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Patricia C. Underwood 

Dissertation Chair: Catherine Y. Read, PhD, RN 

Abstract 

Background and Significance:  The metabolic syndrome is a heterogeneous disorder leading to 

increased morbidity and mortality.  Components of the metabolic syndrome are known to be 

inherited, however efforts to identify genomic markers in humans have been unsuccessful and a 

candidate-gene/intermediate phenotype approach may be useful. Evidence supports a 

relationship between altered metabolic function and three candidate genes, caveolin-1 (CAV1), 

peroxisome proliferator receptor-activated gamma (PPARγ), and angiotensinogen (AGT). These 

genes may serve as markers for the co-aggregation of insulin resistance and hypertension.  

Research Question: To examine whether single nucleotide polymorphisms (SNPs) in the CAV1, 

PPARγ and AGT genes are associated with the co-aggregation of insulin resistance and 

hypertension. 

Methods: Three gene association studies were conducted in a Caucasian hypertensive cohort 

(HyperPATH).  The homeostasis assessment model (HOMA-IR), hyperinsulinemic euglycemic 

clamp, and salt sensitive blood pressure were determined in each subject. Statistical analyses 

were conducted using a general linear model accounting for relatedness and adjusting for the 

following covariates: age, gender, body mass index, study site. Replication was assessed in a 

hypertensive Mexican-American cohort (HTN-IR) for the CAV1 gene and a hypertensive 

African American cohort (HyperPATH) for the PPARγ gene. 
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Results: SNPs of the CAV1 gene were significantly associated with insulin resistance in 

Caucasians from HyperPATH. These results were replicated in the HTN-IR cohort. A SNP of the 

PPARγ gene was associated with salt sensitive blood pressure and increased plasma renin levels 

in Caucasians and African Americans from HyperPATH. SNPs of the AGT gene were associated 

with insulin sensitivity in Caucasians from HyperPATH. 

Conclusion: CAV1 and AGT are genomic markers for the co-aggregation of insulin resistance 

and hypertension. The PPARγ gene is a potential genomic marker for vascular dysfunction in 

hypertension.  

Clinical Perspective: Genomic markers for insulin resistance exist in human populations with 

hypertension.  These markers explain the inter-individual variability of insulin resistance and 

hypertension and help identify potential underlying mechanisms.  Use of these bio-markers in 

clinical practice may improve individualized prevention and treatment strategies, decreasing the 

incidence of and improving outcomes for this chronic disease. Promoting health through 

individualized care makes the incorporation of genomic markers into nursing practice essential. 
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Chapter 1 

Statement of the Problem 

Introduction. 

The metabolic syndrome leads to long term health complications, including 

cardiovascular disease and type 2 diabetes mellitus (T2DM) (Lorenzo et al., 2003; Lorenzo, 

Williams, Hunt, & Haffner, 2007; Obunai, Jani, & Dangas, 2007).  In the United States, this 

complex syndrome is on the rise, affecting approximately 20-30% of individuals  (Park et al., 

2003; Davila et al., 2010), creating a strain on the health care system and increasing total health 

care costs (Clouse, Zitter, & Herman, 2002; Cornier et al., 2008; Elliott, 2003). Ill-defined 

definitions and the heterogeneous nature of the metabolic syndrome have led to a poor 

understanding of its cause, hindering the development of effective prevention and treatment 

strategies. An improved understanding of the syndrome may further efforts to improve 

individualized management of the metabolic syndrome, decreasing related morbidity and 

mortality.  

Definition of metabolic syndrome: A heterogeneous disorder. 

Originally defined by G.M. Reaven and termed syndrome X, the metabolic syndrome 

was characterized for clinicians to identify individuals at risk for increased cardiovascular 

disease (Reaven, 2005; Reaven, 1988). Over the past twenty years, multiple definitions of the 

metabolic syndrome have ensued (Cornier et al., 2008) (see table 1 below).  All definitions 

include a variation of four components: hypertension, dyslipidemia, abdominal obesity and 

insulin resistance (IR). However, the number of components required to be present in an 

individual and the characterization of IR and hypertension differ among definitions (Alberti & 

Zimmet, 1998; Alberti, Zimmet, & Shaw, 2006; Balkau & Charles, 1999; Bloomgarden, 2003).  
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For example, IR is defined as an elevated fasting insulin level (hyperinsulinemia), impaired 

fasting glucose (IFG) (fasting serum glucose>100mg/dl), or impaired glucose tolerance (IGT) 

(serum glucose >200mg/dl 120 minutes after 75gm glucose load) (Alberti & Zimmet, 1998; 

Balkau & Charles, 1999; Bloomgarden, 2003; Lorenzo, Williams, Hunt, & Haffner, 2007) in 

different definitions of the metabolic syndrome.  The heterogeneous nature of these definitions 

results in the diagnosis of the metabolic syndrome in an ill-defined group of individuals (Cornier 

et al., 2008). 

Table 1. Definitions of the Metabolic Syndrome. WHO: World Health Organization, EGIR: 

European Group for the study of Insulin Resistance, NCEP ATPIII: National Cholesterol 

Education Program Adult Treatment Panel III, AACE: American Academy of Clinical 

Endocrinologists, IDF: International Diabetes Federation, WC=waist circumference, 

WHR=waist hip ratio, BP= blood pressure. 

WHO 1998 EGIR 1999 NCEP ATPIII 2005 AACE 2003 IDF 2006
Hyperinsulinemia: 

central obesity: WC(impaired fasting glucose Hyperinsulinemia: top 25% Impaired glucose tolerance: 
glucose > 200mg/dl at 180min after 

 

 

 

 

(IFG) and impaired of fasting insulin values among
glucose tolerance (IGT) 75g oral glucose tolerance test and non-diabetic individuals and
and two of the following: two of the following: two or more of the following:Three or more of the following:
abdominal obesity: waist 
hip ratio (WHR)>0.9, 

Triglycerides >=150mg/dlBMI>=30kg/m2, waist abdominal obesity: WC 
Triglycerides:>=150mg/dl

abdominal obesitycircumference (WC)>37 >=94cm for men, >80cm for : WC=>40 in. HDL-C <40mg/dl for 
women inches for men, >35in. For women

Dyslipidemia: men, <50mg/dl for women
triglycerides>=150mg/dl HDL-Dyslipidemia: Dyslipidemia: triglycerides 

HDL-C<40mg/dl men <50mg/dl C<40mg/dl for men, <50mg/dl for triglycerides> 150mg/dl, >=2.0mmol/L and HDL-C 
for  womenwomen (if both count for 2)HDL-C<35mg/dl <1.0mg/dl

Hypertension: 
BP=140/90mmHG or Impaired Fasting Glucose: Hypertension: Hypertension: 

BP>140/90mmHG  Hypertension: BP>=130/85mmHg antihypertensive medications BP>=130/85mmHg >100mg/dl
Impaired Fasting Glucose:
glucose>=6.1mmol/L

Impaired Fasting Glucose: 
>=100mg/dl
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Metabolic syndrome: unclear etiology. 

The second problem hindering the development of effective prevention and treatment 

strategies is an unclear understanding of the cause of the metabolic syndrome. While it is known 

that hypertension, hyperinsulinemia, dyslipidemia, and IR often co-aggregate in individuals 

(Chen, Jeng, Hollenbeck, Wu, & Reaven, 1988; Ferrannini et al., 1987; Manicardi, Camellini, 

Bellodi, Coscelli, & Ferrannini, 1986), the underlying mechanism of this co-aggregation remains 

elusive. Insulin resistance was originally proposed as the primary mechanism for the co-

aggregation of these metabolic conditions (Reaven, 1988). However, some have questioned this 

tenet, citing an inability to definitively relate IR to all components of the metabolic syndrome 

(Kahn et al., 2005) and  recognizing the emerging role of adiposity and inflammation on the 

development of the metabolic syndrome (Ferrannini et al., 2007; Nishimura, Manabe, & Nagai, 

2009).   It is possible that the heterogenic nature of the metabolic syndrome is contributing to the 

controversy surrounding the syndrome’s etiology. Clarifying the definition would support 

research efforts to address this problem and improve patient outcomes. 

Proposed solution:   identifying genomic biomarkers in homogeneous subsets. 

Recent evidence supports the concept that many illnesses are not diseases but a collection 

of syndromes with a common final presentation, e.g., an elevated blood pressure for 

hypertension (Williams, 1994). Thus, improved outcomes may result by first identifying 

homogeneous subsets of heterogeneous disorders and treating these subsets, rather than the final 

presenting symptom (Williams, 1994; Williams & Fisher, 1997). This approach is similar to a 

culture and sensitivity test, where clinicians identify subcategories of bacteria within a larger 

heterogeneous condition (fever) and individualize treatment based on the bacterial culture 

(Williams, 2009).  Currently, homogeneous subsets of chronic disease are identified through 
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phenotype analysis, a cumbersome and costly task requiring stringent environmental control 

within a research setting. Fortunately, another, simpler method of identifying homogeneous 

subsets exists: genotyping.   

Specifically, genetic biomarkers associated with well defined intermediate phenotypes of 

the metabolic syndrome will identify homogeneous subsets of the disease facilitating an 

improved understanding of disease etiology and identifying those most at risk. A genetic 

approach is reasonable to pursue since the co-aggregation of hypertension, IR, abdominal 

obesity, and dyslipidemia occurs more frequently in related individuals than non-related 

individuals (Raji, Williams, Hopkins, Simonson, & Williams, 2006; Tang et al., 2006) 

demonstrating familial aggregation. Using this approach, genetic variants of candidate genes 

were examined to determine whether they are associated with the homogeneous intermediate 

phenotype of the metabolic syndrome, IR and hypertension.  

Significance 

 The prevalence of the metabolic syndrome, particularly the sub-phenotype IR and 

hypertension, is on the rise, creating a strain on the health care system and increasing total health 

care costs (Elliott, 2003; McKeown et al., 2004). Poor treatment strategies lead to long term 

health complications, as well as increased morbidity and mortality (Brown, Pedula, & Bakst, 

1999; Clouse et al., 2002; Collins, 2002). For example, patients with a cluster of metabolic 

abnormalities, including IR and hypertension, are more likely to have polycystic ovary 

syndrome, fatty liver, cholesterol gallstones, asthma, sleep disturbances, and some forms of 

cancer (Grundy, 2004). Clearly, the presence of poorly treated IR and hypertension contributes to 

the onset of many long term health complications with devastating effects.  
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 The identification of genomic biomarkers associated with a homogeneous subset of the 

metabolic syndrome, IR and hypertension, may support the development of individualized 

treatment approaches. The results of this study contribute to the following: 

  A priori identification of patients at risk for IR and hypertension, facilitating  

individualized health promotion and disease prevention strategies, decreasing the 

incidence of the disease 

  An improved understanding of the pathophysiology of the disease, providing information 

for future individualized pharmacologic, physiologic, and behavioral  treatment strategies 

and recommendations for individualized disease management (exercise, diet, other health 

behavior strategies), decreasing the long term complications of the illness, increasing 

overall health and quality of life. 

 The significance of identifying genomic information for the prevention and treatment of 

chronic illnesses is recognized by nurse scientists. Frazier et al. (2004) and Conley & Tinkle 

(2007) describe the importance of using genetic information to support individualized prevention 

and treatment strategies in chronic illness. Further, the National Institute of Nursing Research 

(NINR) recognizes the need “to identify susceptibility genes for at-risk individuals for the design 

of interventions to moderate risk” (National Institute of Nursing Research, 2006).  Thus, to 

nurses, whose profession is directly involved in identifying individuals at risk for chronic disease 

and providing education and support for prevention and treatment, knowledge of genetic markers 

for IR and hypertension is important and will facilitate steps to improve both nursing practice 

and patient care. 
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Definition of Terms  
  The outlined genomic approach provides a framework to improve the identification and 

treatment of the co-aggregation of IR and hypertension. The following definitions clarify 

important terms related to the approach and implementation of this study. 

Candidate Gene Study: A research methodology used to identify genomic biomarkers. Genes are 

chosen based on their known role in a specific physiologic pathway. This is a hypothesis-based, 

functional cloning approach (Amos, 2007). 

Caveolin-1 (CAV1) gene: located at chromosome 7q31 and the first candidate gene of this study. 

This gene is one of three genes that make up caveolae, plasma membrane lipid domains involved 

in the sequestering and organization of cell signaling proteins.  CAV1 is known to be involved in 

insulin signaling (Kabayama et al., 2007; Yamamoto et al., 1998), insulin mediated glucose 

uptake (Penumathsa et al., 2008; Yuan, Hong, Yao, & Liao, 2007), and vascular tone (Lam et al., 

2006).   

Peroxisome Proliferator-Activated Receptor gamma (PPARγ) gene: located on chromosome 

3p25 and the second candidate gene of this study. This gene encodes PPARγ, a ligand activated 

transcription factor, involved in adipogenesis and glucose metabolism and recently found to be 

involved with regulation of renin gene transcription (Todorov, Desch, Schmitt-Nilson, Todorova, 

& Kurtz, 2007; Weatherford, Itani, Keen, & Sigmund, 2007).   

Angiotensinogen (AGT) gene: located at 1q31, the AGT gene encodes angiotensinogen. 

Angiotensinogen is the first component of the renin-angiotensin-aldosterone system (RAAS), is 

produced and released into the circulation by the liver, and is a precursor to both Angiotensin I 

(AngI) and AngII(AngII) (Basso & Terrango, 2001). The RAAS is known to directly affect the 

insulin signaling pathway (Velloso et al., 1996; Velloso, Folli, Perego, & Saad, 2006) and is 
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involved in the development of hypertension (Williams, 1982) making the first peptide of this 

system an important variable of study. 

Single nucleotide polymorphisms (SNPS): Common, but minute, variations that occur in human 

DNA at a frequency of one every 1,000 bases. These variations can be used to track inheritance 

in families (Amos, 2007). 

Allele: One of the possible mutational states of a gene, distinguished from other alleles by 

phenotypic effects (Klug & Cummings, 1997). 

Minor Allele: The less frequent allele present in a population (Klug & Cummings, 1997). 

Major Allele The more frequent allele present in a population (Klug & Cummings, 1997). 

Intermediate Phenotype: a study design that is driven by the concept that the “disease” (distant 

phenotype) consists of several homogeneous subsets each sharing a common mechanism 

manifest by a shared intermediate phenotype, and each resulting in  a common distant 

phenotype—e.g., hypertension and/or T2DM (Williams, 1994).    

Insulin Resistance: fasting glucose between 110-125mg/dl or a two hour glucose challenge 

glucose between 140 and 200mg/dl as defined by the American Academy of Clinical 

Endocrinologists (AACE) (Einhorn et al., 2003). 

Hypertension: an elevated blood pressure > 135/85mmHG on no anti-hypertensive medications, 

(Raji, 2001).   

Salt Sensitive Blood Pressure:  An increased in blood pressure greater than 10mmHg in response 

to salt loading (systolic, diastolic, mean arterial pressure). This variable was examined as a 

measurement of vascular dysfunction in the hypertensive population.  
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Purpose 

 The purpose of this study was to identify genomic biomarkers associated with the 

homogeneous intermediate phenotype of the metabolic syndrome, insulin resistance and 

hypertension. This study was conducted using a secondary analysis from the HyperPATH 

dataset, a dataset of individuals with and without hypertension collected from Boston, MA, Salt 

Lake City, UT, Nashville, TN, Paris, France, and Italy.  

The specific aims of this study are: 

1. To determine if polymorphisms in three candidate genes (CAV1, PPARγ, and AGT) 

are associated with insulin resistance in individuals with hypertension. 

2. To determine if the underlying physiology of the significant gene associations is 

related to vascular dysfunction, measured by salt sensitivity. 

Research questions. 

Q.1a. Is there a relationship between polymorphisms in the CAV1 gene and insulin resistance in 

individuals with hypertension?  

 H.01a. Individuals who are homozygous minor allele carriers for SNPs in CAV1 will not 

be more insulin resistant than heterozygote or homozygous major allele carriers.  

 H.1a. Individuals who are homozygous minor allele carriers for SNPs in CAV1 will be 

more insulin resistant than heterozygote or homozygous major allele carriers.  

Q.1b. Is there a relationship between polymorphisms in the CAV1 gene and salt sensitivity in 

individuals with hypertension?  

 H.01b. Individuals who are homozygous minor allele carriers for SNPs in CAV1 will not 

be more salt sensitive than heterozygote or homozygous major allele carriers.  
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 H.1b. Individuals who are homozygous minor allele carriers for SNPs in CAV1 will be 

more salt sensitive than heterozygote or homozygous major allele carriers.  

Q.2a. Is there a relationship between polymorphisms in the PPARγ gene and insulin resistance in 

individuals with hypertension?  

 H.02a. Individuals who are homozygous minor allele carriers for SNPs in, PPARγ will 

not be more insulin resistant than heterozygote or homozygous major allele carriers.   

 H.2a. Individuals who are homozygous minor allele carriers for SNPs in the PPARγ gene 

will be more insulin resistant than heterozygote or homozygous major allele carriers.  

Q.2b. Is there a relationship between polymorphisms in the PPARγ gene and salt sensitivity in 

individuals with hypertension?  

 H.02b. Individuals who are homozygous minor allele carriers for SNPs in the PPARγ 

gene will not be more salt sensitive than heterozygote or homozygous major allele carriers.  

 H.2b. Individuals who are homozygous minor allele carriers for SNPs in the PPARγ gene 

will be more salt sensitive than heterozygote or homozygous major allele carriers.  

Q.3a. Is there a relationship between polymorphisms in the AGT gene and insulin resistance in 

individuals with hypertension?  

 H.03a. Individuals who are homozygous minor allele carriers for SNPs in AGT gene will 

not be more insulin resistant than heterozygote or homozygous major allele carriers.  

 H.3a. Individuals who are homozygous minor allele carriers for SNPs in the AGT gene 

will be more insulin resistant than heterozygote or homozygous major allele carriers.  

Q.3b. Is there a relationship between polymorphisms in the AGT gene and salt sensitivity in 

individuals with hypertension?  
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 H.03a. Individuals who are homozygous minor allele carriers for SNPs in AGT gene will 

not be more salt sensitive than heterozygote or homozygous major allele carriers.  

 H.3b. Individuals who are homozygous minor allele carriers for SNPs in the AGT gene 

will be more salt sensitive than heterozygote or homozygous major allele carriers.  

Assumptions 

The first assumption of this study is that the intermediate phenotype/candidate gene 

method is a more specific approach to identifying true positive gene associations with disease. 

Alternate approaches for identifying genomic markers for chronic disease exist, including the 

genome wide association study approach and the rare variant approach (Amos, 2007; Bodmer & 

Bonilla, 2008); however these results have not been successful in the search for genes related to 

the metabolic syndrome (Lusis, Attie, & Reue, 2008). Alternatively, the intermediate phenotype 

approach has been successful in identifying genomic markers for other complex disease, 

including hypertension, and therefore, may be successful in the search for genomic markers of an 

intermediate phenotype of the metabolic syndrome. 

 A second assumption is that the genotype assigned by the genotyping platform represents 

the actual nucleotide harbored by an individual at a particular locus.  Quality control metrics, as 

described in the statistics section, were tested to identify SNPs genotyped incorrectly (Ryckman 

& Williams, 2008).  

 A third assumption is that the demographic and clinical information recorded in the 

HyperPATH dataset is accurate. Quality control metrics including assessing each variable’s 

numeric range and removing influential outliers were conducted to ensure the data used is clean 

and appropriate for analysis. 
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Chapter 2 

Theory 

Conceptual framework.  

Historical perspective. 

 Scientists have recognized the difficulty of studying genetics in heterogeneous 

phenotypes for some time.  In fact, Gregor Mendel, often cited as the father of genetics, 

commented on this very problem in 1856, writing: 

The value and utility of any experiment are determined by the fitness of the material to 

the purpose for which it is used, and thus in the case before us it can not be immaterial 

what plants are subjected to what experiment and in what manner such experiment is 

conducted (p.2). Some characters do not permit sharp and certain separations since the 

differences of the more or less nature are often difficult to define (Mendel, 1856). (p.4.) 

This quote reveals Mendel’s struggle that some characteristics do not permit clear phenotypic 

definitions, making it difficult to conduct well defined genetic experiments and interpret the 

results. 

 Intermediate phenotype-candidate gene framework. 

 The intermediate phenotype- candidate gene approach for the identification of biomarkers 

in complex disease proposed by Dr. Gordon Williams (Williams, 1994; Williams, Hollenberg, 

Hopkins, & Jeunemaitre, 1996) provides a solution to the dilemma outlined by Mendel and is the 

conceptual framework used for this study.  The hallmark of the intermediate phenotype 

framework is a clearly defined phenotype, studied within a tightly controlled environmental 

setting. By clarifying the phenotype of interest, the search for genes within known physiologic 

pathways is easier, increasing the likelihood of identifying genomic biomarkers of disease. 
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 In the case of the metabolic syndrome, multiple disease processes including dyslipidemia, 

IR, hypertension, older age, and obesity contribute to the syndrome’s onset.  However, by 

clarifying the physiologic process and analyzing the particular intermediate phenotype of the 

metabolic syndrome, a clearer picture emerges.  Further, by controlling for extraneous variables 

that may be contributing to the disease outcome (i.e., diet, medication, activity level); one can 

more clearly delineate the relationship between genes and physiologic processes that contribute 

to the particular intermediate phenotype.   

 Previous success. 

The identification of genomic markers using well-defined intermediate phenotypes has 

been successful in other cases of complex illness, particularly in the case of hypertension 

(Agarwal, Williams, & Fisher, 2005; Fisher et al., 2002; Pojoga et al., 2006; Williams, 1994).  

Non-modulating hypertension is one intermediate phenotype that occurs in 25% of all 

individuals with hypertension (Hollenberg, Moore, Shoback, Redgrave, Rabinowe, & Williams, 

1986; Williams et al., 1992; Williams, Hollenberg, Hopkins, & Jeunemaitre, 1996).  Research 

participants with non-modulating hypertension have alterations in the response of the RAAS 

exhibiting a blunted aldosterone response to angiotensin II (AngII) on a low salt diet and altered 

renal blood flow on a high salt diet (Hollenberg, et al. 1986; G. H. Williams, Hollenberg, 

Hopkins, & Jeunemaitre, 1996).  The angiotensin converting enzyme (ACE) gene, 

angiotensinogen (AGT) gene, and the aldosterone synthase gene (CYP11B2) have been found to 

be associated with non-modulating hypertension (Kosachunhanun et al., 2003).  A separate 

intermediate phenotype of hypertension, low renin hypertension, is defined as individuals with 

hypertension and a low plasma renin activity (PRA) level (<2.5mU/ml) in response to standing 

for 45 minutes (upright posture study) (Williams, Williams, Jeunemaitre, Hopkins, & Conlin, 
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2005). The adducin gene and beta-2 adrenergic gene have been associated with low-renin 

hypertension (Agarwal, Williams, & Fisher, 2005; Fisher et al., 2002; Pojoga et al., 2006). The 

successful use of these two intermediate phenotypes supports this framework as a model for 

future studies investigating the genomics of complex disease. 

Premise 

 The theory underlying the current study is the thrifty genotype theory (Neel, 1962). The 

theory purports that a human trait enabling the efficient storage of food as energy has been 

passed on through thousands of generations. Due to the advantageous nature of the trait during 

times of famine and starvation, it has been conserved throughout human evolution. However, in 

recent times of food abundance (i.e., modern day United States), this inherited trait results in 

excessive fat storage, obesity and metabolic dysfunction.    

 The theory guides the current studies in three ways.  First, the theory supports the notion 

that metabolic dysfunction is inherited and caused by evolutionary conserved genetic variants, 

supporting a search for genomic markers of the metabolic syndrome.  Second, the theory 

proposes that metabolic dysfunction occurs frequently in society, due to its conservation 

throughout evolution.  This is true today where a high incidence of the metabolic syndrome, 

hypertension, and cardiovascular disease occurs (Park et al., 2003). Third, the theory supports the 

notion that the disease-causing genomic variants associated with metabolic dysfunction occur 

frequently in the population and are not rare variants.  For this reason, the candidate gene 

approach used in this study analyzed SNPs that occur relatively frequently in the population (i.e., 

minor allele frequency (MAF) greater than 10%).  

 Many scientists support the thrifty genotype theory as an appropriate premise for the 

search for genomic markers of complex disease (Joffe & Zimmet, 1998; Sharma, 1998). 
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Research findings identifying genomic markers of T2DM support this theory.  For example, 

Altshuler et al (2000) found that the ancestral allele of the PPARγ SNP Pro12Ala (a proline [Pro] 

to alanine [Ala] change) increases a person’s risk for T2DM (and altered glucose metabolism) 

while the less common variant, Ala is protective (Altshuler, et al. 2000).  

Literature Review 

 Introduction. 

This literature review details the current state of the science related to the co-aggregation 

of IR and hypertension in humans.  First, research analyzing the effects of metabolic 

dysfunction, specifically hyperinsulinemia, on various tissues is reviewed to demonstrate that 

hyperinsulinemia and genes associated with this state may contribute to the onset of IR and 

hypertension.  Second, the inheritance pattern of the metabolic syndrome and the co-aggregation 

of IR and hypertension is reviewed indicating that the search for genomic markers is reasonable. 

Third, a detailed explanation of each candidate gene and its known role in the physiological 

pathways of insulin signaling and endothelial function will be reviewed to support the decision to 

analyze these genes as genomic markers for the co-aggregation of IR and hypertension. 

Definition of insulin resistance: Altered glucose uptake. 

   Insulin stimulated glucose uptake in both the adipose and muscle tissue is necessary for 

whole body glucose homeostasis (Kahn, 1996). Insulin resistance can result from alterations with 

either 1) intracellular insulin signaling or 2) altered insulin stimulated glucose uptake in the 

muscle or adipose tissue by the intra-cellular transporter glut-4 ( Kahn, Hull, & Utzschneider, 

2006). The insulin signaling pathway has been studied extensively  demonstrating the strong 

interplay between different signaling proteins and sub-pathways including PI-3 kinase, AKT, and 

glycogen synthase kinase 3 (GSK3)  (White, 1997; White, 1998). Interference with any one of 
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these interactions can result in altered insulin signaling and subsequent IR (Boura-Halfon & 

Zick, 2009).  Additionally, alterations in the transport of glut-4, an intracellular transport 

molecule required for insulin stimulated glucose uptake, to the plasma membrane can cause IR in 

humans.  Individuals with T2DM demonstrate both decreased glut-4 levels in adipose and 

muscle tissue (Garvey, Maianu, Hancock, Golichowski, & Baron, 1992; Giacchetti et al., 1994) 

as well as alterations in intracellular insulin signaling pathway (Boura-Halfon & Zick, 2009), 

highlighting the importance of these two pathways in the development of IR.  

Definition of insulin resistance: beta-cell failure. 

 Alterations in insulin signaling and/or insulin stimulated glucose uptake are not the sole 

mechanisms for insulin resistance. Damage to pancreatic beta cells may also contribute to insulin 

resistance since they are the source of insulin in the body.  Individuals with T2DM have 

decreased beta cell mass with impaired insulin secretion (Talchai, Lin, Kitamura, & Accili, 

2009).  The mechanism underlying the decrease in beta cell mass is yet to be determined, but is 

believed to be a slow, progressive loss after an initial phase of hypertrophy with 

hyperinsulinemia (Talchai et al., 2009).  This loss of beta cell mass results in less insulin 

secretion, lowering the availability of insulin in the body and resulting in hyperglycemia and IR 

(Kahn, 1996).  Multiple events seem to be causing beta cell mass depletion including 

inflammation, increased free fatty acids, and systemic hyperinsulinemia secondary to an initial 

insulin resistant state (Muoio & Newgard, 2008). Through these processes IR progresses to 

T2DM resulting in poor cardiovascular outcomes.   

Potential mechanism: Hyperinsulinism. 

It is clear that hyperinsulinemia results in response to insulin resistance, enabling the 

body to compensate for altered glucose metabolism. Interestingly, hyperinsulinism has been 
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implicated in the co-aggregation of IR and hypertension in both animal and human studies and 

may be the pathway linking these two conditions (Chen et al., 1988; Munoz, Giani, Dominici, 

Turyn, & Toblli, 2009; Reaven, 1988; Reaven, Hollenbeck, Jeng, Wu, & Chen, 1988).  

Specifically, hyperinsulinism has been shown to alter endothelial reactivity leading to vascular 

damage and changes in endothelial function (Cersosimo & DeFronzo, 2006). This damage leads 

to altered glucose metabolism worsening insulin mediated glucose uptake and causing IR 

(Cersosimo & DeFronzo, 2006).  Further, even when other systems, including the sympathetic 

nervous system (SNS) and RAAS, were associated with the development of IR in humans, 

hyperinsulinism was seen as an intermediary effect, highlighting the vast influence of 

hyperinsulinism on the onset of metabolic dysfunction in humans (Engeli et al., 2003; Engeli et 

al., 2005; Kopf et al., 2001; Sarzani, Salvi, Dessi-Fulgheri, & Rappelli, 2008; Yanai et al., 2008). 

Because of this, the effect of hyperinsulinism on various tissues is an important process to study 

when understanding the mechanism underlying the co-aggregation of insulin resistance and 

hypertension.  

Hyperinsulinism: effects on the liver and muscle. 

 In healthy people, insulin regulates many aspects of hepatic glucose and lipid 

homeostasis including gluconeogenesis, lipogenesis, and lipolysis (Shulman, 2000).  In the 

hyperinsulinemic state of IR this homeostasis is altered.  Chronic hyperinsulinism leads to a 

decrease in hepatic insulin sensitivity and a lack of insulin induced suppression of hepatic 

gluconeogenesis leading to hyperglycemia.  Further, while insulin stimulated lipogenesis 

continues, lipolysis is inhibited resulting in hypertriglyceridemia (Eckel, Grundy, & Zimmet, 

2005; Muoio & Newgard, 2008).  Hepatic steatosis also ensues with alterations in fatty acid 

metabolism resulting in the accumulation of Long-chain acyl-CoA esters (LC-CoAs), 1,2-
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Diacylglycerol (DAG), ceramides, and triglycerides in the liver.  These fatty acid metabolites 

further inhibit the insulin signaling pathway, leading to further IR, hyperinsulinism, and 

hyperglycemia (Muoio & Newgard, 2008).  

 Alterations in fatty acid metabolism, lipid accumulation, and insulin desensitization also 

contribute to IR in the muscle (Shulman, 2000).  Increased free fatty acids leads to increased 

acetyl CoA/CoA and NADH/NAD ratios resulting in the inactivation of pyruvate dehydrogenase 

and hexokinase within the cell (Shulman, 2000).  This inactivation causes increased intracellular 

glucose levels which inhibits insulin stimulated glucose uptake in the cell resulting in 

hyperglycemia.  Further, disruptions in AMP kinase (AMPK) and glut-4 translocation in the 

muscle also lead to alterations in glucose uptake furthering IR in the muscle (Witczak, Sharoff, 

& Goodyear, 2008).  

Hyperinsulinism: effects on the vasculature.  

 Hyperinsulinism also affects the vasculature and as a result, a relationship between 

increased insulin levels and increased blood pressure exists.  Approximately 30 percent of 

individuals with hypertension are insulin resistant and hyperinsulinemic (Mozaffarian, 

Kamineni, Prineas, & Siscovick, 2008).  Further, obesity and IR can predict the development of 

hypertension (Takase et al., 2008), supporting a link between hyperinsulinemia and 

hypertension. The mechanism underlying the link between hyperinsulinism and hypertension is 

unknown; however, the co-aggregation of the two conditions may be related to alterations in the 

RAAS and increased sympathetic activity (Savoia, Volpe, Alonzo, Rossi, & Rubattu, 2009).  

Individuals with hypertension lose the vasodilatory effects of insulin while maintaining insulin’s 

increased effect on sodium re-absorption in the kidney (Eckel et al., 2005).  Further, insulin 
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increases sympathetic activity resulting in increased vascular tone (Engeli et al., 2003; Engeli et 

al., 2005).  

Hyperinsulinism also affects components of the RAAS, often activating it, which may 

affect vascular tone and volume retention, leading to hypertension. Specifically, 

hyperinsulinemic euglycemic clamps in healthy men, where participants are subjected to a 

constant hyperinsulinemic infusion, demonstrated an increase in plasma renin levels (PRA) and 

renal plasma flow, markers of an activated RAAS (Perlstein, Gerhard-Herman, Hollenberg, 

Williams, & Thomas, 2007). Further, individuals withT2DM, known to be insulin resistant, have 

elevated PRA levels during upright posture and on a high salt diet when compared to healthy 

controls (Price, De'Oliveira, Fisher, Williams, & Hollenberg, 1999).  Recently, elevated 

aldosterone levels, known to exist with hypertension (Williams, 1982), have also been linked to 

obesity, cardiovascular damage, and T2DM (Bentley-Lewis et al., 2007; Lastra-Lastra, Sowers, 

Restrepo-Erazo, Manrique-Acevedo, & Lastra-Gonzalez, 2009; Zennaro, Caprio, & Feve, 2009) 

.  It is hypothesized that increased aldosterone secreted by adipose tissue contributes to IR by 

increasing levels of reactive oxygen species through mechanisms related to the mineralacorticoid 

receptor (MR) (Zennaro et al., 2009). While much more work is necessary, it is clear that 

hyperinsulinism does affect the vascular tissue and volume status, both of which likely contribute 

to the development of hypertension in the co-aggregation of IR and hypertension.  

Genetics. 

Familial inheritance of the metabolic syndrome. 

 Evidence supports the heritability of components of the metabolic syndrome via sibling-

pair concordance studies and familial aggregation studies.  Specifically, the clustering of 

cardiovascular risk factors in hypertension, including IR, is heritable (Raji et al., 2006).  Sibling 
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concordance rates were significantly higher (p<0.001) in individuals scoring in the highest 

quartile range for the homeostatic assessment model (HOMA-IR) (a measurement of insulin 

resistance), triglycerides, and low density lipoprotein cholesterol (LDL-C) indicating related 

individuals had more IR and higher lipid levels than unrelated individuals (Raji et al., 2001).  

Further, Tang et al. (2006) found that the clustering of increased body mass index (BMI), 

increased waist circumference, lower HDL cholesterol, higher triglycerides, and elevated insulin 

occurred more frequently in families (p<0.05) indicating that these conditions may be inherited 

together. Additional studies support this finding, demonstrating that the clustering of both 

cardiovascular and metabolic components of the metabolic syndrome occur more frequently in 

families (Lee, Klein, & Klein, 2003; Pollex & Hegele, 2006). Together, these studies 

demonstrate the inheritance of IR and hypertension supporting a search for genomic biomarkers 

associated with this intermediate phenotype of the metabolic syndrome. 

Methods for identifying genomic markers of complex disease: genome-wide association 

study vs. candidate gene approach. 

 Two approaches have been used to identify the genetic underpinnings of the metabolic 

syndrome.  First and most commonly used is the genome wide association study (GWAS) 

(Hattersley & McCarthy, 2005; Manolio et al., 2009).  This approach scans the entire genome for 

hundreds of thousands of SNPs to determine which ones associate with disease (Amos, 2007).  

One advantage of this method is its unbiased nature, which can potentially lead to the discovery 

of novel pathways in disease pathophysiology. However, the disadvantage of GWAS is that 

extremely large sample sizes are required with highly significant p values (5X10-8) (Dahlman et 

al., 2002) to insure that a type I error does not occur. GWAS have failed to identify genomic 

markers for both the metabolic syndrome and the intermediate phenotype IR and hypertension.  
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A recent review in Nature Medicine (Lusis et al., 2008) highlighted the failure of GWAS to find 

positive gene associations for either the metabolic syndrome or hypertension. Other components 

of the metabolic syndrome including BMI (Frayling, 2007; Loos et al., 2008), fasting glucose 

(Chambers et al., 2008; Prokopenko et al., 2009), and plasma triglycerides (Kathiresan et al., 

2009; Kooner et al., 2008) have been found to have positive gene associations using GWAS; 

however, many of these studies have yet to be replicated.   

The second approach, the candidate gene association approach, is a hypothesis based 

approach that does not require the large sample size or small p values necessary in the GWAS 

approach. Genes of the RAAS pathway, angiotensin-converting enzyme (ACE) and 

angiotensinogen (AGT) have been associated with both the metabolic syndrome (as described by 

WHO & NCEP III) and components of the metabolic syndrome, including IR and hypertension 

using the candidate gene approach (Bonnet et al., 2008; Guo et al., 2005; Lee et al., 2003; 

Perticone et al., 2007; Pollex et al., 2006).  However, results are conflicting. While Perticone et 

al (2007) found a significant association between ACE genotypes and IR in participants with 

hypertension, the results have not been replicated.  Further, additional studies analyzing 

associations between the ACE gene and IR in hypertension were not successful (Jeng, Harn, 

Jeng, Yueh, & Shieh, 1997), with some questioning the association of the ACE gene to 

hypertension entirely (Jeng et al., 1997; Phillips & Kimura, 2005). It is clear that additional 

research is needed to determine the genetic underpinning of hypertension, particularly the co-

aggregation of IR and hypertension. Heterogeneous populations were used in many of the 

articles demonstrating negative associations. Using both the intermediate phenotype framework 

with a candidate gene approach may improve success rate for finding positive gene associations 

with the co-aggregation of IR and hypertension. 
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Candidate genes for IR and hypertension. 

Since hyperinsulinism has been identified as a pathway involved in the development of 

IR and hypertension, it is important to identify potential genes within this pathway.  Three genes 

were studied for this project.  Recent studies indicate that CAV1 is involved in both insulin 

signaling (via insulin receptor stabilization) and the RAAS (via an interaction with aldosterone) 

and may be the link between IR and hypertension (Pojoga et al., 2010; Kabayama et al., 2007). 

Further, recent work analyzing the role of PPARγ gene in glucose metabolism and vascular 

function highlight this gene as a candidate gene for IR and hypertension (Duan et al., 2007). 

Finally, the AGT gene of the RAAS, known to be involved in the development of hypertension, 

may also be involved in insulin sensitivity (Guo et al., 2005) making it a strong candidate gene 

for the co-aggregation of IR and hypertension.  

Caveolin -1.  

 Caveolae are plasma membrane lipid domains that are involved in organizing and 

sequestering signaling molecules (Cohen, Combs, Scherer, & Lisanti, 2003; Cohen, Hnasko, 

Schubert, & Lisanti, 2004). Evidence supports the role of caveolae as regulators of many 

proteins and cell signaling pathways including endothelial nitric oxide synthase (eNOS) and 

p42/p44 MAP Kinase pathway (Schubert et al., 2002).  Secondary to this function, caveolae 

receive attention for their possible contribution to cancer, atherosclerosis, vasculoproliferative 

diseases, cardiac hypertrophy, heart failure, and T2DM (Cohen et al., 2004; Mercier et al., 2009).  

 Evidence supports the involvement of CAV1 in many aspects of insulin signaling and 

glucose uptake, including stabilization of the insulin receptor, localization of the glut-4 

transporter, and activation of the insulin signaling pathway (Hnasko & Lisanti, 2003; Razani, 

Woodman, & Lisanti, 2002).  Disruptions in the CAV1 gene may lead to problems in the normal 
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insulin pathway as demonstrated by CAV1 knockout mice.  Loss of CAV1 in these mice results 

in post-prandial hyperglycemia on a high fat diet, increased circulating free fatty acids (FFA), 

increased triglycerides, and decreased glucose uptake with an insulin tolerance test (Razani et al., 

2002).  While loss of the CAV1 gene does not cause T2DM by itself, it does result in a 

problematic insulin response (Capozza et al., 2005), similar to that seen in participants with IR, 

supporting the investigation of this gene in the development of IR in hypertension.   

 Research in human participants also supports the role of CAV1 in insulin signaling and 

insulin sensitivity.  Obese participants with and without type 2 diabetes  had increased CAV1 

mRNA expression levels when compared to lean, normo-glycemic participants, indicating a role 

for CAV1 in obesity, a common initiator of IR (Catalan et al., 2008).  Further, Grilo et al (2006) 

found a significant association with SNPs of the CAV1 gene and normotensive, normo-glycemia 

suggesting a protective effect of this particular polymorphism against metabolic syndrome and 

hypertension. Two rare mutations in the CAV1 gene cause lipodystrophy, a disease of abnormal 

fat distribution and severe IR, in humans (Cao, Alston, Ruschman, & Hegele, 2008).  Finally, the 

CAV1 gene has been implicated in the stabilization of the insulin receptor with mutations in the 

insulin receptor gene at the CAV1 docking domain causing severe IR in humans (Cohen, Razani 

et al., 2003; Iwanishi et al., 1993; Moller, Yokota, White, Pazianos, & Flier, 1990). Together, 

these studies highlight the role of CAV1 in the activation of insulin signaling and subsequent 

glucose metabolism in humans.  

CAV1 and vascular function. 

 CAV1 is abundant in endothelial cells and is a negative regulator of the vasodilator 

molecule endothelial nitric oxide synthase (eNOS), making CAV1 a possible mediator of 

vascular dysfunction (Maniatis, Shinin, Schraufnagel, Okada, Vogel, Malik et al., 2008). CAV1 
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knockout mice exhibit increased levels of eNOS and nitric oxide (NO) however, increased NO 

levels seems to be balanced by changes in the vascular media and increased vascular resistance 

(Rahman & Sward, 2008; Schubert et al., 2002).  Further, these mice show evidence of 

endothelial dysfunction including cardiac hyperproliferation and vascular abnormalities 

(Maniatis, Shinin, Schraufnagel, Okada, Vogel, Malik, et al., 2008).  

              Peroxisome proliferator activated receptor gamma (PPARγ). 

The peroxisome proliferator-activated receptors (PPARa, PPARb/d, PPARϒ) are well 

known ligand activated transcription factors and members of the nuclear hormone receptor 

subfamily (Picard & Auwerx, 2002).  Pharmacological agonists targeting these receptors 

contribute greatly to the understanding of the receptors’ role in a variety of metabolic systems, 

particularly in the case of PPARγ. The realization that PPARγ  agonists improved insulin 

sensitivity while decreasing hepatic glucose production led to the understanding of PPARγ  as 

regulator of glucose metabolism (Rubenstrunk, Hanf, Hum, Fruchart, & Staels, 2007).  

Subsequently, PPARγ  agonists are used frequently to improve insulin sensitivity in individuals 

with T2DM (Nathan et al., 2009; Robinson, 2008).  

SNPs in the PPARγ gene are associated with altered glucose metabolism in numerous 

human studies.  Florez et al (2007) demonstrated that the SNP Pro12Ala predicted onset of 

T2DM.  Individuals homozygous for the Proline/Proline (P/P) allele had a 20 percent increase 

risk for T2DM while the Alanine/Alanine (A/A) carriers are protected against the onset of 

T2DM. The association of this SNP with IR has been replicated in numerous studies (Altshuler 

et al. 2000).  However, a recent meta-analysis demonstrated no association between the 

Pro12Ala SNPs in PPARγ gene and IR in non-diabetic individuals highlighting the importance of 

study population in interpreting the results (Tonjes, Scholz, Loeffler, & Stumvoll, 2006). 
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Polymorphisms in the PPARγ gene are associated with BMI with the A/A allele predicting lower 

BMI, a contributor to insulin sensitivity (Mohamed et al., 2007). Further, in an extensive review, 

Picard and Auwerx (2002) provide evidence that polymorphisms (P115G, P467L, and V290M) 

in the PPARγ gene contribute to alterations in insulin sensitivity.  All of these studies 

demonstrate the important link between the PPARγ gene and insulin sensitivity in humans. 

Similar to studies with the CAV1 gene, animal studies of the PPARγ gene demonstrate a 

link between IR and hypertension.  Duan and colleagues (2007) created a generalized PPARγ 

knockout mouse exhibiting lipodystrophy, IR, and lower blood pressure with PPARγ deficiency. 

Further, mice heterozygous for the L466A mutation of the PPARγ gene demonstrate IR and 

reduced glucose uptake in skeletal muscle (Freedman, Lee, Park, & Jameson, 2005).  Finally, 

PPARγ agonists demonstrate increased vascular endothelial growth factor (a vascular 

permeability factor) and improved insulin sensitivity in mice (Rubenstrunk et al., 2007).  

Together, these studies provide an association between PPARγ, IR, and hypertension indicating 

the importance of further investigation.  

Angiotensinogen (AGT). 

Angiotensinogen (AGT) is the initial component of the renin-angiotensin-aldosterone 

system (RAAS) and a precursor to both angiotensin I (AngI) and AngII(AngII).  Variants of the 

AGT gene are associated with plasma angiotensinogen levels, hypertension, and adrenal and 

renal blood flow (Hopkins et al., 1996; Hopkins et al., 2002; Watkins et al., 2010) likely through 

the downstream effects of AGT on AngII.  Unfortunately, a role for AGT and AngII in the 

development of altered glucose metabolism is not as clear. Pharmacologic blockade of the RAAS 

has been shown to decrease the incidence of new onset type 2 diabetes in some studies (Abuissa, 
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Jones, Marso, O’Keefe, 2005; The Navigator Group, 2010), but not others (Dream Trial Group, 

2006).  Further, gene association studies report both positive and negative associations for genes 

of the RAAS, including AGT, with both insulin resistance (IR) and insulin sensitivity (Bonnet et 

al., 2006; Pollex et al., 2005; Guo et al., 2005; Sheu et al., 1998).   It is possible that studies 

analyzing components of RAAS with glucose metabolism conflict due to the heterogeneity of the 

populations studied and the inconsistent measurements of IR, blood pressure, and T2DM.    

AGT:Cross-talk RAAS and insulin signaling: animal models.   

 Interestingly, interplay between the RAAS and the insulin signaling pathway has been 

shown in both animal and cellular models (Velloso et al., 1996; Velloso et al., 2006). In rat heart 

muscle, AngII infusion has been shown to induce insulin receptor substrate-1 (IRS-1) tyrosine 

phosphorylation and decrease phosphatidylinositol 3-kinase (PI3K)  activity through its effects 

on the angiotensinogen receptor 1 (ATR1) (Velloso et al., 1996).  It has been proposed that these 

mechanisms decrease insulin sensitivity (Ogihara et al., 2002; Velloso et al., 2006); however; 

this hypothesis is yet to be tested.  Additional evidence supports crosstalk between AngII and 

insulin signaling in animal models however, their effects on tissue specific insulin sensitivity are 

conflicting.  Ogihara et al (2002) demonstrated that chronic AngII infusion (12 days 

100ng/kg/min) in rats resulted in IR in liver, skeletal muscle, and adipocytes demonstrating both 

altered glucose uptake and decreased glut-4 translocation in skeletal muscle and adipocytes and 

altered glycogen synthase activation in the liver. Conversely, Juan et al (2005) found that acute 

injection of AngII (2ug/100g body weight) increased insulin stimulated glucose uptake in rat 

adipocytes. Further, when adipocytes were removed and incubated in AngII, stimulated tyrosine 

phosphorylation of the insulin receptor increased, AKT phosphorylation increased and glut-4 
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transport increased demonstrating a role for AngII in whole body glucose homeostasis (Juan et 

al., 2005).  

AGT: human studies. 

 Numerous studies analyzing the effects of AngII infusion in humans have also found 

conflicting results.  First, Townsend and colleagues (1993) show no differences in insulin 

stimulated glucose uptake measured by euglycemic insulin clamp before and after subpressor 

doses of AngII (0.3ng/kg/min and 1ng/kg/min) in normotensive men. This result was confirmed 

in individuals with well-controlled, recently diagnosed T2DM (HgbA1c=6, mean age=46) 

receiving either 2ng/kg/min of AngII or normal saline (sham infusion) with insulin sensitivity 

measured by insulin clamp (Fliser, Arnold, Kohl, Hartung, & Ritz, 1993). Alternatively, other 

studies show an improvement in insulin sensitivity after infusion with AngII.  Morris et al (1994) 

studied normotensive individuals with T2DM demonstrating subpressor (1ng/kg/min) and 

pressor (5ng/kg/min) doses of AngII improve insulin sensitivity measured by euglycemic insulin 

clamp. Further, this effect was seen even with the subpressor dose of AngII, without an increase 

in blood pressure, demonstrating that hemodynamic alterations are not the sole mechanism for 

improved insulin sensitivity.  Two additional studies in normotensive men confirmed an increase 

in insulin sensitivity with AngII infusion (Fliser et al., 1993; Widgren, Urbanavicius, Wikstrand, 

Attvall, & Persson, 1993).  Buchanan et al (1993) conducted additional mechanistic studies 

during the AngII infusion demonstrating an improvement in skeletal muscle blood flow and 

decrease in renal blood flow with AngII infusion. These studies demonstrate conflicting results 

on the role of AngII in IR.  

Few studies have examined other aspects of the RAAS system on IR and hypertension 

including renin and aldosterone. However, renin has been implicated with T2DM in participants 
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with hypertension demonstrating that these individuals have inappropriately activated RAAS 

(Price et al., 1999). Further, aldosterone level after AngII infusion predicted HOMA values with 

higher aldosterone levels associating with increased HOMA (and IR) in normotensive, obese 

individuals (Bentley-Lewis et al., 2007). 

AGT: human genetics studies. 

Human genetic studies of genes in the RAAS to date fail to clarify the relationship 

between AGT and insulin sensitivity.  A well known SNP of the angiotensinogen gene (AGT), 

M235T, has been associated with increased plasma angiotensinogen levels, hypertension, and 

increased risk for cardiac hypertrophy (Kosachunhanun et al., 2003; Niemiec, Zak, & Wita, 

2008; Watkins et al., 2010). Few groups have studied this SNP’s role in IR and hypertension; 

however, Guo and colleagues (2005) have shown an association between SNP AGT M235T and 

insulin sensitivity. Three studies found associations with another gene of the RAAS, ACE, and 

IR in populations of T2DM, healthy participants, and participants with hypertension.  However, 

a separate study refuted this finding (Jeng et al., 1997).  These conflicting results are likely the 

result of the heterogeneous populations that were studied, differing definitions of the metabolic 

syndrome and insulin sensitivity, and small sample sizes.  Analyzing variants of genes in a more 

homogeneous subset of individuals (i.e., an intermediate phenotype) may provide clarification on 

the role of RAAS gene in the development of IR and hypertension.  

Summary 

A clear association exists between IR and hypertension, two key components of the 

metabolic syndrome. This association is supported by data indicating that the two conditions 

often co-aggregate and are inherited together. Previous studies attempting to find genes 

associated with the metabolic syndrome have been unsuccessful. Of importance, the intermediate 
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phenotype approach has not been used.  Further, these specific candidate genes, CAV1, PPARγ, 

and AGT, have not been examined.  

 Recent research in animal models and humans support the role of the CAV1, PPARγ, and 

AGT genes in both IR and hypertension.  Therefore, this study aimed to analyze whether 

polymorphic changes in the CAV1, PPARγ, and AGT genes contribute to the development of IR 

and hypertension in humans using an intermediate phenotype approach. An understanding of the 

association between CAV1, PPARγ, and AGT genes with IR and hypertension will contribute to 

the development of more specific prevention and treatment strategies, contributing to 

individualized care, decreasing the morbidity associated with both of these disorders 
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Chapter 3 

Study Design 

This research is a gene association study analyzing the effect of genotype on insulin 

sensitivity in individuals with hypertension.   In gene association studies, confirming the results 

from the primary population in a second population is important to validate the potential 

generalizability of the conclusions. For two of the three genes analyzed, a validation study was 

performed.  Where two populations were studied a meta-analysis, described below, was also 

performed.  In the primary association studies, the dependent variable is insulin sensitivity, a 

continuous variable, measured by two methods: euglycemic insulin clamp and HOMA-IR.  This 

study controlled environmental factors (i.e., diet and medication) that may influence the gene 

effects on the outcome variable.  The resources of the Human Research Center (HRC) at 

Brigham and Women’s Hospital (BWH) were used and an analysis of data collected through the 

HyperPATH protocol was conducted.  

 Study Variables: Operational Definition and Measurement. 

Hypertension: Baseline systolic, diastolic, and mean arterial blood pressures was measured as the 

mean of three consecutive readings (by Dinamap; Critikon, Tampa, Fl.) separated by 5 minutes 

each, taken after at least 15 minutes of rest (Chamarthi et al., 2007).  Hypertension is defined as 

previously described in the HyperPATH Protocol ((Pojoga et al., 2006; Raji, Williams, 

Jeunemaitre, Hopkins, Hunt, Hollenberg, & Seely, 2001) as blood pressure > 135/85mmHG on 

no anti-hypertensive medications, blood pressure > 130/80 on one medication, or patient taking 

two or more anti-hypertension medications. 
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 Dependent variables. 

Insulin Sensitivity: Two techniques were used to measure insulin sensitivity in the HyperPATH 

database 1) Homeostasis assessment of insulin resistance (HOMA-IR) and 2) euglycemic insulin 

clamp (DeFronzo, Tobin, & Andres, 1979; Matsuda & DeFronzo, 1999; Muniyappa, Lee, Chen, 

& Quon, 2008; Trout et al., 2007; Trout, Homko, & Tkacs, 2007; Wallace, Levy, & Matthews, 

2004). HOMA-IR calculates insulin sensitivity using the following equation: fasting glucose 

mmol/L X fasting insulin in mU/mL)/22.5 (Matthews, 1985). A high HOMA-IR score indicates 

insulin resistance.  The M value of the euglycemic clamp was also used to determine insulin 

sensitivity. The amount of glucose infused in milligrams per square meter per minute during the 

last 120 min of the clamp is used as an index of insulin sensitivity and termed the M value 

(DeFronzo et al., 1979). 

Vascular Dysfunction and Salt Sensitivity: Salt sensitive blood pressure (response of systolic, 

diastolic, and mean arterial blood pressure to salt loading) was examined as a measurement of 

vascular dysfunction in the hypertensive population. Salt sensitive blood pressure was measured 

by subtracting blood pressure measurements obtained during low salt diet (10 mmol sodium/day) 

from blood pressure measurements obtained from the same individual on a high salt diet (200 

mmol sodium/day).  

 Independent variables. 

SNPs of CAV1 gene: 1=homozygote major allele carrier for SNP (AA), 2=heterozygote (Aa), 

3=homozygote minor allele carrier (aa).  

SNPs of the PPARγ gene: 1=homozygote major allele carrier for SNP (AA), 2=heterozygote 

(Aa), 3=homozygote minor allele carrier (aa).   



31 

 

SNPs of the AGT gene:1=homozygote major allele carrier for SNP (AA), 2=heterozygote (Aa), 

3=homozygote minor allele carrier (aa).  

Table 2. SNPs of CAV1 gene: 11 SNPs were tested, rs numbers from dbSNP, Maj=major allele, 

Min=minor allele. 

Polymorphism Location: chr.7 Maj/Min 
rs2215448 115951188 G/A
rs926198 115954444 T/C
rs1543293 115965784 G/C
rs959173 115969290 T/C
rs3807989 115973477 G/A

rs12668226 115974926 A/C
rs3815412 115977929 T/C
rs1022436 115980467 C/G
rs3757732 115980941 intronic C/A
rs729949 115982141 G/A
rs1049337 115987823 C/T

11 Genotyped SNPs
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Table 3. SNPs of the PPARγ gene: 11 SNPs were tested, rs numbers from dbSNP, Maj=major allele, 

Min=minor allele. 

Polymorphism Location: chr.3 Maj/Min
rs17036242  intron 12324490 G/A
rs10510418  intron 12363563 A/C
rs7649970  intron 12367272 G/A
rs1373641  intron 12377474 A/G

rs10510419  intron 12401936 C/A
rs2959272  intron 12417833 A/C
rs4135275  intron 12418844 A/G

rs13099634  intron 12443463 G/A
rs1797912  intron 12445239 A/C
rs3856806  coding- synonymous 12450557 G/A
rs1152003  intron 12452055 C/G

11 Genotyped SNPs
 

 

Table 4. SNPs of the AGT gene: 16 SNPs were tested. 

Polymorphism Location:chr1 Maj/Min
rs7536290 228903325 A/G

rs7079 228904954 C/A
rs11568045 228906106 A/A
rs3789670 228910337 G/A
rs3789671 228910423 C/A
rs2478545 228910744 G/A
rs6687360 228911615 G/A
rs11122576 228913302 A/G
rs11568026 228914146 A/A
rs2004776 228915325 G/A
rs1078499 228915719 A/G
rs7539020 228915813 G/A
rs2493134 228915982 T/C
rs3789678 228916105 G/A

rs5050 228916509 A/C
rs2493137 228918739 A/G  
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Covariates. 

Age: Age of individuals in years and obtained by self report or date of birth. 

Gender: a dichotomous variable (female/male) obtained by participant self report. Gender has 

been known to affect the metabolic syndrome (Ahonen et al., 2009) as well as hypertension (Liu 

et al., 2003) and IR (Geer & Shen, 2009), therefore should be included as a covariate 

BMI:  Body mass index (BMI) is a measure of body fat based on height and weight. Calculation:  

Weight (kg) / (Height (m) x Height (m)) (Duncan, 2010). 

Sibling status: individuals sharing the same biological parents. Status obtained by participant self 

report and coded by study subject number. 

Sample 

The HyperPATH dataset, initiated in 1994, consists of approximately 1300 subjects, over 

500 of them with hypertension from Boston, Utah, Nashville, Paris, and Italy. Participants with 

hypertension within this dataset met the following criteria: between the ages of 18-70 years, 

without renal insufficiency or untreated thyroid disease, not taking medications other than 

thyroid replacement, and had no forms of secondary hypertension (Chamarthi et al., 2007; Raji et 

al., 2006).  

This study sample consists of Caucasian participants with hypertension from the 

HyperPATH dataset previously genotyped and having data for either HOMA-IR or the 

euglycemic insulin clamp. In addition, individuals without hypertension were studied to 

determine if the genotyped SNPs meet adequate quality control parameters (detailed later). An 

African American sample of individuals with hypertension (approximately 60) from the dataset 

was used to attempt to replicate positive findings for associations with the PPARγ gene.  
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Study inclusion criteria.  

Participants between the ages of 18-70 years with a BMI ≤40kg/m2 were included. A 

BMI< 41kg/m2 insures that morbid obesity, a cause of IR (Kim, Wei, & Sowers, 2008), does not 

influence the insulin sensitivity measurements.  

Study exclusion criteria.   

Participants with fasting plasma glucose (FPG) greater than 126 mg/dL or a random 

plasma glucose greater than 200mg/dL were excluded to rule out T2DM (Executive, 2008).  

Participants with T2DM are all known to be IR and this diagnosis would confound any 

measurements of insulin sensitivity (Hoerger & Ahmann, 2008). 

The HyperPATH study had the following exclusion criteria (data already collected): 

Participants with secondary hypertension,  renal disease (with the exception of 

microalbuminemia, < 100mg albumin/g creatinine),  known coronary artery, peripheral vascular 

disease, or cerebral vascular disease, recent myocardial infarction, cerebral vascular attack, or 

active malignancy, systolic blood pressure > 160mmHG, diastolic blood pressure > 100mmHG,  

spot urine shows Na > 30mmol after low salt diet, pregnancy, current excessive alcohol use (> 

12 oz/ETOH/week), participants using recreational drugs, smokers unwilling to refrain from 

smoking for 72 hours prior to inpatient study, abnormal labs related to renal, liver, hematologic, 

or immune function, subjects with > 50% renal artery stenosis. 

Detailed Description of HyperPATH Protocol 

Details of the HyperPATH protocol have been described elsewhere (Hopkins et al., 2002; 

Chamarthi et al., 2007; Pojoga et al., 2007).  In brief, all participants of the HyperPATH protocol 

received an alcohol and caffeine free isocaloric low salt diet (10 mmol/d sodium, 100 mmol/d 

potassium, 1000 mmol/d calcium) for 7 days and a high salt diet for 5 days on an outpatient 
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basis.  On the final day of the diets, participants were admitted to the Human Research Center 

(HRC). Subjects in sodium balance (≤30 mmol sodium/d for low salt and >150mmol sodium/day 

for high salt) by measurement of sodium and creatinine excretion in a 24-hour urine collection 

were studied.  As previously described, on the morning of low salt admission day one, plasma 

renin activity (PRA) and aldosterone levels were measured after participants assumed and 

maintained upright posture for 90 minutes (Chamarthi et al., 2007). On the evening of the 

seventh low salt day and fifth high salt day, participants stayed in the HRC overnight, remaining 

fasting and supine after midnight.  The AngII (3ng/kg/min for 60 minutes) infusion and 

additional blood draws for laboratory assessment were conducted the following morning.  

Plasma renin activity (PRA) and aldosterone were measured using standardized methods as 

previously described (Pojoga et al., 2007). Baseline systolic and diastolic blood pressures were 

taken as the mean of three consecutive readings (by Dinamap; Critikon, Tampa, Fl.) separated by 

5 minutes each, 30 minutes before the initiation of the AngII infusion.    

Detailed Description of HTN-IR Protocol: Replication of CAV1 Analysis 

The Mexican-American Hypertension-Insulin Resistance (HTN-IR) cohort consists of Hispanic 

families (939 individuals from 160 pedigrees) ascertained via a hypertensive proband (essential 

hypertension defined as sitting blood pressure ≥140/90 mm Hg off medication). Probands were 

recruited through the Hypertension Clinic at Los Angeles County, University of Southern 

California Medical Center or the General Clinical Research Center at the University of California 

at Los Angeles. Participating offspring were aged at least 16 years, and spouses of the proband 

were aged 18 to 65 years. Hypertensive individuals were studied after discontinuing 

antihypertensive medications for 2 weeks if permissible. No dietary intervention or medication 

changes were made by investigators during the study. For this study, only individuals with 
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hypertension were included. Phenotypic characteristics including blood pressure (BP), fasting 

glucose, and insulin were obtained and measured as previously described (Xiang et al. 2002). 

Hyperinsulinemic euglycemic clamps were performed on individuals with fasting serum glucose 

concentrations <140 mg/dL.  

Study Procedures Necessary to Obtain Data for Study 

 Figure 1. Study schema. 

Study Protocol

Identify individuals genotyped and meeting 
eligibility requirements

Identify fasting glucose and 
insulin levels. Confirm consent

Call for clamp recruitment

Screening visit
-PE, labs, consent

HS diet 5 days
Admit to HRC evening of day 5

Conduct Euglycemic Clamp 
morning of day 6

Calculate HOMA-IR

LS diet 7 days
Admit to PCR evening of day 7

Obtain BP and Blood Draw Measurements in morning after Fasting 8hrs

 

Recruitment, Informed Consent, IRB Approval. 

 This study was reviewed by and conducted in compliance with the Brigham and 

Women’s Hospital (BWH) institutional review board (IRB) and Boston College IRB through an 

IRB authorization agreement (see Appendix 1).  Insulin resistance was measured in individuals 

by either HOMA-IR or euglycemic insulin clamp. The difference in study protocol for the two 

measurements is outlined in Figure 1. The PI and team study coordinators re-contacted the 

HyperPATH participants that met the appropriate genotyping criteria (were successfully 
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genotyoped for AGT SNPs for ongoing R01 project) by telephone to determine if they were 

interested in participating in the euglycemic clamp study. If participants agreed, they were 

consented, and completed the euglycemic clamp protocol shown in Figure 2.  All data related to 

the HOMA index was collected previously during prior HyperPATH protocols.  

Admission screen. 

If the participants agreed, they came in for an ambulatory screening interview and 

physical exam (PE).  After a detailed explanation (by the PI) of the study procedures, including 

all possible risks, the participant signed a consent form. Each participant was informed that 

he/she was free to discontinue participation in the experiment at any time and that the 

investigators reserved the right to discontinue the research protocol at any time. A copy of the 

signed informed consent form was given to each participant. After the consent was signed, the 

participant received a complete PE from the PI, height and weight measurements were obtained, 

and blood was drawn for additional DNA extraction. Urine and serum were collected for basic 

tests (complete blood count, complete metabolic panel, urinalysis) to assess kidney, liver, 

hematologic, and immune function. Three blood pressures were obtained (to identify mean blood 

pressure measurement) and the participant was scheduled for the euglycemic hyperinsulinemic 

insulin clamp protocol (see below) in the inpatient HRC.    

 If participants were on ACE inhibitors (ACEI) or angiotensin receptor blockers (ARBS), 

the participant was switched off these medications three months prior to study. If needed to 

maintain BP <135/85 mm Hg, calcium channel blockers and hydrochlorothiazide were 

prescribed by the nurse practitioner and supervising physician. ACE-inhibitor, ARB medications, 

and beta-blockers were avoided in this study since these medications affect the RAAS and 

insulin sensitivity and may confound the results of the study. All medications were removed 2 
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weeks prior to the study to insure study variables were not affected by medications. Participants 

were sent home with a blood pressure cuff and educated about how to take daily, home blood 

pressure measurements by the PI. The participants reported blood pressures to study staff twice a 

week.   

 Laboratory Measurements 

 Plasma glucose, serum insulin, and lipids levels were measured after an eight hour fast 

and collected between 08:00 and 09:00.  Serum insulin, glucose, and lipids were measured as 

previously described (Raji et al., 2001).   

Inpatient Study for Hyperinsulinemic Euglycemic Clamp. 

After screening, an inpatient study was conducted to obtain additional blood for 

measurements of insulin sensitivity via the euglycemic hyperinsulinemic clamp technique. Upon 

admission, blood pressure was obtained (x3), random blood glucose was measured, and the 

inpatient protocol was reviewed with the participant.   

Euglycemic hyperinsulinemic clamp measurement.  

The euglycemic insulin clamp was performed over 3 hours. After an overnight fast, 

participants remained supine and two intravenous catheters were placed.  The first IV catheter 

was placed in an antecubital vein with a three way stop cock for the insulin and glucose 

infusions. A second catheter was placed retrograde in the cephalic vein of the opposite hand and 

warmed at 180 degrees Fahrenheit for blood sampling. After the collection of baseline samples, a 

continuous infusion of crystalline insulin was administered at a rate of 80 mU/m2/min. The 

plasma glucose was measured at 5-min intervals and maintained at 90 mg/dl by a variable 

infusion of 20% dextrose.  Continuous monitoring of the participant including symptom surveys 

was conducted throughout the protocol. 



39 

 

After the euglycemic insulin clamp, participants were monitored for at least 2 hours 

ensuring normal blood glucose levels are maintained.  Finger stick blood glucoses were 

monitored every 5 minutes after the completion of the clamp for 30 minutes and then every ½ 

hour for 2 hours to insure a stable normal glucose level.  The patient was discharged home after 

receiving a carbohydrate rich meal and maintaining blood glucose levels >90mg/dl at least 3 

hours after the completion of the clamp. 

The amount of glucose infused in milligrams per square meter per minute during the last 

120 min of the clamp is used as an index of insulin sensitivity (M value) (DeFronzo et al., 1979). 

The euglycemic clamp is highly valued technique to measure insulin sensitivity with known 

validity and reliability (Matsuda & DeFronzo, 1999; Sarafidis et al., 2007). 

Figure 2. Timeline of Euglycemic Hyperinsulinemic Insulin Clamp Protocol. 
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HOMA-IR index. 

The HOMA-IR was used as a second measure of insulin sensitivity. Insulin resistance is 

measured using the following formula [(fasting plasma glucose (mmol/L) X fasting plasma 

insulin (mU/L)]/ (22.5) (Trout et al., 2007). Plasma glucose levels and plasma insulin were 

obtained in the morning of the in-patient visit, after an overnight fast.  

 Genotyping:                                                                                                                                           

Genotyping was performed in the Harvard Partners Center for Genetics and Genomics. 

Blood samples were chilled on ice immediately after being drawn and centrifuged at 4 degree 

Celsius within one hour to separate the cellular component from the plasma. EDTA 

anticoagulated blood samples were used for DNA extraction within three days of collection. Two 

identifiers were used to label DNA samples: 1) participant # and 2) Patient Research Center 

number.  The names of the participants were not linked to the blood samples for storage or 

processing purposes. The genotyping for PPARγ and AGT was carried out in 384, 768, and 1536 

plex formats using the Illumina Bead Station GoldenGate assay system. The system analyzes 

polymorphic changes using microbead technology assembled into 96 sample arrays. The bead 

arrays are manufactured based on the custom SNP sets selected and configured onto the array 

surface. Incubation of the processed genomic DNA on the bead array allows hybridization to the 

appropriate probe on the bead enabling identification of a particular SNP. The HyperPATH 

CAV1 SNPs were genotyped using a Sequenom platform. The two CAV1 SNPs analyzed in the 

HTN-IR were genotyped using a 7600-SNP Illumina iSelect platform.Ten percent of samples are 

duplicated to act as Qualitative Control.  The genotype duplications must agree at least 98% of 

the time, ensuring validity. Further, previous genotype analysis run on 730 SNPs using the 

Illumina system demonstrated reproducibility rates of greater than 99%.  
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Gene characterization. 

Each gene was characterized by using the Tagging SNPs method from the HAP MAP 

database (HAPMAP Project, 2008). Tagging SNP analysis allows researchers to narrow a 

genetic region of interest and increase the precision of localization without having to genotype 

the entire gene.  This method significantly decreases cost and effort without minimizing outcome 

(Iles, 2006; Maniatis, Collins, & Morton, 2007).  The pairwise method of tagging SNP selection 

was used for tagging SNP identification. Linkage disequilibrium (LD) was used to identify 

tagging SNPs with the following parameters: An R2 > 0.8 (i.e., the SNP will “tag” all other 

SNPS with an R2> 0.80) was chosen with a minor allele frequency (MAF) cutoff of 10% . These 

recommendations match literature analyzing the best methods for choosing tagging SNPs 

without requiring a large sample size and without decreasing power (de Bakker et al., 2005).  In 

addition, de Bakker (2005) demonstrated that relaxing the threshold for perfect correlation to .80 

when choosing tagging SNPs does not affect power. 

Study Analyses 

 Data quality control. 

 Before using the SNPs in the analysis, the following quality control measurements were 

conducted.  First, MAF of all SNPs were analyzed in the normotensive, healthy control 

population.  If the MAF  was less than 10% or the SNP was not in Hardy-Weinberg equilibrium 

(HWE), the SNP was removed from the analysis because low MAF or SNPs not in HWE in 

healthy controls may indicate a poorly defined SNP (Ryckman & Williams, 2008).  Second, 

genotype completion rates were analyzed in the entire population and SNPs with completion 

rates less than 95% were removed from the analysis insuring missing data did not influence the 

statistical results.  Third, LD charts were created and SNPS with an R-squared of greater than 
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95% rate with another SNP in the analysis were removed since these SNPs are in complete LD 

with one another, provide similar information, and by removing them the study power was 

increased.  SNPs with an R squared of greater than 95% provide similar information.  By 

decreasing the total number of SNPs tested, the analysis decreased the number of multiple tests 

that need to be accounted for and improved the power of the analysis. After the SNPs were 

removed, haploview was used to determine the percent coverage of the entire gene. 

Sample size: Insulin resistance. 

Analysis 1.  The sample size calculation was done using G power statistical software 

(Faul, Erdfelder, Lang, & Buchner, 2007).  Since it is hypothesized that single SNPs have a 

small effect on the outcome of complex disease, a small effect size of SNP influence on insulin 

sensitivity was used in the calculation. A sample size of 264 was calculated, with a power 0.80 

and an alpha of 0.05.  

Analysis 2. Since this project is the first time euglycemic clamps have been used to 

analyze the SNPs of interest, this is a pilot study using 5 participants in each group.  This pilot 

study will inform future work with a larger sample size.  Other studies have found significant 

differences in M values between groups using a total sample size of eight, indicating this pilot 

sample size may be sufficient to identify differences by genotype using this sensitive 

measurement of insulin resistance (Donovan, Solomon, Seely, Williams, & Simonson, 1993). 

Sample size: Salt Sensitive Blood Pressure. 

Analysis 1.  The sample size calculation was done using G power statistical software 

(Faul, Erdfelder, Lang, & Buchner, 2007).  Since it is hypothesized that single SNPs have a 

small effect on the outcome of complex disease, a small effect size of SNP influence on salt 
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sensitive blood pressure was used in the calculation. A sample size of 264 was calculated, with a 

power 0.80 and an alpha of 0.05.  

Statistical analysis. 

Statistical analyses were performed using SAS 9.1 (SAS Institute; Cary N.C.).  HWE 

testing was performed for each SNP using a chi-square test.  Pairwise linkage (D’ and R2) was 

estimated using Haploview. A mixed effect linear regression was conducted for each of the three 

genes to analyze whether differences in HOMA-IR or salt sensitive blood pressure exist by 

genotype. Sibling relatedness was accounted for and improved the power of the analysis due to 

the enrichment of disease alleles in the sample (Li, Boehnke, & Abecasis, 2006). The linear 

mixed effects method accounted for sibling relatedness by analyzing siblings as one individual 

measured over 2 time points (Fisher, 1912). The linear mixed effect regression analysis further 

increases power by distinguishing within-subject variation (sibling measurements are considered 

random effects and subject specific) from between-subject sources of variation (fixed effects are 

considered population effects) (Finucane, 2007).  Further, age, gender, and BMI were included 

as co-variates in the analysis since these variables are known to affect insulin resistance and 

blood pressure measurements. The equation for the regression model is as follows (Der & 

Everitt, 2009): 

 y=Bo +B (SNP sibling1) +B (SNP sibling 2) +B (age) + B (gender) +B (BMI) + u (random effect=sibling)  

  + v i (sibling) + e (fixed effects=site). 

Bo=population’s average intercept 

B (SNP sibling1) = fixed effects regression parameter for SNP time 1 (baseline) 

B (SNP sibling 2) = fixed effects regression parameter for SNP time 2 (sibling) 

B (age), B (gender), B (BMI) =regression parameter for each covariate 
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u (random effect=sibling)= deviation of the individual (random effect) from the population  

 intercept Bo 

v i (sibling)= represents the deviation of the individual person’s slope from the population 

 average B (SNP sibling1). 

e (fixed effects=site)= fixed effects error 

Since dominant genetic models were analyzed for the euglycemic clamp, Student’s t-test 

was used for each of the three genes to analyze differences in the M value by genotype.  Sibling 

relatedness was not accounted for in these analyses since siblings were not studied in the clamp 

protocol.  

Since mixed effects linear regression was used to analyze the HOMA-IR and salt 

sensitive blood pressure data, all assumptions of regression statistics remain.  The assumptions 

include: 1) linearity (the dependent variable [Y], is in a linear relationship with the independent 

variables [Xx], non-correlation (the independent variables are not correlated, and the error terms 

are not correlated with any of the independent variables), measurement (all independent 

variables are measured as interval, ratio, or dichotomous and the dependent variable is 

continuous and unbounded), and homoscedasticity (the variance of the error term is the same or 

constant for all values of the independent variable) (Menard, 2002; Fox, 1991).  

Normal distribution of the dependent variable was tested using the Shapiro Wilk test 

(Munro, 2005). Where necessary, variables were natural log transformed to meet the normality 

assumptions of the regression model. 

Haplotype analysis. 

Previous studies highlight the importance of haplotype analysis when examining the 

AGT gene (Watkins et al., 2010; Watkins, Hunt, et al. 2010). Thus, for the AGT analysis, 
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haplotypes were constructed using the Haploview program and an association of each haplotype 

with HOMA-IR was assessed using PLINK (Purcell et al., 2009). Plink estimates haplotype 

frequencies via the expectation-maximization (EM) algorithm, computing global and haplotype-

specific score statistics for tests of association between a trait and haplotype weighted by their 

posterior possibility. Since PLINK is unable to account for relatedness, the haplotype analysis 

was conducted in unrelated individuals only. All statistical tests were 2 sided.  Nominal 

significance is indicated for p<0.05. A Bonferroni correction for multiple comparisons is 

conservative due to the linkage disequilibrium (LD) between SNPS of the gene (Watkins et al., 

2010). However, significance at the Bonferroni-corrected level (0.05/# SNPs tested) is indicated 

when it exists. 

Regression diagnostics. 

 Regression diagnostics were conducted to insure assumptions of the regression model 

were met for each significant model found. Linear relationships between independent variables 

are termed “collinearity” and can result in an imprecise estimate of beta values (Fox, 2008).  The 

test for collinearity is the variance-inflation factor (VIF) and was determined by the equation 

1/(1-R2) for all significant regression models tested. The linearity assumption was tested through 

an analysis of partial residual plots using SAS (plots of the independent variables plotted against 

residuals) (Ayyengar, 2007). The residuals of a regression model must be uncorrelated and 

independent of each other (Pedhazur, 1997). The Durbin Watson statistic would be used to test 

autocorrelation between residuals (Ayyengar, 2007). However, when conducting a longitudinal 

study (mixed effects regression), independence of residuals may not always be met (Finucane, 

Samet, & Horton, 2007; Fitzmaurice, Laird, & Ware, 2004).  In the dataset, the relatedness of 
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siblings will result in correlated data and may, at times, result in a significant Durbin-Watsons 

statistic. Thus, this statistic was not examined. 

 Limitations of study design: causation, bias, random error. 

It is important to note that due to the observational nature of the study, causation cannot 

be proven from this study or any gene association study.  However, associations can be validated 

by eliminating alternative explanations (Ashengrau & Seage, 2005), mainly bias, confounding 

factors, and random error.  Bias is eliminated by insuring that no systematic error in subject 

recruitment exists.  Bias due to population stratification (Newton-Cheh & Hirschhorn, 2005) was 

controlled for by using an ethnically homogeneous population of Caucasians. Replication was 

attempted in an African American population when available.  Confounding factors were 

controlled for specifically, BMI, age, and gender. Random error, the probability that results are 

due to chance (Ashengrau & Seage, 2005),  was controlled by ensuring the study design has 

adequate power (0.80) and a strong enough p value (0.05 with appropriate Bonferroni correction) 

to control for Type I and Type II statistical errors (Munro, 2005).    

 Meta-analysis. 

 Meta-analysis is a statistical method that enables scientists to determine an overall effect 

of one variable on another through the combination of multiple studies analyzing similar 

hypotheses. In genetics, meta-analysis is often used to clarify discrepancies observed between 

multiple gene association analyses and overcomes a major flaw of gene association studies: lack 

of power (Munafo & Flint, 2004). Where appropriate, meta-analysis was used to determine the 

overall effect of a SNP on a specific phenotype in two different cohorts.  Two techniques of 

meta-analysis were used for the two gene association studies with replication: 1) Fishers’ 

combined p value PPARγ 2) weighted Z score analysis (CAV1). In the PPARγ analysis, Fisher’s 
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combined p values were also calculated to determine the overall significance of the observed 

independent findings (Fisher, 1948).  The weighted z-score method of meta-analysis was 

conducted using the freely available METAL software package 

(http//www.sph.umich.edu/csg/abecasis/metal/). This approach accounts for the direction of 

association relative to a chosen reference allele and the sample size of each cohort.  First, p values 

from each study are converted to z scores. A weighted sum of z scores is calculated where each 

statistic is weighted by the square root of the sample size for each study. The resulting sum is 

divided by the square root of the total sample size to obtain an overall z statistic (Willer, Li, & 

Abecasis, 2010) 

  Presentation of Study Results and Discussion.  

  Results for the analyses from the described study are presented in the following chapters 

4 through 6. Each chapter describes the results for an individual gene (chapter 4: CAV1, chapter 

5: PPARγ, chapter 6: AGT). Descriptive tables and figures for the data are represented in the 

appropriate chapters. A discussion of the findings for each respective gene is detailed at the end 

of each results chapter.  

 

 

 

 

 

 

 



48 

 

Chapter 4 

Study Results: The Association of Single Nucleotide Polymorphisms of the Caveolin-1 Gene 

with Insulin Resistance and Vascular Dysfunction in Humans 

Group Characteristics. 

 Three hundred and twenty four Caucasian individuals with hypertension and available 

CAV1 genotype were analyzed from the HyperPATH Cohort (Table 5). The African American 

hypertensive sample (N=54) had similar blood pressure and cholesterol values compared with 

the Caucasian group with hypertension.  The Caucasian group without hypertension (N=143), 

used for evaluating the effects of hypertension on any significant results, had lower blood 

pressure values and a better overall metabolic profile. The replication sample (HTN-IR) 

demonstrates similar blood pressure and metabolic profile to the Caucasian HyperPATH cohort 

however; the HTN-IR cohort consists of a higher mean BMI (Table 5). 

Gene characterization. 

 Eleven tagging SNPs covering a 36.6 kb region of the CAV1 gene were chosen from the 

HAPMAP database  (The International HAPMAP Consortium, 2005) and analyzed in the 

HyperPATH cohort (Table 6). Tagging SNPs were identified using the CEU population with an 

R2 greater than 0.9 and a minor allele frequency (MAF) greater than 10%. 

 Genotyping was performed using a Sequenom platform. Five SNPs were removed prior 

to analysis for quality control reasons: rs12668226 was monomorphic, rs2215448 deviated 

significantly from Hardy-Weinberg equilibrium in both the hypertensive (p=0.04) and 

normotensive (p=0.0001) groups and three SNPs (rs959173, rs3815412, and rs729949) were in 

linkage disequilibrium (LD) with other genotyped variants with an R2 > 0.95 (Figure 3). In the 

replication cohort, SNP rs11773845 is in complete LD with rs3807989 and is used as a surrogate 
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for rs3807989 since this SNP was not genotyped in the HTN-IR cohort. All genotyped SNPs had 

a completion rate of greater than 95%.  Repeat genotyping for 10% of the SNPs demonstrated 

concordance with the original genotype call.  

Primary phenotype: fasting insulin. 

 Because CAV1 is known to directly influence the insulin signaling pathway, an 

additional hypothesis that CAV1’s primary effects would be with fasting insulin was devised. 

Hence, this study analyzed fasting insulin levels as the primary phenotype for the primary CAV1 

association analysis. The primary phenotype, fasting insulin, was evaluated for each of the six 

SNPs.  The outcome variable was log transformed to meet the normality assumption of 

regression. This transformation met normality tests as demonstrated by a non-significant (p=0.2) 

Shapiro Wilk test (Munro, 2005). The total number of individuals analyzed for the fasting insulin 

analysis (individuals with values for fasting insulin on a high salt diet and CAV1 genotype) was 

324.  

 Using an additive model, rs926198 was found to be significantly associated with fasting 

insulin levels (TT=7.69 [6.15-9.58] mU/ml, CT=9.02 [7.24-11.25] mU/ml, CC=8.85 [6.82-

11.47] mU/ml, p=0.019). Based on this result, a dominant model was used for all subsequent 

analyses (homozygous major allele [TT] vs. minor allele carriers [CT/CC]). Analysis of the 6 

SNPs identified significant associations with fasting insulin levels for rs926198 (p=0.005) and 

rs3807989 (p=0.007) (Table 7). As shown in Figure 4 part A, minor allele carriers of rs926198 

and rs3807989 had significantly higher fasting insulin levels than individuals homozygous for 

the respective major allele (rs926198: TT=7.69 [6.15-9.58] mU/ml, CT/CC=9.00 [7.23-11.13] 

mU/ml, p=0.005 and rs3807989: GG=7.63 [6.10-9.55] mU/ml, AA/AG=8.90 [7.18-11.03] 
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mU/ml, p=0.007). No association was seen for either SNP with fasting glucose levels in the 

Caucasian-NTN or African American hypertension populations. 

 These results indicate that the null hypothesis H.01a is rejected and the alternate 

hypothesis H.1a.01a . (Individuals who are homozygous minor allele carriers for SNPs in CAV1 

will be more insulin resistant than heterozygote or homozygous major allele carriers) is accepted. 

However, these results indicate that all minor allele carriers and not just those homozygous for 

the minor allele are insulin resistant. 

Secondary phenotypes of insulin resistance: HOMA-IR. 

 Since fasting hyperinsulinemia is a hallmark of insulin resistance (Olesfsky, Farquhar, & 

Reaven, 1973), this study analyzed whether CAV1 genotypes were associated with 

measurements of insulin resistance (HOMA-IR, clamp-derived M-value) in the Caucasian HTN 

cohort.  HOMA-IR was naturally log transformed and met a normal distribution (Shapiro Wilk 

p=0.2). Minor allele carriers for both SNPs had significantly higher HOMA-IR values than 

individuals homozygous for the major allele (Figure 4 part B) (mean estimate [95% CI]; 

rs926198: TT= 1.67 [1.42-1.96], CT/CC=1.98 [1.69-2.31] p=0.005; rs3807989: GG=1.66 [1.42-

1.96], AG/AA=1.96 [1.68-2.28] p=0.008). No association was seen for either SNP with HOMA-

IR in the Caucasian-NTN or African American hypertension populations. Fasting plasma glucose 

measurements did not significantly differ by genotype for either SNP in any of the populations 

(data not shown). 

Secondary phenotype of insulin resistance: M value of the clamp. 

 Of the fifteen subjects in the Caucasian-HTN population who underwent the euglycemic 

hyperinsulinemic clamp, minor allele carriers of both SNPs had significantly lower M values 

than individuals homozygous for the major allele (mg/kg/min, mean ± SEM; rs926198: TT= 
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8.35±1.56, CT/CC=5.48± 1.83, p=0.004; rs3807989: GG=8.62 ± 2.27, AG/AA=6.17±1.95, 

p=0.05); consistent with insulin resistance in these individuals (Figure 4 part C). The M value 

for the clamp was normally distributed and thus, was not transformed. Since the clamp study was 

a pilot study and was not done in the African American sample, replication in a second cohort 

can not be examined. 

Exploratory analysis: effect of BMI on SNP and fasting insulin association. 

 The effect of BMI on the association of both significant CAV1 SNPs and fasting insulin 

levels was examined in the Caucasian HTN population. When the cohort was stratified by BMI 

tertiles (lowest tertile BMI<=25 kg/m2, highest tertile BMI>=30 kg/m2), a significant association 

between genotype and fasting insulin remained only for individuals with the lowest BMI (p=0.03 

BMI<=25 kg/m2 vs. p=0.08 BMI>=30 kg/m2), suggesting that BMI has an effect on this 

association 

Secondary phenotypes of vascular dysfunction: salt sensitive blood pressure. 

 Since insulin resistance and salt sensitivity have been frequently associated with one 

another (Yatabe et al., 2010; Raji, 2001), this study examined the association of CAV1 SNPs 

with salt sensitive blood pressure. All three salt sensitivity variables were normally distributed. 

Tests for normality were met using the Shapiro-Wilk test (p=0.1 [systolic blood pressure], p=0.6 

[diastolic blood pressure], p=0.3 [mean arterial pressure]).  Individuals with complete data for 

blood pressure measurements on both a high salt diet and low salt diet and CAV1 genotype were 

included in this analysis. The total number of individuals analyzed was 238 for systolic, 

diastolic, and mean arterial pressure blood pressure measurements.  

 Of the six SNPs, rs3807989, demonstrated a non-significant trend for an association with 

systolic salt sensitive blood pressure (mmHg, mean ± SEM; rs3807989: GG=14.7± 2.0, 



52 

 

AG=14.9±1.8 AA=11.4±2.6, p=0.3 additive; p=0.1 recessive model (Table 8 and Figure 5). 

This association was not replicated in the African American HTN or Caucasian NTN sample 

(data not shown).  

 None of the six SNPs demonstrated a significant association with diastolic salt sensitivity 

(Table 9). One SNP, rs3757732, demonstrated a non-significant trend with MAP salt sensitive 

blood pressure (mmHg, mean ± SEM; rs3757732: CC=7.05± 2.2, CA=11.2±1.2 AA=10.2±1.0, 

p=0.6 additive p=0.1 dominant model Table 10).  Thus, the null hypothesis H.01b. (Individuals 

who are homozygous minor allele carriers for SNPs in CAV1 will not be more salt sensitive than 

heterozygote or homozygous major allele carriers) is accepted.  

Replication of insulin resistant phenotypes in a Hispanic cohort. 

 To replicate the findings in an independent hypertensive cohort, this study assessed the 

association of rs926198 and rs11773845, with fasting insulin levels in a hypertensive, Mexican 

American Cohort (HTN-IR) (Xiang et al., 2005). Again, minor allele carriers of both SNPs were 

significantly associated with increased fasting insulin levels (mU/ml; mean estimate [95% CI], 

rs926198: TT= 16.65 [14.97-18.33] CT/CC= 18.09 [15.81-20.38] p=0.005, rs11773845: AA= 

16.76 [14.85-18.68] AC/CC= 17.48 [15.58-19.38] p=0.02.  

 Associations between the CAV1 SNPs and HOMA-IR were also tested in the Hispanic 

HTN-IR cohort and significant associations were found (rs926198 p=0.008; rs11773845 p=0.02).  

In the HTN-IR cohort, these SNPs manifested trends for reduced M values that did not reach 

statistical significance.   

Regression Diagnostics for Fasting Insulin and HOMA-IR. 

 Since positive results were found across two cohorts for salt sensitive diastolic blood 

pressure and low salt PRA levels, regression diagnostics were analyzed to insure the results were 
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not influenced by outliers, multi-collinear independent variables, or heteroscedasticity.  For both 

models tested, the independent variables (SNP, age, gender, and BMI) had VIF less than 10 

indicating that collinearity does not exist.  For both models tested, linear relationships existed 

between the independent variables and the dependent variable as demonstrated by the partial 

residual plots and correlation plots.   

Meta-analysis. 

 A meta-analysis of the two cohorts (HyperPATH Caucasian HTN and HTN-IR) was 

carried out for the two most significant phenotypes in the HyperPATH study, fasting insulin and 

HOMA-IR using the weighted z score approach (Willer, Li, &Abecasis; 2010).  As expected, 

both SNPs demonstrated highly significant associations with increased fasting insulin and 

increased HOMA-IR measurements using a dominant model (Fasting Insulin: rs926198 

[p=0.00008] rs3807989 [p=0.0004]; HOMA-IR: rs926198 [p=0.0001], rs3807989 [p=0.0004].     

Summary of results. 

This extensive examination of variants in the CAV1 gene with features of insulin 

resistance and vascular dysfunction demonstrate a role for CAV1 as a bio-marker for insulin 

resistance and hypertension in humans.  This study found that CAV1 SNPs were associated with 

two measurements of insulin resistance in a hypertensive population: elevated fasting insulin 

levels and increased HOMA index. This association was identified first in one hypertensive 

cohort---Caucasian---and confirmed in an ethnically different cohort---Mexican.  Importantly the 

association of insulin resistance to variants in the CAV1 gene was observed only in hypertensive 

individuals.  While obesity can be an important confounder with insulin resistance, in this study 

accounting for BMI actually strengthened the phenotype-genotype relationship. 
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Tables and figures for CAV1. 

Table 5. CAV1 Cohort Characteristics. Data represents mean +/- standard deviations. 

NTN=normotensive; HTN=Hypertensive; Af. American=African American; HDL=high density 

lipoprotein; LDL=low density lipoprotein. HTN-IR=Mexican Cohort 

Characteristics                            
Caucasian NTN Caucasian HTN Af.American HTN HTN-IR

N 143 324 54 192
Age (years) 39.37+/- 11.05 48.44 +/- 8.07 45.82+/-6.98 48.2+/-14.29
Female gender (%) 78(55) 126(39) 29(63) 108(56.25)
Body mass index, kg/m2 25.17+/- 3.86 28.08+/- 3.99 29.13+/-3.82 30.5+/-5.64
Fasting glucose, mg/dl 84.84+/- 10.68 89.99+/- 10.56 91.09+/-12.09 98.07+/-9.58
Systolic blood pressure, mm Hg 110.36+/- 12.25 145.97+/- 19.68 153.52+/-20.32 138.71+/-22.93
Diastolic blood pressure, mm Hg 66.26+/- 8.11 86.62+/- 11.01 90.35+/-11.26 81.33+/-12.45
Mean arterial pressure, mm Hg 80.96+/- 8.64 106.40+/- 12.97 111.41+/-13.38 100.45+/-14.9
Triglycerides, mg/dl 123.93+/- 93.11 169.11+/- 111.20 101.81+/-46.75 141.29+/-72.87
Total cholesterol, mg/dl 169.22+/- 35.82 197.61+/- 35.82 194.11+/-41.76 187.31+/-32.73
HDL cholesterol, mg/dl 49.29+/- 30.06 39.89+/- 11.94 47.75+/-15.54 47.56+/-13.08
LDL cholesterol, mg/dl 98.01+/- 30.66 123.29+/- 35.06 125.4+/-39.11 111.63+/-29.53

POPULATIONS

 

Table 6. Genotyped CAV1 SNPs: SNP location within CAV1 gene. Maj=major allele, 

Min=minor allele, MAF=minor allele frequency; HWE= Hardy-Weinberg equilibrium values, p 

values obtained from chi-square analysis. rs numbers from dbSNP. 

11 Genotyped SNPs
Polymorphism Location: chr.7 Maj/Min MAF HWE p value

rs2215448 115951188 G/A 0.18 .040**
rs926198 115954444 T/C 0.36 0.104
rs1543293 115965784 G/C 0.18 0.576
rs959173 115969290 T/C 0.17 0.453
rs3807989 115973477 G/A 0.40 0.990

rs12668226 115974926 A/C MONOMORPHIC
rs3815412 115977929 T/C 0.22 0.370
rs1022436 115980467 C/G 0.16 0.138
rs3757732 115980941 intronic C/A 0.22 0.359
rs729949 115982141 G/A 0.21 0.303
rs1049337 115987823 C/T 0.30 0.360  



55 

 

Figure 3. Linkage Disequilibrium plot of 11 CAV1 and 1 CAV2  tagging SNPs.  Numbers 

represent R2 values. 

 

Table 7: Final 6 CAV1 SNPs and their association with fasting insulin (natural log transformed). 

MAF=major allele frequency. P-values were obtained from a mixed model regression and 

accounting for age, gender, study site, and BMI.  

Polymorphism Dominant ModelMAF (%)  p value 
rs926198 TT vs.CT/TT 36 0.005**
rs1543293 GG vs.CG/CC 17 0.06
rs3807989 GG vs.GA/AA 42 0.007**
rs3757732 CC vs.CA/AA 24 0.400
rs1022436 CC vs.CG/GG 18 0.245
rs1049337 CC vs.CT/TT 30 0.080

6 Genotyped SNPs and Fasting Insulin in HTN 
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Figure 4. CAV1  genotypes associate with fasting insulin (A), HOMA-IR (B) and M-value (C) 

in the HyperPATH HTN cohort. Point estimates (least-square means), 95%CI, and p values (F 

test, two sided) were obtained from mixed model regression (A and B). Mean, SD, and p values 

were obtained from t-test (C). 
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Table 8. The association of 6 CAV1 SNPs with change in Systolic Blood Pressure. P values were 

obtained from a mixed model linear regression accounting for age, gender, and BMI. Maj=Major 

allele, Min=minor allele, MAF=major allele frequency. 

Polymorphism Alleles MAF (%)  Additive Model p value Recessive Model p value
rs926198 TT/CT/TT 36 0.3
rs1543293 GG/CG/CC 17 0.2
rs3807989 GG/GA/AA 42 0.3 0.1*
rs3757732 CC/CA/AA 24 0.7
rs1022436 CC/CG/GG 18 0.5
rs1049337 CC/CT/TT 30 0.7

*significant if divided by 2 for replication of HTN-IR cohort

6 Genotyped SNPs and Systolic Salt Sensitive Blood Pressure in HTN 

 

Figure 5. Salt sensitive systolic blood pressure and rs3807989. The association of rs3807989 

(Recessive Model) with change in systolic blood pressure. P values (p=0.1) were obtained from a 

mixed model linear regression accounting for age, gender, and BMI. Error bars represent 

standard deviation. 
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Table 9. The association of 6 CAV1 SNPs with change (High Salt-Low Salt) in Diastolic Blood 

Pressure. P values were obtained from a mixed model linear regression accounting for age, 

gender, and BMI. Maj=Major allele, Min=minor allele, MAF=major allele frequency. 

Polymorphism Alleles MAF (%)  Additive Model p value 
rs926198 TT/CT/TT 36 0.2
rs1543293 GG/CG/CC 17 0.9
rs3807989 GG/GA/AA 42 0.8
rs3757732 CC/CA/AA 24 0.5
rs1022436 CC/CG/GG 18 0.5
rs1049337 CC/CT/TT 30 0.8

6 Genotyped SNPs and Diastolic Salt Sensitive Blood Pressure in HTN 

 

Table 10. The association of 6 CAV1 SNPs with change (HS-LS) in Mean Arterial Blood 

Pressure. P values were obtained from a mixed model linear regression accounting for age, 

gender, and BMI. MAF=major allele frequency. 

Polymorphism Alleles MAF (%)  Additive Model p value 
rs926198 TT/CT/TT 36 0.2
rs1543293 GG/CG/CC 17 0.5
rs3807989 GG/GA/AA 42 0.5
rs3757732 CC/CA/AA 24 0.6
rs1022436 CC/CG/GG 18 0.5
rs1049337 CC/CT/TT 30 0.8

*significant if divided by 2 for replication of HTN-IR cohort

6 Genotyped SNPs and Mean Arterial Salt Sensitive Blood Pressure in HTN 

 

Discussion.   

Many gene association studies of insulin resistance have demonstrated inconsistent 

results (Lusis, Attie, & Reue, 2008).  The successful outcome of the present study likely resides 

in several factors.  First, this study used a candidate gene-intermediate phenotype approach.  The 

candidate gene---CAV1---was chosen based on pre-clinical rodent data.  The clinical trait was 

the heritable insulin resistance in hypertensives, i.e., an intermediate phenotype. Second, known 

environmental factors, including drug therapy, were controlled and/or eliminated, thereby 
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reducing their confounding effects. Finally, and most importantly, the findings in one population 

were confirmed in a second population. Thus, these studies identify CAV1 as a genetic marker 

for metabolic dysfunction and provide insight into a potential mechanism underlying the inter-

individual variability of the co-aggregation of insulin resistance and hypertension in humans.   

 Family studies indicate that the co-occurrence of insulin resistance and hypertension is 

heritable (Raji, 2001; Xiang, 2001). CAV1 is a known regulator of insulin signaling and insulin 

receptor stability.  Specifically, CAV1 binds directly to the insulin receptor in adipocytes (Cohen 

et al., 2003) and disruption of this complex (Couet et al., 2001) by ganglioside GM3 (Kabayama 

et al., 2007) causes altered insulin signaling.  Further, depletion of CAV1 results in a ninety 

percent decrease in adipocyte insulin receptor levels in CAV1 KO mice (Cohen et al., 2003). 

While the role of CAV1 in insulin mediated glucose uptake is less clear (Cohen et al., 2003), 

CAV1 has also been shown to be involved in Glut-4 translocation to the plasma membrane in 

both adipocytes (Karlson et al., 2004) and muscle cells (Oh et al., 2006).   It is possible that 

alterations in the CAV1 gene are affecting one or both of these processes, leading to the 

hyperinsulinemic state seen in both the human and animal data.  

 While research in humans is somewhat limited, at least three types of studies support a 

potential relationship between insulin resistance and CAV1: 1) CAV1 mRNA levels are greater 

in fat from obese subjects than from lean subjects (Catalan et al., 2008); 2) mutations in the 

CAV1 gene have been linked to lipodystrophy, a disease of abnormal fat distribution and severe 

insulin resistance (Cao et al., 2008); and  3) genetic variants within the CAV1 docking domain of 

the insulin receptor gene cause severe insulin resistance (Cohen et al. 2003; Iwinishi, 1993; 

Moller et a,l, 1990). Together, these studies suggest that CAV1 likely is involved in metabolic 
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regulation and support the findings that CAV1 is a marker for insulin resistance in hypertensive 

humans.  

 Of interest, these data demonstrate that the association between CAV1 genotype and 

fasting insulin levels is strongest in lean individuals. The identification of insulin resistance in 

lean individuals seems counterintuitive within the current understanding that obesity influences 

insulin resistance.  However, some individuals develop a metabolic phenotype, including insulin 

resistance and hypertension, without obesity (Wildman et al., 2008; Ferri et al., 1999).  These 

data suggest that alterations in the CAV1 gene may contribute to the development of insulin 

resistance in lean individuals. Of note, CAV1 KO mice also demonstrate insulin resistance even 

though they are lean and exhibit resistance to diet induced obesity (Cohen et al., 2003).  

 Interestingly, SNPs of the CAV1 gene also demonstrated a non-significant trend toward 

an association with salt sensitivity of blood pressure.  Numerous studies link insulin resistance 

and salt sensitive blood pressure in humans. Raji et al. (2001) demonstrated that the salt sensitive 

intermediate phenotype of hypertension, non-modulating hypertension, was the most insulin 

resistant sub-phenotype of hypertension in the HyperPATH cohort.  Further, Sharma et al. (2001) 

found that insulin resistance and salt sensitivity were associated in normotensive individuals and 

the same relationship was seen in obese hypertensive individuals (Rocchini, 2001). The first 

CAV1 SNP associated with salt sensitivity is different (rs3757732) than the two SNPs associated 

with IR, suggesting two different parts of the CAV1 gene are influencing vascular dysfunction 

and insulin resistance separately. The other SNP (rs3870989) is also associated with IR; 

however, the minor allele is associated with decreased salt sensitivity and increased insulin 

resistance suggesting the relationship between CAV1 and these two outcomes is not linked. 

Alternatively, the CAV1 influence on IR may be protecting individuals from salt sensitivity 
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through a mechanism currently unknown.  Further analyses must be conducted in a larger 

population to clarify the relationship between the CAV1 gene and salt sensitive hypertension. 

Importantly, both CAV1 SNP associations with salt sensitivity described were replicated in the 

HTN-IR cohort (unpublished data).  

 This study has several limitations.  First, CAV1 protein levels were not available to 

determine whether differences existed by SNP in this human study. Second, the causal alleles at 

the CAV1 locus remain unknown. The two SNPs identified are located in introns of the CAV1 

gene. However, both SNPs are in strong LD (D’>0.9) with CAV1 gene promoter variants (e.g. 

rs2215448), suggesting that this SNP may be a marker for altered CAV1 gene transcription.  

 In summary, variants of the CAV1 gene are associated with hyperinsulinemia and insulin 

resistance in humans with hypertension.  These findings have important clinical implications. 

First, they identify a genetic marker that might aid in identifying individuals at risk for metabolic 

disease, particularly lean individuals who may not be identified using current risk profiles.  

Second, this study identifies a novel pathway that contributes to insulin resistance in humans. 

New therapies targeting this pathway may provide individualized treatment to patients identified 

to have a defect in the CAV1 gene.   
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Chapter 5 

Results: The Association of Single Nucleotide Polymorphisms of the Peroxisome 

Proliferator Activated Receptor gamma Gene with Insulin Resistance and Vascular 

Dysfunction in Humans 

Group characteristics. 

 Three hundred and ninety five Caucasian individuals with hypertension and complete 

PPARγ genotype were analyzed from the HyperPATH Cohort (Table 11). The group had almost 

equal numbers of men and women (40% women) and were non-obese (mean BMI=28.25). The 

African American hypertensive replication sample (N=55) had more females (73%) and had 

similar blood pressure and cholesterol values compared with the Caucasian group with 

hypertension.  The Caucasian group without hypertension (N=151), used for evaluating the 

effects of hypertension on any significant results has lower blood pressure values and lower 

overall cholesterol values.  

Gene characterization. 

 Twenty nine tagging SNPs, identified by the Haploview program, were analyzed in 

Caucasian individuals with hypertension (The International HAPMAP Consortium, 2005; 

Barrett, Fry, Maller, & Davy, 2001) (Figure 6).  Tagging SNPs were identified using the CEU 

population (HAPMAP Caucasian population) with an R2 greater than 0.9 and a minor allele 

frequency (MAF) greater than 10%. The PPARγ SNP rs1801282 (Pro12Ala) was tagged using 

SNP rs7649970.  

 Thirteen SNPs were removed from the analysis since they had an R2 greater than 0.8 with 

a second SNP indicating linkage disequilibrium (LD) in this population: rs4684846, rs9817428, 

rs7620165, rs12636454, rs12493718, rs2067819, rs2881654, 2938395, rs4135263, rs2938392, 
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rs796290, rs76265806, rs2972162. Four SNPs were removed with a MAF of less than 10 

percent: rs3892175, rs12497191, rsrs4135247, rs1175540. One SNP, rs2972164, was removed 

since it was originally chosen as a tag SNP from the YRI population and is not needed in an 

analysis of Caucasians.  The eleven remaining SNPs captured all 29 SNPs according to the 

Tagger program of haploview resulting in 100% gene coverage (Barrett, Fry, Maller, & Davy, 

2001). 

 The LD plot for the remaining eleven SNPs is displayed in Figure 7.  This plot 

demonstrates that none of the SNPs are in LD with one another indicating duplicate information 

is not tagged. Quality control metrics are displayed in Table 12. All eleven SNPs were in Hardy-

Weinberg Equilibrium (HWE) and have MAF greater than 10 percent. All genotyped SNPs had a 

completion rate of greater than 95%.  Repeat genotyping for 10% of the SNPs demonstrated 

concordance with the original genotype call. 

Primary phenotype: insulin resistance. 

 The primary phenotype, insulin resistance as measured by HOMA-IR, was evaluated for 

each of the eleven SNPs.  The endpoint was log transformed to meet the normality assumption of 

regression. This transformation met normality tests as demonstrated by a non-significant 

(p=0.07) goodness of fit value for the Cramer-von Mises test (Munro, 2005). The total number of 

individuals analyzed for the HOMA-IR analysis (individuals with values for HOMA-IR on a 

high salt diet and PPARγ  genotype) was 338.  

 None of the eleven SNPs were significantly associated with HOMA-IR levels (Table 13) 

using a mixed effects linear regression accounting for age, gender, BMI, and sibling relatedness.  

The results demonstrated p values ranging between .2 and .9.  
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 In a subset of the Caucasian hypertensive population (N=15), eleven SNPs were tested 

for an association with the M value of the hyperinsulinemic euglycemic clamp using an ANOVA 

with the SNPs categorized in an additive model (1=major allele homozygotes, 2=heterozygotes, 

3=minor allele homozygotes). Sibling relatedness was not accounted for since all individuals 

were unrelated in this subset. Further, BMI, age, and gender were not included as co-variates 

since these variables did not differ significantly when the population was stratified by SNPs of 

the PPARγ gene.  

 The M value for the clamp was normally distributed and thus, was not transformed.  

None of the eleven SNPs were significantly associated with insulin sensitivity using an additive 

model (Table 14) however; this analysis demonstrated some trends that were close to significant. 

When these trends were analyzed further using a dominant or recessive model, significant results 

were found. Two SNPs, rs2959272 and rs1152003, were significantly associated with insulin 

sensitivity using a dominant and recessive model respectively.  Minor allele carriers for SNP 

2952972 had significantly lower M values, and thus were more insulin resistant than individuals 

homozygous for the major allele (p=0.03).  Further, homozygotes for the minor allele of SNP 

rs1152003 had significantly lower M-Values and were more insulin resistant than major allele 

carriers (p=0.05).  Since the clamp study was a pilot study and was not done in the African 

American sample, replication in a second cohort cannot be examined. 

 These results indicated that the null hypothesis H.02a. (Individuals who are homozygous 

minor allele carriers for SNPs in, PPARγ will not be more insulin resistant than heterozygote or 

homozygous major allele carriers), was not rejected. 
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Secondary phenotypes: blood pressure and components of RAAS. 

 Salt sensitive systolic, diastolic, and mean arterial blood pressure was measured using the 

protocol previously described (Methods Section Chapter 3).  All three variables were normally 

distributed. Tests for normality were met using the Shapiro-Wilk test (p=0.2 systolic), p=0.6 

diastolic), p=0.7 [mean arterial presure]).  Individuals with complete data for blood pressure 

measurements on both a high salt diet and low salt diet and PPARγ  genotype were included in 

this analysis. The total number of individuals analyzed was 245 for systolic and mean arterial 

pressure blood pressure measurements and 244 for diastolic blood pressure measurements.  

 Of the eleven SNPs, rs13099634, demonstrated a significant association with systolic salt 

sensitive blood pressure. Both major allele homozygote and heterozygote individuals 

demonstrated greater increases in systolic blood pressure in response to salt loading (GG=15.9, 

GA=17.4, AA=12.6 p=0.03 additive model, p=0.02 recessive model). This association was not 

replicated in the African American sample (p=0.7). 

 SNP rs1373641 (also a marker for rs2938395) demonstrated a significant association 

with diastolic salt sensitivity with homozygote major allele carriers demonstrating the greatest 

response to salt loading (AA=10 AG=7.7 GG=7.3 p=0.05 additive model; dominant p=0.03). 

Further, this association was replicated in the same direction in the African American sample 

using a dominant model (AA=11.3 GG/AG=4.3 p=0.02) (Figure 8).  

  Two SNPs, rs1373641 and rs13099634, were significantly associated with MAP salt 

sensitive blood pressure. Homozygote major allele carriers for SNP rs1373641 had significantly 

greater response to salt loading than minor allele carriers (AA=12.1 AG=9.2 GG=8.8, p=0.04 

additive, p=0.02 dominant model). Homozygote major allele carriers for SNP rs13099634 had 

significantly lower response to salt loading than minor allele carriers (GG=9.1 GA=11.9 
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AA=11.8, p=0.05 additive, p=0.03 dominant model). Neither of the results were replicated in the 

African American sample (rs10510418 p=0.3; rs13099634 p=0.7). 

Components of the RAAS: plasma renin activity (PRA). 

 Alterations in the RAAS are known to affect renal salt handling and alter vascular 

functioning (Williams, 1982; Hollenberg, 1984). Therefore, this study assessed the association of 

the PPARγ  gene with components of the RAAS, specifically PRA and aldosterone, on high and 

low salt diet. Studying the parameters on a low salt diet provides a context to study the 

association of PPARγ  and components of the RAAS under RAAS activation.  

High salt diet: baseline PRA and aldosterone. 

 Both baseline PRA and baseline aldosterone were examined on a high salt diet. Three of 

the 11 SNPs were significantly associated with increased baseline PRA levels on a high salt diet 

(rs7649970 p=0.03 additive; p=0.02 dominant; rs1373641 p=0.03 additive, p=0.02 dominant; 

rs4135275 p=0.03 additive; p=0.01 dominant). For all SNPs, individuals that were either 

homozygous or heterozygote minor allele carriers were associated with increased PRA. 

However, none of these SNPs were significantly associated with baseline PRA in the African 

American sample.  One of the eleven SNPS (rs3856806) was significantly associated with 

increased baseline aldosterone levels. Again, minor allele carriers were associated with increased 

aldosterone levels (GG=4.5, GA=5.5 AA=5.5. p=0.008 additive, p=0.005 recessive). This result 

was not replicated in the African American sample (p=0.6).  Since p values from these 

associations did not meet significance once adjustments for multiple comparisons were made and 

further, none of these results were replicated in the second cohort, further investigation of other 

high salt phenotypes was not done.  
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Low salt diet: baseline PRA and aldosterone 

 An examination of the association of the PPARγ  SNPs with PRA and aldosterone on a 

low salt diet provided different results than those seen in the high salt diet, suggesting that an 

activated RAAS may influence the association of the PPARγ  gene on PRA and aldosterone 

levels. Multivariate linear regression demonstrated that rs2959272 genotype was significantly 

associated with baseline PRA levels (AA=1.55 ± 1.1ng/ml/hr, AC=1.66 ± 1.08 ng/ml/hr, CC= 

2.19±1.12 ng/ml/hr; trend p= 0.025) and was consistent with a recessive genetic model.  

Henceforth, analyses were done with CC as the reference group (AA/AC vs. CC).  CC 

individuals had significantly higher baseline supine PRA levels when compared to the AA/AC 

group (p=0.016) (Table 15). PRA levels were also significantly higher in CC individuals during 

the upright posture study (p=0.042) (Table 15).  

 As seen with Caucasian cohort, baseline supine PRA levels on a low salt diet were 

significantly higher in the CC group compared with the AA/AC group (p=0.027) in the African 

American sample.  The upright posture PRA levels were also replicated in the African American 

cohort (p=0.042). 

The minor allele of rs10510419 was associated with lower baseline aldosterone levels on 

a low salt diet (CC=16.4, CA=13.5 AA=11.0 p=0.02 additive, p=0.03 dominant). However, this 

result was not significant in the African American sample (p=0.4). 

 These results indicate that the null hypothesis was rejected and the hypothesis H.2b. 

(Individuals who are homozygous minor allele carriers for SNPs in the PPARγ gene will be more 

salt sensitive than heterozygote or homozygous major allele carriers), was accepted. 
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 Pilot analyses for mechanism 

 The results for an association between baseline supine PRA and rs2959272 genotype on a 

low salt diet were consistent across two populations demonstrating that individuals homozygous 

for the minor allele have higher baseline PRA levels (Table 15). Replication of the initial 

findings decrease the likelihood that the original findings are the result of a Type I statistical 

error (Munro, 2005)  Since PRA levels can be affected by variables other than genotype, 

mechanistic studies were conducted to determine if influencing factors differed by genotype. 

 Delta PRA 

 PRA levels fall in proportion to baseline levels after AngII infusion (Seely et al., 1989). 

Thus, delta PRA levels were analyzed by rs2959272 to determine the PRA response to AngII 

infusion in relation to baseline PRA levels.  PRA data after AngII infusion was available for 311 

Caucasian individuals with hypertension and 47 African Americans with hypertension. While 

PRA levels after AngII infusion was significantly associated with rs2959272 genotype in both 

the Caucasian  (p=0.025) and African American cohorts(p=0.012), delta PRA levels did not 

differ between genotype in either group (Table 15).  

 BP and heart rate 

   Since PRA is known to be affected by both BP (Williams, 1982) and sympathetic 

nervous system (SNS) activity, this study examined the relationship of rs2959272 with BP and 

heart rate (HR).  CC individuals had significantly higher SBP in the African American cohort 

(p=0.004), however, in Caucasian hypertensives, SBP tended to be lower, though this result was 

not significant (p=0.097) (Table 15).  There was no significant difference in HR by genotype in 

both cohorts. 
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 Aldosterone  

 Since aldosterone and PRA are known to be correlated (Williams, 1982), aldosterone 

concentrations were analyzed by genotype.  Unadjusted analysis of aldosterone concentrations 

were significantly higher in CC carriers (p=0.04) in Caucasian hypertensives. However, after 

including the covariates age, gender and BMI, statistical significance was reduced (p=0.08) 

(Table 15).  No association was observed between rs2959272 genotype and aldosterone levels in 

the African American population (p=0.35).   

Regression Diagnostics. 

 Since positive results were found across two cohorts for salt sensitive diastolic blood 

pressure and low salt PRA levels, regression diagnostics were analyzed to insure the results were 

not influenced by outliers or multi-collinear independent variables. For both models tested, the 

independent variables (SNP, age, gender, and BMI) had VIF less than 10 indicating that 

collinearity does not exist. For both models tested, linear relationships existed between the 

independent variables and the dependent variable as demonstrated by the partial residual plots 

and correlation plots.    

Meta-analysis. 

A meta-analysis of the two cohorts (HyperPATH Caucasian HTN and HyperPATH 

African American HTN) was carried out for the primary significant phenotype in the 

HyperPATH study, elevated PRA levels using the Fishers’ combined p value approach (Fisher, 

1948).  As expected, rs2959272 demonstrated highly significant associations with elevated PRA 

using a recessive model (Supine PRA: rs2959272 p=0.002; Posture PRA p=0.02).     
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 Summary of Results 

In summary, a complete examination of the PPARγ gene with measurements of insulin 

resistance and component of the RAAS was conducted.  Analysis of the PPARγ gene 

demonstrated significant associations with 2 SNPs and decreased M values (insulin resistance) of 

the clamp in the Caucasian hypertensive population. However, the p values from this analysis do 

not withstand correction for multiple testing and the results were not replicated in a second 

population. Further, no significant associations were found between SNPs of the PPARγ gene 

and HOMA-IR suggesting that in the hypertensive population of the HyperPATH cohort the 

PPARγ gene is not a marker for insulin resistance.  

Conversely, the examination of the PPARγ gene with vascular dysfunction and 

components of the RAAS indicates that SNPs within the PPARγ gene may be a marker for salt 

sensitivity and altered renal functioning on a low salt diet in individuals with hypertension.  SNP 

rs1373641 was significantly associated with diastolic salt sensitive blood pressure in both the 

Caucasian and African American population.  A second SNP, rs2959272, was associated with 

low salt and posture PRA levels in both Caucasian and African American hypertensive 

populations. These findings support a relationship between the PPARγ and vascular dysfunction 

in a hypertensive population. 
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Tables and figures. 

Table 11. Cohort Characteristics. Data represents mean +/- standard deviations (Underwood, 

Sun, Williams, Pojoga, Chamarthi, Lasky-Su et al., 2010). 

 

Caucasian 
Normotensive (n=151)

Caucasian Hypertensive  
(n=395)

African American 
Hypertensive (n=55)

Age,years 39.4±11.5 48.20± 9.06 46.24 ± 8.12
Female gender (%) 75(50) 157 (39.75) 40 (72.73)
Body mass index (kg/m2) 25.2±4.0 28.25 ± 4.0 29.2 ± 4.1
Systolic blood pressure (mm Hg) 110.9±13.6 146.3± 19.6 152.2± 20.5
Diastolic blood pressure (mm Hg) 66.2±8.4 87.7± 11.7 88.6± 10.9
Mean arterial pressure (mm Hg) 81.1±9.4 107.2± 13.2 109.8± 13.2
Baseline Triglycerides (mg/dl) 114.2±72.6 167.4± 119.8 92.5± 27.9
Baseine Total Cholesterol (mg/dl) 165.6±32.5 201.6± 40.1 191.3± 33.6
Baseline HDL (mg/dl) 47.0±17.3 40.8± 12.8 49.3± 5.5
Baseline LDL (mg/dl) 97.2±28.3 123.6± 36.3 126.5± 36.3
Baseline PRA (ng/ml/hr) .46±.44 0.64± .9 .3± .3
Baseline Aldosterone (ng/dl) 3.9±2.8 5.7± 4.2 3.4± 3.6

Characteristics HS Diet

 

Figure 6: Linkage Disequilibrium plot of 29 PPARγ  tagging SNPs.  Numbers represent R2 

values. 
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Figure 7: Linkage Disequilibrium plot of 11 PPARγ  tagging SNPs.  Numbers represent R2 

values. SNPs with R2 values greater than 0.8 have been removed.  
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Table 12: SNP location within PPARγ  gene. Maj=major allele, Min=minor allele, HWE= 

Hardy-Weinberg equilibrium values, p values obtained from chi-square analysis. 

Polymorphism Location Maj/Min MAF HWE p value
rs17036242  intron 12324490 G/A 0.26 0.983
rs10510418  intron 12363563 A/C 0.32 0.933
rs7649970  intron 12367272 G/A 0.13 0.648
rs1373641  intron 12377474 A/G 0.34 0.928
rs10510419  intron 12401936 C/A 0.16 0.877
rs2959272  intron 12417833 A/C 0.48 0.679
rs4135275  intron 12418844 A/G 0.18 1
rs13099634  intron 12443463 G/A 0.19 0.357
rs1797912  intron 12445239 A/C 0.35 1
rs3856806  coding- synonymous 12450557 G/A 0.14 0.243
rs1152003  intron 12452055 C/G 0.35 1  

Table 13. 11 PPARγ  SNPs and their association with HOMA-IR (natural log transformed). P-

values were obtained from a mixed model regression and accounting for age, gender, and BMI.  

Polymorphism 
HS HOMA-IR HS p value Additive 

Model p value
rs17036242 0.9
rs10510418 0.4
rs7649970 0.5
rs1373641 0.7

rs10510419 0.5
rs2959272 0.6
rs4135275 0.9

rs13099634 0.7
rs1797912 0.8
rs3856806 0.9
rs1152003 0.2  
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Table 14. 11 PPARγ  SNPs and their association with the glucose infusion rate (M value) of the 

clamp (natural log transformed). P-values were obtained from an ANOVA analysis for the 

additive model and a student’s t-test for the dominant and recessive genetic models.   

Polymorphism  p value 
Additive Model 

 p value 
Dominant Model 

 p value 
Recessive Model 

rs17036242 0.9
rs10510418 0.5
rs7649970 0.9
rs1373641 0.5

rs10510419 0.6
rs2959272 0.3 0.03*
rs4135275 0.7

rs13099634 0.1
rs1797912 0.3
rs3856806 0.6
rs1152003 0.2 0.05*  
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Figure 8. The association of PPARγ  rs1373641 with delta Diastolic Blood Pressure: the 

Caucasian-HTN and African American cohort are represented. p-values were obtained from a 

mixed model linear regression accounting for age, gender, and BMI.  

            Caucasian-HTN     African-American HTN 
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Table 15. Baseline supine PRA obtained during low salt diet, differed by SNP rs2959272 in both 

the Caucasian and African American populations. A second environment, upright posture PRA, 

demonstrated similar results. Fisher’s combined p value was significant for both tests (p=0.002 

baseline supine PRA, p=0.02 upright posture PRA). Delta PRA, baseline supine aldosterone, and 

baseline heart rate did not differ by genotype. SBP did significantly differ by genotype in the 

African American population.   Point estimates (least square means), 95%CI, and p-values were 

obtained from a mixed model regression (Underwood et al., 2010). 

N Mean Estimate LCI UCI p value N Mean Estimate LCI UCI p value
Baseline Supine PRA

AA/AC 280 1.617 1.44 1.82 34 0.886 0.6 1.31
CC 75 2.189 1.75 2.73 0.016* 18 1.653 0.95 2.86 0.027*

Upright Posture PRA
AA/AC 280 4.78 4.1 5.58 34 2.31 1.36 3.94

CC 75 6.18 4.83 7.9 0.042* 18 4.09 2.1 7.94 0.042*
Delta PRA

AA/AC 241 -0.849 -1.085 -0.609 31 -0.522 -0.738 -0.306
CC 70 -1.126 -1.45 -0.799 0.06 16 -0.531 -0.838 -0.223 0.468

Systolic Blood Pressure
AA/AC 253 131 123.5 136.16 29 130 124.1 135.9

CC 65 127 118.8 136.16 0.097 17 143 136 151.3 0.004*
Baseline Supine Aldosterone

AA/AC 280 14.82 13.03 17.22 0.086 34 13.33 9.14 19.49 0.353
CC 75 16.86 13.97 20.36 18 11.66 8.28 16.42

Baseline Heart Rate
AA/AC 280 65 64 66 0.29 34 65 63 77 0.20

CC 75 66 64 68 18 70 59 71

Caucasian Hypertensives Af. American Hypertensives

  

Discussion. 

 This study demonstrates a relationship between the PPARγ gene and two phenotypes in 

two hypertensive populations: 1) salt sensitive diastolic blood pressure and 2) low salt baseline 

PRA levels. The PRA association was consistent in two environments: a) supine baseline and b) 

upright posture. Pilot mechanistic studies established that delta PRA, baseline systolic blood 

pressure, heart rate (a potential surrogate for adrenergic activity), and aldosterone measurements 
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he kidney (Todorov et al., 

2007;  
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directly through PPARγ’s direct action on renin that leads to increases in 

aldoste

 

 

) 

es 

man 

did not differ by rs2959272 genotype and were not affecting the PRA results.  It is possible that 

the increase in renin is directly related to the PPARγ genotype. Evidence from both animal and 

human studies supports a relationship between renin and PPARγ in t

Duan et al., 2003; Zanchi et al., 2004; Hansen et al., 2006).  

What effect might the potential relationship between the PPARγ gene, renin, and edema 

have on the process of volume retention seen with PPARγ agonist use? First, renin via AngII, 

can modify sodium handling first by a direct effect (mainly on the proximal renal tubule) and 

second by indirect effects via modification of renal blood flow and aldosterone secretion (Seely 

et al., 1989; Hollenberg, 1984). Also, PPARγ agonists can directly increase 22Na flux in cu

collecting duct cells, activating the epithelial sodium channel (ENAC), and inducing fluid 

retention in mice (Guan et al., 2005). Thus, salt retention could be regulated by direct actions of 

PPARγ on ENAC and in

rone secretion.  

The relationship between PPARγ and volume retention may also be involved with the 

association found between the PPARγ gene and increased diastolic blood pressure in response to

changes in dietary salt (salt sensitivity). This is not the first association of the PPARγ gene with

blood pressure.  PPARγ  knockout mice demonstrate severe lipodystrophy, insulin resistance, 

and a decrease in blood pressure (Duan, 2007). Further, PPARγ partial-agonists (Telmisartan

and PPARγ agonists (rosiglitazone) have been found to decrease blood pressure and insulin 

resistance in individuals with hypertension (Sanchez et al., 2008; Raji et al., 2003). These studi

suggest an influence of PPARγ on both glucose regulation and vascular dysfunction in hu

hypertension. PPARγ has also been implicated in the development of salt sensitivity in a 
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hypertensive population (Zanchi, 2010).  In this study a SNP of the PPARγ gene was associated 

with increased diastolic blood pressure in response to dietary salt. As proposed above, alterations

in the PPARγ gene may cause altered renal functioning and increased volume retention. Alte

renal responses may also result in inappropriate responses to salt loading manifested as salt 

sensitivity. The PPARγ SNPs found to be significantly associated with baseline PRA and salt 

sensitivity are in sligh

enotypes.   

This analysis found no significant association between the PPARγ  gene and 

measurements of insulin resistance.  This is in stark contrast to many epidemiologic studies that 

have found an association of this gene with T2DM (Altshuler, 2000).  It is possible that the effec

of the PPARγ gene on glucose metabolism is small and significant results may be found with a

larger sample size. Of note, the PPARγ SNP most well known for its association with T2DM 

(Pro12Ala) has a small minor allele frequency (0.12 in the Caucasian population of HAPMAP) 

and this sample had only two homozygote minor allele carriers for this SNP. Thus, lack of pow

may explain the non-significant association seen in this population. Alternatively, few studies 

have analyzed this well known association in a hypertensive population a

this gene is not associated with glucose metabolism in this population.   

 This study has several limitations.  First, edema incidence with PPARγ   agonist use w

unavailable to assess whether rs2959272 genotype can predict increased volume retention. 

Second, p values do not withstand a correction for 11 SNPs.  However, since replication was 

demonstrated, it is unlikely the findings are the result of a type I error. Third, without access to 
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ith 

ay help explain inter-individual 

ariability between the association of PPARγ   agonist use and increased cardiovascular risk seen 

 some, but not all, individuals (Graham et al., 2010).  

renal or endothelial tissue it is impossible to determine the effects of the intronic SNP rs295927

or rs1373641 on kidney or endothelial PPARγ  levels.    

 In summary, this study demonstrates that CC carriers of SNP rs2959272 in the PPARγ   

gene have significantly higher PRA levels than AA /AC carriers. This association provides

insight into a possible mechanism for the inter-individual variability of volume retention w

PPARγ   agonist use. Second, this study demonstrates that GG carriers of rs1373641 have 

increased diastolic blood pressure response to salt loading. This association highlights the 

PPARγ    gene as a marker for vascular dysfunction and m

v

in
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he Association of Single Nucleotide Polymorphisms of the Angiotensinogen Gene 

with Insulin Resistance and Vascular Dysfunction in Humans: A SNP and Haplotype 

  are summarized in Table 16. Individuals with hypertension 
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Chapter 6 

Results:  T

Analysis 

Population characteristics. 

Population characteristics

have higher blood pressure and a worse metabolic profile than individuals without hypertension.  

Gene characterization. 

 Sixteen tagging SNPs were identified from HapMap (Phase II, November 2008) using the 

chromosomal co-ordinates chr1:228,904,892-228,916,564 and including 5 kb flanking regions. 

Sixteen SNPs captured 100% of the common HapMap Caucasian variation in this region defined

as minor allele frequencies >0.1 at R2>0.9. SNP rs2493134 was used as a surrogate for the w

known AGT SNP M235T (rs699) (R2=1) (The International HAPMAP Consortium, 2005). All 

genotyped SNPs had a completion rate of greater than 95%. All SNPs conformed to Hardy-

Weinberg expectations (HWE) in the study population. Further, SNP a

y site (p>0.05 for all SNPs tested via chi-sq

the SNPs demonstrated concordance with the original genotype call.  

Primary phenotype: insulin resistance. 

 Sixteen SNPs were genotyped (Table 17).  Three SNPs were removed prior to the start

analyses due to monomorphism in the population (rs11568045, rs11568026) and a MAF less 

than 0.1 (rs11122576), resulting in 13 SNPs.  Ten of the SNPs were in linkage d
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(LD) (R 2) 

d is in 

12.89] 

e, 

associa , 

 a similar trend in mean estimates (lower HOMA-IR and 

fasting 

associa cant.  

.9± 

y distributed and thus, was not transformed. 

2>0.80) with other SNPs (Figure 15). Nine SNPs were significantly (p=0.0004-0.0

associated with lower HOMA-IR and therefore, insulin sensitivity (Table 17).  

Association of rs2493134 with HOMA-IR, fasting insulin, fasting glucose levels 

 This study used rs2493134 for further analyses, because it is the most significant an

complete LD (R2=1) with the non-synonymous mutation AGT M235T. Table 18 demonstrates 

an association of rs2493134 with HOMA-IR (untransformed estimates TT=2.21 [1.9-2.6] 

CT=1.80[1.6-2.2] CC =1.65 [1.4-2], p=0.0004 and fasting insulin levels (TT=9.97 [7.7-

mU/ml CT=8.51 [6.6-10.95] mU/ml CC= 7.67 [5.9-10.01] mU/ml p=0.0005 accounting for ag

gender, BMI, and study site in the Caucasian hypertensive population). No significant 

tion was seen between rs2943134 and fasting glucose levels (p=0.3).   Fasting insulin

HOMA-IR, and fasting glucose were all natural log transformed to meet normality assumptions. 

 Further, there was no significant association between rs2493134 and HOMA-IR or 

fasting insulin in the African American hypertension population. In the Caucasian normotensive 

population, no significant associations were found between rs2493134 and fasting insulin, 

HOMA-IR, or fasting glucose however,

insulin) were seen for the minor allele. It is likely that with a larger sample size, the SNP 

tion would become signifi

Association of rs2493134 with glucose infusion rate of the euglycemic 

hyperinsulinemic clamp 

 Of the ten subjects genotyped for the AGT gene in the Caucasian-HTN population who 

underwent the euglycemic hyperinsulinemic clamp, no significant differences existed for the M 

value of the clamp by rs2493134 genotype (mg/kg/min, mean ± SD; TT= 6.8±1.5, CT/CC=6

2.5, p=0.9). The M value for the clamp was normall
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insulin sensitive than heterozygote or homozygous major allele carriers) was accepted.  

en 

ted 

 values (p=0.00001), the interaction between SNP rs2493134 and 

as not 

I as a 

s 

model). Further, SNP rs2493134 exhibited a greater beta estimate (beta=-0.20 p=0.01) for the 

Since the clamp study was a pilot study and was not done in the African American sampl

replication in a second cohort cannot be examined. 

 The results thus far indicate that the null hypothesis H.03a. (Individuals who are 

homozygous minor allele carriers for SNPs in AGT gene will not be more insulin resistant th

heterozygote or homozygous major allele carriers) was rejected, and an alternate hypoth is

uals who are homozygous minor allele carriers for SNPs in AGT gene will be more 

Exploratory analysis: covariates known to influence AGT genotype: gender and 

BMI. 

 Since both gender (Tsai et al., 2009) and obesity (Hopkins et al., 1996) are known to 

interact with SNPs of the AGT gene, the influence of these covariates on the association betwe

rs2493134 and HOMA-IR was investigated.    Although the multivariate analysis demonstra

that a significant portion of the variance of HOMA-IR was accounted for by gender with men 

having higher HOMA-IR

gender was not significant (p=0.9) indicating that the SNP’s association with HOMA-IR w

influenced by gender.   

 In contrast, the analysis of the effects of BMI on the association of rs2493134 and 

HOMA-IR suggested that BMI may be moderating the results. An interaction between BM

continuous variable and SNP was not significant (p=0.6).  However, when the population wa

stratified by obesity status (normal: BMI<25kg/m2, overweight: BMI 25-29kg/m2, obese: 

BMI≥30kg/m2) (National Institutes of Health, 1998), an interaction was close to significant 

between the obese group and rs2493134 (p=0.15 additive SNP model; p=0.06 dominant SNP 
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verweight individuals (beta=- 0.19 p=0.06, beta=-.10 p=0.06) (Table19).  

 

MA-

ck 2 

 

.002 

likely i

ere 

 237 for systolic and 236 for diastolic and 

ean a

or 

hypothesis, H.03a (Individuals who are homozygous minor allele carriers for SNPs in AGT gene 

regression model tested in the obese group compared to the beta estimates for the same SNP 

tested in normal and o

Haplotype analysis. 

 The SNP LD plot from this hypertensive population indicated that three haplotype blocks

existed. Table 20 displays all three haplotype blocks and each block’s association with HO

IR.  Haplotype rs7079C|rs3789670C|rs3789671G|rs2478545C in block 1 and haplotypes 

rs6687360T|rs11122576A|rs2004776A and rs6687360C|rs11122576A|rs2004776G in blo

are significantly associated with HOMA-IR (p=0.05, beta=0.099; p=0.014, beta=-0.201; 

p=0.008, beta=0.1564).  The association of haplotype block 3 with HOMA-IR is significant only

when individuals carry the major allele (T) for SNP rs2493134 (p=0.0009 unadjusted; p=0

adjusted for age, gender, and BMI). Further, it important to note that both rs6687360 and 

rs11122476 of block 2 are in strong LD with rs2493134 of block 3, suggesting rs2493134 is 

nfluencing the results of haplotype 2.  

Secondary phenotypes: salt sensitive blood pressure. 

 All three salt sensitivity variables were normally distributed. Tests for normality w

met using the Shapiro-Wilk test (p=0.4 [systolic blood pressure], p=0.7 [diastolic blood 

pressure], p=0.2 [mean arterial pressure].  Individuals with complete data for blood pressure 

measurements on both a high salt diet and low salt diet and AGT genotype were included in this 

analysis. The total number of individuals analyzed was

m rterial pressure blood pressure measurements.  

 Of the thirteen SNPs, no significant associations between SNP and systolic, diastolic, 

mean arterial salt sensitive blood pressure were seen (Table 21, 22, 23).  Therefore, the null 
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will not be more salt sensitive than heterozygote or homozygous major allele carriers), was  not 

rejected. 

Regression Diagnostics. 

 Since positive results were found for HOMA-IR values, regression diagnostics were 

analyzed to insure the results were not influenced by outliers or multi-collinear independent 

variables. The independent variables (SNP, age, gender, and BMI) had VIF less than 10 

indicating that collinearity does not exist. Further, linear relationships existed between the 

independent variables and the dependent variable as demonstrated by the partial residual plots 

and correlation plots.    

Summary of results. 

This study demonstrates a significant association between SNPs of the AGT gene and 

insulin sensitivity in a Caucasian population.  This relationship is robust as evident by the 

numerous significant associations even after multiple comparison adjustment. The current study 

also demonstrates an association of AGT haplotypes, specifically 

rs2493134T|rs3789678C|rs5050T|rs2493137T|, with HOMA-IR.  This haplotype is driven by the 

major allele of rs2493134 (a proxy for AGT M235T) furthering the role of this SNP in 

mechanisms of insulin sensitivity.   
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Table and figures.  

Table 16. AGT Cohort Characteristics. Data represents mean +/- standard deviations. 

NTN=normotensive; HTN=Hypertensive; Af. American=African American; HDL=high density 

lipoprotein; LDL=low density lipoprotein. 

 

Caucasian NTN Caucasian HTN Af. American HTN
N 132 317 44

age (years) 39.1±11.1 48.6± 8.06 46.5±7.2
Femal Gender (%) 65(49.3%) 130(41%) 32(72.7%)

BMI (kg/m2) 25.1±3.8 28.05±3.8 29.5±3.9
Fasting Glucose(mg/dl) 85.3±10.7 90.8±11.2 88.2±12

Fasting Insulin(mg/dl) 10.4±4.9 9.8±5.7 11.2±6.7
Baseline Systolic Blood Pressure (mm Hg) 109.5±11 145.6±20.2 154.1±21.4

Baseline Diastolic Blood Pressure (mm Hg) 65.7±8.1 86.5±11.2 89.7±11.5
Baseline Map Blood Pressure (mm Hg) 80.3±8.4 106.2±13.3 111.2±13.8

HDL cholesterol (mg/dl) 47.1±18.3 40.5±12.7 50.1±16.2
LDL cholesterol (mg/dl) 96.2±32.8 123.5±36.4 122.9±36.1
Total cholesterol(mg/dl) 165.5±32.8 198.5±36.2 189.5±37.3

Triglycerides (mg/dl) 150.5±73.8 164.9±111 93.1±31.2

POPULATION CHARACTERISTICS
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Figure 9.  Linkage Disequilibrium plot of  tagging SNPs in Caucasian HTN population.  

Numbers represent R2 values. 
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Table 17. AGT SNPs, their Hardy-Weinberg p values, and their association with HOMA-IR 

(natural log transformed). MAF=major allele frequency. NTN=normotensive population. P-

values were obtained from a mixed model regression and accounting for age, gender, study site, 

sibling relatedness, and BMI. 

 

Name Alleles Hardy Weignberg Equilibrium p value HS LOG HOMA-IR P VALUES (ADDITIVE MODEL)
rs7536290 A:G 0.22 0.1

rs7079 C:A 0.02 (0.3 NTN) 0.7
rs11568045 A:A monomorphic monomorphic
rs3789670 G:A 0.03 (.81 NTN) 0.09
rs3789671 C:A 0.83 0.02*
rs2478545 G:A 0.25 0.008*
rs6687360 G:A 0.52 0.0009*

rs11122576 A:G 0.3 maf<0.10
rs11568026 A:A monomorphic monomorphic
rs2004776 G:A 0.8 0.02*
rs1078499 A:G 0.5 0.01*
rs7539020 G:A 0.5 0.001*
rs2493134 T:C 0.9 0.0004*
rs3789678 G:A 0.02 (NTN) 0.6

rs5050 A:C 0.2 0.028*
rs2493137 A:G 0.5 0.007*  
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Table 18. rs2493134 and Fasting Insulin; Fasting Glucose, and HOMA-IR in Caucasian-HTN 

population. Mean estimates (log transformed) and P-values were obtained from a mixed model 

regression and accounting for age, gender, study site, and BMI. SE=standard error, LCI=lower 

95% confidence interval; UCI=Upper 95% confidence interval; N=sample size. 

HS ln insulin
 rs2493134 N estimate SE LCI UCI P trend

TT 99 2.2999 0.1304 2.0433 2.5566 0.0005*
TC 153 2.1411 0.1281 1.8889 2.3932
CC 65 2.0374 0.1352 1.7712 2.3035

HS ln homa
 rs2493134 N estimate SE LCI UCI P trend

TT 99 0.7908 0.09033 0.613 0.9686 0.0004*
TC 153 0.61 0.08558 0.4416 0.7784
CC 65 0.5011 0.0977 0.3088 0.6933

HS ln glucose
 rs2493134 N estimate SE LCI UCI P trend

TT 99 4.5 0.05 4.4 4.6 0.1
TC 153 4.5 0.05 4.4 4.6
CC 65 4.5 0.05 4.4 4.6  
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Table 19. SNP and HOMA-IR associations in Hypertensive Population Stratified by Obesity 

Status. LCI: lower confidence interval; UCI: upper confidence interval. Point estimates, 95% CI, 

beta and p values were obtained from a mixed model regression. 

rs2493134 N HOMA estimates LCI UCI Beta p value
TT 23 1.67 1.14 2.46 -0.19 0.06
TC 35 1.38 0.96 1.97
CC 12 1.15 0.73 1.67

rs2493134 N HOMA estimates LCI UCI Beta p value
TT 41 2.01 1.70 2.36 -0.10 0.06
TC 74 1.73 1.51 2.01
CC 29 1.68 1.39 2.05

rs2493134 N HOMA estimates LCI UCI Beta p value
TT 35 2.89 2.41 3.46 -0.20 0.01
TC 44 2.25 1.92 2.64
CC 24 1.95 1.55 2.44

SNP and HOMA-IR Association Stratefied by Obesity Status
Normal BMI<25

Overweight BMI 25-29

Obese BMI>=30
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Table 20.  Haplotype analyses for association with HOMA-IR in individuals with hypertension. 

BLOCK1 HAPLOTYPE BETA P VALUE FREQUENCY
CCGT -0.8844 0.15 0.21
CTTC -0.1488 0.06 0.11
CCTC -0.0244 0.77 0.08
ACGT 0.02343 0.64 0.32
CCGC 0.09857 0.05* 0.28

 rs7079|rs3789670|rs3789671|rs2478545

BLOCK2 HAPLOTYPE BETA P VALUE FREQUENCY
TGA -0.098 0.35 0.09
TAA -0.201 0.014* 0.20
TAG -0.038 0.7 0.11

CAG 0.1564 0.008* 0.60

rs6687360|rs11122576|rs2004776

BLOCK3 HAPLOTYPE BETA P VALUE FREQUENCY
CCGC -0.15 0.09 0.17
CCTC -0.13 0.14 0.15
CTTT -0.15 0.11 0.14
TCTT 0.2 0.0009** 0.54

rs2493134|rs3789678|rs5050|rs2493137  
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Table 21.  The association of AGT SNPs with change in systolic blood pressure (HS-LS). P 

values were obtained from a mixed model linear regression accounting for age, gender, and BMI. 

N=237. 

Name Delta Systolic P VALUES (ADDITIVE MODEL)
rs7536290 0.8

rs7079 0.5
rs11568045 monomorphic
rs3789670 0.2
rs3789671 0.3
rs2478545 0.4
rs6687360 0.4
rs11122576 maf<0.10
rs11568026 monomorphic
rs2004776 0.4
rs1078499 0.6
rs7539020 0.4
rs2493134 0.5
rs3789678 0.3

rs5050 0.9
rs2493137 0.9  

 

 

 

 

 

 

 

 



92 

 

Table 22. The association of AGT SNPs with change in Diastolic Blood Pressure (HS-LS). P 

values were obtained from a mixed model linear regression accounting for age, gender, and BMI. 

N=236. 

Name Delta Diastolic BP P VALUES (ADDITIVE MODEL)
rs7536290 0.1

rs7079 0.2
rs11568045 monomorphic
rs3789670 0.2
rs3789671 0.3
rs2478545 0.08
rs6687360 0.8

rs11122576 maf<0.10
rs11568026 monomorphic
rs2004776 0.3
rs1078499 0.07
rs7539020 0.8
rs2493134 0.6
rs3789678 0.1

rs5050 0.4
rs2493137 0.1  
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Table 23. The association of AGT SNPs with change in Mean Arterial Blood Pressure (HS-LS). 

P values were obtained from a mixed model linear regression accounting for age, gender, and 

BMI. N=236. 

Name Delta Salt MAP BP P VALUES (ADDITIVE MODEL)
rs7536290 0.3

rs7079 0.8
rs11568045 monomorphic
rs3789670 0.2
rs3789671 0.3
rs2478545 0.1
rs6687360 0.7
rs11122576 maf<0.10
rs11568026 monomorphic
rs2004776 0.4
rs1078499 0.1
rs7539020 0.7
rs2493134 0.9
rs3789678 0.2

rs5050 0.5
rs2493137 0.3  

Discussion.  

 The marker, M235T, was previously associated with essential hypertension, adrenal and 

renal response to Ang II, and angiotensinogen levels (Watkins et al., 2010; Hopkins et al., 1996; 

Hopkins et al., 2002); however an association with this gene and glucose metabolism has been 

unclear.  Sheu et al (1998) found no association with M235T of the AGT gene and insulin 

sensitivity although a positive association of AGT SNP T174M with insulin resistance was 

found. Guo et al (2005) demonstrated that AGT M235T was associated with increased insulin 

resistance in Mexican-Americans with and without hypertension; however, this association was 

lost when BMI was included as a covariate. Pollex et al (2006) found that the AGT SNP T174M 

was associated with the Metabolic Syndrome in the Oji-Cree population furthering the gene’s 
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involvement with glucose metabolism. These findings clarify the role of the AGT gene with 

insulin sensitivity by capturing the entire AGT gene, as characterized by HAPMAP, in a well-

phenotyped population. 

 In vivo and in vitro studies provide insight into a possible mechanism underlying the 

association of the AGT gene with insulin sensitivity. AGT gene variants M235T and rs2943134 

have been associated with increases in AGT levels (Watkins et al., 2010).  Interestingly, infusion 

of AngII in humans has been shown to improve insulin sensitivity.  Morris et al (1994) studied 

normotensive individuals with type 2 diabetes demonstrating that sub-pressor (1ng/kg/min) and 

pressor (5ng/kg/min) doses of AngII improve insulin sensitivity measured by euglycemic insulin 

clamp. The sub-pressor dose demonstrated an effect without an increase in blood pressure, 

demonstrating that hemodynamic alterations are not the sole mechanism for improved insulin 

sensitivity.  An additional study, in normal men, confirmed an increase in insulin sensitivity with 

AngII infusion (Fliser, Arnold, Kohl, Hartung, & Ritz, 1991).  Studies in animal and cell culture 

further these findings. Juan et al (2005) found that acute injection of AngII (2ug/100g body 

weight) increased insulin stimulated glucose uptake in rat adipocytes. Further, when adipocytes 

were removed and incubated in AngII, stimulated tyrosine phosphorylation of the insulin 

receptor increased, AKT phosphorylation increased and glut-4 transport increased demonstrating 

a role for AngII in whole body glucose homeostasis (Juan et al., 2005).  It is possible that 

increased plasma AGT levels, a known effect of the AGT SNPs M235T and rs2493134, are 

increasing AngII levels and affecting glucose homeostasis via the mechanisms outlined above.   

 Of interest, the results suggest an influence of obesity, albeit not significant on the study 

results.  An interaction between the AGT gene and BMI has been shown in previous studies 

(Hopkins et al., 1996) and it is possible that with a larger sample size the interaction suggested in 
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these analyses would become significant. AGT gene expression has been shown to be increased 

on both a high fat diet in human visceral adipocytes (Rahmouni, Mark, Haynes, & Sigmund, 

2004) and in a hyperinsulinemic state in human 3T3-L1 adipocytes (Jones, Standridge, Taylor, & 

Moustaid, 1997).  These data suggest that with obesity, the effect of the AGT M235T on insulin 

sensitivity is enhanced.  

The results of the haplotype analysis are consistent with the single SNP analyses.  The 

association is primarily driven by haplotype block 3 and more specifically, SNP rs2493134 

within this block.  The results demonstrate that major allele carriers (T) are most likely to have 

elevated HOMA-IR results and are insulin resistant or as described in these SNP results, the 

minor allele is associated with insulin sensitivity.  Interestingly, a haplotype that includes AGT 

M235T has been found to be more strongly associated with angiotensinogen levels than the SNP 

alone (Watkins et al., 2010).  This may explain why some individuals known to have an 

increased frequency of the minor allele of SNP AGT M 235T, African Americans, have an 

increased risk of insulin resistance while this data suggest that the SNP should be protective from 

altered glucose metabolism.  Further studies are necessary to assess the association of the AGT 

gene with insulin sensitivity in an African American population; specifically, whether extensive 

haplotype analyses provide the most relevant information. 

 Strengths of this study include the control of experimental conditions (including control 

of medications and diet known to affect components of the RAAS and glucose metabolism) and 

clarification of the relationship between the AGT gene and HOMA-IR values in humans. 

Functional data are not present in this study; however, previous studies demonstrate that AGT 

M235T is associated with increased angiotensinogen levels (Guo et al., 2005). Further studies are 

necessary to determine whether AGT levels differ in individuals by AGT genotype and BMI 
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status. Additional studies are also necessary to determine whether an individual’s genotype in 

other RAAS genes known to be associated with glucose metabolism, including the angiotensin 

converting enzyme (ACE), affect the association seen between the AGT gene and insulin 

sensitivity. 

In conclusion, this study confirms that SNPs of the AGT gene are associated with insulin 

sensitivity in Caucasians.  Haplotype analysis extends this finding and implicates SNP 

rs2493134, a proxy for M235T, as the most influential SNP.  The results indicate that both 

hypertension status and BMI may be influencing the association with the genotype effect being 

the strongest in hypertensive, obese individuals.  These results demonstrate a potential role for 

the AGT gene to explain why some individuals, even with an abnormal cardio-metabolic profile, 

are insulin sensitive.  As clinicians attempt to use AGT genotype as a genomic marker for 

individualized hypertension treatment, the effects of this gene on glucose metabolism should be 

considered.   
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Chapter 7 

Conclusion and Future Directions 

 The aim of this dissertation was to identify genomic markers for the co-aggregation of 

insulin resistance and hypertension in humans.  First, a candidate gene and intermediate 

phenotype approach was used to examine whether single nucleotide polymorphisms of the 

CAV1, PPARγ, and AGT genes were associated with insulin resistance in a Caucasian 

population with hypertension. Replication was examined where available using two cohorts for 

two of the genes: 1) IR-HTN (Hispanic) for CAV1 and 2) African American hypertensives from 

HyperPATH for PPARγ. Secondary analyses, including associations with salt sensitivity and 

altered RAAS response, were conducted to examine the mechanistic underpinnings of a SNP’s 

primary association with insulin resistance. The associations were tested using a mixed effects 

multivariate regression analysis accounting for age, gender, BMI, and sibling relatedness.  

 Future directions: CAV1. 

 Examination of the CAV1 gene found two SNPs significantly associated with insulin 

resistance in both Hispanic (HTN-IR) and Caucasian (HyperPATH) hypertensive populations. 

The identification of CAV1 as a genomic marker for the co-aggregation of insulin resistance and 

hypertension is a novel finding and verifies the involvement of CAV1 with processes of glucose 

utilization in humans with hypertension.  Interestingly, the findings existed only in individuals 

with hypertension. Future work is necessary to evaluate the interaction between hypertension and 

CAV1 gene variants.  

 It is possible that a hypertension/CAV1 gene interaction exists.  An activated RAAS, seen in 

hypertension, may interact with CAV1’s involvement in the development of insulin resistance. 

Alternatively, the effect of hypertension and CAV1 may be additive. For example, the 
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combination of altered insulin mediated glucose uptake in individuals harboring CAV1 variants 

in addition to altered glucose utilization seen with hypertension may result in greater insulin 

resistance.  More analyses in a larger population are necessary to determine whether an 

interaction or additive effect exists.  

 A second mechanism underlying the environment-gene interaction of hypertension and 

CAV1 on insulin resistance may be their association with increased inflammation. Inflammation 

is a known contributor to insulin resistance in humans. In addition, increasing CAV1 levels in 

endothelial cells of mice resulted in decreased inflammation (Bucci, 2000), suggesting a 

relationship between CAV1 and inflammation. It is plausible that decreased CAV1 levels would 

result in increased inflammation potentially contributing to insulin resistance in humans. 

Hypertension also has been associated with increased inflammation (Guo et al., 2008).  If 

individuals have two mechanisms contributing to increased inflammation (decreased CAV1 

levels and hypertension), a greater severity of inflammation may ensue resulting in insulin 

resistance. This hypothesis can be tested by analyzing markers for inflammation in CAV1 

genotyped individuals with and without hypertension to determine whether differences exist by 

hypertension and genotype status.  

 Finally, since hypertension status has been shown to affect the association of CAV1 and 

insulin resistance, future analyses must be conducted to determine whether CAV1 genotype 

predicts an individual’s risk for the metabolic syndrome; a complex syndrome with both 

hypertension and insulin resistance components. As discussed, no genomic markers for the 

metabolic syndrome have been discovered using a GWA study approach. However, the 

candidate gene approach identified a marker that is a potential marker for the metabolic 
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syndrome. It is possible that CAV1 genotype also predicts the metabolic syndrome and this 

association must be examined in future studies with well-phenotyped populations.  

 Future directions: PPAR gamma 

 The examination of tagging SNPs of the PPARγ gene with insulin resistance indicates that 

this gene was not associated with insulin resistance in the Caucasian HyperPATH cohort. This is 

contrary to many studies demonstrating a significant association of the Pro12Ala SNP with 

lowered fasting glucose and protection against T2DM (Altshuler et al., 2000).  Insufficient 

sample size may have contributed to this negative finding. However, it is also possible that the 

association does not exist within a hypertensive population. Few studies have tested the 

association between Pro12Ala and fasting glucose in a hypertensive sample. The mechanism 

underlying insulin resistance and hypertension is likely different than the mechanism 

contributing to insulin resistance and type 2 diabetes in a normotensive population (Yanai et al., 

2008).  

  This study did identify an association between the PPARγ gene and renin levels in two 

cohorts (HyperPATH-HTN Caucasian and African American). This is a novel finding with 

important clinical significance, for it identifies a mechanism for the inter-individual differences 

in volume retention with PPARγ use. Future studies, including randomized control trials 

comparing the incidence of volume retention with thiazolidinedione use in individuals with and 

without PPARγ SNPs, are necessary to determine if PPARγ genotype predicts risk for 

developing volume retention and whether renin inhibition is beneficial in this population.  

 Future directions: AGT.  

  This study found that the AGT gene is associated with insulin sensitivity in the Caucasian 

HyperPATH population. Haplotype analysis confirmed the findings further supporting a role for 
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the AGT gene as a marker for insulin sensitivity. Although it is accepted that AngII infusion 

increases glucose uptake in humans without hypertension (Buchanan et al., 1993; Jonk et al., 

2010), the effects of the infusion in a hypertensive population is unknown. This study suggests 

that AngII infusion would also increase glucose uptake in a hypertensive population however, 

this hypothesis must be directly tested.  

 Alternatively, some studies suggest that other components of the RAAS, mainly elevated 

renin, may inhibit glucose metabolism in individuals with hypertension (Price et al., 1999). 

Future studies must examine this area closely to identify the specific components of the RAAS 

that are inhibiting or improving whole body glucose uptake in humans. Specifically, studies that 

test renin inhibition directly and the effects of this inhibition on insulin resistance would be 

beneficial and should be conducted.  

 Implications for the use of the conceptual framework: 

 This study supports the use of the intermediate-phenotype/candidate-gene approach for the 

identification of genomic markers for complex disease.  This approach has now been shown to 

be effective for both hypertension and the metabolic syndrome and will likely be effective with 

other complex diseases; possibly even T2DM. Further, this study supports the thrifty genotype 

theory. The results support the premise that common variants (MAF>10%) are contributing to 

metabolic disease.  The genotype approach used for this study, identifying common variants in 

the gene from HAPMAP, may be useful to identify additional genomic markers for a variety of 

complex disease.  
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 Future directions for clinical practice. 

 Validation. 

 Replication is necessary to validate the study finding and support a role for similar 

physiologic processes contributing to the outcome of interest. Thus, testing the positive results in 

larger populations of various ethnicities is essential. Replication of the CAV1 finding in a larger 

African American sample would support similar underlying physiology for insulin resistance and 

hypertension in different ethnicities. Alternatively, if CAV1 is determined not to be a marker of 

insulin resistance and hypertension in African Americans, the finding would highlight an 

important difference in biomarkers and potentially underlying pathophysiology between the two 

populations.  

 Epigenetics. 

 The relationship between genes and human disease is extremely complex (Manolio, 

2010).  Epigenetics, the study of the regulation of gene transcription, has become an area of 

interest to many clinical geneticists.  Initially, epigenetics was thought to involve only gene-

environment interactions; however, it soon became known that DNA methylation and histone 

modification were important regulators of epigenetic forces and the term is currently used in 

relation to these processes (Liu, Li, & Tollefsbol, 2008). It is likely that epigenetic factors are 

regulating genomic effects on the development of complex diseases such as the metabolic 

syndrome. Future studies examining epigenetic factors of complex disease development are 

essential.  New techniques analyzing the epigenetics of complex disease are arising including 

chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) that may provide 

novel mechanisms to uncover the complex relationship between genes and their regulatory 

elements (Morse, 2010). As scientists embark on the examination of epigenetics in complex 
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human disease it is essential that the same mistakes made with the GWA studies (unclean 

phenotypes, lack of hypothesis driven experiments) and are not repeated. This will take great 

effort from scientists and money from funding sources, but will likely be rewarded through valid 

findings and lower chance for type I errors.  

 Implications for clinical practice: nursing. 

The identification of genomic markers for the metabolic syndrome may lead to more 

effective individualized prevention and treatment strategies, decreasing the morbidity and 

mortality related to this condition. Since health promotion and disease prevention are primary 

concerns for professional nurses, it is essential for nurse scientists to conduct research in clinical 

genomics that may lead to individualized health care (Conley & Tinkle, 2007; Underwood & 

Read, 2008).  Many studies are beginning to highlight the effectiveness of using genomic 

information to provide individualized prevention and treatment strategies. Specifically, genetic 

information has led to improved health behaviors including earlier cancer screening for 

individuals with an identified genetic risk (Beery & Williams, 2007), individualized and more 

effective cancer  treatment strategies (Wadelius & Pirmohamed, 2007; Suarez-Farinas, Shah, 

Haider, Krueger, & Lowes, 2010), and earlier and targeted cancer prevention strategies 

(Anderson, Jacobson, Heitjan, Zivin, Hershman, Neuget et al., 2006; Olopade, Grushko, Nanda, 

& Huo, 2008).  Nursing’s involvement in identifying and using genomic information in health 

promotion, disease prevention, and individualized disease treatment is essential to ensure 

effective, personalized, and targeted care that leads to improved health outcomes.  

Nursing has a long history of promoting individual health through behavioral change 

(Hill, Han, Dennison, Kim, Roary, Blumenthal et al., 2003; Ramirez-Garcia & Cote, 2009). Nola 

Pender conceptualized this tenet through the development of the Health Promotion Model 
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(Pender, 1996).  This multi-faceted model describes the involvement of individual and 

environmental variables that interact to affect an individual’s overall health and health behaviors. 

It is now reasonable to include an individual’s genomic profile into this model.  Research 

indicates that knowledge of genetic risk for disease can change health behaviors (Attia et al., 

2009).  In one study, all individual carriers of a genetic mutation known to cause hereditary 

nonpolyposis colon cancer (HNPCC) adhered to recommended colorectal cancer screening 

guidelines (Claes, Denayer, Evers-Kiebooms, Boogaerts, Philippe, Tejpar et al., 2005). Further, a 

systematic review of risk reduction and health promotion behaviors with genetic testing of adult-

onset disease found that knowledge of genetic risk for hereditary breast and ovarian cancer 

(HBOC) as well as hereditary colon cancer increased an individual’s use of cancer screening 

services and treatments (Beery & Williams, 2007). It is yet to be determined whether genetic 

knowledge related to risk of developing insulin resistance would lead to improved health 

behaviors, but it is possible.  More work must be done to examine the effects of receiving 

genomic information on specific patient populations. 

 In addition to providing disease risk, genomic markers can provide insight into the 

underlying physiology contributing to disease onset. This information may lead to improved 

individualized prevention and treatment strategies. For example, homozygote C allele carriers of 

the non-synonymous SNP -176G>C of the interleukin-6 gene (Il6) have been shown to predict 

progression to T2DM (Kubaszek, Pihlajamaki, Komarovski, Lindt, Lindstrom, Eriksson et al., 

2003). Further, a gene-environment interaction exists with this association where the greatest 

SNP effect is seen in obese individuals (Herbert, Liu, Karamohamed, Liu, Manning, Fox et al. 

2006). Herbert et al. (2006) suggests that targeting individuals harboring this specific SNP with 

individualized exercise and weight loss prevention programs may be more beneficial than current 
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standard of care.  Further, understanding the physiology underlying the gene associations will 

support targeted pharmacologic treatment regimes, improving the effectiveness, and hopefully 

compliance with medication treatment (Olopade, Grushko, Nanda, & Huo, 2008).   

As the role of the nurse practitioner increases in both the primary care and ambulatory 

setting, they will be on the front lines of using and explaining genomic information related to 

chronic disease (Calzone, Cashion, Feetham, Jenkins, Prows, Williams et al., 2010).  It will be 

interesting to assess whether the inclusion of genomic information, relayed in the appropriate 

manner, increases the effectiveness of nurse practitioner led prevention and treatment programs. 

This is an important question that must be evaluated within a clinical research study.  If it is 

found that genomic markers improve chronic disease prevention strategies, nurses at all practice 

levels must be proficient in the interpretation of clinical genetic results and incorporate them into 

the education and treatment components of their practice (Calzone et al., 2010). 

 In terms of this dissertation, the identification of CAV1 as a genomic marker for the co-

aggregation of insulin resistance and hypertension has enormous potential for improving clinical 

practice in the manner outlined above. Once replicated and confirmed in multiple populations, 

CAV1 may be used by clinicians to identify individuals most at risk for the co-aggregation of 

insulin resistance and hypertension. The metabolic effects of pharmacologic manipulation of 

CAV1 in humans, proposed for cancer treatment (Trimmer, Whittaker-Menezes, Bonuccelli, 

Milliman, Daumer, Aplin et al., 2010), must be examined as a possible treatment for insulin 

resistance in the hypertensive population. Alternatively, other pharmacologic agents affecting 

upstream or downstream effects of CAV1 on glucose metabolism may be found to be beneficial 

and may not have the potential side effects of CAV1 agonists.  Second, the use of this biomarker 
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by nurse practitioners in clinical practice may lead to improved prevention strategies and better 

health outcomes for individuals carrying the CAV1 variant. 

In summary, acknowledgement and understanding of genomic information in the design 

and implementation of improved health interventions is essential to modern nursing.  Thus, it is 

essential that nurse scientists be involved directly with research in genomic health (Underwood 

& Read, 2008).  Studies such as the ones described in this dissertation support the development 

and implementation of nurse led interventions that will directly affect patient care.  Further, these 

studies provide insight into the genomic effect on disease, supporting multi-disciplinary 

interventions addressing physiologic, pharmacologic, and psychological components of 

individualized treatment.  Finally, the results support the use of the intermediate 

phenotype/candidate gene approach to identify genomic markers for chronic disease. Genomic 

science has the promise to make individualized health care a reality (Collins, 2010).  Nursing’s 

emphasis on promoting health through individualized and personalized care makes the 

incorporation of genomics into nursing practice essential.  
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