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Abstract

Partitioning an individual’s phenotype into genetic and environmental components

has been a major goal of genetics since the early 20th century. Formally, the

proportion of phenotypic variance attributable to genetic variation in the popula-

tion is known as heritability. Genome wide association studies have explained a

modest percentage of variability of complex traits by genotyping common variants.

Currently, there is great interest in what role rare variants play in explaining the

missing heritability of complex traits. Advances of next generation sequencing and

genomic enrichment technologies over the past several years have made it feasible to

re-sequence large numbers of individuals, enabling the discovery of the full spectrum

of genetic variation segregating in the human population, including rare variants.

The four projects that comprise my dissertation all revolve around the discovery

of rare variants from next generation sequencing datasets. In my first project, I

analyzed data from the exon sequencing pilot of the 1000 Genomes Project, where

I discovered variants from exome capture sequencing experiments in a worldwide

sample of nearly 700 individuals. My results show that the allele frequency spectrum

of the dataset has an excess of rare variants.

My next project demonstrated the applicability of using whole-genome amplified

DNA (WGA) in capture sequencing. WGA is a method that amplifies DNA from

nanogram starting amounts of template. In two separate capture experiments I

compared the concordance of call sets, both at the site and genotype level, of variant

calls derived from WGA and genomic DNA. WGA derived calls have excellent con-
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cordance metrics, both at the site and genotypic level, suggesting that WGA DNA

can be used in lieu of genomic DNA. The results of this study have ramifications

for medical sequencing experiments, where DNA stocks are a finite quantity and

re-collecting samples maybe too expensive or not possible.

My third project kept its focus on capture sequencing, but in a different context.

Here, I analyzed sequencing data from Mendelian exome study of non-sensorineural

hearing loss (NSHL). A subset of 6 individuals (5 affected, 1 unaffected) from a

family of European descent were whole exome sequenced in an attempt to uncover

the causative mutation responsible for the loss of hearing phenotype in the family.

Previous linkage analysis uncovered a linkage region on chr12, but no mutations

in previous candidate genes were found, suggesting a novel mutation segregates

in the family. Using a discrete filtering approach with a minor allele frequency

cutoff, I uncovered a putative causative non-synonymous mutation in a gene that

encodes a transmembrane protein. The variant perfectly segregates with the phe-

notype in the family and is enriched in frequency in an unrelated cohort of individuals.

Finally, for my last project I implemented a variant calling method for family sequenc-

ing datasets, named Pgmsnp, which incorporates Mendelian relationships of family

members using a Bayesian network inference algorithm. My method has similar de-

tection sensitivities compared to other pedigree aware callers, and increases power of

detection for non-founder individuals.
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Chapter 1

Introduction

Since the discovery of the laws of inheritance by Gregor Mendel in the 19th century

the field of genetics has progressed with new findings made possible by advances in

technology. In the early 20th century the fields of population and quantitative genetics

were founded with the formulation of new mathematical and statistical methods to

study variation and the inheritance of traits. Technological advances led the birth of

molecular biology in the 1970s that enabled geneticists to study genes at the molecular

level. Today, in the modern post-genomic world, large scale analyses for genetic

variation data have given an unparalleled opportunity to uncover the genetic basis of

phenotypic traits. Like much of its past history, progress in genetics still depends on

methodological and technological advances to study variation at a fine scale.

1.1 Genome-wide Association Studies

Single nucleotide polymorphisms (SNPs) are single base pair differences between

individual chromosomes in a population. Genetic association studies genotype SNPs

and search for correlations between a SNP genotype and a disease phenotype in

a set of affected and unaffected individuals. SNPs that are tested for association

either must be the causative allele or be in linkage disequilibrium (LD) with the
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causative allele. LD is the non-random association of alleles between adjacent loci

on a chromosome. SNPs that are in LD with a causative allele serve as a proxy and

the association with the disease phenotype is maintained.

The completion of the Human Genome Project (HGP) facilitated the discovery

of millions of SNPs and their use in genetic association studies. Shortly after the

completion of the HGP, the HapMap project [23] commenced. Its primary aim

was to catalog common genetic variation (minor allele frequency or MAF ≥ .05) in

populations throughout the world. The HapMap project truly enabled geneticists

to embark on genome-wide association studies (GWAS). The HapMap project and

subsequent GWAS study designs were based on the common disease common variant

hypothesis (CDCV), which states that genetic risk for complex diseases can be

attributed to loci where there are a limited number of common variants segregating

in the population.

Prior to GWAS

Prior to the GWAS era there were several early milestones, both technical and

methodological, that made association studies feasible. [78]. David Botstein and

colleagues in 1980 called for the construction of a genome wide linkage map using

restriction length fragment length polymorphisms (RFLPs) as markers [13]. By

1987 the first linkage map of the human genome was constructed [32, 52]. The

mapping of Mendelian traits and diseases was a natural application of linkage

mapping, but many other traits and diseases followed a multifactorial inheritance

pattern. Lander and Botstein [81] first proposed using linkage disequilibrium map-

ping in 1986, even prior to the first human linkage map being completed. The

first demonstrated example of LD between a DNA polymorphism and a disease mu-
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tation was between a RFLP allele in the β-globin gene and sickle-cell hemoglobin [68].

Early estimates of how much LD was present in the human population suggested

that it would extend to a 100 kbp or less [12] so a high density map would be

needed to carry out LD mapping. At the time this was too laborious a task and

Lander and Botstein suggested using LD mapping in population isolates who have

a greater extent of LD. As the 1980s progressed genetic mapping studies took off

as microsatellite markers replaced RFLPs [142]. Family based linkage studies were

the primary tool in locating disease genes with LD mapping used to fine map the

location of genes first identified by linkage. This approach was first established

by Kerem [71] in locating the gene for cystic fibrosis. The first whole-genome LD

mapping study resulted in finding the gene responsible for recurrent intrahepatic

cholestasis (BRIC) in population isolates in the Netherlands [60]. A similar approach

was used to locate the gene for Hirschprung disease in the Mennonite community [116].

In 1996 Neil Risch and Kathleen Merikangas wrote an influential essay promoting

the idea that association mapping is a better approach than family based design

linkage studies for discovering common variants of small effect [122]. The reasoning

behind this is two-fold. First, since linkage studies rely on allele sharing between

relatives and if the allele is commonly segregating in the population it can enter

the pedigree via multiple founders. Second, if the conferred risk of the allele is

small, affected individuals may have the phenotype due to other causes. Association

studies avoid the first drawback and are well-suited to uncovering alleles of small to

moderate effect. The only drawback at the time Risch and Merikangas published

their essay was the lack of the molecular tools to discover and genotype common

genetic variation segregating in the human population. To address this roadblock a

public-private consortium of companies and academics formed The SNP Consortium
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to develop the genotyping technology to identify a genome wide collection of at least

100,000 SNPs [123].

Haplotype Blocks and LD

In the early 2000s after the the completion of the HGP, several publications detailed

for the first time LD patterns in the human genome [109, 39]. They all showed

that there was a ”block” like pattern to LD, where there were regions of strong LD

with low haplotype diversity. These regions are called haplotype blocks. There are

various methods to computationally define a haplotype block [109, 39], and while

there is no gold standard definition, analyzing LD patterns with a variety of methods

may be the best approach [64]. No matter how they are identified, the definition

of haplotype blocks served to reduce the number of SNPs required in association

studies by identifying and typing only the subset of tag SNPs which uniquely identify

common haplotypes present in a block [28]. The frequencies of these SNPs can be

compared in groups of case and control individuals. This was the underpinning of

the HapMap project.

For much of the early to mid-2000s after the HGP was completed the common-

disease, common variant hypothesis (CDCV) was the prevailing thought in the

human genetics community. Its main tenet is that genetic risk for common diseases

is conferred by a single common variant (or small number of them) segregating in

the population. If this was true, and taking advantage of the block like structure

of LD, association mapping would have strong power to uncover variants associated

with disease[114, 121]. Association studies work on the premise that SNP genotypes

are correlated with a disease phenotype. Individual SNPs are genotyped and the

frequency of alleles are compared between groups of affected and un-affected individ-
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uals. SNPs that are tested for association either must be the causative allele or be

in linkage disequilibrium (LD) with the causative allele. Individuals are genotyped

for SNPs using genotyping arrays which typically 100,000 to 500,000 markers. Data

quality of the resulting genotypes is checked, typically by removing SNPs that are

not in Hardy-Weinberg equilibrium [6]. Association testing is typically done on a

single SNP basis, in which each SNP is testing individually for association with the

phenotype. Typically, a 2-by-2 χ2 is constructed to test individual alleles, under the

null hypothesis of no association.

The first successful GWAS utilizing HapMap data was a study by Hoh and colleagues

[74] that uncovered a risk allele in the CFH gene for age-related macular degeneration

(AMD). AMD is a major cause of blindness in the elderly and is characterized by

progressive damage to the retina caused by accumulation of extracellular deposits

called drusen. Previous linkage studies identified chromosomal regions demonstrating

linkage to the phenotype, but failed in discovering a causative allele [1]. Hoh and

colleagues designed a genome-wide association study comprised of 96 individuals with

and 50 individuals without AMD. The 146 individuals genotyped all had European

ancestry. They genotyped 103,000 SNPs spread across the 22 autosomal chromo-

somes. After careful quality control of SNP genotypes, single marker association

was performed by constructing a 2-by-2 contingency table of allele frequencies and

computing Pearson’s χ2 test statistic based on the χ2 distribution under the null

hypothesis of no association. Two SNPs, rs380390 and rs1329428, within an intron

of the CFH gene had significant p-values (after Bonferroni correction). Hoh used

genotype data from the Utah-CEPH population from the HapMap project to closely

examine LD patterns in this region. Using a haplotype block definition from [39],

which is based on D’ values, the two associated SNPs were located in a 41 kb LD

block contained within the CFH gene. Six SNPs genotyped by Hoh were contained
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in this 41 kb block and they formed four predominant haplotypes. The highest risk

haplotype contained the risk allele for SNP rs380390 and being heterozygous for

this marker increased the odds of having AMD by 4.6. To uncover the functional

polymorphism responsible for the association signal in the CFH gene, Hoh and

colleagues re-sequenced all exons in the gene in each of the 96 affected individuals.

They discovered a non-synonymous tyrosine-histidine variant 2 kb upstream of

the previously identified haplotype block. The CFH gene is part of the innate

immune system and regulates against infection. Individuals who carry the risk allele

develop AMD due to abnormal CFH activity that elicits an inflammatory process [74].

The AMD study described above is exemplary of a successful GWAS result. Other

traits examined by GWAS designs have uncovered novel loci, but haven’t explained

the majority of the heritability. The classic example of this is human height. Twin

studies indicate that height is 80% heritable, but a recent meta-analysis of 46 GWAS

on height by Peter Visscher and colleagues uncovered 207 significantly associated

SNPs which explained approximately 10% of the heritability [82]. The study analyzed

133,653 individuals and imputed genotypes at 2.5M SNPs. The associated variants

span 180 genes and are enriched in loci for skeletal growth. The common SNPs

genotyped did fail to explain the majority of the heritability of height but the genes

found to be associated contributed to understanding biological mechanisms involved

in human growth and stature [57].

Missing Heritability and Rare Alleles

There have been notable successes with GWAS based on the CDCV hypothesis, such

as studies uncovering variants conferring risk to age-related macular degeneration

[49]. But for other traits, such as height, which has a heritability of 80%, GWAS

results using common variants has uncovered only 5 to 10% of this heritability
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[141, 147, 82]. The inability of GWAS to explain the majority of heritability of

traits has been deemed the ‘missing heritability problem’ [95] and refuted the CDCV

hypothesis [41]. Three alternative explanations to the CDCV hypothesis exist. First

is that genetic variance can be attributed to a large number of small effect common

variants (the infinitesimal model [41]). This was first formalized by Fisher and states

that infinitely many unlinked genes have small additive effects such that selection

produces negligible changes in allele frequency and variance [55]. Second, there are

a large number of rare alleles with large effect (the RALE model [41, 136]). Finally,

various forms of genetic, environmental, and epigenetic interactions [41] account

for the missing variance. Standard quantitative genetic theory, formulated by R.A.

Fisher [94], supports the infinitesimal model, but to uncover such variants would

require sample sizes larger than the human population to detect them. Rather

than missing then, most heritability is hidden. Evolutionary and population genetic

theory support the RALE model. Population genetic theory predicts that the

majority of variants segregate at low frequency [52]. If a variant contributes to

disease, it is (mildly) deleterious for an individual’s fitness and would be purged from

the population. Hence, disease-associated variants would be held at low frequency

and mutation-selection balance would prevent such deleterious alleles to drift to

higher frequency. Many of the large scale sequencing studies show a skew in the

allele frequency spectrum and consistently show a large excess of rare alleles when

compared to the standard, constant-sized neutral model.

Until very recently, many of the commercial genotyping arrays utilized in GWAS

contain only common variants, making it difficult to detect an association signal

from rare variants. The only way to discover rare variants is to comprehensively

re-sequence large numbers of samples. Using traditional Sanger sequencing, it would

be too labor- and cost-intensive to undertake such studies. Only with the advent
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of next-generation sequencing (NGS) platforms, which have higher throughput and

lower costs, has it been possible to undertake large, population scale sequencing to

discover rare variants in the human population. The 1000 Genomes Project picked

up where the HapMap Project left off by whole genome sequencing over a thousand

individuals from worldwide populations [33, 22] using NGS technology to catalog the

full spectrum of human genetic variation down to minor allele frequency of 1 percent.

Companies such as Illumina and Affymetrix are already designing new genotyping

arrays with rare variants discovered from the 1000 Genomes project and a new wave

of GWAS findings are uncovering new associations with the inclusion of rare alleles

[25].

1.2 Exome sequencing for Mendelian and complex

traits

With the advent of next generation sequencing technologies and methods for genomic

enrichment (described fully in Section 1.4), the application of capture sequencing

whole exomes has had notable successes in uncovering the causative allele for

Mendelian diseases. Since the advent of GWAS some have argued that attention has

been diverted from uncovering the genetic basis of Mendelian disease [4]. Traditional

linkage mapping of Mendelian disorders in many cases identifies linkage regions

several Mbp in size containing potentially hundreds of candidate genes. Traditional

Sanger sequencing would be too painstaking and expensive, but whole-exome se-

quencing provides a more cost-effective and rapid way to locate causative mutations

[42]. Successful applications of exome sequencing to Mendelian diseases have been

demonstrated in uncovering the causative mutation in Miller Syndrome [106] and
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Kabuki Syndrome [105].

Successful Mendelian exome studies have used a discrete filtering approach as opposed

to traditional statistical association methods to identify causative mutations [131].

Basic assumptions of this filtering approach are that causative candidate mutations

are non-synonymous, extremely rare ( often private to the afflicted family), there is

complete penetrance of the phenotype, and every affected individual will carry the

disease variant. Besides dividing variants as synonymous or non-synonymous, other

methods such as PolyPhen [3] or SIFT [79] can computationally predict whether

non-synonymous variants will have deleterious effects based on physiochemical or

phylogenetic evidence. Based on the previous assumption that causative mutations

will be rare, exome variants are filtered against known variant catalogs such as

dbSNP, with records matching existing variants in such databases being removed

from consideration. Applying such a filtering strategy under a recessive model of

inheritance has resulted in at least 11 studies. Applying it to Mendelian diseases

under a dominant inheritance model has proved more difficult (only 4 such studies

have been published) [131].

Based on published findings, one would assume that applying exome sequencing to

Mendelian diseases is as simple as sequencing a small collection of affecteds and

applying a discrete filtering approach to uncover causative candidate mutations.

The early success stories of exome sequencing may represent the low hanging fruit

and more statistically motivated filtering approaches will need to be developed [66].

Also, the assumption of complete penetrance of disease alleles does not necessarily

take into account genetic background effects or modifier loci [18]. There is a distinct

possibility that under some conditions, some alleles may be non-pathogenic in one

background while pathogenic in another. Rather than hard filter against variant
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catalogs, a minor allele cutoff should be specified [131].

Studies applying exome sequencing for complex traits have not been as common. In

order for exome sequencing for complex disease/traits to be well-powered, sample sizes

in excess of 10,000 will need to be collected [72]. The reason why exome sequencing

for Mendelian disease have been performed with only a few samples is because the

mutations have a large effect size. Effect sizes of variants influencing complex traits

are much smaller, hence the need for larger sample sizes. It would be naive to think

that variants contributing to the heritability of complex traits only reside in protein

coding regions, so why not just sequence the whole genome? High coverage, whole

genome sequencing for the sample sizes required for rare variant association studies

are not commonplace yet. Also, many of the significant associations resulting from

GWAS designs are in non-coding, intergenic regions, making biological interpretation

difficult. Protein coding mutations on the other hand can be more straightforward

to interpret. Gene-centric, whole exome studies might not explain all the heritability

for complex traits, but it can highlight what genes are involved [72].

1.3 Family based sequencing

Historically the study of family pedigrees have played a central role in human ge-

netics research. Linkage analysis studies have had very notable successes [71]. With

availability of dense genotyping arrays, the role of family based designs diminished

with the rise of GWAS designs. But high throughput sequencing and genomic

enrichment techniques, coupled with the increased interest in rare variants and their

role in disease have revived the studies of pedigrees. A significant proportion of new

variants discovered with high throughput sequencing segregate at low frequencies

in the population, but they may be enriched in families with multiple affected
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individuals. Studying families then can increase the statistical power of rare variant

analysis [89, 88] and uncover casual variants as well as new biological pathways.

A recent example of a family sequencing study from researchers at Johns Hopkins

involved targeted sequencing of genes involved in the neuregulin (NRG) signaling

pathway in families with multiple affected members with schizophrenia (SZ) [53]. SZ

is a genetically heterogenous trait with alleles that are individually rare and poten-

tially specific to individual cases/families [101]. The Hopkins study re-sequenced 120

exons using the Illumina platform in the 10 genes involved in the neuregulin signaling

pathway. NRGs are a collection of signaling molecules that bind to receptors and

regulate neuronal migration [53]. The investigators sequenced 24 pairs of affected

relatives (48 individuals total) and found deleterious variants clustered in certain SZ

pedigrees. SZ exhibits allelic heterogeneity [101], so biological pathways might be

different between individual patients, but will be similar within families [53]. Sup-

porting this hypothesis, some of the families had multiple NRG pathway variants

while others had none [53].

1.4 Overview of DNA Sequencing Methods and

Technologies

DNA sequencing is the process of determining the exact order of nucleotides in a

DNA molecule. While many genetic discoveries were made with the tools of clas-

sical genetics [15], combined with the tools of molecular biology, DNA sequencing

has become an essential tool of modern biomedical research. Below, I briefly de-

scribe methods of DNA sequencing, starting with Sanger sequencing and ending with

current, state-of-the art next generation sequencing platforms.
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Sanger sequencing

Sanger sequencing is a method of DNA sequencing developed by Fredrick Sanger

and his colleagues in 1977 that is based upon incorporation of dideoxynucleotides by

DNA polymerase during the process of in vitro DNA replication [124]. The start-

ing materials for Sanger sequencing include single stranded template DNA, DNA

primer(s), DNA polymerase, deoxynucleosidetriphosphates (dNTPs) and modified

di-deoxynucleosidetriphosphates (ddNTPs). The ddNTPs lack a 3’-OH (hydroxyl)

group required for making a phosphodiester bond between two nucleotides, and upon

incorporation by DNA polymerase, stops extension of DNA. Traditional Sanger se-

quencing requires four separate sequencing reactions, each containing the standard

dNTPs, but in each reaction only a single ddNTP is added. After successive rounds

of denaturation, annealing, and extension the resulting fragments are heat denatured

and run on a polyacrylamide gel. Each of the four separate sequencing reactions are

loaded into four lanes on the gel. Finally, the individual DNA bands can be visualized

by autoradiography and read off from the resulting images.

Dye terminators and capillary sequencing

In dye-terminator sequencing a fluorescent dye is attached to ddNTPs, thus reducing

the number of sequencing reactions from four per sample to one. A similar starting

cocktail of DNA template, four species of dNTPs, four fluorescently labeled ddNTPs,

and DNA polymerase is used to start the sequencing reaction. The resulting DNA

fragments will each have labeled ddNTPs. Rather than using gels to analyze the

sequenced fragments, in the late 1990s new automated DNA sequencers used capillary

electrophoresis. The products of the sequencing reaction are injected into a capillary

tube filled with polymer and high voltage is applied so that the negatively charged

DNA travels through the capillaries towards the positive electrode. Prior to reaching

the positive electrode the fluorescently labeled DNA fragments pass through a laser
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Figure 1.1: Sanger sequencing - Sanger sequencing using dye-terminators and cap-
illary electrophoresis, taken from [36]

beam which causes the labeled dyes to fluoresce. Each dye emits a differing wavelength

when passing through the laser, and the optical signals are recorded and converted

to basecalls by computer software [35]. Figure 1.1 shows an overview of Sanger

sequencing using capillary electrophoresis.

Next Generation Sequencing

Capillary-based Sanger sequencing had been the standard method of DNA sequenc-

ing, but has limitations to the amount of throughput, scalability, and cost in order to

sequence large cohorts of samples. Over the past seven years there has been a shift

away from Sanger sequencing to next generation sequencing (NGS) technologies. The

key advance with NGS is the ability to sequence DNA in a massively parallel fashion,
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enabling the sequencing of gigabase amounts of DNA. Figure 1.2 shows the general

steps common to all commercial NGS platforms. A genomic DNA sample is frag-

mented into a smaller, uniformly represented library of molecules. The sequence of

bases are determined by carrying out millions of massively parallel reactions. The re-

sulting sequencing reads are aligned to the reference genome and the sequence of the

original sample is determined by the consensus of the aligned reads. There are sev-

eral commercial vendors offering their own NGS platform, each with unique methods

in how parallel sequencing reactions are performed. The following sections describe

some of the currently used NGS platforms.

Figure 1.2: NGS overview - Common steps involved in all NGS platforms
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Illumina

Illumina sequencing reactions occur in an 8-lane flow cell in which DNA fragments

are immobilized to adapters that have been ligated to both ends. The flow cell has a

dense lawn of primers on its surface, and the addition of unlabeled nucleotides and

enzyme initiates solid-phase bridge amplification. This step results in priming and ex-

tension of the single-stranded DNA templates into double stranded “bridges” on the

solid surface of the flow cell. Denaturation results in additional single-stranded DNA

templates, and at the end of the bridge amplification step millions of dense clusters

of DNA are attached to the solid surface of the flow cell. Bases are determined one

at a time by adding a fluorescently labelled dNTP, terminator, primer, and DNA

polymerase. The dNTPs have a cleavable fluorophore and have a 3’ blocking group.

All four dNTPs compete for binding and after laser excitation, the fluorescence is

recorded from each cluster. The blocking group is removed and the cycle starts again

to determine the base by base composition of DNA of each cluster on the flow cell.

The recorded fluorescence images from the clusters are then processed into base calls,

with the end result being millions of sequencing reads. These reads are then input

for any number of short-read aligners or de-novo assemblers.

454

454 Life Sciences sequencing technology uses a massively parallel pyrosequencing tech-

nology to generate reads. Pyrosequencing is based upon detecting the release of py-

rophosphate when a new nucleotide is incorporated. The first step in the 454 process

is emulsion PCR (em-PCR) where adapter-ligated template DNA fragments are af-

fixed on capture beads in a water-oil emulsion. The DNA on the beads is amplified by

PCR and then the beads are placed into micro-titer plate, along with other necessary

reagents like DNA polymerase, ATP sulfurylase, and luciferase. The plate is placed
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into the sequencing instrument where microfluidics delivers all four nucleotides that

flow over the plate. There are millions of DNA fragments attached to the beads in the

plate which are sequenced in parallel. The DNA polymerase will add on a comple-

mentary nucleotide and upon extension the instrument will record the light emitted.

The signals are recorded in flow grams which downstream basecalling software will

analyze to generate sequencing reads.

Ion Torrent

Ion Torrent sequencing detects the release of hydrogen ions during the polymerization

of DNA. A dNTP is incorporated into a growing DNA strand if its complementary

to the leading template strand. Upon incorporation a pyrophosphate and a pro-

ton (positively charged hydrogen atom) is released when the new covalent bond is

formed. The Ion Torrent platform uses microwells on a semiconductor chip that con-

tain a single-stranded DNA molecule whose sequence needs to be determined and a

DNA polymerase. dNTPs are sequentially flooded and if a dNTP is incorporated by

the polymerase a proton is released, as previously described. This changes the pH

of the microwell, and the changes in pH are measured by an ion sensitive field-effect

transistor (ISFET). Hence, each semiconductor chip contains microwells, ISFET de-

tectors, and the proton release will change the current of the resistor. These current

changes are transmitted to the computer which then are algorithmically converted

into basecalls. Unlike other sequencing technologies, which are based on labelled

nucleotides and laser recordings of light release, Ion Torrent does not require any

labelled nucleotides or any intermediate signal processing [133]

Pacific Bioscience

Pacific Biosciences (PacBio) uses single molecule real time sequencing (SMRT) to

sequence a DNA molecule in a parallelized fashion, without the need to clonally
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amplify template DNA. The SMRT technology effectively observes the activity of

DNA polymerase in realtime. The DNA template and polymerase is affixed to the

bottom of the zero-mode waveguide (ZMW). Phospholinked nucleotides each have

a unique fluorescent dye attached to the phosphate group. When the polymerase

incorporates a nucleotide a phosphodiester bond is formed and the dye is cleaved

off. The ZMW is an optical nanostructure that allows the creation of subdiffraction

detection volumes required for single-molecule fluorescence microscopy [77], allowing

for the detection of the incorporation of a single nucleotide. There are millions of

ZMWs on a SMRT cell allowing for parallel reactions to run.

Capture sequencing

Coinciding with advancements in new sequencing technologies, there have been con-

siderable advancements of methods for genomic partitioning or enrichment. These

techniques capture a DNA region of interest and then are sequenced allowing for

many individuals to be sequenced, as opposed to whole genome sequencing of smaller

number of samples for a similar cost. [128, 137]. While commonly referred to as

exome sequencing, because in many cases protein coding regions have been captured,

in fact any portion of the genome can be chosen for enrichment [45, 58].

One of the most popular capture techniques was developed by Andreas Gnirke and

colleagues working with Agilent Technologies [45]. This aqueous solution phase

hybrid selection uses RNA probes to capture DNA regions of interest. First, 200-mer

oligonucleotides are constructed on an Agilent microarray and then cleaved off the

array. Each oligo consists of 170 bp, target-specific sequence flanked on each end by

a 15 bp universal primer sequence. After PCR a T7 promoter is added in a second

round of PCR. Finally in vitro transcription in the presence of biotin-UTP generates

single stranded RNA “baits” used to fish out regions of interest in a ”pond” of
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Figure 1.3: Solution hybrid selection - Figure taken from [45] showing the steps
involved in solution phase hybrid capture.
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adapter-ligated, PCR-amplified genomic DNA [45, 137]. There is a vast excess of

RNA baits that drives the hybridization process in solution. Streptavidin-coated

beads, which have a high affinity for biotin, are used to pull down DNA/RNA hybrids,

followed next by PCR amplification, and then finally analyzed on a next-generation

sequencing platform. Figure 1.3 shows the steps involved for this capture technology.

Figure 1.4: Array hybrid selection - Figure taken from [137] showing the steps
involved in array based hybrid capture.
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Another method of capture sequencing is array based hybrid selection using oligonu-

cleotide arrays [137]. The first paper to report the use of the array based hybrid

selection was by Hodges et. al. [58] and used the Nimblegen platform. The protocol

requires twenty micrograms of genomic DNA that is fragmented into a library of dou-

ble stranded molecules between 250-1000 bp in length. Prior to array hybridization

common PCR adapters are ligated to the genomic DNA. The microarray itself con-

tains 385,000 single stranded 60 base pair oligonucleotides tethered to the surface with

the sequence based on the reference human genome assembly. Hybridization of the

genomic library to the microarray is carried out for at least two days and heat based

elution is performed to recover hybridized material. Universal primers correspond-

ing to the ligated adapters are used for PCR amplification and the target enriched

genomic DNA is ready for sequencing [137]. Figure 1.4 shows the steps involved in

array based hybrid selection.

1.5 Dissertation Overview

This introductory chapter has given an overview on the increased interest in dis-

covering rare variants and how next-generation sequencing and genomic enrichment

technology have enabled their discovery. In Chapter 2 I describe my work in analyzing

exon capture data from the 1000 Genomes Pilot project. At the time, this dataset

comprising of nearly 700 individuals for over 8000 exons covering 1000 genes was the

most comprehensive exome capture study. This work served to introduce me to the

informatics issues involved in analyzing NGS data. Chapter 3 continues with an em-

phasis on capture sequencing, where I demonstrate the applicability of whole genome

amplified DNA (WGA) for capture sequencing. This study compared genotype con-

cordance metrics, both at the site and genotype level, showing that WGA derived

DNA can be used in place of genomic DNA. This has potential practical implications
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for clinical and family-based sequencing studies, where DNA aliquots are a finite re-

source and recollecting samples is impossible or too expensive. Chapter 4 describes

my work in helping uncover a potentially novel mutation involved in non-syndromical

hearing loss. In collaboration with investigators at the Medical College of Wisconsin,

who had collected from a large family who had a dominantly inherited pattern of

hearing loss, I analyzed whole exome sequencing data from a subset of 5 unaffected

and 1 affected individuals. Using a discrete filtering approach with a minor allele fre-

quency cutoff I identified a candidate mutation that upon further functional testing is

the causative mutation in this family. Finally in Chapter 5, I describe an algorithm,

Pgmsnp, which models the relationships of the sequencing data and pedigree rela-

tionships in a family sequencing dataset as a Bayesian network to compute posterior

genotype probabilities. Pgmsnp has comparable detection sensitivity metrics when

compared to similar methods.
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Chapter 2

Analysis of the exon sequencing

pilot data from the 1000 Genomes

Project

2.1 Background

Several publications in the early 2000s gave the first detailed look at the patterns of

human genetic diversity and linkage disequilibrium (LD) in the human genome [39,

109]. The results showed a block like pattern of areas of high LD and low haplotype

diversity. As a result of these LD blocks the number of SNPs required to be genotyped

in an association study could be reduced by only genotyping those loci that uniquely

tag common haplotypes in the population. The frequencies of these SNPs could be

compared in groups of affected and unaffected individuals, with the assumption that

the causative variants were in LD with the SNPs that were genotyped. This was the

basic premise of the HapMap Project [23]. The completion of the HapMap ushered

in the era of genome wide association studies (GWAS). The first generation GWAS

results used common SNPs with minor allele frequency (MAF) above 5 percent. There
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are many successful examples of GWAS using common variants discovering genomic

regions associated with disease and phenotypic traits [56]. Still, many results of

GWAS explain a modest amount of heritability of a trait [96]. Population genetic

theory predicts that rare and low frequency variants (defined here respectively as

MAF of less than 1 percent and between 1-5 percent) should comprise the bulk of

human genetic variation [52] and contribute to the genetic architecture of disease

and complex traits [33]. At the time that the HapMap project was being planned,

re-sequencing of large numbers of individuals was not feasible and the genotyping

arrays used in subsequent GWAS datasets contained only common variants. But over

the past 5-7 years new DNA sequencing and genomic enrichment methodologies have

removed this obstacle. Hence, in 2008 the 1000 Genomes Consortium was formed with

the aim to catalog genetic variation segregating at 1 percent or higher in the human

population using high throughput sequencing and genomic enrichment technology.

The first phase of the project consisted of three pilot projects. Pilot 1 consisted of

low coverage whole genome sequencing of 179 individuals. Pilot 2 consisted of high

coverage whole genome sequencing of two trios. Pilot 3 consisted of exon sequencing

using genomic enrichment technology of 8140 exons in 697 individuals. The results

of all three pilot projects gave the genetics community an unprecedented view of the

(spectrum of human genetic variation and drove the development of bioinformatics

algorithms and analysis pipelines to analyze data from such experiments. Here I

describe my contribution to Pilot 3 of the 1000 Genomes Project.

2.2 Results and Discussion

Data collection

A total of 1.43 Mb of exonic sequence was targeted for capture. Four genome cen-

ters collected the data: The Human Genome Sequencing Center Baylor College of
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Population code Population name N
CEU CEPH Utah 90
TSI Toscani Italian 66
CHB Han Chinese Beijing 109
CHD Han Chinese Denver 107
JPT Japanese Tokyo 105
YRI Yoruban Nigeria 112
LWK Luhya Kenya 108

total 697

Table 2.1: Samples sequenced in Pilot 3

Medicine (BCM), the Broad Institute (BI), the Sanger Centre (SC), and the Genome

Institute at Washington University (WU). The sequencing platforms used to generate

the data included 454 Titanium/FLX and Illumina GAII. The genomic enrichment

methods used were Nimblegen liquid phase capture and Agilent solid phase capture

[45]. There was considerable heterogeneity in original capture intervals used by each

center. The original exon target intervals were derived from Consensus Coding Se-

quencing Project (CCDS) gene models [115], and each of the center specific coordinate

files were intersected with the CCDS gene model. The final interval files consisted of

1.43 Mbp of exonic sequence, representing 8279 exons, spanning 942 genes. A total

of 697 samples were sequenced from 7 world populations, as shown in Table 2.1.

SNP variant calling results

There were two pipelines employed to discover SNPs in Pilot 3. The first was executed

at Boston College (BC) and the second was executed at the Broad Institute (BI).

Figure 2.4 in the Section 5.4 shows the steps employed in each pipeline. The main

difference in the complementary pipelines were the alignment and variant calling

software used. BC aligned the sequencing data using MOSAIK [85] while BI used

MAQ [91] and SSAHA2 [107]. The variant caller at BC, Gigabayes, made SNP calls

on all 697 samples simultaneously. BI used their software called UnifiedGenotyper [30]

which called variants in each of the 7 populations individually, and then merged into

a single callset. Several iterations of comparing call sets and fine tuning parameters
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Iteration Intersection Union
1 10847 20695
2 10100 17613
3 12358 18277
4 12758 19890

Table 2.2: Comparison and tuning of BC and Broad pipeline results lead to a con-
vergence of call sets.

Population YRI LWK CHB CHD JPT CEU TSI All
Technology ILL,454 454 ILL,454 ILL,454 ILL,454 ILL,454 ILL ILL,454
SNPs 5175 5459 3415 3431 2900 3489 3281 12758
dbSNP % 53.8 50.1 52.6 50.3 57.9 65.9 65.6 30.36
TsTv 3.56 3.67 3.74 3.64 3.67 3.47 3.53 3.82
Coverage (1st quartile) 18x 19x 18x 30x 20x 20x 20x 19x
Coverage (median) 27x 25x 22x 36x 26x 43x 57x 29x
Coverage (mean) 52x 25x 40x 49x 43x 69x 71x 48x
Coverage (3rd quartile) 42x 32x 37x 44x 54x 98x 118x 49x

Table 2.3: Callset and capture metrics of Pilot 3. The callset metrics were derived
from the intersection of the BC and Broad pipelines.

lead to a convergence of callsets, as shown in Table 2.2. The final callset release of

SNPs was the intersection of calls made by the BC and BI pipelines. This resulted in

a high quality callset of 12758 SNPs. Per population SNP counts, dbSNP fractions,

transition transversion ratios are shown in Table 2.3, as well as summaries of median

target coverage. Overall, 70% of the SNPs discovered in the exon sequencing pilot

had not been previously cataloged in dbSNP. SNP calls were validated by Sanger

sequencing and validation summaries are shown in Table 2.4. The validation rates

for singletons ( meaning the alternate allele is segregating only in one chromosome)

is 93.8% and for low frequency variants (meaning the alternate allele is segregating

2-5 chromosomes) is 98.8%, demonstrating that the intersection of calls between the

BC and BI pipelines has very high sensitivity.

Allele frequency spectrum

At the time of release the Pilot 3 callset was the largest catalog of coding variation.

One way to summarize and quantify the levels of genetic diversity in the dataset is
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Alternate allele count (AC) AC=any AC=1 AC=2-5
Samples 697 697 697
sites 95 177 166
segregating 92 166 164
validation rate 96.8% 93.8% 98.8%

Table 2.4: Validation results of the Pilot 3SNP callset taken from Marth et. al. [100]

site 1 site 2 site 3 site 4 site 5
chr 1 0 0 1 0 0
chr 2 0 0 1 0 1
chr 3 0 0 0 1 0
chr 4 0 1 1 0 0
chr 5 1 1 1 0 0
chr 6 0 0 0 0 0
counts 1 2 4 1 1

Table 2.5: Example AFS for a sample of six chromosomes and 5 segregating sites

to calculate the allele frequency spectrum (AFS), also known as the site frequency

spectrum [139]. The AFS summarizes the distribution of allele frequencies in a sample

of chromosomes. An illustrative example of an AFS is given in Table 2.5. Here,

there are 5 segregating sites in a sample of 6 chromosomes. Sites 1, 4, and 5 are

present in a single chromosome, site 2 is present in two chromosomes, and site 3 is

present in 4 chromosomes. Assuming that the presence of the ancestral nucleotide is

denoted as 0 and the mutant nucleotide is denoted by 1, the frequency of a segregating

site can range between 1 to n-1 chromosomes, otherwise the site is not polymorphic

[139]. Hence, the AFS describes the numbers of segregating sites present in 1 to n-1

chromosomes.

Not all variant sites in the callset had the same number of genotypes in each of the

7 populations. It was necessary to project down the AFS to a common sample size

of 100 chromosomes to compare the spectra of each population. Essentially, this

involves averaging possible re-samplings of the larger sample size to the smaller one

using the hypergeometric distribution [93]. The AFS projection was applied to the
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Pilot 3 data using the software package δaδi [48]. Figure 2.1 shows the AFS of all 7

exon sequencing pilot populations. The neutral, expected AFS is denoted in the figure

as theta/x. This spectrum is based on the standard coalescent model of a constant

sized, Wright-Fisher population. The expected counts in the spectrum are computed

from Watterson’s formula [52]. Compared to the neutral AFS, there is a vast excess

of singleton and doubleton ( derived allele count of 1 and 2, respectively) SNPs in

the dataset. The AFS are quite similar for each continental population, with African

(YRI and LWK) populations exhibiting the largest number of segregating sites. The

Japanese (JPT) AFS has a lower number of low and rare frequency sites compared to

other populations. The YRI and CEU populations in Pilot 3 were also part of Pilot

1. Restricting the Pilot1 callset to those SNPs in regions sequenced by the Pilot3, we

can compare the AFS of the two study designs. Figure 2.3 displays the AFS of the

Pilot 1 and Pilot 3 datasets for the CEU and YRI populations. It shows clearly that

the deeper coverage Pilot 3 data is more effective at discovering singleton and low

frequency variants [47]. Figure 2.2 displays the AFS of the complete 697 individual (

1394 chromosomes) SNP callset, focusing on those sites with alternate allele count of

between 1-20. It partitions the data between those sites already in dbSNP v129 and

those that are novel. Clearly, the majority of variants segregating in 1-5 chromosomes

are not present in dbSNP, demonstrating that deep exon re-sequencing is an effective

tool in discovering novel coding variation in the human genome.

Per-base heterozygosity

Per base heterozygosity for Pilot 3 were calculated at non-synonymous, 2-fold, 3-fold,

and 4-fold degenerate sites in autosomal target regions. Targeted base pairs were

included in the analysis if they had at least 10x or greater coverage in the MOSAIK

alignments and had a genotype call in at least 100 chromosomes. Site degeneracy

was calculated based on the Gencode [51] annotation model. The results are shown
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Figure 2.1: Allele frequency spectrum of the Pilot 3 populations. - Spectra
have been downsampled to a common sample size of 100 chromosomes.
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Figure 2.2: Allele frequency spectrum of all 697 individuals in Pilot 3, fo-
cusing on only those sites with derived allele counts of 20 or less. - Data
has been partitioned to distinguish dbSNP and novel variants.
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Figure 2.3: Allele frequency spectrum the Pilot 3 and Pilot 1 datasets -
Spectra have been downsampled to a common sample size of 20 chromosomes.
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Site category total sites YRI LWK CHB CHD JPT CEU TSI
All 1315794 4.42 4.52 3.34 3.35 3.26 3.54 3.50
4-fold 210575 9.24 9.16 6.60 6.63 6.43 7.12 7.04
3-fold 20990 5.01 5.41 4.24 4.39 4.60 3.59 3.59
2-fold 257486 6.04 6.16 4.44 4.42 4.37 4.74 4.68
non-synonymous 854682 2.74 2.86 2.19 2.21 2.12 2.31 2.29

Table 2.6: Per-base heterozygosity measurements at non-synonymous and n-fold de-
generate sites. All values are in units of 10e-4

in Table 2.6. Overall patterns of the data indicate that heterozygosity is highest

in the the African populations (YRI, LWK) and 4-fold degenerate sites exhibit the

highest amounts of variation. Non-synonymous sites clearly show reduced amounts of

heterozygosity, which suggests the force of negative selection constrains the amount

of variation that is observed at non-synonymous sites.

2.3 Conclusions

Pilot 3 resulted in a high-quality dataset that fully characterized the spectrum of

genetic variation in protein coding regions of the human genome. In terms of bioin-

formatics advances, the project drove the development of tools to effectively analyze

capture sequencing as well as whole genome sequencing datasets [40, 85]. The main

biological insights from the AFS results presented here show that there is a vast ex-

cess of singleton and low frequency variants segregating in the human genome when

compared to the expected AFS from the standard neutral model of a constant sized

Wright-Fisher population. A plausible explanation for this pattern is that recent,

explosive population growth over the past 10,000 years has resulted in an excess of

rare genetic variation. Indeed, this has been confirmed by a recent study from Clark

and Keinan [70] who made demographic inferences from the Pilot 3 AFS [47, 100],

as well as other re-sequencing studies [26]. More than likely, many of these newly

arisen variants are mildly deleterious, suggesting a reason why heterozygosity levels
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at non-synonymous sites are low. Similar patterns of excess of rare variants were

also seen in the Exome Sequencing Project (ESP) [134], a much larger, whole exome

re-sequencing project of 3528 individuals from European and African American an-

cestry. Hence, if many of these newly arisen mutations have a (mildly) deleterious

affect on phenotype, natural selection has not had enough time to remove them from

the population. Cataloging rare coding variants in the human genome is essential to

understanding the role these variants play in complex as well as Mendelian disease

[38, 24]. Pilot 3 was a pioneering study, laying down the bioinformatic groundwork

for future exome re-seqeuncing studies in the genomics community.

2.4 Methods

Bioinformatics data processing

Boston College (BC) was one of the two contributors to the Pilot 3 callset. The

official SNP callset release was the intersection of calls between the BC and Broad

pipelines. The steps involved in BC data processing pipeline are shown in Figure

2.4. Parameter values given to the MOSAIK aligner were -act 35, -bw 37, -mhp 200,

-mm 14. Base quality scores were re-calibrated with the programs CountCovariates

and TableRecalibration, which are part of GATK [30]. PCR duplicate removal was

performed with the program MarkDuplicates from the software package Picard [132].

The program Gigabayes is an updated version of the program PolyBayes [99], adapted

for analyzing high-throughput sequencing data. It calculates genotype likelihoods

and uses a genotype prior to calculate posterior genotype probabilities of samples,

as well as a posterior probability of a SNP. Post-filtering of Gigabayes calls involved

removing SNP variants that did not have a Phred scaled quality score of at least 40

and at least one individual with a polymorphic genotype with a Phred scaled genotype

quality score of at least 10. The details of the Broad pipeline are described in [100].
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Figure 2.4: Bioinformatics pipeline for Boston College - The BC variant calls
were produced by a four step process including alignment, base quality recalibration,
duplicate marking, and variant detection.

Intersecting the Boston College and Broad callsets

The intersection of SNP callsets from the Boston College and Broad pipelines formed

the official Pilot 3 release. If genotypes did not agree between pipelines for variants

intersecting at the site level, those individual genotypes were filtered out. There were

4 iterations of comparison and fine tuning of pipelines during the course of the pilot.

This lead to a convergence call set that formed the official release, as shown in Table

2.2.
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Allele Frequency Spectrum analysis

To construct the un-folded allele frequency spectrum of the Pilot 3 callset the first step

was to determine the orthologous (and ancestral) base in the panTro2 (chimpanzee)

genome assembly. Next, since not all variant sites will have the same number of chro-

mosomes sampled (either due to differing sample sizes of the populations studied, or

missing data) the AFS was projected down to a common sample size of 100 chromo-

somes, and then plotted. This was done by using the software δaδi [48]. Projecting

down the AFS involves averaging over possible re-samplings of the larger sample size

to the smaller one using the hypergeometric distribution [93].

Per-base heterozygosity

A basic measure of genetic variation heterozygosity. For the Pilot 3 data heterozy-

gosity was measured at non-synonymous, 2-fold, 3-fold, and 4-fold degenerate sites.

Degeneracy was determined by the exon reading frame of target bases based on the

Gencode gene model annotation [51]. To calculate heterozygosity equation 2.1 was

used.

m∑
i

2pi(1− pi) (2.1)

The pi refers to the frequency of the reference allele at the ith site and m refers to

the number of sites. As the number of sites approaches ∞, the result is an estimate

of π, a measure of nucleotide diversity [43]. In order to be included in the analysis, a

site had to have had at least 10x coverage in the MOSAIK alignments in at least 50

samples (100 chromosomes).
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Chapter 3

Variant discovery in targeted

re-sequencing using whole genome

amplified DNA

3.1 Background

There has been considerable focus in human genetics on characterizing rare variation

in the human population, and the role these variants play in human diseases to

account for the “missing heritability” in genome-wide association studies using

common variants [96, 95]. Until recently, the discovery of genetic variants was the

rate-limiting step due to the prohibitive cost of sequencing large numbers of samples

using traditional Sanger sequencing. Over the past five years, next generation

sequencing (NGS) technologies have replaced traditional Sanger sequencing as the

predominant method of DNA sequencing [8, 98]. The main advantage of NGS over

traditional Sanger sequencing is its cheaper cost and higher throughput. NGS has

had a profound impact on the field of human genetics because it is now possible

to sequence large numbers of individuals to fully describe the spectrum of human
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genetic variation, from common to rare variation [33]. In parallel to the developments

of new sequencing technologies, improved methods have been developed to enrich

specific subsets of the genome for next generation sequencing. While commonly

referred to as exome sequencing, because in many cases protein coding regions have

been enriched, in fact any portion of the genome can be chosen for target enrichment

[58, 45]. Capture sequencing allows many individuals to be sequenced for particular

regions of interest, as opposed to whole genome sequencing a smaller number samples

at the same cost [128]. This also provides greater sensitivity for SNP detection

compared to whole genome sequencing [21]. Exome capture sequencing has yielded

many successful examples for uncovering causative mutations in Mendelian disease

[106, 7], and describing the full extent of rare variation in protein-coding portions of

the genome that whole genome sequencing may have missed because high-coverage,

whole genome sequencing is still not common practice [100].

While the discovery of genetic variation is no longer a rate-limiting step for human

genetic analysis, the application of NGS and sequence capture technologies can be

limited by the amount of DNA available [83]. In particular, probands that have been

collected for a clinical study maybe difficult to sample again. Previously collected

DNA samples gradually decay in quality over time, and non-invasive collection

techniques, such as buccal swabs, may result in insufficient amounts of DNA [83].

Several rounds of NGS or capture array sequencing may deplete original stock

aliquots of samples. Whole genome amplification (WGA) is a method to overcome

such challenges, and can yield micrograms of WGA DNA from nanogram starting

amounts of template.

Previous studies have shown that WGA DNA performs well on high-density SNP

genotyping arrays [145, 9, 54]. Three recent studies have investigated the use of WGA
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DNA in NGS. Murphy et. al. [103] investigated the use of a WGA protocol performed

in situ on laser capture micro-dissection cancer cells for the discovery of structural

variants in a tumor genome using Illumina mate-pair sequencing. Tao et. al. [67]

showed that WGA DNA has favorable sequence capture metrics when comparing to

genomic DNA when adapting the NimbleGen capture array for use on the Illumina

GA sequencing platform. El Sharawy et. al. [34] investigated the use of WGA DNA

in a NGS microdroplet-based PCR sample enrichment pipeline experiment of 384

exons with 3 HapMap samples and showed there was strong genotype concordance

with both genomic and WGA DNA SNP calls to HapMap III genotypes. In this

paper we describe the results of variant calls using WGA DNA for a single sample for

two separate capture sequencing experiments on the Agilent SureSelect platform, and

compare them to variant calls made with genomic DNA for the same samples. While

the results in this study are based on a limited number of samples, our results suggest

that WGA samples have a high sensitivity in detecting variant alleles identified with

genomic DNA, and can be used effectively in re-sequencing studies.

3.2 Results and Discussion

Capture metrics of WGA and genomic DNA

We analyzed capture sequencing metrics of genomic and WGA sample pairs for two

capture experiments, a chr12 custom array and a whole exome capture array. Tables

3.1 and 3.2 contain capture metrics from the program CalculateHsMetrics from the

software package Picard [132]. The average target coverage for the whole exome cap-

ture experiments were 92x (WGA) and 80x (genomic). The average target coverage

for the chr12 capture experiments were 432x (WGA) and 224x (genomic). WGA

samples in both capture experiments had a higher number of PF (passed filter) reads

thus higher average target because they were sequenced in a separate flow-cell lane,
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dataset chr12 WGA chr12 Genomic chr12 WGA subset
Read Length 101 101 101
Target territory 3871678 3871678 3871678
PF reads 57462846 33441588 33441588
PF unique reads 2688176 13002406 19870208
PF unique reads aligned 23607248 11566780 17673567
% Selected bases 87 83 87
% Usable bases on target 32 26 40
Mean target coverage 432 224 342
% Target bases 2x 98 98 98
% Target bases 10x 97 97 97
% Target bases 20x 97 96 96
% Target bases 30x 96 95 96

Table 3.1: Sequencing capture metrics of chr12 genomic, WGA, and WGA subset
experiments

dataset whole exome WGA whole exome genomic whole-exome WGA subset
Read Length 101 101 101
Target Territory 49649722 49649722 49649722
PF reads 258222898 105316652 105316652
PF unique reads 93557436 79549416 62080571
PF unique reads aligned 70593742 62036624 47366440
% Usable bases on target 17 35 28
Mean target coverage 92 80 63
% Target bases 2x 92 92 91
% Target bases 10x 85 86 82
% Target bases 20x 79 81 74
% Target bases 30x 74 75 65
% Selected bases 83 83 83

Table 3.2: Sequencing capture metrics of whole exome genomic, WGA, and WGA
subset experiments

while the genomic DNA samples were multiplexed. For both sequencing experiments

a large percentage of reads were marked as duplicates, as the percentage of usable

bases on target for each of the capture experiments does not exceed 40%. Despite the

high duplicate read fraction both samples in the whole exome capture experiment

had 80% of targeted bases with at least 20x coverage. For the smaller chr12 capture

experiment, over 90% of targeted bases had at least 20x coverage.

Since the WGA capture experiments had a larger sequencing library compared to the

genomic, a random subset of reads were selected from the starting fastq files to match

the number of PF reads of the genomic sequencing library ( see Tables 3.2, 3.1, and
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Dataset chr12 WGA chr12 Genomic whole-exome WGA whole-exome Genomic
SNPs 4642 4592 29600 30316
dbSNP % 98.4 98.6 98.6 98.6
TsTv overall 2.42 2.41 2.83 2.82
TsTv novel 1.47 1.48 1.81 1.89
TsTv known 2.44 2.43 2.85 2.84
INDELs 491 482 2197 2215
dbSNP % 34.8 34.0 34.2 34.8

Table 3.3: Variant callset summary of whole exome and chr12 experiments

Section 3.4). The average target coverage for the chr12 WGA subsetted BAM (342x)

is higher than the chr12 genomic experiment, even though the starting number of

PF reads is the same. This can be attributed to higher percentage of usable bases

on target, as calculated with HsMetrics. Similarly, the whole-exome WGA subsetted

BAM average target coverage (63x) is less than the genomic sample, despite starting

with the same number of PF reads. The percent usable bases on target are lower in

the whole-exome WGA subset than the whole exome genomic sequencing experiment.

Next, we explored the relationship between GC% and median target coverage for both

capture experiments. Previous studies have shown that lower sequencing coverage oc-

curs in regions with high GC% [31]. GC% of targets for each capture experiment was

calculated. Next, the targets were placed in four bins according to the first, median,

and third quartiles of capture target GC%, based on the boxplots shown in Figure 3.1.

In addition to boxplots of GC% of capture targets of the two experiments, Figure 3.1

shows the GC% of the whole genome and chr12 for comparison. Targets were placed

in the appropriate bin and within each bin, a box plot of median target coverage

was made for genomic and WGA DNA, as shown in Figure 3.2. The results show

that for genomic DNA, chr12 capture targets in the fourth bin (with GC% greater

51%) have lower coverage than targets in the other three bins. For the corresponding

WGA DNA, targets in the first (GC% less than 38%) and fourth bins have a similar

distribution of median target coverage. Whole exome capture targets in the fourth

bin (GC% greater 59%) had lower amounts of coverage than targets with lower GC%
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Figure 3.1: Boxplot of target GC percentage - Boxplot of GC percentage of
whole exome and chr12 capture targets as well as genome wide and chromosome 12
wide GC percentage
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Figure 3.2: Boxplots of median target coverage - Boxplots of median coverage
of targets binned according to quartiles of GC% of capture targets for chr12 and
whole-exome capture experiments.
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for both genomic and WGA samples. Since the chr12 capture targets were over a

much smaller interval (3.87 Mbp), its harder to make any definitive statement re-

garding GC% and lower sequencing coverage, but the patterns of coverage seen in

both capture experiments examined here are in line with previous studies [31, 21].

Overall variant counts and Venn analysis

Table 3.3 shows the counts and callset metrics of the individual SNP and INDEL

callsets, after post-call filtering (described in Section 3.4). For all SNP callsets the

dbSNP fraction is 98%. The overall transition-transversion (TsTv) ratio for the WGA

and genomic chr12 callsets are 2.42 and 2.41 respectively. The overall TsTv ratio

for the WGA and genomic whole-exome callsets are 2.83 and 2.82, respectively. The

TsTv values of novel SNPs found in each of the capture experiments is considerably

reduced, suggesting these may be false positive calls.

We performed Venn analysis of the WGA and genomic callsets to see how variants

overlapped based on coordinate intersection. Figure 3.3 shows four Venn diagrams

for SNP and INDEL sites in each of the capture experiments. Visual inspection

indicates there is a high fraction of site-level concordance of SNP calls, with 97% and

99% of the union of SNP sites lying in the intersection for the whole exome and chr12

capture callsets. Slightly lower numbers of 87% and 90% were found for INDEL sites.

Overall TsTv ratios for SNPs in the intersection were similar to those calculated

for each individual callset. TsTv ratios of novel sites were slightly higher in the

intersection, when compared to the original callsets. The TsTv values of the genomic

and WGA unique fractions for the whole-exome capture experiment are considerably

lower, suggesting these are lower quality calls. The unique fractions of the chr12

capture experiment are much smaller, making it difficult to interpret the differences

in value of their TsTv ratios.
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Figure 3.3: Venn diagrams of SNP and INDEL variant calls - Venn diagrams
of SNP and INDEL variant calls. The top row also shows TsTv ratios and dbSNP
fractions of SNPs in each portion of Venn diagram.

Downsampling alignments and subsetting reads

Since the WGA samples were run as a single lane but the genomic samples were

multiplexed, we downsampled reads from each BAM to examine the effect of coverage

on the numbers of discovered variants. A total of 100 bootstrap sub-samples of reads

were performed (see Section 3.4). In addition to downsampling the reads from the

aligned BAM file, a subset of fastq reads were chosen at random to match the starting

number PF reads in the WGA library for both experiments (see Tables 3.1 and 3.2).

Figure 3.4 shows the median number of variants discovered as a function of average

target coverage for SNPs and INDELs, for each capture experiment. The randomly
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subsampled BAM files from whole-exome and chr12 capture experiments for WGA
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Dataset NRS NRD
whole-exome capture SNPs 98.28 0.63
whole-exome capture INDELs 91.17 13.46
chr12 capture SNPs 99.63 0.29
chr12 capture INDELs 94.07 10.7

Table 3.4: NRS and NRD values for WGA derived whole-exome and chr12 capture
callsets when comparing to genomic derived callsets.

chosen subset of WGA reads to match the number of PF reads in the genomic se-

quencing experiment is shown figure as genomic.matched on the x-axis, and sorted in

ascending order of target coverage. As expected, downsampling BAMs reduces the

number of called variants, with the original WGA BAM having the largest number

of called variants. The datapoint that most closely matches the target coverage of

the non-WGA sample is 80x for the whole-exome plot. The median number of SNPs

and INDELs found (29350 and 2174) closely match the numbers of variants found

in genomic derived variant calls listed in Table1. The datapoint that most closely

matches the target coverage non-WGA sample is 200x for the chr12 plot. The median

number of SNPs and INDELs found (4615,483), again closely match what was found

in the genomic derived calls listed in Table 3.3.

Genotype concordance

We used two measures of genotype concordance, non-reference sensitivity (NRS) and

non-reference discrepancy (NRD) [30, 72], shown in Figure 3.5, to compare genotypes

made with WGA and genomic DNA. NRS measures the proportion of sites called

variant in the comparison callset (genomic) that are also called variant in the evalua-

tion callset (WGA). NRD measures the proportion of differing genotypes between the

WGA and genomic callsets, at sites called in both data sets, excluding concordant

homozygous reference calls.
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Figure 3.5: Calculating NRS and NRD genotype concordance metrics - Il-
lustrates how the metrics of non-reference discrepancy (NRD) and non-reference sen-
sitivity (NRS) are calculated

The NRS and NRD values for SNPs and INDELs for each capture experiment are

shown in Table 3.4 and the concordance matrices from which they were calculated are

shown in Figure 3.6. For the chr12 capture experiment, of the 17 sites that contribute

to the decrease in SNP NRS of the WGA call set, six are heterozygous sites in the

genomic DNA that were not called in WGA DNA. Of the 28 sites contributing to

the decrease in INDEL NRS, 18 were heterozygous genotypes in genomic DNA, that

were evenly split as homozygous reference or no calls in WGA DNA. For the 13 sites

contributing SNP NRD, eight were WGA heterozygous sites, called homozygous

non-reference in genomic DNA. The greatest contribution to INDEL NRD came

from sites that were called heterozygous in WGA DNA, but homozygous reference
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Figure 3.6: Genotype concordance matrices - Genotype concordance matrices
for chr12 and and whole-exome SNP and INDEL callsets from which concordance
metrics of NRS and NRD were calculated from.

in genomic DNA.

Next, genotype concordance for each bootstrap downsampled chr12 capture BAM

was calculated by comparing its calls to the ones made from the original genomic

BAM file. NRS and NRD values were summarized by calculating their median value

across all 100 downsampled BAMs. In addition, NRS and NRD of the subsetted

WGA BAM was calculated by comparing its genotypes to the original genomic

BAM. Figure 3.7 shows the effect of downsampling and subsetting on genotype

concordance metrics. Unexpectedly, two of the three downsampled datasets have

slightly higher SNP and INDEL NRS values than the original WGA callset. This
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Figure 3.7: Genotype concordance metrics of downsampled subsetted WGA
BAMs - Median values of NRS and NRD metrics for SNP and INDEL variants
calculated from 100 bootstrap sub- sampled BAM files from whole-exome and chr12
capture experiments for WGA DNA samples. Plot also includes NRS and NRD
metrics of the WGA subsetted BAM that matched the starting read count of the
genomic sample.

includes the NRS of the 200x downsampled BAM, which most closely matches the

coverage of the genomic sample. Similarly, the original WGA callset has a higher

NRD values than some of the lower coverage, downsampled BAMs (including the

200x downsample BAM). The INDEL NRD for the genomic matched WGA BAM

is clearly an outlier on the graph. This might be attributed to sampling error,

but since the WGA fastq files were subsetted only once, it’s difficult to say. This

unexpected pattern can potentially be attributed to the smaller capture interval in

the chr12 experiment and the fewer numbers of variants called, as the relationship

between concordance metrics and lower coverage, downsampled BAMs is clearer in
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the whole-exome capture experiment (see below). Also, since a technical replicate of

genomic sequencing was not performed, it is difficult to ascertain what the expected

genotype discrepancies should be between genomic and WGA derived variant calls.

The NRS and NRD values and the genotype concordance matrix from which they

were calculated for the whole-exome capture experiment are also shown in Table

3.4 and 3.6, respectively. Of the 498 sites that contribute to the decrease of SNP

NRS of the WGA call set, the majority come from sites either called heterozygous

or homozygous non-reference in genomic DNA but were no calls in WGA DNA.

The majority of sites contributing to the decrease of INDEL NRS come from sites

called heterozygous in genomic DNA, but called homozygous reference in WGA

DNA. Sites contributing most to SNP NRD are heterozygous calls in genomic DNA,

called homozygous reference in WGA DNA, for both SNP and INDEL variants.

The concordance metrics of the WGA whole exome downsampled BAMs to original

genomic DNA calls, also shown in 3.7, reinforce the intuitive expectation that the

lower coverage WGA callsets result in higher NRD and lower NRS values. The one

exception is the SNP NRS of the genomic matched subsetted WGA BAM, which had

a NRD value of 2%. This could be attributed to sampling error, since the subsetting

was only performed once, and not multiple times like the downsampling. The SNP

and INDEL NRS of the downsampled 80x BAMs, which match the average coverage

of the genomic BAM, are only slightly lower than the original WGA BAM. Also, the

SNP and INDEL NRD values are slightly higher than the original WGA BAM. Still,

in each comparison, the original WGA call set had the lowest NRD and highest NRS

values relative to lower coverage downsampled and subsetted callsets. As with the

chr12 experiment, the genomic sequencing was not repeated, so it difficult to quantify

the expected genotype discrepancies and sensitivity of the WGA derived variant calls.
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Figure 3.8: Genotype concordance metrics as a function of GC% - NRS and
NRD of variants binned according to GC% based on quartiles of GC% in capture
targets. First row shows is NRD values for SNP and INDELs and second row shows
NRS values of SNPs and INDELs for each of the chr12 and whole-exome capture
experiments.

Targets with higher amounts of GC% have lower amounts of median target coverage

for both capture experiments and both types of DNA, as described above. Figure 3.8

shows NRS and NRD metrics for each bin, based on GC% of targets. For the original

WGA whole-exome callset, the greatest number of genotype discrepancies and lowest

detection sensitivities, for both SNP and INDEL variants, occur in targets with the

highest GC%. The patterns are less clear for the original WGA chr12 callset, again

most likely attributable to the smaller size of capture region. For both SNP and

INDEL variants, the greatest numbers of genotype discrepancies are in targets with

the highest GC%. The pattern is less clear for variant detection sensitivity, INDELs

in target regions with the highest amount of GC% have the lowest sensitivity, but

this is not true for SNPs.
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Allele bias in SNP variant calls

To investigate whether there is any evidence of allele bias in SNP variant calls, all

calls from the original chr12 and whole-exome WGA datasets were divided into four

groups: concordant genotypes, unique genomic calls (these are sites that contribute

to NRS), discordant genotypes (these are sites that contribute to NRD), and WGA

unique. In each group, the percentage of each six possible reference/alternate allele

combinations was calculated. The results are shown in Figure 3.9. We tested to

see if there were statistically different proportions of each reference/alternate allele

combinations (see Section 3.4) between the four groups. The resulting p-values are in

the appendix. For the whole-exome capture SNPs, there was a significant difference in

proportion between concordant CG SNPs and each of the three other categories. Also,

there was a significant difference in proportion of GT SNPs between concordant and

WGA unique categories. For the chr12 capture set there was no significant difference

in proportion of SNPs between any of the four categories for each of the 6 different

allele combinations. The interpretation of the statistical analysis of allele bias must

be tempered by the fact that the analysis is based on a small sample size of matched

genomic / WGA samples, lack of technical replicates,and the reduced target region

for the chr12 capture experiment. But even with this in mind, results suggest that

allele bias does not play a significant role in SNP variant discovery with WGA DNA.

Validation of SNP variant calls

Sequencing derived SNP variant calls were validated by comparing genotypes to

Affymetrix 6.0 Human SNP array genotypes for the same sample. The 6.0 array has

over 900,000 variants covering the whole genome, hence only those array genotypes

that overlapped a capture target interval were examined. For the whole-exome

capture array there were a total of 11831 overlapping SNPs and for the custom chr12

capture array there were a total of 1435 overlapping SNPs. See Section 3.4 section for

51



0

20

40

60

80

100

Concordant Genomic.unique NRD WGA.unique

whole-exome capture SNPs

category

pe
rc
en
ta
ge

alleles
AC

AG

AT

CG

CT

GT

0

20

40

60

80

100

Concordant Genomic.unique NRD WGA.unique

chr12 capture SNPs

category
pe
rc
en
ta
ge

alleles
AC

AG

AT

CG

CT

GT

Figure 3.9: Allelic proportions of SNPs in whole-exome and chr12 capture
experiments - Allelic proportions of whole-exome and chr12 capture SNPs in each
of four categories: concordant genotypes, unique sites in original genomic and WGA
call sets, and discordant genotypes contributing to NRD for chr12 and whole-exome
capture experiments when comparing WGA derived SNP genotypes to genomic DNA
callset.

more details. The NRS and NRD metrics of the WGA and genomic sequencing based

SNP genotypes when compared to Affymetrix 6.0 SNP array genotypes for both

capture experiments is shown in Table 3.5. The NRD for the WGA whole-exome

capture sequencing derived genotypes when compared to the SNP array genotypes is

1.3% and the NRS value is 97.78%. The NRD for the genomic whole-exome capture

sequencing derived genotypes when compared to the SNP array genotypes is 1.6%

and the NRS value is 97.66%.

The concordance matrix for the WGA whole-exome comparison to capture array

genotypes is shown in the top panel and the genomic concordance matrix is shown

in the bottom panel in Figure 3.10. For sites that contribute to a decrease in whole-

exome capture NRS, the read coverage and pileup of bases was investigated. For the
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Dataset NRS NRD
WGA whole-exome capture SNPs 97.78 1.30
Genomic whole-exome capture INDELs 97.66 1.30
WGA chr12 capture SNPs 82.60 22.20
Genomic chr12 capture SNPs 83.00 22.60

Table 3.5: NRS and NRD values for WGA derived whole-exome and chr12 capture
callsets when comparing to Affymetrix 6.0 derived genotypes.
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Figure 3.10: Affymetrix genotype concordance matrices whole exome - Geno-
type concordance matrices of WGA and genomic DNA SNP calls to Affymetrix geno-
types for the whole exome capture experiment.
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94 sites in the WGA whole-exome capture call set that contribute to a decrease in

NRS, 20 had minimal coverage and were called homozygous reference. The remaining

sites have an overwhelming majority reads with mapping quality 0 spanning the

SNP position and were not called. Similarly, for the 100 sites that contribute to the

decrease in NRS in the genomic DNA whole-exome capture derived genotypes, 29 had

minimal coverage and were called homozygous reference. The remaining sites had

reads spanning the SNP position with mapping quality values of zero and not called.

There are a total of 68 SNP positions common to both WGA and genomic callsets

that contribute to a loss of NRS when comparing the Affymetrix SNP array genotypes.
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Figure 3.11: Affymetrix genotype concordance matrices chr12 - Genotype
concordance matrices of WGA and genomic DNA SNP calls to Affymetrix genotypes
for the chr12 capture experiment.
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The NRS and NRD values when comparing the WGA, chr12 capture sequencing

SNP genotypes to the SNP array genotypes are 82.6% and 22.3%. The NRS for the

genomic DNA, chr12 capture SNP genotypes when compared to SNP array genotypes

is 83% and the NRD is 22.6%. The concordance metrics for the chr12 custom array

SNP genotypes when compared to the SNP array derived genotypes is shown in 3.11.

The top panel shows the concordance matrix for the WGA chr12 capture array and

in the bottom panel is the genomic chr12 concordance matrix. For both comparisons,

the majority of sites that contribute to the loss of sensitivity in the sequencing derived

SNP calls are sites that were called heterozygote on the genotyping array. Careful

visual inspection and examination of read pileups in the WGA and genomic BAM

files revealed no evidence of an alternate allele and hence were called homozygous

reference. There are total of 144 SNP position common to both WGA and genomic

call sets that contribute to a loss NRS when comparing to the Affymetrix SNP array

genotypes.

Allele bias in SNP variant validation calls

To investigate if there were any biases in the comparisons of the sequencing derived

genotypes to the Affymetrix array based genotypes the percentage of each six possi-

ble reference/alternate allele combinations was calculated in sites that contributed to

concordant, NRS, and NRD categories. The results are shown in Figure 3.12. To test

if there were statistically different proportions of each reference/alternate allele com-

binations between groups we applied the same pairwise.fisher.test when comparing

the WGA derived SNP calls to the genomic derived SNP calls (see Section 3.4). The

resulting p-values of the analysis are in the Appendix. The only significant differences

in proportion detected were AT SNPs when comparing the chr12 genomic and whole

exome capture calls to the corresponding Affymetrix array derived genotypes.
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Figure 3.12: Allelic proportions of Affymetrix SNPs - Allelic proportions of
whole-exome and chr12 capture SNPs in each of 3 categories: concordant genotypes,
NRD contributing, and NRS contributing for chr12 and whole-exome capture exper-
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3.3 Conclusions

The study described here provides an in-depth assessment of the suitability of WGA

DNA for targeted resequencing and variant discovery using next generation sequenc-

ing. We evaluated whole exome as well as targeted genomic enrichment using Agilent

SureSelect technology, and compared findings from WGA samples to results obtained

with genomic DNA from the same individual, as well as validated a subset of SNP

variant calls with Affymetrix SNP array genotypes. Overall, Venn analysis showed

that the numbers of SNPs and indels called in the whole exome and chr12 capture

callsets using WGA or genomic DNA is very similar, with the vast majority of variant

sites shared between datasets. The concordance metric NRS demonstrates that us-

ing WGA DNA has high sensitivity for SNP sites with values of 98.28% and 99.63%

for the whole exome and chr12 sequence capture callsets, respectively. The NRS for

INDELs is lower at 91.17% and 94.07%. SNP NRD values for the whole-exome and

chr12 callset were both less than 1%, but were an order of magnitude higher for

INDEL calls. The lower values of these metrics may be due to slight differences in

alignment of reads between genomic and WGA DNA in regions that contain INDEL

variants. The majority of discrepant genotypes between WGA and genomic DNA

involve heterozygous genotypes and statistical analysis suggests that these are en-

riched for GC alleles, at least in the whole-exome capture data. Validating a subset

of the SNP made with genomic and WGA DNA that overlap sites on the Affymetrix

6.0 SNP array showed high sensitivity and high genotype accuracy for the whole

exome capture callset. The sensitivity and genotype concordance numbers for the

chr12 capture array were not as high, but the loss of sensitivity can be explained

by lack of evidence of the alternate allele in the read pileup or poor zero mapping

quality values spanning the SNP position. Downsampling and subsetting of reads to

achieve lower coverage in WGA callsets (or match the starting number reads in the

genomic sequencing experiment) consistently resulted in lower genotype concordance
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and sensitivity metrics for the whole exome capture experiment, in contrast to the

chr12 capture experiment. This difference may be due to statistical fluctuations of

read sampling in the downsampling process, combined with the much smaller size of

the chr12 capture region. Coverage and concordance metrics correlated with GC% of

target intervals, with target intervals above the 3rd quartile of each respective capture

array having less coverage and poorer concordance metrics. Our work complements

the study of ElSharawy [34] who used a greater number of matched genomic / WGA

samples in showing both genomic and WGA samples had high concordance and sen-

sitivity metrics to HapMap III sites, but whose study examined only 384 exons. A

limitation of our study is that we only have 1 genomic/WGA sample pair for each of

the capture experiments, and the chr12 experiment captured a much smaller region of

genomic DNA. Since the genomic sequencing was not repeated, we cannot know the

expected discrepancy for a technical replicate, but we were able to validate a subset

of our SNP calls that overlapped sites on the Affymetrix SNP array. Thus, our con-

clusions about allele bias, and the relationship between GC% content and genotype

concordance must be taken with caution, but overall suggest that WGA samples can

be used effectively in re-sequencing studies and thus offer a promising alternative for

variant discovery studies using archived DNA.

3.4 Methods

WGA and genomic DNA sample preparation

Two sample sets were analyzed in this study. One sample was from a family cohort

[73] that was sequenced for a 3.87 Mbp region on chr12 using a custom designed

SureSelect capture array from Agilent. The second sample was from a single family

that was whole exome sequenced using the Agilent SureSelect All Exon kit. In both
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cases, the genomic DNA was originally isolated from blood samples. A REPLI-g Mini

Kit (Qiagen) was used to prepare WGA DNA from 15 ng of starting genomic DNA.

Sequence Capture

We used two different Agilent SureSelect kits to perform sequence capture on the

samples used in this study. The first was a custom array designed to capture a 3.87

Mbp region on chromosome 12 . The second was an Agilent SureSelect All Exon

kit designed to capture at total of 49.4 Mbp of exonic sequence spanning the whole

genome. The standard Agilent SureSelect protocol for Illumina paired-end sequencing

was used which requires 3 of micrograms of starting genomic DNA.

DNA sequencing

Samples were paired-end sequenced on an Illumina GAII machine with read lengths

of 101 bp. with insert size for the genomic and WGA whole exome capture samples

being each 370 bp, respectively. Insert sizes for the genomic and WGA chr12 capture

samples were both 320 bp, respectively. Both sets of genomic DNA samples were

multiplexed with other samples not part of this study, while each of the corresponding

WGA DNA samples were sequenced in an individual flow cell lane. Fastq files were

generated via the Illumina CASAVA pipeline v1.8. The starting number of passed

filter reads is shown in additional Tables 3.2 and 3.3, as well as additional metrics of

capture experiments.

Bioinformatics Pipeline

We applied the same bioinformatics pipeline to WGA and genomic DNA samples as

shown in figure S4. All programs from the Genome Analysis Toolkit (GATK) were

from version v1.6-5-g557da77 [30]. All programs from Picard were from v1.50 [132].
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Fastq files were aligned to the human reference sequence GRCh37 with the program

MOSAIK v2.0.113q [85]. Parameter values to MosaikAligner were as follows: -act 35,

-bw 37, -mhp 200 -mm 14. Capture metrics for the whole exome and chr12 capture

experiments were calculated using the program CalculateHsMetrics in Picard. Base

quality scores were recalibrated with the GATK programs CountCovariates and

TableRecalibration. PCR duplicates were marked using the program MarkDupli-

cates, which is part of Picard. SNP and INDEL variants were discovered using the

GATK program UnifiedGenotyper. Parameters used for running UnifiedGenotyper

were as follows: -stand call conf: 10, -stand emit conf: 30, -glm: BOTH, -out mode:

BOTH, -hets: .001. Each member of the WGA/genomic sample pair was called

independently as a single sample. SNP variant calls were filtered using the GATK

program VariantFiltration with the following filtering parameters:

((MQ0 / (1.0 * DP)) > 0.05) || DP < 5 || QUAL < 30.0 || QD < 5.0 || HRun > 5.0

|| SB ≥ -0.10

INDEL variant calls were filtered with the following:

((MQ0 / (1.0 * DP)) > 0.05) || SB ≥ -1.0 || QUAL <10

Where MQ0 = Number of reads with mapping quality zero, DP = depth of coverage,

QUAL= Phred scaled quality score, HRun = Largest contiguous homopolymer run

of variant allele in either direction, QD = Variant Confidence/Quality by Depth, and

SB = Strand Bias.
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Downsampling and Subsetting of Reads in WGA and Genomic

BAM files

To investigate the relationship between sequence coverage and number of variants

discovered, aligned reads from both WGA BAM files were downsampled to differ-

ent levels average target coverage using the Picard v1.50 program DownsampleSam.

Since UnifedGenotyper restricted its variant calling to target capture interval regions,

only aligned reads that had a minimum 1-bp overlap with a target interval were

considered in the downsampling process by removing off target alignments by using

the pairToBed program in BEDTools package [119] For the chr12 WGA BAM, 100

downsampled BAM files were generated with average target coverages of 100x, 200x

and 300x, respectively. For the whole-exome WGA BAM, 100 downsampled BAM

files were generated at coverage levels of 20x, 50x, and 80x. Since the WGA prepared

samples had higher sequence coverages, the coverage range of the downsampled

BAMs were chosen so they would closely overlap the coverage of the original genomic

DNA sample. Due to the stochastic nature of the downsampling process, as well as

variation in capture efficiency between targets, it was difficult to get exact match

in the number of reads between WGA and genomic BAMs. The number of reads

needed to achieve a desired coverage was determined by solving this equation: C=(N

× L)/G, where C is the coverage, N is the number of reads, G is the size of the

genome (in this case the total length in base pairs of capture array targets), and L is

the read length value (101 bp).

In addition to downsampling the reads from the WGA BAMs for both capture exper-

iments, an exact number of read pairs were randomly sampled from the initial WGA

fastq files to match the starting number of genomic DNA fastq read pairs. This was

accomplished by writing a Python script that randomly selects a specified number of
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read pairs from a fastq file. Once the subset of fastq read pairs were selected they

were put through the same bioinformatics pipeline applied to the original data.

Callset comparison metrics

We compared the variant calls from genomic and WGA using three types of metrics.

The first was site level intersection to see if the same genomic position was called

variant in both callsets. The other two types of metrics were non-reference sensitivity

(NRS), and non-reference discrepancy (NRD), shown in Figure 3.5. NRS measures the

fraction of sites called variant in the comparison callset that are also called variant in

the evaluation callset. For this study the evaluation callset are the WGA variant calls

and the comparison callset are the genomic variant calls. Sites called homozygous

reference or no-call in the evaluation calls, but were variant in the comparison callset

reduce NRS. NRD measures the accuracy assigned genotypes called by both datasets.

It excludes concordant homozygous reference calls. To calculate these values, the

VCF files of the WGA and genomic callsets were merged using the GATK program

CombineVariants and then calculated in Python.

SNP validation with Affymetrix 6.0 Human SNP array

The SNP variant calls for WGA and genomic DNA for both capture sequencing

experiments were compared to Affymetrix 6.0 Human SNP array derived genotypes

for the same samples. SNP array genotypes were called with Birdseed v2. The 6.0

Human SNP array contains a genomewide collection of more than 900,000 sites. For

a SNP array variant to be included in the validation analysis it must overlap a target

region on the capture array and have a confidence score of at least 0.05. Only those

variants that met these two conditions were considered. Based on these criteria there

were a total of 11831 SNPs on the 6.0 array that overlapped the whole exome capture

targets and 1435 SNPs that overlapped the custom chr12 capture targets. Similar
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to the comparison of WGA calls to genomic DNA calls, the VCFs of sequencing and

array derived genotypes were merged using the GATK program CombineVariants.

The sequencing derived genotypes were evaluated by comparing them to the array

based genotypes and the NRS and NRD concordance metrics were calculated. Only

sites that have PASS in the filter column of the individual VCFs were included when

calculating NRS and NRD from the CombineVariants derived VCF.

Statistical analysis of allele bias in SNP calls

For both the whole-exome and chr12 capture experiments, genomic and WGA SNP

call sets were merged, and then placed into 4 categories: concordant, uniquely

called genomic, differing genotypes (NRD contributing), and WGA uniquely called

SNPs. The counts of each of the 6 possible allele combinations in each category were

tallied. To test the null hypothesis that the proportion of SNPs are equal across

all 4 categories, the pairwise.fisher.test using the Bonferroni correction method was

applied in succession to each of the 6 possible allele combinations in R [120]. The

pairwise.fisher.test is part of the CRAN R package fmsb [104] . The significance level

α = .05 was chosen. The appendix contains of p-values for the whole-exome and

chr12 capture experiments.

A similar analysis was performed when comparing the sequencing derived SNP calls

to Affymetrix array derived genotypes for genomic and WGA capture experiments.

The sequencing and Affy callsets were merged ( only SNPs on the Affymetrix array

that overlapped a target capture region were included) and placed into concordant,

NRS, or NRD contributing categories. The appendix contains p-values for the whole

exome and chr12 comparisons to the array based genotypes.
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Sample Ascertainment

All samples and protocols for this study have been reviewed and approved by the

IRB of the Medical College of Wisconsin. In accordance with the approved protocols,

all participants provided written informed consent to participate in the study. Only

adult individuals were included in the study.
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Chapter 4

Discrete filtering approach to

prioritize variants in a Mendelian

exome study of non-sensorineural

hearing loss

4.1 Background

Hearing is an important biological function and species capable of sensitive sound

detection have a potential selective advantage. Sound transduction is an intricate

process, and unsurprisingly up to 1 percent of the approximately 20,000 human

genes in the human genome are involved in hearing [37]. The mammalian auditory

system is comprised of the external, middle, and inner ear (cochlea). Components of

the external ear include the pinna, which is the part of the ear that lies external on

the head, and ear canal. Sound waves travel through this canal and vibrate the ear

drum. This movement is transferred to the middle ear by movement of three small

bones, the malleus, incus, and stapes. The movement of the stapes transmits sound
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waves to the fluid filled inner ear. The cochlea is where sound waves are converted

to electrochemical signals which is transmitted by the auditory nerve to higher levels

of the auditory system [37].

A recent World Health Organization report indicated that over 360 million people

worldwide suffer from disabling hearing loss (HL) [61] HL is fairly common in human

populations with congenital deafness occurring 1 in every 1000 births [146]. Late

onset, progressive instances of HL are genetic in origin, with genes playing a critical

role with aging associated HL [146]. Non-syndromic hearing loss is not associated

with any other clinical symptoms, while syndromic hearing loss is associated with

other abnormalities in the body [130]. Non-syndromic sensorineural hearing loss

(NSHL) is deafness associated with alterations to the structures of the inner ear [146].

Over 1000 mutations in 60 genes have been cataloged [108]. There is considerable

genetic heterogeneity with NSHL, making the search for the genetic basis of deafness

a challenging task [146]. The first gene identified to cause HL was the X-linked

POU3F4, identified by linkage mapping in 1995 [29]. Genomic enrichment and next

generation technology have vastly accelerated the discovery of new causal loci and

have identified a dozen new loci [146]. Previous studies have applied a two step

approach of first performing linkage analysis and then following up with exome

capture sequencing [129]. This is more efficient than Sanger sequencing of candidate

loci. Recent examples of using this approach include the study by Walsh et. al. [140]

who combined homozygosity mapping with exome sequencing to identify a novel,

non-synonymous variant in GPSM2, a G-protein signaling modulator essential for

cell polarity. Another study by Yariz and colleagues [148] identified a frameshift

deletion and a compound heterozygote in OTOGL, which is a protein associated

with the cellular membrane of the inner ear.
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In this study we describe a whole exome capture experiment where six members

from a larger family pedigree of individuals of European descent living in Northern

Wisconsin were diagnosed with NSHL. Previous linkage analysis identified a 18 Mbp

size linkage interval with a LOD score of 3 on chromosome 12. No mutations were

found in previously implicated candidate genes involved in HL, suggesting a novel,

causal variant segregates in the family. Using a discrete filtering approach with a

minor allele frequency cutoff identified a non-synonymous mutation in TMTC2, a

transmembrane protein, that segregates perfectly with the phenotype in the family

and is enriched in a set of 200 unrelated individuals with the same form of hearing

loss. Functional studies suggest the electrophysiology is altered in cells lines that

contain the variant. The work here also suggests that hard filters against variant

catalogs to narrow down the list of candidate variants may need to be adjusted to use

a minimum minor allele frequency cutoff when studying genetic heterogeneous traits

with potentially incompletely penetrant alleles.

4.2 Results and Discussion

.

Capture sequencing metrics

The pedigree of the family that participated in this study is shown in Figure 4.1. A

subset of six individuals from the pedigree were whole-exome sequenced using the

Agilent SureSelect All Exon Kit (see section 5.4 ). Table 4.1, shows the capture

sequencing metrics of the samples (see section 5.4 for more details ).

Figure 4.3 shows variability in coverage for the samples that underwent whole-exome

sequencing, as summarized by box plots for each sample. The median values range
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Figure 4.1: Pedigree of hearing loss family - Individuals of pedigree selected for
exome analysis. Individuals with filled shapes are affected. Individuals in gray are
deceased.

from 50x to 60x for each sample. Figure 4.4 shows the per-base cumulative coverage

for each sample. Despite the variability in per target coverage, for each sample

studied, at least 80 percent of targeted bases had at least 20x coverage. Focusing

in targeted bases that lie in the chr12 linkage region, figure 4.5 shows the box plots

of median target coverage for each sample. Median values range between 65x-75x.

Figure 4.6 shows the per-base cumulative coverage in the chr12 linkage region. All

samples have at least 85-90% of linkage region bases with at least 30x coverage. Table

4.2 shows the numbers of genes, exonic sequence, and Aglilent capture targets in the

chr12 linkage region. Of the 120 kbp of exonic sequence in the linkage region, nearly

92% of them are covered by an Agilent target.

68



dataset sample 3 4 sample 3 5 sample 4 16 sample 4 22 sample 5 22 sample 5 26
Read Length 101 101 101 101 101 101
Target Territory 49649722 49649722 49649722 49649722 49649722 49649722
total reads 105316652 110371248 86940416 104367328 95981328 114601152
total unique reads 79549416 77491632 73449923 85295071 81154142 89518704
total unique reads aligned 62036624 60005207 57696024 66775648 63191839 69840387
% Usable bases on target 35 33 38 38 31 37
% Selected bases 83 79 81 81 62 82

Table 4.1: Sequencing capture metrics

Linkage region chr12:78475869-96475869
Number of genes 104
Number of transcripts 214
Number of exons 779
Exonic sequence (bp) 120584
Number of Agilent targets 723
Agilent targets (bp) 160376
Exonic sequence covered by Agilent (bp) 110741
Exonic sequence not covered by Agilent (bp) 9843

Table 4.2: Summary of genes, targets, and exonic sequence in linkage region

Discrete Filtering

Discovering the causal variant from the background of non-pathogenic polymorphisms

is a key challenge in analyzing exome sequencing data for Mendelian traits. Previous

studies analyzing exome sequence data to identify causative alleles of Mendelian

disease have utilized a discrete filtering approach [7, 106, 105]. This approach

searches for variants shared by all affected individuals sequenced. Next, assuming the

causative mutation is novel, candidate variants are filtered against known catalogs

of genetic variants, such as dbSNP or the 1000 Genomes Project. Next, variants can

be stratified by their function ( i.e. synonymous, non-synonymous, loss of function)

and functional impact (benign, damaging, conserved). Methods like SIFT [79], and

PolyPhen [3] use multiple alignments from related sequences and/or physiochemical

properties of mutations to predict any potential deleterious affect. Methods like

phyloP [112] measure evolutionary conservation by measuring rates of mammalian

evolution at an individual nucleotide level inferred from whole genome alignments of
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multiple species.

We applied a discrete filtering strategy shown in Figure 4.8 and described in detail

in Section 4.4. The first step of filtering out variants not conforming to a dominance

inheritance pattern was applied exome wide to variants found in all target regions.

Subsequent steps were focused on the linkage interval on chromosome 12. Table

4.3 shows the numbers of variants found after applying each filter step. All of the

24 SNPs and 2 INDELs that remained were present in the 1000 Genomes PhaseI

European callset from February 2012. Annotating these remaining variants showed

that 5 were non-synonymous SNPs. Table 4.4 shows the minor allele frequency of

the 5 non-synonymous and 1 UTR SNPs in the European Phase1 1000 Genomes

callset and the European NHBLI Exome Sequencing Project (ESP) [134]. All but

one variant are segregating at high frequency, while the single rare variant in the

gene TMTC2 is segregating at 1 percent in 1000 Genomes and .76% in ESP. Next,

PolyPhen2 [3] and SIFT [79] classifications and phyloP [112] score was obtained for

the TMTC2 variant. Table 4.5 shows the results of these tools. Both PolyPhen2

and SIFT classify the TMTC2 variant as tolerated and benign. The phyloP score is

1.40. phyloP measures evolutionary conservation at the individual nucleotide level,

and positive scores suggest evolutionary conservation. Looking at the descriptive

statistics of phyloP scores of all exonic nucleotides in the linkage region, shown in

Table 4.6, reveals that a score of 1.40 near the 50th percentile of all phyloP scores.

While the phyloP score suggests evolutionary conservation, half the other exonic

sites in the linkage region have larger phyloP scores, making the interpretation of its

score unclear.
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Figure 4.2: Putative causal variant in TMTC2 gene - A non-synonymous GTA
to ATA mutation in TMTC2 resulting in a Valine to Isoleucine replacement.

Freebayes callset Dominant inheritance reside in linkage peak 1000G membership variant annotation
SNPs 84357 1574 24 24 5 nsyn, 4 syn, 14 intronic, 1 UTR
INDELs 12170 138 2 2 1 fs, 1 intronic

Table 4.3: Numbers of variants after each discrete filter step

TMTC2 annotation

Based on the the evidence showing that the TMTC2 variant is segregating at low

frequencies in the 1000 Genomes and ESP datasets, it was flagged as a possible

causal mutation. Figure 4.2 shows the position of the mutation resulting in a Valine

to Isoleucine replacement. The specific function of TMTC2 is unknown but it is a

transmembrane protein containing a tetratricopeptide repeat motif [65]. The tetratri-

copeptide repeat (TPR) is a structural motif consisting of 34 degenerate amino acids.

It is found in a number of proteins that mediate protein-protein interaction. [11].

Performing a PFAM search [117] with the amino acid sequence of TMTC2 shows

that it contains three TPR domains, but the amino acid residue (381) which the

non-synonymous mutation changes, does not seem to be in a TPR domain. Utilizing

the web server TMHMM [138], which predicts transmembrane spanning regions in

protein sequences, indicates that mutated amino acid residue is cytoplasmic.
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Gene rsid Annotation PhaseI 1KG MAF % ESP MAF %
TMTC2 rs35725509 nsyn 1 .76
LRRIQ1 rs3765044 nsyn 26 27
LLRIQ1 rs17012533 nysn 26 27
POC1 rs2230283 nsyn 36 34
USP44 rs3812813 nsyn 55 45

TSPAN19 rs7962577 5-UTR 50 46

Table 4.4: Minor allele frequencies of non-synonymous candidate mutations

SIFT PolyPhen2 phyloP
Tolerated Benign 1.40

Table 4.5: Results from functional impact methods for TMTC2 mutation

Exons missed by capture

While Figures 4.5 and 4.6 show very good coverage metrics for Agilent targets in the

linkage region, another important point to address are the genes in the linkage region

whose exons were not covered by a target in the capture array. Table 4.2 shows that

9.8kb of exonic base pairs were not covered by an Agilent target. Table 4.7 lists the

genes and exonic base pairs missed. Note, the numbers in the second column of the

table do not add up to that in table 4.2 due to the fact that some exonic intervals

may have been counted more than once due to alternative transcripts of the same

gene. Two genes on the list, PTPRQ and OTOGL have been previously associated

with hearing loss [148, 127]. The three genes PTPRQ, OTOGL, TMTC2 all span a

2.4 Mbp region on chr12. While there is certainly a distinct possibility there could be

other pathogenic mutations segregating in these genes, additional genotyping of the

TMTC2 mutation and functional experiments suggest it has an affect on phenotype.

4.3 Conclusions

Here I described a discrete filtering approach to identify a putative causative mutation

for non-syndromic sensorineural hearing loss. The results show the utility of using

the discrete filtering approach to narrowing down a list of candidate variants, as well
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Min 1st Quartile Median Mean 3rd Quartile Max
-9.16 0.34 1.48 1.30 2.26 2.94

Table 4.6: Summary of placental mammal phyloP scores of exonic basepairs in chr12
linkage region

Gene exonic sequence missed (bp)
AC024909.1 2254
ALX1 129
ATP2B1 1779
BTG1 510
C12orf12 2961
C12orf37 1082
CCDC41 99
CEP290 330
CLLU1 1976
CLLU1OS 180
CRADD 68
DUSP6 1760
EEA1 60
LIN7A 219
LRRIQ1 6929
LTA4H 232
METAP2 132
MGAT4C 3467
MRPL42 20
NAV3 185
OTOGL 805
PAWR 663
PLXNC1 1452
POC1B 773
PPFIA2 2336
PPP1R12A 2261
PTPRQ 13150
TSPAN19 242
VEZT 6735

Table 4.7: Genes missed by Agilient capture

as some of its challenges. The assumption that pathogenic, causal mutations should

not be present in variant catalogs did not hold in this study. Of the non-synonymous

SNPs that remained, after filtering against the 1000 Genomes and Exon Sequencing

Project variant catalogs, only TMTC2 was segregating at low frequency. Despite

functional impact and evolutionary conservation of the Valine to Isoleucine substitu-

tion shown to be benign and difficult to interpret, it was still selected for follow up
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Figure 4.5: Median target coverage box chr12 linkage region - Median target
box plot in chr12 linkage region for the six sample investigated in this study

genotyping and functional analysis due to its rare frequency. The protein product

of TMTC2 is a transmembrane protein with a tetratricopeptide repeat (TPR) mo-

tif. Other proteins with this motif have been shown to been involved in mediating

protein-protein interactions. Follow up genotyping in a cohort of 200 unrelated indi-

viduals suffering from NSHL showed that the TMTC2 variant was segregating at 3

percent, nearly 4 times as high as in the European ESP population. The mutation

was genotyped and present in every affected member of the proband studied that

was not selected for exome sequencing (M. Olivier, personal communication). The

technical shortcomings of exons in the linkage region not being covered by the capture

array in genes previously implicated in hearing loss does not diminish our findings.
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Figure 4.6: Cumulative per-base coverage chr12 linkage region - chr12 linkage
region per-base cumulative coverage for the six samples investigated in this study
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If there were other pathogenic mutations in the genes PTPRQ and OTOGL, they

likely are on the same haplotype, and it would be difficult to disentangle the affects

of any other mutations. It is not necessarily clear if the TMTC2 variant has complete

penetrance, and if so, rather than requiring complete absence of candidate mutations

from variant catalogs, it might be necessary to employ a minor allele frequency cutoff

when filtering Mendelian exome callsets [131]. Other limitations of exome sequencing

that could effect our conclusions are the existence of potential functional variants in

non-coding regions not covered by the capture array. Variants in enhancer or silencer

elements could modulate the amount of wild-type or mutant transcript, leading to

phenotypic variance [17].

4.4 Methods

DNA sequencing

All samples were pair-end sequenced on an Illumina GAII machine with read lengths

of 101 base pairs with insert sizes ranging from 350 to 370 base pairs, respectively.

Fastq files were generated from Illumina’s CASAVA v1.8 pipeline.

Sequence Capture

All samples underwent genomic enrichment using the Agilent SureSelect All Exon

kit, which is designed to capture a total of 49.4 Mbp of exonic sequence spanning

the whole genome. The standard Agilent SureSelect protocol for Illumina paired-end

sequencing was used, requiring 3 micrograms of starting genomic DNA.
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Figure 4.7: Bioinformatics Pipeline - Bioinformatics pipeline for hearing loss
exome study

Bioinformatics Pipeline

The bioinformatics pipeline depicted in Figure 4.7 was applied to all six samples in

the study. Fastq files were aligned the human reference sequence GRCh37 with then

program MOSAIK v2.0.113 [85]. Parameters given to MosaikAligner were: -act 35,

-bw 37, -mhp 200, and -mm 14. All programs from the Genome Analysis Toolkit

(GATK) [30] were from version GenomeAnalysisTK-1.0.5974. Base quality scores

were re-calibrated with GATK programs CountCovariates and TableRecalibration.

Duplicate marking was performed with Picard v1.45 program MarkDuplicates [132].

SNP and INDEL variants were called with FreeBayes v0.8.9 [40] with all samples

called jointly using the parameters –min-alternate-count 5, –min-alternate-qsum 40,

–binomial-obs-priors, –allele-balance-priors. Variants were called in slightly modified
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target capture intervals for the Agilent All Exon kit that included plus 50 bp upstream

and downstream of original starting and ending coordinates. Post-filtering of the

FreeBayes calls required a minimal QUAL value of .5 and a maximal read depth of

1000.

Discrete filtering of variants

Figure 4.8: Exome filtering steps - A series of discrete filtering steps was applied
to narrow the list of candidate mutations.

Figure 4.8 shows the discrete filtering steps to narrow down the list of candidate

causative variants. The list of SNPs and INDELs called by FreeBayes were filtered

by removing any variant site that did not conform to a dominant inheritance pattern.

This means that the single unaffected individual was required to be homozygous

reference, while the remaining affected individuals were required to be heterozygote
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or homozygote non-reference. Since there was a strong linkage signal on chr12 based

on linkage analysis from previous genotyping, we further restricted variants to those

found only under the linkage interval. Finally, assuming that only non-synonymous

mutations are functional, variants were annotated as synonymous or non-synonymous

using the Variant Annotation Tool (VAT) [80].

Functional impact using PolyPhen2 and phyloP

Functional impact predictions from PolyPhen2 were obtained from the Polyphen-2

and SIFT webservers http://genetics.bwh.harvard.edu/pph2/ and http://sift.jcvi.org.

phyloP scores for exonic regions in the linkage interval were retrieved using the UCSC

Table Browser [69].

Using kinship coefficient to select individuals to sequence

Table 4.8 shows the condensed identity coefficients for each possible pair of individuals

that were sequenced from the pedigree shown in Figure 4.1. They were calculated by

the program idcoefs [2]. There are 9 possible condensed identity coefficients and they

give a complete probability distribution for identity by descent (IBD) between single

loci of two individuals [94]. The first 6 coefficients quantify the probability of being

inbred and since there is no consanguinity in the family studied, these probabilities

are 0. Coefficients 7-9, denoted in Table 4.8 as ∆∗ give the probability of sharing 2,

1, or 0 genes IBD between a pair of individuals. When deciding which individuals to

exome sequence in a family it is most advantageous to select individuals that are the

most distantly related. These relationships are quantified by the identity coefficients

in Table 4.8.
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Indvidual 1 Individual 2 ∆7 ∆8 ∆9

sample 3 4 sample 3 5 0 0 1
sample 3 4 sample 4 22 0 0.5 0.5
sample 3 4 sample 4 16 0 1 0
sample 3 4 sample 5 22 0 0.5 0.5
sample 3 4 sample 5 26 0 0.5 0.5
sample 3 5 sample 4 22 0 0 1
sample 3 5 sample 4 16 0 1 0
sample 3 5 sample 5 22 0 0.5 0.5
sample 3 5 sample 5 26 0 0.5 0.5
sample 4 22 sample 4 16 0 0.25 0.75
sample 4 22 sample 5 22 0 0.125 0.875
sample 4 22 sample 5 26 0 0.125 0.875
sample 4 16 sample 5 22 0 0.5 0.5
sample 4 16 sample 5 26 0 0.5 0.5
sample 5 22 sample 5 26 0.0625 0.375 0.5625

Table 4.8: Pairwise kinship coefficients for individuals exome sequenced
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Chapter 5

SNP Variant discovery in pedigrees

using Bayesian networks

5.1 Background

Next generation sequencing technologies have reduced the cost and increased the

throughput of DNA sequencing experiments by sequencing DNA molecules in a mas-

sively parallel fashion [102]. This has enabled geneticists to sequence large numbers

of individuals to properly characterize the numbers of rare variants segregating in

the human population. Projects like the 1000 Genomes have provided the genetics

community with a comprehensive catalog of genetic variants that include rare and

low frequency loci [33]. There has been increased attention to the role that rare

variants might play in explaining the missing heritability in genome wide association

studies that previously SNP genotyped only common variants.

While association studies using unrelated individuals have had success [56], family

sequencing studies offer a different avenue to uncovering new associations. While

rare variants segregate at low frequency in the population, sequencing multiple af-
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fected individuals in the same family can be potentially enriched for causal mutations

[20] and can increase the statistical power of rare variant analyses [88, 89]. There

have been several methods dedicated to variant discovery from next generation se-

quencing datasets, and the majority of these assume that the samples are unrelated

[40, 30]. Modeling Mendelian inheritance when analyzing such datasets can poten-

tially improve the sensitivity and accuracy of results, in particular of non-founder

individuals. This is because by modeling the data as a Bayesian network, genotype

inference for non-founder individuals is leveraging information from parental sam-

ples. Here I present a method called Pgmsnp that incorporates pedigree relationships

when assigning SNP genotypes to each member from a family sequencing dataset.

The method models the pedigree as a Bayesian network and uses a belief propagation

algorithm to compute posterior genotype probabilities of family members. First I

describe the basics of Bayesian networks and the belief propagation algorithm used.

Next, I present simulation results on a variety of pedigree structures using Pgmsnp

and three other SNP calling methods. Finally Pgmsnp results, as well as competing

methods, are presented on an empirical sequencing dataset from the Ilumina Plat-

inum genomes collection on a subset of a 17 member pedigree. Pgmsnp genotyping

results perform better than using the standard approach of assuming all samples are

un-related at lower sequence coverage. Compared to other pedigree aware methods

tested in this study, Pgmsnp has comparable sensitivity of detection, but has slightly

less genotyping accuracy. Specifically, for non-founder individuals in the Illumina

Platinum pedigree, Pgmsnp has a higher sensitivity and better genotyping accuracy

than the method GATK, which doesn’t incorporate Mendelian relationships. Overall,

results suggest that incorporating Mendelian relationships of samples as a Bayesian

network improves the sensitivity of SNP detection of non-founder members.
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Probabilistic Graphical Models

Bayesian networks are a type of probabilistic graphical model (PGM). Probabilistic

graphical models compactly represent a complex distribution using a graph based

representation. Random variables are represented as nodes and edges represent

probabilistic relationships between random variables [76]. Probabilistic graphical

models have the following useful properties: 1) Visualization of a probability model

2) Probablistic dependencies can be inspected from the graph. 3) Complex compu-

tations like joint, conditional, and marginal probabilities can be expressed in terms

of graphical manipulations [10].

A complex probability distribution can be represented compactly in a graphical way,

and using this representation inferences about certain variables can be computed

using efficient algorithms. One example is computing posterior probabilities of some

variables given observations or evidence about others [76]. These algorithms work

directly on the graph structure rather than manipulating the joint distribution alge-

braically, which can become quite cumbersome and unintuitive to handle, especially

if the numbers of variables in the distribution is large [113, 76].

Fundamental to the representation of Bayesian networks is the chain rule of proba-

bility:

Pr(X1, . . . Xk) = Pr(X1)p(X2|X1) · · ·Pr(Xk|X1, . . . , Xk−1) (5.1)

where the left side of the equation represents the joint distribution of a set of random

variables X1 . . . Xk.
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Graphical models can represent joint probabilities in a symbolically efficient way by

defining local relationships amongst variables. Suppose each node has a set of parent

nodes (which can be the empty set). Let πi represent the set of indices of the parent

node Xi, such that Xπi refers to the parents of Xi. The parent-child relationships can

used in making efficient representations of joint probability distributions:

Pr(x1 . . . xn) ≡
n∏
i=1

Pr(xi|xπi) (5.2)

so the joint probability is a product of the local functions in the graph. Lauritzen

and Sheehan [84] refer to this as a Bayesian network if the graph is a directed acyclic

graph (DAG). Also, for any node, given the values of its parents, are conditionally

independent of all nodes which are not descendants. This is the directed local

Markov property. Using Equation 5.2, the joint distribution of a Bayesian network is

described from the associated DAG and conditional probability distributions of each

node, given its parents. The corollary of this is that pedigrees are DAGs and their

joint distribution of genotypes can be specified using Equation 5.2.

Representation

Using directed graphs to analyze probability distributions has a long history in genet-

ics, dating back to the work of Sewall Wright and his work on path analysis [143, 144].

Pedigree structure can be represented quite naturally as a Bayesian network. First

we introduce the concept of a factor. Let D be a set of random variables. We define a

factor φ to be a function from Val( D) to the set of real numbers. The set of variables

in D is the scope of the factor and is denoted Scope[φ]. Essentially, we can think

of factors as (conditional) probability tables. Inference algorithms for Bayesian net-
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works manipulate factors to compute entities of interest such as joint and marginal

probabilities. Details of the structure and representation of the Bayesian network

used in this study is presented in Section 5.4.

Inference

Inference in Bayesian networks involves computing the (posterior) values of some

variables, given evidence about others [76]. Efficient exact inference algorithms are

an essential feature of Bayesian networks that allow joint, conditional, and marginal

probabilities to be computed. The following sections describe the variable elimination

and clique tree algorithm for computing marginal posterior probabilities.

Variable Elimination and Exact Inference

The common feature of any inference techniques with Bayesian networks are the

manipulation of factors. The underlying operation when computing the probability of

some variable in a Bayesian network is marginalizing out variables from a distribution.

We can view the as computation on a factor. Let X be a set of variables and Y /∈ X

be a variable. Next, let ψ(X, Y ) be a factor. Marginalizing out Y generates a new

factor ψ over X:

ψ(X) =
∑
X

φ(X, Y ) (5.3)

A key trick in doing inference on Bayesian networks is exchanging a summation and

a product if X /∈ Scope[φ1]:

∑
X

(φ1φ2) = φ1

∑
X

(φ2) (5.4)
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A marginal probability computation involves taking the product of factors and doing

a summation over all the variables except the query variables (the variables you are

interested in). So in general, the inference task involves taking a sum-product of the

form

∑
Z

∏
φ∈Φ

φ (5.5)

where Φ is a set of factors.

Figure 5.1: Sum-product variable elimination - The marginal probability of D
is computed by applying equation 5.4
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An example of sum-product variable elimination is given in Figure 5.1. To compute

the marginal probability of the variable D in the figure, variables A, B, and C are

eliminated by applying equation 5.4. When a variable is summed out, all factors that

contain that variable in its scope are multiplied, generating a product factor. Then

the variable to be eliminated is summed out of this product factor. Again, let X be a

set of variables and Φ be a set of factors such that for each φ ∈ Φ, Scope[φ] ⊆ X. Let

Y ⊂ X be a set of query variables and the remaining variables be Z = X − Y . Then

for any elimination ordering of non-query variables, sum-product variable elimination

returns a new factor φ∗(Y ):

φ∗(Y ) =
∑
Z

∏
φ∈Φ

φ (5.6)

Graph theoretic view of variable elimination

The sum product variable elimination (VE) algorithm is agnostic about the type of

graph on which it operates. But the manipulation of factors can be viewed as a series

of graph transformations. Let H be an undirected graph whose nodes are variables

in the Scope[Φ] and where there is an edge between nodes if there exists a factor

φ ∈ Φ such that Xi and Xj ∈ Scope[φ]. In other words, the undirected graph H is a

fully connected sub-graph over the scope of each factor φ ∈ Φ.

In the process of eliminating a variable a new factor ψ is created with X and all the

other variables Y that appear with it in factors. Then X is summed out, creating a

new factor τ that contains all the variables Y but not X. Let ΦX be the resulting set

of factors. When the factor ψ is created, there exist edges between all the variables

Y ∈ Y. Some may have been in the original graph HΦ, others are introduced as

fill edges. When the factor τ is created, X is removed and all its incident edges are
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removed. The elimination order is reflected as a series of graphs and every factor

that appears in the steps of the VE sum product algorithm is a clique. The set of

factors generated in VE is a clique in the induced graph.

The induced graph is the union of all graphs made during the course of variable

elimination. Again, let Φ be a set of factors over X and ≺ be an elimination ordering

for some subse of variables X ⊆ X. The induced graph IΦ,≺ is an undirected graph

over X where Xi and Xj have an edge between them if they appear in an intermediate

factor, psi, generated during the course of variable elimination. Each factor ψ used

in the course of variable elimination is a complete subgraph of the induced subgraph,

IΦ,≺, and is known as a clique.

Clique Trees and Exact Inference

In the previous section on variable elimination (VE) we describe the sum prod-

uct algorithm which sums out variables one at a time. In this section we describe

how to use a clique tree as a global data structure to eliminate larger sets of variables.

A cluster graph, U, for a set of factors, Φ, over X, a set of random variables, is an

undirected graph whose nodes are associated with a subset Ci ⊆ X. The cluster

graph must be family preserving such that each factor φ ∈ Φ should be assigned to a

cluster such that the scope of of the factor assigned to the cluster should be a subset

of the variables in the cluster: Scope[φ] ⊆ Ci. Finally, each edge between a pair of

clusters Ci and Cj forms a sepset: Si,j ⊆ Ci ∩ Cj.

The cluster graph is used as a data structure to help track the factor manipulation

process at the heart of inference calculations in Bayesian networks. Each node is

a cluster of variables and undirected edges connect clusters that have a non-empty
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intersection of variables. Performing variable elimination defines the structure of

the cluster graph. In VE, once a variable is eliminated, it doesn’t appear in any

computations, so the cluster graph induced by variable elimination is a tree. The

order of VE defines a direction to the flow of messages between clusters, hence we can

define a root. If cluster Ci is on the path from Cj to the root, then Ci is upstream

from Cj and Cj is downstream from Ci. Define T be a cluster tree over a set of

factors Φ. Its nodes and edges are defined as VT and ET . The tree T has the running

intersection property whenever there is a variable X such that X ∈ Ci and X ∈ Cj,

then X is in every cluster in the (unique) path in T between Ci and Cj.

In variable elimination a variable appears in every factor from the time its first mul-

tiplied in (by a factor whose scope contains the variable) till the time is summed

out. Let T be a cluster tree induced by a variable elimination ordering over some set

of factors Φ. Let Ci and Cj be neighboring clusters such that Ci passes a message

τi to Cj. The scope of this message is the intersection of variables: Ci ∩ Cj So the

running intersection property (RIP) is quite helpful. Deriving from the RIP of cluster

trees, we define a clique tree: Let Ψ be a set of factors over X. A cluster tree over

Φ satisfying the running intersection property is a clique tree (also called a junction

tree or join tree).

Variable Elimination and Clique Trees

Recall again in each step in VE a factor ψi is created by multiplying together factors

and a variable is eliminated from ψi to create a new factor τi. This process is continued

till the algorithm is finished. The generation of factors can be seen as message passing

where a factor ψi takes incoming message τj generated by factors ψj, then generates

its own message τi which in turn is passed onto another factor ψl. Each node in
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the cluster graph are a set of variables and whose edges have variable scopes with a

non-empty intersection.

Sum Product Message Passing

An execution of VE results in a clique tree. But you can start with a clique tree and

use it as a data structure to perform variable elimination. The same clique tree can

be used multiple times for different executions of VE. So given a tree that satisfies

family preservation and the RIP property, you can do can use it in several different

ways to do inference with Bayesian networks. The clique tree can be used as a

data structure for caching computations so you can do multiple variable eliminations

rather than performing VE separately for each variable of interest. Hence the steps

to use a clique tree to compute posterior marginal probabilities are as follows:

Step 0: Construct a clique tree given a set of factors Φ

Step 1: Assign each factor to a clique.

Step 2: Calculate initial potentials by multiplying all factors assigned to a clique

Step 3: Denote an arbitrary clique as the root of the tree. Pass messages from the

neighbor nodes upwards towards the root. Once complete, pass messages from the

root downwards to its neighbors. At this point the clique tree is designated to be

calibrated, meaning that if a variable appears in more than one clique node, the

should agree on the marginal probability of the variables in their sepset.

Step 4: Compute the final beliefs for each clique which means multiplying a nodes

initial potential with that of all its incoming messages of its neighbors. Once the
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final beliefs are computed, you can extract out the variables of interest to inspect

their posterior marginal probability.

The message passing steps described above where messages are passed upwards to

the root and downwards towards the leaves is called sum-product belief propagation.

If c is the cost of message passing, the total cost of of the algorithm is 2c. If one

were to do sum product variable elimination separately for each variable we wish to

compute the posterior marginal for, the cost would be nc, where n is the total number

of variables. The main advantage of sum-product clique tree calibration algorithm is

it computes the posterior probability of all variables using only twice the computation

of the upward pass of the same tree. In general, the clique tree algorithm is the best

way to calculate posterior probability of multiple query variables [76].

Max product message passing

When constructing a Bayesian network to make inferences about posterior genotype

probabilities of samples, rather than computing the marginal posterior probabilities of

genotypes, we want to compute the most probably instantiation of genotypes. This is

also known as the maximal a posteriori (MAP) assignment of genotypes. The same

steps outlined in clique tree belief propagation are followed, but instead sums are

replaced by maxima. This is called max product belief propagation. The steps of

clique tree construction and max product belief propagation are outlined in Figures

5.2 and 5.3 below.
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Figure 5.2: A clique tree is constructed
from a list of factors. Each factor is
assigned to a clique node.

Figure 5.3: Posterior marginals are
computed with max-product belief
propagation. Once the tree is cali-
brated, final beliefs and posterior max
marginals can be extracted from the
tree.
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5.2 Results and Discussion

Simulated Pedigrees

Trio Sibship Father+sibs Mother+sibs

Multigen

Figure 5.4: Simulated pedigrees - Five pedigree structures were simulated.

Pgmsnp was first tested on simulated pedigrees without sequencing or mapping error

(see section 5.4 for more details). A set of 5 pedigree structures shown in Figure 5.4

were generated from founder haplotypes and recombinant gametes. The pedigrees in

the figure that contain individuals with dashed lines denotes samples whose sequence

data was not included as input for variant calling. Each founder individual had a 1

Mbp genome randomly picked from a population of 50 haplotypes simulated via the

coalescent with a previously defined demographic model of European ancestry [126].

Non-founder individuals were simulated by modeling recombination with a Poisson

distributed number of recombination events to generate recombinant gametes. Paired
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end Illumina sequencing reads were generated with the program mason [59]. Each

individual’s genome was sequenced to 20x coverage and then downsampled to 10x

and 5x coverage. Each pedigree structure was examined with Pgmsnp and three

other methods: GATK UnifiedGenotyper [30], Famseq [111], and Polymutt [86] at

20x, 10x, and 5x coverage. Famseq is a similar method to Pgmsnp that uses Bayesian

networks to model the pedigree sequencing data to compute posterior genotype

probabilities. Polymutt is another family aware method that uses the Elston-Stewart

algorithm [135] to compute the likelihood of reads in a pedigree. UnifiedGenotyper is

a Bayesian variant caller that does not incorporate Mendelian relationships amongst

samples.

The two main concordance metrics used to measure the performance of SNP calling

of Pgmsnp are non-reference sensitivity (NRS) and non-reference discrepancy (NRD).

NRS measures the proportion of sites called variant in the gold standard (comparison)

callset that are also called variant in the evaluation callset. Here the evaluation callset

are the SNP variant calls returned by Pgmsnp and the three other methods used. Each

of these call sets are compared to the gold standard callset, which are genotypes of

the samples derived from the coalescent simulation. NRD measures the proportion of

differing genotypes between the gold standard and evaluation callsets, at sites called

in both data sets, excluding concordant homozygous reference calls. (See section 5.4

for how they are computed).
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Trio

Figure 5.5: NRS and NRD metrics
Pgmsnp simulated trio.

Figure 5.6: NRS and NRD metrics
GATK simulated trio.

The first simulated pedigree structure examined was the trio, with coverages at 20,

10, and 5x. At 20x coverage all the methods analyzed have 100 percent sensitivity and

zero genotyping discrepancy, as shown in figures 5.5, 5.6, 5.7, 5.8. The performance

of each of the pedigree aware methods is indistinguishable to that of GATK. This

was a broad pattern seen across all simulated pedigree designs. Things get more

interesting at lower coverages. At 5x coverage, each of the pedigree aware methods

have slightly higher NRS values (96.7 Pgmsnp), (96.7 Famseq), (96.1 Polymutt) than

GATK (95.6) for childOne. The corresponding NRD for GATK childOne 5x calls is

8.28%. The NRD values for Pgmsnp, Famseq, and Polymutt are 5.1, 5.9, and 4.0%.

Pgmsnp performs comparable to Famseq and Polymutt in detection sensitivity, but

has a 1 % greater genotyping discrepancy. If we look at the genotype concordance

matrices for each of the four methods for childOne at 5x coverage, as shown in figures

5.9, 5.10, 5.11, 5.12, incorporating Mendelian inheritance in the genotype priors

makes the greatest difference in detecting heterozygotes. While Pgmsnp performs

comparably to Polymutt in terms of NRS, the increase in genotype discrepancies in
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Pgmsnp can be attributed to incorrectly calling 24 sites as AB heterozygotes ( where

B is the non-reference allele), when the gold genotype was BB homozygote alternate.

Figure 5.7: NRS and NRD metrics
Famseq simulated trio.

Figure 5.8: NRS and NRD metrics
Polymutt simulated trio.

Figure 5.9: Genotype matrix child
one, 5x coverage Pgmsnp.

Figure 5.10: Genotype matrix child
one, 5x coverage GATK.
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Figure 5.11: Genotype matrix child
one, 5x coverage Famseq.

Figure 5.12: Genotype matrix child
one, 5x coverage Polymutt.
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Sibship

The next simulated pedigree design tested with Pgmsnp and associated methods was

a sibship. The parents of the two sibs are the same parents in the simulated trio. The

child from the trio has a simulated sibling, referred to as child3 in the preceding fig-

ures. The NRS and NRD metrics for all four methods are shown in figures 5.13, 5.14,

5.15, 5.16. As with the trio results, the 20x simulations of the pedigree aware, and

standard calling method are identical, with 100 percent sensitivity and zero percent

genotype discrepancy. At 10x coverage, the sample denoted as child3, has genotyp-

ing discrepancy notably higher than its sibling for both Pgmsnp (10%) and Famseq

(12%) derived callsets. Polymutt derived genotype discrepancies are essentially zero.

This pattern is interesting because both Pgmsnp and Famseq have identical posterior

genotype inference algorithms. At 5x coverage, the NRS values for Pgmsnp, Famseq,

and Polymutt are very similar to GATK derived calls for both siblings, but Poly-

mutt’s genotyping accuracy is remarkably higher than all three methods. Pgmsnp

and Famseq’s NRD metrics at 5x coverage parallel each other, with values ranging

between 20-45%, nearly 8 times higher than Polymutt. The genotype concordance

matrices of all four methods for child3 at 5x, are shown in figures 5.17, 5.18, 5.19,

5.20. The matrices for Pgmsnp and Famseq are nearly identical. Comparing the

pedigree aware matrices to GATK, each of the pedigree aware methods correctly call

more heterozygotes. The reason for the difference in NRD metrics between Polymutt

and each Pgmsnp and Famseq lies in correctly genotyping homozygous non-reference

BB genotypes.
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Figure 5.13: NRS and NRD metrics
Pgmsnp simulated sibship.

Figure 5.14: NRS and NRD metrics
GATK simulated sibship.

Figure 5.15: NRS and NRD metrics
Famseq simulated sibship.

Figure 5.16: NRS and NRD metrics
Polymutt simulated sibship.
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Figure 5.17: Genotype matrix child3
sibship, 5x coverage Pgmsnp.

Figure 5.18: Genotype matrix child3
sibship, 5x coverage GATK.

Figure 5.19: Genotype matrix child3
sibship, 5x coverage Famseq.

Figure 5.20: Genotype matrix child3
sibship, 5x coverage Polymutt.
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Father plus sibs

This pedigree structure took the sibs and added back the father’s sequencing data.

The NRS and NRD metrics are shown in figures 5.21, 5.22, 5.23, 5.24. Incorporating

pedigree awareness doesn’t make a difference at high coverage, as both NRS and NRD

measures for all 3 pedigree methods are indistinguishable to the results derived from

GATK. NRS values at 10x for all methods are very similar to each other, but as

with the sibship, child3 has a pronounced increase in NRD for both Pgmsnp (9.3)

and Famseq (8.3) compared to Polymutt derived calls ( 0.65). At 5x coverage, NRD

values for Pgmsnp and Famseq derived calls have very similar values, ranging from

6% for fatherOne to 39% for child3. NRS values for each of the pedigree methods is

slightly higher that the GATK derived calls for each of the sibs at 5x, but Polymutt’s

NRD values are the lowest of all methods at 5x coverage. Looking at the genotype

concordance matrices of child3 at 5x coverage for all four methods, as shown in

figures 5.25, 5.26, 5.27, 5.28, shows a similar pattern to the sibship results. All

the pedigree aware methods have better detection power for heterozygote genotypes

when compared to GATK. The major stumbling block for both Pgmsnp and Famseq

are correctly genotyping BB homozygous non-reference sites.
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Figure 5.21: NRS and NRD metrics
Pgmsnp simulated father+sibs.

Figure 5.22: NRS and NRD metrics
GATK simulated father+sibs.

Figure 5.23: NRS and NRD metrics
Famseq simulated father+sibs.

Figure 5.24: NRS and NRD metrics
Polymutt simulated father+sibs.
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Figure 5.25: Genotype matrix child
three father+sibs, 5x coverage Pgm-
snp.

Figure 5.26: Genotype matrix child
three father+sibs, 5x coverage GATK.

Figure 5.27: Genotype matrix child
three father+sibs, 5x coverage Fam-
seq.

Figure 5.28: Genotype matrix child
three father+sibs, 5x coverage Poly-
mutt.
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Mother plus sibs

Results of analyzing the simulated sequence data of motherOne with both offspring

are very similar to the previous section. The child3 NRD values are considerably

higher at 10x for both Pgmsnp and Famseq, as shown in figures 5.29, 5.30, 5.31,

5.32. NRS values are very similar for all methods, suggesting that modeling Mendelian

relationships doesn’t have as large of an impact as one would expect. The genotype

matrices for child3 at 5x are shown in figures 5.33, 5.34, 5.35, 5.36. Again, where

Polymutt beats out both Pgmsnp and Famseq is in correctly genotyping homozygous

non-reference sites. Many of these sites are incorrectly called as heterozygotes in

Pgmsnp and Famseq.

Figure 5.29: NRS and NRD metrics
Pgmsnp simulated mother+sibs.

Figure 5.30: NRS and NRD metrics
GATK simulated mother+sibs.
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Figure 5.31: NRS and NRD metrics
Famseq simulated mother+sibs.

Figure 5.32: NRS and NRD metrics
Polymutt simulated mother+sibs.

Figure 5.33: Genotype matrix child
three mother+sibs, 5x coverage Pgm-
snp.

Figure 5.34: Genotype matrix child
three mother+sibs, 5x coverage
GATK.
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Figure 5.35: Genotype matrix child
three mother+sibs, 5x coverage Fam-
seq.

Figure 5.36: Genotype matrix child
three mother+sibs, 5x coverage Poly-
mutt.
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Multigeneration

The final simulated pedigree structure tested was a three generation pedigree com-

prised of the founders and sibs of the previous pedigrees, with an additional marry

in (marryinOne) who had a simulated offspring (grandchildOne) with childOne. The

total size of the pedigree is six individuals. The NRS and NRD metrics for each of

the four methods are shown in figures 5.37, 5.38, 5.39, 5.40. The biggest difference

that modeling Mendelian inheritance makes is in non-founder individuals at 5x cov-

erage. Each of the 3 non-founder individuals (childOne, child3, and grandchildOne)

had higher NRS values in each of the pedigree aware methods than GATK. Com-

paring Pgmsnp’s NRS values at 10x of childOne, child3, and grandchildOne (98.05,

95.6, 95.4) to GATK’s for the same samples ( 95.3, 95.8, 94.0), Pgmsnp has higher

sensitivity for two of the three. In terms of genotyping discrepancy, childOne, child3,

and grandchildOne have lower genotype discrepancy percentages in Pgmsnp derived

calls (.57, .65, .47) than GATK (.84, .73, 1.18). Polymutt’s genotype accuracy at

10x is even better for these samples with NRD values of .33,.37, and .63. This NRD

differences between GATK and Pgmsnp are even more pronounced at 5x for the the

three non-founders, with Pgmsnp’s NRD values of 5.4,7.8, and 8.07%, compared to

GATK’s of 7.32, 8.01, and 10.72%. Polymutt’s genotyping accuracy at 5x is lowest of

all methods with values of 4.35, 2.52, and 7.0%. The sample grandchildOne genotype

matrices from the four methods are show in figures 5.41, 5.42, 5.43, 5.44. Each of the

pedigree methods wins out in correctly identifying more heterozygote genotypes. The

Pgmsnp and Famseq matrices are nearly identical. Again, as with previous pedigree

structures, the reason why Polymutt has better genotyping accuracy is because it ac-

curately distinguishes between AB heterozygotes and BB homozygous non-reference

genotypes.
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Figure 5.37: NRS and NRD metrics
Pgmsnp simulated mutigeneration.

Figure 5.38: NRS and NRD metrics
GATK simulated mutigeneration.

Figure 5.39: NRS and NRD metrics
Famseq simulated mutigeneration.

Figure 5.40: NRS and NRD metrics
Polymutt simulated mutigeneration.
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Figure 5.41: Genotype matrix grand-
child multigen, 5x coverage Pgmsnp.

Figure 5.42: Genotype matrix grand-
child multigen, 5x coverage GATK.

Figure 5.43: Genotype matrix grand-
child multigen, 5x coverage Famseq.

Figure 5.44: Genotype matrix grand-
child multigen, 5x coverage Polymutt.
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Illumina Platinum Genomes

NA12892NA12891

NA12878NA12877

NA12882

A5
A3

G3

Ceph pedigree 1463

Figure 5.45: Ceph pedigree 1463 - Three pedigrees examined from the Illumiina
Platinum genomes dataset

Pgmsnp was tested on empirical data from the the Illumina Platinum Genomes

dataset. Illumina sequenced the 17-member Ceph 1463 pedigree to 50x coverage

and released the data to the genomics community as a resource [62]. These 50x

genomes were aligned with BWA [30]. Additionally, SNP variant calls were made

with GATK [30] on a single sample basis, meaning that the variant calls were not

made jointly with all 17 members of the full pedigree. A 5 member subset of the

17 member pedigree was used to test Pgmsnp and is shown in Figure 5.45. The

5 member pedigree is referred to as A5 and is comprised of individuals NA12891,

NA12892, NA12878, NA12887, and NA12882. The two founders and their daughter

is referred to as pedigree G3, and the marry in to NA12878 and their offspring
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is denoted as pedigree A3. Each individual’s BAM file [90] was downloaded from

European Nucleotide Archive. Based on the simulation experiments with Pgmsnp

and associated methods, data at high coverage (≥20x), pedigree aware methods

perform the same as the standard approach that do not incorporate Mendelian

inheritance. Hence, each of the 5 Ceph BAM files were downsampled to 5x and 10x

coverage.

Figure 5.46: Analysis steps to compare call sets - Each of the evaluation call
sets, Pgmsnp, GATK, Famseq, and Polymutt were compared to the 50x Illumiina
Platinum genomes dataset

Each of the downsampled pedigrees (A5, G3, A3) SNP variant calls were made with

Pgmsnp, GATK, Famseq, and Polymutt, and then compared to the callset derived

from the original 50x Illumina Platinum genomes for chr20 only. This process is shown
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Figure 5.47: Process used to merge single sample Illumina 50x VCF files
- A master list of sites to genotype in the individual BAM files is created from the
union of segregating sites. The sites are genotyped and then merged into a single
VCF containing all members of the pedigree.

in Figure 5.46. The reason for analyzing chr20 is that the speed of Pgmsnp, since its

implemented in Python, is much slower to run. Performing whole-genome calls would

not have been practical. I address this issue in section 5.3. The steps to generate

the Illumina 50x derived callset is a bit nuanced. Since the original VCF files derived

from the 50x Illumina BAM files were called individually, it was necessary to merge

them into a single VCF. The process to do this involves three steps. First is to take

the union of polymorphic sites in each individual VCF and create a master list VCF

containing their positions and alleles. Next step is to genotype each of the individual

samples at the sites contained in the master list using GATK [30]. Finally, the last

step is to merge each of genotyped samples into a single VCF containing all members
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of the pedigree. This process is depicted in Figure 5.47. This process was applied

to the A5, G3, and A3 pedigrees to create the gold comparison callset to which the

evaluation call sets derived from Pgmsnp and other methods were compared to.

Venn Analysis of evaluation callsets

Venn analysis looks at the site level concordance between the evaluation and gold

comparison call sets. A site is either in the intersection of calls (meaning that the site

was in both the evaluation and gold callset) or the unique fraction ( meaning that

the site was called by one method, but not the other). Table 5.1 show the numbers

of SNPs in the unique fraction of Pgmsnp calls, intersection, and unique fraction of

Illumina 50x calls. The numbers in parentheses indicate the transition-transversion

(TsTv) ratio of the callset. Salient points to take away from the table are that the

TsTv values are higher for sites in the intersection than the unique fraction of Pgm-

snp. The size of the unique fraction of the Illumina calls is much smaller for the 10x

coverage call sets, which is most likely attributable to the higher number of reads in

the BAM file. The size of unique fraction of the Pgmsnp calls is quite large, relative to

the unique fraction of Illumina and the TsTv values are much lower, indicating these

are potentially low quality calls. Closer examination reveals that approximately 80%

of Pgmsnp unique fraction sites across all experiments were called in the Illumina 50x

VCF, but were filtered out Illumina when applying GATK’s Variant Quality Score

Recalibration (VQSR) algorithm. VQSR was not applied to the Illumina callset(s)

for each of the pedigrees analyzed after merging individual call sets ( see Figure 5.47 ).

Table 5.2 shows the Venn analysis of GATK applied to the 5x and 10x BAMs to the

three pedigrees analyzed. The intersection calls are a bit higher than Pgmsnp in table

5.1. Again, the unique fraction of the GATK calls are quite sizeable, but like in the

Pgmsnp Venn results, many of these sites are present in the Illumina callset, but were
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Pedigree Pgmsnp unique Intersection Ilumina unique Coverage
A5 27995 ( 1.04) 101757 (2.27) 7725 (2.25) 5x
A5 42340 (1.0) 108098 (2.27) 1384 (2.33) 10x
A3 19941 (1.13) 86580 (2.27) 8427 (2.25) 5x
A3 31621 (1) 93543(2.26) 1464 (2.25) 10x
G3 19550 (1.0) 85007 (2.26) 8412 (2.27) 5x
G3 31308 (1.01) 91978 (2.26) 1441 (2.20) 10x

Table 5.1: Pgmsnp site level Venn analysis. TsTv ratios are shown in parentheses.

Pedigree GATK unique Intersection Illumina unique Coverage
A5 54562 (1.08) 103028 (2.27) 6454 (2.22) 5x
A5 67462 (1.05) 108405 (2.27) 1077 (2.34) 10x
A3 42547 (1.13) 88650 (2.27) 6357 (2.20) 5x
A3 53257 (1.09) 93914 (2.27) 1093 (2.20) 10x
G3 43232 (1.12) 87085 (2.27) 6334 (2.24) 5x
G3 54260 (1.07) 92330 (2.26) 1089 (2.34) 10x

Table 5.2: GATK site level Venn analysis. TsTv ratios are shown in parentheses.

filtered out by VQSR. The Famseq Venn results shown in table 5.3 are essentially

the same as the GATK results. Famseq takes as input a GATK derived VCF, records

the genotype likelihoods in the file, and adjusts the genotypes, taking into account

Mendelian inheritance. Since Venn analysis is site based, it would be expected that

the numbers would be relatively unchanged. Finally, 5.4 shows the Venn analysis

results for Polymutt. The TsTv ratios in the intersection are all very similar to the

previous methods analyzed, but the TsTv values for the unique fraction of Ilumina

calls is slightly lower in this analysis then the others. Overall, the intersection fractions

of all methods when compared to the Illumina 50x calls are similar in size and TsTv

Pedigree Famseq unique Intersection Illumina unique coverage
A5 54424 (1.09) 103028 (2.27) 6454 (2.22) 5x
A5 67227 (1.04) 108404 (2.27) 1078 (2.34) 10x
A3 42478 (1.13) 88648 (2.27) 6359 (2.20) 5x
A3 53134 (1.09) 93913 (2.27) 1094 (2.20) 10x
G3 43166 (1.13) 87085 (2.27) 6334 (2.24) 5x
G3 54150 (1.07) 92330 (2.26) 1089 (2.34) 10x

Table 5.3: Famseq site level Venn analysis. TsTv ratios are shown in parentheses.
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Pedigree Polymutt unique Intersection Illumina unique coverage
A5 42359 (1.0) 102368 (2.28) 7114 (2.05) 5x
A5 50742 (1.0) 107970 (2.27) 1512 (1.81) 10x
A3 32089 (1.04) 87554 (2.28) 7453 (2.05) 5x
A3 40102 (1.32) 93572 (2.27) 1435 (1.78) 10x
G3 32439 (1.40) 86002 (2.28) 7417 (2.06) 5x
G3 40540 (1.30) 91981 (2.27) 1438 (1.86) 10x

Table 5.4: Polymutt site level Venn analysis. TsTv ratios are shown in parentheses.

ratio values. The same broad pattern can be said about the unique fraction of the

Illumina 50x calls. The sizes of the unique fractions of the evaluation 5x and 10x call

sets are inflated due to not applying the same VQSR filters which Illumina did when

generating the single-sample variant calls.

Ceph A5 genotype concordance

The previous section detailed the results of site level concordance, here we discuss

genotypic concordance of the A5, A3, and G3 pedigrees for Pgmsnp and associated

methods. Genotypic concordance is measured by the NRS and NRD metrics, de-

scribed in Figure 5.72 in section 5.4 of the chapter. When the genotype concordance

matrix is constructed, there is an underlying empirical distribution of site quality

scores, which is denoted in the VCF file in the QUAL column. The number is the

Phred scaled probability that the site is not a variant. High QUAL values indicate

high confidence calls. NRS and NRD metrics can be computed at various QUAL

cutoffs and plotted. (See section 5.4 for more details). Figure 5.48 shows the

NRS vs. NRD as a function of QUAL plotted for the A5 pedigree for the Pgmsnp

derived calls at 5x and 10x coverages. Similar plots for other methods for the A5

and remaining pedigrees are shown in the Appendix.

Table 5.5 shows the maximum NRS values and associated NRD and QUAL values.

A similar table for 10x coverage results is shown in the Appendix. Salient features
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Pgmsnp Ceph A5

NA12877 NA12878 NA12882 NA12891 NA12892
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Figure 5.48: Pgmsnp metrics Ceph A5 - Pgmsnp NRD and NRS metrics as a
function of QUAL from Ceph-A5 pedigree

of the table are that Pgmsnp has a higher NRS and lower NRD value than GATK

derived calls for the two non-founder individuals (NA12882 and NA12878). Famseq

has the highest NRS values overall for these individuals, but when also considering

NRD, Polymutt derived calls have the lowest genotype discrepancy percentages.

The NRS and NRD values for the founder individuals are highly correlated between

Pgmsnp and Famseq, and have lower NRS and higher NRD values, when compared

to GATK derived calls. In contrast, Polymutt has higher sensitivity and lower

genotype discrepancies for non-founder individuals when compared to GATK.

The genotype concordance matrices for the two non-founders (NA12882 and

NA12892) are show starting in Figure 5.49 for NA12878 and in Figure 5.53 for

NA12882. Similar to the simulation results, the biggest gain in modeling Mendelian
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Metric NA12882 NA12877 NA12878 NA12891 NA12892 QUAL
Pgmsnp NRS 95.15 88.67 95.94 89.68 89.37 10

NRD 8.66 11.78 8.65 11.32 11.37 10

GATK NRS 93.57 91.77 93.42 91.85 91.73 10
NRD 10.17 9.30 10.13 9.60 9.35 10

Famseq NRS 96.11 88.58 96.95 89.44 89.08 10
NRD 7.4 12.02 7.58 11.62 11.71 10

Polymutt NRS 95.92 93.11 96.54 93.83 93.30 10
NRD 6.03 6.80 4.98 6.57 7.02 10

Table 5.5: Ceph A5 5x callset metrics

inheritance with Pgmsnp is in correctly identifying 3000 more heterozygotes than

using the standard approach of GATK, which assumes samples are unrelated. All

four methods have a large number of sites not called by Illumina. The majority of

these sites are ones that were VQSR filtered by Illumina. Comparing the matrices

of Pgmsnp and Polymutt, the biggest difference is that Pgmsnp has nearly 4x-6x

greater number of incorrectly called AB heterozygotes that were called homozygous

non-reference BB in Illumina. To investigate the incorrectly called NA12878 AB

genotypes further, the genotypes of her parents were examined at these sites. Ap-

proximately 40% of these sites had an incorrectly called paternal genotype, 40%

had an incorrectly called maternal genotype, and the remaining 20% were evenly

split in either both parental genotypes being incorrect, or both parents being called

correctly. When either parent’s genotype wasn’t called correctly at these sites, the

vast majority were incorrectly called as AA homozygous reference genotypes, when

the truth genotype was AB heterozygote. Famseq also had the same pattern of

calling BB sites incorrectly as AB for both samples. Nearly 90% of these sites in the

Famseq callset overlap the same category of incorrectly called sites in the Pgmsnp

callset. The parental genotypes at sites in the Polymutt callset in the same error

class for NA12882 and NA12878 were called correctly at 55% of the sites in NA12882
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and 46% of the sites in NA12878. GATK does a much better job at correctly calling

BB homozygous non-reference genotypes than all the pedigree aware methods. The

differences between how the genotype posterior marginal probabilities in the two

Bayesian network algorithms (Pgmsnp and Famseq) and Polymutt computes these

values needs to be investigated further.

Figure 5.49: Pgmsnp NA12878 geno-
type concordance matrix A5 pedigree
5x coverage

Figure 5.50: GATK NA12878 geno-
type concordance matrix A5 pedigree
5x coverage

Figure 5.51: Famseq NA12878 geno-
type concordance matrix A5 pedigree
5x coverage

Figure 5.52: Polymutt NA12878 geno-
type concordance matrix A5 pedigree
5x coverage
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Figure 5.53: Pgmsnp NA12882 geno-
type concordance matrix A5 pedigree
5x coverage

Figure 5.54: GATK NA12882 geno-
type concordance matrix A5 pedigree
5x coverage

Figure 5.55: Famseq NA12882 geno-
type concordance matrix A5 pedigree
5x coverage

Figure 5.56: Polymutt NA12882 geno-
type concordance matrix A5 pedigree
5x coverage
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Ceph A3 genotype concordance

The difference between the A5 and A3 pedigrees is that the two grandparental

founders are removed, and their daughter, NA12878, is treated as a founder in the

A3 structure, along with marry in NA12877. NRS vs. NRD values as a function of

QUAL values are shown in 5.57. Its clear from looking at the graphs for both 5x and

10x coverage, the offspring NA12882 achieves a higher maximum NRS value than

either of the the parents for Pgmsnp. Similar plots for the other methods tested are

shown in the Appendix for the A3 pedigree.

Pgmsnp Ceph A3
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Figure 5.57: Pgmsnp metrics Ceph A3 - Pgmsnp NRD and NRS metrics as a
function of QUAL from Ceph-A3 pedigree

Table 5.6 show the maximum NRS values achieved with all four methods, along

with associated NRD and QUAL values. As with the A5 pedigree, the offspring

individual has better sensitivity and genotype discrepancy metrics than the parents
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Metric NA12882 NA12877 NA12878 QUAL
Pgmsnp NRS 94.82 88.41 88.32 10

NRD 8.94 10.18 10.22 10

GATK NRS 93.31 90.8 90.65 10
NRD 9.61 8.68 8.76 10

Famseq NRS 95.87 88.89 88.67 10
NRD 8.05 10.17 10.42 10

Polymutt NRS 95.58 92.47 92.42 10
NRD 5.92 6.36 6.47 10

Table 5.6: Ceph A3 5x callset metrics

for Pgmsnp. Famseq achieves the highest NRS value in the child NA12882, but

Polymutt has better genotyping accuracy than Pgmsnp and Famseq. Pgmsnp and

Famseq both use the same Bayesian network framework for calculating posterior

genotype marginals, but results suggest modeling the data as a Bayesian network

doesn’t improve sensitivity or accuracy for founder individuals. This is clearly shown

if we compare the Pgmsnp NRS values of NA12878 in the A5 pedigree, which is

shown in Table 5.5 , and has a value of 95.94%, compared to 88.32% in the A3

pedigree, where its treated as a founder. The same pattern is seen in Polymutt

results for NA12878 in the A5 pedigree, where NA12878 has an NRS of 96.54%

compared to 92.42%. in A3.

Inspecting the genotype concordance matrix of the child NA12882 of the A3 pedigree,

starting in Figure 5.58 for Pgmsnp, we see again that modeling Mendelian inheritance

with Pgmsnp makes the biggest gain in identifying AB heterozygotes correctly when

you compare it to GATK derived calls. The differences in genotype accuracy between

Pgmsnp and Polymutt can again be attributed to incorrectly called AB heterozygotes

in Pgmsnp that were correctly called as BB homozygous non-reference in Polymutt.

Still, GATK beats out the three other pedigree aware methods in this category, as it
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Figure 5.58: Pgmsnp NA12882 geno-
type concordance matrix A3 pedigree
5x coverage

Figure 5.59: GATK NA12882 geno-
type concordance matrix A3 pedigree
5x coverage

Figure 5.60: Famseq NA12882 geno-
type concordance matrix A3 pedigree
5x coverage

Figure 5.61: Polymutt NA12882 geno-
type concordance matrix A3 pedigree
5x coverage

incorrectly called only 43 BB sites as AB heterozygotes. Again, as with the A5 geno-

types, a similar pattern emerges. The parental genotypes of NA12882 are incorrectly

called at 80% of these sites in the Pgmsnp callset (split evenly between maternal and

paternal genotypes). The majority of these incorrectly called genotypes are misclas-

sified as homozygote AA genotypes, when in fact they are AB heterozygotes. 84%

of the sites in the Famseq callset incorrectly called as AB are shared by the same
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error class in the Pgmsnp callset. Examining the parental genotypes at the sites in

the Polymutt callset incorrectly called as AB (BB truth), 40% of them are correctly

called as either heterozygous or homozygous non-reference.

Ceph G3

The G3 pedigree comprises the two founder individuals NA12891 and NA12892 along

with their daughter NA12878. Figure 5.62 shows NRS and NRD values plotted as

a function of QUAL values for 5x and 10x coverage. Again, the offspring NA12878

achieves higher maximal NRS with a lower NRD value than compared to either of

its parents. Table 5.7 shows the maximal NRS values achieved by all four methods,

along with NRD and associated QUAL values at 5x coverage. Pgmsnp achieves

higher sensitivity for NA12878 and better genotyping accuracy than GATK, but

this is not the case for the two founders. Famseq achieves the highest NRS value

for NA12878 with a value of 95.73%, but its NRD percentage is similar to Pgmsnp.

Polymutt achieves the best balance between sensitivity and genotyping accuracy.

Treating NA12878 as a non-founder with its parents included achieves better sen-

sitivity and genotype accuracy in the G3 and A5 pedigree (see Table 5.5 ) than

treating it as a founder in the A3 pedigree for Pgmsnp and Famseq call sets. Poly-

mutt calls for NA12878 had slightly better metrics in the A3 pedigree ( see Table 5.6 ).

Figures 5.63 through 5.66 show the genotype concordance matrix for the G3 5x

NA12878 calls. Incorporating Mendelian inheritance makes a difference in correctly

calling heterozygote AB sites for Pgmsnp when compared to GATK. This is true as

well for Famseq and Polymutt. A similar pattern emerges again when comparing

the differences between Pgmsnp and Polymutt derived calls where Pgmsnp has 4x

more incorrectly called AB heterozygotes, whose truth genotype is BB, when com-

pared to Polymutt. The same can be said when comparing Famseq to Polymutt calls.
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Pgmsnp Ceph G3

NA12878 NA12891 NA12892
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Figure 5.62: Pgmsnp metrics Ceph G3 - GATK NRD and NRS metrics as a
function of QUAL from Ceph-G3 pedigree

Metric NA12878 NA12891 NA12892 QUAL
Pgmsnp NRS 94.60 88.32 88.41 10

NRD 8.91 10.09 10.81 10

GATK NRS 93.13 90.54 90.71 10
NRD 9.57 8.73 8.81 10

Famseq NRS 95.73 88.91 88.74 10
NRD 8.17 10.16 10.4 10

Polymutt NRS 94.87 91.27 91.54 10
NRD 5.83 6.38 6.51 10

Table 5.7: Ceph G3 5x callset metrics
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Figure 5.63: Pgmsnp NA12878 geno-
type concordance matrix G3 pedigree
5x coverage

Figure 5.64: GATK NA12878 geno-
type concordance matrix G3 pedigree
5x coverage

Figure 5.65: Famseq NA12878 geno-
type concordance matrix G3 pedigree
5x coverage

Figure 5.66: Polymutt NA12878 geno-
type concordance matrix G3 pedigree
5x coverage

Again, nearly 85% of the Famseq sites in this error class are shared with Pgmsnp.

This suggests a significant structural difference in how prior information and marginal

posteriors are computed in the Bayesian network algorithm ( Pgmsnp and Famseq)

versus the Elston-Stewart algorithm used by Polymutt. However, GATK does a better

job than any of the 3 pedigree methods in correctly calling BB genotypes.
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5.3 Conclusions

Here, I presented a novel genotyping algorithm, Pgmsnp, that models a family

sequencing dataset as a Bayesian network. The work presented here gives a detailed

overview of how Bayesian networks are represented, and how the belief propagation

algorithm makes inferences about the marginal posterior genotype probabilities. The

results of Pgmsnp was compared to three other methods. The first is Polymutt, a

pedigree aware variant caller that uses the Elston-Stewart algorithm in computing

the likelihood of reads in a pedigree. The second method is Famseq, which also

uses the same Bayesian network framework to model pedigree sequencing data.

Finally, the last method is the UnifiedGenotyper algorithm from GATK which uses

the standard approach of not incorporating Mendelian inheritance amongst samples

because it assumes that all samples are un-related.

Pgmsnp and its competing methods were first tested on different simulated pedi-

grees and sequencing datasets. At high coverage ( greater than 20x coverage)

the performance by all methods is equally good, and little is gained by modeling

pedigree relations. At low coverage (5x), the non-reference sensitivity of Pgmsnp in

non-founder, offspring individuals is higher compared to GATK. This suggests that

modeling Mendelian inheritance in the priors is more informative. The genotype

accuracy of Pgmsnp at low coverage is not as good when compared to Polymutt.

The performance of Pgmsnp compared to Famseq is fairly similar.

In addition to simulated data, Pgmsnp was tested on an empirical dataset of Illumina

sequencing reads from a subset of the Ceph 1463 pedigree. The pedigree is comprised

of 5 individuals spanning three generations. Three different cuts of the pedigree were

examined, all 5 individuals, and two trios from the first and second generation. The

original sequencing data was generated at 50x coverage by Illumina and released as
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part of their Platinum Genomes data resource. SNP calling was performed on chr20

which is 65 Mbp in total size on downsampled alignments at 5x and 10x coverage,

respectively. Overall patterns from the Pgmsnp results show that it does a better job

at correctly calling heterozygous sites in offspring individuals. In founder individuals,

Pgmsnp has a lower sensitivity of variant detection than GATK and Polymutt. The

non-reference sensitivity and non-reference discrepancy values of Pgmsnp and Famseq

are very similar. This is to be expected, as they both employ a Bayesian network

based genotype inference algorithm. In particular, both Pgmsnp and Famseq have

an increased number of genotyping errors compared to Polymutt when incorrectly

calling BB homozygous non-reference sites as AB heterozygous. Polymutt does a

much better job of correctly calling these sites. GATK outperforms all three pedigree

methods at these sites. Potential reasons for why Pgmsnp performs this way is that

the genotyping prior places more weight on heterozygous genotypes. But Polymutt

computes its priors in the same way, so there is some structural difference in how

Pgmsnp and Famseq are computing posterior genotype probabilities when compared

to Polymutt.

There are several ways to improve and expand the features of Pgmsnp. The program

is implemented in Python, and performs at reasonable speed for moderately sized

genomic intervals, but certainly can be improved. One way is to write the core

functions in C++. The Cython programming language is a superset of the Python

programming language and provides an interface for invoking C and C++ routines

in a Python program. Pgmsnp doesn’t genotype indel sites in its current imple-

mentation. The way both Polymutt and Pgmsnp handle indel genotyping is that

it takes in indel data likelihoods calculated by GATK [30] or samtools [92] which

are read from a VCF file, and then models Mendelian relationships of samples to

emit genotypes. Current implementation of Pgmsnp requires BAM files as input,

129



and calculates genotype likelihoods then makes posterior genotype calls. It can

be modified easily to take as input VCF or GLF (genotype likelihood files) which

contain the data likelihoods of samples, and then just carry out posterior marginal

computations. This would also speed up the performance of Pgmsnp. Finally, when

trios are sequenced to high coverage (greater than 30x) , this can enable the detection

of de-novo mutations (DNM) in the offspring. To modify the structure of the Pgmsnp

Bayesian network to make inferences about DNMs would involve adding in a factor

to represent the germline mutation rate. Cartwright et. al. [16] have implemented

method using a graphical model to discover DNMs similar in structure to Pgmsnp.

5.4 Methods

Graphical model used

Bayesian networks are comprised of a list of factors. Figure 5.67 shows the general

structure of the Bayesian network used in this study. It can be generalized to any

pedigree structure. The unobserved nodes are enclosed by dashed lines representing

unobserved genotypes. The observed data are enclosed by solid lines and represent se-

quencing reads. Figure 5.68 shows the particular factors used in the study. The three

core factors are the genotype prior of the non-founder individual(s), the genotype

prior of founder individuals, and the data likelihood factor of the sequencing reads.

The genotype prior factor represents the conditional probability of the child genotype

given its two parents. Essentially, this is a Punnett square. The genotype prior of the

founders represents the conditional probability of a founder genotype given θ, which

is the population scaled mutation rate [52]. For this study θ’s value is set to .001.

The data likelihood factor represents the likelihood function the probability of the

basecall given the genotype of the individual. Likelihood functions are not proper
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probability distribution functions, and their values do not necessarily sum to one.

More details on the genotype data likelihood factor is given in the next section.

Figure 5.67: Pgmsnp Network - The Bayesian network used in this study

Genotype Likelihood Factor

Figure 5.69 shows a graphical representation of the genotype likelihood table. The

likelihood function described is taken from [87]. At a given position in the genome let

there be N aligned bases consisting of A’s, C’s, G’s, and T’s: N = NA+NC+NG+NT

Each aligned base also has an associated Phred quality score. A Phred quality score,

Q, is logarithmically related to the base calling error probability, P:

Q = −10log10P
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Figure 5.68: Individual factors of network - There are three core factors used in
the Bayesian network, shown in the figure starting from the top.

P = 10
−Q
10

If we let R be all basecalls for a particular position across all aligned reads for an

individual, then we can calculate the data likelihood of reads, given a particular

genotype:

Pr(R|Gi), i = 1 . . . 10

For example, if the assumed genotype was AA, the likelihood function would be:

Pr(R|AA) =

NA∏
j=1

(1− ej)
N−NA∏
k=1

ek
3

(5.7)

If the assumed genotype was heterozygous AC, the likelihood function is:
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Figure 5.69: Genotype Likelihood Factor - A graphical representation of the
genotype likelihood

Pr(R|AC) =

NA+NC∏
j=1

0.5(1− 2ej
3

)

N−NA−NC∏
k=1

ek
3

(5.8)

Note, that equation 5.8 was obtained in the following way. If a basecall was A, with

associated error probability e, then

.5(P (A|A) + P (A|C)) = .5((1− e) + e/3) = 0.5(1− 2ej
3

)

since we have equal chance of sampling either chromosome (assuming diploidy). The

likelihood function(s) for the remaining 8 genotypes would be similar to equations 5.7

and 5.8. For each individual with aligned reads R, there would be 10 genotype data

likelihood values.
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Pgmsnp algorithm overview

Figure 5.70: Pgmsnp overview - Pgmsnp takes in as input the pedigree information
of samples and the BAM file(s) containing sequencing reads. It constructs a Bayesian
network at every position in the genome, performs inference, and posterior genotypes
are reported.

Figure 5.70 gives a high level overview of how the Pgmsnp works. Inputs are pedigree

information and a merged BAM file containing sequencing reads of the samples. At

each position of the genome a Bayesian network is constructed and max-product

belief propagation inference is performed. The output of the program are genotypes

of samples reported in a Variant Call Format (VCF) file.
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Computing QUAL values of sites

The Variant Call Format (VCF) specification [27] defines the QUAL column to the

Phred scaled probability that there is no variant. Higher QUAL values indicate higher

confidence that the site is segregating. To compute this value, Pgmsnp needs to return

the probability that all samples are homozygous reference. The clique tree data

structure is used to compute marginal posteriors of variables representing genotypes

in the Bayesian network. We can use this data structure as well to compute the joint

distribution. Recall, that a calibrated clique tree holds the results of probabilities of all

cliques in the tree, but it is also an alternative representation of the joint distribution,

which is denoted as PΦ. If we denote X to be the set of random variables in a Bayesian

network, then a calibrated clique tree provides an alternative measurement of the joint

distribution by the following formula:

PΦ =

∏
i∈VT βi(Ci)∏

(i−j)∈εT µi,j(Si,j)
(5.9)

The numerator represents the product of the final beliefs of each clique node in the tree

and the denominator represents the sepset beliefs of the edges between nodes. The

proof as to how equation 5.9 is an alternate representation of the joint distribution is

described in [76]. Once the joint distribution is computed in Pgmsnp by implementing

the formula, the value of the instantiation of all variables having homozygous reference

genotypes is retrieved and the QUAL value is computed.

Data Simulation

As proof of concept, Pgmsnp was tested on simulated data free of sequencing and

mapping error. Figure 5.71 show the steps taken to generate simulated data for

initial testing of method. Haplotypes were simulated with the program cosi [126]
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Figure 5.71: Data simulation - Simulation pipeline used to generate simulated data

which is a coalescent simulator that generates haplotypes. The program was used

to generate 50 founder 1 Mbp haplotypes. Parameters given to the program were as

follows: mutation rate of 1.5e-8 per base per generation, effective population size of

10000, recombination events based on the deCode genetic map for autosomes. The

demographic model used was an Out-of-Africa model with a European bottleneck.

A total of 3159 segregating (polymorphic) sites was observed from a single run

of the program. All of the sites are in Hardy-Weinberg equilibrium which was

checked with the genetic analysis program PLINK [118]. Non-founder haplotypes

were formed by simulating a Poisson number of recombination events to generate

gametes in each parent. Each gamete had to at least have at least one crossover event.
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Illumina sequencing reads of 101 basepairs were simulated with the program mason

[59] without the introduction of any sequencing errors. Each individual had an

average 20x coverage of its 1 Mbp genome, based on the equation C = R×N
G

where R

is the read length, N is the number of reads, G is the size of the genome, and C is

the coverage.

The founders in each of the five pedigrees shown in Figure 5.4 are the same and are

referred to as motherOne and fatherOne. The child in the trio pedigree is referred to

as childOne and its sibling is referred to as child3. The marryin (marryinOne) in the

multi generation pedigree married childOne to produce the grandchild referred to as

grandchildOne.

Ceph Pedigree

Illumina has provided the genomics community with a set of high coverage 50x

genomes deemed the Illumina Platinum dataset [62]. This dataset comprises of the

Ceph 1463 pedigree which is made of 17 people of European descent in Utah. The

aligned BAM files of 5 of the 17 individuals were examined in this study. They

are NA12891, NA12892, NA12878, NA12877, and NA12882. The aligned reads of

chr20 were downsampled to 5x and 10x coverage and then examined by Pgmnsp and

associated methods.

Genotype concordance metrics

The two concordance metrics used to evaluate the performance of all methods tested

in the study were non-reference sensitivity and non-reference discrepancy (NRS and

NRD). The genotype concordance matrix is used to calculate these values, and they

can be thought of as summary statistics of the raw genotype concordance metrics.
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Figure 5.72: Genotype concordance metrics calculation - The genotype matrix
of the gold and evaluation call sets is used to compute NRS and NRD values.

NRS and NRD concordance metrics as a function of QUAL

NRS and NRD metrics can be plotted at various QUAL values. To investigate the

relationship between QUAL values and NRS and NRD values, an evaluation dataset’s

variant records, prior to be compared to the gold standard dataset, can be binned

according to QUAL. For each of the four methods examined in the study the empirical

cumulative distribution function (ecdf) of QUAL values was calculated. For the

methods Pgmsnp, GATK, and Famseq the distribution ranged from 10 to 1200; for

Polymutt the QUAL values ranged from 1 to 100. Based on this, records from each

method were binned into 100 bins evenly spaced between the numbers 10-1200 and 1-

100. Once binned, the evaluation callset is merged with the gold standard comparison

callset, and concordance metrics are calculated. The results can be visualized easily
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and a QUAL cutoff for a desired non-reference sensitivity and genotyping accuracy

can be empirically determined based on the results. Moreover, variant call sets derived

from different methods on the same input data can be directly compared to empirically

derive what the maximum NRS is obtained by a method.
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Chapter 6

Conclusions

6.1 Summary of work

Next generation sequencing and genomic enrichment technologies has had a profound

impact on the field of human genetics by enabling researchers to fully characterize

the complete frequency spectrum of genetic variation segregating in the human

population. My thesis focused on data analysis capture sequencing datasets and the

development of a novel genotyping algorithm to discover SNPs in family sequencing

datasets. In Chapter 2 I describe my contribution to the analysis of capture se-

quencing data from the exon sequencing pilot of the 1000 Genomes Project [100, 33].

This was one of the first studies to characterize rare coding variation using genomic

enrichment technologies. The allele frequency spectrum of the data clearly showed an

excess of singleton class variants. This is due to rapid, explosive population growth

in the human population over the past 10,000 years [70] and similar patterns of an

excess of singletons have been observed in other large exome studies like the Exon Se-

quencing Project [134]. Chapter 3 continues the focus on capture sequencing, but in

a different context. The work presented investigates the applicability of using whole

genome amplified (WGA) DNA in capture sequencing. Although its a small scale
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study, it demonstrates that WGA DNA can be used effectively in such experiments.

The work has been recently published in BMC Genomics [63] and has been noted

by the journal as a highly accessed paper. Chapter 4 describes the bioinformatics

steps to identify a potential causative mutation in a Mendelian form of hearing

loss. Through a discrete filtering approach with a minor allele frequency cutoff, a

non-synonymous variant in the TMTC2 gene was identified as a putative causative

mutation. The genotype segregates perfectly with the phenotype in the family (both

in the sequenced individuals of the pedigree, as well members not chosen for sequenc-

ing). In addition, the variant is enriched in a cohort of unrelated individuals which

share the same phenotype. Finally in Chapter 5 I describe a novel pedigree aware

genotyping algorithm to discover SNPs in family sequencing datasets. The method

uses a Bayesian network inference algorithm, called belief propagation, to compute

posterior marginal genotype probabilities. Pgmsnp, has comparable detection sen-

sitivities to other pedigree callers, but has a slightly higher genotype discordance rate.

I gained expertise in a variety of subjects including population genetics, human ge-

netics, probability theory, and machine learning during the course of my Ph.D. The

underlying theme that threads each chapter together is using data from next gener-

ation sequencing experiments to discover rare genetic variation. The field of human

genomics is rapidly evolving and below I address future directions of various aspects

of the field that I find of interest.

6.2 Future directions

Large scale sequencing

Without next generation sequencing and genomic enrichment technology large scale

re-sequencing projects like the 1000 Genomes Project would not have been possible.
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Re-sequencing large samples of individuals is the only way to characterize the full

spectrum of human genetic variation. Besides being a data resource for the human

genetics community, the more important contribution of the 1000 Genomes Project

was the development of algorithms and computer software to analyze data from next

generation sequencing experiments. Methods of alignment and variant calling are

continually improving, and to a certain extent have reached a maturation level. This

has made re-sequencing of large datasets more common, whereas 10 years ago such

experiments were the realm of large scale genome sequencing centers. Besides driving

algorithm development, the 1000 Genomes Project has ushered in the era of rare

variant GWAS. Many of the variants discovered in the 1000 Genomes Project have

been added to commercial genotyping arrays and it is now possible to design a GWAS

with both rare and common variants being genotyped [25]. Whether or not the

inclusion of rare variants in GWAS designs will result in new associations explaining

unaccounted for heritability remains to be seen, and the end results will probably have

to drawn by a disease by disease basis. Depending on the effect size of variants and the

underlying biological complexity of the phenotype, GWAS sample sizes will have to

increase into the several hundred thousand. Building on the tool development driven

by the 1000 Genomes Project, future analysis of large scale sequencing experiments

will focus more on interpretation [46], as well as sharing of results from different

projects and researchers. Building an effective bioinformatics infrastructure for data

sharing and visualization will take on increased importance. To that end, there are

several active projects in the Marth laboratory to develop effective tools to visualize

genetic variation datasets.

Defining causality for Mendelian phenotypes

Over the past 3 years there have been several successful examples of exome sequencing

uncovering causative mutations and more than 180 novel genes have been discovered
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[14]. The work presented here that putatively identified a casual candidate mutation

builds on the successful methodologies of using a filtering approach to narrowing

down candidate mutations [131]. While ad hoc filtering approaches are the pre-

dominant approach to analyzing Mendelian exome datasets, it lacks the statistical

rigor and conventions of linkage mapping (LOD scores) or GWAS (p-values). Both

linkage and association indirectly identify causal mutations, while sequencing directly

attempts to uncover them [46]. There have been no studies to my knowledge that

have attempted to assign p-values to causal variants uncovered in exome sequencing

and this remains an open area of research.

Methods to better articulate causality in a statistical way ( p-values, LOD scores, etc)

may not be the way most biologists think about the issue. Rather, causality is defined

by physical interactions of proteins, DNA, and other cellular structures [125]. Once

a variant is uncovered via sequencing, understanding the functional consequences of

the mutation across different tissue types is quite difficult. High-throughput cellular

assays are being developed [110, 5] to test the functional consequences of mutations

uncovered in sequencing. Testing the effects of mutations that are potentially incom-

pletely penetrant, like the TMTC2 variant in the hearing loss study has the added

challenge of controlling for genetic background and gene-gene interactions.

Pedigree aware haplotyping and genotyping

The Pgmsnp method described in Chapter 5 treats each site independently. A natural

extension of this method would be to incorporate linkage to extend Pgmsnp into

being a pedigree aware haplotype caller. The steps involved are closely related to

haplotype phasing, which is the process of inferring haplotype phase from genotype

data. Inferring haplotype phase from next generation sequencing data is an active

area of research [149]. Extending the graphical model of Pgmsnp to make it haplotype
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aware would involved implementing a dynamic Bayesian network (DBN). DBN’s are a

more general form of a Hidden Markov Model (HMM) [76]. The inference algorithms

for DBNs and HMMs are closely related. The main difference between a Bayesian

network and DBN is that a DBN relates variables that are adjacent over position or

time. A recent publication by Zhang has implemented a DBN to both infer haplotypes

and genotypes from NGS data [149].

Genotype imputation of large pedigrees

Pgmsnp uses an exact method to compute posterior probabilities. For larger pedigrees

for multiple generations and more individuals, the computational burden becomes

intractable, due to the size and cardinality of intermediate factors generated during

belief propagation [76]. As family based designs become more popular, it is quite

feasible that large pedigrees of individuals will be sequenced. One way to workaround

the computational roadblock of genotype calling in large pedigrees is to perform

imputation. Imputation refers to inferring missing data by borrowing information

from full observations on related subjects [19]. Genotype imputation is an active

area of research where genotypes are inferred in a set of un-related individuals using

a reference panel of densely genotyped samples, leveraging linkage disequilibrium

patterns in the data [97]. Recently, a publication by Ellen Wijsman and colleagues

[19] described an imputation algorithm for large pedigrees called GIGI that imputes

genotypes derived from individuals sharing genomic intervals that are identical by

descent. Hence for a genetic study of a large pedigree, one practical option would be to

genotype a subset of individuals with Pgmsnp and impute genotypes of unsequenced

individuals in the pedigree with GIGI. The design of large family studies utilizing

genomic sequencing is a balance between the statistical issues of family data with the

cost of and infrastructure of sequencing large numbers of genomes.
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Sequencing is only the first step

As algorithms for the analysis of high throughput sequencing datasets mature

and sequencing technologies become more accessible to the larger human genetics

community, many of the open questions and challenges that remain to fully take

advantage of these datasets do not necessarily have to do with bioinformatics. Prior

to NGS sequencing, variant discovery was the rate limiting step in comprehensively

describing the genetic variation present in a sample of individuals [128]. NGS has

removed this step, so finding enough properly consented samples is a critical issue

[75]. In particular, as clinical applications of sequencing increase, proper phenotyping

of patients, is of increased importance. To this end, there have been new online tools

to help record and share precise phenotypic data on subjects, such as PhenoDB [50]

and PhenoTips [44]. Another challenge is the biological interpretation of findings

from sequencing experiments. The human genetics community is transitioning from

figuring out what’s the best way to identify variants from NGS data to trying

to identify which variants discovered in NGS experiments are implicated in novel

biology [5]. The marriage of high throughput sequencing with novel high throughput

functional genomic assays will be the critical step needed to assess the function of

variants uncovered through sequencing.
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Appendix A

A.1 Additional tables for Chapter 3

This portion of the Appendix contains results of the statistical anlaysis of allele bias

in the WGA capture sequencing dataset.

A.1.1 Computed p-values of allele bias results whole-exome

capture

AC SNPs WGA.uniq Genomic.uniq NRD

Genomic.uniq 1 --

NRD 0.77 1 -

Concordant 1 1 0.56

AG SNPs WGA.uniq Genomic.uniq NRD

Genomic.uniq 1 --

NRD 1 1 -

Concordant 0.95 1 1

AT SNPs WGA.uniq Genomic.uniq NRD
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Genomic.uniq 1 --

NRD 0.99 1 -

Concordant 1 1 0.75

CG SNPs WGA.uniq Genomic.uniq NRD

Genomic.uniq 1 --

NRD 1 1 -

Concordant 0.01 1.70E-04 2.40E-04

CT SNPs WGA.uniq Genomic.uniq NRD

Genomic.uniq 1 --

NRD 1 1 -

Concordant 0.13 0.33 1

GT SNPs WGA.uniq Genomic.uniq NRD

Genomic.uniq 0.756 --

NRD 0.759 1 -

Concordant 0.033 1 1

A.1.2 Computed p-values of allele bias results chr12 capture

AC SNPs WGA.uniq Genomic.uniq NRD

Genomic.uniq 1 --

NRD 1 1 -

Concordant 1 1 0.074

AG SNPs WGA.uniq Genomic.uniq NRD
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Genomic.uniq 1 --

NRD 1 1 -

Concordant 1 1 1

AT SNPs WGA.uniq Genomic.uniq NRD

Genomic.uniq 1 --

NRD 1 1 -

Concordant 1 1 1

CG SNPs WGA.uniq Genomic.uniq NRD

Genomic.uniq 1 --

NRD 1 1 -

Concordant 1 1.00E+00 1.00E+00

CT SNPs WGA.uniq Genomic.uniq NRD

Genomic.uniq 1 --

NRD 1 1 -

Concordant 1 0.42 1

GT SNPs WGA.uniq Genomic.uniq NRD

Genomic.uniq 1 --

NRD 1 1 -

Concordant 1 1 1

A.1.3 Computed p-values of allele bias results Affymetrix

whole-exome capture

Genomic calls comparisons to Affy genotypes comparisons
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AC SNPs Concordant NRS

NRS 0.546 -

NRD 1 1

AG SNPs Concordant NRS

NRS 1 -

NRD 1 1

AT SNPs Concordant NRS

NRS 0.006 -

NRD 1 1

CG SNPs Concordant NRS

NRS 1 NA

NRD 1 1

CT SNPs Concordant NRS

NRS 0.22 -

NRD 1 0.69

GT SNPs Concordant NRS

NRS 1 -

NRD 0.88 0.82

WGA calls comparisons to Affy genotypes
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AC SNPs Concordant NRS

NRS 0.124 -

NRD 1 0.53

AG SNPs Concordant NRS

NRS 0.4 -

NRD 1 1

AT SNPs Concordant NRS

NRS 0.03 -

NRD 1 0.84

CG SNPs Concordant NRS

NRS 1 NA

NRD 1 1

CT SNPs Concordant NRS

NRS 0.22 -

NRD 1 0.69

GT SNPs Concordant NRS

NRS 1 -

NRD 0.5 0.8
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A.1.4 Computed p-values of allele bias results Affymetrix

chr12 capture

Genomic calls comparisons to Affy genotypes comparisons

AC SNPs Concordant NRS

NRS 0.546 -

NRD 1 1

AG SNPs Concordant NRS

NRS 1 -

NRD 1 1

AT SNPs Concordant NRS

NRS 0.006 -

NRD 1 1

CG SNPs Concordant NRS

NRS 1 NA

NRD 1 1

CT SNPs Concordant NRS

NRS 0.22 -

NRD 1 0.69

GT SNPs Concordant NRS

NRS 1 -

NRD 0.88 0.82
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WGA calls comparisons to Affy genotypes

AC SNPs Concordant NRS

NRS 0.124 -

NRD 1 0.53

AG SNPs Concordant NRS

NRS 0.4 -

NRD 1 1

AT SNPs Concordant NRS

NRS 0.03 -

NRD 1 0.84

CG SNPs Concordant NRS

NRS 1 NA

NRD 1 1

CT SNPs Concordant NRS

NRS 0.22 -

NRD 1 0.69

GT SNPs Concordant NRS

NRS 1 -

NRD 0.5 0.8
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A.2 Additional figures for Chapter 5

This portion of the Appendix contains genotype concordance results from Pgmsnp

and related methods for pedigree aware SNP calling.

A.2.1 Maximum NRS values and associated NRD values at

10x coverage

Listed below are additional tables showing the maximum NRS values and associated

NRD values for each of the Ceph pedigrees studied.
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Metric NA12882 NA12877 NA12878 NA12891 NA12892 QUAL
Pgmsnp NRS 99.25 97.45 99.33 97.7 97.56 10

NRD 1.52 2.51 1.48 2.46 2.51 10

GATK NRS 99.27 98.84 99.24 98.88 98.82 10
NRD 1.40 1.36 1.52 1.43 1.51 10

Famseq NRS 99.48 97.83 99.56 97.99 97.83 10
NRD 1.06 2.16 1.12 2.13 2.24 10

Polymutt NRS 99.43 98.59 99.48 98.75 98.55 10
NRD 0.87 0.98 0.78 1.05 1.16 10

Table A.1: Ceph A5 10x callset metrics

Metric NA12882 NA12877 NA12878 QUAL
Pgmsnp NRS 99.31 97.61 97.62 10

NRD 1.49 1.97 2.07 10

GATK NRS 99.28 98.68 98.72 10
NRD 1.24 1.16 1.20 10

Famseq NRS 99.50 97.98 97.95 10
NRD 1.08 1.70 1.83 10

Polymutt NRS 99.45 98.69 98.74 10
NRD 0.8 0.83 0.89 10

Table A.2: Ceph A3 10x callset metrics

A.2.2 NRS and NRD values as a function of QUAL

Listed below are additional figures for GATK, Famseq, and Polymutt showing the

concordance metrics non-reference sensitivity (NRS) and non-reference discrepancy

(NRD) as a function of quality (QUAL) score.
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Metric NA12878 NA12891 NA12892 QUAL
Pgmsnp NRS 99.16 97.65 97.51 10

NRD 1.51 2.03 2.16 10

GATK NRS 99.25 98.66 98.61 10
NRD 1.39 1.24 1.33 10

Famseq NRS 99.45 98.00 97.85 10
NRD 1.14 1.75 1.90 10

Polymutt NRS 99.30 98.26 98.18 10
NRD .86 .94 1.0 10

Table A.3: Ceph G3 10x callset metrics

Polymutt Ceph A5
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Figure A.1: Polymutt metrics Ceph A5 - Polymutt NRD and NRS metrics as a
function of QUAL from Ceph-A5 pedigree
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Polymutt Ceph A3

NA12877 NA12878 NA12882
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Figure A.2: Polymutt metrics Ceph A3 - Polymutt NRD and NRS metrics as a
function of QUAL from Ceph-A3 pedigree
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Polymutt Ceph G3

NA12878 NA12891 NA12892

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

60

70

80

90

100

4.0 4.5 5.0 5.5 6.0 6.54.0 4.5 5.0 5.5 6.0 6.54.0 4.5 5.0 5.5 6.0 6.5

NRD

N
R

S

25

50

75

100
QUAL

5x
NA12878 NA12891 NA12892

●●●●●●●●●

●

●●●●
●
●
●
●
●

●

●●●●
●
●
●
●
●

60

70

80

90

100

0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0

NRD

N
R

S

25

50

75

100
QUAL

10x

Figure A.3: Polymutt metrics Ceph G3 - Polymutt NRD and NRS metrics as a
function of QUAL from Ceph-G3 pedigree
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GATK Ceph A5
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Figure A.4: GATK metrics Ceph A5 - GATK NRD and NRS metrics as a function
of QUAL from Ceph-A5 pedigree
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GATK Ceph A3
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Figure A.5: GATK metrics Ceph A3 - GATK NRD and NRS metrics as a function
of QUAL from Ceph-A3 pedigree
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GATK Ceph G3

NA12878 NA12891 NA12892
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Figure A.6: GATK metrics Ceph G3 - GATK NRD and NRS metrics as a function
of QUAL from Ceph-G3 pedigree
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Famseq Ceph A5
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Figure A.7: Famseq metrics Ceph A5 - Famseq NRD and NRS metrics as a
function of QUAL from Ceph-A5 pedigree
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Figure A.8: Famseq metrics Ceph A3 - Famseq NRD and NRS metrics as a
function of QUAL from Ceph-A3 pedigree
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Figure A.9: Famseq metrics Ceph G3 - Famseq NRD and NRS metrics as a
function of QUAL from Ceph-G3 pedigree
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[33] Richard M Durbin, Gonçalo R Abecasis, David L Altshuler, Adam Auton,
Lisa D Brooks, Richard A Gibbs, Matt E Hurles, Gil A McVean, and The

166



1000 Genomes Consortium. A map of human genome variation from population-
scale sequencing. Nature, 467(7319):1061–1073, 2010.

[34] A. Elsharawy, J. Warner, J. Olson, M. Forster, M. B. Schilhabel, D. R. Link,
S. Rose-John, S. Schreiber, P. Rosenstiel, J. Brayer, and A. Franke. Accurate
variant detection across non-amplified and whole genome amplified DNA using
targeted next generation sequencing. BMC Genomics, 13:500, 2012.

[35] B. Ewing, L. Hillier, M. C. Wendl, and P. Green. Base-calling of automated
sequencer traces using phred. I. Accuracy assessment. Genome Res., 8(3):175–
185, Mar 1998.

[36] MediaWiki Foundation.

[37] Thomas B. Friedman and Andrew J. Griffith. Human nonsyndromic sensorineu-
ral deafness. Annu Rev Genomics Hum Genet, 4:341–402, September 2003.

[38] W. Fu, T. D. O’Connor, G. Jun, H. M. Kang, G. Abecasis, S. M. Leal,
S. Gabriel, M. J. Rieder, D. Altshuler, J. Shendure, D. A. Nickerson, M. J.
Bamshad, J. M. Akey, and the NHBLI Exome Sequencing Project. Analysis of
6,515 exomes reveals the recent origin of most human protein-coding variants.
Nature, 493(7431):216–220, Jan 2013.

[39] S. B. Gabriel, S. F. Schaffner, H. Nguyen, J. M. Moore, J. Roy, B. Blumenstiel,
J. Higgins, M. DeFelice, A. Lochner, M. Faggart, S. N. Liu-Cordero, C. Rotimi,
A. Adeyemo, R. Cooper, R. Ward, E. S. Lander, M. J. Daly, and D. Alt-
shuler. The structure of haplotype blocks in the human genome. Science,
296(5576):2225–2229, Jun 2002.

[40] Erik Garrison and Gabor Marth. Haplotype-based variant detec-
tion from short-read sequencing. Technical report, Boston College,
http://arxiv.org/abs/1207.3907, 2012.

[41] G. Gibson. Rare and common variants: twenty arguments. Nat. Rev. Genet.,
13(2):135–145, Feb 2011.

[42] C. Gilissen, A. Hoischen, H. G. Brunner, and J. A. Veltman. Unlocking
Mendelian disease using exome sequencing. Genome Biol., 12(9):228, 2011.

[43] John H. Gillespie. Population Genetics: A Precise Guide. Johns Hopkins
University Press, 2004.

[44] M. Girdea, S. Dumitriu, M. Fiume, S. Bowdin, K. M. Boycott, S. Chenier,
D. Chitayat, H. Faghfoury, M. S. Meyn, P. N. Ray, J. So, D. J. Stavropoulos,
and M. Brudno. PhenoTips: patient phenotyping software for clinical and
research use. Hum. Mutat., 34(8):1057–1065, Aug 2013.

167



[45] Andreas Gnirke, Alexandre Melnikov, Jared Maguire, Peter Rogov, Emily M
LeProust, William Brockman, Timothy Fennell, Georgia Giannoukos, Sheila
Fisher, Carsten Russ, Stacey Gabriel, David B Jaffe, Eric S Lander, and Chad
Nusbaum. Solution hybrid selection with ultra-long oligonucleotides for mas-
sively parallel targeted sequencing. Nature Biotechnology, 27(2):182–189, 2009.

[46] D. B. Goldstein, A. Allen, J. Keebler, E. H. Margulies, S. Petrou, S. Petrovski,
and S. Sunyaev. Sequencing studies in human genetics: design and interpreta-
tion. Nat. Rev. Genet., 14(7):460–470, Jul 2013.

[47] S. Gravel, B.M. Henn, R. N. Gutenkunst, A. R. Indap, G. T. Marth, A. G.
Clark, F. Yu, R. A. Gibbs, and C. D. Bustamante. Demographic history and
rare allele sharing among human populations. Proc. Natl. Acad. Sci. U.S.A.,
108(29):11983–11988, Jul 2011.

[48] R. N. Gutenkunst, R. D. Hernandez, S. H. Williamson, and C. D. Bustamante.
Inferring the joint demographic history of multiple populations from multidi-
mensional SNP frequency data. PLoS Genet., 5(10):e1000695, Oct 2009.

[49] G. S. Hageman, D. H. Anderson, L. V. Johnson, L. S. Hancox, A. J. Taiber, L. I.
Hardisty, J. L. Hageman, H. A. Stockman, J. D. Borchardt, K. M. Gehrs, R. J.
Smith, G. Silvestri, S. R. Russell, C. C. Klaver, I. Barbazetto, S. Chang, L. A.
Yannuzzi, G. R. Barile, J. C. Merriam, R. T. Smith, A. K. Olsh, J. Bergeron,
J. Zernant, J. E. Merriam, B. Gold, M. Dean, and R. Allikmets. A common
haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes
individuals to age-related macular degeneration. Proc. Natl. Acad. Sci. U.S.A.,
102(20):7227–7232, May 2005.

[50] A. Hamosh, N. Sobreira, J. Hoover-Fong, V. R. Sutton, C. Boehm, F. Schiette-
catte, and D. Valle. PhenoDB: a new web-based tool for the collection, storage,
and analysis of phenotypic features. Hum. Mutat., 34(4):566–571, Apr 2013.

[51] J. Harrow, F. Denoeud, A. Frankish, A. Reymond, C. K. Chen, J. Chrast, J. La-
garde, J. G. Gilbert, R. Storey, D. Swarbreck, C. Rossier, C. Ucla, T. Hubbard,
S. E. Antonarakis, and R. Guigo. GENCODE: producing a reference annotation
for ENCODE. Genome Biol., 7 Suppl 1:1–9, 2006.

[52] Daniel C. Hartl and Andrew G. Clark. Principles of Population Genetics. Sin-
auer and Associates, 2007.

[53] A. Hatzimanolis, J. A. McGrath, R. Wang, T. Li, P. C. Wong, G. Nestadt,
P. S. Wolyniec, D. Valle, A. E. Pulver, and D. Avramopoulos. Multiple vari-
ants aggregate in the neuregulin signaling pathway in a subset of schizophrenia
patients. Transl Psychiatry, 3:e264, 2013.

[54] Y. J. He, A. D. Misher, W. Irvin, A. Motsinger-Reif, H. L. McLeod, and J. M.
Hoskins. Assessing the utility of whole genome amplified DNA as a template
for DMET Plus array. Clin. Chem. Lab. Med., 50(8):1329–1334, Aug 2012.

168



[55] W. G. Hill. Understanding and using quantitative genetic variation. Philos.
Trans. R. Soc. Lond., B, Biol. Sci., 365(1537):73–85, Jan 2010.

[56] L. A. Hindorff, P. Sethupathy, H. A. Junkins, E. M. Ramos, J. P. Mehta, F. S.
Collins, and T. A. Manolio. Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits. Proc. Natl. Acad.
Sci. U.S.A., 106(23):9362–9367, Jun 2009.

[57] J. N. Hirschhorn. Genomewide association studies–illuminating biologic path-
ways. N. Engl. J. Med., 360(17):1699–1701, Apr 2009.

[58] Emily Hodges, Zhenyu Xuan, Vivekanand Balija, Melissa Kramer, Michael N
Molla, Steven W Smith, Christina M Middle, Matthew J Rodesch, Thomas J
Albert, Gregory J Hannon, and W Richard McCombie. Genome-wide in situ
exon capture for selective resequencing. Nature Genetics, 39(12):1522–1527,
2007.

[59] Manuel Holtgrewe. Mason – a read simulator for second generation sequencing
data. Technical report, Freie University, Math Department, 2010.

[60] R. H. Houwen, S. Baharloo, K. Blankenship, P. Raeymaekers, J. Juyn, L. A.
Sandkuijl, and N. B. Freimer. Genome screening by searching for shared seg-
ments: mapping a gene for benign recurrent intrahepatic cholestasis. Nat.
Genet., 8(4):380–386, Dec 1994.

[61] World Health Organization http://goo.gl/HmLBT. Millions have hearing loss
that can be improved or prevented.

[62] Illumina. Platinum genomes, August 2013.

[63] A. R. Indap, R. Cole, C. L. Runge, G. T. Marth, and M. Olivier. Variant
discovery in targeted resequencing using whole genome amplified DNA. BMC
Genomics, 14:468, 2013.

[64] A. R. Indap, G. T. Marth, C. A. Struble, P. Tonellato, and M. Olivier. Anal-
ysis of concordance of different haplotype block partitioning algorithms. BMC
Bioinformatics, 6:303, 2005.

[65] National Center Biotechnology Information. Tmtc2 transmembrane
and tetratricopeptide repeat containing 2 [ homo sapiens (human) ]
http://www.ncbi.nlm.nih.gov/gene/160335, July 2013.

[66] I. Ionita-Laza, V. Makarov, S. Yoon, B. Raby, J. Buxbaum, D. L. Nicolae, and
X. Lin. Finding disease variants in Mendelian disorders by using sequence data:
methods and applications. Am. J. Hum. Genet., 89(6):701–712, Dec 2011.

[67] T. Jiang, L. Yang, H. Jiang, G. Tian, and X. Zhang. High-performance single-
chip exon capture allows accurate whole exome sequencing using the Illumina
Genome Analyzer. Sci China Life Sci, 54(10):945–952, Oct 2011.

169



[68] Y. W. Kan and A. M. Dozy. Polymorphism of DNA sequence adjacent to human
beta-globin structural gene: relationship to sickle mutation. Proc. Natl. Acad.
Sci. U.S.A., 75(11):5631–5635, Nov 1978.

[69] D. Karolchik, A. S. Hinrichs, T. S. Furey, K. M. Roskin, C. W. Sugnet, D. Haus-
sler, and W. J. Kent. The UCSC Table Browser data retrieval tool. Nucleic
Acids Res., 32(Database issue):D493–496, Jan 2004.

[70] A. Keinan and A. G. Clark. Recent explosive human population growth has
resulted in an excess of rare genetic variants. Science, 336(6082):740–743, May
2012.

[71] B. Kerem, J. M. Rommens, J. A. Buchanan, D. Markiewicz, T. K. Cox,
A. Chakravarti, M. Buchwald, and L. C. Tsui. Identification of the cystic
fibrosis gene: genetic analysis. Science, 245(4922):1073–1080, Sep 1989.

[72] A. Kiezun, K. Garimella, R. Do, N. O. Stitziel, B. M. Neale, P. J. McLaren,
N. Gupta, P. Sklar, P. F. Sullivan, J. L. Moran, C. M. Hultman, P. Lichtenstein,
P. Magnusson, T. Lehner, Y. Y. Shugart, A. L. Price, P. I. de Bakker, S. M.
Purcell, and S. R. Sunyaev. Exome sequencing and the genetic basis of complex
traits. Nat. Genet., 44(6):623–630, Jun 2012.

[73] A. H. Kissebah, G. E. Sonnenberg, J. Myklebust, M. Goldstein, K. Broman,
R. G. James, J. A. Marks, G. R. Krakower, H. J. Jacob, J. Weber, L. Martin,
J. Blangero, and A. G. Comuzzie. Quantitative trait loci on chromosomes 3
and 17 influence phenotypes of the Metabolic Syndrome. Proc. Natl. Acad. Sci.
U.S.A., 97(26):14478–14483, Dec 2000.

[74] R. J. Klein, C. Zeiss, E. Y. Chew, J. Y. Tsai, R. S. Sackler, C. Haynes, A. K.
Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L.
Ferris, J. Ott, C. Barnstable, and J. Hoh. Complement factor H polymorphism
in age-related macular degeneration. Science, 308(5720):385–389, Apr 2005.

[75] Dan Koboldt, August 2013.

[76] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[77] Jonas Korlach, Patrick J. Marks, Ronald L. Cicero, Jeremy J. Gray, Devon L.
Murphy, Daniel B. Roitman, Thang T. Pham, Geoff A. Otto, Mathieu Foquet,
and Stephen W. Turner. Selective aluminum passivation for targeted immobi-
lization of single dna polymerase molecules in zero-mode waveguide nanostruc-
tures. PNAS, 105(4):1176–1181, 2008.

[78] L. Kruglyak. The road to genome-wide association studies. Nat. Rev. Genet.,
9(4):314–318, Apr 2008.

170



[79] Prateek Kumar, Steven Henikoff, and Pauline C Ng. Predicting the effects of
coding non-synonymous variants on protein function using the SIFT algorithm.
Nature Protocols, 4(7):1073–1081, 2009.

[80] Gerstein Lab. Vat - Variant Annotation Tool http://vat.gersteinlab.org.

[81] E. S. Lander and D. Botstein. Mapping complex genetic traits in humans: new
methods using a complete RFLP linkage map. Cold Spring Harb. Symp. Quant.
Biol., 51 Pt 1:49–62, 1986.

[82] H. Lango Allen, K. Estrada, G. Lettre, S. I. Berndt, M. N. Weedon, F. Ri-
vadeneira, C. J. Willer, A. U. Jackson, S. Vedantam, S. Raychaudhuri, and et.
al. Hundreds of variants clustered in genomic loci and biological pathways affect
human height. Nature, 467(7317):832–838, Oct 2010.

[83] R S Lasken and M Egholm. Whole genome amplification: abundant supplies
of DNA from precious samples or clinical specimens. Trends in Biotechnology,
21(12):531–535, 2003.

[84] S L Lauritzen and Nuala A Sheehan. Graphical models for genetic analyses.
Statistical Science, 18(4):489–514, 2007.

[85] Wan-Ping Lee. Mosaik homepage. http://bioinformatics.bc.edu/

marthlab/Mosaik.

[86] B. Li, W. Chen, X. Zhan, F. Busonero, S. Sanna, C. Sidore, F. Cucca, H. M.
Kang, and G. R. Abecasis. A likelihood-based framework for variant calling and
de novo mutation detection in families. PLoS Genet., 8(10):e1002944, 2012.

[87] B. Li, W. Chen, X. Zhan, F. Busonero, S. Sanna, C. Sidore, F. Cucca, H. M.
Kang, and G. R. Abecasis. A likelihood-based framework for variant calling
and de novo mutation detection in families. PLoS Genet., 8(10):e1002944, Oct
2012.

[88] B. Li and S. M. Leal. Methods for detecting associations with rare variants
for common diseases: application to analysis of sequence data. Am. J. Hum.
Genet., 83(3):311–321, Sep 2008.

[89] B. Li and S. M. Leal. Discovery of rare variants via sequencing: implications
for the design of complex trait association studies. PLoS Genet., 5(5):e1000481,
May 2009.

[90] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, and R. Durbin. The Sequence Alignment/Map format and SAM-
tools. Bioinformatics, 25(16):2078–2079, Aug 2009.

[91] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Res., 18(11):1851–1858,
Nov 2008.

171

http://bioinformatics.bc.edu/marthlab/Mosaik
http://bioinformatics.bc.edu/marthlab/Mosaik


[92] Heng Li. A statistical framework for SNP calling, mutation discovery, associa-
tion mapping and population genetical parameter estimation from sequencing
data. Bioinformatics, 27(21):1–7, 2011.

[93] Kirk E Lohmueller, Amit R Indap, Steffen Schmidt, Adam R Boyko, Ryan D
Hernandez, Melissa J Hubisz, John J Sninsky, Thomas J White, Shamil R Sun-
yaev, Rasmus Nielsen, Andrew G Clark, and Carlos D Bustamante. Proportion-
ally more deleterious genetic variation in European than in African populations.
Nature, 451(7181):994–997, 2008.

[94] Michael Lynch and Bruce Walsh. Genetics and Analysis of Quantitative Traits.
Sinauer and Associates, 1998.

[95] Brendan Maher. Personal genomes: The case of the missing heritability., 2008.

[96] Teri A Manolio, Francis S Collins, Nancy J Cox, David B Goldstein, Lucia A
Hindorff, David J Hunter, Mark I McCarthy, Erin M Ramos, Lon R Cardon,
Aravinda Chakravarti, Judy H Cho, Alan E Guttmacher, Augustine Kong,
Leonid Kruglyak, Elaine Mardis, Charles N Rotimi, Montgomery Slatkin, David
Valle, Alice S Whittemore, Michael Boehnke, Andrew G Clark, Evan E Eichler,
Greg Gibson, Jonathan L Haines, Trudy F C Mackay, Steven A McCarroll, and
Peter M Visscher. Finding the missing heritability of complex diseases. Nature,
461(7265):747–53, 2009.

[97] J. Marchini and B. Howie. Genotype imputation for genome-wide association
studies. Nat. Rev. Genet., 11(7):499–511, Jul 2010.

[98] Marcel Margulies, Michael Egholm, William E Altman, Said Attiya, Joel S
Bader, A Lisa, Jan Berka, Michael S Braverman, Yi-ju Chen, Zhoutao Chen,
Scott B Dewell, Lei Du, Joseph M Fierro, Xavier V Gomes, Brian C Good-
win, Wen He, Scott Helgesen, Chun He Ho, Gerard P Irzyk, Szilveszter C
Jando, Maria L I Alenquer, Thomas P Jarvie, Kshama B Jirage, Jong-bum
Kim, James R Knight, Janna R Lanza, John H Leamon, Steven M Lefkowitz,
Ming Lei, Jing Li, Kenton L Lohman, Hong Lu, Vinod B Makhijani, Keith E
Mcdade, Michael P Mckenna, Eugene W Myers, Elizabeth Nickerson, R John,
Ramona Plant, Bernard P Puc, Michael T Ronan, George T Roth, Gary J
Sarkis, Jan Fredrik Simons, John W Simpson, Maithreyan Srinivasan, Karrie R
Tartaro, Kari A Vogt, Greg A Volkmer, Shally H Wang, Yong Wang, Michael P
Weiner, Pengguang Yu, Richard F Begley, and Jonathan M Rothberg. Genome
Sequencing in Open Microfabricated High Density Picoliter Reactors. Nature,
437(7057):376–380, 2005.

[99] G. T. Marth, I. Korf, M. D. Yandell, R. T. Yeh, Z. Gu, H. Zakeri, N. O. Stitziel,
L. Hillier, P. Y. Kwok, and W. R. Gish. A general approach to single-nucleotide
polymorphism discovery. Nat. Genet., 23(4):452–456, Dec 1999.

172



[100] Gabor T Marth, Fuli Yu, Amit R Indap, Kiran Garimella, Simon Gravel,
Wen Fung Leong, Chris Tyler-Smith, Matthew Bainbridge, Thomas Black-
well, Xiangqun Zheng-Bradley, Yuan Chen, Danny Challis, Laura Clarke, Ed-
ward V Ball, Kristian Cibulskis, David N Cooper, Bob Fulton, Chris Hartl, Dan
Koboldt, Donna Muzny, Richard Smith, Carrie Sougnez, Chip Stewart, Alistair
Ward, Jin Yu, Yali Xue, David Altshuler, Carlos D Bustamante, Andrew G
Clark, Mark Daly, Mark Depristo, Paul Flicek, Stacey Gabriel, Elaine Mardis,
Aarno Palotie, and Richard A Gibbs. The functional spectrum of low-frequency
coding variation. Genome Biology, 12(9):R84, 2011.

[101] J. M. McClellan, E. Susser, and M. C. King. Schizophrenia: a common disease
caused by multiple rare alleles. Br J Psychiatry, 190:194–199, Mar 2007.

[102] M. L. Metzker. Sequencing technologies - the next generation. Nat. Rev. Genet.,
11(1):31–46, Jan 2010.

[103] S. J. Murphy, J. C. Cheville, S. Zarei, S. H. Johnson, R. A. Sikkink, F. Kosari,
A. L. Feldman, B. W. Eckloff, R. J. Karnes, and G. Vasmatzis. Mate pair
sequencing of whole-genome-amplified DNA following laser capture microdis-
section of prostate cancer. DNA Res., 19(5):395–406, Oct 2012.

[104] Minato Nakazawa. Cran package fmsb. http://cran.r-project.org/web/

packages/fmsb/index.html.

[105] Sarah B Ng, Abigail W Bigham, Kati J Buckingham, Mark C Hannibal, Mar-
garet J McMillin, Heidi I Gildersleeve, Anita E Beck, Holly K Tabor, Gre-
gory M Cooper, Heather C Mefford, Choli Lee, Emily H Turner, Joshua D
Smith, Mark J Rieder, Koh-Ichiro Yoshiura, Naomichi Matsumoto, Tohru Ohta,
Norio Niikawa, Deborah A Nickerson, Michael J Bamshad, and Jay Shendure.
Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome.
Nature Genetics, 42(9):790–793, 2010.

[106] Sarah B Ng, Kati J Buckingham, Choli Lee, Abigail W Bigham, Holly K Tabor,
Karin M Dent, Chad D Huff, Paul T Shannon, Ethylin Wang Jabs, Deborah A
Nickerson, Jay Shendure, and Michael J Bamshad. Exome sequencing identifies
the cause of a Mendelian disorder. Nature Genetics, 42(1):30–35, 2010.

[107] Z. Ning, A. J. Cox, and J. C. Mullikin. SSAHA: a fast search method for large
DNA databases. Genome Res., 11(10):1725–1729, Oct 2001.

[108] The Molecular Otolaryngology and Renal Research Lab University of Iowa. The
deafness variation database - http://deafnessvariationdatabase.org/.

[109] N. Patil, A. J. Berno, D. A. Hinds, W. A. Barrett, J. M. Doshi, C. R. Hacker,
C. R. Kautzer, D. H. Lee, C. Marjoribanks, D. P. McDonough, B. T. Nguyen,
M. C. Norris, J. B. Sheehan, N. Shen, D. Stern, R. P. Stokowski, D. J. Thomas,
M. O. Trulson, K. R. Vyas, K. A. Frazer, S. P. Fodor, and D. R. Cox. Blocks

173

http://cran.r-project.org/web/packages/fmsb/index.html
http://cran.r-project.org/web/packages/fmsb/index.html


of limited haplotype diversity revealed by high-resolution scanning of human
chromosome 21. Science, 294(5547):1719–1723, Nov 2001.

[110] R. P. Patwardhan, J. B. Hiatt, D. M. Witten, M. J. Kim, R. P. Smith, D. May,
C. Lee, J. M. Andrie, S. I. Lee, G. M. Cooper, N. Ahituv, L. A. Pennacchio, and
J. Shendure. Massively parallel functional dissection of mammalian enhancers
in vivo. Nat. Biotechnol., 30(3):265–270, Mar 2012.

[111] G. Peng, Y. Fan, T. B. Palculict, P. Shen, E. C. Ruteshouser, A. K. Chi, R. W.
Davis, V. Huff, C. Scharfe, and W. Wang. Rare variant detection using family-
based sequencing analysis. Proc. Natl. Acad. Sci. U.S.A., 110(10):3985–3990,
Mar 2013.

[112] K. S. Pollard, M. J. Hubisz, K. R. Rosenbloom, and A. Siepel. Detection
of nonneutral substitution rates on mammalian phylogenies. Genome Res.,
20(1):110–121, Jan 2010.

[113] Olivier Pourret, Patrick Naim, and Bruce Marco. Bayesian Networks A Prac-
tical Guide to Applications. John Wiley and Sons, 2008.

[114] J. K. Pritchard and N. J. Cox. The allelic architecture of human disease genes:
common disease-common variant...or not? Hum. Mol. Genet., 11(20):2417–
2423, Oct 2002.

[115] K. D. Pruitt, J. Harrow, R. A. Harte, C. Wallin, M. Diekhans, D. R. Maglott,
S. Searle, C. M. Farrell, J. E. Loveland, B. J. Ruef, E. Hart, M. M. Suner,
M. J. Landrum, B. Aken, S. Ayling, R. Baertsch, J. Fernandez-Banet, J. L.
Cherry, V. Curwen, M. Dicuccio, M. Kellis, J. Lee, M. F. Lin, M. Schuster,
A. Shkeda, C. Amid, G. Brown, O. Dukhanina, A. Frankish, J. Hart, B. L.
Maidak, J. Mudge, M. R. Murphy, T. Murphy, J. Rajan, B. Rajput, L. D.
Riddick, C. Snow, C. Steward, D. Webb, J. A. Weber, L. Wilming, W. Wu,
E. Birney, D. Haussler, T. Hubbard, J. Ostell, R. Durbin, and D. Lipman. The
consensus coding sequence (CCDS) project: Identifying a common protein-
coding gene set for the human and mouse genomes. Genome Res., 19(7):1316–
1323, Jul 2009.

[116] E. G. Puffenberger, E. R. Kauffman, S. Bolk, T. C. Matise, S. S. Washington,
M. Angrist, J. Weissenbach, K. L. Garver, M. Mascari, and R. Ladda. Identity-
by-descent and association mapping of a recessive gene for Hirschsprung disease
on human chromosome 13q22. Hum. Mol. Genet., 3(8):1217–1225, Aug 1994.

[117] M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell,
N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E. L. Sonnham-
mer, S. R. Eddy, A. Bateman, and R. D. Finn. The Pfam protein families
database. Nucleic Acids Res., 40(Database issue):290–301, Jan 2012.

[118] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender,
J. Maller, P. Sklar, P. I. de Bakker, M. J. Daly, and P. C. Sham. PLINK: a tool

174



set for whole-genome association and population-based linkage analyses. Am.
J. Hum. Genet., 81(3):559–575, Sep 2007.

[119] A R Quinlan and I M Hall. Bedtools: a flexible suite of utilities for comparing
genomic features. Bioinformatics, 26(6):841–842, Mar 2010.

[120] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011.
ISBN 3-900051-07-0.

[121] D. E. Reich and E. S. Lander. On the allelic spectrum of human disease. Trends
Genet., 17(9):502–510, Sep 2001.

[122] N. Risch and K. Merikangas. The future of genetic studies of complex human
diseases. Science, 273(5281):1516–1517, Sep 1996.

[123] R. Sachidanandam, D. Weissman, S. C. Schmidt, J. M. Kakol, L. D. Stein,
G. Marth, S. Sherry, J. C. Mullikin, B. J. Mortimore, D. L. Willey, S. E. Hunt,
C. G. Cole, P. C. Coggill, C. M. Rice, Z. Ning, J. Rogers, D. R. Bentley,
P. Y. Kwok, E. R. Mardis, R. T. Yeh, B. Schultz, L. Cook, R. Davenport,
M. Dante, L. Fulton, L. Hillier, R. H. Waterston, J. D. McPherson, B. Gilman,
S. Schaffner, W. J. Van Etten, D. Reich, J. Higgins, M. J. Daly, B. Blumenstiel,
J. Baldwin, N. Stange-Thomann, M. C. Zody, L. Linton, E. S. Lander, and
D. Altshuler. A map of human genome sequence variation containing 1.42
million single nucleotide polymorphisms. Nature, 409(6822):928–933, Feb 2001.

[124] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-
terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A., 74(12):5463–5467, Dec
1977.

[125] E.E. Schadt. New methods and new technologies for preclinical and clinical neu-
robiology, chapter Network methods for elucidating the complexity of common
human diseases. Oxford University Press, 2013.

[126] S. F. Schaffner, C. Foo, S. Gabriel, D. Reich, M. J. Daly, and D. Altshuler. Cal-
ibrating a coalescent simulation of human genome sequence variation. Genome
Res., 15(11):1576–1583, Nov 2005.

[127] M. Schraders, J. Oostrik, P. L. Huygen, T. M. Strom, E. van Wijk, H. P. Kunst,
L. H. Hoefsloot, C. W. Cremers, R. J. Admiraal, and H. Kremer. Mutations in
PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment
DFNB84 and associated with vestibular dysfunction. Am. J. Hum. Genet.,
86(4):604–610, Apr 2010.

[128] Jay Shendure. Next-generation human genetics. Genome Biology, 12(9):408,
2011.

175



[129] A. Sirmaci, Y. J. Edwards, H. Akay, and M. Tekin. Challenges in whole exome
sequencing: an example from hereditary deafness. PLoS ONE, 7(2):e32000,
2012.

[130] A. B. Skvorak Giersch and C. C. Morton. Genetic causes of nonsyndromic
hearing loss. Curr. Opin. Pediatr., 11(6):551–557, Dec 1999.

[131] Nathan O Stitziel, Adam Kiezun, and Shamil Sunyaev. Computational and
statistical approaches to analyzing variants identified by exome sequencing.
Genome Biology, 12(9):227, 2011.

[132] Picard Development Team. Picard homepage. http://picard.sourceforge.

net.

[133] Life Technologies. Ion torrent.

[134] J. A. Tennessen, A. W. Bigham, T. D. O’Connor, W. Fu, E. E. Kenny, S. Gravel,
S. McGee, R. Do, X. Liu, G. Jun, H. M. Kang, D. Jordan, S. M. Leal, S. Gabriel,
M. J. Rieder, G. Abecasis, D. Altshuler, D. A. Nickerson, E. Boerwinkle, S. Sun-
yaev, C. D. Bustamante, M. J. Bamshad, and J. M. Akey. Evolution and func-
tional impact of rare coding variation from deep sequencing of human exomes.
Science, 337(6090):64–69, Jul 2012.

[135] Duncan C. Thomas. Statistical Methods in Genetic Epidemiology. Oxford Uni-
versity Press, 2004.

[136] K. R. Thornton, A. J. Foran, and A. D. Long. Properties and modeling of
GWAS when complex disease risk is due to non-complementing, deleterious
mutations in genes of large effect. PLoS Genet., 9(2):e1003258, Feb 2013.

[137] E. H. Turner, S. B. Ng, D. A. Nickerson, and J. Shendure. Methods for genomic
partitioning. Annu Rev Genomics Hum Genet, 10:263–284, 2009.

[138] TMHMM Server v2.0. Tmhmm server v2.0
http://www.cbs.dtu.dk/services/tmhmm/.

[139] John Wakeley. Coalescent Theory: An Introduction. Roberts and Company
Publishers, 2009.

[140] Tom Walsh, Hashem Shahin, Tal Elkan-Miller, Ming K. Lee, Anne M. Thornton,
Wendy Roeb, Amal Abu Rayyan, Suheir Loulus, Karen B. Avraham, Mary-
Claire King, and Moien Kanaan. Whole exome sequencing and homozygosity
mapping identify mutation in the cell polarity protein {GPSM2} as the cause
of nonsyndromic hearing loss {DFNB82}. The American Journal of Human
Genetics, 87(1):90 – 94, 2010.

[141] M. N. Weedon, H. Lango, C. M. Lindgren, C. Wallace, D. M. Evans,
M. Mangino, R. M. Freathy, J. R. Perry, S. Stevens, A. S. Hall, N. J. Samani,
B. Shields, I. Prokopenko, M. Farrall, A. Dominiczak, T. Johnson, S. Bergmann,

176

http://picard.sourceforge.net
http://picard.sourceforge.net


J. S. Beckmann, P. Vollenweider, D. M. Waterworth, V. Mooser, C. N. Palmer,
A. D. Morris, W. H. Ouwehand, J. H. Zhao, S. Li, R. J. Loos, I. Barroso,
P. Deloukas, M. S. Sandhu, E. Wheeler, N. Soranzo, M. Inouye, N. J. Ware-
ham, M. Caulfield, P. B. Munroe, A. T. Hattersley, M. I. McCarthy, and T. M.
Frayling. Genome-wide association analysis identifies 20 loci that influence
adult height. Nat. Genet., 40(5):575–583, May 2008.

[142] J. Weissenbach, G. Gyapay, C. Dib, A. Vignal, J. Morissette, P. Millasseau,
G. Vaysseix, and M. Lathrop. A second-generation linkage map of the human
genome. Nature, 359(6398):794–801, Oct 1992.

[143] Sewall Wright. Correlation and causation. Journal of Agricultural Research,
1921.

[144] Sewall Wright. The method of path coefficients. Annals of Mathematical Statis-
tics, 1934.

[145] J. Xing, W. S. Watkins, Y. Zhang, D. J. Witherspoon, and L. B. Jorde. High
fidelity of whole-genome amplified DNA on high-density single nucleotide poly-
morphism arrays. Genomics, 92(6):452–456, Dec 2008.

[146] D. Yan, M. Tekin, S. H. Blanton, and X. Z. Liu. Next-Generation Sequencing
in Genetic Hearing Loss. Genet Test Mol Biomarkers, Jun 2013.

[147] J. Yang, B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R. Nyholt,
P. A. Madden, A. C. Heath, N. G. Martin, G. W. Montgomery, M. E. Goddard,
and P. M. Visscher. Common SNPs explain a large proportion of the heritability
for human height. Nat. Genet., 42(7):565–569, Jul 2010.

[148] KemalO. Yariz, Duygu Duman, CeliaZazo Seco, Julia Dallman, Mingqian
Huang, TheoA. Peters, Asli Sirmaci, Na Lu, Margit Schraders, Isaac Skromne,
Jaap Oostrik, Oscar Diaz-Horta, JuanI. Young, Suna Tokgoz-Yilmaz, Ozlem
Konukseven, Hashem Shahin, Lisette Hetterschijt, Moien Kanaan, AnneM.M.
Oonk, YvonneJ.K. Edwards, Huawei Li, Semra Atalay, Susan Blanton, Alexan-
draA. DeSmidt, Xue-Zhong Liu, RonaldJ.E. Pennings, Zhongmin Lu, Zheng-Yi
Chen, Hannie Kremer, and Mustafa Tekin. Mutations in otogl, encoding the
inner ear protein otogelin-like, cause moderate sensorineural hearing loss. The
American Journal of Human Genetics, 91(5):872 – 882, 2012.

[149] Y. Zhang. A dynamic Bayesian Markov model for phasing and characterizing
haplotypes in next-generation sequencing. Bioinformatics, 29(7):878–885, Apr
2013.

177


	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Genome-wide Association Studies
	1.2 Exome sequencing for Mendelian and complex traits
	1.3 Family based sequencing
	1.4 Overview of DNA Sequencing Methods and Technologies
	1.5 Dissertation Overview

	2 Analysis of the exon sequencing pilot data from the 1000 Genomes Project
	2.1 Background
	2.2 Results and Discussion
	2.3 Conclusions
	2.4 Methods

	3 Variant discovery in targeted re-sequencing using whole genome amplified DNA
	3.1 Background
	3.2 Results and Discussion
	3.3 Conclusions
	3.4 Methods

	4 Discrete filtering approach to prioritize variants in a Mendelian exome study of non-sensorineural hearing loss
	4.1 Background
	4.2 Results and Discussion
	4.3 Conclusions
	4.4 Methods

	5 SNP Variant discovery in pedigrees using Bayesian networks
	5.1 Background
	5.2 Results and Discussion
	5.3 Conclusions
	5.4 Methods

	6 Conclusions
	6.1 Summary of work
	6.2 Future directions

	A 
	A.1 Additional tables for Chapter 3
	A.1.1 Computed p-values of allele bias results whole-exome capture
	A.1.2 Computed p-values of allele bias results chr12 capture
	A.1.3 Computed p-values of allele bias results Affymetrix whole-exome capture
	A.1.4 Computed p-values of allele bias results Affymetrix chr12 capture

	A.2 Additional figures for Chapter 5
	A.2.1 Maximum NRS values and associated NRD values at 10x coverage
	A.2.2 NRS and NRD values as a function of QUAL


	Bibliography

