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Abstract

Recent advances in normal surface algorithms enable the determination by com-

puter of the hyperbolicity of compact orientable 3-manifolds with zero Euler charac-

teristic and nonempty boundary. Recent advances in hyperbolic geometry enable the

determination by computer of the Dehn paternity relation between two orientable

compact hyperbolic 3-manifolds. Presented here is an exposition of these devel-

opments, along with prototype implementations of one of these determinations in

software. These have applications to two questions about Mom technology.
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Chapter 1

Introduction

Fundamental to our intuitive model of the universe is local spatiality, that our motion

has three degrees of freedom. In other words, we model the universe as a 3-manifold.

The class of 3-manifolds constitutes the gamut of possible inhabitable universes. As

such, 3-manifolds are interesting objects of study in their own right.

The classification of n-manifolds for n < 3 is at least a century old now, its proof

streamlined. The classification of n-manifolds for n > 3 has been proven impossible.

The classification of 3-manifolds is not yet finished, but the story so far is one of the

triumphs of recent mathematics.

Modern surface topology and modern 3-manifold topology have in common a

striking characteristic: the pervasive influence of hyperbolic geometry. For instance,

one may put the classification of closed orientable surfaces thus:

Except for the sphere and the torus, a closed orientable surface admits

a complete hyperbolic metric of finite area, and is characterized uniquely

by this area.

In particular, all but finitely many surfaces admit hyperbolic metrics, and area is

a topological invariant. On the other hand, the theorem of Lickorish and Wallace,

Thurston’s Haken hyperbolization theorem, and Thurston’s Dehn surgery theorem

1



CHAPTER 1. INTRODUCTION 2

imply that, in some sense, most closed 3-manifolds are also hyperbolic. Furthermore,

by Mostow rigidity, all geometric invariants are topological invariants; in particular,

volume is a topological invariant. Finally, Thurston also showed that there are only

finitely many hyperbolic 3-manifolds of given volume, so volume virtually character-

izes hyperbolic 3-manifolds, so to speak.

Continuing this line of thought about volume, we can strengthen our claims easily

when speaking of hyperbolic surfaces:

The more area a hyperbolic surface has, the more complex its topo-

logical structure.

This is made precise by the Gauss-Bonnet theorem: the area of a hyperbolic surface

S is −2π · χ(S), where χ is Euler characteristic, a measure of topological complexity.

One would like to make a similar claim about 3-manifolds, but the Gauss-Bonnet

theorem does not work in odd dimensions. Indeed, for all closed 3-manifolds and for

all hyperbolic 3-manifolds of finite volume, the Euler characteristic is just 0. Much

work in 3-manifold topology can be viewed as an attempt to define a decent notion

of topological complexity to replace Euler characteristic.

The most obvious geometric such notion is the minimal number ∆(M) of tetra-

hedra necessary to triangulate the manifold M in question. In the case of surfaces,

this turns out to be equivalent to χ, up to a multiplicative constant. Unfortunately

for 3-manifolds, this measure does not behave well with respect to volume; there are,

for instance, infinitely many hyperbolic 3-manifolds whose volume is less than 2.03,

but only finitely many 3-manifolds with bounded ∆.

By the work of Thurston, such infinities of hyperbolic 3-manifolds with close vol-

umes must come from Dehn fillings on a finite set of “parent” hyperbolic 3-manifolds.

So one might ask instead for a measure of complexity that does not increase under

Dehn filling. Such measures include the Mom number of Gabai, Meyerhoff, and Mil-

ley, and the treewidth of Burton and Downey. The present work is motivated by

Mom technology, the body of work surrounding Mom number.
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The significance of Mom number, briefly, is that Gabai, Meyerhoff, and Milley

proved in [2] and [3] that

� a minimum-volume closed orientable hyperbolic 3-manifold is a Dehn filling of

an orientable hyperbolic 3-manifold with one cusp1 and with volume less than

2.848; and

� a hyperbolic 3-manifold with one cusp and with volume less than 2.848 has

Mom number less than 4.

The bound on Mom number enabled Milley in [10] to construct a finite list of parents

for the set of all hyperbolic one-cusped 3-manifolds of volume less than 2.848. Indeed,

this is the list of topological Mom-2 and Mom-3 manifolds; a 3-manifold has Mom-

number n when it is a Dehn filling of a topological Mom-n. Milley then determined

which among the hundred-or-so parents were hyperbolic and which were not by hand;

then determined which fillings might be hyperbolic with small volume via a theorem of

Futer, Kalfagianni, and Purcell; and then did the same all over again for the resulting

list of small one-cusped manifolds.

It would have been useful to have a computer program that could test whether

or not a compact 3-manifold were hyperbolic. Presented here is a partial result

along these lines—to wit, an algorithm and implementation thereof in Regina to

determine, given a compact orientable 3-manifold with nonempty boundary, whether

or not it admits a complete hyperbolic metric of finite volume. The algorithm depends

essentially upon Thurston’s Haken hyperbolization theorem, which links hyperbolicity

to the nonexistence of certain surfaces of small complexity embedded in the given

manifold; and upon the algorithms already marvellously implemented in Regina for

finding such surfaces.

This implementation answers a question posed by Gabai, Meyerhoff, and Mil-

ley about manifolds with Mom-number 4. Namely, we confirm their list of parent

manifolds by disproving approximately 700 manifolds to be hyperbolic.

1That is, one torus boundary component.
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Finally, there remains the question of minimal Mom number. A 3-manifold can be

both Mom-2 and Mom-4; indeed, the Whitehead link complement is both a topological

Mom-2 and Mom-4, so any Dehn filling thereof has Mom numbers both 2 and 4. One

may ask for the minimal Mom number of a 3-manifold. In particular, Dave Gabai has

asked [1] for the minimal Mom number of all SnapPea census manifolds with maximal

cusp area less than 5.1.

To prove that a 3-manifold has minimal Mom number 2 is simple; just express it

as a Dehn filling of a topological Mom-2. But to prove a 3-manifold has minimal Mom

number 3, one must show that it is not a Dehn filling of any Mom-2. To this end,

presented here are bounds based on the work of Hodgson and Kerckhoff which lay the

foundations for a future algorithm to tell whether or not a given compact orientable

hyperbolic 3-manifold of finite volume is a Dehn filling of another such manifold.



Chapter 2

Triangulations in Regina

Since Regina is such a nice general program for studying both hyperbolic and non-

hyperbolic 3-manifolds, we first will describe how to represent a topological Mom-n

manifold therein.

A topological Mom-n manifold is defined as an ideal triangulation, so first, we

make the following definition.

Definition 2.0.1. An oriented ideal 3-triangulation is a space resulting from a ori-

entable face-pairing of oriented solid tetrahedra, such that no face-pairing identifies

an oriented edge to itself backwards.

An orientable ideal triangulation of an orientable 3-manifold (M,∂M) is a home-

omorphism φ : T \ T0 → M \ ∂M , where T is an oriented ideal 3-triangulation, and

T0 is its vertices.

We note that the link of a vertex of an ideal triangulation corresponds through

φ to a connected component of ∂M . In particular, closed 3-manifolds have no ideal

triangulations as defined above. One may, however, express a closed 3-manifold as a

Dehn filling of a “parent” manifold, and then ideally triangulate the parent. This is

how SnapPy represents closed hyperbolic 3-manifolds.

Onward to the translation program. The relevant quotation from Milley’s docu-

5



CHAPTER 2. TRIANGULATIONS IN REGINA 6

mentation of his code for representing Mom-n manifolds as SnapPy triangulations is

in the file README.txt in the outermost folder of the enum Moms data from [3].

As an introduction to coding in Regina, we begin with a simple program, which

constructs an n-dipyramid:

〈construct dipyr〉≡
def make_dipyr(n):

"""Returns an n-dipyr."""

newt = regina.NTriangulation()

for i in range(0,n):

newt.newTetrahedron()

for i in range(0,n):

me = newt.getTetrahedron(i)

you = newt.getTetrahedron((i+1)%n)

me.joinTo(2,you,NPerm4(2,3))

return newt

This code chunk illustrates the Python and Regina formalisms that will be used

throughout this work. Those unfamiliar with these may visit their respective websites

[13] and [14] to learn more. For now, here is what the above code chunk means, line

by line.

def make dipyr(n): means “The following code is a definition for a procedure

called make dipyr which takes one argument, which we will call n.”

"""Returns an n-dipyr.""" is a Python-docstring, where “doc” is short for

“documentation”. It explains briefly what the procedure does. I say “procedure,”

because it is not a function. Every time it is called with argument n, it will make a

new n-dipyr.

newt = regina.NTriangulation() basically means “Let newt start off as an

empty triangulation.”

The next two lines basically mean “Let newt be the disjoint union of n tetrahedra.”
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The next four lines require more explanation.

Let T and B be the top and bottom polar vertices of an n-dipyr, and let vi, i ∈
Z/nZ be its equatorial vertices in order. By “in order”, I mean that vi and vi+1 are

connected by an edge. Then we may triangulate the n-dipyr by a cyclic list of n

tetrahedra, the ith element of which is the tetrahedron Ti with vertices T,B, vi, v(i+1),

for i ∈ Z/nZ. Equivalently, the ith element of this list is the tetrahedron Ti with

vertices T,B, vi, v(i+1)%n, where 0 ≤ i < n and k%n is the least natural number a

such that k ≡ a mod n.

Conversely, we may construct an n-dipyr from these n tetrahedra by gluing them

up appropriately. The appropriate gluings glue the face TBvi+1 in Ti to TBvi+1 in

Ti+1, preserving incidence. The code implements this in Regina. Note that in Regina,

the vertices of a tetrahedron are labelled 0,1,2,3, and the faces are labelled by the

vertices they omit.

We know we want to glue Ti to T(i+1)%n for each 0 ≤ i < n. The last four lines do

this. The first line means “For all 0 ≤ i < n, run the following indented code block:”.

The next two lines mean “Let me be Ti and you be T(i+1)%n.”

The last line of the indented code block under the for statement means “Glue the

face of me opposite the vertex 2 to the face of you using the gluing map that permutes

the vertices by the transposition (2 3).”

The explanation for this is as follows. Vertex 2 of me should be v(i+1)%n in the

n-dipyr, and vertex 3 of you should also be vi+1. Furthermore, since both 2 and 3 will

become equatorial vertices in the n-dipyr, 0,1 will become polar vertices. Then the

gluing map should send the face 013 (the face opposite 2) of Ti to the face 012 (the

face opposite 3) of T(i+1)%n. So on vertices, this gluing map acts as the transposition

(2 3). This concludes the explanation of the last line of the for loop block, and the

explanation of the penultimate four lines.

The last line means “The final result of this procedure is the value of newt,”

the value of newt being, of course, the newly-constructed n-dipyr, represented as a
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Regina NTriangulation. That concludes the explanation for this code chunk.

This code will not suffice, for Mom-4 manifolds may be glued from multiple dipyrs.

So we should implement a procedure to construct a disjoint union of dipyrs ac-

cording to a Mom prefix. That is, we want a procedure that constructs a Regina

NTriangulation with an n-dipyr for every n in prefix, with multiplicity, where

prefix is a finite tuple of positive integers. (We break from Milley’s convention here,

since in the future one may wish to have n-dipyrs with n having two or more digits.)

〈make dipyrs by prefix 〉≡
def make_dipyrs(prefix):

"""Return dipyrs specified by prefix."""

newt = regina.NTriangulation()

offset = 0

for i in prefix:

for j in range(0,i):

newt.newTetrahedron()

for j in range(0,i):

me = newt.getTetrahedron(offset+j)

jj = (j+1) % i

you = newt.getTetrahedron(offset+jj)

me.joinTo(2,you,regina.NPerm(2,3))

offset += i

return newt

Now we need to write code to glue up the remaining faces of the dipyrs according

to the rest of Milley’s Mom-strings. The rest of the Mom-string is a permutation in

Cayley notation on 2n elements, where n is the sum of the prefix. Eventually, we

would like to represent this not as a string, but as a 2n-tuple. Suppose then that

perm is such a 2n-tuple. Then the face Milley calls i should be glued to the face

Milley calls perm[i].
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The question, then, is which face of make dipyrs(prefix) is the face Milley calls

i? It must be a face opposite either vertex 0 or vertex 1 of some tetrahedron. If

0 ≤ i < n, then it is a face opposite vertex 0; otherwise, it is a face opposite vertex

1. The question remains, on which tetrahedron does Milley’s face i lie? Note first

that for 0 ≤ j < n, the faces j and j + n lie on the same tetrahedron. In fact

they both lie on tetrahedron j. In other words, the face of make dipyrs(prefix)

which Milley calls i is the face opposite vertex depth of tetrahedron tet idx, where

(tet idx,depth) is face(prefix,i), and where the latter is given by the following.

〈tuples to triangulations〉≡
def face(prefix,i):

n = sum(prefix)

if i < n:

depth = 0

else:

depth = 1

return (i%n, depth)

Therefore, a Mom manifold specified by one of Milley’s Mom-strings is given by

the following procedure.

〈Mom manifold〉≡
def make((prefix, perm)):

newt = make_dipyrs(prefix)

for i in perm:

if i < perm[i]:

〈glue up the pair of faces〉
label = str((prefix,perm))

newt.setPacketLabel(label)

return newt
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〈glue up the pair of faces〉≡
(tet_i,depth_i) = face(prefix, i)

(tet_j,depth_j) = face(prefix, perm[i])

me = newt.getTetrahedron(tet_i)

you = newt.getTetrahedron(tet_j)

if depth_i == depth_j:

p = regina.NPerm(2,3)

else:

p = regina.NPerm(0,1)

me.joinTo(depth_i,you,p)

This bears some explanation. Northern faces have depth 0, and southern faces

depth 1. A gluing map (of the sort considered above) between faces of the same depth

will send 0 1 to 0 1. Since the map must be orientation reversing, its action on the

vertices can’t be the identity. So it must be given by (2 3). Similarly, a gluing of

faces with different depth must send 0 1 to 1 0. It can’t also switch 2 3, for then it

would preserve orientation. So it must be given by (0 1).

Having written a program to make a Mom manifold from two tuples representing,

respectively, the prefix and permutation of a Mom string, let us now write a function

to transform a Mom string into such a pair of tuples. We’ll do it in Regina-Python

since Python has good string-manipulation libraries.
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〈Milley to Regina-Python〉≡
import shlex

def parse(mill):

tokenized = shlex.split(mill)

perm_str = tokenized[1:]

perm = tuple(map(int,perm_str))

pref_tok = tokenized[0]

a = pref_tok.find("(") + 1

b = pref_tok.find(")")

pref_str = pref_tok[a:b]

prefix = tuple(map(int,pref_str))

reginafied = (prefix,perm)

return reginafied

map is a higher-order function that applies its initial argument to all the elements

of the following argument (assumed to be a list or tuple or some other Iterable)

and returns the resulting values in a list.

In this case, its first argument is the function int, which attempts to interpret a

string as a number in the usual way—e.g. int("394") returns the integer value three

hundred ninety four, but int("Fangorn") fails.

shlex.split regards its argument as a series of tokens—space-free strings—

separated by spaces. It returns the list of these tokens in order.

The first part of this method will need to be changed in the event that the prefix

notation starts using spaces to distinguish numbers. Namely, it will need to tokenize

mill prefix using shlex.split, as for perm.

That concludes this chapter on turning descriptions of Mom-n manifolds as prefix-

permutation pairs into Regina triangulations. We now move on to determining

whether or not such triangulations represent hyperbolic 3-manifolds.



Chapter 3

Normal Surface Theory in Brief

Throughout, all surfaces, all 3-manifolds, and all functions between them shall be

in some tame category like PL or C∞. All maps and manifolds shall be orientable

(except for face-pairing maps).

The classification theorem for compact 2-manifolds can be interpreted as saying

that essential curves in surfaces determine these surfaces. In dimension 2, determining

these curves is essentially a homological problem. When extrapolating this to 3-

manifolds, one can either guess that essential curves determine a 3-manifold or that

essential codimension one objects determine a 3-manifold. The former claim isn’t

exactly true, and homology is no longer sufficient. The latter claim is nearer to the

truth, since if there is an essential surface in a 3-manifold, then the homeomorphism

problem is solved.

As vague as the above introduction is, it should at least make clear the fact

that embeddings of surfaces into 3-manifolds are very important for understanding

3-manifold topology.

Now, one of the most natural representations of a 3-manifold is as a triangulation.

We have already introduced the notions of ideal 3-triangulation and ideal triangula-

tion of a 3-manifold. A more familiar notion is what we will call a finite triangulation

of a 3-manifold:

12
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Definition 3.0.2. An orientable finite triangulation of an orientable 3-manifold

(M,∂M) is a homeomorphism φ : (T, ∂T ) → (M,∂M) where T is an oriented ideal

3-triangulation.

We will have occasion to use both ideal and finite triangulations of 3-manifolds.

We will refer to both of them as triangulations.

Since embedded surfaces are so important, we should ask how to represent them

with respect to a triangulation T . The first thing to notice is that any surface em-

bedding φ : (Σ, ∂Σ) → (M,∂M) may be isotoped to be transverse to (or in general

position with respect to) the 1-skeleton T (1) of T . In fact, we can do better:

Lemma 3.0.3. Let T triangulate a 3-manifold M . Let φ : (Σ, ∂Σ) → (M,∂M) be a

surface embedding.

φ may be isotoped so that for all 3-simplices ∆ ∈ T , for all components C of

φ ∩ ∂∆, for all edges e ∈ ∂∆, |C ∩ e| ≤ 1.

We may isotope φ to be transverse to or in general position with respect to T (1).

The weight function w(ψ) = |ψ ∩ T (1)| is well-defined on such embeddings. This

function is a variant for a while-loop whose invariant predicate is the existence of an

edge with more than two points in common with ψ. This is how the proof goes. For

more details, see [8].

There are, up to isotopy, only three sorts of curves on ∂∆ with this property:

circles in the interior of a face, triangular boundaries of regular neighborhoods of

vertices, and quadrilateral boundaries of regular neighborhoods of edges.

The latter two curves are boundaries of triangle discs and quad discs, respectively.

Such discs are called normal discs in ∆.

Definition 3.0.4. A surface embedding φ is normal with respect to a triangulation

T when for all 3-simplices ∆ of T , every component F of φ ∩∆ is a normal disc.

This is quite a restrictive condition. One can show, moreover, that any such
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surface is determined, up to isotopy preserving the triangulation’s incidence structure

(so-called normal isotopy), by its normal discs.

More precisely, let △ be the set of normal isotopy classes of triangle discs in 3-

simplices of T , and likewise let � be the set of normal isotopy classes of quad discs

in 3-simplices of T . For any normal surface φ, and for any t ∈ △, letting ∆ be

the 3-simplex supporting t, define t.φ to be the number of components of φ ∩ ∆ in

t; likewise for q ∈ �. We define the normal coordinates c.φ of φ as the element of

N△ ×N� such that (π0(c.φ))(t) = t.φ and likewise (π1(c.φ))(q) = q.φ.

The vague statement above is made more precise by the following (see, e.g. [9]):

Lemma 3.0.5. The normal coordinates of a normal surface determine that surface

up to normal isotopy.

The first surprise of normal surface theory is that (in spite of normality’s restric-

tiveness) if there is an interesting surface, then there must be an interesting normal

surface:

Lemma 3.0.6. Let M be a closed 3-manifold, and let T triangulate M .

� If M contains an essential sphere (a sphere not bounding a 3-ball), then it

contains an essential sphere normal to T .

� If M is irreducible and it contains an incompressible surface, then M contains

an incompressible surface normal to T .

Proof. See lemmas 2.11 and 2.12 of [8].

This still does not provide a way to detect whether or not there are such surfaces

in a 3-manifold with a given triangulation.

Notice, however, that if two 3-simplices ∆ and ∆′ are glued together along faces

f, f ′ as depicted, then the arcs of φ ∩ f must be identified with arcs of φ ∩ f ′.
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More precisely, suppose a is an arc of f , and suppose a is identified to the arc a′

of f ′. Then the number of components of φ∩ f normally isotopic to a must equal the

number of components of φ ∩ f ′ normally isotopic to a′.

But the number of components of φ ∩ f normally isotopic to a is equal to ta.φ+

qa.φ, where ta is the normal isotopy class of a normal triangle disc with a on its

boundary, and likewise qa is the normal isotopy class of a normal quad disc with a on

its boundary.

Therefore, every face-pairing in T yields three homogeneous linear equations on

N△ ×N� of the form

ta + qa = ta′ + qa′ .

These are called the (Haken) matching equations.

Next, notice that if q, q′ are distinct quads supported in the same 3-simplex, then

there is no normal surface φ such that q.φ > 0 and q′.φ > 0. This is called the quad

condition, or the admissibility criterion.

From the above, it is obvious that the normal coordinates of every normal surface

constitute an admissible solution to the matching equations. Conversely (see [9]),

Lemma 3.0.7. Any admissible solution to the matching equations is a set of normal

coordinates for a normal surface.

The set of solutions to the matching equations is closed under addition. A solution

s is called fundamental when for all solutions t, u, s = t+ u is equivalent to {t, u} =

{0, s}. One may prove (see [9], p. 114)

Theorem 3.0.8. The fundamental solutions to a system of homogeneous linear equa-

tions over N is finite and computable, and every solution is a finite linear combination

of fundamental solutions.

The second surprise of normal surface theory is that if there is an interesting

surface of low genus, then there is an interesting fundamental surface of low genus.
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Theorem 3.0.9. Let M be a compact 3-manifold. Let T triangulate M .

� If M has an essential sphere or RP 2, then T admits a fundamental normal

sphere or RP 2.

� Suppose M is irreducible.

– If M has a compressing disc, then T admits a fundamental compressing

disc.

– Suppose M has incompressible boundary.

* If M has an incompressible torus, then T admits an incompressible

fundamental torus or an embedded fundamental Klein bottle.

* If M has an essential (i.e. incompressible and ∂-incompressible) an-

nulus, then T admits either an essential fundamental annulus or an

embedded fundamental Möbius band.

One can find the parts of this theorem scattered in various places in [9]. Their

proofs all involve showing that a least-weight normal essential surface must be fun-

damental.

The easiest fundamental surfaces to calculate are the vertex surfaces, so-called

for the following reason. Notice that since the matching equations are homogeneous,

they descend to linear equations on some projective space, if we start taking rational

coordinates. The admissible rational solutions project to a convex polytope in this

projective space. A vertex solution is a fundamental solution that projects to a vertex

of this convex polytope.

The third surprise of normal surface theory is that, for finite triangulations, if

there is an interesting surface, then there is an interesting vertex surface (see e.g.

[7]):

Theorem 3.0.10. Let M be a compact 3-manifold. Let T finitely triangulate M .

� If M has an essential sphere, then T admits a vertex essential sphere.
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� Suppose M is irreducible.

– If M has a compressing disc, then T admits a vertex compressing disc.

– Suppose M is ∂-irreducible.

* If M has an essential two-sided annulus or torus, then T admits a

vertex essential annulus or torus.

We will regard boundary-parallel surfaces as uninteresting. The fourth surprise of

normal surface theory is that one may develop matching equations and admissibility

criteria on just N� and get analogous results to the above. That is, there is a set

of linear homogeneous equations on N� called the Q-matching equations, and linear

inequalities on N� called the Q-admissibility criteria, such that the following theorem

is true.

Theorem 3.0.11 (Thm. 1 of [11]). Let M be a compact, irreducible, ∂-irreducible

3-manifold finitely triangulated by T .

IfM admits an incompressible, ∂-incompressible surface, then T admits a Q-vertex

such surface.

Moreover, every normal surface yields an admissible solution to the Q-matching

equations, and conversely, every admissible solution to these equations is a set of quad

coordinates for a unique normal surface with no boundary-parallel components.

We will find the following lemmas useful in the next chapter. First a definition.

Definition 3.0.12. A medium Seifert fibering is a Seifert fibering over base orbifold

a sphere with b punctures and c cone points such that b+ c ≤ 3.

Lemma 3.0.13. Let M be a medium Seifert fibering with nonempty boundary.

Every finite triangulation of M admits a vertex Q-normal annulus fault.

Lemma 3.0.14. Let M be a medium Seifert fibering with at least two boundary tori.

Every finite triangulation of M admits a non-separating vertex Q-normal annulus

fault.
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Proof of Lemma 3.0.13. We briefly recall some terminology. The carrier C of a point

on a convex polytope is the smallest face of the polytope containing the point.

Suppose M is a medium Seifert fibering with nonempty boundary, and suppose

T finitely triangulates M .

M ’s base orbifold has at least one boundary component S. Suppose there were

no essential simple arc from S to itself. Then M has a disc with no cone points for

its base orbifold, and M is a solid torus. But solid tori are ∂-compressible, contrary

to our assumptions on M . Hence there is an essential simple arc from S to itself.

The vertical fiber a over this arc is an annulus. a is essential, so it isotopes to a

normal annulus. Let A be such an annulus such that the number of intersections of

A with the 1-skeleton of T is minimal among normal surfaces isotopic to a. That is,

let A have least weight in its isotopy class.

Now, every vertex surface in C(A) is an essential annulus or an essential torus

(Cor. 6.8, [7]). There are no essential tori, by assumption. Consequently, each vertex

surface in C(A) is an essential annulus. The proof of Theorem 2 in [11] shows that

every two-sided vertex surface in C(A) is isotopic to a Q-vertex surface. Thus T

admits some essential Q-vertex annulus.

Proof of Lemma 3.0.14. Suppose M is a medium Seifert fibering with at least two

boundary tori, and suppose T is a finite triangulation of M .

M ’s base orbifold now, by assumption, has at least two boundary components.

Up to isotopy, there is a unique essential simple arc running between them. Let a be a

vertical fiber over such an arc, a non-separating annulus. Since a is non-separating, it

is essential. So it isotopes to a normal annulus. Let A be a least weight such annulus.

Again, every vertex surface in C(A) is an essential annulus (or an essential torus, of

which we’ve assumed there are none). Furthermore, every such essential annulus is

isotopic to a Q-vertex surface, as above. So we just need a non-separating vertex

annulus in C(A).
If there is a horizontal vertex annulus in C(A), then that is a non-separating vertex
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annulus in C(A).
Otherwise, A is a sum of some vertical vertex annuli in C(A).
The geometric sum (see [9], pp. 136–7 or [7], Fig. 2.1, p. 363) on the boundary

just resolves intersections × → ≍, which preserves homology mod 2. Therefore, for

all normal surfaces S, S ′, ∂(S + S ′) ≡ ∂(S) + ∂(S ′) in H1(∂M ;Z/2Z).

The boundaries of separating annuli in M are 0 in H1(∂M ;Z/2Z), but ∂A is not

0 in this homology. So A is not a sum of separating annuli. Consequently one of the

summands must be non-separating, and be a non-separating vertex annulus in C(A).



Chapter 4

Determining hyperbolicity

The work of Jørgensen, Thurston, and Gromov in the late ‘70s showed that the

set of volumes of orientable hyperbolic 3-manifolds has order type ωω. Cao and

Meyerhoff in 2001 showed that the first limit point is the volume of the figure eight

knot complement. Agol in 2010 showed that the first limit point of limit points is

the volume of the Whitehead link complement. Most significantly for this paper,

Gabai, Meyerhoff, and Milley (in the series of papers [2], [3], and [10]) showed that

the smallest, closed, orientable hyperbolic 3-manifold is the Weeks-Matveev-Fomenko

manifold.

The proof of the last result required distinguishing hyperbolic 3-manifolds from

non-hyperbolic 3-manifolds in a large list of 3-manifolds; this was carried out in [10].

The method of proof was to see whether SnapPea’s canonize procedure succeeded or

not; identify the successes as census manifolds; and then examine the fundamental

groups of the 66 remaining manifolds by hand. This method made the analysis of non-

hyperbolic Mom-4 manifolds, of which there are 762 combinatorial types, prohibitively

time-consuming.

The algorithm presented here determines whether or not a compact 3-manifold

admits a complete finite-volume hyperbolic metric, i.e. is hyperbolic, assuming the

manifold in question has nonempty boundary consisting of tori.

20
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4.1 Rewriting Thurston’s Haken theorem

Because it is so fundamental to modern 3-manifold topology, Thurston’s hyperbolicity

theorem for Haken manifolds merits a succinct formulation. Shoving some complica-

tions from the original theorem into definitions and restricting attention to manifolds

with nonempty torus boundary yields

Theorem 4.1.1. Let M be a compact orientable 3-manifold with nonempty boundary

consisting of tori.

M is hyperbolic with finite volume if and only if M has no faults.

The above uses the following definitions.

Definition 4.1.2. A manifold is hyperbolic when its interior admits a complete hy-

perbolic metric—a complete Riemannian metric of constant negative curvature.

Definition 4.1.3. Let s be an embedding of a manifold into a connected manifold

M . By abuse of notation, also let s denote the image of s in M . Suppose s has

codimension 1. Pick a metric on M compatible with its p.l. structure, and let M ′ be

the path-metric completion of M r s.

When M ′ is disconnected, s separates M .

When M ′ has two connected components N,N ′, s cuts off N from M , or, if M is

understood from context, s cuts off N .

If N is homeomorphic to some common 3-manifold X, s cuts off an X; if, in

addition, N ′ is not homeomorphic to X, s cuts off one X.

Definition 4.1.4. A properly embedded surface s in an orientable 3-manifold M is

a fault when χ(s) ≥ 0 and it satisfies one of the following:

� s is nonorientable.

� s is a sphere which does not cut off a 3-ball.

� s is a disc which does not off one 3-ball.
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� s is a torus which does not cut off a T 2×I, and does not cut off a ∂-compressible

manifold.

� s is an annulus which does not cut off a 3-ball, and does not cut off one solid

torus.

Sketch of theorem. 4.1.1’s proof. This is a corollary of common knowledge surround-

ing Thurston’s hyperbolization theorem for Haken manifolds. Specifically, it’s com-

monly known that an irreducible, ∂-incompressible, geometrically atoroidal 3-manifold

with nonempty boundary consisting of tori is either hyperbolic or Seifert-fibered,

where “hyperbolic” means “admits a complete hyperbolic metric.” All Seifert-fibered

spaces with at least two boundary components admit essential tori, which are faults.

A Seifert-fibered space with one boundary component admits no essential tori. But

it still admits an annulus fault, namely a vertical fiber over an arc separating the

cone points of the base orbifold, which is a disc with two cone points. Hence all

Seifert-fibered spaces with nonempty boundary admit faults.

Consequently, a compact orientable 3-manifold with nonempty boundary con-

sisting of tori which admits no faults is irreducible, ∂-incompressible, Haken, and

geometrically atoroidal, and it admits no annulus faults. So it must be hyperbolic.

In fact, Thurston proved something more, namely that unless this manifold is

T 2× I, then its metric has finite volume. Now, T 2× I admits faults—non-separating

annuli, in fact. Since we assumed the manifold had no faults, its metric must have

finite volume.

Conversely, hyperbolic 3-manifolds of finite volume admit no orientable faults—

they have no essential spheres, no compressing discs, no incompressible tori which

aren’t ∂-parallel, and no annuli which are both incompressible and ∂-incompressible.

Finally, orientable hyperbolic 3-manifolds of finite volume don’t admit any faults at

all, since they admit no properly embedded nonorientable surfaces of nonnegative

Euler characteristic.
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Having finished this first reformulation, we note the following theorems from nor-

mal surface theory.

Theorem 4.1.5. Let T ideally triangulate a compact orientable 3-manifold M . Then

M has a closed fault precisely when T has a fundamental normal fault.

Theorem 4.1.6. Let T finitely triangulate an irreducible, ∂-incompressible, geomet-

rically atoroidal 3-manifold M with nonempty boundary consisting of tori.

1. M has a fault if and only if T has a vertex Q-normal annulus fault.

2. If M has at least two boundary components, then M has a fault if and only if

T has a non-separating vertex Q-normal annulus fault.

The last section of this chapter contains proofs of these statements.

Theorems 4.1.1, 4.1.5, and 4.1.6 together yield the following useful results amenable

to computer implementation.

Corollary 4.1.7. LetM be a compact orientable 3-manifold with nonempty boundary

consisting of tori.

Let T, T ′ triangulate M ideally and finitely, respectively.

M is hyperbolic precisely when T has no fundamental normal closed fault, T ′ has

no disc fault, and T ′ has no vertex Q-normal annulus fault.

Corollary 4.1.8. The last condition in Corollary 4.1.7 can be relaxed to having no

non-separating vertex Q-normal annulus fault in case |∂M | ≥ 2.

Therefore, assuming T is an ideal triangulation of a compact orientable 3-manifold

M with nonempty boundary consisting of tori,

l := list of fundamental normal surfaces in T

for surf in l:

if surf is fault:

return False
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T’ := truncation of T to finite triangulation

if T’ has a compressing disc:

return False

l’ := list of vertex Q-normal surfaces in T’

for annulus in l’:

if M has at least two boundary tori:

if annulus is non-separating:

return False

else:

if annulus is fault:

return False

else:

return True

describes an algorithm determining whether or not M is hyperbolic.

Of course, this algorithm depends upon

� enumerating fundamental normal surfaces of ideal triangulations;

� truncating ideal triangulations into finite triangulations;

� the predicate “has a compressing disc”;

� enumerating vertex Q-normal surfaces of finite triangulations;

� the predicate “is non-separating annulus”; and

� the predicate “is fault.”

All but the last two are already described in the existing literature and implemented

conveniently in Regina.

The relevant tests and algorithms for detecting non-separating annuli are in Regina

already—calculating Euler characteristic, cutting along a surface, and determining

whether or not a manifold is connected.
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The relevant tests for faultiness (all but the last of which are in Regina) are

� “is a 3-ball”

� “is ∂-compressible”

� “is a solid torus”, and

� “is T 2 × I”.

We can notice first that admitting a non-separating annulus is a necessary condi-

tion for being T 2 × I. We note that a further necessary condition for being T 2 × I is

that splitting along any such annulus is a solid torus. Finally, T 2 × I has exactly two

boundary components.

Now, if a 3-manifold M split along a non-separating annulus is a solid torus, then

M is a Seifert fibering with base orbifold an annulus or a Möbius band with at most

a single cone point, i.e. M = M(+0, 2; r) or M = M(−0, 1; r) for some r ∈ Q. Of

course, ifM is to be homeomorphic to T 2×I, it must have two boundary components,

so M =M(+0, 2; r), not M(−0, 1; r).

Recall the following results about Seifert fiberings:

Proposition 4.1.9 ([4], 2.1). Every orientable Seifert fibering is isomorphic to one

of the models M(±g, b; s1, . . . , sk). Any two Seifert fiberings with the same ±g and

b are isomorphic when their multisets of slopes are equal modulo 1 after removing

integers, assuming b > 0.

Theorem 4.1.10 ([4], 2.3). Orientable manifolds admitting Seifert fiberings have

unique such fiberings up to isomorphism, except for M(0, 1; s) for all s ∈ Q (the solid

torus), M(0, 1; 1/2, 1/2) = M(−1, 1; ) (not the solid torus), and three others without

boundary.

Proposition 4.1.11. Among manifolds of the form M(±0, 2; r), only T 2 × I has all

Dehn fillings being solid tori.
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Proof. Plainly T 2 × I has this property.

Suppose M(0, 2; r) is not T 2 × I. Then by Proposition 4.1.9 and Theorem 4.1.10,

r /∈ Z. We wish to show that M(0, 2; r) admits some Dehn filling which is not a solid

torus. Let s, s′ be two slopes differing mod 1. Then M(0, 1; r, s) and M(0, 1; r, s′) are

Dehn fillings of M(0, 2; r). They are not homeomorphic, by Theorem 4.1.10 and the

fact that r /∈ Z. So one of them is not a solid torus.

It is quite easy to compute slopes differing mod 1 after simplifying the cusps’

induced triangulations.

Proposition 4.1.12. In a triangulation of the torus T 2 by one vertex, three edges,

and two faces, for any nontrivial element g of H1(T
2), the edges represent homology

classes not all equivalent mod g.

Proof. Suppose v, w, x ∈ H1(T
2) and v+w = x. Let =g denote equivalence in H1(T

2)

mod g. Then

v =g x⇒
v + w =g x+ w

≡ { v + w =g x }

x =g x+ w
≡

0 =g w;

assuming v =g w then implies v and x also are 0 mod g. Therefore they are all

multiples of g. But H1(T
2) is not cyclic. So v, w, x cannot generate H1(T

2).

Now, one may pick homology classes v, w, x representing the three edges such that

v + w = x. These generate H1(T
2). Therefore, by the above argument, they cannot

satisfy v =g w =g x for any element g.

Corollary 4.1.13. The following pseudocode describes an algorithm determining

whether or not a compact, orientable, 3-manifold M with nonempty boundary con-

sisting of tori is T 2 × I:
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if M splits along no annulus into a solid torus:

return False

let D be M’s triangulation

let T be a boundary component of M

let tr(T,D) be the triangulation on T induced from D

change D so tr(T,D) has 2 faces, 3 edges, and 1 vertex

if M filled along one of the 3 edges’ slopes is not a solid torus:

return False

else:

return True

Proof. SupposeM is T 2×I. Then the first if-statement doesn’t activate, forM splits

along an annulus into a solid torus. Also, M filled along any edge’s slope whatever is

a solid torus, so the second if-statement doesn’t activate. So the algorithm returns

True.

Suppose instead thatM is not T 2×I. IfM splits along no non-separating annulus

into a solid torus, then the algorithm correctly returns False. Otherwise, M does so

split, and thereforeM =M(0, 2; r) for some r ∈ Q\Z. The algorithm then establishes

that M ’s triangulation induces a minimal triangulation on the boundary component

T . By Proposition 4.1.12, the edges represent at least two different slopes modulo

1. Therefore, by Proposition 4.1.9 and Theorem 4.1.10, the Dehn fillings of M along

these slopes are not all homeomorphic. In particular, one of them is not a solid torus.

Therefore, the if-statement activates, and the algorithm correctly returns False.

It remains to describe

� splitting along a non-separating annulus into a solid torus,

� changing a triangulation to induce a minimal triangulation on a cusp, and

� filling along a slope in a simplified cusp.



CHAPTER 4. DETERMINING HYPERBOLICITY 28

Proposition 4.1.14. The following pseudocode describes an algorithm implementing

the first item:

for every vertex Q-normal surface s in M:

if s is a non-separating annulus:

if M splits along s into a solid torus:

return True

return False

Proof. Suppose M doesn’t split along a non-separating annulus into a solid torus.

Then not both of the if-statements can activate, so the for loop ends without re-

turning, and so the algorithm correctly returns False.

On the other hand, if M does split along a non-separating annulus into a solid

torus, thenM is of the formM(0, 2; r). By Lemma 3.0.14, every finite triangulation of

such a manifold admits a non-separating Q-vertex annulus. Hence the if-statements

eventually activate, and the algorithm correctly returns True.

Now for the next item, simplifying cusps. One may find a nice algorithm in SnapPea

for doing this, a special, simpler case of which is presented here. We use the following

terminology.

Definition 4.1.15. First, suppose M is finitely triangulated. Let T , T ′ be boundary

triangles adjacent along an edge e. Orient e so that T lies to its left and T ′ to its right.

Let ∆ be a fresh tetrahedron, and let τ , τ ′ be boundary triangles of ∆ adjacent along

an edge η. Orient η so that τ lies to its left and τ ′ to its right. Without changingM ’s

topology we may glue ∆ to T by gluing η to e, τ to T ′ and τ ′ to T . This is called a

two-two move.

In the above definition, the edge η′ opposite η in ∆ becomes a boundary edge of

the new finite triangulation.
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Definition 4.1.16. We say e is embedded when its vertices are distinct. We say e

is coembedded when η′ as defined above is embedded. Equivalently, e is coembedded

when the vertices in T, T ′ opposite e are distinct.

Given a boundary edge e between two boundary triangles T and T ′, one may

glue T to T ′ and e to itself via a valid, orientation-reversing map from T to T ′.

This identification we call “folding along e”. (Weeks, in the SnapPea source code,

calls this a “close-the-book” move.) This gluing will change the topology of M when

the vertices opposite e in T and T ′ are the same vertex. Conversely, when these

vertices are distinct, the folding preserves the topology. In other words, folding along

e preserves topology if and only if e is coembedded.

Notice that folding along a coembedded edge decreases the number of boundary

triangles, and performing a two-two move on an embedded edge produces a coembed-

ded edge and preserves the number of boundary triangles. Therefore, the following

while-loops terminate, using number of boundary triangles as a variant function:

while there’s an embedded boundary edge e:

do a two-two move on e

while there’s a coembedded boundary edge f:

fold along f

The obvious postcondition of the outer while loop is that there is no embedded

boundary edge. Since the boundary is still triangulated, this is equivalent to each

boundary component having only one vertex on it. Since each boundary component

is a torus, V − E + F = 0. Now, V = 1, and since the cellulation is a triangulation,
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3 ∗ F = 2 ∗ E.

1− E + F = 0

2− 2 ∗ E + 2 ∗ F = 0

2− 3 ∗ F + 2 ∗ F = 0

2− F = 0

2 = F,

and there are only two triangles and three edges.

The routine in SnapPea is more complicated because, rather than filling in a cusp

any old way, SnapPea wants to make sure the filling compresses some given slope in

the cusp.

In conclusion,

Proposition 4.1.17. The following pseudocode changes a finite triangulation D with

boundary consisting of tori so that D induces a minimal triangulation on every bound-

ary component:

while D has an embedded boundary edge e:

do a two-two move on e

while D has a coembedded boundary edge f:

fold along f

Proof. See above discussion.

Finally,

Proposition 4.1.18. Assuming a triangulation D has a torus boundary component

T and induces a minimal triangulation thereon, the following pseudocode determines

whether folding along one of the edges in T yields a solid torus:
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for each edge e in T:

let N be D folded along e

if N is a solid torus:

return True

return False

Proof. See above.

This concludes the present sketch of an algorithm to determine hyperbolicity of

a compact, orientable 3-manifold with nonempty boundary consisting of tori. Both

literate and raw implementations of this algorithm as a Regina-Python module unhyp

reside at [15]. Also available at [15] is a Regina Python module mom for interpreting

Milley’s data as manifolds in Regina.

4.2 On Faults

Proof of Thm. 4.1.5. This is just breaking down the definition of closed fault and

using the theorems of normal surface theory cited in Chapter 3.

In particular, the first item of Theorem 3.0.9 can be recast as saying M has a

closed fault of χ > 0 precisely when T has a fundamental closed such fault.

If this is not the case, then M is irreducible, so the third item of Theorem 3.0.9

applies. Hence, M admits an essential torus—that is, an incompressible torus which

is not ∂-parallel (see [9], p. 245), i.e. a torus fault—or injective Klein bottle precisely

when T admits a fundamental essential torus or a fundamental injective Klein bottle,

both of which are closed faults.

Proof of Theorem 4.1.6. For the first part, note that since M is irreducible, it has no

sphere fault or P 2 fault. Since M is ∂-incompressible, it has no disc fault. Since M

is geometrically atoroidal, it has neither torus fault nor Klein bottle fault. Hence any

fault must be an annulus fault or a Möbius band fault.
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Suppose M has such a fault Σ. If Σ is a Möbius band, then the boundary of a

regular neighborhood is an essential annulus A; otherwise, Σ itself is an essential an-

nulus A. Isotope A to have least possible weight. By Corollary 6.8 of [7], every vertex

surface in the carrier C(A) is either an essential annulus or torus. By assumption,

there are no essential tori; hence, every such vertex surface is an essential annulus.

Let F be one of these surfaces. The proof of Theorem 2 of [11] shows that F is

isotopic to a Q-vertex surface. So there is a Q-vertex essential annulus. That is, T

admits a Q-vertex annulus fault.

For the second part, suppose M has at least two boundary components. M

is compact, orientable, irreducible, ∂-irreducible, and geometrically atoroidal. By

Thurston’s Haken theorem, this implies thatM is either hyperbolic or Seifert-fibered.

If M is hyperbolic, it has no faults. If instead M is Seifert-fibered, then because M

is geometrically atoroidal its base orbifold is a sphere with b holes and c cone points

such that b+ c ≤ 3—i.e., M is a medium Seifert fibering. Lemma 3.0.14 implies that

a finite triangulation T of M admits a non-separating Q-vertex annulus fault.



Chapter 5

Practical Bounds on Dehn Surgery

Space

The presumptive title of this chapter is only possible because of the groundbreaking

work of Craig Hodgson and Steve Kerckhoff on making effective Thurston’s origi-

nal landmark Dehn surgery theorem. The following work is the third step in the

general pattern seen in algorithmic 3-manifold topology: first come existence results

(e.g. Kneser-Milnor prime decomposition theorem), then come algorithms (e.g. Jaco-

Oertel-Tollefson algorithms), then come refinements suitable for computer implemen-

tation (e.g. Jaco-Rubinstein-Burton crushing), then come censuses and running time

estimates (e.g. Burton’s nine-tetrahedron census), then come more questions (e.g.

Luo’s alternative).

Let us get right to it. The theorem inspiring the following work is

Theorem 5.0.1 (Thm. 5.11, Cor. 5.13 [5]). Let X be an orientable 3-manifold with

nonempty boundary and a complete finite-volume hyperbolic metric on its interior.

Let L̂ be a normalized length function on Dehn filling coefficients (see pp. 1068

and 1076 of [5]), and suppose c ∈ H1(∂X;R) is a Dehn filling coefficient such that

L̂(c) > 7.5832. Then

33
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� X(c) admits a complete finite-volume hyperbolic metric on its interior;

� vol(X)− vol(X(c)) < 0.198; and

� the geodesic core of the filling has length at most 0.156012.

After suitably rephrasing this, it seems to give a practical method for solving our

problem:

Corollary 5.0.2. Let M ,N be orientable 3-manifolds admitting complete hyperbolic

metrics of finite volume on their interior. N is a Dehn filling of M if and only if1

either

� N is a Dehn filling of M along a slope of normalized length less than or equal

to 7.5832, or

� M is isometric to N \γ for a simple closed geodesic of length less than 0.156012.

The collection of slopes of ∂M with normalized length less than 7.5832 is com-

putable, and likewise the length spectrum of N is computable, and SnapPy can drill

out curves and determine isometries, so that is that. Right?

Unfortunately not. The problem is in drilling out curves. SnapPy can only drill

out simple closed curves in the dual 1-complex of an ideal triangulation. As explained

in [6] on page 264, these may or may not be isotopic (or even homotopic) to a given

geodesic which one wishes to drill out.

Fortunately, Theorem 5.0.1 is a corollary of a much more powerful theorem, Theo-

rem 5.1.1, about volume change under drilling. Theorem 5.0.1 follows from the upper

bounds in Theorem 5.0.1, but Theorem 5.0.1 contains lower bounds as well. We use

both bounds in what follows to enable a solution to the problem in terms of proce-

dures either already made rigorous or with a reasonable hope of being made rigorous

soon, viz. length spectra, cusp area, slope length, and (to a lesser extent) isometry

testing.

1The only-if part is the content of Theorem 5.0.1.
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5.1 Rewriting the Hodgson-Kerckhoff Bounds

The stronger theorem alluded to above is

Theorem 5.1.1 (theorem. 5.12, [5]). Let X, L̂, and c be as in Theorem 5.0.1. Let

∆V = vol(X)−vol(X(c)). Let ℓ be the length of the geodesic core of the filling. Then

1

4
·
∫ 1

z̃

H ′(z)

H(z) · (H(z)− G̃(z))
dz ≤ ∆V, (5.1.1)

∆V ≤ 1

4
·
∫ 1

ẑ

H ′(z)

H(z) · (H(z) +G(z))
dz, (5.1.2)

and

1/H(z̃) ≤ 2π · ℓ ≤ 1/H(ẑ), (5.1.3)

where H,G, G̃, z̃, and ẑ have the following definitions.

Definition 5.1.2.

K = 3.3957, h(z) =
1 + z2

z · (1− z2)
,

g̃(z) =
(1 + z2)2

2 · z3 · (3− z2)
, g(z) =

1 + z2

2 · z3 ,

H = h/K, G = g/K, G̃ = g̃/K,

F (z) =
H ′(z)

H(z) +G(z)
− 1

1− z
=

h′(z)

h(z) + g(z)
− 1

1− z
,

F̃ (z) =
H ′(z)

H(z)− G̃(z)
− 1

1− z
=

h′(z)

h(z)− g̃(z)
− 1

1− z
,

f(z) = K · (1− z) · e−Φ(z), Φ(z) =

∫ z

1

F (w) dw,

f̃(z) = K · (1− z) · e−Φ̃(z), Φ̃(z) =

∫ z

1

F̃ (w) dw,

f(ẑ) =
(2π)2

L̂(c)2
, f̃(z̃) =

(2π)2

L̂(c)2

These definitions are from pp. 1079, 1080, and 1088 of [5]. The reader should note
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that the above theorem has 2π · ℓ in place of A. This is valid—see, e.g., Corollary

5.13 of [5].

This gives complicated bounds on ∆V and ℓ in terms of ẑ and z̃. We require

simple but not necessarily tight upper and lower bounds on ℓ and L̂(c) in terms of

∆V . The bounds on ℓ will be used most often; the upper bounds on L̂(c) will be used

when the volumes of the putative parent and child P and C are close, and C has a

very short geodesic. (For instance, P might be the Whitehead link complement, and

C might be a high-order Dehn filling on the Whitehead link complement sibling.)

To get these bounds, we will approximate solutions to inequalities (5.1.1) and

(5.1.2) in z̃ and ẑ, respectively, for given ∆V .

5.1.1 Monotonicities

Let

LB(z) =
1

4
·
∫ 1

z

H ′(w)

H(w) · (H(w)− G̃(w))
dw (5.1.4)

and

UB(z) =
1

4
·
∫ 1

z

H ′(w)

H(w) · (H(w) +G(w))
dw. (5.1.5)

We intend to solve the inequalities by inverting LB and UB. This will work if we

know the monotonicity of LB and UB. We will require the monotonicity of several

other functions as well, and the (very calculational) proofs are in proof-hint notation.

It behooves us then to introduce “∼.”

Definition 5.1.3. For all real x and y, x ∼ y when sgn(x) = sgn(y), where sgn(x)

is the signum function sgn(0) = 0, else sgn(x) = |x|/x.

Lemma 5.1.4. LB is decreasing on
(

√√
5− 2, 1

)

.

Lemma 5.1.5. UB is decreasing on
(

√√
5− 2,∞

)

.
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Proof of Lemma 5.1.4.

LB′(z)

= { by definition of LB }

−1

4
· H ′(z)

H(z) · (H(z)− G̃(z))

= { algebra }

−K/4 · h′(z)

h(z) · (h(z)− g̃(z))

∼ { K > 0 }

− h′(z)

h(z) · (h(z)− g̃(z))

= { algebra }

− z2 · (z2 − 3) · (z4 + 4 · z2 − 1)

(z2 + 1)2 · (z2 − 2 · z − 1) · (z2 + 2 · z − 1)

∼ { z >
√√

5− 2 ⇒ z2 − 3 < 0 }
z2 · (z4 + 4 · z2 − 1)

(z2 + 1)2 · (z2 − 2 · z − 1) · (z2 + 2 · z − 1)

∼ { z >
√√

5− 2 ⇒ z2/(z2 + 1)2 > 0 }
z4 + 4 · z2 − 1

(z2 − 2 · z − 1) · (z2 + 2 · z − 1)

∼ { z >
√√

5− 2 ⇒ z4 + 4 · z2 − 1 > 0 }
1

(z2 − 2 · z − 1) · (z2 + 2 · z − 1)

∼ { z >
√√

5− 2 ⇒ z >
√
2− 1,

z >
√
2− 1 ⇒ z2 + 2 · z − 1 > 0 }
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1

z2 − 2 · z − 1

∼ { z >
√√

5− 2 ⇒ z > 1−
√
2,

z < 1 ⇒ z < 1 +
√
2,

1−
√
2 < z < 1 +

√
2 ⇒ z2 − 2 · z − 1 < 0 }

−1.

By calculus, therefore, LB is decreasing on
(

√√
5− 2, 1

)

.

Proof of Lemma 5.1.5.

UB′(z)

= {by definition of UB}

− 1

4
· H ′(z)

H(z) · (H(z) +G(z))

= {algebra}

− K

4
· h′(z)

h(z) · (h(z) + g(z))

= {more algebra}

− K

2
· z

2 · (z4 + 4 · z2 − 1)

(z2 + 1)3

∼ {K > 0; z 6= 0}

− (z4 + 4 · z2 − 1)

∼
{

z >

√√
5− 2 ⇒ z4 + 4 · z2 − 1 > 0

}

− 1.

Again, by calculus, UB is decreasing, on
(

√√
5− 2,∞

)

.

Therefore, the first two inequalities of Theorem 5.1.1 are equivalent, respectively,

to z̃ ≥ LB−1(∆V ) and UB−1(∆V ) ≥ ẑ.
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Next, we should do the same to the inequalities (5.1.3), getting bounds for z̃ and

ẑ in terms of ℓ. To do that we need H’s monotonicity. We can then play the various

inequalities off one another to get our desired result. Also, we should determine the

monotonicities of f and f̃ ; they will prove useful later.

Lemma 5.1.6. H is increasing on
(

√√
5− 2,∞

)

.

Lemma 5.1.7. f is decreasing on
(

√√
5− 2,∞

)

.

Lemma 5.1.8. f̃ is decreasing on
(

√√
5− 2,

√
3
)

.

Proof of Lemma 5.1.6.

H ′(z)

= {by definition}

h′(z)/K

∼ {K > 0}

h′(z)

= {calculus}
z4 + 4 · z − 1

(z − 1)2 · z2 · (z + 1)2

∼

z4 + 4 · z − 1

∼
{

z >

√√
5− 2 ⇒ z4 + 4 · z − 1 > 0

}

1.

By calculus, H is increasing if z >
√√

5− 2—in particular, if z ∈
(

√√
5− 2, 1

)

.
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Proof of Lemma 5.1.7.

f ′(z)

= {calculus, algebra}

K · e−Φ(z) · (−1 + (1− z) · (−Φ′(z)))

∼
{

K > 0; e−Φ(z) > 0
}

(z − 1) · Φ′(z)− 1

= {fund. thm. of calculus}

(z − 1) · F (z)− 1

= {algebra}

− 2 · z · (z4 + 4 · z2 − 1)

(z + 1) · (z2 + 1)2

∼

− (z4 + 4 · z2 − 1)

∼
{

z >

√√
5− 2 ⇒ z4 + 4 · z − 1 > 0

}

− 1.

By calculus, f is decreasing if z >
√√

5− 2—in particular, if z ∈
(

√√
5− 2, 1

)

.
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Proof of Lemma 5.1.8.

f̃ ′(z)

= {calculus, algebra}

K · e−Φ̃(z) ·
(

−1 + (1− z) · (−F̃ (z))
)

∼
{

K > 0; e−Φ̃(z) > 0
}

(z − 1) · F̃ (z)− 1

= {algebra}
−2 · z · (z2 − 3) · (z4 + 4 · z − 1)

(z + 1) · (z2 + 1) · (z2 − 2 · z − 1) · (z2 + 2 · z − 1)

∼
{

z ∈
(√√

5− 2,
√
3

)

⇒ z2 − 3 < 0

}

2 · z · (z4 + 4 · z − 1)

(z + 1) · (z2 + 1) · (z2 − 2 · z − 1) · (z2 + 2 · z − 1)

∼ {z >
√√

5− 2 ⇒ z > 0}
z4 + 4 · z − 1

(z2 − 2 · z − 1) · (z2 + 2 · z − 1)

∼ {latter half of Lemma 5.1.4 }

− 1.

5.1.2 Complicated upper bound on ℓ

Plainly we already have an upper bound on ℓ, viz. ℓ ≤ 1/(2π ·H(ẑ)). We just need

to put the right-hand side in terms of ∆V .

In fact, since H is increasing, 1/(2π ·H) is decreasing. Therefore we just need a

lower bound on ẑ; applying 1/(2π ·H) to this lower bound will give us a bound on ℓ.

At this point, one could use the standing assumption in [5] after p. 1079 that all
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variables named z represent tanh ρ for some ρ > artanh(1/
√
3). Therefore, ẑ >

√

1/3.

As a matter of fact, this is where the bounds in Theorem 5.0.1 come from. But we

would like a better bound for small ∆V .

Now, UB(ẑ) ≥ ∆V. Unfortunately UB is decreasing, so this doesn’t give a lower

bound on ẑ. Also, ẑ is defined by f(ẑ) = (2π)2/(L̂(c)2), but all we know about L̂(c)

is L̂(c) > 7.5832. In fact, this bound is taken from the standing assumption on z.

However, we also know f(ẑ) = f̃(z̃) f and f̃ both are decreasing. Therefore, if

we can get a lower bound on z̃, we get a lower bound on ẑ, via upper bounds on

f(ẑ) = f̃(z̃).

Finally, (5.1.1) from Theorem 5.1.1 says LB(z̃) ≤ ∆V , and LB is decreasing on
(

√√
5− 2, 1

)

.
√

1/3 >
√√

5− 2, so this yields a lower bound on z̃, and hence an

upper bound on ℓ, in terms of ∆V ; to wit,

ℓ ≤ 1

2π · (H ◦ s ◦ f̃ ◦BL)(∆V )
, (5.1.6)

where s(f(ẑ)) = ẑ and BL(LB(z̃)) = z̃ for z̃, ẑ ∈
(

√

1/3, 1
)

, and s : (0, f(
√

1/3)) →
(
√

1/3, 1), BL : (0, LB(
√

1/3)) → (
√

1/3, 1).

This bound is valid only when ∆V is in the domain of BL. If this is not the case,

then the right-hand side should be replaced by Hodgson and Kerckhoff’s original

bound 0.156012.

5.1.3 Complicated bounds on L̂(c)

We know (2π)2

L̂(c)2
= f(ẑ) = f̃(z̃). We just got upper bounds on this, yielding a lower

bound for L̂(c). More explicitly,

L̂(c)2 ≥ (2π)2

f̃(BL(∆V ))
. (5.1.7)
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To get an upper bound on L̂(c), we can get a lower bound on f(ẑ), which would result

from an upper bound on ẑ (since f is decreasing), which would result from a lower

bound on UB(ẑ) (since UB is decreasing). But ∆V ≤ UB(ẑ) by assumption. So

L̂(c)2 ≤ (2π)2

f(BU(∆V ))
, (5.1.8)

where BU : (0, UB(
√

1/3)) → (
√

1/3, 1) satisfies BU(UB(ẑ)) = ẑ for ẑ ∈ (
√

1/3, 1).

5.1.4 Nice bounds

Since these bounds depend upon inverting functions defined by integrals, one cannot

expect a computer to calculate the bounds very quickly. But if we approximate the

functions and relax the bounds, we can get decent running times.

The conditions which the approximations should satisfy (in order to accord with

(5.1.6), (5.1.7), and (5.1.8)) are not difficult to derive. For instance, an approximation

η to 1/(2π ·H) should be decreasing, since 1/(2π ·H) is itself decreasing and we want

a reasonable approximation; and η should be greater than 1/(2π ·H) so that we can

deduce

ℓ ≤ (η ◦ s ◦ f̃ ◦BL)(∆V )

from (5.1.6). In fact, η(z) = K · (1 − z)/(2π) suffices. Useful approximations for all

the necessary functions are as follows:

Lemma 5.1.9.

1/h(z) ≤ 1− z, (5.1.9)

f(z) ≥ A · (1− z), (5.1.10)

f̃(z) ≤ B · (1− z), (5.1.11)

LB(z) ≥ C · (1− z), (5.1.12)

UB(z) ≤ D · (1− z). (5.1.13)
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where

A = K · e−Φ(
√

1/3);

F̃ (β) = 0, β ∈ (
√

1/3, 1);

B = K · e−Φ̃(β);

t =
h′

h · (h− g̃)
;

C = K · t(
√

1/3)/4;

D = K/4;

Proof of (5.1.9).

1− z − 1

h(z)
=

(1− z)2

1 + z2
≥ 0.

Proof of (5.1.10). Assume z ∈ (
√

1/3, 1). Now, by definition,

F (z) = −z
4 + 6 · z2 + 4 · z + 1

(z + 1) · (z2 + 1)2
.

But

F (z) = −z
4 + 6 · z2 + 4 · z + 1

(z + 1) · (z2 + 1)2

⇒ { algebra }

F < 0 on (
√

1/3, 1)

⇒ { calculus; z ∈ (
√

1/3, 1) }
∫ 1

z

F (w) dw ≥
∫ 1

√
1/3

F (w) dw

≡ { calculus, algebra }



CHAPTER 5. PRACTICAL BOUNDS ON DEHN SURGERY SPACE 45

∫ z

1

F (w) dw ≤
∫

√
1/3

1

F (w) dw

≡ { definition of Φ }

Φ(z) ≤ Φ(
√

1/3)

≡ { x 7→ e−x is decreasing }

e−Φ(z) ≥ e−Φ(
√

1/3)

≡ { z ∈ (
√

1/3, 1) ⇒ 1− z > 0; K > 0 }

K · e−Φ(z) · (1− z) ≥ K · e−Φ(
√

1/3) · (1− z)

≡ { definition of f }

f(z) ≥ K · e−Φ(
√

1/3) · (1− z)

≡ { definition of A }

f(z) ≥ A · (1− z)

Proof of (5.1.11). F̃ (1) = 1, F̃ (
√

1/3) < 0, and F̃ has exactly one root β in (
√

1/3, 1).

Thus if z ∈ (
√

1/3, 1), then

∫ 1

z

F̃ (w) dw ≤
∫ 1

β

F̃ (w) dw

≡ { calculus }
∫ z

1

F̃ (w) dw ≥
∫ β

1

F̃ (w) dw

≡ { definition of Φ̃ }

Φ̃(z) ≥ Φ̃(β)

≡ { algebra }

−Φ̃(z) ≤ −Φ̃(β)

≡ { x 7→ ex is increasing }
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e−Φ̃(z) ≤ e−Φ̃(β)

≡ { algebra }

K · (1− z) · e−Φ̃(z) ≤ K · (1− z) · e−Φ̃(β)

≡ { definition of f̃ }

f̃(z) ≤ K · (1− z) · e−Φ̃(β)

≡ { definition of B }

f̃(z) ≤ B · (1− z).

But the initial statement is just equation (5.1.1).

Proof of (5.1.12). For variety, we do this proof backwards. We seek a C such that

for all z ∈ (
√

1/3, 1), LB(z) ≥ C · (1− z):

〈∀z : LB(z) ≥ C · (1− z)〉

≡ { let lb(z) =
∫ 1

z
h′/(h · (h− g̃)) }

〈∀z : K · lb(z)/4 ≥ C · (1− z)〉

≡ { algebra }

〈∀z : lb(z) ≥ 4 · C · (1− z)/K〉

⇐ { calculus }

h′/(h · (h− g̃)) ≥ 4 · C/K on (
√

1/3, 1).

In other words, we just need a lower bound on t = h′/(h · (h − g̃)) over (
√

1/3, 1).

Now,

t′(z) =
4 · (1− z) · (z + 1) · p(z)

(z2 + 1)3 · (z2 − 2 · z − 1)2 · (z2 + 2 · z − 1)2
,

where

p(z) = 5 · z8 − 6 · z6 + 88 · z4 − 26 · z2 + 3.

It is clear that on (
√

1/3, 1), t′ ∼ p. Now,

p(z)
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=
5 · z8 − 6 · z6 + 2 · z4 + 86 · z4 − 26 · z2 + 3

=
z4 · (5 · (z2)2 − 6 · (z2) + 2)

+
86 · (z2)2 − 26 · z2 + 3.

(−6)2− 4 · 5 · 2 < 0 and (−26)2− 4 · 86 · 3 < 0. Therefore, 5 · z2− 6 · z+2 has constant

sign, and 86 · z2 − 26 · z + 3 does too. By evaluation at 0, this sign is positive on

both. Therefore p is positive. That is, t′ > 0 on (
√

1/3, 1). Consequently, t achieves

its smallest value at
√

1/3. That is, t ≥ t(
√

1/3). So we have, finally,

〈∀z : LB(z) ≥ C · (1− z)〉

⇐ { see above }

C = K · t(
√

1/3)/4.

Proof of (5.1.13). Likewise, we do this proof backwards. We seek a D such that for

all z ∈ (
√

1/3, 1), UB(z) ≤ D · (1− z):

〈∀z : UB(z) ≤ D · (1− z)〉

≡ { let ub(z) =
∫ 1

z
h′/(h · (h+ g)) }

〈∀z : K · ub(z)/4 ≤ D · (1− z)〉

≡ { algebra }

〈∀z : ub(z) ≤ 4 ·D · (1− z)/K〉

⇐ { calculus }

h′/(h · (h+ g)) ≤ 4 ·D/K on (
√

1/3, 1).

In other words, we just need an upper bound on T = h′/(h · (h+ g)) over (
√

1/3, 1).

Now,

T ′(z) = −4 · z · (z4 − 10 · z2 + 1)

(z2 + 1)4
.
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Plainly, T ′(z) ∼ −z4+10·z2−1 on (
√

1/3, 1). This has four real roots, ±
√

5± 2 ·
√
6,

none of which lies in (
√

1/3, 1). −1+10−1 > 0, so T ′ is positive on (
√

1/3, 1). That

is, T is increasing on (
√

1/3, 1). So it takes its maximum at 1, where its value is just

1! In conclusion, then,

〈∀z : UB(z) ≤ D · (1− z)〉

⇐ { see above }

D = K/4.

Lemma 5.1.10.
1

2π · (H ◦ s ◦ f̃ ◦BL)(∆V )
≤ α ·∆V, (5.1.14)

(2π)2

f̃(BL(∆V ))
≥ δ · 1

∆V
, (5.1.15)

and
(2π)2

f(BU(∆V ))
≤ γ · 1

∆V
, (5.1.16)

where

α =
2 · eΦ(

√
1/3)−Φ̃(β)

π · t(
√

1/3)
,

δ =
(2π)2 · eΦ̃(β) · t(

√

1/3)

4
,

and

γ =
(2π)2 · eΦ(

√
1/3)

4
.

Proof of (5.1.14).

1/(h ◦ s ◦ f̃ ◦BL)(∆V )

= { algebra }
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(

1

h
◦ s ◦ f̃ ◦BL

)

(∆V )

≤ { (5.1.9) }

1− (s ◦ f̃ ◦BL)(∆V )

≤ { s, f inverse; (5.1.10) }

1− (1− f̃(BL(∆V ))/A)

= { algebra }

f̃(BL(∆V ))/A

≤ { (5.1.11) }
B

A
· (1−BL(∆V ))

≤ { BL,LB inverse; (5.1.12) }
B

A
· (1− (1−∆V/C))

= { algebra }
B

A · C ·∆V.

Consequently,

1/(2π · (H ◦ s ◦ f̃ ◦BL)(∆V ))

= { definition of H }

K/(2π · (h ◦ s ◦ f̃ ◦BL)(∆V ))

= { algebra }
K

2π
· 1/(h ◦ s ◦ f̃ ◦BL)(∆V )

≤ { see above }
K

2π
· B

A · C ·∆V.
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Finally,

K

2π
· B

A · C
= { definitions of A,B,C }

K ·K · e−Φ̃(β) · 4
2π ·K · e−Φ(

√
1/3) ·K · t(

√

1/3)

= { algebra }

2 · eΦ(
√

1/3)−Φ̃(β)/(π · t(
√

1/3))

= { definition of α }

α.

Proof of (5.1.15).

1/(f̃(BL(∆V ))

≥ { (5.1.11); algebra }

1/(B · (1− BL(∆V )))

≥ { (5.1.12); algebra }

1/(B · (1− (1−∆V/C)))

= { algebra }

(C/B) · (1/∆V )

Consequently,
(2π)2

f̃(BL(∆V )
≤ (2π)2 · C

B
· 1

∆V
.

Finally,

(2π)2 · C/B

= { definitions of B,C }
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(2π)2 ·K · t(
√

1/3)

K · e−Φ̃(β) · 4
= { algebra }

(2π)2 · t(
√

1/3) · eΦ̃(β)/4.

= { definition of δ }

δ.

Proof of (5.1.16).

1/(f(BU(∆V ))

≤ { (5.1.10); algebra }

1/(A · (1− BU(∆V )))

≤ { (5.1.13) }

1/(A · (1− (1−∆V/D)))

= { algebra }

(D/A) · (1/∆V ).

Consequently,
(2π)2

f(BU(∆V ))
≤ (2π)2 ·D

A
· 1

∆V
.

Finally,

(2π)2 ·D/A

= { definitions of A,D }
(2π)2 ·K

K · e−Φ(
√

1/3) · 4
= { algebra }
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(2π)2 · eΦ(
√

1/3)/4

= { definition of γ }

γ.

5.1.5 Numerical approximations

To make the bounds from Lemma 5.1.10 implementable in software, we just need

some simple estimates on α, δ, γ. Using a computer algebra system one may show

Lemma 5.1.11. α ≤ 2.879, δ ≥ 4.563, and γ ≤ 20.633.

In other words,

Corollary 5.1.12. Let M,N be orientable 3-manifolds admitting complete hyperbolic

metrics of finite volume on their interiors. Let ∆V = V ol(M)− V ol(N).

N is a Dehn filling of M if and only if either

� N is a Dehn filling of M along a slope of normalized length less than or equal

to 7.5832, or

– N has a closed simple geodesic of length less than 2.879 ·∆V , and

– N is a Dehn filling of M along a slope of normalized length L̂ such that

4.563

∆V
≤ L̂2 ≤ 20.633

∆V
. (5.1.17)
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5.2 Estimates in Maxima for Lemma 5.1.11

〈estimates for Lemma 5.1.11〉≡
K : 3.3957;

h : (1+z^2)/(z*(1-z^2)); H : h/K;

g : (1+z^2)/(2*z^3); G:g/K;

gt : (1+z^2)^2/(2*z^3*(3-z^2)); Gt : gt/K;

hh : factor(ratsimp(derivative(h,z)));

F : partfrac(ratsimp(hh/(h+g) -1/(1-z)),z);

Ft : partfrac(ratsimp(hh/(h-gt)-1/(1-z)),z);

assume(z>sqrt(1/3.0)); assume(z<1.0);

Phi : integrate(ev(F ,z=w),w,1,z);

Phit : integrate(ev(Ft,z=w),w,1,z);

f : K*(1-z)*exp(-Phi);

ft : K*(1-z)*exp(-Phit);

lbintegrand : partfrac(ratsimp(hh/(h*(h-gt))));

t : lbintegrand;

beta : rhs(realroots(Ft,1/1000000000000000000)[4]);

alpha : bfloat( 2 * exp( ev(Phi,z=sqrt(1/3.0))

-ev(Phit,z=beta) )

/ (%pi * ev(t,z=sqrt(1/3.0)) ) );

delta : bfloat( (2 * %pi)^2 * exp(ev(Phit,z=beta))

* ev(t,z=sqrt(1/3.0)) / 4);

gamma : bfloat( (2 * %pi)^2

* exp(ev(Phi,z=sqrt(1/3.0))) / 4);

〈dad.mac〉≡
〈estimates for Lemma 5.1.11〉

The reader running this code is reminded that Maxima displays big-floats in sci-

entific notation with, e.g, 1.0b1 denoting 10, instead of 1.0e1.



Chapter 6

Prospects

To develop a rigorous Dehn parenteral test, it remains to develop programs to rigor-

ously estimate volume, cusp area, parabolic translation length along maximal cusp

tori, and length spectra. The rigorous estimates of hyperbolic structures given by

HIKMOT should be useful in this regard for cusped manifolds. For estimating the

length spectra of closed manifolds, M. Trnkova has developed some Mathematica

code [12].

The unhyperbolicity algorithm detailed above does not work for closed 3-manifolds.

However, because of 3-manifold geometrization, it is now known that a closed irre-

ducible geometrically atoroidal 3-manifold must either be hyperbolic or small Seifert-

fibered, which is to say a Seifert fibering over a sphere with at most three cone points.

Algorithms for detecting whether or not a 3-manifold is such a fibering have been de-

veloped, but not implemented in code. Refining these algorithms into something

suitable to code is the last step in getting the homeomorphism problem for compact

3-manifolds solved completely constructively and effectively. We should do that soon;

we are so very close!
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