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ABSTRACT

In recent years, quantile regression has achieved increasing prominence as a quantita-

tive method of choice in applied econometric research. The methodology focuses on how

the quantile of the dependent variable is influenced by the regressors, thus providing the

researcher with much information about variations in the relationship between the covari-

ates. In this dissertation, I consider two quantile regression models where the information

set may contain quantiles of the regressors. Such frameworks thus capture the dependence

between quantiles - the quantile of the dependent variable and the quantile of the regressors

- which I call models of quantile dependence. These models are very useful from the applied

researcher’s perspective as they are able to further uncover complex dependence behav-

ior and can be easily implemented using statistical packages meant for standard quantile

regressions.

The first chapter considers an application of the quantile dependence model in empir-

ical finance. One of the most important parameter of interest in risk management is the

correlation coefficient between stock returns. Knowing how correlation behaves is especially

important in bear markets as correlations become unstable and increase quickly so that the

benefits of diversification are diminished especially when they are needed most.

In this chapter, I argue that it remains a challenge to estimate variations in correla-



tions. In the literature, either a regime-switching model is used, which can only estimate

correlation in a finite number of states, or a model based on extreme-value theory is used,

which can only estimate correlation between the tails of the returns series. Interpreting the

quantile of the stock return as having information about the state of the financial market,

this chapter proposes to model the correlation between quantiles of stock returns. For in-

stance, the correlation between the 10th percentiles of stock returns, say the U.S. and the

U.K. returns, reflects correlation when the U.S. and U.K. are in the bearish state. One can

also model the correlation between the 60th percentile of one series and the 40th percentile

of another, which is not possible using existing tools in the literature.

For this purpose, I propose a nonlinear quantile regression where the regressor is a

conditional quantile itself, so that the left-hand-side variable is a quantile of one stock return

and the regressor is a quantile of the other return. The conditional quantile regressor is an

unknown object, hence feasible estimation entails replacing it with the fitted counterpart,

which then gives rise to problems in inference. In particular, inference in the presence of

generated quantile regressors will be invalid when conventional standard errors are used.

However, validity is restored when a correction term is introduced into the regression model.

In the empirical section, I investigate the dependence between the quantile of U.S. MSCI

returns and the quantile of MSCI returns to eight other countries including Canada and

major equity markets in Europe and Asia. Using regression models based on the Gaussian

and Student-t copula, I construct correlation surfaces that reflect how the correlations

between quantiles of these market returns behave. Generally, the correlations tend to rise

gradually when the markets are increasingly bearish, as reflected by the fact that the returns

are jointly declining. In addition, correlations tend to rise when markets are increasingly

bullish, although the magnitude is smaller than the increase associated with bear markets.

The second chapter considers an application of the quantile dependence model in em-

pirical macroeconomics examining the money-output relationship. One area in this line of

research focuses on the asymmetric effects of monetary policy on output growth. In particu-

lar, letting the negative residuals estimated from a money equation represent contractionary



monetary policy shocks and the positive residuals represent expansionary shocks, it has been

widely established that output growth declines more following a contractionary shock than

it increases following an expansionary shock of the same magnitude. However, correctly

identifying episodes of contraction and expansion in this manner presupposes that the true

monetary innovation has a zero population mean, which is not verifiable.

Therefore, I propose interpreting the quantiles of the monetary shocks as having infor-

mation about the monetary policy stance. For instance, the 10th percentile shock reflects

a restrictive stance relative to the 90th percentile shock, and the ranking of shocks is pre-

served regardless of shifts in the shock’s distribution. This idea motivates modeling output

growth as a function of the quantiles of monetary shocks. In addition, I consider modeling

the quantile of output growth, which will enable policymakers to ascertain whether certain

monetary policy objectives, as indexed by quantiles of monetary shocks, will be more effec-

tive in particular economic states, as indexed by quantiles of output growth. Therefore, this

calls for a unified framework that models the relationship between the quantile of output

growth and the quantile of monetary shocks.

This framework employs a power series method to estimate quantile dependence. Monte

Carlo experiments demonstrate that regressions based on cubic or quartic expansions are

able to estimate the quantile dependence relationships well with reasonable bias properties

and root-mean-squared errors. Hence, using the cubic and quartic regression models with

M1 or M2 money supply growth as monetary instruments, I show that the right tail of the

output growth distribution is generally more sensitive to M1 money supply shocks, while

both tails of output growth distribution are more sensitive than the center is to M2 money

supply shocks, implying that monetary policy is more effective in periods of very low and

very high growth rates. In addition, when non-neutral, the influence of monetary policy

on output growth is stronger when it is restrictive than expansive, which is consistent with

previous findings on the asymmetric effects of monetary policy on output.
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CHAPTER 1

Modeling Quantile Dependence: Estimating the
Correlations of International Stock Returns†
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ABSTRACT

We propose a quantile regression method to estimate the correlation between quan-
tiles of international stock returns where the regressor is itself a conditional quantile.
Since the true conditional quantile regressor is unknown, feasible estimation entails us-
ing generated values, leading us to examine the implications for inference in quantile
regression with generated regressors. Using the Gaussian and Student-t copula, we
investigate the dependence between quantiles of U.S. MSCI returns with quantiles of
returns to eight other countries, and find that correlations increase gradually when re-
turns are jointly declining or increasing, although the increase is larger in bear than in
bull markets.
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1 Introduction

By now, it is well-known that the correlations of international stock returns tend to be

larger in bear than in bull markets (Longin and Solnik, 2001; Hu, 2006).1 Recognizing that

correlation is asymmetric is important for risk management. For the investor who diversifies

across international stock markets, the increase in correlation during bear markets implies

that the benefits of diversification are diminished especially when they are most needed.

The welfare losses are also significant for the investor who ignores how dependence between

stock markets changes across different financial regimes (Ang and Bekaert, 2001).

To estimate changes in the correlations, the stock returns data may be fitted with a mix-

ture of joint distributions, such as a mixture of bivariate Gaussian distributions (Kim and

Finger, 2000) or more sophisticatedly in a regime switching framework (Ang and Bekaert,

2001) where the correlation may differ across a finite number of states. The alternative

to fitting correlations using mixture models is to estimate how the stock returns series are

correlated in the tails. This is in line with the contribution of Longin and Solnik (2001), who

employed Extreme Value Theory, utilizing the result that the only non-degenerate distri-

bution in the tail is generalized Pareto regardless of the data generating process. Following

their methodology, one first models the univariate tail distribution as an extreme value

distribution, then the dependence between the tails by specifying a dependence function.

While Longin and Solnik’s method provides a “smoother” picture of correlation as opposed

to regime-switching models, it only estimates correlations between the tails of the returns

series. Moreover, the extreme value distribution, i.e. generalized Pareto, may not be a

sufficiently good approximation for distribution of observations that are located away from

the tails.

Understanding the limitations of both methods, how can correlations be modeled with-
1See Ang and Chen (2002) for an example of asymmetric correlation between the U.S. portfolios’ returns

and the U.S. aggregate returns.
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out restricting our focus on a small number of states as typically required by regime-

switching frameworks, where at the same time these correlations may also be modeled for

returns located in any point on their distributions other than the extremes? This question

is addressed using the insight that the quantiles of the stock returns may be informative

about the states of the financial markets. For instance, the 10th percentile of a monthly

stock return may be observed when the stock market is bearish for that month. Conversely,

the 90th percentile of return may be observed when the market is bullish. Therefore, if

the correlation between the quantiles of international stock returns may be estimated, then

this correlation may vary continuously across the different states of the financial markets

so that the data may reveal to us any potentially interesting dependence behavior.

This motivates a statistical framework that can estimate the dependence between quan-

tiles. To do so, we employ quantile regression, which has been featured prominently in

recent applied econometric research. Unlike ordinary least squares regression that examines

how a set of regressors influence the conditional mean of the dependent variable, quan-

tile regression examines how these regressors may influence the conditional quantile of the

dependent variable. For our empirical purpose, we will extend the standard quantile re-

gression framework. In particular, we will construct a model that captures the association

between the τ th
X conditional quantile of X, which we will call the quantile regressor, with

the τ th
Y conditional quantile of Y , the dependent variable. This relationship can be written

as QY (τY |QX(τX |Z)), where the quantile of X is in turn modeled using a set of exogenous

variables Z. We approach this problem by first considering a framework that expresses

the dependence of Y on QX(τX |Z), an unknown variable which can be consistently esti-

mated. To feasibly estimate QY (τY |QX(τX |Z)), we will first obtain the fitted quantiles of

X, then employ the fitted values in place of the true conditional quantiles to estimate the

dependence between the quantiles.

By employing the fitted quantiles of X, we are confronted with the issue of using a

generated regressor. The presence and implications of generated regressors in two-step

ordinary least squares or maximum likelihood estimation have been considered by Pagan
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(1984) and Murphy and Topel (1985). Typically, generated regressors do not cause problems

for consistency, although some adjustments must be made to the standard errors to conduct

inference correctly. Similarly in the quantile regression context, substituting the unknown

quantiles with their generated counterparts introduces an error term that asymptotically

converges to zero. The fact that this term converges to zero ensures that the estimated

second-step parameters are consistent. However, without controlling for this asymptotically

negligible component in the actual estimation itself, we show that conventional standard

errors of quantile regressions will be incorrect as the true asymptotic covariance matrix will

contain an additional term that is related to the covariance of the generated regressors.

While one may estimate the model by simply replacing the unknown quantiles with the

fitted ones and then fix standard errors for inference, a better alternative is to also fix the

model itself so that the asymptotic covariance matrix reduces to the conventional case in

quantile regression.

For the latter, we consider Taylor expansion of the above-mentioned error term and show

that a first order Taylor expansion is sufficient for the covariance matrix of the generated

regressors model to have the same properties as that of the standard case.2 In addition

to efficiency considerations, we also derive the linear (Bahadur) representation under fairly

general conditions, for instance, for a nonlinear model with weakly dependent errors, and

demonstrate that this linear representation generalizes the one that is derived under the

assumption of independently distributed errors as in Koenker and Zhao (1994) and Zhou

and Portnoy (1996). To the best of our knowledge, the linear representation given in this

paper is a new result, which complements the asymptotic analysis of Oberhofer and Haupt

(2006) for nonlinear quantile regression under the same weak dependence consideration in

the form of α-mixing. In general, even though this paper is concerned about estimating the

dependence between the quantiles of stock returns, it also provides some useful findings on

the implications for inference and the method of efficient estimation in the presence of the

generated regressors in quantile regression, which have yet to be discussed in the literature.
2This is similar to the strategy of McKenzie and McAleer (1997) in addressing the issue of generated

regressors for nonlinear ordinary least squares regressions.
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For the empirical work, we estimate the correlations between eight pairs of country-

level returns based on the MSCI: the correlations between the quantiles of U.S. returns

and the quantiles of returns in Australia, Canada, France, Germany, U.K., Japan, Hong

Kong and Singapore. To this end, we employ a regression model that is derived from the

copula in the same way as Bouyè and Salmon (2003) did in their copula quantile regression

framework. Copulas provide a convenient way to model joint dependence, as every joint

distribution can be written as a copula function over the marginal distributions. Hence, the

task of modeling complicated relationships can be flexibly decomposed into specifying the

copula and the marginal distributions separately. Importantly, using the copula to model

dependence is advantageous because the copula parameter maps into a rank correlation

measure known as Kendall’s Tau. In the special case of a Gaussian or Student-t copula,

the copula parameter is just the correlation coefficient. Therefore, formulating models of

quantile dependence using a copula-based approach will give us the ability to detect changes

in correlation across different states of the financial markets, captured by the quantiles of

the stock returns.

After estimating the Gaussian and Student-t copula regression model, we construct

correlation surfaces that demonstrate how correlation varies depending on where the returns

are located in their respective distributions. Generally, correlations tend to be increasing

gradually as markets are becoming more bearish, reflected by the case where the stock

returns are jointly declining. At the center of the distributions, correlations are typically the

lowest, but begin to rise as the quantiles of returns move further into the right tails so that

larger correlations are also found in bullish markets. Therefore, unlike previous findings,

this implies that both bear and bull market correlations are greater than those in the typical

quiet environments. Nevertheless, correlation asymmetry still exists as correlations in bear

markets remain larger than those associated with bull markets.

The rest of the paper is organized as follows. Section 2 discusses the methodology

proposed by this paper. Section 3 presents the asymptotic analysis of the proposed estima-

tor, where the asymptotic distribution of the estimator will be used for inference. Section
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4 contains a brief discussion on the copula methodology, compares the new methodology

with previous related work, and documents our empirical findings on the correlations of the

international stock returns. Section 5 concludes.

2 The Model

Notations used frequently in the paper are defined as follows. We let n be the observation

index and N be the sample size. For variables X and Y , let their distribution functions

be represented by FX and FY , their density functions by fX and fY , and their quantiles

by QX and QY . In addition, let ‖ · ‖ be the Euclidean norm, i.e. ‖A‖ = tr(A′A). The

prototypical model examined in this paper has the form of

QY (τY |QX(τX |Zn)) = h(QX(τX |Zn), βτX (un)) (1)

QX(τX |Zn) = Z ′nγ(τX) (2)

where (2) can be obtained from

Xn = Z ′nγ(wn) (3)

by setting wn to F−1
w (τX). The innovation terms wn and un are assumed to be independent

of each other and are each weakly dependent across n as defined in Section 3. Furthermore,

wn and un are distributed with distribution functions Fw,n and Fu,n respectively. When

the innovation terms are homoskedastic, the distribution functions will be denoted as Fw

and Fu. In our empirical work in Section 4, Y and X are N × 1 vectors representing stock

returns. Z is a N × k matrix of exogenous variables, Zn is a k × 1 vector and γ is a k × 1

parameter vector. Xn is assumed to be independent of un while Zn is independent of both

wn and un for all n. The nonlinear function h is assumed to be strongly monotonic in

un, nondecreasing in QX(τX |Zn), and twice differentiable in both QX(τX |Zn) and β. The

parameter of interest is βτX (un), which captures the dependence of Y on the τX conditional

quantile of X. From now on, the τX subscript on β will be omitted to simplify notation.
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Estimating (1) will be our main focus while the auxiliary equation (2) serves the purpose of

obtaining estimates for QX(τX |Zn). β(τY ) is estimated in two steps: the first step estimates

(2) to obtain Q̂X(τX |Zn) and the second step uses Q̂X(τX |Zn) to estimate β(τY ) in (1).

For the reader familiar with Ma and Koenker’s (2006) work in examining the rela-

tionships between quantiles, our setup appears to be very similar to theirs with one key

difference. We implicitly assume in (1) that Y depends on the conditional quantile of X

whereas in their model Y depends on X and not its conditional quantile. In the former

setup, no attempt is made to model causal or structural relationships, which is suitable for

our empirical objective of modeling the correlation between quantiles of stock returns since

the correlation merely captures non-causal dependence behavior.

Note that conditional quantile function of Y can be estimated from (1) using standard

quantile regression models if QX(τX |Zn) is known. As QX(τX |Zn) is unobservable, (1)

can only be feasibly estimated using Q̂X(τX |Zn) first obtained from an auxiliary equation.

Replacing QX(τX |Zn) with Q̂X(τX |Zn) introduces a generated regressor problem, which has

been explored for mean regression by Pagan (1984), Murphy and Topel (1985) and McAleer

and McKenzie (1997) but has yet to be addressed for quantile regression. Generally, the

estimator of β(τY ) is consistent even under the presence of generated regressors. However,

one has to make adjustments to the conventional standard errors for quantile regression,

as the generated regressors will introduce an error term that will invalidate inference that

uses these conventional standard errors. The effect of using generated quantiles in (1) can

be seen by writing the conditional quantile of Y as

QY (τY |QX(τX |Zn))

=h(Q̂X(τX |Zn), β(τY )) + h(QX(τX |Zn), β(τY ))− h(Q̂X(τX |Zn), β(τY ))

=h(Q̂X(τX |Zn), β(τY )) + ωn (4)

The difference between using actual quantiles and the fitted ones is the error term ωn. In

turn, how large ωn is depends on the difference between Q̂X(τX |Zn) and QX(τX |Zn), which
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converges to zero if Q̂X(τX |Zn) is a consistent estimator of the true quantile. To deal with

ωn, we expand h(QX(τX |Zn), β(τY )) around Q̂X(τX |Zn) yielding

ωn = −hX(Q̂X(τX |Zn), β(τY ))Z ′n(γ̂N (τX)− γ(τX)) +Op(‖γ̂N (τX)− γ(τX)‖2)

= −hX(Q̂X(τY |Zn), β(τX))Z ′n∆N +Op(‖∆N‖2)

where ∆N = γ̂N (τX)− γ(τX), the linear representation based on (3), is

∆N =
(

(N−1∑N
n=1 ZnZ

′
n)−1

fw(F−1
w (τX))

N−1
N∑
n=1

ZnψτX (wn)
)

+ op(N−1/2) (5)

with ψτX (wn) = I(X − Z ′nγ(τX) < 0) − τX and I(·) is an indicator function. It should be

noted that while (3) is specified as a linear model, it is also generalizable as a nonlinear one

since we may easily obtain an analog of ∆N for a nonlinear auxiliary equation. With ∆N ,

we may control for ω by introducing a correction term as follows:

QY (τY |QX(τX |Zn))

=h(Q̂X(τX |Zn), β(τY ))− hX(Q̂X(τX |Zn), β(τY ))Z ′n∆N +Op(‖∆N‖2)

=h̆(Q̂X(τX |Zn), β(τY )) +Op(‖∆N‖2) (6)

As it will be shown, although including hX(Q̂X(τX |Zn), β(τY ))Z ′n∆N in the regression only

controls for the first order component of h(QX(τX |Zn), β(τY ))− h(Q̂X(τX |Zn), β(τY )), the

higher order term ‖∆N‖2 converges quickly enough so that the effect of the higher order

expansions on the asymptotic standard errors for β̂N (τY ) is negligible.

Similar to ordinary least squares, it is easy to observe that consistency is preserved

whether or not the correction term is included. For instance, when the correction term

is taken into account, the gradient function, Gc, from minimizing the quantile regression
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objective function becomes

Gc(β) = 1
N

N∑
n=1

ψτ
(
Yn − h(Q̂X(τX |Zn), β) + hX(Q̂X(τX |Zn), β)Z ′n∆N

)
×
(
hβ(Q̂X(τX |Zn), β)− hXβ(Q̂X(τX |Zn), β)Z ′n∆N

)

In the case where the correction term is omitted, the gradient function, Go, becomes:

Go(β(τ)) = 1
N

N∑
n=1

ψτ
(
Yn − h(Q̂X(τX |Zn), β)

) (
hβ(Q̂X(τX |Zn), β)

)

The estimate of β(τY ) is found by locating the zero of the respective gradient functions. It

can be argued that if maxn |hX(Q̂X(τX |Zn), β)| satisfies an appropriate regularity condition

that holds uniformly in β, the gradient conditions Gc and Go will be asymptotically iden-

tical, since both maxn |hX(Q̂X(τX |Zn), β)Z ′n∆N | and maxn ‖hXβ(Q̂X(τX |Zn), β)Z ′n∆N‖ in

Gc are op(1). Therefore, ignoring the correction term will not affect consistency in the

second step regression. This conclusion is also typically observed by Pagan (1984) and

Murphy and Topel (1985), as the error component introduced by the generated quantiles

should disappear asymptotically.3

Remark: Our methodology is similar to the double-stage quantile regression model of

Kim and Muller (2003) as well as the median regression framework of Amemiya (1982)

and Powell (1983). These papers address the issue of endogeneity in quantile or median

regressions. Despite the close resemblance between our model and the previous frameworks,

the difference stems from the fact that our model is used to investigate the relationship

between quantiles rather than to address the issue of endogeneity.
3For two-step estimators in ordinary least squares, consistency may not be achieved if the model is a

function of the variances of the unknown quantities. See Model 6 of Pagan (1984).
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2.1 Including an Information Set in the Second Step Regression

Consider extending (1) to include an information set Z1,n in h. For instance, one may

wish to examine how certain macroeconomic factors such as industrial production growth

and money supply growth may affect the dependence between quantiles of stock returns by

modeling β as a function of Z1,n. Generally, the conditional quantile of Y can be written as

QY (τY |QX(τX |Zn), Z1,n). Therefore, the extension of (1) to include additional exogenous

variables Z1,n becomes

Yn = h(QX(τX |Zn), Z1,n, β(un)) (7)

To identify the conditional quantile of X, we require Zn to contain at least one variable

excluded from Z1,n. The conditional quantile to be estimated becomes

QY (τY |QX(τX |Zn), Z1,n)

=h(Q̂X(τX |Zn), Z1,n, β(τY )) + h(Q̂X(τX |Zn), Z1,n, β(τY ))− h(Q̂X(τX |Zn), Z1,n, β(τY ))

=h(Q̂X(τX |Zn), Z1,n, β(τY )) + ωn (8)

As before, we use a first order Taylor expansion of ωn around Q̂X(τX |Zn) to control for the

preliminary estimation effect. Hence, this extension does not affect the asymptotic analysis

for the baseline case where Z1,n is absent in the second step regression.

3 Inference

Inference in Section 4 will be carried out using asymptotic standard errors. Therefore, this

section focuses on obtaining the asymptotic distribution of the point estimator for β(τY ).

Previously, Jurečková and Procházka (1994) derived the linear representation for the non-

linear quantile regression model. Here, we provide the asymptotic analysis for nonlinear

quantile regression with α-mixing innovation terms. We first obtain the linear represen-

tation for the estimator where the correction term is not included, then derive the linear

representation for the correction model. We impose some fairly high level assumptions,
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including consistency of γ̂N (τX) as well as β̂N (τY ) or ˆ̂
βN (τY ) depending on whether the

correction term is included. For consistency in nonlinear quantile regression, the reader is

referred to Oberhofer and Haupt (2006). The assumptions below are required for root-N

consistency as well as for deriving the linear representation for β̂N (τ) or β̂N (τ):

A1. The regression model consists of

Yn = h(QX(τX |Zn), β(un))

and

Xn = Z ′nγ(wn)

such that h : < × <p → < and QX(τX |Zn) = Z ′nγ(τX), where Zn is a q × 1 vector with

its lth element represented by Z(
nl). The innovation terms un and wn are independent of

each other and are weakly dependent across n with mixing coefficients αu(N) = O(N−ζ)

and αw(N) = O(N−ζ) for ζ > (4.5 + 2p)/(1 − ν) for some ν > 0.4. Zn is mixing random

variable of size −ζ.

A2. Let Θ and Γ be compact sets where β(un) ∈ Θ and γ(wn) ∈ Γ are p × 1 and q × 1

vectors, strictly monotonic in un and wn, respectively.

The weak dependence assumption in A1 is adopted by Sun (2006) while A2 is a standard

condition. For the next assumption, let ∆ <∞ represent some generic constant. We define

h
(j)
β as the first partial derivative of h with respect to the jth element of β, h(jk)

ββ as the

second partial derivative of h with respect to the jth and kth elements of β. Equivalently,

h
(j)
β is the j element of the vector hβ and h

(jk)
ββ is the jk element of the matrix hββ . In

addition, expressing QX(τ |Z) as the N × 1 vector of conditional quantiles, we may likewise

define h(n)
X as the partial derivative of h with respect to the nth element of QX(τ |Z), and

4The case where un is independent across n is reflected by ζ →∞. The same is true also for wn.
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h
(nm)
XX as the second partial derivative of h with respect to the nth and mth elements of

QX(τ |Z). However, there will no confusion if we drop the n superscript as hX and hXX

may be interpreted as a scalar.

For brevity, even though the following conditions are stated for h only, we here assume

that A3 to A7 are also imposed with h̆ replacing h, where h̆ is the function used in the

error-correction model.

A3. The moments E|h(k)
β (Z ′nγ, β(τ))|4, E|hX(Z ′nγ, β(τ)|4, E|hXX(Z ′nγ, β(τ)|4, E|h(kk)

ββ (Z ′nγ, β(τ)|4,

E|h(j)
βX(QX,n,τ , β(τ))Z(l)

n |4, and E|h(jk)
ββX(Q̃X,n,τ , β̃(τ))Z(l)

n |4 are bounded above by ∆ for all

n uniformly in β ∈ Θ and γ ∈ Γ.

Assumption A3 are bounds on the moments, which are needed since the regressors are

stochastic. Define ũn = Yn − h(QX(τX |Zn), β(τY )) and w̃n = Xn − Z ′nγ(τX). With this

normalization, the τ th
Y and τ th

X quantile of ũn and w̃n are respectively set to zero.

A4. Let C be some generic constant. The conditional distribution functions of ũn, Fũ,n(·),

are absolutely continuous with continuously differentiable densities fũ,n(·) that are bounded

away from zero at all points QY (τY |QX(τX |Zn)) and above by C together with their first

derivatives f ′ũ,n(·). Similarly, the cumulative distribution functions of w̃n, Fw̃,n(·), are ab-

solutely continuous with continuously differentiable densities fw̃,n that are bounded away

from zero at all points QX(τY |Zn) and above by C together with their first derivatives

f ′w̃,n(·).

In A4, that the density functions are bounded away from zero at ũn = 0 is required

for the existence of the linear representation, as the inversion of these densities are re-

quired at these points. A similar assumption to A4 is to express the distribution and

density functions for Yn and Xn instead. For instance, consider Fũ,n(0) = P [ũn ≤ 0] =

P [Yn ≤ h(QX(τX |Zn))] = FY,n(h(QX(τX |Zn)). Hence, for some constant a, the rela-
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tionship
∫ a
−∞ fũ,n(ũ)dũ = Fũ,n(a) = FY,n(a + h(QX(τX |Zn)) =

∫ a+h(QX(τX |Zn)
−∞ fY,n(Y )dY

holds as an identity. Differentiating and applying Leibnitz rule, ∂Fũ,n(a)/∂a = fũ,n(a) =

fY,n(a + h(QX(τX |Zn)) = ∂FY,n(a + h(QX(τX |Zn))/∂a. Therefore, we may consider the

conditional densities in terms of Yn and Xn as well.

Next, let r = ζ/(ζ − 1) be a constant related to the size of mixing so that weaker de-

pendence is characterized by an r closer to one. Also, let δ > 0 be some constant. Given

that the densities function are assumed to be bounded above, the following conditions are

required to ensure law of large numbers for α-mixing sequences.

A5. i) E‖hβ(Z ′nγ, β)hβ(Z ′nγ, β)′‖r+δ ≤ ∆ <∞ for all n and uniformly in γ ∈ Γ and β ∈ Θ,

and ii) Q̄N = E[N−1∑N
n=1 fY,n(QY,n(τY |Xn))hβ(·, β)hβ(·, β)′] is uniformly positive definite.

A6. i) E‖ZnZ ′n‖r+δ ≤ ∆ < ∞ for all n and uniformly in γ ∈ Γ and β ∈ Θ, and ii)

Q̄1,N = E[N−1∑N
n=1 fX,n(Qw̃,n(τX |Zn))ZnZ ′n] is uniformly positive definite.

A7. E‖hβ(Z ′nγ, β)‖
r+δ

2 < ∆ <∞ and E‖hX(Z ′nγ, β)‖
r+δ

2 ∆ <∞ for all n and uniformly in

γ ∈ Γ and β ∈ Θ.

Assumptions A5, A6 and A7 are needed for law of large numbers under α-mixing regres-

sors. A5 ensures that the p×p positive definite matrixQN = N−1∑N
n=1 fY,n(QY,n(τY |Xn))hβ(·, β)hβ(·, β)′

converges to Q̄N , the q× q positive matrix QN,1 = N−1∑N
n=1 fX,n(QX,n(τX |Zn))ZnZ ′n con-

verges to Q̄1,N , and N−1∑N
n=1 ‖hβ(Z ′nγ, β)Z ′n‖1/2 and N−1∑N

n=1 ‖hX(Z ′nγ, β)Z ′n‖1/2 are

convergent as required in Lemma 5.

It is well-known that consistency is typically preserved in ordinary least squares or

maximum likelihood estimation when a generated regressor is used. This observation also

carries over for quantile regression. In particular, given consistency of γ̂N (τX) as well as

β̂N (τY ) or ˆ̂
βN (τY ), we may establish the root-N rate of convergence for the second step

estimator. Proposition 1 states the linear representation when the correction term is not
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included. Derivations for all of the asymptotic results in this section, including root-N

convergence, are relegated to the Appendix.

Proposition 1. Suppose a second step non-corrected model is used, that is, we estimate

(1) replacing the true conditional quantiles with the fitted quantiles of X, and let ˆ̂
βN (τY ) be

the point estimator of β(τY ). Under A1-A7,

√
N( ˆ̂
βN (τY )− β(τY ))

=−Q−1
N

1√
N

N∑
n=1

hβ(QX(τX |Zn), β(τY ))ψτY (ũn)

−QN−1 1√
N

N∑
n=1

fũ,n(0)(τY ))hβ(QX(τX |Zn), β(τY ))hX(QX(τX |Zn), β(τY ))Z ′n(γ̂N (τX)− γ(τX))

+ op(1) (9)

Remark: It may be of independent interest to provide a sharper expression for the op(1)

term in (9). By using Lemmas 3 and 4 together with Koenker and Zhao’s (1994) Lemmas

6 to 8, we can write the op(1) term as Op(N−3/4+λ logN), where λ ∈ ((11/4 + p)/(1 +

ζ(1 − ν)), 1/2) with ζ > (4.5 + 2p)/(1 − ν), ν > 0 is some constant. Rate of convergence

expressed in this form follows from Raghu Raj Bahadur in his seminal work on the linear

representation for sample quantiles (see Bahadur, 1966).5 For regression quantiles, Koenker

and Zhao (1994) and Zhou and Portnoy (1996) established a rate of Op(N−3/4 logN) for

the op(1) term under the independence assumption. Oberhofer and Haupt (2006) examined

the consistency and asymptotic normality of nonlinear quantile regression under α-mixing,

but did not provide a specific rate. Therefore, the rate Op(N−3/4+λ logN) includes inde-

pendence as a special case when ζ →∞ so that λ→ 0.

When deriving Proposition 1, we have shown that ˆ̂
βN (τY ) is root-N consistent, since

N−1
N∑
n=1

h(QX(τX |Zn), β(τY ))ψτ (ũn)

5See, inter alia, Kiefer, (1967), Sen, (1972), Babu and Singh, (1978), Yoshihara, (1995), Sun (2006).
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and

N−1
N∑
n=1

hβ(QX(τX |Zn), β(τY ))hX(QX(τX |Zn), β(τY ))Z ′n

in (9) are op(1) and
√
N(γ̂N (τX)− γ(τX)) is Op(1). Consistency of the first step estimator,

γ̂N (τX), is necessary for consistency in the second step, ˆ̂
βN (τY ), a result that is familiar

in the generated regressors literature. However, inference based on conventional standard

errors, say assuming homoskedasticity, of τY (1− τY )(fu(F−1
u (τY ))QN )−1 will be incorrect,

as the presence of the generated regressor will introduce an additional term in the linear

representation which must be taken into account. For instance, assuming that the errors

un and wn are i.i.d. and using the asymptotic representation for
√
N(γ̂N (τX)− γ(τX)), the

covariance matrix is

V ar( ˆ̂
βN (τY )) = τY (1− τY )

fu(Qu(τY ))Q
−1
N + τX(1− τX)

fw(Qw(τX))Q
−1
N QN,2Q

−1
N,1Q

′
N,2Q

−1
N

where QN,2 = N−
∑N
n=1 hβ(QX,n,τ , β(τ))hX(QX,n,τ , β(τ))Z ′n is a p×k matrix that converges

to Q2 and QN and QN,1 are already defined. Hence, failure to take into account of the

additional term in the variance will cause of the null hypothesis to be rejected more often

than it should.

Instead of correcting the standard errors, we may include the correction term in the

regression model as discussed. This is a better alternative, as the estimator will be more

efficient by doing so. The linear representation under the correction model is:

Proposition 2. Suppose a second step correction model is used and let β̂N (τY ) be the point

estimator of β(τY ). Under A1-A7,

√
N(β̂N (τY )− β(τY ))

=−Q−1
N

1√
N

N∑
n=1

hβ(QX(τX |Zn), β(τY ))ψτY (ũn) + op(1) (10)

Since the additional term in (10) disappears by adding the correction term, the asymptotic

covariance is smaller and hence the estimator β̂N (τY ) is more efficient than ˆ̂
βN (τY ). From
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(9), we can understand intuitively why adding the correction term will lead to the linear

representation in (10). Comparing (9) and (10), only (9) contains an additional term related

to γ̂N (τX) − γ(τX). Hence, by including the correction term derived from the first order

Taylor expansion of ωn, we control for Q̂X(τX |Zn)−QX(τX |Zn) = Op(‖γ̂N (τX)− γ(τX)‖).

The neglected higher order terms are op(‖γ̂N (τX) − γ(τX)‖), which are then absorbed in

the op(1) term in the linear representation. Hence, a first order Taylor expansion suffices

to ensure that conventional standard errors may be used for inference.

3.1 Computation of the Standard Errors

In the empirical application discussed in Section 4, we will estimate correlations using the

correction model. Hence, we will focus on constructing standard errors from the linear

representation shown in (10). First, consider the case where u is homoskedastic. Then, the

asymptotic variance of β̂N (τY )− β(τY ) from the correction model simplifies to

V ar(β̂N (τY )− β(τY )) = τY (1− τY )
fu(Qu(τY ))

1
N

N∑
n=1

hβ(QX(τX |Zn), β(τY ))hβ(QX(τX |Zn), β(τY ))′

(11)

To construct the standard errors, we need to estimate the quantile density function s(τY ) :=

1/fu(Qu(τY )), which is typical for inference involving sample quantiles and regression quan-

tiles. There exists a large literature addressing this issue (e.g. Bloch and Gastwirth, 1968;

Bofinger, 1975; Hall and Sheather, 1986; Goh and Knight, 2007). Typically, the starting

point of estimating the quantile density comes from the classical method of Siddiqui (1960),

which is based on the insight that the density of the quantile can be written as

s(τ) = lim
k→∞

uτ+bk − uτ−bk
2bk

where bk is a bandwidth that approaches zero as k becomes arbitrarily large. In the sample

analog, we may estimate s(τ) nonparametrically using

ŝ(τ) = N−1∑N
n=1 (un,τ+bk − un,τ−bk)

2bk
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where un,τ is the τ th sample quantile of u. Extending this idea by replacing un,τY +bk and

un,τY −bk with ûn,τY +bk and ûn,τY −bk , the residuals from the τY + bk and τY − bk quantile

regressions, the quantile density estimator becomes

ŝu,N (τY ) =
N−1∑N

n=1

(
h̆(Q̂X(τX |Zn), β̂(τY + bk))− h̆(Q̂X(τX |Zn), β̂(τY − bk))

)
2bk

(12)

recalling that h̆ is the sum of h and the correction term. When constructing the quantile

density estimate, ŝu,N (τ), one has to worry that this quantity may be potentially negative.

While regression quantiles are not usually monotonic in τ , they are monotonic in τ at the

centroid of the design matrix (Koenker, 2005). Extending this idea, the proposed estimator

(12) ensures that ŝu,N (τY ) is non-negative, as it can be easily shown that the property of

monotonicity at the centroid of the design matrix extends to the nonlinear model as well.

Like kernel density estimation, the estimator ŝu,N (τY ) suffers from finite sample bias,

resulting from the fact that ŝu,N (τY ) is a biased estimator of su,N (τY ) up to the first order

in a finite sample. This can be seen by considering a general nonlinear quantile regression

model, taking a first order expansion of h(Q̂X(τX |Zn), β̂(τY )) around β(τY ) and QX(τX |Zn)

and using the linear representation of β̂N (τY )− β(τY ) and γ̂N (τX)− γ(τX) to obtain

ŝu,N (τY ) = su,N (τY ) + 1
2bk
√
N
Op(1)

where su,N (τY ) is evaluated at β(τY ) and QX(τX |Zn), while the Op(1) term comes from

applying the Central Limit Theorem. This implies that |ŝu,N (τY )− su,N (τ)| = Op
(

1
bk
√
N

)
.

Hence to ensure that ŝu,N (τ) is consistent, the bandwidth must converge at a slower rate

than N−1/2. This motivates our choice of using the Hall and Sheather (1988) bandwidth

over the Bofinger (1975) bandwidth. Having an order of N−1/3, the Hall and Sheather

bandwidth will lead to faster convergence of the quantile density estimator than if the

Bofinger bandwidth, with an order of N−2/5, is adopted. For the moment, we will simplify

notation by defining QX,n,τ := QX(τ |Zn) so that the dependence on Zn is suppressed. In
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practice, we compute the bandwidth, bk = m̂
N , via three equations:

m̂ = (1.5s̃N/|VN |)1/3(zα/2)2/3N2/3

s̃N = h̄(Q̂X,n,τX , β̂(τY + b1,k))− h̄(Q̂X,n,τX , β̂(τY − b1,k))
2b1,k

VN = h̄(Q̂X,n,τX , β̂(τY + 2b2,k))− h̄(Q̂X,n,τX , β̂(τY − 2b2,k)
2b32,k

+ 2h̄(Q̂X,n,τX , β̂(τY − b2,k))− 2h̄(Q̂X,n,τX , β̂(τY + b2,n))
2b32,k

where h̄(Q̂X(τX |Zn), β̂(τY + b1,k)) = N−1∑N
n=1 h̆(Q̂X(τX |Zn), β̂(τY + bk)). These band-

widths b1,k = min(τY , 1 − τY )N−0.2 and b2,k = 0.5 min(τY , 1 − τY )N−1/9 modify Hall and

Sheather’s recommendation of b1,k = 0.5N−0.2 and b2,k = 0.25N−1/9 for the sample me-

dian. It is clear that our modified bandwidths are the same as those in Hall and Sheather

for median regression. This modification is necessary because at the tails, for instance at

τ = 0.05, the bandwidths recommended by Hall and Sheather may result in negative values

of τY − b1,k or τY − b2,k which are not admissible.

Under the assumption that un is heteroskedastic, we must estimate the density for each

ûn. Using the Hall and Sheather bandwidth, we compute

f̂ũ,n = 2bk
h(Q̂X(τX |Zn), β̂N (τY + bk))− h(Q̂X(τX |Zn), β̂N (τY − bk)))

(13)

This method is similar to the Hendricks-Koenker sandwich method discussed in Koenker

(2005, p.80). As Koenker pointed out, a potential problem in using the sandwich method

is that h(·, β(τ)) may not be monotonic except at the centroid of the design matrix. This

implies that for some observations, the denominator in (13) may be negative. In the actual
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implementation, the Hendricks-Koenker method employs

f̂+
ũ,n = max

{
0, 2bk
h(Q̂X(τX |Zn), β̂N (τY + bk))− h(Q̂X(τX |Zn), β̂N (τY − bk)))− e

}
(14)

where e is a small value to prevent division by zero.

3.2 Estimation

We now describe the actual implementation that is used in Section 4. The first-step objective

function is
N∑
n=1

ρτX (Xn − Z ′nγ) (15)

where ρτ (w) = (τ − I(w < 0))w is a “check” function proposed by Koenker and Bassett

(1978). From the first step regression, we want to form ∆N expressed in (5), which will be

used in the second step. To do so, residuals from the first step regression ŵn are used to

define

∆̂N = ŝw(τX)(N−1
N∑
n=1

ZnZ
′
n)−1N−1

N∑
n=1

Znψτ (ŵn) (16)

where ŝw(τX) is the estimated quantile density function computed as discussed in Section

3.1. Note that (16) is based on the assumption that wn is homoskedastic. Alternatively,

one may estimate an heteroskedastic version yielding

∆̂N = (N−1
N∑
n=1

f̂w,nZnZ
′
n)−1N−1

N∑
n=1

Znψτ (ŵn) (17)

where f̂w,n is the estimated density of fw,n. For the actual computation, we obtain ∆̂N using

the assumption that w is homoskedastic, as there are cases where the estimated densities

are very large when the denominator in (13) is close to zero. Then, ∆̂N is used in the

correction model, and with it, we minimize

N∑
n=1

ρτY (Yn − h̆(Q̂X(τX |Zn), β)) (18)
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where h̆ is the original regression function plus the correction term.6

4 Empirical Application

In this section, we estimate the correlations between the quantile of U.S. MSCI returns and

the quantile of MSCI returns of Canada, France, Germany, U.K., Australia, Japan, Hong

Kong and Singapore. These countries reflect the major stock markets in North America,

Europe and Australasia. We focus on eight pairwise relationships: the correlation between

U.S. returns and the returns to each of the other eight countries. To obtain a correlation

measure, we employ a copula-based model due to Bouyè and Salmon (2003) to derive the

nonlinear regression function h.

To get a sense of how copulas work, suppose we are interested in investigating how X

and Y are dependent. Due to Sklar’s theorem (see Bouyè and Salmon, 2003), there exists

a unique copula function C with copula parameter ρ for every joint distribution FX,Y over

X and Y that satisfies

FX,Y (X,Y ) = C(FX(X), FY (Y ); ρ)

Hence, every joint distribution can be expressed as a copula function over the marginal

distributions and vice versa. Therefore, by using Sklar’s Theorem, the task of modeling

even the most complex relationships can be simplified by specifying the copula function and

the marginal distributions separately. The main advantage of using the copula function is

that the copula parameter ρ maps into a measure of rank correlation known as Kendall’s

Tau.7 For the Gaussian or Student-t copula, the copula parameter is simply the correlation
6While we have estimated an unweighted version of the objective function, one may use the weighted

quantile regression approach described by Ma and Koenker (2006). The optimal weights are the estimated
densities, meaning that we first weight the summands in the objective function by f̂ũ,n obtained from
estimating a unweighted version.

7To illustrate the concept of a rank correlation, consider N observation pairs of X and Y . From these
observations, one may construct

(
n
2

)
rankings of each observation pairs. The Kendall S calculates the

difference between the number of concordant and discordant pairs, denoted by C and D respectively. Then,
Kendall’s Tau computes the rank correlation through the measure S/

(
n
2

)
.
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coefficient itself. To derive the dependence function, we observe that

FY |X(Y |Xn) = C1(FX(X), FY (Y ); ρ).

where FY |X(Y |Xn) is the marginal distribution of Y conditioned on X = Xn and C1(u, v)

is the partial derivative of the copula with respect to the first argument. By inverting C1

with respect to the second argument, we obtain the required regression framework as

FY (Y ) = C−1
1 (FX(Xn); ρ) (19)

Equation (19) provides the basis for writing down the nonlinear quantile regression model

that we represent as h. We consider a parametric specification for both the copula func-

tion and the marginal distributions, while Chen and Fan (2006) considered combining a

parametric copula with nonparametric marginal distributions. To analyze the dependence

between quantiles, we consider a second step model based on (19) as

QFY (τY |QX(τX |Zn)) = h(QX(τX |Zn), ρ(τY )) (20)

where h is derived from the right-hand-side term of (19). Note that by inverting FY in

(20), we may also estimate ρ from an equation that expresses the left-hand-side variable as

QY (τY |QX(τX |Zn)) instead of QFY (τY |QX(τX |Zn)). However, this distinction is not crucial

since F−1
Y is a monotone transformation. Hence, we will proceed with estimating ρ based

on (20). As explained earlier, we first estimate the auxiliary regression of

QX(τX |Zn) = Z ′nγ(τX) (21)

and obtain the fitted values Q̂X(τX |Zn) for the estimation of (20).

For our empirical application, we use monthly time series that spans from March 1971

to December 2008. The dataset is obtained from Datastream and the returns are expressed
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in the U.S. currency. All quantile regression estimations reported here are implemented in

MATLAB using the interior point algorithm of Koenker and Park (1996). The stock returns

series are obtained from log-differencing the MSCI index.

Our sample contains data for the U.S. and eight other countries that we call “foreign” in

this paper. For presentation purpose, we group the foreign countries into two: 1) Canada,

France, Germany and the U.K. and 2) Australia, Hong Kong, Japan, Singapore. The

U.S. returns will be used as the anchor, meaning that histograms and correlations will be

computed for the pair of countries involving the U.S. and another foreign country.

To get a sense of how the returns series are distributed, bivariate histograms for the

U.S. and foreign returns are plotted. The histogram shows the number of observations such

that values of the bivariate returns series of interest fall into bins whose boundaries are

determined by the returns quantiles.8

Figure 1 plots the histograms for Canada and the European countries while Figure 2

does the same for Australia and Asian countries. All the histograms show that most of the

data are concentrated around the main diagonal, meaning it is less likely to observe the

simultaneous realization of U.S. and foreign returns belonging to the opposite tails of the

returns distributions. In addition, the modes of the histograms are located at the extreme

left and right tails. This implies that one is likely to see a large drop in the foreign stock

return when the same is also observed for the U.S. stock return. The converse is true,

although the observations are more highly concentrated in the left than in the right tails.

The histograms tend be less dispersed for Canada and Europe as opposed to those for

Australia and Asia. Moreover, the frequency in the extreme tails tend to be larger for the

first than for the second group of countries. This implies that the stock markets of Canada

and Europe tend to move more closely to the U.S. market in extreme events than the stock

markets of Australia and Asia do.

To estimate the correlation between the quantiles of returns, a preliminary estimation
8Specifically, the histogram plots the number of observations of X and Y that jointly satisfy QX(τi) <

X ≤ QX(τi) and QY (τj) < Y ≤ QY (τj), for τi, τj = 0, 0.1, ..., 1. The axis labels indicates the upper bound
of the interval. For τ = 0, we set QX(0) = min(X)−1 and QY (0) = min(Y )−1 for computational purposes.
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step is needed to obtain the fitted conditional quantiles of the U.S. returns. The fitted

quantile will then be used as a regressor in the second estimation step whose model will be

specified later. Letting X represent the U.S. returns and Y represent the foreign counter-

part, the auxiliary model employed by the preliminary estimation step is specified as

Xn =γ0 +
12∑
i=1

γX,iXn−i +
12∑
i=1

γP,iUSProdn−i +
12∑
i=1

γM2,iUSM2n−i +
12∑
i=1

γI,iUSPPIn−i

+
12∑
i=1

γS,iSpreadn−i +
12∑
i=1

γF,iFedn−i +
12∑
i=1

γGiGoldn−i +
12∑
i=1

γC,iCoppern−i

+
12∑
i=1

γH,iHousen−i + wn (22)

where USProd is the growth in U.S. industrial production index, USM2 is the growth in U.S.

M2 money, USPPI is U.S. producer price index inflation, Spread is the difference between

the yields on 10-year and 3-month treasury bills, Gold is gold’s monthly returns, Copper

is copper’s monthly returns and House is the number of housing starts denominated in

millions. The growth rates and returns are computed by log-differencing the variables. We

find that for the second step regression to work well, in the informal sense that the estimated

correlation in the second step is less attenuated towards zero, the first step design matrix

should include twelve lags of each exogenous variable. To avoid mistakenly employing

regressors that may be endogenous, we do not include contemporaneous variables in (22).

For the second step regression, the regression function is derived based on the assumption

that the copula is either Gaussian or Student-t. These copula models are chosen for their

simplicity although other copulas may also be considered. Detailed discussions on the types

of copulas suitable for this quantile-based framework can be found in Bouyè and Salmon

(2003). Based on the Gaussian copula, the second step regression model can be expressed

as

Φ(Yn) = Φ (ΥΦ)− ρ(un)φ (ΥΦ)Z ′n−1∆N
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where

ΥΦ = ρ(un)Q̂X(τX |Zn−1) +
√

1− ρ(un)2Φ−1(τY ),

Φ is the standard normal cumulative distribution function and φ is the standard normal

density function. The second term is the correction term that approaches zero asymptoti-

cally as ∆N is op(1). When the Student-t copula is used, the second step regression model

becomes

Tν(Yn) = Tν (ΥT ν )− ρ(un)tν (ΥT ν )Z ′n−1∆N (23)

where

ΥT ν = ρ(un)Q̂X(τX |Zn−1) +
(
(ν + Q̂X(τX |Zn−1)2)(ν + 1)−1(1− ρ(un)2)

)1/2
T−1
ν (τY ),

Tν and tν represent the Student-t cumulative distribution and density function with ν

degrees of freedom. As expected, the Student-t model reduces to the Gaussian model as ν

goes to infinity. In the actual estimation, we will only report the estimation results based on

the Student-t model with ten degrees of freedom as choosing other degrees of freedom can

be shown to produce similar outcomes. The presence of τY , seen in (23) and (24), comes

from the partial derivative of the copula function with respect the marginal distribution of

X and this is typical in copula quantile regressions. Note that simplification is achieved by

combining a Gaussian copula with standard normal marginal distributions or by combining a

Student-t copula that shares the same degrees of freedom with the univariate t-distributions.

This is solely for convenience and if necessary, one may use marginal distributions belonging

to a different family as the copula function.

As mentioned in the introduction, Longin and Solnik (2001) and Ang and Chen (2002)

are among the groundbreaking works that found correlation asymmetries in stock returns.

Longin and Solnik focused on the correlation of international markets while Ang and Chen

examined the correlation between U.S. portfolio returns and U.S. aggregate returns. While
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both demonstrated that correlation generally rises in bear markets, the results should be

interpreted with some caution. This is because the exceedance-based method of the papers

estimates the correlation between the tails of the stock returns, whose distributions are

approximated by the generalized Pareto distribution. This approximation becomes more

imprecise when correlations are calculated for observations located nearer the center of the

returns’ distributions and further away from the tails.

The Longin and Solnik exceedance correlation involving the U.S. and Canada, France,

Germany and the U.K. is plotted in Figure 3. The same involving the U.S. and Australia,

Hong Kong, Japan and Germany is plotted in Figure 4. For τ ≤ 0.5, the figures report the

correlation when returns are jointly less than or equal to their respective 100τ th percentiles.

For instance, the correlation at τ = 0.2 is the correlation for returns when both markets

are less than or equal to their respective 20th percentiles. For τ ≥ 0.5, the reported

correlations are those when returns are jointly greater than or equal to their respective

100τ th percentiles. This implies that two correlation points are plotted at τ equal 0.5,

which explains the discontinuity observed at the median.

While bearing in mind that exceedance correlations involving the extremes are likely

to have a smaller bias, Figures 3 and 4 show that these correlations typically display an

asymmetric shape. There is a discontinuity at τ = 0.5, reflecting the fact that exceedance

correlations are correlations between the tails where in our case, the left and right tails

are defined for observations up to the median. The U.S.-Canada correlation appears to

be the least asymmetric compared to the rest of the country pairs. The U.S.-Australia

correlation has the sharpest drop in correlation in the right tails. The figures, however,

show that the correlation generally does not increase monotonically from the median to the

10th percentile, suggesting that extreme negative events do not necessarily lead to tighter

comovements with the U.S. market. In fact, except for Germany and Japan, the negative

semicorrelation at the median is larger than the correlation at the 10th percentile.9 Thus,

while the Longin and Solnik method produces correlation with an asymmetric pattern, it
9The negative semicorrelation at the median refers to the correlation when returns that are less than or

equal to the median.
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also broadly suggests that extreme bear events do not increase the correlation between stock

markets. This observation, however, does not conform with the typical beliefs of researchers

and market observers alike.

Using our quantile dependence framework that measures the correlation between quan-

tiles rather than between tail observations, Figures 5 plots the correlation of U.S. returns

quantiles with returns quantiles of Canada, France, Germany and U.K. Figure 6 plots the

same when the foreign countries are Australia, Hong Kong, Japan and Singapore. The

correlations are plotted against the U.S. returns quantiles and the foreign returns quantiles,

resulting in a three-dimensional surface. For future reference, the main diagonal of the

surface refers to the case where the same τ indexes the returns quantiles for both U.S. and

the foreign country. Correlations in Figures 5 and 6 are obtained from the Gaussian copula

model.

The correlations exhibit several broadly similar characteristics. First, the typical cor-

relation surface has a saddle shape exhibiting higher elevations along the main diagonal.

Correlations located nearer to the extreme ends of the main diagonal display even larger

increases, implying correlations between markets that are jointly bullish or bearish should

rise relative to correlations between markets when returns are typically seen. Concerning

the fact that correlations increase when both markets are bullish, this has not been found

previously although it is somewhat appealing, based on cursory observation, that foreign

markets should typically be bullish when the same happens to the U.S. market also. When

moving away from the main diagonal, the surface tends to decline and this implies that

markets experiencing increasingly dissimilar environments should become less correlated.

For example, one would expect that correlation of the markets should fall when one market

is bullish while the other is bearish.

Despite the similarities, asymmetric correlation in the conventional sense still exists.

This can be clearly seen by plotting the correlation along the main diagonal, as Figure 7

does so for Canada, France, Germany and U.K. and Figure 8 for Australia, Hong Kong,

Japan and U.K. Given the saddle shape of the correlation surfaces, it is not surprising that
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the main-diagonal correlation has an inverted-U or cup shape. The asymmetry manifests

when we observe in all cases that the correlation between the 10th percentiles is larger than

that between the 90th percentiles. The difference between the 10th and the 90th percentile

correlation are among the largest for Hong Kong (0.295), Australia (0.237), the U.K. (0.220)

and Germany (0.221). The difference is the smallest for Canada (0.054), which is also the

case when the difference is computed using the exceedance correlations estimated for Figure

3.

Given the cup shape of the main diagonal correlation, we attempt to measure the depth

of the “cup” by defining

Depth = |ρ0.1 − ρ0.5|+ |ρ0.9 − ρ0.5| (24)

where ρτ is the 100τ th percentile correlation between the U.S. and the foreign country.

Depth measures the sensitivity of the correlation to extreme events, where large magnitudes

of Depth reflect larger increases in the correlation when markets are bearish or bullish. The

results for the eight country pairs are reported in Table 1, which shows that Depth is

among the largest for Singapore (0.653), Hong Kong (0.637) and the U.K. (0.594) and is

the smallest for Canada (0.278). The fact that Depth is large for Singapore and Hong Kong,

being small economies that are also among the most open, suggests that openness and size

of the countries could account for the sensitivity of correlations to extreme events.

The results reported so far are estimated from the Gaussian copula model based on (23).

Here, we conduct the same analysis using the Student-t copula model based on (24). Figure

9 plots the correlation surface for Canada, France, Germany and the U.K. and Figure 10

does the same for Australia, Hong Kong, Japan and Singapore.

We can see that correlations behave very similarly when comparing Figures 5 and 9

for Canada and Europe and between Figures 6 and 10 for Australia and Asia, suggesting

that the difference from using the Gaussian versus Student-t model is small. That said,

correlations estimated from the Student-t model tend to have larger values and this is
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especially the case in the tails.

This can be seen from the main-diagonal plots of Figure 11 for Canada and Europe

and Figure 12 for Australia and Asia. We can see from the figure that the main-diagonal

correlations exhibit very similar patterns as those in Figures 7 and 8 based on the Gaussian

model. Clearly, correlations at the tails are larger using the Student-t model, with the

increase in correlations between the 10th percentiles ranging from 0.03616 for the U.K.

to 0.0977 for Canada. For the 90th percentiles, the increase in correlation ranges from

0.0366 for Germany to 0.1102 for Hong Kong. However, the difference between the medians

estimated from both copula functions remains very close to zero.

4.1 Extensions

Before we conclude, it is useful to consider two extensions of the copula-based model that

may be useful for future empirical work.

Extension 1: Relaxing the Marginal Distribution Assumptions

In the previous section, the marginal distributions are restricted to be the univariate coun-

terparts of the copula. For instance, we combine the Gaussian copula with standard normal

marginal distributions, or the Student-t copula with univariate t-distributions all having

the same degrees of freedom. Here, we relax the restriction on the marginal distributions.

Using the Gaussian copula as illustration sake, the method proceeds from Chen et al. (2008)

by modeling the joint distribution as

FX,Y (X,Y ) = Φρ(Φ−1(FX(X)),Φ−1(FY (Y )))

where Φρ is the bivariate Gaussian distribution and FX and FY are any continuously dif-
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ferentiable distribution functions. The second step model becomes

FY (Yn)

=Φ
(
ρ(un)Φ−1(FX(Q̂X(τX |Zn−1))) +

√
1− ρ(un)2Φ−1(τY )

)
− ρ(un)φ(ρ(un)Φ−1(FX(Q̂X(τX |Zn−1))) +

√
1− ρ(un)2Φ−1(τY ))

× fX(Q̂X(τX |Zn−1))
φ(Φ−1(FX(Q̂X(τX |Zn−1)))

Z ′n−1∆N

so that the marginal distributions other than the standard normal may be combined with

the Gaussian copula.

4.2 Extension 2: Time-Varying Correlation

Time-varying correlations may also be estimated as an extension. This is especially conve-

nient for the copula-based model, since the copula parameter may be modeled as a function

of an information set as

ρn(Z1,n−1) = Λ(Z ′1,n−1α)

where Z1,n−1 represents the information set and Λ(x) = (exp(2x)− 1)/(exp(2x) + 1) is the

inverse Fisher transformation that maps a real number into the [−1, 1] interval. To identify

the conditional correlation in the second step regression, Z1,n−1 must be a strict subset of

Zn−1, the information set in the first step, so that there must at least be one regressor in

Zn−1 that is excluded from Z1,n−1 which follows from our discussion in Section 2.1. Then,

estimating time-varying correlation becomes a problem of estimating α and this can be

carried out in a straightforward manner using the methods discussed earlier.
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5 Conclusion

Quantile regression is a useful tool for investigating the regressors’ influence on the quantiles

of the dependent variable. This paper discusses two contributions. First, we have proposed

to model the statistical relationships of quantiles using a generated regressors framework. In

doing so, we have addressed the issue of generated regressors and examined their asymptotic

implications in a nonlinear quantile regressions. Second, we have constructed correlation

surfaces that show how correlations between quantiles of returns to the stock markets be-

have. These surfaces reveal that the tails are typically more strongly dependent than is true

at the center of the distributions. In addition, our copula methodology flexibly allows the

quantiles of the stock returns to be generated by different joint distributions belonging to

the same family. Our estimation results provide evidence that the documented asymmetric

correlation of international stock returns is related to changes in the correlation coefficient

across different states of the economy, thus supporting the idea that correlation breakdowns

have taken place.

There are several ways to extend the current paper. Theoretically, we may further relax

the assumption about parametric marginal distributions by investigating a semiparametric

model with a parametric copula and nonparametric marginals as in Chen and Fan (2006).

The issue of bootstrapping standard errors in quantile regressions with generated regressors

is also useful from the applied perspective. Empirically, we have considered the dependence

of nine international stock markets, hence it would be interesting to extend the study to

include other international stock markets. In addition, further research on examining the

effects of monetary policy and the business cycle on stock market correlations can be carried

out with our framework.
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Appendix

Proof of Proposition 1

Before proceeding with the proof, we lay down some definitions. To simplify notation, define QX,n,τ ≡

QX(τ |Zn) ≡ Z′nγ(τ) so that the dependence on Zn is suppressed. Furthermore, the proof restricts τX =

τY = τ without loss of generality. Let ˆ̂
βN represent the point estimator of β from the non-corrected second

step regression. Also, recall that ũn such that

ũn =Yn − h(QX,n,τ , β(τ))

=Yn − h(Q̂X,n,τ , β(τ))− (h(QX,n,τ , β(τ))− h(Q̂X,n,τ , β(τ))),

so that the τ th conditional quantile of ũ is normalized to zero. Using this normalization, let the first order

condition be represented by a p× 1 vector

WN (Q̂X,τ , ˆ̂
βN (τ))

≡ 1
N

N∑
n=1

hβ(Q̂X,n,τ , ˆ̂
βN (τ))

× ψτ
(
ũn − (h(Q̂X,n,τ , ˆ̂

βN (τ))− h(Q̂X,n,τ , β(τ)))− (h(Q̂X,n,τ , β(τ))− h(QX,n,τ , β(τ)))
)
, (25)

where ψτ = I(u < 0)− τ and I(·) is an indicator function. Furthermore, define a p× 1 vector

W̄N (Q̂X,τ , ˆ̂
βN (τ))

≡ 1
N

N∑
n=1

hβ(QX,n,τ , β(τ))

× ψτ
(
ũn − (h(Q̂X,n,τ , ˆ̂

βN (τ))− h(Q̂X,n,τ , β(τ)))− (h(Q̂X,n,τ , β(τ))− h(QX,n,τ , β(τ)))
)
. (26)

In other words, a bar over WN (Q̂X,n,τ , ˆ̂
βN (τ)) represents the case in replacing hβ(Q̂X,n,τ , ˆ̂

βN (τ)) in WN

with hβ(QX,n,τ , β(τ)). In addition, given the true parameter β(τ), define the expectation counterpart of

(25) and (26) with the expectation operator E[·] taken over ũ,

W (Q̂X,τ , ˆ̂
βN (τ)) ≡ E[WN (Q̂X,τ , ˆ̂

βN (τ))]

and

W̄ (Q̂X,τ , ˆ̂
βN (τ)) ≡ E[W̄N (Q̂X,τ , ˆ̂

βN (τ))].
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By definition, ˆ̂
βN (τ) = argmin(β)[WN (Q̂X,τ , β)] and β(τ) = argmin(β)[W (QX,τ , β)]. Except for points

where Yn = h(Q̂X,n,τ , ˆ̂
βN (τ)), ‖WN (Q̂X,τ , ˆ̂

βN (τ))‖ may be set to zero while ‖W (QX,τ , β(τ))‖ is zero by

definition, where ‖ · ‖ is the Euclidean norm, that is, ‖ · ‖ = (tr(A′A))1/2.10 In addition, note that E[I(ũ <

0)] = τ . Using the argument from Xiao and Koenker (2008), we will establish that ˆ̂
βN (τ) is root-N-consistent,

which crucially depends on the fact |Q̂X,n,τ −QX,n,τ | = |Z′n(γ̂N (τ)− γ(τ))| = Op(N−1/2). Consider

‖W̄ (Q̂X,τ , ˆ̂
βN (τ))‖

≤‖W̄ (Q̂X,τ , ˆ̂
βN (τ))− W̄ (QX,τ , ˆ̂

βN (τ))‖ (27)

+‖W̄N (QX,τ , ˆ̂
βN (τ))− W̄N (QX,τ , β(τ))− (W̄ (QX,τ , ˆ̂

βN (τ))− W̄ (QX,τ , β(τ)))‖ (28)

+‖W̄N (QX,τ , ˆ̂
βN (τ))‖ (29)

+‖W̄N (QX,τ , β(τ))‖. (30)

Lemma 4 shows that (30) has a rate of Op(N−1/2). Next, let W̄X represent a p × N matrix of derivatives

of W̄ with respect to the first argument and W̄XX represent a p×N ×N tensor of second derivatives. For

(27), express

‖W̄ (Q̂X,τ , ˆ̂
βN (τ))− W̄ (QX,τ , ˆ̂

βN (τ))‖

≤‖W̄ (Q̂X,τ , ˆ̂
βN (τ))− W̄ (QX,τ , ˆ̂

βN (τ))− W̄X(QX,τ , ˆ̂
βN (τ))(Q̂X,τ −QX,τ )‖

+‖W̄X(QX,τ , ˆ̂
βN (τ))(Q̂X,τ −QX,τ )− W̄X(QX,τ , β(τ))(Q̂X,τ −QX,τ )‖

+‖W̄X(QX,τ , β(τ))(Q̂X,τ −QX,τ )‖.

Note, for instance, that since W̄X(Q̂X,τ , ˆ̂
βN (τ)) = W̄X(Zγ̂N (τ), ˆ̂

βN (τ)), the above expression can also be ob-

tained by Taylor expansion around γ(τ) instead, resulting in a p×q matrix of derivatives W̄X(ZγN (τ), ˆ̂
βN )Z.

Using Lemma 1, which shows that ‖W̄X(QX,τ , ˆ̂
βN (τ))‖ = O(1) and ‖W̄XX(QX,τ , ˆ̂

βN (τ))‖ = O(1), we have

the following

‖W̄ (Q̂X,τ , ˆ̂
βN (τ))− W̄ (QX,τ , ˆ̂

βN (τ))− W̄X(QX,τ , ˆ̂
βN (τ))(Q̂X,τ −QX,τ )‖ = Op(‖γ̂N (τ)− γ(τ)‖2),

‖W̄X(QX,τ , ˆ̂
βN (τ))(Q̂X,τ −QX,τ )− W̄X(QX,τ , β(τ))(Q̂X,τ −QX,τ )‖ = Op(‖ ˆ̂

βN (τ)− β(τ)‖)Op(‖γ̂N (τ)− γ(τ)‖),

and

‖W̄X(QX,τ , β(τ))(Q̂X,τ −QX,τ )‖ = Op(‖γ̂N (τ)− γ(τ)‖).

10Otherwise, we may impose a rate of Op(N−1/2) in He and Shao (2000).
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Consolidating these results, we have

‖W̄ (Q̂X,τ , ˆ̂
βN (τ))− W̄ (QX,τ , ˆ̂

βN (τ))‖ = op(N−1/2) + op(1)Op(‖ ˆ̂
βN (τ)− β(τ)‖) +Op(N−1/2).

Now, (28) is op(1) since it satisfies stochastic equicontinuity established in Lemma 3, so that

sup
β̃(τ)∈Θ(τ)

‖W̄N (QX,τ , β̃(τ))− W̄N (QX,τ , β(τ))−
(
W̄ (QX,τ , β̃(τ))− W̄ (QX,τ , β(τ))

)
‖ = op(N−1/2).

Next, rewrite (29) as

‖W̄N (QX,τ , ˆ̂
βN (τ))‖

≤‖W̄N (QX,τ , ˆ̂
βN (τ))− W̄N (QX,τ , β(τ))− (W̄ (QX,τ , ˆ̂

βN (τ))− W̄ (QX,τ , β(τ)))‖

+‖W̄N (QX,τ , β(τ))‖

+‖W̄ (QX,τ , ˆ̂
βN (τ))‖. (31)

For (31), we have ‖W̄ (QX,τ , ˆ̂
βN (τ))‖ = (Op(1) + op(1))‖ ˆ̂

β(τ) − β(τ)‖. Hence, by stochastic equicontinuity

and the fact that ‖W̄N (QX,τ , β(τ))‖ = Op(N−1/2) established in Lemma 4,

‖W̄N (QX,τ , ˆ̂
βN (τ))‖ ≤ op(N−1/2) +Op(N−1/2) + (Op(1) + op(1))‖ ˆ̂

β(τ)− β(τ)‖.

Hence, collecting the terms, we finally arrive at

‖W̄ (Q̂X,τ , ˆ̂
βN (τ))‖ ≤ (Op(1) + op(1))‖ ˆ̂

β(τ)− β(τ)‖+Op(N−1/2). (32)

By Mean Value Theorem, we expand W̄ (Q̂X,τ , ˆ̂
βN (τ)) around QX,τ and β(τ)

W̄ (Q̂X,τ , ˆ̂
βN (τ)) = W̄β(Q̃X,τ , β̃(τ))( ˆ̂

βN (τ)− β(τ)) + W̄X(Q̃X,τ , β̃(τ))(Q̂X,τ −QX,τ ),

with β(τ)∧ ˆ̂
βN (τ) < β̃(τ) < ˆ̂

βN (τ)∨β(τ) and Q̂X,τ∧QX,τ < Q̃X,τ < Q̂X,τ∨QX,τ . With some rearrangement,

this in turn implies that

|‖W̄ (Q̂X,τ , ˆ̂
βN (τ))‖ − ‖W̄β(Q̃X,τ , β̃(τ))( ˆ̂

βN (τ)− β(τ))‖|

≤‖W̄X(Q̃X,τ , β̃(τ))(Q̂X,τ −QX,τ )‖

≤Op(‖γ̂N (τ)− γ(τ)‖) (33)

Using the fact thatOp(‖γ̂N (τ)−γ(τ)‖) = Op(N−1/2) and W̄β(Q̃X,τ , β̃(τ)) = O(1), and since ‖W̄ (Q̂X,τ , ˆ̂
βN (τ))‖

is Op(‖ ˆ̂
βN (τ) − β(τ)‖) or Op(N−1/2), we may conclude that Op(‖ ˆ̂

βN (τ) − β(τ)‖) = Op(N−1/2). The next
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objective is to obtain the linear representation for ˆ̂
βN (τ). Consider

‖W̄N (Q̂X,τ , ˆ̂
βN (τ))− W̄N (QX,τ , β(τ))− (W̄ (Q̂X,τ , ˆ̂

βN (τ))− W̄ (QX,τ , β(τ)))‖

≤‖W̄N (QX,τ , ˆ̂
βN (τ))− W̄N (QX,τ , β(τ))− (W̄ (QX,τ , ˆ̂

βN (τ))− W̄ (QX,τ , β(τ)))‖ (34)

+ ‖W̄N (Q̂X,τ , ˆ̂
βN (τ))− W̄N (QX,τ , ˆ̂

βN (τ))− (W̄ (Q̂X,τ , ˆ̂
βN (τ))− W̄ (QX,τ , ˆ̂

βN (τ)))‖. (35)

By stochastic equicontinuity, (34) is op(N−1/2) while (35) is op(N−1/2) if stochastic equicontinuity can also

be established for this term. Hence,

W̄N (Q̂X,τ , ˆ̂
βN (τ)) = W̄N (QX,τ , β(τ)) + W̄ (Q̂X,τ , ˆ̂

βN (τ))− W̄ (QX,τ , β(τ)) + op(N−1/2). (36)

Since ‖WN (Q̂X,τ , β̂N (τ))− W̄N (Q̂X,τ , β̂N (τ))‖ = Op(N−3/4) follows from Lemma 5, we have

W̄N (Q̂X,τ , ˆ̂
βN (τ)) = WN (Q̂X,τ , ˆ̂

βN (τ)) + op(N−1/2).

Using the above, this implies that (36) may be rewritten as

0 = W̄N (QX,τ , β(τ)) + W̄ (Q̂X,τ , ˆ̂
βN (τ))− W̄ (QX,τ , β(τ)) + op(N−1/2),

where we have used the definition thatWN (Q̂X,τ , ˆ̂
βN (τ)) = 0 except for a finite number of points. Expanding

W̄ (Q̂X,τ , ˆ̂
βN (τ)) − W̄ (QX,τ , β(τ)) around γ(τ) and β(τ), and recalling that Q̂X,τ = Zγ̂N (τ) and QX,τ =

Zγ(τ), we have

W̄ (Q̂X,τ , ˆ̂
βN (τ))− W̄ (QX,τ , β(τ))

= 1
N

N∑
n=1

fũ,n(0)hβ(QX,n,τ , β(τ))hβ(QX,n,τ , β(τ))
′
( ˆ̂
βN (τ)− β(τ))

+ 1
N

N∑
n=1

fũ,n(0)hβ(QX,n,τ , β(τ))hX(QX,n,τ , β(τ))Z′n(γ̂N (τ)− γ(τ))

+Op(‖ ˆ̂
βN (τ)− β(τ)‖2) +Op(‖γ̂N (τ)− γ(τ)‖2) +Op(‖γ̂N − γ(τ)‖‖ ˆ̂

βN (τ)− β(τ)‖).

Let QN = N−1∑N

n=1 fũ,n(0)hβ(QX,n,τ , β(τ))hβ(QX,n,τ , β(τ))
′
, the linear representation is

√
N( ˆ̂
βN (τ)− β(τ))

=−Q−1
N

1√
N

N∑
n=1

hβ(QX,n,τ , β(τ))ψτ (ũn)

−QN−1 1√
N

N∑
n=1

fũ,n(0)hβ(QX,n,τ , β(τ))hX(QX,n,τ , β(τ))Z′n(γ̂N (τ)− γ(τ)) + op(1).
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Based on the comments following A4 in Section 3, we may also express the linear representation equivalently

as

√
N( ˆ̂
βN (τ)− β(τ))

=−Q−1
N

1√
N

N∑
n=1

hβ(QX,n,τ , β(τ))ψτ (ũn)

−QN−1 1√
N

N∑
n=1

fY,n(QY (τ |QX,n,τ ))hβ(QX,n,τ , β(τ))hX(QX,n,τ , β(τ))Z′n(γ̂N (τ)− γ(τ)) + op(1),

where QN = N−1∑N

n=1 fY,n(QY (τ |QX,n,τ ))hβ(QX,n,τ , β(τ))hβ(QX,n,τ , β(τ))
′
. �

Proof of Proposition 2

Let β̂N denote the point estimator of β from the correction second stage regression. Define

ũn = Yn − h(Q̂X,n,τ , β(τ)) + hX(Q̂X,n,τ , β(τ))(Q̂X,n,τ −QX,τ )−Op(‖γ̂N (τ)− γ(τ)‖2)

= Yn − h̆(Q̂X,n,τ , β(τ))−Op(‖γ̂N (τ)− γ(τ)‖2)

and

W̆N (Q̂X,τ , β̂N (τ))

:= 1
N

N∑
n=1

h̆β(Q̂X,n,τ , β̂N (τ))ψτ
(
ũn +Op(‖γ̂N (τ)− γ(τ)‖2)−

(
h̆(Q̂X,n,τ , β̂N (τ))− h̆(Q̂X,n,τ , β(τ))

))
,

where ũm is the innovation with its τ th conditional quantile normalized to zero. Since h̆(QX,n,τ , β(τ)) =

h(QX,n,τ , β(τ)), notice that W̆N (QX,τ , β(τ)) = WN (QX,τ , β(τ)). In addition, we define

¯̆
WN (Q̂X,τ , β̂N (τ))

:= 1
N

N∑
n=1

h̆β(QX,n,τ , β(τ))ψτ
(
ũn +Op(‖γ̂N (τ)− γ(τ)‖2)−

(
h̆(Q̂X,n,τ , β̂N (τ))− h̆(Q̂X,n,τ , β(τ))

))
.

Hence, E[ ¯̆
WN (QX,τ , β(τ))] = E[W̄N (QX,τ , β(τ))] = 0. By the arguments in Proposition 1, we can estab-

lished that β̂N (τ) is root-N consistent. Following this, we derive the linear representation based on stochastic

equicontinuity estabilished in Lemma 3, which results in

‖ ¯̆
WN (Q̂X,τ , β̂N (τ))− ¯̆

WN (QX,τ , β(τ))− ( ¯̆
W (Q̂X,τ , β̂N (τ))− ¯̆

W (QX,τ , β(τ)))‖ = op(N−1/2).
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In addition, Lemma 5 implies that

¯̆
WN (Q̂X,τ , β̂N (τ)) = W̆N (Q̂X,τ , β̂N (τ)) + op(N−1/2),

where W̆N (Q̂X,τ , β̂N (τ)) = 0 except for a finite number of points. Consider,

¯̆
W (Q̂X,τ , β̂N (τ))− ¯̆

W (QX,τ , β(τ))

= 1
N

N∑
n=1

h̆β(QX,n,τ , β(τ))E
[
ψτ
(
ũn +Op(‖γ̂N (τ)− γ(τ)‖2)− (h̆(Q̂X,n,τ , β̂N (τ))− h̆(Q̂X,n,τ , β(τ)))

)
− ψτ (ũn)

]
. (37)

Taking Taylor expansion of the expectation term in (37), we have

E
[
ψτ
(
ũn +Op(‖γ̂N (τ)− γ(τ)‖2)− (h̆(Q̂X,n,τ , β̂N (τ))− h̆(Q̂X,n,τ , β(τ)))

)
− ψτ (ũn)

]
=Fũ,n(Op(‖γ̂N (τ)− γ(τ)‖2) + (h̆(Q̂X,n,τ , β̂N (τ))− h̆(Q̂X,n,τ , β(τ))))− Fũ,n(0)

=fũ,n(F−1
ũ,n(τ))

[
Op(‖γ̂N (τ)− γ(τ)‖2) + (h̆(Q̂X,n,τ , β̂N (τ))− h̆(Q̂X,n,τ , β(τ)))

]
+ op(N−1/2)

=fũ,n(F−1
ũ,n(τ))

[
Op(‖γ̂N (τ)− γ(τ)‖2) + h̆β(Q̂X,n,τ , β(τ))′(β̂N (τ)− β(τ)) +Op(‖β̂N (τ)− β(τ)‖2)

]
+ op(N−1/2)

=fũ,n(F−1
ũ,n(τ))

[
Op(N−1) + h̆β(Q̂X,n,τ , β(τ))′(β̂N (τ)− β(τ))

]
+ op(N−1/2),

with

h̆β(Q̂X,n,τ , β(τ))′(β̂N (τ)− β(τ))

=hβ(Q̂X,n,τ , β(τ))′(β̂N (τ)− β(τ))− hXβ(Q̂X,n,τ , β(τ))′(β̂N (τ)− β(τ))(Q̂X,n,τ −QX,n,τ )

=hβ(Q̂X,n,τ , β(τ))′(β̂N (τ)− β(τ)) +Op(‖β̂N (τ)− β(τ)‖‖γ̂N (τ)− γ(τ)‖)

=hβ(QX,n,τ , β(τ))′(β̂N (τ)− β(τ)) +Op(‖β̂N (τ)− β(τ)‖‖γ̂N (τ)− γ(τ)‖),

where second line follows from the definition of h̆β(Q̂X,n,τ , β(τ)) and the last line follows from expanding

hβ(Q̂X,n,τ , β(τ)) around QX,n,τ . Since Op(‖β̂N (τ) − β(τ)‖‖γ̂N (τ) − γ(τ)‖) = op(N−1/2), (37) may be

expressed as

¯̆
W (Q̂X,τ , β̂N (τ))− ¯̆

W (QX,τ , β(τ))

= 1
N

N∑
n=1

fũ,n(0)hβ(QX,n,τ , β(τ))hβ(QX,n,τ , β(τ))′(β̂N (τ)− β(τ)) + op(N−1/2)

= QN (β̂N (τ)− β(τ)).
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Using the fact that ¯̆
WN (QX,τ , β(τ)) = WN (QX,τ , β(τ)) and h̆(QX,n,τ , β(τ)) = h(QX,n,τ , β(τ)), the asymp-

totic representation for β̂N (τ) is

√
N(β̂N (τ)− β(τ))

=−Q−1
N

1√
N

N∑
n=1

hβ(QX,n,τ , β(τ))ψτ (ũn) + op(1). �

Some Lemmas

The following lemmas are derived for the function h. Under appropriate assumptions for h̆ similar to that

for h, the lemmas also hold with h̆ replacing h.

Lemma 1. ‖W̄X(Zγ̄, β̄)‖ = O(1), ‖W̄XX(Zγ̄, β̄)‖ = O(1), ‖W̄β(Zγ̄, β̄)‖ = O(1), ‖W̄ββ(Zγ̄, β̄)‖ = O(1)

and ‖W̄βX(Zγ̄, β̄)‖ = O(1) uniformly in β̄ ∈ Θ and γ̄ ∈ Γ.

Proof : For an arbitrary β̄ ∈ Θ and γ̄ ∈ Γ, where the latter implies Q̄X,n,τ = Z′nγ̄, consider

W̄ (Q̄X,τ , β̄)

= 1
N

N∑
n=1

E[hβ(QX,n,τ , β(τ))

× ψτ
(
ũn −

(
h(Q̄X,n,τ , β̄)− h(Q̄X,n,τ , β(τ))

)
−
(
h(Q̄X,n,τ , β(τ))− h(QX,n,τ , β(τ))

))
]

= 1
N

N∑
n=1

E[hβ(QX,n,τ , β(τ))ψτ
(
ũn − (h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))

)
]

= 1
N

N∑
n=1

E[hβ(QX,n,τ , β(τ))E[ψτ
(
ũn − (h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))

)
|Zn]]

= 1
N

N∑
n=1

E[hβ(QX,n,τ , β(τ))(Fũ,n((h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))− Fũ,n(0))].

Let the j element of hβ(QX,n,τ , β(τ)) be h(j)
β (QX,n,τ , β(τ)). Following A4, which assumes that fũ,n and f ′ũ,n

are bounded above by C, the following holds:

‖W̄ (j)
X ‖

2 = 1
N2

N∑
n=1

(E[h(j)
β (QX,n,τ , β(τ))fũ,n((h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))hX(Q̄X,n,τ , β̄)])2

≤C2 1
N

N∑
n=1

(E[h(j)
β (QX,n,τ , β(τ))hX(Q̄X,n,τ , β̄)])2,

where the summation over the observations follows from the fact that ‖W̄ (j)
X ‖

2 = tr(W̄ (j)
X
′W̄

(j)
X ) and W̄ (j)

X

42



is a N -vector. In addition, we have

‖W̄ (j)
XX‖

2 = 1
N2

N∑
n=1

(E[h(j)
β (QX,n,τ , β(τ))(fũ,n((h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))hXX(Q̄X,n,τ , β̄)

+ f ′ũ,n((h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))hX(Q̄X,n,τ , β̄)2])2

≤C2 1
N

N∑
n=1

(E[h(j)
β (QX,n,τ , β(τ))(hXX(Q̄X,n,τ , β̄) + hX(Q̄X,n,τ , β̄)2)])2,

‖W̄ (j)
β ‖

2 =
p∑
k=1

( 1
N

N∑
n=1

E[h(j)
β (QX,n,τ , β(τ))(fũ,n((h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))h(k)

β (Q̄X,n,τ , β̄)])2

≤C2
p∑
k=1

( 1
N

N∑
n=1

E[h(j)
β (QX,n,τ , β(τ))h(k)

β (Q̄X,n,τ , β̄)])2,

‖W̄ (j)
ββ ‖

2 =
p∑
k=1

( 1
N

N∑
n=1

E[h(j)
β (QX,n,τ , β(τ))(fũ,n((h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))h(kk)

ββ (Q̄X,n,τ , β̄)

+ fũ,n((h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))h(k)
β (Q̄X,n,τ , β̄)2)])2

≤C2
p∑
k=1

( 1
N

N∑
n=1

E[h(j)
β (QX,n,τ , β(τ))(h(kk)

ββ (Q̄X,n,τ , β̄) + h
(k)
β (Q̄X,n,τ , β̄)2)])2,

and

‖W̄ (j)
βX‖

2 = 1
N

N∑
n=1

p∑
k=1

(E[h(j)
β (QX,n,τ , β(τ))[fũ,n((h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))h(k)

βX(Q̄X,n,τ , β̄)

+ f ′ũ,n((h(Q̄X,n,τ , β̄)− h(QX,n,τ , β(τ)))h(k)
β (Q̄X,n,τ , β̄)hX(Q̄X,n,τ , β̄)′])2

≤C 1
N

N∑
n=1

p∑
k=1

(E[h(j)
β (QX,n,τ , β(τ))(h(k)

βX(Q̄X,n,τ , β̄) + h
(k)
β (Q̄X,n,τ , β̄)hX(Q̄X,n,τ , β̄)′)])2.

Since A3 assumes that E|h(k)
β (Q̄X,n,τ , β̄)|4, E|hX(Q̄X,n,τ , β̄)|4, E|hXX(Q̄X,n,τ , β̄)|4 and E|h(kk)

ββ (Q̄X,n,τ , β̄)|2

and E|h(k)
βX(Q̄X,n,τ , β̄)|4 are bounded above by ∆ < ∞, it follows from Cauchy-Schwarz inequality, this

implies that ‖W̄ (j)
X ‖ = O(1), ‖W̄ (j)

XX‖ = O(1), ‖W̄ (j)
β ‖ = O(1), ‖W̄ (j)

ββ ‖ = O(1) and ‖W̄ (j)
βX‖ = O(1). Further-

more, since this is true for each j, Lemma 1 follows. �

Before proving Lemma 3, we briefly review the notion of weak dependence. Let Fnm = σ(Xi : m ≤ i ≤

n, i ∈ N) be the σ-field generated by the random variables Xm, . . . , Xn, 1 ≤ m ≤ n ≤ ∞. A variable Xi is
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said to be α-mixing if the mixing coefficient

α(n) = sup
m∈N

sup
Fm1 ,F∞

m+n

|P (A ∪B)− P (A)P (B)|

goes to zero as n increases without bound. For the proof, we restate a lemma due to Bosq (1998), which is

stated as Lemma 2 in Sun (2006):

Lemma 2. Let Xn be a zero mean real-valued process of strongly mixing random variables where α(N) =

O(N−ζ) for some some ζ > 0. Suppose that there exists c > 0 such that

E|Xn|ϕ ≤ cϕ−2ϕ!E|Xn|2 <∞, t = 1, . . . , N, ϕ ≥ 3,

then for each N ≥ 2, each integer q ∈ [1, N/2], each t > 0 and each ϕ ≥ 3,

P (|
N∑
n=1

Xn| > Nt) ≤ a1 exp
(
− at2

25m2
2 + 5ct

)
+ a2(ϕ)α

(
b N

q + 1c
)
,

where

a1 = 2N
q

+ 2
(

1 + at2

25m2
2 + 5ct

)
with m2

2 = max
1≤t≤N

E[X2
n]

and

a2(ϕ) = 11N
(

1 + 5mϕ/(2ϕ+1)
ϕ

t

)
with mϕ = max

1≤t≤N
(E|Xn|ϕ)1/ϕ. �

Recall that the notation E[W̄N (Q̂X,τ , β̂N (τ)) = W̄ (Q̂X,τ , β̂N (τ))] is used when proving Propositions 1 and

2.

Lemma 3. (Stochastic Equicontinuity) Under A1-A4,

sup
β̃∈Θ
‖W̄N (QX,τ , β̃)− W̄N (QX,τ , β(τ))−

(
W̄ (QX,τ , β̃)− W̄ (QX,τ , β(τ))

)
‖

= Op(N−3/4+λ logN), a.s. (38)

where λ ∈ ((11/4 + p)/(1 + ζ(1 − ν)), 1/2) with ζ > (4.5 + 2p)/(1 − ν), ν > 0, p is the dimension of the

parameter space Θ and QN = N−1∑
n
hβ(QX,n,τ , β(τ))hβ(QX,n,τ , β(τ))′.

Proof : The proof is similar to Sun (2006) who derived the asymptotic representation for the sample quantile

under weak dependence. Here, a pointwise relationship of (38) is first established where the bound is

an exponential tail, which a chaining argument is later applied. For p-dimensional parameter space Θ,

let j = 1, . . . , p index the j element in the p-vector β̃. For each j, consider β̃(j)(τ) − β(j)(τ) = rεN ,

where r = 0,±1, . . . ,±δN , δN = dN1/4e and εN = k−1
p N−3/4 logN where kp is a positive constant. Since
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β̃(j)(τ)− β(j)(τ) is divided into (2δN + 1) partitions for each j, there is a collection of (2δN + 1)p partitions

of p-dimensional cubes each indexed by Ei. The cardinality has a rate of O(Np/4) while for each Ei,

β̃
(j)
i (τ)− β(j)(τ) = O(N−1/2 logN). Now, define

Ω(QX,τ , β̃)

≡ 1
N

N∑
n=1

hβ(QX,n,τ , β(τ))[ψ(ũn − (h(QX,n,τ , β̃)− h(QX,n,τ , β(τ)))− ψτ (ũn)

− E[ψ(ũn − (h(QX,n,τ , β̃)− h(QX,n,τ , β(τ)))− ψτ (ũn)]]

= 1
N

N∑
n=1

hβ(QX,n,τ , β(τ))(Vn − p),

where we have defined Vn ≡ ψτ (ũn − (h(QX,n,τ , β̃) − h(QX,n,τ , β(τ))) − ψτ (ũn). The expectation of

Vn is p, which may in turn be expressed as p = P (F−1
ũ,n(τ) ≤ ũn ≤ h(QX,n,τ , β̃) − h(QX,n,τ , β(τ))) =

Fũ,n(h(QX,n,τ , β̃)−h(QX,n,τ , β(τ)))−Fũ,n(F−1
ũ,n(τ)). Without loss of generality, let h(QX,n,τ , β̃)−h(QX,n,τ , β(τ)) >

0. For β̃ 6= β(τ) and using the assumption that β̃ − β(τ) < k−1
p N−1/2 logN as well as A3, p may also be

expressed as 0 < p < Ck−1
p N−1/2 logN . Since p is the probability where Vn = 1, the following relationship

holds

E|Vn − p|ϕ = |1− p|ϕp+ |p|ϕ|1− p| = (1− p)p(pϕ−1 + (1− p)ϕ−1) < p <∞. (39)

Notice that E|Vn − p|ϕ ≤ E|Vn − p|2 ≤ p for ϕ ≥ 3. For the j element of hβ(QX,n,τ , β(τ)), consider ϕ = 3

so that

E|h(j)
β (QX,n,τ , β(τ))(Vn − p)|3|

≤E[|h(j)
β (QX,n,τ , β(τ))|3|Vn − p|3]

=E[|h(j)
β (QX,n,τ , β(τ))|3E[|Vn − p|3|Xn]]

≤E[|h(j)
β (QX,n,τ , β(τ))|3p]

≤C max
k
|β̃(k) − β(k)(τ)|

p∑
k=1

E[|h(j)
β (QX,n,τ , β(τ))|3|h(k)

β (QX,n,τ , β(τ))|]

≤pC max
k
|β̃(k) − β(k)(τ)|max

k
E|h(k)

β (QX,n,τ , β(τ))|4

≤pC∆ max
k
|β̃(k) − β(k)(τ)|

=pC∆k−1
p N−1/2 logN

<∞,

where the third line follows from the law of iterated expectation, the forth line follows from (39), fifth line
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follows from A4 and Taylor expansion of p around β(τ), and the seventh line follows from A3. Hence, we may

apply Lemma 2 for ϕ = 3. For this purpose, note thatm2
2 = E|h(j)

β (QX,n,τ , β(τ))(Vn−p)|2 ≤ k−1
p N−1/2 logN

for each j, where k−1
p subsumes the other constants in the expression. Also, note that Ω(QX,n,τ , β̃(τ)) is a p

vector with j element Ω(j)(QX,τ , β̃(τ)). Considering β̃ ∈ Ei and substituting c = 1 and t = N−3/4+λ logN ,

where λ > 0 is a constant, yields

P (|Ω(j)(QX,τ , β̃(τ))| > N−3/4+λ logN) = TERM 1 + TERM 2.

For some q, we have

TERM 1 = a1 exp
(
− qt2

25m2
2 + 5ct

)
≤ a1O(exp(−qN−1+λkp logN)) = O(N

q
)O(exp(−qN−1+λ logNkp)),

where we have used the fact that m2
2 < p and ct = o(m2

2). In addition,

TERM 2

=a2(ϕ)α
(
b N

q + 1c
)

=11N(1 + 5(E|Vn − p|ϕ)1/(2ϕ+1)

t
))α
(
b N

q + 1c
)

≤11(N +N
5(E|Vn − p|2)1/(2ϕ+1)

t
))α
(
b N

q + 1c
)

≤11(N +N
5p1/(2ϕ+1)

t
))α
(
b N

q + 1c
)

≤11(N +N
5(k−1

p N−1/2+λ logN)1/(2ϕ+1)

N−3/4+λ logN
)α
(
b N

q + 1c
)

≤11(N +N
5(k−1

p N−1/2+λ logN)1/(2ϕ+1)

N−3/4+λ logN
)α(N

q
)

≤Op(N7/4−λ logN−1(N−1/2+λ logN)1/(2ϕ+1))α(N
q

).

Upon choosing q = N1−λ logNλ, TERM 1 becomes

TERM 1 ≤ O( Nλ

logNλ
)O(exp(−(logN)kp+λ)) ≤ O( Nλ

logNλ
)O(N−(kp+λ)) ≤ O( 1

Nkp

1
logNλ

) = o(N−kp).

where in the first line, we have used the fact that (logN)kp+λ > (kp + λ) logN for N > 1. For TERM 2,
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consider some ν > 0 such that

TERM 2

≤Op(N7/4−λ logN−1(N−1/2+λ logN)1/(2ϕ+1))Op(N−λζ logNλζ)

≤Op(N7/4−λ(1+ζ(1−ν)))(N−1/2−νλζ(2ϕ+1) logN1/2+(λζ−1)(2ϕ+1))1/(2ϕ+1)

≤Op(N7/4−λ(1+ζ(1−ν)))op(1).

The op(1) term comes from imposing the condition −1/2−νλζ(2ϕ+1)+1/2+(λζ−1)(2ϕ+1) < 0 by choosing

an appropriate value of ν > 0. For almost sure convergence, ζ is chosen to satisfy 7/4−λ(1+ζ(1−ν))+p/4 <

−1. The inclusion of p/4 is needed for the chaining argument, as the number of cubes grows at a rate of

O(δpN ) = O(Np/4). Our choice of ζ implies the restriction of ζ > (4.5 + 2p)/(1 − ν). For this ζ and ν > 0,

λ ∈ ((11/4 + p)/(1 + ζ(1− ν)), 1/2). To complete the argument, choose kp > 1 + p/4 to obtain a fast enough

rate of convergence for TERM 1. �

Lemma 4. Under A1 and A3, ‖W̄N (QX,τ , β(τ))‖ = Op(N−1/2).

Proof : Chebyshev inequality implies

P (‖ 1
N

N∑
n=1

hβ(QX,n,τ , β(τ))ψτ (ũn)‖ > t)

≤E‖ 1
N

N∑
n=1

hβ(QX,n,τ , β(τ))ψτ (ũn)‖2/t2

= 1
N2E[

p∑
j=1

(
N∑
n=1

h
(j)
β (QX,n,τ , β(τ))ψτ (ũn))2]/t2

= 1
N2

p∑
j=1

E[(
N∑
n=1

h
(j)
β (QX,n,τ , β(τ))ψτ (ũn))2]/t2.

Recognizing that E[(
∑N

n=1 h
(j)
β (QX,n,τ , β(τ))ψτ (ũn))2] = V ar(E[(

∑N

n=1 h
(j)
β (QX,n,τ , β(τ))ψτ (ũn))2]), we
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have

V ar(
N∑
n=1

h
(j)
β (QX,n,τ , β(τ))ψτ (ũn))

=
N∑
n=1

V ar(h(j)
β (QX,n,τ , β(τ))ψτ (ũn)) +

∑
n 6=m

E[h(j)
β (QX,m,τ , β(τ))ψτ (ũm), h(j)

β (QX,n,τ , β(τ))ψτ (ũn)]

=
N∑
n=1

τ(1− τ)E|h(j)
β (QX,n,τ , β(τ))|2 +

∑
n6=m

E[h(j)
β (QX,m,τ , β(τ))h(j)

β (QX,n,τ , β(τ))ψτ (ũm)ψτ (ũn)]

≤
N∑
n=1

τ(1− τ)E|h(j)
β (QX,n,τ , β(τ))|2 +

∑
n6=m

(E|(h(j)
β (QX,m,τ , β(τ))h(j)

β (QX,n,τ , β(τ)))|2)1/2(E[ψτ (ũm)ψτ (ũn)])1/2

≤
N∑
n=1

τ(1− τ)E|h(j)
β (QX,n,τ , β(τ))|2

+ 2
∑
n6=m

((P (ũn, ũm ≤ 0)− τ2)α(|m− n|))1/2(E|h(j)
β (QX,m,τ , β(τ))h(j)

β (QX,n,τ , β(τ))|2)1/2

≤max
n

E|h(j)
β (QX,n,τ , β(τ))|2

N∑
n=1

τ(1− τ)

+ 2 max
n

(E|h(j)
β (QX,n,τ , β(τ))|4)1/2

∑
n 6=m

((P (ũn, ũm ≤ 0)− τ2)α(|m− n|))1/2

≤∆

(
N∑
n=1

(1− τ2) + 2
∑
n 6=m

((1− τ2)α(|m− n|))1/2

)

=∆

(
N(1− τ2) + 4(1− τ2)1/2

N∑
n=2

α(n− 1)1/2

)
,

where we have applied the covariance for the summands of α-mixing sequences by Doukhan (1994) in the

second inequality. Let ζ̃ = ζ/2, where −ζ is the size of mixing. Note that n−ζ̃ ≤
∫ n
n−1 j

−ζ̃dj follows from

the fact that n−ζ̃ is the lower sum of the Riemann integral above. Therefore, for some constant C such that

α(n)1/2 = Cn−ζ̃

lim
N→∞

N∑
n=2

α(n− 1)1/2 ≤ lim
N→∞

N∑
n=2

C

∫ n

n−1
j−ζ̃dj = C

∫ ∞
1

j−ζ̃dj = C
1

ζ̃ − 1
= O(1).

This implies that V ar(
∑N

n=1 h
(j)
β (QX,n,τ , β(τ))ψτ (ũn)) = O(N). Since, P (‖ 1

N

∑N

n=1 hβ(QX,n,τ , β(τ))ψτ (ũn)‖ >

t) = O(N−1), the conclusion follows by letting t = O(N−1/2). �

Lemma 5. Suppose ˆ̂
βN is a sequence of p vector such that ˆ̂

β
(k)
N −β

(k)(τ) = CkβN
−1/2ε

(k)
N and γ̂N is a q vector

such that γ̂(l)
N − γ

(l)(τ) = ClγN
−1/2ν

(l)
N , where Ckβ and Clγ are constants and E|ε(k)

N |
4 <∞, E|ν(l)

N |
4 <∞ and

E|ε(k)
N ν

(l)
N |

4 < ∞ for all k, l, and N . Then, under A3 and A7, ‖WN (Q̂X,τ , ˆ̂
βN (τ)) − W̄N (Q̂X,τ , ˆ̂

βN (τ))‖ =

Op(N−3/4).

48



Proof : Following the argument in Lemma 2, consider the j element

E|W (j)
N (Q̂X,τ , ˆ̂

βN (τ))− W̄ (j)
N (Q̂X,τ , ˆ̂

βN (τ))|

=E| 1
N

N∑
n=1

(
h

(j)
β (Q̂X,n,τ , ˆ̂

β(τ))− h(j)
β (QX,τ , β(τ))

)
× ψτ

(
ũn − (h(Q̂X,n,τ , ˆ̂

βN (τ)))− h(Q̂X,n,τ , β(τ)))− (h(Q̂X,n,τ , β(τ)))− h(QX,n,τ , β(τ)))
)
|

≤max
n

(E|h(j)
β (Z′nγ̂N (τ), β̂(τ))− h(j)

β (Z′nγ(τ), β(τ))|2)1/2

× 1
N

N∑
n=1

(E[ψτ
(
ũn − (h(Q̂X,n,τ , ˆ̂

βN (τ)))− h(Q̂X,n,τ , β(τ)))− (h(Q̂X,n,τ , β(τ)))− h(QX,n,τ , β(τ)))
)

]2)1/2,

where the last line follows from Cauchy-Schwarz inequality. Now, letting E[ψτ ] = p, note that E[ψτ ]2 =

V ar(ψτ ) + (E[ψτ ])2 = p(1− p) + p2 ≤ 2p. Following this argument, we have

E|W (j)
N (Q̂X,τ , ˆ̂

βN (τ))− W̄ (j)
N (Q̂X,τ , ˆ̂

βN (τ))|

≤(max
n

E|h(j)
β (Z′nγ̂N (τ), β̂(τ))− h(j)

β (Z′nγ(τ), β(τ))|2)1/2

× 1
N

N∑
n=1

(2E[ψτ
(
ũn − (h(Q̂X,n,τ , ˆ̂

βN (τ)))− h(Q̂X,n,τ , β(τ)))− (h(Q̂X,n,τ , β(τ)))− h(QX,n,τ , β(τ)))
)

])1/2.

Consider a Taylor expansion,

E|h(j)
β (Z′nγ̂N (τ), β̂(τ))− h(j)

β (Z′nγ(τ), β(τ))|2

=E|
q∑
l=1

h
(j)
βX(QX,n,τ , β(τ))Z(l)

n (γ̂(l)
N (τ)− γ(l)(τ)) +

p∑
k=1

h
(jk)
ββ (QX,n,τ , β(τ))( ˆ̂

β
(k)
N (τ)− β(k)(τ))

+ 2
p∑
k=1

q∑
l=1

h
(jk)
ββX(Q̃X,n,τ , β̃(τ))( ˆ̂

β
(k)
N (τ)− β(k)(τ))Z(l)

n (γ̂(l)
N (τ)− γ(l)(τ))|2

≤((E|
q∑
l=1

h
(j)
βX(QX,n,τ , β(τ))Z(l)

n (γ̂(l)
N (τ)− γ(l)(τ))|2)1/2 + (E|

p∑
k=1

h
(jk)
ββ (QX,n,τ , β(τ))( ˆ̂

β
(k)
N (τ)− β(k)(τ))|2)1/2

+ 2(E|
p∑
k=1

q∑
l=1

h
(jk)
ββX(Q̃X,n,τ , β̃(τ))( ˆ̂

β
(k)
N (τ)− β(k)(τ))Z(l)

n (γ̂(l)
N (τ)− γ(l)(τ))|2)1/2)2,

where ˆ̂
βN (τ) ∧ β(τ) ≤ β̃(τ) ≤ ˆ̂

βN (τ) ∨ β(τ) and Q̂X,n,τ ∧ Q̂X,n,τ ≤ Q̃X,n,τ ≤ Q̂X,n,τ ∨ Q̂X,n,τ . Analyzing
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one term at the time, we first examine

E|
q∑
l=1

h
(j)
βX(QX,n,τ , β(τ))Z(l)

n (γ̂(l)
N (τ)− γ(l)(τ))|2

≤[
q∑
l=1

(E|h(j)
βX(QX,n,τ , β(τ))Z(l)

n (γ̂(l)
N (τ)− γ(l)(τ))|2)1/2]2

≤[
q∑
l=1

((E|h(j)
βX(QX,n,τ , β(τ))Z(l)

n |4)1/2(E|γ̂(l)
N (τ)− γ(l)(τ)|4)1/2)1/2]2

≤[
q∑
l=1

(E|h(j)
βX(QX,n,τ , β(τ))Z(l)

n |4)1/4(E|γ̂(l)
N (τ)− γ(l)(τ)|4)1/4]2

≤q2∆1/2N−1 max
l

(E|ClγνlN |4)1/2

=O(N−1).

The second line follows from Minkowski’s inequality, the third line follows from Cauchy-Schwarz inequality,

the fifth line follows from A3. In addition,

E|
p∑
k=1

h
(jk)
ββ (QX,n,τ , β(τ))( ˆ̂

β
(k)
N (τ)− β(k)(τ))|2

≤[
p∑
k=1

(E|h(jk)
ββ (QX,n,τ , β(τ))|4)1/4(E| ˆ̂β(k)

N (τ)− β(k)(τ)|4)1/4]2

≤p2∆1/2N−1 max
k

(E|CkβεkN |4)1/2

=O(N−1).

Finally, notice that

E|
p∑
k=1

q∑
l=1

h
(jk)
ββX(Q̃X,n,τ , β̃(τ))( ˆ̂

β
(k)
N (τ)− β(k)(τ))Z(l)

n (γ̂(l)
N (τ)− γ(l)(τ))|2

≤[
p∑
k=1

q∑
l=1

(E|h(jk)
ββX(Q̃X,n,τ , β̃(τ))Z(l)

n |4)1/4(E|( ˆ̂
β

(k)
N (τ)− β(k)(τ))(γ̂(l)

N (τ)− γ(l)(τ))|4)1/4]2

≤p2q2∆1/2 max
k,l

(E|( ˆ̂
β

(k)
N (τ)− β(k)(τ))(γ̂(l)

N (τ)− γ(l)(τ))|4)1/2

≤p2q2∆1/2N−1 max
k,l

(E|CkβεkNClγνlN |4)1/2

≤O(N−1).

Together, the above implies that maxn(E|h(j)
β (Z′nγ̂N (τ), β̂(τ))−h(j)

β (Z′nγ(τ), β(τ))|2)1/2 = O(N−1/2). Next,
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note that

E[ψτ
(
ũn − (h(Q̂X,n,τ , ˆ̂

βN (τ)))− h(Q̂X,n,τ , β(τ)))− (h(Q̂X,n,τ , β(τ)))− h(QX,n,τ , β(τ)))
)

]

=Fũ,n(h(Q̂X,n,τ , ˆ̂
βN (τ)))− h(Q̂X,n,τ , β(τ)))− (h(Q̂X,n,τ , β(τ)))− h(QX,n,τ , β(τ)))− Fũ,n(0)

≤C[hβ(Q̃X,n,τ , β̃(τ))′( ˆ̂
βN (τ)− β(τ)) + hX(Q̃X,n,τ , β̃(τ))Z′n(γ̂N (τ)− γ(τ))].

Using the above, we have

1
N

N∑
n=1

(2E[ψτ
(
ũn − (h(Q̂X,n,τ , ˆ̂

βN (τ)))− h(Q̂X,n,τ , β(τ)))− (h(Q̂X,n,τ , β(τ)))− h(QX,n,τ , β(τ)))
)

])1/2

≤
√

2C 1
N

N∑
n=1

[hβ(Q̃X,n,τ , β̃(τ))′( ˆ̂
βN (τ)− β(τ)) + hX(Q̃X,n,τ , β̃(τ))Z′n(γ̂N (τ)− γ(τ))]1/2

≤
√

2C 1
N

N∑
n=1

[|hβ(Q̃X,n,τ , β̃(τ))′( ˆ̂
βN (τ)− β(τ))|1/2 + |hX(Q̃X,n,τ , β̃(τ))Z′n(γ̂N (τ)− γ(τ))|1/2]

≤
√

2C 1
N

N∑
n=1

[‖hβ(Q̃X,n,τ , β̃(τ))‖1/2‖ ˆ̂
βN (τ)− β(τ)‖1/2 + ‖hX(Q̃X,n,τ , β̃(τ))‖1/2‖Z′n(γ̂N (τ)− γ(τ))‖1/2]

≤
√

2C[‖ ˆ̂
βN (τ)− β(τ)‖1/2 1

N

N∑
n=1

‖hβ(Q̃X,n,τ , β̃(τ))‖1/2 + ‖Z′n(γ̂N (τ)− γ(τ))‖1/2 1
N

N∑
n=1

‖hX(Q̃X,n,τ , β̃(τ))‖1/2]

=Op(N−1/4) 1
N

N∑
n=1

‖hβ(Q̃X,n,τ , β̃(τ))‖1/2 +Op(N−1/4) 1
N

N∑
n=1

‖hX(Q̃X,n,τ , β̃(τ))‖1/2

=Op(N−1/4),

where the second last line follows from the fact that both γ̂N (τ) and ˆ̂
βN (τ) have the rate of Op(N−1/2)

and the last line follows from A7. Hence, E‖WN (Q̂X,τ , ˆ̂
βN (τ)) − W̄N (Q̂X,τ , ˆ̂

βN (τ))‖ = Op(N−3/4). The

conclusion follows from Markov inequality. �
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Figure 1: Bivariate Histograms of U.S. Returns with Canada, France, Germany
and U.K. Returns.

This figure plots the number of observations of X (U.S. returns) and Y (Canada, France, Germany or U.K.
returns) that falls into bins defined by the quantiles of the returns. Specifically, the bins are defined by the
intervals QX(τi) < X ≤ QX(τi) and QY (τj) < Y ≤ QY (τj), for τi, τj = 0, 0.1, ..., 1. The axis labels indicates the
upper bound of the interval. For τ = 0, we set QX(0) = min(X)− 1 and QY (0) = min(Y )− 1.

A. Canada B. France

C. Germany D. U.K.
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Figure 2: Bivariate Histograms of U.S. Returns with Australia, Hong Kong,
Japan and Singapore.

This figure plots the number of observations of X (U.S. returns) and Y (Australia, Hong Kong, Japan or Singapore
returns) that falls into bins defined by the quantiles of the returns. Specifically, the bins are defined by the intervals
QX(τi) < X ≤ QX(τi) and QY (τj) < Y ≤ QY (τj), for τi, τj = 0, 0.1, ..., 1. The axis labels indicates the upper
bound of the interval. For τ = 0, we set QX(0) = min(X)− 1 and QY (0) = min(Y )− 1.

A. Australia B. Hong Kong

C. Japan D. Singapore
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Figure 3: Exceedence Correlation for Canada, France, Germany and U.K.

This figure plots the correlations between U.S. returns and the returns to eight other countries using the method
of exceedance of Longin and Solnik (2001). The correlations are to be interpreted as follows. At τ ≤ 0.5, this is
the correlation between returns that are less than or equal to their respective 100τ th percentiles. At τ ≥ 0.5, this
is the correlation between returns that are greater than or equal to their respective 100τ th percentiles.
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Figure 4: Exceedence Correlation for Australia, Hong Kong, Japan and Singa-
pore.

This figure plots the correlations between U.S. returns and the returns to eight other countries using the method
of exceedance of Longin and Solnik (2001). The correlations are to be interpreted as follows. At τ ≤ 0.5, this is
the correlation between returns that are less than or equal to their respective 100τ th percentiles. At τ ≥ 0.5, this
is the correlation between returns that are greater than or equal to their respective 100τ th percentiles.
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Figure 5: Correlation of U.S. Returns Quantiles with Canada, France, Germany
and U.K. Returns Quantiles: Gaussian Copula.

This figure plots the correlations between U.S. returns quantiles and returns quantiles of Canada, France, U.K.
and Germany. The marginal distributions for the returns series are standard normal and the copula function is
Gaussian. The equation estimated is based on (23).

A. Canada B. France

C. Germany D. U.K.
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Figure 6: Correlation of U.S. Returns Quantiles with Australia, Hong Kong,
Japan and Singapore Returns Quantiles: Gaussian Copula.

This figure plots the correlations between U.S. returns quantiles and returns quantiles of Australia, Hong Kong,
Japan, Singapore. The marginal distributions for the returns series are standard normal and the copula function
is Gaussian. The equation estimated is based on (23).

A. Australia B. Hong Kong

C. Japan D. Singapore
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Figure 7: Main Diagonal Correlation of U.S. Returns Quantiles with Canada,
France, Germany and U.K. Returns Quantiles: Gaussian Copula

This figure plots the correlations of the main diagonals in Panels A and B in Figure 4. For Panel A and B in this
figure, the marginal distributions for the returns series are standard normal and the copula function is Gaussian.
For Panel C and D, the marginal distributions and the copula function are Student-t with ten degrees of freedom.
The X-axis labels the quantiles of both U.S. and foreign stock returns. The dashed lines represent the 95 percent
confidence bands constructed using the asymptotic standard errors calculated from (9).

A. Canada B. France

C. Germany D. U.K.
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Figure 8: Main Diagonal Correlation of U.S. Returns Quantiles with Australia,
Hong Kong, Japan and Singapore Returns Quantiles: Gaussian Copula

This figure plots the correlations of the main diagonals in Panels A and B in Figure 4. For Panel A and B in this
figure, the marginal distributions for the returns series are standard normal and the copula function is Gaussian.
For Panel C and D, the marginal distributions and the copula function are Student-t with ten degrees of freedom.
The X-axis labels the quantiles of both U.S. and foreign stock returns. The dashed lines represent the 95 percent
confidence bands constructed using the asymptotic standard errors calculated from (9).

A. Australia B. Hong Kong

C. Japan D. Singapore
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Figure 9: Correlation of U.S. Returns Quantiles with Canada, France, Germany
and U.K. Returns Quantiles: Student-t10 Copula

This figure plots the correlations between U.S. returns quantiles and returns quantiles of Canada, France, U.K.
and Germany. The marginal distributions for the returns series and the copula function are all Student-t10. The
equation estimated is based on (24).

A. Canada B. France

C. Germany D. U.K.
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Figure 10: Correlation of U.S. Returns Quantiles with Australia, Hong Kong,
Japan and Singapore Returns Quantiles: Student-t10 Copula.

This figure plots the correlations between U.S. returns quantiles and returns quantiles of Australia, Hong Kong,
Japan, Singapore. The marginal distributions for the returns series and the copula function are all Student-t10.
The equation estimated is based on (24).

A. Australia B. Hong Kong

C. Japan D. Singapore
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Figure 11: Main Diagonal Correlation of U.S. Returns Quantiles with Canada,
France, Germany and U.K. Returns Quantiles: Student-t Copula

This figure plots the correlations of the main diagonals in Panels A and B in Figure 4. For Panel A and B in this
figure, the marginal distributions for the returns series are standard normal and the copula function is Gaussian.
For Panel C and D, the marginal distributions and the copula function are Student-t with ten degrees of freedom.
The X-axis labels the quantiles of both U.S. and foreign stock returns. The dashed lines represent the 95 percent
confidence bands constructed using the asymptotic standard errors calculated from (9).

A. Canada B. France

C. Germany D. U.K.
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Figure 12: Main Diagonal Correlation of U.S. Returns Quantiles with Australia,
Hong Kong, Japan and Singapore Returns Quantiles: Student-t Copula

This figure plots the correlations of the main diagonals in Panels A and B in Figure 4. For Panel A and B in this
figure, the marginal distributions for the returns series are standard normal and the copula function is Gaussian.
For Panel C and D, the marginal distributions and the copula function are Student-t with ten degrees of freedom.
The X-axis labels the quantiles of both U.S. and foreign stock returns. The dashed lines represent the 95 percent
confidence bands constructed using the asymptotic standard errors calculated from (9).

A. Australia B. Hong Kong

C. Japan D. Singapore
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CHAPTER 2

Modeling Quantile Dependence: A New Look at the
Effects of Monetary Policy on Output Growth

Nicholas C.S. Sim∗

ABSTRACT

Are the effects of monetary policy on output growth asymmetric? Does the same
monetary policy stance influence output growth differently when output growth is high
or low? These are questions that may be addressed together in a unified framework
through our novel econometric methodology that models the quantile of output growth
on the quantile of monetary policy shock, where restrictive (expansive) policies are
represented by the left (right) tail of the policy shock distribution. We examine the
asymptotic properties of the model, which combines series estimation and quantile re-
gression methods. We find that the right tail of output growth is generally more sensitive
to M1 money supply shocks while both tails of output growth are more sensitive to M2
money supply shocks than is the center of the distribution. When non-neutral, restric-
tive rather than expansive monetary policies have more influential effects on output
growth.
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1 Introduction

The relationship between output and monetary policy has been a topic of considerable

debate in the past decades. From the practical perspective, understanding the reaction

of output to changes in the monetary instrument provides justification and guidance for

the conduct of monetary policy. Since output and monetary policy could be nonlinearly

related, the objective of the paper is to propose a new econometric methodology using

quantile regression to uncover the nonlinearities that may exist in this relationship.

One of the earliest investigation along this line is to examine the asymmetric response

of output growth to money supply shocks. Led by Cover (1992), it is now well-known

that output growth reduced more strongly following a negative money supply shock than it

increased following a positive money supply shock of the same magnitude. The econometric

methodology employed by Cover and similar variations by other subsequent researchers1

involves separating the estimated money supply shocks into positive and negative ones, then

regressing output growth on these positive and negative shocks. Money supply shocks are

deemed to have asymmetric effects on output growth if the coefficients on the positive and

negative shocks are statistically distinguishable.

While convenient, Cover’s approach implicitly assumes that the money supply shock has

a zero population mean, which is necessary for identifying episodes of monetary contraction

and expansion. Should this assumption of zero mean be violated, then some estimated

money supply shocks may incorrectly identify the actual policy stance since identifying

contractions or expansions solely rests on the signs of these shocks.

Therefore, this paper investigates the relationship between output growth and monetary

policy in the tradition of Cover by proposing a new quantile regression methodology. This

methodology relaxes the assumption that the policy shock has a zero population mean while

still enabling us to uncover any potential asymmetric influence exerted by the policy stance

on output. The insight of the quantile-based methodology comes from observing that the
1See, inter alia, DeLong and Summers (1988), Morgan (1993), Rhee and Rich (1995), Karras (1996),

Senda (2001), and Parker and Rothman (2004).
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quantile of the monetary shock contains information about the stance of monetary policy.

In this respect, even if the true mean of the shock cannot be established, the new method

still permits one to rank the policy environments on a spectrum ranging from the least

expansive (or equivalently, the most restrictive) to the most expansive (or equivalently, the

least restrictive) based on quantiles of the identified policy shocks.

To further elucidate the idea of ranking the policy environments, one may assert that

relative to the median, a 10th percentile policy shock reflects a more restrictive monetary

policy stance while a 90th percentile shock reflects a more expansive one. Using such a

strategy, the econometric objective of the paper would then involve constructing a model of

output growth as a function of the quantile of monetary policy shocks. Another potential

dimension of nonlinearity that is unexplored in Cover’s analysis is to allow output growth

to react differently to the monetary policy stance contingent on whether output growth is

high or low. This will enable policymakers to ascertain whether certain monetary policy ob-

jectives, as indexed by the quantiles of the monetary policy shocks, will be more effective in

some economic states than others, as indexed by the quantiles of output growth. Therefore,

a unified econometric framework that can simultaneously accommodate the two dimensions

of nonlinearities will be one that models the quantile of output growth as a function of the

quantile of monetary policy shocks.

It is crucial to clarify that the notion of expansive and restrictive policy reflects a

ranking concept and does not imply that the policy is expansionary or contractionary,2 so

that for instance, an expansive policy may not necessarily be the same as an expansionary

policy. While an expansionary environment is geared towards boosting output growth, an

expansive environment is one where monetary policy is more favorable for output growth

relative to another policy stance. This implies that even if the 10th and 20th percentile

shocks are both contractionary policies, a fact which cannot be determined empirically,
2This interpretation of monetary policy stance bears a resemblance to the one employed by Conover et

al. (1999) who examined the stock market’s response to monetary policy. In their paper, the period when
an interest rate cut that was preceded by a rate increase is considered an expansive policy environment. But
the following period characterized by an unchanged interest rate is also considered as expansive even though
there are no further rate cuts.
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the 20th percentile shock is expansive relative to the 10th percentile shock, as the 10th

percentile shock is purported to reduce output growth more aggressively than does the 20th

percentile shock. Therefore, expansive and restrictive policies are only sensible if they are

interpreted in relation to some reference policy position.

As mentioned, the econometric framework developed in this paper is based on the quan-

tile regression paradigm. Typically, quantile regression focuses on modeling the conditional

quantile of the dependent variable, as oppose to ordinary least squares regression that

models its conditional mean. In this paper, the key departure from the standard quantile

regression model is to allow the regressor to be itself a quantile. In order to construct the

so-called quantile-quantile or QQ model, one must specify a system of equations having a

recursive triangular structure. For a bivariate QQ model, two equations are required. The

primary equation models the quantile of the dependent variable, i.e. the quantile of output

growth, conditioned on a quantile regressor, i.e. the quantile of monetary policy shock,

while the secondary equation is used to model the quantile of the regressor.

A similar recursive system of this nature was also examined in the seminal paper by Ma

and Koenker (2006) for the parametric QQ framework. As opposed to Ma and Koenker,

the main contribution of this paper is to allow the intercept and the slope parameters of

the primary regression equation to be unknown functions of the model’s innovation terms,

which conditional on the information set map directly into the desired quantile of the

dependent variable. We consider a linear triangular system of equations to be consistent

with Cover’s methodology, giving rise to a nonparametric model in the sense that the

coefficients are nonparametric functions of the innovation terms. The estimation then uses

power series expansion of the nonparametric intercept and slope parameters, employing

truncation arguments similar to Newey (1997) while allowing the truncation parameter to

grow with the sample size.3 We show in Monte Carlo experiments that regressions based
3This is similar to having a finite-dimension parameter space whose dimension increases with the sam-

ple size, as first examined by Huber (1973) for M-estimation, then specialized to M-estimation with non-
differentiable objective functions by He and Shao (2000). In addition, Zernov et al. (2009) examined the
asymptotic properties of infinite dimensional quantile regressions. Their paper is similar as they also em-
ployed a truncation argument in their analysis.
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on cubic or quartic expansions are able to estimate the dependence of quantiles well with

reasonable bias properties and root-mean-squared errors.

The rest of the paper is organized as follows. Section 2 motivates why the new methodol-

ogy may be more suitable for investigating nonlinearities in the money-output relationship.

Section 3 reviews the standard quantile regression framework, discusses the quantile de-

pendence model and motivates the power series estimation approach for modeling quantile

dependence. Section 4 discusses the asymptotic properties of the estimator while Section 5

provides Monte Carlo evidence on the performance of the series regression. The empirical

section is presented in Section 6 and Section 7 concludes.

2 Literature Review and Motivation

Over the past decades, the question of whether monetary policy is neutral had generated

much interest as the conduct of monetary policy is only meaningful when it has the ability to

influence real variables such as output and unemployment. By now, it is widely recognized

that the money-output relationship is an asymmetric one, where the effects of monetary

policy is akin to pushing on the string as it is a more effective tool for contracting than

expanding the economy.

The pushing on the string hypothesis had gained much traction in empirical work follow-

ing the econometric treatment by Cover (1992). Cover’s methodology, which is popular due

to its simplicity, first identifies monetary policy shocks as residuals from an autoregression

involving a chosen monetary instrument. Following this preliminary regression step, output

growth is regressed on the positive and negative monetary shocks as separate variables.

Using various money supply processes to model monetary policy, Cover found that the con-

temporaneous effects of negative money supply shocks were generally statistically significant

and the most effective but the positive money supply shocks, both contemporaneous and

lags, were generally not. Furthermore, the coefficients on the contemporaneous negative

shocks could be as large as 0.75, implying that a one percent contraction in money sup-
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ply growth could cause an contemporaneous contraction of 0.75 percent in output growth.

Moreover, the coefficients on the positive shocks were often close to zero.

The two-step procedure of Cover was also employed by DeLong and Summers (1988)

and Lee (2000) to investigate the asymmetric effects of monetary policy during the pre-

World War I and the interwar periods respectively. Both papers concurred with Cover’s

findings. Beyond the U.S., Karras (1996) focused on 18 European countries and uncovered

similar asymmetric responses as well. The asymmetry is also robust to adopting a different

monetary instrument other than money supply, for instance, to using the Federal funds rate

by Morgan (1993) for the U.S. and the short-term interbank rate by Florio (2005) for Italy.4

In order to justify Cover’s and indeed much of the literature’s interpretation that mon-

etary expansions and contractions can be identified by the signs of the estimated shocks, it

is essential that the true mean of the monetary innovation is zero. However, ordinary least

squares regression cannot separately identify the population mean of the innovation from

the constant of the regression model. Should the population mean be nonzero, for instance,

if the monetary policy shock has a negative population mean, then some estimated shocks

with positive signs could in fact be negative innovations. Consequently, certain episodes of

contractions could be misrepresented as expansions in this example.

While we cannot determine if the true population mean of the monetary shock is zero,

there is some evidence that the distribution of the measures of monetary policy stance is

skewed. We first examine the distribution of the monetary policy stance indicated by the

Boschen and Mills (1995) index, which is updated by Weise (2007).5 The index is a cate-

gorical variable taking on five possible values, [-2, -1, 0, 1, 2], with -2 representing the most

contractionary stance where “monetary policy strongly emphasized reducing inflation” to

2 representing the most expansionary stance where “monetary policy strongly emphasized

promoting real growth” (Boschen and Mills, 1995 p. 43). Zero, which indexes the months
4In addition to research along the lines of Cover, the relationship between output and money supply

shocks may also exhibit other forms of nonlinearities. For instance, output responds to money supply shocks
differently when the variance of the shocks is small versus when it is large (Ravn and Sola, 2004), or when
the relationship exhibits regime switching behavior (Lo and Piger, 2003).

5The index begins from January 1968 and ends on December 2000, giving a total of 396 observations.

70



when monetary stance is deemed neutral, is the mode with 133 observations. For contrac-

tionary stance, there are 124 and 43 months indexed by -1 and -2 respectively, in contrast to

the 74 and 22 months of expansion indexed by 1 and 2. Thus, the Boschen and Mills index

suggests that the policy stance during this sample period is more often contractionary than

expansionary. Unless serendipity has it that the policy shock has a zero population mean

despite having a skewed distribution, misrepresentation of the true policy stance by the signs

of estimated shocks may be nontrivial especially when using low frequency macroeconomic

time series.6

Further evidence of this skewness may be found for the distribution of the shocks esti-

mated as residuals of autoregressions and structural vector autoregressions (SVAR). Based

on an autoregression, the skewness is 0.0897 for M1 money supply growth residuals and

0.4091 for M2 money supply growth residuals.7 The positive skewness is also confirmed by

the SVAR that uses the ordering of industrial production growth, consumer price inflation,

gold price inflation, either M1 or M2 money supply growth, change in nonborrowed reserves

and change in total reserves, where gold price inflation proxies for commodities price infla-

tion as in Sims (1992). Using M1 money supply growth as the monetary instrument, the

skewness of estimated shock is 0.4179 while using M2 money supply growth as the instru-

ment, the skewness becomes 0.7311. The positive skewness found in the exercise suggests

that the mean of the shock is greater than the median. If one believes that the median but

not necessarily the mean is zero, then the population mean of the monetary policy stance

is positive, which violates the implicit assumption of Cover’s methodology.

The final piece of evidence follows from Conover et al. (1999), where we consider a

proxy for monetary policy stance based on the change in the discount rate. A monetary

environment is said to be restrictive if the discount rate breaks a “weakly” decreasing

trend. For instance, starting from January 1970 to October 1970, the discount rate was 6
6Romer and Romer (2004) computed a monetary policy measure based on evidence from the FOMC

minutes. However, to address the issue that the monetary action may be accommodating the future economic
environment, they regress their raw monetary policy measure on a set of forecasted macroeconomic variables.
This, however, presupposes that the true mean of the shock is zero.

7The sample starts from January 1970 to January 2009 and the lags are selected using a log-likelihood
ratio test.
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percent, but fell to 5.85 in November 1970. So, November 1970 is characterized as expansive.

December 1970 is also expansive since the discount rate fell further to 5.52 percent. The

expansive environment is terminated in July 1971 as the discount rate was increased from

4.75 to 4.88 percent.

Using this characterization of the monetary policy environment, we found that 58.00

percent of the monthly sample starting January 1970 and ending December 2002 was ex-

pansive. In addition, we repeated the exercise using the Federal funds target rate from

January 1971 and to January 2009 and found that 56.55 percent of the sample was expan-

sive. Taken together, this is evidence that the distribution of the monetary policy shock is

likely to be skewed, which in turn raises questions on whether the population mean of the

monetary policy shock is zero.

Therefore, this paper proposes interpreting the quantile of monetary policy shock as

indexing the policy stance. While one cannot completely avoid misidentifying contractions

or expansions since the population mean of the policy shock is unidentified, the estimated

shock is nevertheless useful for indicating whether a policy stance is restrictive or expansive

relative to a reference policy position. This motivates modeling output growth as a function

of the quantiles of monetary policy shocks, which will be used to indicate the stance of the

monetary policy.

3 The Model

This section will quickly review the standard quantile regression framework using linear

models with additive errors for the purpose of illustration. It will then be followed by a

discussion of the quantile-quantile model which is the main econometric contribution of this

paper.
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3.1 A Standard Quantile Regression Framework

Linear econometric models generally exhibit location or scale shift or both. The location

shift model arises when the conditional quantiles are differentiated only by the intercept

while the slope coefficients remain the same. The simplest special case of a location shift

model with a single Xt regressor takes the form of

Yt = α0 + α1Xt + ut, (1)

where ut is the innovation term. To appreciate what quantile regression does to (1), we

may rearrange this equation as

Yt = (α0 + ut) + α1Xt,

so that the model can be interpreted as having a random-intercept term α0(ut)

Yt = α0(ut) + α1Xt,

where α0(ut) expresses the intercept α0 as a function of ut. Hence, conditioned on Xt, the

τ th quantile of Yt is obtained when ut is the τ th quantile also. Therefore, the conditional

quantile of Yt becomes

QY (τ |Xt) = (α0 + F−1
u (τ)) + α1Xt

= α0(τ) + α1Xt,

which demonstrates how the innovation term is associated with the conditional quantile of

Yt by shifting the intercept term. Another way to look at (1) is to define ut(τ) = ut−F−1
u (τ)

so that the τ th quantile of ut(τ) is repositioned at zero. Substituting ut = ut(τ) + F−1
u (τ)
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into (1), we may express Yt as

Yt = (α0 + F−1
u (τ)) + α1Xt + ut(τ)

= QY (τ |Xt) + ut(τ).

This representation is convenient for elucidating what estimation in quantile regression

entails. Here, estimating QY (τ |Xt) involves searching for both the intercept and slope

coefficients that set the τ th quantile of ût(τ), the sample analog of the ut(τ), to zero.8

An extension of the location shift model is the location and scale shift model where both

intercept and slope parameters may vary with ut. The simplest special case of location and

scale shift model with a single Xt regressor has the structure of

Yt = α0 + (α1 + δut)Xt + ut, (2)

so that ut acts as the shifter of both intercept and slope parameters. Equation (2) arises

naturally as a model with conditional heteroskedasticity having an error term ut + δutXt.

Given the monotonicity of Yt with respect to ut conditioning on Xt, this suggests that

QY (τ |Xt) can be obtained as QY (τ |Xt) = α0 + (α1 + δF−1
u (τ))Xt + F−1

u (τ). As before, we

substitute ut(τ) = ut + F−1
u (τ) into (2) so that (2) may be rewritten as

Yt = (α0 + F−1
u (τ)) + (α1 + δF−1

u (τ))Xt + ut(τ)(1 + δXt)

= QY (τ |Xt) + ut(τ |Xt). (3)

The computational work in estimating QY (τ |Xt) then involves searching for the parameters

that set the τ th conditional quantile of ût(τ |Xt), the sample analog of ut(τ |Xt), is zero.
8In practice, this computational problem translates into minimizing the quantile regression objective

function proposed by Koenker and Bassett (1978), which in turn can be expressed as a linear programming
problem. Given that p is the number of parameters, the linear programming solution will generate p zeros of
ût(τ) so that the solution interpolates between these p observations. If nonlinear programming based on the
interior point algorithm of Koenker and Park (1996) is used, then zero will also emerge as the τ th quantile
of ût(τ).
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For the actual implementation, the conditional quantile is estimated by minimizing the

first moment of the “check” function ρτ (u) = (τ − I(u < 0))u, where I( . ) is an indicator

function. In the population context, the population parameters α(τ) are those that minimize

α(τ) = argmin
α

E[ρτ (Yt − α′Xt)],

so that these parameters also set the population score function E[Xtψτ (Yt−α′Xt)] to zero,

where ψτ (u) = τ − I(u < 0). This follows from the fact that E[I(ut(τ) < 0)|Xt] = τ given

that zero is the τ th quantile of ut(τ), so that the population score function evaluated at

α(τ) is zero.

The actual estimation involves replacing the population quantile objective function with

the sample analog

α̂(τ) = argmin
α

T−1
T∑
t=1

ρτ (Yt − α′Xt),

which is differentiable except at Yt = α′Xt, yielding the sample score function as

W (α̂(τ)) = T−1
T∑
t=1

Xtψτ (Yt − α̂(τ)′Xt), (4)

which is zero except on set of measure zero.

3.2 A Quantile-Quantile (QQ) Framework

The previous subsection demonstrates how conditional quantiles are generated when the in-

novation term shifts the intercept and slope parameters. In this respect, a quantile regression

framework is also a random coefficients framework, except the coefficients are influenced by

a single innovation term.9 Unlike the standard quantile regression framework, a quantile

dependence framework allows the regressor to be a conditional quantile itself. Using the

random-coefficient interpretation of quantile regression, the basic framework expressing the
9Technically speaking, we can say that the coefficients are comonotone, meaning that they are each

monotonic in a common innovation term.
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relationship between two quantiles, the quantiles of Y1,t and Y2,t, can first be written as

Y1,t = α0(wt, ut) + α1(wt, ut)′X1,t + α2(wt, ut)Y2,t (5)

and

Y2,t = β0(wt) + β1(wt)′X2,t. (6)

Here, wt is the innovation of Y2,t so that conditioned on X2,t, QY2(τ2|X2,t) is obtained when

wt is F−1
w (τ2|X2,t). Similarly, assuming that wt and ut are independent, where ut is the

innovation of Y1,t. Then, conditioning on X1,t and Y2,t, QY1(τ1|X1,t, Y2,t) is obtained when

ut is F−1
u (τ1|X1,t, Y2,t). This system of conditional quantile functions can be expressed as

QY1(τ1|X1,t, Y2,t) = α0(wt, F−1
u (τ1)) + α1(wt, F−1

u (τ1))′X1,t + α2(wt, F−1
u (τ1))Y2,t (7)

and

QY2(τ2|X2,t) = β0(F−1
w (τ2)) + β1(F−1

w (τ2))′X2,t, (8)

where for the identification concern, Y2,t is identified by an exclusionary restriction whereby

X2,t contains at least one variable excluded from X1,t. The next step is to obtained the

dependence between the quantiles which (7) has yet to express. This is obtained by setting

wt in (7) to its τ th
2 quantile so that Y2,t becomes its τ th

2 quantile, yielding

QY1(τ1|X1,t, QY2(τ2|X2,t)) = α0(τ2, τ1) + α1(τ2, τ1)′X1,t + α2(τ2, τ1)QY2(τ2|X2,t), (9)

where we denote αi(τ2, τ1) ≡ αi(F−1
w (τ2), F−1

u (τ1)). In order to obtain the QQ model as (9)

expresses, a recursive system of structural equations such as (5) and (6) must be specified, so

that Y2,t may influence Y1,t but not vice-versa. This setup is similar to the one examined by

Ma and Koenker (2006) with two important differences. First, Ma and Koenker considered

a nonlinear system while we specialize it to a linear model. Second, Ma and Koenker

considered a fully parametric setup for both regressors as well as innovation terms. For the
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linear model, following Ma and Koenker would entail specifying how ut and wt enter the α

parameters, which is avoided in our approach.

Two interesting facts emerge from the QQ model. First, (9) suggests that the influence

by the quantile regressor may also come indirectly from α0 and α1 as these parameters may

be functions of wt as well. Second, if one wishes to obtain the coefficient on the quantile

regressor, i.e. α2(τ2, τ1), it does not matter if the regressor is actually QY2(τ2|X2,t). This

will be explained in the next section when we introduce a power series approach to estimate

α2(τ2, τ1) while allowing it to be the coefficient on Y2,t instead.

3.3 A Power Series Estimation Approach

For this approach, the α coefficients must be analytic in wt so that there exists a power

series expansion of α in wt of all order. Without loss of generality, let the dimension of X1,t

be one. To motivate the power series method, first rewrite (5) by adding and subtracting

some terms

Y1,t =α0(F−1
w (τ2), ut) + α1(F−1

w (τ2), ut)X1,t + α2(F−1
w (τ2), ut)Y2,t + [α0(wt, ut)− α0(F−1

w (τ2), ut)]

+ [α1(wt, ut)− α1(F−1
w (τ2), ut)]X1,t + [α2(wt, ut)− α2(F−1

w (τ2), ut)]Y2,t

=α0(F−1
w (τ2), ut) + α1(F−1

w (τ2), ut)X1,t + α2(F−1
w (τ2), ut)Y2,t + Ψt(wt, ut),

where Ψt(wt, ut) is a nuisance quantity aggregating the bracketed terms. Insofar Ψt(wt, ut)

can be controlled in the regression, we may estimate the conditional quantile function of Y1

as

Q̂Y1(τ1|X1,t, Y2,t) = α̂0(τ2, τ1) + α̂1(τ2, τ1)X1,t + α̂2(τ2, τ1)Y2,t + Ψ̂,

where Ψ̂ controls for Ψ. Since Ψt(wt, ut) contains the difference αi(wt, ut)−αi(F−1
w (τ2), ut),

one way to control Ψt(wt, ut) is to employ a power series expansion of αi(wt, ut) in the first

argument around F−1
w (τ2). Then using the fact that wt(τ2) = wt − F−1

w (τ2), the expansion
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yields

Ψt(wt(τ2), ut) = lim
M→∞

M∑
k=1

[
α0,k(ut)
k! wt(τ2)k + α1,k(ut)

k! wt(τ2)kX1,t + α2,k(ut)
k! wt(τ2)kY2,t

]

where αi,k(ut) is the k-derivative of αi around F−1
w (τ2) so that the only variable remaining

in the derivatives of αi is ut. For feasible estimation, we truncate the infinite series, utilizing

the regression function

HY1(wt(τ2), ut;α,ϕ)

=α0(τ2, ut) + α1(τ2, ut)X1 + α2(τ2, ut)Y2,t

+ ϕτ2,0,K0(ut)′P0,K0(wt(τ2)) + ϕτ2,1,K1(ut)′P1,K1(wt(τ2)) + ϕτ2,2,K2(ut)′P2,K2(wt(τ2)),

where Pi,Ki(w(τ2)) is the Ki polynomial in wt(τ2) while ϕτ2,1,K1 is a parameter vector asso-

ciated with the derivatives of αi up to the orderKi where the expansion of αi is taken around

F−1
w (τ2). For instance, the parameter vector is ϕτ2,1,K1 = (ϕτ2,1,1, ϕτ2,1,2, . . . , ϕτ2,1,K1) while

the polynomial contains

P1,K1(wt(τ2)) = (wt(τ2), wt(τ2)2/2!, . . . , wt(τ2)K1/K1!)X1,t,

so that

ϕ′τ2,1,K1P1,K1(wt(τ2)) = ϕτ2,1,1wt(τ2)X1,t + ϕτ2,1,2
wt(τ2)2

2! X1,t + . . .+ ϕτ2,1,K1
wt(τ2)K1

K1! X1,t.

Since we have expanded wt around F−1
w (τ2), the only innovation term remaining in ϕτ2,i,Ki

is ut. In other words, the expansion separates ut from wt in α so that after controlling for

wt(τ2) in the nuisance term, all the parameters will be functions of ut alone. Hence α, with

its w-argument now anchored at F−1
w (τ2), can be estimated using the standard quantile

regression framework treating ut as the only source of innovation.

With the truncation, HY1(wt(τ2), F−1
u (τ1);α,ϕ) may be used to approximate the condi-
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tional quantile of Y1. Hence, the difference between the true and the approximate condi-

tional quantile of Y1 is Γ0,t+Γ1,t+Γ2,t, where Γi,t defines a remainder term associated with

the series expansion of αi. To consistently estimate the conditional quantile function, it is

imperative for Γi,t to disappear asymptotically as the number of approximating terms Ki in

the polynomial grow with the sample size. This issue is related to estimating a model with

an increasing parameter dimension, first considered by Huber (1973) and recently general-

ized by He and Shao (2000) to M-estimation where discontinuities in the score function are

permitted. Similar to Huber, Newey (1997) examined the conditions for consistency and

asymptotic normality for series estimation in the ordinary least squares framework, and

unlike Huber, he accounted for the remainder term that is introduced by using the method

of truncation.

The two-step estimation procedure is summarized as follows:

1. Obtain ŵ(τ2) as the residual from the τ2 quantile regression of Y2,t on X2,t by esti-

mating

β̂(τ2) = argmin
β

T−1
T∑
t=1

ρτ2(Y2,t − β′X2,t).

2. Using ŵ(τ2), estimate

(α̂(τ2, τ1), ϕ̂τ2,K(τ1)) = argmin
α

T−1
T∑
t=1

ρτ1(Y1,t −HY1(ŵt(τ2), ut;α,ϕ)).

Inference will be based on the asymptotic distribution which is derived in the next section.

4 Asymptotic Theory

We first define some notation. Define αi(τ2, u) ≡ αi,τ2(u) for i = 0, 1, 2 so that ατ2(u) =

[α0,τ2(u) α1,τ2(u) α(u)2,τ2 ]′. Let the original information vector at time t, not including the

polynomials from the series expansion, be X1,t = [1 X ′1,t Y2,t]. The design matrix is thus

a T × p matrix X1. Without loss of generality, we consider a one-dimensional X1 so that

p = 3.

79



As a result of the series expansion, the additional regressors will form a T × λ̄ matrix

of polynomials Pλ̄(w(τ2)) = [P0,K0(w(τ2)) P1,K1(w(τ2)) P2,K2(w(τ2))], where the number

of terms in the polynomials is λ̄(T ) = K0(T ) + K1(T ) + K2(T ). The notation for the

polynomials makes it explicit that the polynomials are functions of w(τ2). The design matrix

will then include the original regressors X1 and polynomials Pλ̄(w(τ2)) to form X1(w(τ2)) =

[X1 Pλ̄(w(τ2))], which has λ = p + λ̄ dimensions. For feasible estimation, w(τ2) must be

replaced with its fitted counterpart ŵ(τ2) estimated from a preliminary step. Therefore,

the actual regression employs the polynomials P̂ ≡ Pλ̄(ŵ(τ2)) and thus the design matrix

X̂1 ≡ X1(ŵ(τ2)). With appropriate regularity conditions, we have ŵ(τ2) = w(τ2) + op(1) so

that X̂1 = X1 + op(1), which is true as long as the estimated parameters in the first-step

regression are consistent, i.e. γ̂(τ2) = γ(τ2) + op(1).

Let the coefficients on the polynomials be ϕτ2 = [ϕ′0,τ2 ϕ
′
1,τ2 ϕ

′
2,τ2 ]′, bearing in mind that

they are functions of the Y1,t innovation term ut. Hence, the combined parameter vector is

a λ-dimension vector θτ2 = [α′τ2 ϕ
′
τ2 ]′. Since truncation of the infinite series is employed,

doing so introduces a remainder term associated with each of the α parameters that are

expanded. Suppressing the arguments, the remainder term is a multiplication of a T × 3

vector Γ = [Γ0 Γ1 Γ2] and a 3× 1 vector of ones denoted by i3, where Γi is a T × 1 vector of

the remainder term associated with estimating αi. In period t notation, Γt is a 3×1 vector.

Define ut(τ1) = Y1,t −QY1(τ1|X1,t) so that Qu(τ1)(τ1|X1,t) = 0. The model, as we recall,

is a system of equations comprising of

Y1,t = θτ2(τ1)′X1,t + Γ′ti3 + ut(τ1)

Y2,t = γ(τ2)′X2,t + wt(τ2)

where Γ′ti3 = QY1(τ1|X1,t)−θτ2(τ1)′X1,t reflects the fact that θτ2(τ1)′X1,t only approximates

the quantile of Y1,t. Since X1,t is unknown, feasible estimation requires replacing X1,t with

X̂1,t after obtaining ŵt(τ2) from the second equation. This introduces a generated regressor

problem that will have implications for inference. That using generated regressors, i.e. X̂1,t,
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may give rise to issues for inference comes from the fact that we are actually estimating

Y1,t = θτ2(τ1)′X̂1,t + Γ′ti3 + θτ2(τ1)′(X1,t − X̂1,t)︸ ︷︷ ︸
Φt

+ut(τ1)

where Φt is a term introduced by using X̂1,t. If X1,t is consistently estimated by X̂1,t, the

consistency of θ̂τ2(τ1) will usually not be compromised. Nevertheless, using X̂1,t introduces

an additional source of impreciseness that will lead to increasing the standard error of

θ̂τ2(τ1). This claim will be verified later in the section.

We now examine the large sample properties of θ̂τ2(τ1) and derive its asymptotic dis-

tribution. The large sample theory utilizes the following assumptions:

A1. Let {Y1,t, t ≥ 1} and {Y2,t, t ≥ 1} be sequences of independent random variables de-

fined on the probability space (Ω1,F1,t, P1) and (Ω2,F2,t, P2) having a nondecreasing sub

σ-fields Fi,0 ⊂ Fi,1 ⊂ . . . ⊂ Fi for i = 1, 2, where Fi,0 is the trivial σ-field, F1,t−1 =

σ({X1,j}tj=0, {Y1,k}t−1
k=0) and F2,t−1 = σ({X2,j}tj=0, {Y2,k}t−1

k=0).

A2. The λ-dimensional parameter space Θ is compact.

A3. There exists a constant s > (1 − a)/2a and a sequence of numbers Kλ−s such that

maxi maxt |Γi,t| < Kλ−s, where K is some constant and λ = O(T a) for a ∈ (0, 1/2).

A4. The cumulative distribution function of u(τ1), denoted by F , is continuously differen-

tiable with density f that is bounded above by a constant Cmax
f and bounded below by a

constant Cmin
f at u(τ1) = 0.

A5. Define D̂1,T = X̂′1X̂1/T and D1,T = X′1X1/T , where the latter converges to a posi-

tive definite matrix D. In addition, for each θ̃τ2 ∈ Θ, define Q̂1,T (θ̃τ2) = X̂′1F̂(θ̃τ2)X̂1/T

and Q1,T (θ̃τ2) = X′1F(θ̃τ2)X1/T , where the latter converges to a positive definite matrix
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Q1(θ̃τ2). The minimum eigenvalues of Q1,T (θ̃τ2) and Q1(θ̃τ2), i.e. Kmin(Q1,T (θ̃τ2)) and

Kmin(Q1(θ̃τ2)), are bounded away from zero for all T and uniformly in θ̃τ2 ∈ Θ. F(θ̃) is a

diagonal matrix with t element f(ηΥt(θ̃τ2)) and F̂(θ̃τ2) is a diagonal matrix with t element

f(ηΥ̂t(θ̃τ2)), where 0 < η < 1 and Υ̂t(θ̃τ2) = (θ̃τ2−θτ2(τ1))′X̂1,t+θτ2(τ1)′(X̂1,t−X1,t)−Γ′ti3

and Υt(θ̃τ2) = (θ̃τ2 − θτ2(τ1))′X1,t − Γ′ti3.

A6. Let the j element of X1,t be X(j)
1,t . Then, there exists a constant ∆ such that

E|X(j)
1,t |3 ≤ ∆ <∞ for all t and j = 1, . . . , p.

A7. γ̂(τ2) is a consistent estimator of γ(τ2).

By assuming that X1,t is Ft,1-measurable, A1 implicitly captures the fact that condition-

ing on Ft,1 implies conditioning on wt also. The independence assumption in A1, while is a

strong one, is reasonable for our empirical objective as the innovation terms are interpreted

as unexpected shocks to output growth and monetary stance. Assumption A3 is required

to bound the remainder term, which is also required in Newey (1997). In particular, the

parameter a in A3 controls for the rate in which the dimension may increase. It also con-

trols the speed in which the remainder term must converge to zero. In the extreme case

where a tends to zero, the remainder term converges to zero extremely quickly, so that the

convergence of θ̂τ2(τ1) will tend to the rate of root-T.

Assumption A4 requires the density function to be bounded above and at u(τ1) =

0, the density must be bounded above zero. In expressing A4, u(τ1) is assumed to be

homoskedastic, although the case for conditional heteroskedasticity can be easily extended.

Assumption A5 and A6 impose the existence of certain moments. Assumption A7 implies

that ŵt(τ2) is a consistent estimator of wt(τ2) as ŵt(τ2) − wt(τ2) = −(γ̂(τ2) − γ(τ2))′X2,t

and γ̂(τ2) converges to γ(τ2) in probability by A7.

We first proceed by establishing consistency through Proposition 1, then the rate of

convergence through Proposition 2. The rate of convergence, not surprisingly, is slower
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than root-T given the increasing dimension of the design matrix. From Proposition 2, we

may derive the linear representation for θ̂τ2(τ1), which may be used to obtain the asymptotic

distribution. The technical details of the proofs are relegated to the appendix.

Proposition 1. (Consistency) Under A1-A7, θ̂τ2(τ1)− θτ2(τ1) = op(1).

That θ̂τ2(τ1) converges at a rate slower than root-T has been established previously for

ordinary least squares regression. This can also be established for quantile regression as

Proposition 2 claims.

Proposition 2. (Convergence Rate) Under A1-A7, θ̂τ2(τ1)− θτ2(τ1) = Op(
√
λ/T ).

The rate of convergence of θ̂τ2(τ1) − θτ2(τ1) may be inferred from Proposition 2 as

Op(T−(1−a)/2). The parameter a clearly demonstrates the tension between the remainder

term and the speed of convergence. If the remainder term converges slowly, as it is the case

if a is close to 1/2, then convergence to a limiting distribution will also be slow. If a is

close to zero, then this convergence rate will be near root-T. Note that we obtain the same

range for a as compared to Zernov et al. (2009), where they also examined the asymptotic

properties of quantile regression with infinite dimension using similar truncation methods.

In their paper, shrinking the remainder to zero requires the dimension of the regressors to

grow at a polynomial rate controlled by a ∈ (0, 1/2), which is permitted by A3 in our paper.

In quantile regression, the linear (Bahadur) representation is commonly used to verify

the conditions for Central Limit Theorem and to derive the formula for the asymptotic

covariance matrix. This representation has been derived as part of the proof of Proposition

2 as

√
T (θ̂τ2(τ1)− θτ2(τ1))

=Q−1
1 T−1/2

T∑
t=1

X1,tψτ1

(
Yt − θτ2(τ1)′X1,t

)
−Q−1

1 T−1
T∑
t=1

E[ft(ηΥt(θτ2(τ1))X1,tθτ2(τ1)′]Xd
1,tX

′
2,t
√
T (γ̂(τ2)− γ(τ2))

+ op(1). (10)
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Let γ be a p2 vector. In addition, letQ3,T = T−1∑T
t=1E[ft(ηΥ(θτ2(τ1)))X1,tθτ2(τ1)′]Xd

1,tX
′
2,t

be a λ × p2 matrix that converges to Q3 with full column rank. If
√
T (γ̂(τ2) − γ(τ2)) is

asymptotically normal under appropriate moment conditions, the asymptotic distribution of
√
T (θ̂τ2(τ1)−θ(τ1)) depends on the asymptotic distribution of T−1/2∑T

t=1 X1,tψτ1 (Yt − θτ2(τ1)′X1,t)

as well. Let VK be the asymptotic covariance matrix of
√
T (θ̂τ2(τ1)− θτ2(τ1)), which may

be derived from (10) as

Ωγ̂(τ2) = τ1(1− τ1)Q−1
1 D1Q

−1
1 +Q−1

1 Q3Ωγ̂(τ2)Q
′
3Q
−1
1 , (11)

where Ωθ̂τ2 (τ1) is a p2 × p2 asymptotic covariance matrix of
√
T (γ̂(τ2) − γ(τ2)), which also

can be expressed as Ωθ̂τ2 (τ1) = τ2(1 − τ2)Q−1
2 D2Q

−1
2 , where Q2 is the p2 × p2 limit matrix

of Q2,T = T−1∑T
t=1 g(G−1

w,t(τ2))X2,tX
′
2,t and D2 is the p2 × p2 limit matrix of D2,T =

T−1∑T
t=1X2,tX

′
2,t.

Proposition 3. (Asymptotic Normality) Under A1-A7,
√
TΩ−1/2

θ̂τ2 (τ1)(θ̂τ2(τ1) − θτ2(τ1)) ⇒

N(0, I).

The asymptotic covariance matrix expressed in (11) is a general one that includes

the possibility conditional heteroskedasticity. For the actual estimation, it is much more

computationally convenient to treat wt and ut as both conditionally homoskedastic in-

stead. In this case, we achieve further simplication of the covariance matrix formula, since

Q1(θτ2(τ1)) = f(F−1(τ1))D1, where f(F−1(τ1)) in turn is f(0) since F−1(τ1) = 0. Under

A5 and A7, D1 may be consistently estimated using D̂1,T while f̂(0) may be estimated

as the inverse of the quantile density function, i.e. s(τ1) = 1/f(F−1(τ1)), using the non-

parametric method of Siddiqui (1961) and the bandwidth proposed by Hall and Sheather

(1988). Details of the procedure are available in Koenker (2005). Since f(ηΥt(θτ2(τ1))

converges to f(0) in probability, f̂(0) will be used to estimate Q3, which is estimated by

Q̂3,T = T−1∑T
t=1 f̂(0)θ̂τ2(τ1)′X̂d

1,tX̂1,tX
′
2,t. To estimate Ωθ̂τ2 (τ1), we estimate D2 using D2,T

and Q2 using ĝ(0)D2,T , where ĝ(0) is the inverse of the nonparametric quantile density

estimator and absence of the circumflex over D2,T expresses the fact that no generated
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regressors are used in the first step regression.

For robust estimation of the covariance matrix robustly under conditionally heteroskedas-

ticity errors, we may first estimate the covariance matrix of
√
T (γ̂(τ2) − γ(τ2)) using

Ω̂γ̂(τ2) = τ2(1 − τ2)Q̂−1
2,TD2,T Q̂

−1
2,T , where Q̂2,T = T−1∑T

t=1 ĝt,τ2X2,tX
′
2,t and ĝt,τ2 is the

Hendricks-Koenker quantile density estimator (see Koenker 2005, p. 80), that is

ĝt,τ2 = max
{

0, 2bk
X ′2,tγ̂(τ2 + bk)−X ′2,tγ̂(τ2 − bk)− e

}

where e is a small number to prevent division by zero and bk is the bandwidth where

the Bofinger (1975) and Hall and Sheather (1988) bandwidths are the possible candi-

dates. Then to estimate the covariance matrix of
√
T (θ̂τ2(τ1) − θτ2(τ1)) robustly, we

use the robust estimator Ω̂γ̂(τ2) together with D̂1,T , Q̂1,T = T−1∑T
t=1 f̂t,τ1X̂1,tX̂′1,t and

Q̂3,T = T−1∑T
t=1 f̂t,τ1X̂1,tX̂d

1,t
′θ̂τ2(τ1)X ′2,t, where f̂t,τ1 is the Hendricks-Koenker density es-

timator.

5 Monte Carlo Simulation

In this section, we compare the performance of the model under various assumptions about

the order of the polynomial. Following the convention in Section 3.2, we let α0 be the

intercept, α1 be the coefficient on X1,t and α2 be the coefficient on Y2,t. We consider three

cases:

Case 1: wt innovations in α2 only and series expansions for α2 only.

Consider the data generating process

Y1,t = α0 + α1X1,t + (α2 + δ(λewt + ut))Y2,t (12)

Y2,t = β0 + β1X1,t + β2X2,t + wt (13)

where (α0, α1, α2, δ, λ) = (3, 4, 4, 5, 3), (β1, β2, β3) = (1, 2, 3), X1,t ∼ t3, X2,t ∼ N(15, 2),
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wt ∼ N(0, 0.5) and ut ∼ N(0, 1). This generating process is similar to the benchmark

model of Ma and Koenker (2006), except that we specify ewt in (12) while they simply

used wt instead. In doing so, we incorporate a nonlinear feature in how wt enters the slope

coefficient on Y2,t. We want to estimate α2 based on the equation

Y1,t = α0 + α1X1,t + α2(wt, ut)Y2,t

understanding that α2(wt, ut), from the researcher’s perspective, is an unknown function of

wt and ut. The true value of α2(τ2, τ1), which is of interest, is 4+5(3 exp(F−1
w (τ2))+F−1

u (τ1))

and our objective is to estimate this value as best as we can. To do so, we consider series

expansions up to the quartic polynomial. Following the discussion in Section 3, we first

employ the regression function of

ĤY1,t = α0 + α1X1,t + α2Y2,t +
I∑

k=1
ϕk
ŵt(τ2)k

I! Y2,t (14)

where k indexes the power of ŵt and I = 1 to 4. Here, the estimate of interest is α̂2(τ2, τ1)

in (18) and the summation term controls for the nuisance term as mentioned before. By

employing (14), we are hypothesizing that the researcher knows that only wt enters into

the slope coefficient on Y2,t, thus justifying the expansion for α2 alone. The Monte Carlo

experiment is carried out by simulating data from (12) and (13) and estimating α̂2(τ2, τ1) for

each simulation. We consider a grid of τ = [0.1, 0.2, . . . , 0.9], with a total of nine categories

in τ , resulting in 81 regressions corresponding to each τ1 and τ2 located on the grid. We

employ 200 simulations with 1000 observations and report the average of the estimated

α̂2(τ2, τ1).

In Figure 1, we present the surface of α2(τ2, τ1) (Panel A) together with the estimated

surfaces α̂2(τ2, τ1) based on the linear expansion model (Panel B) to the quartic expansion

model (Panel E). In these plots, the larger values are more lightly shaded. From the figure,

we can see that the shapes of the estimated surfaces are very similar to the shape of the

true surface. For the linear expansion model, the estimated surface deviates slightly from
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the true surface in the extreme quantiles. For instance, in a 10th percentile regression of

Y1,t, the estimated slope coefficient on the 10th percentile of Y2,t appears to be smaller than

the true value, i.e. α̂2(0.1, 0.1) < α2(0.1, 0.1). However, the estimated surface becomes very

close to the true surface even in the extremes when a quadratic, cubic or quartic model is

used.

In Table 1, we report the true parameter values, the estimated values, the remainder

and the root-mean-squared errors based on regressions confined to τ1 = τ2 = τ . Generally,

the root-mean-squared error is similar across the four regression models. The bias, except

at τ = 0.9, generally declines as we move from a linear to a quadratic model and further

declines when a cubic or quartic model is used. However, the bias from the quartic model

is not always the least among all the four models, although it is the case in six of the nine

categories of τ .

Case 2: wt innovation in α2 only and series expansions for all α0, α1 and α2.

Here, the data is generated from (12) and (13). However, we assume that the researcher

does not know if wt enters into the other coefficients also, and thus takes this possibility

into account by including the expansions for α0 and α1. The regression function in this case

is

ĤY1,t = α0 + α1X1,t + α2Y2,t +
I∑

k=1
ϕk,0

ŵt(τ2)k

I! +
I∑

k=1
ϕk,1

ŵt(τ2)k

I! X1,t +
I∑

k=1
ϕk,2

ŵt(τ2)k

I! Y2,t

(15)

Equation (15) contains two additional summation terms than (14), reflecting the fact the

expansions for α0 and α1 are included. The estimated surfaces are shown in Figure 2

while Table 2 reports the true parameter values, the estimated values, the bias and the

root-mean-squared errors.

Figure 2 shows that the shape of the true parameter surface is satisfactorily estimated

by all the models. In addition, as in Case 1, the bias becomes smaller when higher order

polynomials are used. Nevertheless, the bias from this overfitted model is generally larger
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than that of Case 1, reflecting the relative impreciseness of the regression function used here.

The root-mean-squared error is also noticeably larger for the τ = 0.1 and τ = 0.9 regressions

when the linear model is used. Again, the cubic and quartic models are recommended as

they yield the smallest bias in eight of the nine categories of τ . The only exception is

τ = 0.1, where the quadratic model yields the smallest bias.

Case 3: wt innovation in α0, α1 and α2 only and series expansions for α2 only.

What happens if wt enters all three coefficients but series expansion is only applied for α2?

For instance, suppose the true data generating function of Y2,t is

Y1,t = (α0 + δ̃(λ̃ewt + ut)) + (α1 + δ̃(λ̃ewt + ut))X1,t + (α2 + δ(λewt + ut))Y2,t (16)

where δ̃ = 10 and λ̃ = 5 and the other constants are the same as before. However, the

regression function is based on (14). This corresponds to the case where the researcher is

only interested in variations exhibited by α2 and not by the other parameters, and thus

adopts the regression function containing expansions for α2 only. Certainly, this misspec-

ifies the relation that wt influences α0 and α1 since the regression function should include

expansions for these parameters also.

However, as Figure 3 demonstrates, the shape of α2 is satisfactorily estimated even in the

presence of this misspecification. This result is useful as it suggests that the researcher can

focus on expanding only the parameters of interest while leaving the others untouched. This

advantage is also reinforced by Table 3. While the bias is generally larger when compared

to Case 1, this may not always be so when compared to Case 2. For instance, both cubic

and quartic regressions in Case 3 perform better than those in Case 2 at τ = 0.5. In other

words, underfitting may not necessarily perform worse than overfitting especially as far as

dependence between the center of the distributions is concerned. If one is willing to tolerate

a slightly larger bias occuring in the extremes, then to maintain parsimony, it is may not

be necessary to expand every single parameter specified in the original model.
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6 Empirical Results

As explained in the introduction, the signs of the estimated monetary policy shocks have

been used to identify episodes of monetary expansion or contraction. The econometric

methodology proposed by this paper comes from observing that the signs of these shocks,

which are estimated from ordinary least squares, may not correctly reflect the true policy

position unless the monetary innovation has a zero population mean.

In motivating the quantile dependence framework, our objective is to construct a model

to investigate the money-output relationship that does not rely on the signs of the shocks. To

do so, we exploit the idea that the quantiles of the monetary policy shock convey information

about the policy stance by interpreting a lower quantile shock as restrictive relative to a

higher quantile shock, and likewise a higher quantile shock as expansive relative to a lower

quantile shock. Therefore, monetary policy stance will be described here as “restrictive”

and “expansive” rather than “contractionary” and “expansionary”.

The empirical model will be based on Cover (1992) who formulated a two-equation

system.10 First, the monetary policy shocks are identified as residuals in a monetary process

equation as

mt = α0 +
Km∑
i=1

αm,imt−i +
Kx∑
i=1

α′x,ixt−i + ut (17)

where mt is a monetary instrument and xt is a vector that contains other information

variables. Cover employed M1 money supply growth as the policy instrument for his analysis

on the post-war money-output relationship while DeLong and Summers (1988) employed

M2 and M3 money supply growth when investigating the relationship during the pre-war

and pre-Depression periods. There were also others who used non-money measures such as

the Federal funds rate (Morgan, 1993) and short-term interbank offer rates (Florio, 2005).

Having obtained the monetary policy shocks obtained from (17), output growth is then
10Florio (2004) surveyed the literature on the monetary policy-output nexus in the spirit of Cover.
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regressed on the negative and positive shocks using

yt = β0 +
Ky∑
i=1

βy,iyt−i +
Kr∑
i=1

βr,idrt−i +
Ku∑
i=0

(β+
u,iu

+
t−i + β−u,iu

−
t−i) + wt (18)

where yt is output growth and drt is the first differenced three-month Treasury yield.

Whichever monetary instrument is used, the same conclusion generally emerges: output

reduces more following a negative shock than it increases following a positive shock of the

same size. This is reflected by the fact that the sum of β+
u,i is usually smaller than the sum

of β−u,i, hence indicating that the monetary effect on output growth is asymmetric.

In Cover’s benchmark model, output growth was regressed on the first lag of output

growth, contemporaneous and lagged values of the first differenced Treasury yield, and con-

temporaneous positive and negative monetary shocks. Other extensions included lagged

monetary shocks, but the contemporaneous negative shocks were typically the most impor-

tant, statistically and size-wise, while the positive shocks were usually statistically insignif-

icant. This motivates a more parsimonious setup to investigate how output growth reacts

to a change in the quantile of a contemporaneous monetary shock, which can be expressed

by rewriting (18) as

yt = (β0 + βuut + wt) +
Ky∑
i=1

βy,iyt−i +
Kr∑
i=1

βr,idrt−i

= β0(ut, wt) +
Ky∑
i=1

βy,iyt−i +
Kr∑
i=1

βr,idrt−i (19)

where the second line writes β0 as a random intercept term. Based on the quantile depen-

dence framework, since the τ th
1 conditional quantile of yt corresponds to the τ th

1 quantile of

wt, this implies that the τ th
1 conditional quantile of yt depends on monetary policy asym-

metrically if β0(τ2, τ1) 6= β0(1− τ2, τ1) holds.

Equation (19), which is a pure location shift model, may be generalized based on our

earlier discussion on quantile dependence. Relaxing to a location and scale shift model, the

quantile ofmt may be allowed to affect yt through the presence of ut in the slope parameters.
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Therefore, assuming that the slopes are influenced by both ut and wt, a general output

process can be written as

yt = β0(ut, wt) +
Ky∑
i=1

βy,i(ut, wt)yt−i +
Kr∑
i=1

βr,i(ut, wt)drt−i (20)

Now, although the asymmetric relationship between monetary policy and output growth

is a stylized fact, the quantile dependence framework may nevertheless bring other aspects

to light in the money-output relationship that cannot be estimated using conventional

methods. First, while a negative monetary shock is known to influence output growth

more strongly than positive shock, a traditional framework cannot determine if a larger

negative shock exerts a larger marginal influence. For instance, using ordinary least squares

regression, the only estimable quantity is the average marginal influence of the negative

shock. This disregards the possibility that negative shocks of various sizes may influence

output growth differently. Thus by using the quantile-based framework, one can get a sense

of how much more sensitive output growth is when the policy stance becomes even more

restrictive or expansive.

Second, the quantile dependence framework makes it possible to examine if the quantiles

of output growth, say the 90th percentile and the median output growth, respond differently

to the same monetary policy stance. As we will see, our estimation results reveal that

the 90th percentile of output growth is more sensitive to variations in M1 money supply

shocks than are the 10th and 50th percentiles. Therefore, in addition to addressing whether

monetary policy affects a given level of output growth asymmetrically, our framework can

also be used to uncover another possible dimension of nonlinearity that expresses how

quantiles of output growth may respond differently to the same policy stance.

For the actual empirical implementation, we consider two policy instruments: M1 and

M2 money supply.11 For the monetary process equation, we regress the monetary instrument
11While the Federal funds rate is also a monetary policy instrument, however using this measure implies

that Cover’s model can no longer be extended to the QQ model since the upper quantiles of the Federal
funds innovation will now represent restrictive policies while the lower quantiles will be expansive. This
indexation scheme is opposite to the one when the money supply is used.
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on twelve of its lags as well as the first lag of the first differenced Treasury yield.12 For the

output process equation, we consider a parsimonious specification in the form of

yt = β0(ut, wt) +
Ky∑
i=1

βy,i(ut, wt)yt−i + βr(ut, wt)drt−1 (21)

Variations in the random intercept term are of particular interest given the location shift

specification of Cover’s model. In addition, by imposing a generalized structure in (21),

we allow the monetary shock to also influence the slope parameters. We consider a model

with eight and twelve lags of output growth, i.e. Ky = 8 or 12, and the first lag of the

first differenced Treasury yield. To keep the exposition concise, the paper only reports the

estimates for β0(τ2, τ1), βy,1(τ2, τ1) and βr(τ2, τ1) based on the cubic and quartic models.

For parsimony, the paper only considers expanding the coefficients on the first four lags of

output, i.e. βy,i, for i = 1, . . . , 4.

Monthly time series from Datastream is used while previous research typically employed

quarterly time series. Output growth is defined as the growth rate of the industrial produc-

tion index, replacing Gross Domestic Product when quarterly data is used. The starting

date of the dataset is January 1970 and the ending date is January 2009. All growth vari-

ables are obtained by log-differencing and multiplying by 100. The standard errors are

calculated under the assumption of homoskedasticity. First, we turn our attention to the

main parameter of interest: the random intercept term.

The Random Intercept Term

Figures 4 and 5 plot the random intercept surface when the monetary instrument is M1 and

M2 money supply growth respectively. Not surprisingly, the surface is downward sloping as

the quantile of output growth declines, meaning that the random intercept term is reduced

as we move towards the lower quantiles of output growth. When monetary policy influences

output growth, the surface will also vary along the quantiles of the monetary policy shock.
12Cover also included in the information set the lagged government budget surplus, the ratio of unemployed

over employed, and the lag of output growth. However, these variables are usually statistically insignificant.
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In this case, the surface should be tilted towards the (0, 0, zmin) vertex as we move towards

the lower quantiles of monetary shock since these quantiles reflect an increasingly restrictive

policy stance, thus further reducing the intercept.

Focusing on M1 money supply, when output growth is located in the upper quantiles,

moving to a lower quantile monetary shock will tend to lower the intercept, which is equiv-

alent to saying that a more restrictive monetary policy will tend to reduce output growth

when output growth is large. However, changing to a more restrictive policy has little

impact on the lower quantiles of output growth, i.e. the left tail of the output growth

distribution. For M2 money supply, a more restrictive policy reduces the left-tail output

growth more than M1 does, hence demonstrating that output growth is more sensitive to

restrictive M2 than M1 money supply shocks when it is low.

To see the influence of monetary policy on output growth more clearly, we plot cross-

sections of the surface dissected in the output dimension. These figures demonstrate how

the intercept term responds to changes in the monetary shocks when output growth is at

the 10th, 50th and 90th percentiles. The subplots based on regression specifications with

eight and twelve lags of output growth are shown in Panel A and B respectively.

For M1 money supply, Figures 6 and 7 plot the cross-section estimates corresponding to

the cubic and quartic models. The dotted horizontal line in each subplot reflects the value

of the intercept at the median monetary shock, which will be used as the reference point so

that quantiles below the median are more restrictive and those above are more expansive

than the median policy stance.

First, focus on the cubic regression model whose results are shown in Figure 6. At the

10th percentile of output growth, both regression specifications with eight and twelve lags

of output growth suggest that varying the quantiles of M1 money supply shock does little

to shift the intercept away from the horizontal line, which is the value of the intercept

corresponding to the median policy stance. When output growth is at the median, there is

evidence that monetary policy is asymmetric. In Panel B (twelve lags of output growth),

the median output growth stays around 0.23% per month when the magnitude of M1 money
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supply shock is at least the median. However, the median output growth declines to 0.13%

per month when monetary shock declines to the 10th percentile. This asymmetry is also

observed at the 90th percentile of output growth. In Panel B, changing the monetary stance

from the median to the 90th percentile increases the 90th percentile of output growth by

0.13% per month, but decreases it by 0.2% per month when monetary shock is reduced

from the median to the 10th percentile.

So far, the above findings can be summarized into two points: 1) the right tail of output

growth tends to be the most sensitive to variations in the M1 money supply shock, and 2)

whenever it is important, e.g. at the 90th percentile of output growth, the monetary shock

tends to influence output growth more strongly for restrictive policies. These conclusions

are also echoed by the quartic model as reported by Figure 7. Among the 10th, 50th and

90th percentiles of output growth, the latter is most sensitive to changes in the monetary

policy stance where at the same time, monetary policy exhibits asymmetry. In Panel A

(eight lags of output growth), changing the monetary policy stance from the median to

the 90th percentile increases the 90th percentile of output growth by 0.10% per month but

moving down to the 10th percentile shock it reduces by 0.17% per month. Similarly in

Panel B, the impact on the 90th percentile of output growth is an increase of 0.16% per

month moving from the median to the 90th percentile of the monetary shock and a decline

of 0.21% per month moving from the median to the 10th percentile shock.

For the M2 money supply, Figures 8 and 9 plot the cross-section estimates corresponding

to the cubic and quartic models respectively. Here, the 10th, 50th and 90th percentiles of

output growth are more sensitive to M2 than M1 money supply shocks. Furthermore,

the asymmetric influence of M2 money supply shocks are more pronounced. Focusing on

the cubic regression model with results shown in Figure 8, Panel A shows that the 10th

percentile of output growth increases only by 0.10% per month after changing the monetary

stance from the median to the 90th percentile. However, the 10th percentile of output

growth declines by 0.26% per month when the monetary stance shifts from the median

to the 10th percentile. In Panel B, the same experiment reveals that 10th percentile of
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output growth expands only by 0.11% per month in the expansive direction but contracts

by 0.19% per month in the restrictive direction. As already mentioned, the asymmetric

effects of M2 money supply shocks are also evident at the median and the 90th percentile of

output growth, where the latter is more sensitive than the median to changes in the policy

stance.

Slope on the First Lag of Output Growth

Figures 10 and 11 plot the estimated slope surface on the first lag of output growth when

the monetary instrument is M1 and M2 money supply growth respectively. Contrasting

the intercept surfaces, both figures show that the slope surface tends to be flat across most

quantiles of monetary shock and output growth, but become increasingly elevated at the

lower quantiles of output growth. This implies that the left tail, rather than the right tail,

of contemporaneous output growth tends to react more strongly to lagged output growth.

Therefore, a stronger lagged output growth may effectively provide resistance against the

slowdown in contemporaneous output growth during downturns, but not effectively boost

growth during upturns.

This asymmetry can be seen more clearly when we examine the cross-sections of the

estimated slope surface. For the sake of exposition, let us do so while fixing the monetary

shock at the median. On these cross-sectional results, Figures 12 and 13 plot the cubic

and quartic regression estimates based on M1 money supply. In Panel A of Figure 12

(regression with eight lags of output growth), the estimated slope parameter is 0.38 at the

10th percentile of output growth, which is greater than the estimates corresponding to the

median and 90th percentile of output growth at 0.09 and 0.15 respectively. Similarly in

Panel B (regression with twelve lags of output growth), the estimated slope is 0.30 at the

10th percentile of output growth, which again is greater than those to median and 90th

percentile of output growth at 0.12 and 0.15 respectively.

For the quartic model, Panel A of Figure 13 shows that the estimated slope at the

median monetary stance is 0.40, 0.09 and 0.13 for the 10th, 50th and 90th percentiles of
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output growth. Panel B tells a similar story, further supporting the fact that the left tail

of contemporaneous output growth is more responsive to lagged output growth.

This asymmetry also shows up at times when the M2 money supply is used. Here,

Figures 14 and 15 plot the cross-sections corresponding to the cubic and quartic models.

For the cubic regression model, Panel B of Figure 14 shows that the slope is 0.17, 0.13 and

0.21 for the 10th, 50th and 90th percentiles of output growth, implying that the extreme

quantiles, rather than the centrally located quantiles of output growth are more sensitive

to lagged output growth. The asymmetry, seen when M1 money supply is used, re-emerges

in the quartic model as Panel B of Figure 15 shows that the slope is 0.26, 0.14 and 0.16 at

the 10th, 50th and 90th percentile of output growth.

Now, varying the monetary shock, we can see that the slope is only weakly affected

by the changes in the M1 money supply shock.13 This is also generally true when M2

money supply is used. Taken together, we may conclude that the relationship between the

contemporaneous output growth quantiles and the first lag of output growth is generally

robust to changes in monetary policy.

Slope on the First Lag of the First Differenced Treasury Yield

Figures 18 and 19 plot the estimated slope surface on the first lag of the first differenced

Treasury yield when the monetary instrument is the M1 and M2 money supply growth

respectively. Both figures show that the surface is typically elevated at the lower quantiles

of output growth and monetary shock. However, when M2 money supply is used, the surface

appears to be like a saddle, elevated in both tails of output growth and monetary shock

and depressed around the center of the distributions.

Using the M1 money supply, the cross-section diagrams of Figure 18 and 19 based on

the cubic and quartic models show that the slopes in the 10th and the 50th percentile

of output growth regressions are generally statistically insignificant for most quantiles of
13The exception happens when output growth is at the 10th percentiles and the eight-lag specification is

used. However, variations in slope diminish when the twelve-lag specification is used instead, thus giving
further support that monetary policy stance exerts only weak effects on the coefficient on the first lag of
output growth.
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monetary shock. At the 90th percentile of output growth, the slopes generally become

mostly statistically significant, ranging from a value of -0.30 (Figure 19, Panel B) to -0.36

(Figure 19, Panel A) at the median monetary shock. This observation is also similar when

M2 money supply is used, where Figures 20 and 21 show that for the 10th and the 50th

percentile of output growth regressions, the slope is generally statistically insignificant for

most monetary stances. The 90th percentile of output growth again provides one exception,

where the slope is negative and becomes statistically significant when the monetary shock

is less than or equal to its median.

The above finding implies that a large increase in the Treasury yield in the previous

period is likely to adversely affect the next period’s output growth when output growth is

high, e.g. at the 90th percentile. Output growth near the center and the left half of the

distribution would not generally be affected by lagged changes in the Treasury yield.

Summary

Summarizing our results, we find that

1. The right tail of output growth is generally more sensitive to changes in M1 money

supply shocks, while both tails of output growth are more sensitive than the center is

to changes in M2 money supply shocks, implying that monetary policy measured by

M2 is more effective in bearish and bullish periods of growth.

2. When non-neutral, the influence of monetary policy on output growth is stronger when

it is restrictive than expansive, consistent with previous findings on the asymmetric

influence of money on output.

3. Contemporaneous output growth responds positively and is more sensitive to lagged

output growth when it is located in the left tail.

4. Changes in monetary policy will only weakly affect how lagged output growth influ-

ences the quantile of contemporaneous output growth.
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5. The right tail of output growth is more likely to be sensitive to past changes in the

Treasury yield.

7 Conclusion

Using a newly developed quantile dependence framework, this paper investigates whether

two types of nonlinearities are present in the relationship between monetary policy and

output growth. First, it examines whether the same quantile of output growth responds

differently to changes in monetary policy and finds that whenever monetary policy is ef-

fective, the quantile of output growth responds more to restrictive than expansive policy.

Second, it investigates which quantiles of output growth are more sensitive to a particular

monetary stance. On this issue, the results are dependent on the chosen monetary instru-

ment. When M1 money supply is used, the right tail of output growth distribution is more

sensitive to changes in monetary policy than elsewhere, while both left and right tails are

the more sensitive than the center of the output growth distribution when M2 money supply

is used.

Hence, based on the M1 money supply as the monetary instrument, restrictive monetary

policy is useful to slow output growth only when output growth is high. Based on the M2

money supply, restrictive monetary policy influences the entire output growth distribution

effectively but is more effective when output growth is located in the tails. Therefore, while

monetary policy is asymmetric, the asymmetry becomes more pronounced for specific loca-

tions in the output growth distribution. This new observation demonstrates the flexibility of

the quantile dependence framework in modeling the relationship between the distributions

of monetary shocks and output growth.

As the empirical focus of this paper centers on the reduced-form relationship between

monetary policy and output growth, a natural extension would be to examine the quantile

dependence between them in a structural model. This model may be built upon a linearized

new Keynesian Dynamic Stochastic Equilibrium framework, where the quantile dependence
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equation is the linearized Euler equation that models output growth as a function of inflation

and the interest rate, which in turn are modeled by the new Keynesian Phillips curve and

the Taylor rule. Also, a possible extension would be to unify the SVAR model from the

application perspective and quantile dependence from the econometric theory perspective.
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Appendix

To simplify notation, we will suppress the τ1 argument and τ2 subscript in θτ2 (τ1) so that the population

parameter vector is θ and the estimated parameter vector is θ̂. For the proofs, define ‖A‖ = tr(A′A)1/2

where tr is the trace operator. In addition, express the objective function as

LT (θ̃) = T−1
T∑
t=1

[
ρτ1

(
ut(τ1)− ((θ̃ − θ)′X̂1,t + (X̂1,t − X1,t)′θ − Γ′ti3)

)
− ρτ1 (ut(τ1))

]
(22)

The normalization with ρτ1 (ut(τ1)) is done as matter of convenience for the asymptotic analysis and will

not affect the estimation outcome. More importantly, this normalization facilitates using Knight’s identity

which comes in useful for the proof of consistency (Proposition 1) and uniform law of large numbers (Lemma

1). θ̂ is the minimizer of (22) and the first order condition is

ŴT (θ̂) = −T−1
T∑
t=1

X̂1,tψτ1

(
Yt − θ̂

′
X̂1,t

)
which is equal to zero except for a set of measure zero.

Lemma 1. (Uniform Law of Large Numbers) The objective function, LT (θ̃), defined in (22), satisfies

sup
θ̃∈Θ
|LT (θ̃)− E[LT (θ̃)]| → 0

as T → 0.

Proof : Using Knight’s identity, i.e. ρτ (u − v) − ρτ (u) = −vψτ1 (u) +
∫ v

0 I(0 < u ≤ s)ds and letting

Υ̂t(θ̃) = (θ̃ − θ)′X̂1,t + θ′(X̂1,t − X1,t)− Γ′ti3, we may express

sup
θ̃∈Θ
|LT (θ̃)− E[LT (θ̃)]|

≤sup
θ̃∈Θ
|T−1

T∑
t=1

(Υ̂t(θ̃)ψτ1 (ut(τ1))− E[Υ̂t(θ̃)ψτ1 (ut(τ1))])| (23)

+ sup
θ̃∈Θ
|T−1

T∑
t=1

(∫ Υ̂t(θ̃)

0
I(0 < ut(τ1) ≤ s)− E[

∫ Υ̂t(θ̃)

0
I(0 < ut(τ1) ≤ s)ds]

)
| (24)

We now show that (23) is o(1). To do so, we verify assumptions A1, A2 and A3a of Newey (1991). Assumption

A1 of Newey (1991) requires compactness of the parameter set, which is A2 of this paper. Assumption A2

of Newey (1991) requires that (23) holds pointwise. Hence, consider some θ̃l ∈ Θ. Applying Chebyshev
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inequality and the law of total variance, we have

P

(
|T−1

T∑
t=1

(Υ̂t(θ̃l)ψτ1 (ut(τ1))− E[Υ̂t(θ̃l)ψτ1 (ut(τ1))])| ≥ δ/2

)
≤ 4
δ2 T

−1E[V ar[((θ̃l − θ)′X̂1,t + θ′(X̂1,t − X1,t)− Γ′ti3)ψτ1 (ut(τ1))|X1,t]]

≤ 4
δ2 T

−1E[((θ̃l − θ)′X̂1,t + θ′(X̂1,t − X1,t)− Γ′ti3)2V ar[ψτ1 (ut(τ1))|X1,t]]

≤4τ1(1− τ1)
δ2 T−1E[(|(θ̃l − θ)′X̂1,t|+ |θ′(X̂1,t − X1,t)|+ 3Kλ−s)2]

≤4τ1(1− τ1)
δ2 T−1E[(9Kλ−2s + 6Kλ−s|(θ̃l − θ)′X̂1,t|+ 6Kλ−s|θ′(X̂1,t − X1,t)|

+ 2|(θ̃l − θ)′X̂1,t||(X̂1,t − X1,t)′θ|+ |(θ̃l − θ)′ ˆX1,t|2 + |(X̂1,t − X1,t)′θ|2]

=O(T−1),

which implies that A2 of Newey (1991) is satisfied, where the last line follows from the application of A3, A7

and the Monotone Convergence Theorem. To verify A3a of Newey (1991), consider |T−1∑T

t=1 ψτ1 (ut(τ1))(Υ̂t(θ̃)−

Υ̂t(θ)| ≤ T−1∑T

t=1 |X̂
′
1,t(θ̃−θ)| ≤ T−1∑T

t=1 maxj |X̂(j)
1,t |
∑λ

j=1 |θ̃
(j)−θ(j)|, where θ̃(j) denotes the j element

of θ̃. Now,
∑λ

j=1 |θ̃
(j) − θ(j)| = ‖θ̃ − θ‖1 is a Manhattan norm while T−1∑T

t=1 maxj |X̂(j)
1,t | is Op(1). These

two conditions are sufficient for A3a of Newey (1991) to hold and thus (23) is o(1) following Corollary 2.2

of Newey (1991).

Next, we show that (24) is o(1). To do so, we follow Andrews (1987) and verify his assumptions

A2b and A3.14 Assumption A2b requires that T−1∑T

t=1

∫ Υ̂t(θ̃)
0 (I(0 < ut(τ1) ≤ s)ds satisfies pointwise

strong law of large numbers. To do so, we check that E[
∫ Υ̂t(θ̃)

0 (I(0 < ut(τ1) ≤ s)ds] < ∞. Without loss

of generality, assume that Υ̂t(θ̃) = (θ̃ − θ)′X̂1,t + θ′(X̂1,t − X1,t) − Γ′ti3 > 0. Also, by the almost sure

convergence of X̂1,t and applying the Dominated Convergence Theorem ensured by A7, we may replace

(θ̃ − θ)′X̂1,t with (θ̃ − θ)′X1,t without affecting the end result. Likewise, we may drop θ′(X̂1,t − X1,t)

since the expectation of this term goes to zero by the Monotone Convergence Theorem. Therefore, con-

sidering |(θ̃ − θ)′X1,t| + |Γ′ti3| > (θ̃ − θ)′X̂1,t − Γ′ti3 > 0, we check that E[
∫ |(θ̃−θ)′X1,t|+|Γ′ti3|

0 (I(0 <

ut(τ1) ≤ s)ds] ≤ E[
∫ 3Kλ−s+|(θ̃−θ)′X1,t|

0 E[(I(0 < ut(τ1) ≤ s)|X1,t]ds] ≤ Cmax
f E[

∫ 3Kλ−s+|(θ̃−θ)′X1,t|
0 sds] =

(Cmax
f /2)E[(3Kλ−s + |(θ̃ − θ)′X1,t|)2] ≤ Cmax

f E[3Kλ−s + ‖θ̃ − θ‖maxj |X(j)
1,t |] = O(1) where O(1) follows

from A3 and A7. With bounded first moment, the pointwise strong law of large numbers follows. To verify

14Assumption A1 in Andrews (1987) requires that the parameter space be compact, which is A2 in this
paper. Assumption A2a of Andrews (1987) , which we rephrase here, imposes that

∫ Υ̂t(θ̃)
0 (I(0 < ut(τ1) ≤

s)ds is a random variable and for θ̃ ∈ ‖θ̃−θ‖ where ‖θ̃−θ‖ is sufficiently small, supθ̃

∫ Υ̂t(θ̃)
0 (I(0 < ut(τ1) ≤

s)ds and inf θ̃

∫ Υ̂t(θ̃)
0 (I(0 < ut(τ1) ≤ s)ds are random variables for all θ̃ ∈ Θ.
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A3 of Andrews (1987) , we need to show that for all θ ∈ Θ, as sup
θ̄∈Θ
‖θ̄ − θ‖ → 0, we have

sup
t≥1
|T−1

T∑
t=1

(E[
∫ sup

θ̄∈Θ
Υ̂t(θ̄)

0
(I(0 < ut(τ1) ≤ s)ds]− E[

∫ Υ̂t(θ̃)

0
(I(0 < ut(τ1) ≤ s)ds])| → 0. (25)

We also have to verify the above with inf replacing sup, but the steps are similar once we demonstrate that

the condition holds with sup. Arguing as before and considering (θ̃ − θ)′X1,t − Γ′ti3 > 0, we have

E[
∫ sup

θ̄∈Θ
(θ̄−θ)′X1,t−Γ′ti3

0
(I(0 < ut(τ1) ≤ s)ds]− E[

∫ (θ̃−θ)′X1,t−Γ′ti3

0
(I(0 < ut(τ1) ≤ s)ds]

=E[
∫ sup

θ̄∈Θ
(θ̄−θ)′X1,t−Γ′ti3

(θ̃−θ)′X1,t−Γ′
t
i3

(I(0 < ut(τ1) ≤ s)ds]

≤E[
∫ sup

θ̄∈Θ
(θ̄−θ)′X1,t+3Kλ−s

(θ̃−θ)′X1,t−3Kλ−s
E[(I(0 < ut(τ1) ≤ s)|F1,t]ds]

≤Cmax
f E[

∫ sup
θ̄∈Θ

(θ̄−θ)′X1,t+3Kλ−s

(θ̃−θ)′X1,t−3Kλ−s
sds]

=
Cmax
f

2 E[(sup
θ̄∈Θ

(θ̄ − θ)′X1,t + 3Kλ−s)2 − ((θ̃ − θ)′X1,t − 3Kλ−s)2]

=
Cmax
f

2 E[((sup
θ̄∈Θ

(θ̄ − θ) + (θ̃ − θ))′X1,t)(6Kλ−s + sup
θ̄∈Θ

(θ̄ − θ̃)′X1,t)]

≤
Cmax
f

2 E[2sup
θ̄∈Θ
|(θ̄ − θ)′X1,t|(6Kλ−s + sup

θ̄∈Θ
|(θ̄ − θ̃)′X1,t|)]

≤
Cmax
f

2 E[2 max
j
|X(j)

1,t |sup
θ̄∈Θ
‖(θ̄ − θ)‖(6Kλ−s + max

j
|X(j)

1,t |sup
θ̄∈Θ
‖θ̄ − θ̃‖)]

→0

where the last inequality follows from A7, sup
θ̄∈Θ
‖θ̄ − θ̃‖ ≤ 2sup

θ̄∈Θ
‖θ̄ − θ‖ → 0 and an application of the Mono-

tone Convergence Theorem. Thus, we have verified the conditions of Andrews (1987) and the uniform law

of large numbers follows. �

Proof of Proposition 1 : Define L(θ̃) = E[LT (θ̃)]. Clearly, L is minimized at θ. Following the argument in

Theorem 2.1 of Newey and McFadden (1994), we have L(θ̂) < LT (θ̂) + δ/3 < LT (θ) + 2δ/3 < L(θ) + δ,

where the first and third inequalities follow from the uniform law of large numbers (verified in Lemma

1), and the second inequality is due to θ̂ being a minimizer of LT . Focusing on the last term, express

the summand in L(θ) using Knight’s identity as ρτ1 (ut(τ1)− Γ′ti3) − ρτ1 (ut(τ1)) = −Γ′ti3ψτ1 (ut(τ1)) +∫ Γ′ti3
0 I(ut(τ1) ≤ s) − I(ut(τ1) ≤ 0)ds. Taking conditional expectations and using A3, we can show that

L(θ) = E[f(ηΓ′ti3)i′3ΓtΓ′ti3] ≤ 9Cmax
f Kλ−2s. Since λ → 0 as T → 0 such that L(θ) → 0 also by the conti-

nuity of L( . ), we have L(θ̂) < δ asymptotically for any arbitrary δ. �
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Lemma 2. (Stochastic Equicontinuity) For some q ≥ 1,

sup
θ̃∈Θ
|
√
T
(
WT,τ1 (Υ̂(θ̃))−WT,τ1 (0)− E[WT,τ1 (Υ̂(θ̃))−WT,τ1 (0)]

)
| = op(

√
λ/T ) (31)

for κ > 1/2.

Proof : The proof employs a chaining argument. Consider the cubes ‖θ̃j−θ‖ ≤ rjε, where r = 0, 1, · · · , T 1/2,

rj = 0 for j = 0 and ε = (
√
λ/T ) log Tκ for some κ > 0. Let G be the collection of nested cubes,

G0 ∈ G1 ∈ . . . ∈ Gj . . . ∈ G, with cardinality of order O(T 1/2) and j indexes the cubes. Let the center

of cube j be θj so that for every θ ∈ Gj , ‖θ − θj‖ < ε. For j = 1, the center of the cube is θ. Define

st(θ̃) = −b′X1,t[ψτ (ut(τ1)− Υ̂t(θ̃))− ψτ (ut(τ1))] for each b such that b′b is finite. Hence, (31) holds if

sup
θ̃∈Θ
| 1√
T

T∑
t=1

b′(st(θ̃)− E[st(θ̃)])| = op(1).

Now, by definition, {st,F1,t} is an adapted stochastic sequence. Since E[E[st(θ̃)]|F1,t−1] = E[st(θ̃)|F1,t−1]

by smoothing, st(θ̃)− E[st(θ̃)] is a martingale difference sequence. For θ̃ ∈ G1 and b = i, we have

E[s2
t (θ̃)|F1,t−1]

=E[(i′X1,t)2(ψτ (ut(τ1)− Υ̂t(θ̃))− ψτ (ut(τ1)))2|F1,t−1]

≤(i′X1,t)2E[(ψτ (ut(τ1)− Υ̂t(θ̃))− ψτ (ut(τ1)))|F1,t−1]

≤λ2 max
j
|X(j)

1,t |
2Cmax

f (3Kλ−s + X′1,t(θ̃ − θ) + (X̂1,t − X1,t)′(θ̃ − θ) + (X̂1,t − X1,t)′θ)

≤λ2 max
j
|X(j)

1,t |
2Cmax

f (3Kλ−s + X′1,t(θ̃ − θ) + (X̂1,t − X1,t)′(θ̃ − θ) + (X̂1,t − X1,t)′θ)

≤λ2 max
j
|X(j)

1,t |
2Cmax

f (3Kλ−s + (X1,t + op(1))′(θ̃ − θ) +Op(T−1/2))

≤λ2 max
j
|X(j)

1,t |
2Cmax

f (3Kλ−s + max
j
|X(j)

1,t |‖θ̃ − θ‖(1 + op(1)) +Op(T−1/2))

:=pt

The first inequality follows from the Cauchy-Schwarz inequality, the second inequality follows from A6 and

the third inequality follows from the fact that ψ4
τ ≤ ψτ . We apply the Hoeffding inequality for martingales

proposed by Lee and Su (2002), that is,

P (|
T∑
t=1

(st − E[st])| > CT ) ≤ exp

(
−C2T 2

2
∑T

t=1 pt + 2CT
3

)
. (26)

Applying law of large numbers using A7, we have T (T−1∑T

t=1 pt) = TOp(λ−s+2 + (λ1/2+2/T 1/2) log Tκ) ≤

Op(T 5a/2+1/2 log Tκ) where the inequality follows from setting s = (1 − a)/2a and λ = O(T a) as stated in

A3. Let C =
√

2T−b log Tκ be the constant and choose −b = 3a/2 − 1. Consequently, P (|
∑T

t=1(st(θ̃) −
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E[st(θ̃)])| > T−b+1 log Tκ) ≤ exp (− log Tκ). In other words, P (T−1|
∑T

t=1(st(θ̃)−E[st(θ̃)])| > T−b log Tκ) ≤

exp (− log Tκ). Since 0 < a < 1/2, we have 1/4 < b < 1 which implies that T−b log Tκ = o(1). Since the

cardinality is T 1/2, stochastic equicontinuity will hold as long as κ > −1/2. Finally, note that O(
√
λ/T ) =

O(T (a−1)/2) while T−b = T (3a−2)/2 dominates the logarithmic term. Since (a − 1)/2 − (3a − 2)/2 =

(1− 2a)/2 > 0, this implies that T−b log Tκ = o(
√
λ/T ). Hence, the conclusion follows. �

Proof of Proposition 2 : Define Υ̂t(θ̃) = (θ̃ − θ)′X̂1,t + θ′(X̂1,t − X1,t) − Γ′ti3. Without loss of generality,

assume that (θ̂ − θ)′X̂1,t + θ′(X̂1,t − X1,t) Also, recall that

Y1,t = θ′X1,t + Γ′ti3 + ut(τ1)

= θ′X̂1,t + Γ′ti3 + θ′(X1,t − X̂1,t) + ut(τ1)

From now on, let θ be the population parameter to simplify the notation. Denote the first order condition

as

ŴT,τ1 (Υ̂t(θ̃)) = T−1
T∑
t=1

X̂1,tψτ1

(
ut(τ1)− Υ̂t(θ̃)

)
,

where ŴT,τ1 (Υ̂t(θ̂)) = 0 except for a finite number of points since θ̂ is the minimizer. In addition, denote

WT,τ1 (Υ̂t(θ̃)) = T−1
T∑
t=1

X1,tψτ1

(
ut(τ1)− Υ̂t(θ̃)

)
.

That is, the difference between ŴT,τ1 and WT,τ1 is that the former multiplies ψτ1 with X̂1,t while the latter

with X1,t. Expand E[ŴT,τ1 (Υ̂t(θ̂))] around Υ̂t(θ̂) = 0:

E[ŴT,τ1 (Υ̂t(θ̂))]

=T−1
T∑
t=1

E[X̂1,tE[ψτ1 (ut(τ1)− Υ̂t(θ̂))|X1,t]]

=T−1
T∑
t=1

E[X̂1,t(F (Υ̂t(θ̂))− F (0))]

=T−1
T∑
t=1

E[X1,t(F (Υ̂t(θ̂))− F (0))] + T−1
T∑
t=1

E[(X̂1,t − X1,t)(F (Υ̂t(θ̂))− F (0))] (27)

Now, T−1∑T

t=1 E[(X̂(j)
1,t − X(j)

1,t)(F (Υ̂t(θ̂)) − F (0))] = o(T−1/2). For the first term in (27), we apply the
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Mean Value Theorem, thus obtaining

E[Ŵ(j)
T,τ1

(Υ̂t(θ̂))]

=T−1
T∑
t=1

(
E[X(j)

1,t(F (−Γ′i3)− F (0))] + E[X(j)
1,tf(ηΥ̂t(θ̂))X1,t

′](θ̂ − θ) + E[X(j)
1,tf(ηΥ̂t(θ̂))θ](X̂1,t − X1,t)

)
+ o(T−1/2)

(28)

where 0 < η < 1. Now, define

F̂(θ̂) =


f1(ηΥ̂1(θ̂)) 0 . . . 0

0 f2(ηΥ̂2(θ̂)) . . . 0
...

...
...

...

0 0 . . . fT (ηΥ̂T (θ̂))


By A7, since X̂1,t is a smooth function of ŵt which converges almost surely to wt, X̂1,t also converges almost

surely to X1,t. In addition, recall that the ith-diagonal element of F(θ̂) is fi(ηΥi(θ̂)) while θ̂ is consistent

by Proposition 1. Consider F̂(θ̂) = F̂(θ̂) − F(θ̂) + F(θ̂). Then, applying the Slutsky Theorem, we have

F̂(θ̂) − F(θ̂) p→ 0 by A7 and F(θ̂) p→ F(θ) by Proposition 1. Hence, F̂(θ̂) = F(θ) + op(1). Recall that

Q1(θ) = E[X′1F(θ)X1/T ]. To simplify the notation further, let Q1 and F correspond to the values where the

population parameter θ is in the argument. We may then rewrite (28) as

E[ŴT,τ1 (Υ̂t(θ̂))] =Q1,T (θ̂ − θ)− T−1
T∑
t=1

E[ft(ηΥt(θ))X1,t]Γ′ti3 + T−1
T∑
t=1

E[ft(ηΥt(θ))X1,tθ
′](X̂1,t − X1,t)

+ o(T−1/2). (29)

Hence, we rearrange (29) to obtain

θ̂ − θ

=Q−1
1 E[ŴT,τ1 (Υ̂t(θ̂))] +Q−1

1 T−1
T∑
t=1

E[ft(ηΥt(θ))X1,t]Γ′ti3 −Q−1
1 T−1

T∑
t=1

E[ft(ηΥt(θ))X1,tθ
′](X̂1,t − X1,t)

+ o(T−1/2)

=Q−1
1 W1,T (0) +Q−1

1 T−1
T∑
t=1

E[ft(ηΥt(θ))X1,t]Γ′ti3 −Q−1
1 T−1

T∑
t=1

E[ft(ηΥt(θ))X1,tθ
′](X̂1,t − X1,t)

+Q−1
1 (WT,τ1 (Υ̂t(θ̂))−WT,τ1 (0)− E[WT,τ1 (Υ̂t(θ̂))])︸ ︷︷ ︸

A

+Q−1
1 (ŴT,τ1 (Υ̂t(θ̂))−WT,τ1 (Υ̂t(θ̂)))︸ ︷︷ ︸

B

+ o(T−1/2) (30)

109



Following stochastic equicontinuity established by Lemma 2,the rate for (A) is op(
√
λ/T ), since

sup
θ̃∈Θ
‖
√
T
(
WT,τ1 (Υ̂t(θ̃))−WT,τ1 (0)− E[WT,τ1 (Υ̂t(θ̃))−WT,τ1 (0)]

)
‖ = op(

√
λ/T ), (31)

where we have used the fact that E[WT,τ1 (0)] = 0. To establish the rate for (B), observe that ŴT,τ1 (Υ̂t(θ̂))−

WT,τ1 (Υ̂t(θ̂)) ≤ 1
T

∑T

t=1(X̂1,t − X1,t)ψτ1 (ut(τ1)− Υ̂t(θ̂)) ≤ maxt ‖X̂1,t − X1,t‖ 1
T

∑T

t=1 ψτ1 (ut(τ1)− Υ̂t(θ̂)),

where maxt ‖X̂1,t − X1,t‖ = op(1) by A7.15

To apply Chebyshev inequality, check that V ar
(

1
T

∑T

t=1 ψτ1 (ut(τ1)− Υ̂t(θ̂))
)
≤ T−2∑T

t=1[f(ηΥ̂t(θ̂))((θ̂−

θ)′X1,t + θ′(X̂1,t − X1,t)− Γ′ti3)] ≤ T−2∑T

t=1 C
max
f (‖θ̂ − θ‖‖X1,t‖+ ‖θ‖‖X̂1,t − X1,t‖+Kλ−s‖ = op(T−1),

where the second inequality follows from A3 and A4 and the last equality follows from A6 and A7. Collecting

the results, we may conclude that ŴT,τ1 (Υ̂t(θ̂))−WT,τ1 (Υ̂t(θ̂)) = op(T−1).

We will now establish the rate of convergence for ‖θ̂ − θ‖. First consider

θ̂ − θ =−Q−1
1 T−1

T∑
t=1

X1,tψτ1 (ut(τ1)) +Q−1
1 T−1

T∑
t=1

E[ft(ηΥt(θ))X1,t]Γ′ti3

−Q−1
1 T−1

T∑
t=1

E[ft(ηΥt(θ))X1,tθ
′](X̂1,t − X1,t) + op(

√
λ/T ). (32)

Recalling that Γ = [Γ0 Γ1 Γ2], we may express Q−1
1 T−1∑T

t=1 E[ft(ηΥt(θ))X1,t]Γ0,t = Q−1
1 T−1E[X1

′F]Γ0 us-

ing A3. Using the fact that ‖Γ0‖ = (Γ0
′Γ0)1/2 ≤ Kλ1/2−s, consider ‖Q−1

1 T−1E[X1
′F]Γ0‖ ≤ ‖Q−1

1 T−1E[X1
′F]‖‖Γ0‖.

In addition, since Jensen’s inequality implies ‖Q−1
1 T−1E[X1

′F]‖2 ≤ E‖Q−1
1 T−1X1

′F‖2, consider

‖Q−1
1 T−1X1

′F‖2 =T−2tr(FX1Q
−1
1 Q−1

1 X1
′F)

≤Cmax
f Kmin(Q1)−2T−1tr(X1

′FX1/T )

≤Cmax
f Kmin(Q1)−2T−1Kmax(Q1,T )tr(Iλ)

=Op(λ/T ),

which follows from the assumption thatKmax(Q1,T ) = Op(1). Therefore, ‖Q−1
1 T−1∑T

t=1 E[ft(ηΥt(θ))X1,t]Γ0,t‖ =

O(
√
λ2−2s/T ). Repeating with Γ1 and Γ2, we have ‖Q−1

1 T−1∑T

t=1 E[ft(ηΥt(θ))X1,t]Γt′i3‖ = O(
√
λ2−2s/T ).

15Intuitively, letting j denote the element of the design matrix, maxt ‖X̂1,t − X1,t‖ ≤ λmaxt maxj |X̂j1,t −
Xj1,t| = λop(T−1/2). But λ ≤ Op(T 2/5) by A3. Hence, maxt ‖X̂1,t − X1,t‖ = op(1).

110



Next, consider the fact that Q−1
1 T−1∑T

t=1 X1,tψτ1 (ut(τ1)) ≤ Q−1
1 T−1∑T

t=1 X1,t. Since

‖Q−1
1 T−1

T∑
t=1

X1,t‖2 =T−2tr(Q−1
1

T∑
t=1

X1,tX′1,tQ−1
1 )

≤T−1Kmin(Q1)−2tr(
T∑
t=1

X1,t(X′1,t/T )

=T−1Kmin(Q1)−2Kmax(Q1,T )tr(Iλ)

=Op(λ/T ),

this implies that ‖Q−1
1 T−1∑T

t=1 X1,tψτ1 (ut(τ1))‖ = Op(
√
λ/T ).

Finally, considerQ−1
1 T−1∑T

t=1 E[ft(ηΥt(θ))X1,t](X̂′1,t−X′1,t)θ ≤ ‖Q−1
1 T−1∑T

t=1 E[ft(ηΥt(θ))X1,t](X̂′1,t−

X′1,t)‖‖θ‖. Now, ‖θ‖ ≤ maxj θ(j)(i′λiλ)1/2 = O(
√
λ) while ‖Q−1

1 T−1∑T

t=1 E[ft(ηΥt(θ))X1,t](X̂′1,t−X′1,t)‖ =

Op(T−1/2), thus ‖Q−1
1 T−1∑T

t=1 E[ft(ηΥt(θ)|)X1,t](X̂′1,t − X′1,t)θ‖ = Op(
√
λ/T ). This result, combining

with the above, and applying the triangular inequality establishes the proposition. �

Lemma 3. Under A1-A7, T−1/2∑T

t=1 X1,tψτ1 (Yt − θ′X1,t)⇒ N(0, τ1(1− τ2)D1).

Proof : Let c be a fixed vector of unit length and consider T−1/2∑T

t=1 c
′X1,tψτ1 (Yt − θ′X1,t). Consider the

sum of the variance Ψ2
T =

∑T

t=1 V ar (c′X1,tψτ1 (Yt − θ′X1,t)). Now,

V ar
(
c′X1,tψτ1 (Yt − θ′X1,t)

)
=E[|c′X1,t|2ψτ1 (Yt − θ′X1,t)2]− (E[c′X1,tψτ1 (Yt − θ′X1,t)])2

≥E[|c′X1,t|2E[ψτ1 (Yt − θ′X1,t)2|X1,t]]− E[|c′X1,t|2|Ft(Γ′ti3)− τ1|2]

=E[|c′X1,t|2Ft(Γ′ti3)(1− Ft(Γ′ti3))],

where the second last line follows from Jensen’s inequality and the law of iterated expectations. Now, using

Minkowski’s inequality and A6, we can show that E|c′X1,t|2 = O(λ2). In addition, since E|c′X1,t|2 > 0, there

is a positive constant L such that E|c′X1,t|2 > Lλ2. Hence, Ψ2
T ≥ mint TE[|c′X1,t|2Ft(Γ′ti3)(1−Ft(Γ′ti3))] ≥

LTλ2, so that

T∑
t=1

E

[
|c′X1,tψτ1 (Yt − θ′X1,t)|2

Ψ2
T

I
(∣∣∣∣c′X1,tψτ1 (Yt − θ′X1,t)

ΨT

∣∣∣∣ > ε

)]
≤

T∑
t=1

E

[
|c′X1,t|2+δ

L1+δT 1+δλ2+δε1+δ

]
≤T

λ2+δ maxj c2+δ
j ∆

L1+δT 1+δλ2+δε1+δ → 0

since δ > 0. Therefore, by the Lindeberg-Feller Central Limit Theorem T−1/2∑T

t=1 c
′X1,tψτ1 (Yt − θ′X1,t)

converges to a normal distribution and so does T−1/2∑T

t=1 cX1,tψτ1 (Yt−θ′X1,t) by the Cramer-Wold device.
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�

Proof of Proposition 3 : This follows from Lemma 3, the assumption that Q3,T converges to a full column

rank matrix Q3, and the fact that
√
T (γ̂(τ2)− γ(τ2)) is asymptotically normal. �
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Figure 1

Estimated α2 in Case 1.

This figure shows the estimates of α̂2 using the regression function of H = α0 + α1X1 + α2Y2 +∑I

i=1 ϕi
ŵ(τ2)i
I! Y2 when the true data generating process is Y1 = α0 + α1X1 + (α2 + δ(λew + u))Y2,

where (α0, α1, α2, δ, λ) = (3, 4, 4, 5, 3), (β1, β2, β3) = (1, 2, 3), X1 ∼ t3, X2 ∼ N(15, 2), w ∼ N(0, 0.5) and
u ∼ N(0, 1). Panel A shows the true parameter value α2 + δ(λeF

−1
w (τ2) + F−1

u (τ1)).

A. True B. Linear Expansion

C. Quadratic Expansion D. Cubic Expansion

E. Quartic Expansion
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Figure 2

Estimated α2 in Case 2.

This figure shows the estimates of α̂2 using the regression function of H = α0 + α1X1 + α2Y2 +∑I

i=1 ϕi,0
ŵ(τ2)i
I! +

∑I

i=1 ϕi,1
ŵ(τ2)i
I! X1 +

∑I

i=1 ϕi,2
ŵ(τ2)i
I! Y2 when the true data generating process is

Y1 = α0 + α1X1 + (α2 + δ(λew + u))Y2, where (α0, α1, α2, δ, λ) = (3, 4, 4, 5, 3), (β1, β2, β3) = (1, 2, 3),
X1 ∼ t3, X2 ∼ N(15, 2), w ∼ N(0, 0.5) and u ∼ N(0, 1). Panel A shows the true parameter value
α2 + δ(λeF

−1
w (τ2) + F−1

u (τ1)).

A. True B. Linear Expansion

C. Quadratic Expansion D. Cubic Expansion

E. Quartic Expansion 114



Figure 3

Estimated α2 in Case 3.

This figure shows the estimates of α̂2 using the regression function of H = α0 + α1X1 + α2Y2 +∑I

i=1 ϕi
ŵ(τ2)i
I! Y2 when the true data generating process is Y1 = (α0 + δ̃(λ̃ew + u)) + (α1 + δ̃(λ̃ew +

u))X1 + (α2 + δ(λew + u))Y2, where (α0, α1, α2, δ, λ, δ̃, λ̃) = (3, 4, 4, 5, 3, 10, 5), (β1, β2, β3) = (1, 2, 3),
X1 ∼ t3, X2 ∼ N(15, 2), w ∼ N(0, 0.5) and u ∼ N(0, 1). Panel A shows the true parameter value
α2 + δ(λeF

−1
w (τ2) + F−1

u (τ1)).

A. True B. Linear Expansion

C. Quadratic Expansion D. Cubic Expansion

E. Quartic Expansion 115



Figure 4

Intercept Term - M1 Money Supply.

This figure shows the estimated intercept in the output process equation based on a cubic (Panels A and
B) or quartic (Panels C and D) regression model. The monetary instrument is M1 money supply. The
cubic or quartic expansion involves the intercept term, the first four lags of the output growth and the
lag of the first difference Treasury yield. “Lags” refers to the number of output lags used in the output
process equation.

A. Cubic, 8 Lags B. Cubic, 12 Lags

C. Quartic, 8 Lags D. Quartic, 12 Lags
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Figure 5

Intercept Term - M2 Money Supply.

This figure shows the estimated intercept in the output process equation based on a cubic (Panels A and
B) or quartic (Panels C and D) regression model. The monetary instrument is M1 money supply. The
cubic or quartic expansion involves the intercept term, the first four lags of the output growth and the
lag of the first difference Treasury yield. “Lags” refers to the number of output lags used in the output
process equation.

A. Cubic, 8 Lags B. Cubic, 12 Lags

C. Quartic, 8 Lags D. Quartic, 12 Lags
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Figure 6

Cross-Section of Intercept Surface - Cubic Regression & M1 Money Supply.

This figure plots the cross-section of Panels A and B in Figure 4 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the cubic regression model.

A. 8 Lags

B. 12 Lags
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Figure 7

Cross-Section of Intercept Surface - Quartic Regression & M1 Money Supply.

This figure plots the cross-section of Panels C and D in Figure 4 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the quartic regression model.

A. 8 Lags

B. 12 Lags
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Figure 8

Cross-Section of Intercept Surface - Cubic Regression & M2 Money Supply.

This figure plots the cross-section of Panels A and B in Figure 5 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the cubic regression model.

A. 8 Lags

B. 12 Lags
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Figure 9

Cross-Section of Intercept Surface - Quartic Regression & M2 Money Supply.

This figure plots the cross-section of Panels C and D in Figure 5 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the quartic regression model.

A. 8 Lags

B. 12 Lags
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Figure 10

Slope of the First Lag of Output Growth - M1 Money Supply.

This figure shows the estimated slope of the first lag of output growth in the output process equation based
on a cubic (Panels A and B) or quartic (Panels C and D) regression model. The monetary instrument is
M1 money supply. The cubic or quartic expansion involves the intercept term, the first four lags of the
output growth and the lag of the first difference Treasury yield. “Lags” refers to the number of output
lags used in the output process equation.

A. Cubic, 8 Lags B. Cubic, 12 Lags

C. Quartic, 8 Lags D. Quartic, 12 Lags
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Figure 11

Slope of the First Lag of Output Growth - M2 Money Supply.

This figure shows the estimated slope of the first lag of output growth in the output process equation based
on a cubic (Panels A and B) or quartic (Panels C and D) regression model. The monetary instrument is
M2 money supply. The cubic or quartic expansion involves the intercept term, the first four lags of the
output growth and the lag of the first difference Treasury yield. “Lags” refers to the number of output
lags used in the output process equation.

A. Cubic, 8 Lags B. Cubic, 12 Lags

C. Quartic, 8 Lags D. Quartic, 12 Lags
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Figure 12

Cross-Section of the First Lag of Output Growth Slope Surface - Cubic
Regression & M1 Money Supply.

This figure plots the cross-section of Panels A and B in Figure 10 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the cubic regression model.

A. 8 Lags

B. 12 Lags
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Figure 13

Cross-Section of the First Lag of Output Growth Slope Surface - Quartic
Regression & M1 Money Supply.

This figure plots the cross-section of Panels C and D in Figure 10 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the quartic regression model.

A. 8 Lags

B. 12 Lags

125



Figure 14

Cross-Section of the First Lag of Output Growth Slope Surface - Cubic
Regression & M2 Money Supply.

This figure plots the cross-section of Panels A and B in Figure 11 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the cubic regression model.

A. 8 Lags

B. 12 Lags
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Figure 15

Cross-Section of the First Lag of Output Growth Slope Surface - Quartic
Regression & M2 Money Supply.

This figure plots the cross-section of Panels C and D in Figure 11 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the quartic regression model.

A. 8 Lags

B. 12 Lags
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Figure 16

Slope of the First Lag of First Differenced Treasury Yield- M1 Money Supply.

This figure shows the estimated slope of the lagged first differenced Treasury yield in the output process
equation based on a cubic (Panels A and B) or quartic (Panels C and D) regression model. The monetary
instrument is M1 money supply. The cubic or quartic expansion involves the intercept term, the first four
lags of the output growth and the lag of the first difference Treasury yield. “Lags” refers to the number of
output lags used in the output process equation.

A. Cubic, 8 Lags B. Cubic, 12 Lags

C. Quartic, 8 Lags D. Quartic, 12 Lags
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Figure 17

Slope of the First Lag of First Differenced Treasury Yield - M2 Money Supply.

This figure shows the estimated slope of the first lag of first difference Treasury yield in the output process
equation based on a cubic (Panels A and B) or quartic (Panels C and D) regression model. The monetary
instrument is M2 money supply. The cubic or quartic expansion involves the intercept term, the first four
lags of the output growth and the lag of the first difference Treasury yield. “Lags” refers to the number of
output lags used in the output process equation.

A. Cubic, 8 Lags B. Cubic, 12 Lags

C. Quartic, 8 Lags D. Quartic, 12 Lags
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Figure 18

Cross-Section of the First Lag of First Differenced Treasury Yield Slope
Surface - Cubic Regression & M1 Money Supply.

This figure plots the cross-section of Panels A and B in Figure 16 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the cubic regression model.

A. 8 Lags

B. 12 Lags
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Figure 19

Cross-Section of the First Lag of First Differenced Treasury Yield Slope
Surface - Quartic Regression & M1 Money Supply.

This figure plots the cross-section of Panels A and B in Figure 16 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the cubic regression model.

A. 8 Lags

B. 12 Lags
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Figure 20

Cross-Section of the First Lag of First Differenced Treasury Yield Slope
Surface - Cubic Regression & M2 Money Supply.

This figure plots the cross-section of Panels A and B in Figure 17 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the cubic regression model.

A. 8 Lags

B. 12 Lags
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Figure 21

Cross-Section of the First Lag of First Differenced Treasury Yield Slope
Surface - Quartic Regression & M2 Money Supply.

This figure plots the cross-section of Panels C and D in Figure 17 for the 10th, 50th and 90th percentile
output sections. The horizontal line plots the median of the monetary shock. The dash lines are the two
standard deviation bands. The estimated values are reported from the quartic regression model.

A. 8 Lags

B. 12 Lags
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