q̃− Q̂)

)
+

∫ Q̃

Q̂

P (Q′)dQ′ − c1(Q̃− Q̂).

The last two terms are obviously positive since P (Q̃) > c1. Thus, we have

S̃W − ŜW >

∫ Q̂

0

P (Q′)dQ′ −
∑
k 6=j

ckq̃k − c1

(
q̃j − (Q̃− Q̂)

)
− ŜW

=

∫ Q̂

0

P (Q′)dQ′ −
∑
k 6=j

ckq̃k − c1

(
q̃j − (Q̃− Q̂)

)
−
∫ Q̂

0

P (Q′)dQ′ +
K∑
k=1

ckq̂k

=
K∑
k=1

ckq̂k −
∑
k 6=j

ckq̃k − c1

(
q̃j − (Q̃− Q̂)

)
=
∑
k 6=j

ck (q̂k − q̃k) + cj q̂j − c1

(
q̃j −

K∑
k=1

(q̃k − q̂k)

)

=
∑
k 6=j

(ck − c1) (q̂k − q̃k) + (cj − c1) q̂j > 0.

Hence, we conclude S̃W > ŜW .�

Appendix B: Licensing Equilibria

We first characterize the set of Nash equilibria and then prove the existence

of a Nash equilibrium. The proof is relegated to the appendix. Although firm

1 is not a bidder, we let T1 ≡ 0 for notational convenience.

Lemma B1. In a simple auction, an outcome (j∗, T ∗) is a Nash equilibrium

in a simple auction if and only if

(a) π1 (j∗) + T ∗j∗ ≥ π1 (j) + T ∗j for all j.
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(b) If j∗ > 1, then π1 (j∗) + πj (j∗) + T ∗j∗ ≥ π1 (j) + πj (j) for all j 6= j∗.

(c) If j∗ > 1 and T ∗j∗ > 0, then π1 (j∗) + T ∗j∗ = π1 (j) + T ∗j for some j 6= j∗ and

π1 (j∗) + T ∗j∗ = π1

(
j̃
)

+ T ∗
j̃

implies πj∗ (j∗)− T ∗j∗ ≥ πj∗
(
j̃
)
.

Proof. We first characterize the set of Nash equilibria and then we show the

existence.

Consider (j∗, T ∗) is a Nash equilibrium outcome. Condition (a) is obvious

from the structure of the game. For (b), suppose we have some j 6= j∗ such

that πj (j∗) < πj (j) −
[(
π1 (j∗) + T ∗j∗

)
− π1 (j)

]
, then firm j can offer T̃j =

π1 (j∗) + T ∗j∗ − π1 (j) + εj for some εj > 0 so that Uj

(
j, T̃j, T

∗
−j

)
≥ Uj (j∗, T ∗)

and U1

(
j, T̃j, T

∗
−j

)
≥ U1

(
k, T̃j, T

∗
−j

)
for all k. What remains is condition (c).

If there is no j such that π1 (j∗)+T ∗j∗ = π1 (j)+T ∗j , then from condition (a), we

have π1 (j∗)+T ∗j∗ > π1 (j)+T ∗j for all j. Then firm j∗ can offer T̃j∗ = T ∗j∗−εj∗ for

some εj∗ > 0 so that Uj∗
(
j∗, T̃j∗ , T

∗
−j∗

)
≥ Uj (j∗, T ∗) and U1

(
j∗, T̃j∗ , T

∗
−j∗

)
≥

U1

(
k, T̃j∗ , T

∗
−j∗

)
for all k. If there is some j̃ with π1 (j∗) + T ∗j∗ = π1

(
j̃
)

+ T ∗
j̃

such that πj∗ (j∗)− T ∗j∗ < πj∗
(
j̃
)
, then firm j∗ can deviate to T̃j∗ = 0 so that

Uj∗
(
j̃, T̃j∗ , T

∗
−j∗

)
≥ Uj (j∗, T ∗) and U1

(
j̃, T̃j∗ , T

∗
−j∗

)
≥ U1

(
k, T̃j∗ , T

∗
−j∗

)
for all

k. Therefore, any Nash equilibrium satisfies all three conditions.

Suppose to the contrary that an outcome satisfies the three conditions but

(j∗, T ∗) is not a Nash equilibrium. Condition (a) implies that firm 1 selects

firm j∗. First, consider the case that j∗ has incentive to deviate from T ∗j∗ to

T̃j∗ . It is clear that T̃j∗ < T ∗j∗ because T̃j∗ ≥ T ∗j∗ would still make firm j∗ be the

licensee with no less payment. However, condition (c) implies that when j∗

reduces payment, there exists j̃ 6= j∗, π1

(
j̃
)

+T ∗
j̃

= π1 (j∗)+T ∗j∗ with πj∗ (j∗)−

Tj∗ (j∗) ≥ πj∗
(
j̃
)

to be chosen as the licensee, which violates the condition that

j∗ will deviate. Now consider j 6= j∗ deviates from T ∗j to T̃j. Then we have

T̃j ≥ 0 such that π1 (j)+T̃j ≥ π1 (k)+T ∗k for all k 6= j and πj (j)−T̃j > πj (j∗).
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From condition (b), we have π1 (j∗) + π∗j∗ (j∗) + T ∗j∗ ≥ π1 (j) + πj (j∗). Hence,

we have π1 (j∗) + T ∗j∗ − T̃j > π1 (j). From condition (c), we have for some

j̃ 6= j∗, π1 (j∗) + T ∗j∗ = π1

(
j̃
)

+ T ∗
j̃
, so that π1

(
j̃
)

+ T ∗
j̃
− T̃j > π1 (j) which

contradicts the conditions that j deviates.�

We now move on to characterize TNEs.

Proposition 1. No licensing is a TNE of the simple auction game if and only

if π1(1) + πj(1) ≥ π1(j) + πj(j) for all k = 2, ..., K. Suppose that no licensing

is not a TNE. Then, a profile (j∗, T ∗) is a TNE with licensing (j∗ > 1), if

and only if such that T ∗j∗ = maxj∈K\{1}{π1 (j) − π1 (j∗) + πj (j) − πj (j∗)},

T ∗j = πj(j) − πj(j∗) for all j 6= j∗, and π1 (j∗) + πj∗ (j∗) + πj (j∗) ≥ π1 (j) +

πj (j) + πj∗ (j) for all j 6= 1.

Proof. First suppose that no licensing is a TNE. Then, π1(j) + T ∗j ≤ π1(1)

and πj(j) = πj(1) +T ∗j holds for all j 6= 1. Thus, π1(1) +πj(1) ≥ π1(j) +πj(j)

holds. Conversely, if π1(1) + πj(1) ≥ π1(j) + πj(j) holds for all j 6= 1, then

π1(j) + T ∗j ≤ π1(1) and πj(j) = πj(1) + T ∗j holds.

Second, we consider the case with licensing. Let (j∗, T ∗) be a TNE. In a

TNE, we have T ∗j = πj (j) − πj (j∗) for all j 6= j∗. From condition (a) of

Lemma B1, we have π1 (j∗) + T ∗j∗ ≥ π1 (j) + T ∗j for all j 6= 1 so that T ∗j∗ =

maxj∈K\{1,j∗}{π1 (j) + πj (j) − πj (j∗) − π1 (j∗)}. This implies condition (b)

of Lemma B1. By condition (c) of Lemma B1, we have j̃ 6= j∗ such that

π1 (j∗) + T ∗j = π1

(
j̃
)

+ T ∗
j̃

and πj∗ (j∗) − T ∗j∗ ≥ πj∗
(
j̃
)
. Hence, we have

π1 (j∗) + πj∗ (j∗)− πj∗
(
j̃
)
≥ π1

(
j̃
)

+ πj̃
(
j̃
)
− πj̃ (j∗). Since π1

(
j̃
)

+ πj̃
(
j̃
)
−

πj̃ (j∗) ≥ π1 (j) + πj (j) − πj (j∗) for all j 6= j∗, we have π1 (j∗) + πj∗ (j∗) +

πj (j∗) ≥ π1 (j) + πj∗ (j) + πj (j) for all j 6= 1.

106



Consider π1 (j∗) + πj∗ (j∗) + πj (j∗) ≥ π1 (j) + πj∗ (j) + πj (j) for all j 6= 1.

Define T ∗j = πj (j)−πj (j∗) for all j 6= j∗ and T ∗j∗ = maxj∈K\{1}{π1 (j)+πj (j)−

πj (j∗)} − π1 (j∗). It is easy to check all conditions in a Nash equilibrium are

satisfied.�

Proposition 2. Under weakly concave demand, the simple auction licensee

(if exist) is at least as efficient as the joint-profit-maximizing partner.

Proof. Let j∗ ∈ arg maxj∈K [(π1 (j) + πj (j))− (π1 (1) + πj (1))] be the joint-

profit-maximizing partner. Suppose that there exists k > j∗ (i.e., ck > cj∗)

such that π1 (k) + πk (k) + πj∗ (k) > π1 (j∗) + πk (j∗) + πj∗ (j∗). Since we

have π1 (j∗) + πj∗ (j∗) − πj∗ (1) > π1 (k) + πk (k) − πk (1), it is easy to see

πj∗ (k)− πk (j∗) > πj∗ (1)− πk (1). However, we have

πj∗ (k)− πk (j∗) =
(P (Qk)− cj∗)2

−P ′ (Qk)
− (P (Qj∗)− ck)2

−P ′ (Qj∗)

<
(P (Qk)− cj∗)2

−P ′ (Qj∗)
− (P (Qj∗)− ck)2

−P ′ (Qj∗)

since −P ′ (Qj∗) < −P ′ (Qk) by weak concavity of P and Lemma 2. Then we

have

(P (Qk)− cj∗)2

−P ′ (Qj∗)
− (P (Qj∗)− ck)2

−P ′ (Qj∗)

=
(P (Qk) + P (Qj∗)− cj∗ − ck) (P (Qk)− P (Qj∗) + ck − cj∗)

−P ′ (Qj∗)

<
(2P (Q1)− cj∗ − ck) (ck − cj∗)

−P ′ (Q1)
= πj∗ (1)− πk (1)

since 2P (Q1) ≥ P (Qk) + P (Qj∗), −P ′ (Q1) < −P ′ (Qj∗) and from equi-

librium conditions we have ck − cj∗ = [−P ′ (Qk)]Qk − [−P ′ (Qj∗)]Qj∗ +
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K [P (Qj∗)− P (Qk)] so that 0 ≤ P (Qk) − P (Qj∗) + ck − cj∗ ≤ ck − cj∗ .

Hence, we have πj∗ (k)− πk (j∗) < πj∗ (1)− πk (1), which is a contradiction.�

Lemma B2. For any distinct i, j and k, define Π (i, j, k) = [πi (j)− πk (j)]−

[πj (i)− πk (i)]− [πi (k)− πj (k)]. Under linear demand, we have Π (i, j, k) = 0

for i < j < k.

Proof. Define Qk be the industry equilibrium output if the licensee is firm k.

First, we have

Π (i, j, k) =

[
(P (Qj)− ci)2

−P ′ (Qj)
− (P (Qj)− ck)2

−P ′ (Qj)

]
−

[
(P (Qi)− cj)2

−P ′ (Qi)
− (P (Qi)− ck)2

−P ′ (Qi)

]

−

[
(P (Qk)− ci)2

−P ′ (Qk)
− (P (Qk)− cj)2

−P ′ (Qk)

]

=
(2P (Qj)− ck − ci) (ck − ci)

−P ′ (Qj)
− (2P (Qi)− ck − cj) (ck − cj)

−P ′ (Qi)

− (2P (Qk)− ci − cj) (cj − ci)
−P ′ (Qk)

Under the linear (inverse) demand function be P (Q) = a − bQ where a, b >

0. Thus, we have −P ′ (Qh) = −P ′ (Qj) = −P ′ (Qk) = b and P (Qh) =

(a− C − c1 + ch) / (1 +K) for all h 6= 1. Hence, we have

Π (i, j, k) =

(
2
a− C − c1 + cj

1 +K
− ck − ci

)
ck − ci
b
−
(

2
a− C − c1 + ci

1 +K
− ck − cj

)
ck − cj
b

−
(

2
a− C − c1 + ck

1 +K
− cj − ci

)
cj − ci
b

=
2

b (1 +K)
[−cj (ck − ci) + ci (ck − cj) + ck (cj − ci)] = 0.�
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Proposition 3. (1) Suppose that K = 3. Then, a profile (j∗, T ∗) is a TNE

with licensing (j∗ 6= 1), if and only if (i) j∗ ∈ arg maxj∈{2,3} (π1(j) + π2(j) + π3(j)),

and (ii) T ∗j∗ = π1 (j) + πj (j)− π1 (j∗)− πj (j∗) where j 6= 1, j∗. (2) Under the

linear demand, there exists a TNE in a simple auction game.

Proof. First (1). From the statement of Proposition 1, it is straightforward

to show this.

Second, (2). Let j1 = arg maxj∈K [π1 (j) + πj (j)] − [π1 (1) + πj (1)] be the

joint-profit-maximizing partner. If j1 < K, then Proposition 2 has already

shown that π1 (j1) + πk (j1) + πj1 (j1) > π1 (k) + πk (k) + πj1 (k) for all j1 <

k. If we have π1 (j1) + πk (j1) + πj1 (j1) > π1 (k) + πk (k) + πj1 (k) for all

k < j1, then we are done. Suppose not. Define j2 = max{j < j2 : π1 (j) +

πj (j) + πj2 (j) > π1 (j1) + πj (j1) + πj2 (j2)}. We are going to show we have

π1 (j2) + πk (j2) + πj2 (j2) > π1 (k) + πk (k) + πj2 (k) for all k > j2: First, we

will show π1 (j2) + πk (j2) + πj2 (j2) > π1 (k) + πk (k) + πj2 (k) for all k > j1. It

is trivial if j1 = K. Consider j1 < K. Using Lemma B2, we have

π1 (j2) + πj2 (j2) + πk (j2)

= π1 (j2) + πj2 (j2) + πk (j2)− Π (j2, j1, k)

= π1 (j2) + πj2 (j2) + πk (j2)− [πj2 (j1)− πk (j1)− πj1 (j2) + πk (j2)− πi (k) + πj2 (k)]

= π1 (j2) + πj2 (j2) + πj1 (j2)− πj2 (j1) + πk (j1) + πj2 (k)− πj1 (k)

> π1 (j1) + πj2 (j1) + πj1 (j1)− πj2 (j1) + πk (j1) + πj2 (k)− πj1 (k)

= π1 (j1) + πj1 (j1) + πk (j1) + πj2 (k)− πj1 (k)

≥ π1 (k) + πj1 (k) + πk (k) + πj2 (k)− πj1 (k)

= π1 (k) + πj2 (k) + πk (k)
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What remains is to show we have π1 (j2) +πh (j2) +πj2 (j2) > π1 (h) +πh (h) +

πj2 (h) for all h such that j2 < h < j1. (This step is trivial if j2 = j1 − 1.)

By construction, we have π1 (j1) + πj1 (j1) + πh (j1) ≥ π1 (h) + πj1 (h) + πh (h).

Hence, we have

π1 (j2) + πh (j2) + πj2 (j2)

= π1 (j2) + πh (j2) + πj2 (j2) + Π (j2, h, j1)

= π1 (j2) + πh (j2) + πj2 (j2) + [πj2 (h)− πj1 (h)− πh (j2) + πj1 (j2)− πj2 (j1) + πh (j1)]

= π1 (j2) + πj1 (j2) + πj2 (j2) + πj2 (h)− πj1 (h)− πj2 (j1) + πh (j1)

≥ π1 (j1) + πj1 (j1) + πj2 (j1) + πj2 (h)− πj1 (h)− πj2 (j1) + πh (j1)

= π1 (j1) + πj1 (j1) + πj1 (j1) + πj2 (h)− πj1 (h)

≥ π1 (h) + πh (h) + πj1 (h) + πj2 (h)− πj1 (h)

= π1 (h) + πh (h) + πj2 (h)

Therefore, we have π1 (j2) + πk (j2) + πj2 (j2) > π1 (k) + πk (k) + πj2 (k) for

all k > j2. If we have π1 (j2) + πk (j2) + πj2 (j2) > π1 (k) + πk (k) + πj2 (k)

for all k < j2, then we are done. Otherwise, we can inductively define

jn+1 = max {j < jn : π1 (j) + πj (j) + πjn (j) > π1 (j1) + πj (jn) + πjn (jn)}

and repeat the argument to show π1 (jn+1) + πk (jn+1) + πjn+1 (jn+1) >

π1 (k) + πk (k) + πjn+1 (k) for all k > jn+1. Since jn is strictly decreasing and

jn ≥ 2, the process must end in finite steps. Then, there exists some firm j∗

with 2 ≤ j∗ ≤ j1 such that π1 (j∗)+πj∗ (j∗)+πj∗ (k) > π1 (k)+πj∗ (k)+πk (k)

for all k 6= j∗.�
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Bernheim and Whinston (1986) characterize the set of TNE payoffs and action

of a menu auction game. We utilize their efficiency (industry profit maximiza-

tion) result of TNEs:

Proposition 4. A menu auction licensee is at least as efficient as a simple

auction licensee.

Proof. Denote jS and jM simple auction licensee and menu auction li-

censee. By the property of a TNE in menu auction, we have
∑

h∈K πh
(
jM
)
≥∑

h∈K πh
(
jS
)
. By Proposition 1, we have π1

(
jS
)

+ πjM
(
jS
)

+ πjS
(
jS
)
≥

π1

(
jM
)

+ πjS
(
jM
)

+ πjM
(
jM
)
. Hence, we have

∑
h∈K\{1,jS ,jM} πh

(
jM
)
≥∑

h∈K\{1,jS ,jM} πh
(
jS
)
.This implies that jM ≤ jS .�

Proposition 5. If demand is linear and K ≥ 3, then licensing must occur in

a truthful Nash equilibrium in menu auction.

Proof. Since a TNE in menu auction always achieves the most efficient action,

it suffices to show that transfer to firm 2 always leads to higher total industry

profit.

We are going to show the linear case first. Let the inverse demand function

be P (Q) = a− bQ. The industry total profit would be

Π =
∑
i∈K

1

b

[
a+

∑
j∈K cj

(1 +K)
− ci

]2

So that if transfer from firm 1 to firm 2, then the industry total profit is

Π̂ =
∑

i∈K\{2}

1

b

[
a+

∑
j∈K cj + c1 − c2

(1 +K)
− ci

]2

+
1

b

[
a+

∑
j∈K cj + c1 − c2

(1 +K)
− c1

]2
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the change in profit would then be

Π̂− Π

=
1

b

∑
i∈K\{2}

[(
a+

∑
j∈K cj + c1 − c2

1 +K
− ci

)2

−
(
a+

∑
j∈K cj

1 +K
− ci

)2
]

+
1

b

[(
a+

∑
j∈K cj + c1 − c2

(1 +K)
− c1

)2

−
(
a+

∑
j∈K cj

(1 +K)
− c2

)2
]

=
1

b

∑
i∈K\{2}

(
2a+ 2

∑
j∈K cj + c1 − c2

1 +K
− 2ci

)(
c1 − c2

1 +K

)

+
1

b

(
2a+ 2

∑
j∈K cj + c1 − c2

1 +K
− c1 − c2

)(
c1 − c2

1 +K
− c1 + c2

)

=
1

b

c1 − c2

1 +K

(K − 1)
2a+ 2

∑
j∈K cj + c1 − c2

1 +K
− 2

∑
i∈K\{2}

ci


+
K

b

c2 − c1

1 +K

(
2a+ 2

∑
j∈K cj + c1 − c2

1 +K
− c1 − c2

)

=
1

b

c2 − c1

1 +K

2a+ 2
∑

j∈K cj + c1 − c2

1 +K
+ 2

∑
i∈K\{2}

ci −Kc1 −Kc2


=

1

b

c2 − c1

(1 +K)2

2a+ 2
∑
j∈K

cj + c1 − c2 + 2 (1 +K)
∑

i∈K\{2}

ci −K (1 +K) c1 −K (1 +K) c2


=

1

b

c2 − c1

(1 +K)2

(
2a+ 2 (2 +K)

∑
j∈K

cj −
(
K2 +K − 1

)
c1 −

(
K2 + 3K + 3

)
c2

)

Since each firm is having positive output after transfer, price must be higher

than cK . Hence, we have 1
1+K

(
1 +

∑
j∈K cj − c2

)
− c3 > 0 which implies

a+
∑

j∈K cj > (K + 2) c2 if K ≥ 3. Then, we have

Π̂− Π

>
1

b

c2 − c1

(1 +K)2

(
2 (K + 2) c2 + 2 (K + 1)

∑
j∈K

cj −
(
K2 +K − 1

)
c1 −

(
K2 + 3K + 3

)
c2

)
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=
1

b

c2 − c1

(1 +K)2

(
2 (K + 1)

∑
j∈K

cj −
(
K2 +K − 1

)
(c1 + c2)

)

=
1

b

c2 − c1

(1 +K)2

(
2 (K + 1)

∑
i>2

ci −
(
K2 −K − 3

)
(c1 + c2)

)

≥ 1

b

c2 − c1

(1 +K)2

(
2 (K + 1) (K − 2) c2 −

(
K2 −K − 3

)
(c1 + c2)

)
≥ 0

Hence, transfer to firm 2 always generate strictly higher industry total profit

than no licensing and as TNE in menu auction always achieves the most effi-

cient action, no licensing cannot be a TNE outcome of menu auction game.�

Proposition 6. If firm j∗ is a menu auction licensee and only j∗ is paying for

the license, then j∗ is a simple auction licensee.

Proof. Clearly j∗ = 1, then π1 (1) ≥ πj (j) +
∑

h∈K Th (j) for all j ∈ K. By

truthful strategies, we have Tj (j) ≥ πj (j) − πh (1) for all j ∈ K. Therefore,

we have, π1 (1) + πj (1) ≥ π1 (j) + πj (j) +
∑

h∈K Th (j) ≥ π1 (j) + πj (j) for all

j 6= 1. Hence, by Lemma 5, it is a TNE in simple auction.

Consider j∗ > 1. Define Th =
∑

k∈K T
∗
h (k). It is easy to check that (j∗, T ) is

a NE. What remains is to show that (j∗, T ) is a TNE. Since (j∗, T ∗) is a TNE

in menu auction, we have π1 (j∗) + T ∗j∗ (j∗) ≥ π1 (k) +
∑

h∈K T
∗
h (k) for all k.

Bernheim and Whinston (1986) shows that there exists a TNE (j∗, T̃ ) such that

πj (j∗) − T̃j (j∗) = πj (j) − T̃j (j) if πj∗ (j∗) − T̃j∗ (j∗) ≥ πj (j) and T̃j (j) = 0

if πj∗ (j∗) − T̃j∗ (j∗) < πj (j). Hence, π1 (j∗) + πj∗ (j∗) − πj∗ (j) ≥ π1 (j) +∑
h∈P [πh (j)− πh (j∗)] for all j where P = {j ∈ K\ {j∗} : πj (j∗) ≤ πj (j)}.

By rearranging, we have π1 (j∗) + πj∗ (j∗) +
∑

h∈P πh (j∗) ≥ π1 (j) + πj∗ (j) +∑
h∈P πh (j). For all h ∈ P , we have πh (h) ≥ πh (j∗), which implies π1 (j∗) +

πj∗ (j∗) +πk (j∗) ≥ π1 (k) +πj∗ (k) +πk (k). By Proposition 3, we know (j∗, T )

is a TNE in simple auction.�
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