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ABSTRACT 
 

The growing axon tip of a developing neuron is called a growth cone. In order to 

form the exact synaptic connection required for proper neurological function, the growth 

cone hosts an orchestra of hundreds of different genes and proteins interacting with 

extracellular cues to steer growth in the right direction. Mutations in genes required for 

this process are associated with many neurodevelopmental disorders and deficits in 

damage repair.  

The goal of our current research is to study several of the components of this 

pathway, known as the TACC family members. Our data shows that TACC1 and TACC3 

are both present in the nervous system of developing embryos, and that knocking down 

TACC3 changes microtubule polymerization dynamics, altering the rate of growth and 

steering of the axon. Additionally, we have shown TACC3 to be one of a family known 

as +end-tracking proteins (+TIPs), protein complexes that bind the +end of microtubules 

to regulate their behavior, and have preliminary data that TACC1 behaves similarly. 

Therefore we believe the TACC family members are key players in neural development 

by regulating microtubule dynamics.  

Here, we present a detailed structure/function analysis of the TACC family in 

regards to binding and activity with other proteins in the growth cone. We investigate the 

function of TACC3 in mediating neuron outgrowth and guidance in vivo. We examine 

which domains and specific amino acid residues mediate TACC function in regulation of 

cytoskeletal growth. We have found that the coiled-coil domain of the TACC family is 

necessary for its +end binding activity, and certain amino acid residues upstream of and 

within this domain enable the activity of TACC3. We believe these residues and their 
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phosphorylation-based regulation facilitates the binding of TACC3 to other +end proteins 

and the +end itself, and that this process enables the regulated polymerization of 

microtubules and growth of the developing neuron. Studying this process and the role of 

the TACC family overall will help provide a powerful model for understanding the 

function of genes involved in cytoskeletal regulation and neurodevelopment. 
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Chapter I: Introduction 
 
 

TACC3 and the Growth Cone 
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Growth Cones and Neurodevelopment 

 Throughout the process of neurodevelopment, the cytoskeleton of cells within the 

nervous system is dynamically regulated in order to ensure proper growth and migration 

(Lowery and Van Vactor, 2009). There are a vast number of genes involved in this 

process, which function together to grow, rearrange, destroy, and regrow the cytoskeleton 

to facilitate certain structural changes and migrations of the cell. Perhaps the most 

intriguing example of this phenomenon occurs in the growing tip of a developing neuron 

axon – the growth cone. 

 The growth cone is a hand-like structure that splays out at the tip of a growing 

axon. It grows out from the soma (body) of the neuron and probes the environment of the 

cell’s surroundings. By integrating a host of extracellular guidance cues and genetic 

factors, the growth cone weaves its way throughout the developing brain to find its 

correct synaptic target. Many of the genes involved in the guidance process are critical 

for proper nervous system development; mutations often result in developmental 

disorders and neuropathologies (Engle et al., 2010; Tischfield et al., 2010). Some of these 

genes deal with processing extracellular guidance signals and growth factors, some relay 

these signals to effector genes, and some enact the signal by changing the dynamics of 

the cellular skeleton within the growth cone. 

 

Cytoskeleton and +TIPs 

 Within the growth cone, a number of dynamic cytoskeletal factors interact to 

ensure the proper growth and guidance of the axon tip. Key elements of these factors are 

microtubules (MTs) and the protein complexes that lie on the growing +ends of 

microtubules. These proteins are known as +TIPs, or +end-tracking proteins. +TIP 
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proteins regulate the growth of microtubules (Akhmanova and Steinmetz, 2008) in a 

carefully coordinated way so as to ensure proper cytoskeletal formation and dynamics.  

The +TIPs present in growth cones help to ensure proper development and growth of the 

axon (Tanaka et al., 1995; Lowery and Van Vactor, 2009).  

 Within the growth cone, most of 

the microtubules are stable and confined to 

the central domain, the “wrist” of the 

metaphorical hand (Figure 1). These 

microtubules are stabilized and serve to 

support the developing axon. Some 

microtubules, however, probe out into the 

periphery in filopodia, and are dynamically 

regulated by +TIP proteins on their +ends. 

These dynamic microtubules will either grow or shrink in response to extracellular 

signals, called guidance cues. When more of these dynamic microtubules are stabilized 

on one side of the growth cone, it will steer in that direction, and when more are 

destabilized on one side, it will steer in the other direction (Tanaka et al., 1995). 

Regulation by +TIPs is widely believed to be the determinant of these dynamic 

microtubule behaviors, and thus the growth and steering of the developing axon. 

It remains poorly understood exactly how most +TIPs function with regards to 

their activity on the microtubule and interaction with each other. Furthermore, very few 

studies have examined how +TIPs function in vertebrate growth cones (e.g., van der 

Vaart et al., 2012; Lowery et al., 2013; Marx et al., 2013). Understanding how +TIPs 

regulate microtubule dynamics will help elucidate the phenomena of growth cone 

Figure 1: Growth Cone Cytoskeletal Proteins.  
Microtubules (MTs) depicted in blue, and actin filaments 
depicted in red. (Lowery and Van Vactor, 2009). 
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guidance, which is key to understanding nervous system development. An analysis of the 

structure, function, and regulation of several of the key +TIPs will begin to explain this 

entire process. 

 

Guidance Cues 

The growth cone is guided to its correct synaptic target by a plethora of different 

signals known as guidance cues. These include the substrate it is growing on, other cells, 

axons, and growth cones around it, and diffusible peptide or protein. Receptors on the 

cell membrane of the growth cone bind to these guidance cues and relay a signaling 

cascade through the cytoplasm, which leads to an effect on the cytoskeleton (Campbell, 

2001). Positive guidance cues will translate to stability of cytoskeletal edifices, increased 

polymerization rates, or synthesis of new cytoskeletal protein to push growth in that 

direction (Leung et al., 2006).  Guidance cues will determine which microtubules will be 

more 

Figure 2: The Growth Cone Integrates Guidance Cues to affect cytoskeletal 
dynamics and steer axonal growth. (Modified from Lowery and Van Vactor, 2009). 



	   	   11	  

stabilized and grow, which in turn will determine which way the developing axon steers 

itself (Figure 2). 

Most guidance cues are expressed in varying levels in a specific part of the brain, 

at a specific developmental stage. Neurons originating from a specific cell type will 

express a certain type of receptor, and will respond to a localized guidance cue in a 

unique way when its growth cone reaches that part of the brain. A well-characterized 

model of this phenomenon is that of development of the optic nerve in the African 

Clawed Frog, Xenopus laevis (van Horck et al., 2004). In 

this model (Figure 3), the retinal ganglion cell (RGC) 

departs the retina by following a positive, attractive 

gradient of Netrin-1 (green). Once it reaches the optic 

chiasm, the repulsive signal Ephrin-B enables sorting of the 

neurons based on which side of the retina they originated 

from. The negative cues Sema3A and Slit help steer it 

further until it reaches its destination in the optic tectum, where 

once again the neurons are repelled away from improper 

synaptic targets by Ephrin-B. This model, developed by the Holt/Harris labs of the 

University of Cambridge, presents a powerful means of assaying the relative ability of 

neurons to process a diversity of guidance cues and steer accordingly. 

 

XMAP215 and other +TIPs 

 A number of +TIPs have been well-studied in other systems besides the growth 

cone, and their known functions make them likely to be critically important to the growth 

cone-guiding process. These include XMAP215, EB1, and CLASP (Akhmanova and 

classification has been revised recently, because a re-
investigation has shown that it is the ratio of cAMP:cGMP
that is key in determining the direction of growth cone
turning to netrin-1 [15] — a high ratio of cAMP:cGMP
favours attraction, whereas, a low ratio favours repulsion.
These findings implicate the likely importance of cross-
talk modulation between different guidance signaling
pathways. Indeed, at the ONH, interaction between
laminin-1 and netrin-1 signaling pathways, via cAMP,
is thought to play an important role in guiding retinal
axons out of the eye [16].

Along similar lines, the chemokine stromal cell derived
factor-1 (SDF-1), has been newly identified as a mod-
ulator of multiple axonal repellents. SDF-1 reduces the
repellent activity of Slit-2 on retinal growth cones [17!].
This is a modulatory effect because SDF-1 has no detect-
able attractant or repellent activity on RGC axons by itself
when used in a collagen gel explant assay. Although, the
possibility remains that SDF-1 might induce directional
turning in RGC growth cones if tested in a short, one-hour
gradient assay, instead of the long (20-hour) collagen
explant assays. SDF-1-modulated Slit-2 responsiveness
is mediated through a G-protein coupled receptor,
CXCR4, whose activation stimulates an elevation of
cAMP. SDF-1 also decreases the repellent activities of

the semaphorins Sema3A and 3C in other neurons and
CXCR4-mutant mice have axon guidance defects in the
spinal cord, suggesting a general role of SDF-1 in mod-
ulating axonal responsiveness to various guidance cues.
SDF-1 is a known chemoattractant for leukocytes, den-
tate granule cells and cerebellar neurons [18,19], and
cultured rat cerebellar axons are repelled by a gradient
of SDF-1, indicating that SDF-1 can also act as guidance
cue by itself and that its effects might be highly cell type-
specific [20].

In the fly visual system also, an axon guidance modulator
has been identified in the form of the hormone insulin
[21]. Insulin signals through its insulin receptor (InR) and
InR-mutantDrosophila show diverse axon-targeting errors
of photoreceptor cell axons in the medulla. Like chemo-
kines, insulin circulates widely; cells along the visual
pathway do not secrete insulin, thus, suggesting that
insulin is not, itself, a directional cue [22]. It is likely
that multiple modulators exist in the developing nervous
system— future studies will face the challenge of addres-
sing the way that the growth cone interprets the cyclic
nucleotide changes to produce an appropriate response.

Local protein synthesis in retinal growth
cones
The prevailing view, until two years ago, was that axons
do not synthesize proteins. This view has been over-
turned recently, by the demonstration that axons, includ-
ing growing retinal axons and growth cones, contain
ribosomes, mRNA and translation initiation proteins,
and can synthesize proteins [23!!,24,25!!,26]. A key find-
ing is that axon guidance molecules, like netrin-1 and
semaphorins, trigger protein synthesis in retinal growth
cones within 5–10 min of addition in the absence of their
cell bodies. Inhibition of protein synthesis with transla-
tion blockers abolishes the chemotropic responses of
growth cones to netrin-1 and Sema3A, demonstrating
that fast, local synthesis is essential for cue-directed
guidance in vitro [25!!]. Growth cone translation in retinal
neurons is rapamycin-sensitive and is, therefore, mTOR-
and cap-dependent, and requires MAPK (mitogen acti-
vated protein kinase) p42/44 [25!!,27!]. Although netrin-1
and Sema3A converge on this common pathway, netrin-
1-stimulated translation is sensitive to inhibitors of
MAPKp38 and PI3 (phosphoinositide 3) kinase, whereas,
Sema3A is not, thus, illustrating that two guidance cues
initiate translation via divergent signaling cascades.
Studies are currently in progress to identify the mRNAs
in retinal growth cones. The mRNAs identified, so far,
include cytoskeletal, cytoskeletal-related proteins (e.g. b-
actin, profilin and cofilin; [23!!,28]) and cell surface
molecules (NCAM [neural cell adhesion molecule],
EphA2; [23!!]).

Commissural neurons can synthesize and insert new
receptors in their growth cones after crossing the

Figure 1
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Diagram of the embryonic visual pathway. Guidance molecules
belonging to the netrin, slit, semaphorin and ephrin families are
expressed in multiple places along the pathway, in discrete segments,
and serve to direct the growth of RGC growth cones. For simplicity, the
positions of only a few cues are shown. ONH, optic nerve head; RGC,
retinal ganglion cell.
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Figure 3: Retinal Ganglion 
Cell (RGC) Outgrowth  
(van Horck et al., 2004). 
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Steinmetz, 2008). XMAP215 is the most distally located +TIP on the microtubule and is 

a microtubule polymerase (Nakamura et al., 2012; Maurer et al., 2014). XMAP215 

directly polymerizes microtubules, adding tubulin subunits to the growing +end. EB1 is 

another well-characterized +TIP (Honnappa et al., 2009) that binds the microtubule +end 

and provides a good marker for studying other +TIP localization.  

CLASP is another +TIP that regulates microtubule dynamics in growth cones 

(Hur et al., 2011, Marx et al., 2013). It does this in response to the activity of certain 

signaling kinases, such as GSK-3ß (Hur et al., 2011) or Abelson (Abl) Kinase (Engle et 

al., 2014). These kinases relay signals from extracellular cues to regulate microtubules 

within the growth cone and grow/steer it in the proper direction (Lee et al., 2004). 

Pictured below is the process by which extracellular guidance signals are translated by 

signaling kinases through the growth cone membrane, to elicit phosphorylation of 

CLASP and potentially other +TIPs. This, in turn, regulates microtubule dynamics in 

such a way to enable axon outgrowth and steering. Understanding the role of other +TIPs 

that CLASP and XMAP interact with will help elucidate the mechanism by which this 

regulation takes place.  

Figure 4: Guidance Cues and +TIPs. The growth cone processes guidance cues through signaling 
cascades that lead to phosphorylation of CLASP and possibly other +TIPs. (Modified from Lowery and Van 
Vactor, 2009). 
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In order to investigate the role of this protein complex in axon outgrowth and microtubule 

regulation as a whole, a multi-parametric analysis of the interaction partners of CLASP 

was done (Lowery et al., 2010, Long et al., 2013) and identified several novel genetic 

interaction partners, most notably the protein TACC3 (transforming acidic coiled-coil 

#3). TACC3 is known to bind XMAP215 in other systems (Lee et al., 2001), and has 

been studied with regards to its role in microtubule dynamics during mitosis (Kinoshita et 

al., 2005). These known functions made it a promising candidate for further investigation 

into the +TIP complex. 

 

TACC3 

 TACC3 is one of the members of the Transforming Acidic Coiled-Coil domain 

family, and was first identified as a centrosomal-associated protein implicated in 

stabilizing microtubules during mitosis (Gergely et al., 2000a; Peset and Vernos, 2008). 

Immunostaining experiments had demonstrated its additional presence on microtubules 

within the centrosome and the mitotic spindle (Groisman et al., 2000). Knockdown 

experiments, done to reduce the amount of protein made within the living cells of an 

organism, have shown that reduced TACC3 levels lead to reduced microtubule length in 

astral and spindle microtubules formed during mitosis in several animal models; worms 

(Bellanger and Gonczy, 2003; Le Bot et al., 2003; Srayko et al., 2003), flies (Gergely et 

al., 2000b), and vertebrate cells (Kinoshita et al., 2005; O’Brien et al., 2005; Peset et al., 

2005). On the other hand, increasing levels of TACC3 through artificially introducing 

high mRNA levels into the cells leads to the formation of longer mitotic spindles 

(Gergely et al., 2000a; Peset et al., 2005). These results implicate TACC3 as a 

microtubule stabilizing or growth-promoting factor.  
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 As TACC3 is known to bind and interact with XMAP215 (Lee et al., 2001) it was 

suggested that TACC3 could be recruiting XMAP215 to the centrosome during mitosis, 

to enable creation or help in polymerizing mitotic spindle and astral microtubules (Peset 

and Vernos, 2008). Studies analyzing the interaction of TACC3 and XMAP215 showed 

that TACC3 does localize XMAP215 to the centrosome, and that this interaction is 

essential for proper mitotic spindle assembly (Lee et al., 2001; Kinoshita et al., 2005; 

O’Brien et al., 2005; Peset et al., 2005). While XMAP215 is also a well-known +TIP 

(Brouhard et al., 2008), it was unclear if this interaction with TACC3 is also necessary 

for its activity on +ends of microtubules during interphase. 

A study done in Drosophila found that the TACC3 homolog d-TACC, the only 

TACC family member present in the fly model, did localize in small puncta emanating 

from the centrosome, indicating its nature as a +TIP (Lee et al., 2001). However, no 

further studies of TACC family members as +TIPs had been done by the time of the 

beginning of this study. 

TACC3 has attracted interest in other realms besides microtubule dynamics, 

particularly the field of neuronal development. TACC3 is enriched in the developing 

embryonic nervous system of Xenopus laevis (African Clawed Frog) embryos (Tessmar 

et al., 2002), as well as being up-regulated when PC12 cells differentiate into neurons 

(Sadek et al., 2003). Additionally, TACC3 helps to maintain the pool of neural progenitor 

cells differentiating to various nervous system cell lines during neocortical development 

(Xie et al., 2007). TACC3 is necessary for the neurogenesis of radial glial cells in the 

neocortex into new neurons (Yang et al., 2012). Overall, it is clear that TACC3, in 

addition to its functions as a microtubule-associated protein involved in mitosis, is highly 

important for the development of the nervous system specifically.  
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TACC3 is a +TIP 

 Our lab set out to study the role of TACC3 within the growth cone. We 

investigated the localization of fluorescent-labeled TACC3 within the growth cone of 

developing neurons, as well as in other embryonic cell types, including cultured 

embryonic neural crest cells. We also did knockdown (KD) and overexpression (OE) 

experiments, to reduce and increase (respectively) the amount of TACC3 protein present 

in the cell. Through these techniques we were able to quantify the effects of these 

manipulations on various parameters of neurodevelopment, such as the number of axons 

that successfully grow out, and the length of the resulting axons. We also computed 

TACC3’s effects on microtubule dynamics through software-based processing of time-

lapse images of the +TIP EB1 tracking microtubule +ends in live growth cones subject to 

TACC3 knockdown or overexpression. 

Our lab’s work clearly demonstrated that TACC3 is a +TIP in growth cones 

(Figure 5), as well as in other Xenopus embryonic cell types (not pictured) such as neural 

crest cells and mesenchymal fibroblast cells (Nwagbara et al., 2014). In these initial 

localization experiments it was confirmed that TACC3 is a member of the +TIP family 

and decorates the tips of dynamic microtubules within live growth cones.  
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Further analysis of the localization of TACC3 highlighted a unique characteristic 

of its +TIP nature. When the GFP-tagged fluorescent TACC3 construct was imaged 

alongside a red fluorescent construct of the well-characterized +TIP EB1, TACC3 

appears more distally located on the +end of the microtubule (Figure 6, left). When a red 

fluorescent TACC3 construct was imaged alongside a green fluorescent construct 

XMAP215, which resides on the very tip of the +end, it appears to co-localize perfectly 

on top of XMAP215 (Figure 6, right).  These data indicate that TACC3’s role in the +TIP 

complex is likely heavily involved with XMAP215, as the two proteins are known to 

interact in other vertebrate cell systems, albeit during mitosis. TACC3’s job may be to 

help recruit or regulate XMAP215 in regards to its function in polymerizing 

microtubules. 

Figure 5: TACC3 is a +TIP in Growth Cones 
Fluorescence time-lapse imaging of cultured neuron growth cones expressing fluorescent-tagged GFP-
TACC3 (green) and mkate2-tubulin (red). (Nwagbara et al., 2014, Figure 3A-C). 
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 To further examine the presence of TACC3 so 

perfectly aligned with XMAP215, we performed 

statistical behavior assays of the microtubules present 

in the growth cone (Figure 7). We determined that 

virtually ALL of the microtubules that were in the 

process of polymerizing (growing) had TACC3 

present on the +TIP, whereas only most of the ones 

that had paused their polymerization still had TACC3 

present, and few of the actively depolymerizing 

(shrinking) ones had any TACC3 present on the +TIP. 

These data further indicated that TACC3’s presence on the +TIP may serve to recruit 

XMAP215 and regulate its function so as to enable microtubule polymerization. This 

would, in turn, enable dynamic regulation of microtubules in the growth cone periphery 

based on the behavior of TACC3 itself.  

Figure 6: TACC3 is on the 
very tip of growing MTs, co-
localized with XMAP215 
Left: Fluorescent time lapse 
images of green fluorescent 
GFP-TACC3 on the growing 
+end of a microtubule, co-
localized in front of red 
fluorescent mkate2-EB1 
Right: Fluorescent time lapse 
images of red fluorescent 
mkate2-TACC3 on the growing 
+end of a microtubule, co-
localized with green fluorescing 
GFP-XMAP215. Cartoon 
images below demonstrate MT 
localization. (Nwagbara et al., 
2014 Figure 6C, G) 

Figure 7: TACC3 is mostly on 
growing +ends 
Quantification of microtubule time-
lapse imaging revealed the distribution 
of TACC3 on microtubule +ends 
depending on their polymerization rate 
at the time. (Nwagbara et al., 2014 
Figure 3F). 



	   	   18	  

Now that we understood where TACC3 localizes within the growth cone, and how it 

binds the very tip of the +TIP alongside XMAP215, it was possible to develop a model 

for TACC3’s function in axon outgrowth. A growth cone is depicted here (Figure 8) with 

a highlighted dynamic microtubule +TIP probing the growth cone periphery in a 

regulated way. It is likely that TACC3 plays a significant role in the regulation of these 

dynamic microtubules, probably through its regulated interaction with XMAP215. 

TACC3, therefore, would be a critical player in the entire process of axon outgrowth and 

steering. In order to further understand the role of TACC3 in neuron growth and 

guidance, however, we first had to determine what is it doing on the +ends of 

microtubules in the first place. 

 

TACC3’s Role in the +TIP Complex 

To begin to explore the role of TACC3 in neurodevelopment, we first evaluated 

the effects of its presence on the +end of microtubules within the growth cone. Most 

Figure 8: TACC3 on the +end. TACC3 
(red) and XMAP215 (green) co-localize 
together ahead of EB1 (orange) on 
dynamic MT +ends in the growth cone. 
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+TIPs regulate microtubule dynamics in some way or another (Akhmanova and 

Steinmetz, 2008). Therefore we predicted TACC3 to have some kind of regulatory effect 

on the microtubules it bound. We performed a series of knockdown (KD) and 

overexpression (OE) experiments to manipulate TACC3 protein levels artificially to 

compare microtubule behavior when TACC3 protein levels are normal (control) reduced 

(TACC3 KD) or increased (TACC3 OE). 

We observed and quantified the effects of these genetic manipulations on 

microtubules by analyzing the tracks of fluorescent EB1 protein using the MATLAB-

based software +TIP Tracker. This program efficiently tracks the fluorescent signal of 

EB1 tracking the growing end of microtubules and computes their growth velocity, 

growth duration, and growth length. These data (Figure 9) demonstrated that TACC3 has 

Figure 9: TACC3 increases MT growth velocity and length, but not lifetime. (A-C): Representative 
images of EB1-GFP comets in control (A), TACC3 KD (B), and TACC3 OE (C) conditions. Bar, 5 µm. 
(D–F): Quantification of MT growth track parameters in cultured growth cones (GC) after TACC3 
manipulation. EB1-GFP localizes to the ends of growing MTs and is thus a marker for MT 
polymerization. Automated tracking of EB1-GFP comets calculate MT growth-track velocity (D), MT 
growth-track lifetime (E), and MT growth-track length (F). An unpaired t test was performed to assess 
significance of over-expression conditions compared to control. ***p<0.001, ****p<0.0001;  n.s., not 
significant. (Nwagbara et al., 2014, Figure 2 A-F). 
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a significant effect in promoting increased microtubule growth velocity, increased length 

of microtubule growth. It does not, however, increase the length of time the microtubule 

is growing. Taken together with TACC3’s co-localization with XMAP215, these data 

indicate that TACC3 binding the +end with XMAP leads to more effective microtubule 

polymerization enacted by XMAP. While this interaction would not necessarily stabilize 

the polymerizing microtubules (therefore increasing its growth lifetime) it would lead to 

faster growth, and therefore a longer total growth in the same time period. 

 Having determined the effect of TACC3 on the +ends of dynamic microtubules in 

the growth cone, we then sought to determine if and how this effect translates to an 

overall role in neuronal development. To further explore how exactly TACC3 may 

influence neuron development and growth, we performed another series of TACC3 

knockdown (KD) experiments. Injecting TACC3 morpholino into developing embryos, 

combined with neuron culturing techniques, allowed us to observe neuron development 

and growth in vitro so that we could observe any resultant phenotypic effects due to 

insufficient TACC3, such as changes in the ability of axons to grow out. Further KD 

experiments done in conjunction with electroporation and live embryo imaging 

techniques enabled studying neuron development and growth in vivo so we could 

replicate the findings of the in vitro studies in a more accurate representation of actual 

neurodevelopment, as well as allowing us to study neuron guidance in a living system. 

 First, the in vitro effect of TACC3 KD was assayed through analysis of axon 

outgrowth, quantified through the number and length of axons cultured from neural tube 

explants. These experiments demonstrated a significant reduction of axon outgrowth in 

both means of quantification (Figure 10). We therefore hypothesized TACC3 to be 
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involved in the promotion of axon outgrowth, through increasing the ability of neurons to 

send out and maintain a growing axon, and to promote axon growth in general. 

  

 

 

 

Figure 10: TACC3 Knockdown Reduces Axon 
Number Length. TACC3 KD data indicates a 
significant reduction in axon outgrowth, through both 
reduced numbers of axons grown out per explant, and 
the length of the axons themselves. An unpaired t-test 
was performed to assess significance. **p <0.01, ***p 
< 0.001;n.s. not significant. Bar = 50 µm. (Nwagbara 
et al., 2014, Figure 1 H-K) 

Figure 11: TACC3 Overexpression Increases 
Axon Number and Length. TACC3 OE data 
indicates a significant increase in axon outgrowth, 
through both increased numbers of axons grown out 
per explant, and the length of the axons themselves.	  
An unpaired t-test was performed to assess 
significance. **p <0.01, ***p < 0.001;n.s. not 
significant. Bar = 50 µm. (Nwagbara et al., 2014, 
Figure 1 M-P). 
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We then sought to examine the effect of increasing TACC3 protein levels within 

neurons. We again performed overexpression (OE) experiments to raise levels of TACC3 

protein within embryonic cells. The effects of this manipulation were quantified the same 

way as for the KD experiments and complement their findings (Figure 11). TACC3 was 

again shown to promote the length of axons growing out from neural tube explants. 

However, increasing the protein levels did increase the number of axons growing out. 

 Based on the findings of our lab described above, we hypothesized that TACC3 

was enabling and regulating the activity of XMAP215 on the growing +ends of dynamic 

microtubules within the growth cone. This effect leads to a promotion of microtubule 

polymerization, which translates to promoting axon outgrowth in general. With 

insufficient TACC3, dynamic microtubules would be less able to grow out and explore 

the periphery to provide the tracks of further cytoskeletal growth. This would lead to 

slower and shorter axons, and in all likelihood more axonal retraction and death, 

explaining the reduced number of axons visualized in Figure 10. 

 The goal of this thesis originated as further investigation into the function of 

TACC3 in neurodevelopment. As TACC3 regulates dynamic microtubules within the 

growth cone, it is possible that it itself is regulated in response to guidance cues as a 

necessary component of enabling growth cone steering, warranting investigation of the 

effects of TACC3 on neuronal guidance. The regulation of TACC3 would likely be 

structural in nature, so understanding the structure of TACC3 itself and how it binds the 

+end and interacts with XMAP215 is another key component of this hypothesis. 

Additionally, as TACC3 shares many of its structural features with the other members of 

the TACC protein family, it became necessary to evaluate these other members for 

similar behaviors. 
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Having demonstrated the significant effect of TACC3 in promoting axon 

outgrowth, my research sought to evaluate TACC3’s potential effect on axon guidance. 

To study this, I obtained a grant to travel to the Holt lab at the University of Cambridge. 

The Holt lab has thoroughly characterized the guidance of retinal ganglion cells (RGCs) 

in developing Xenopus embryo brains, making their outgrowth an effective model for 

studying the ability of neurons to respond to guidance cues. They have also pioneered the 

development of a few powerful and specific means of manipulating, studying, and 

quantifying RGC guidance in vivo. At Cambridge, I performed two classes of 

experiments on TACC3. First, I sought to replicate the effects of TACC3 KD on RGCs 

themselves, to ensure that the effect of TACC3 KD is conserved in this model. Secondly, 

I investigated the in vivo guidance of these neurons in the developing brain. 

 

MATERIALS & METHODS 

Xenopus Embryos  

Xenopus laevis embryos were fertilized through in vitro fertilization, dejellied, 

and cultured at 14-22oC in 0.1x modified Barth’s saline (MBS; 0.88 mM NaCl, 0.01 mM 

KCl, 0.024 mM NaHCO3, 0.1 mM HEPES, 8.2 µM MgSO4, 3.3 µM Ca(NO3)2, 4.1 µM 

CaCl2). They were raised using standard methods (Sive et al., 2010) and staged as 

described in Nieuwkoop and Faber (1994). All animal experiments were approved by the 

University of Cambridge Local Ethical Review Committee. 

Culture of Xenopus embryonic eye explants 

Embryos were cultured in 0.1× MBS at 22°C to stages 30-32, and each eye 

primordial was dissected out and plated retina-side down in L15-derived culture medium 



	   	   25	  

on poly-l-lysine (100 µg/ml)– and laminin (20 µg/ml)-coated coverslips attached to a 

plastic culture dish with a hole drilled in the center (imaging chambers described in 

Gomez et al., 2003). Outgrowing retinal axons were imaged at room temperature 24 h 

after plating. 

Morpholinos 

MOs targeted to the translation start site of X. laevis TACC3 (5′-AGT-

TGTAGGCTCATTCTAAACAGGA-3′) or standard control MO (5′-

cctcttacctcagttacaatttata-3′; purchased from Gene Tools [Philomath, OR]) were injected 

into two- to four-cell-stage embryos (80 ng/embryo). Protein knockdown was assessed by 

Western blot of embryos at stages 35–36. In rescue experiments, MO was injected along 

with mRNA in the same injection solution. 

Electroporation 

Embryos were cultured at 22oC in 0.1X MBS to stage 28. The embryos were 

electroporated with membrane-targeted GAP-GFP or GAP-RFP fluorescent constructs as 

described in Falk et al., 2007. The embryos were held in a specially designed 

electroporation chamber in 1X MBS, and a solution containing 1 µg/µL of the desired 

fluorescent construct was injected into the third ventricle of the developing brain. 

Electroporation was performed immediately after injection with a IntraCel TSS20 

Ovodyne Electroporator using 8 20V x 50 ms square-wave pulses to introduce the DNA 

into the retinal ganglion cells. Embryos were then allowed to develop in 0.1X MMR for 

another 24 hours, after which they were dissected according to the ventral brain prep 

protocol. 

Ventral Prep of Electroporated Embryo Brains 
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Electroporation was performed on stage 28 embryos using the standard protocol. 

When reaching stage 39, embryos were anaesthetized in 0.05 mg/ml MS222/1× MBS and 

dissected as described in van Horck et al., 2004. The skin covering the embryo head was 

removed, as well as the ventral section of the head to expose the ventral side of the brain. 

The head was then carefully separated from the body and placed in a well made from 

circular reinforcement labels (Avery, 5722) placed on an oxygen permeable slide 

(Permanox, Nalgen Nunc, 16005). Only samples with a few isolated axons were selected 

for subsequent live imaging. Image acquisition was performed on a Nikon Optiphot-2 

microscope equipped with a 20× Plan NeoFluar objective and Orca-ER cooled CCD 

camera (Hammamatsu). 

Live Imaging of Electroporated Axons in vivo 

Electroporation was performed on stage 28 embryos using the standard protocol. 

When reaching stage 39, embryos were anaesthetized in 0.05 mg/ml MS222/1× MBS and 

prepared for live imaging as described in Dwivedy et al., 2007. Briefly, the eye and skin 

covering the contralateral brain were removed to expose the transfected axons. The 

embryo head was placed in 0.05 mg/ml MS222/1× MBS filled chamber formed by a gene 

frame (ABGene, AB 0576) placed on an oxygen permeable slide (Permanox, Nalgen 

Nunc, 16005). Only samples with a few isolated axons were selected for subsequent live 

imaging. Image acquisition was performed on a Nikon Optiphot-2 microscope equipped 

with a 20× Plan NeoFluar objective and Orca-ER cooled CCD camera (Hammamatsu). 

To minimize phototoxicity, acquisitions were made with neutral density filters on and 

short exposure times (50–100 ms). 
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RESULTS & DISCUSSION 

Having previously demonstrated the significant effect of TACC3 in promoting 

axon outgrowth, through increased number and length of axons, I sought to evaluate 

TACC3’s effect on axon guidance. To study this, I obtained a grant to travel to the Holt 

lab at the University of Cambridge. The Holt lab has thoroughly characterized the 

guidance of retinal ganglion cells (RGCs) in developing Xenopus embryo brains, making 

their outgrowth an effective model of studying the ability of neurons to respond to 

guidance cues. They have also pioneered the development of a few powerful and specific 

means of manipulating, studying, and quantifying RGC guidance in vivo. At Cambridge I 

performed two classes of experiments on TACC3: first, to replicate the effects of TACC3 

KD on RGCs themselves, and second to study the in vivo guidance of these neurons in 

the developing brain. 

 First, I had to evaluate the phenotypic effects of TACC3 knockdown on Retinal 

Ganglion Cell outgrowth. We had previously demonstrated TACC3’s role in axon 

outgrowth in neural tube-derived neurons (Nwagbara et al.,2014). This population of 

neurons is totally heterogeneous, however, being comprised of the developing central 

nervous system of the entire body of the embryo. Neurons from the various sub-groups 

that comprise the spinal cord express and regulate genes in diverse ways, and may 

respond very differently to varying growing conditions and guidance cues, or even 

whole-embryo genetic manipulation. It was possible that, for some reason, the RGCs 

might be resistant to the phenotypic effects of TACC3 KD. 
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To demonstrate the effect of TACC3 knockdown on RGCs, I performed a number 

of TACC3 and Control morpholino (MO) injections, then allowed the embryos to 

develop to stages 30-32, then dissected out the primordial eyes and plated on laminin-

coated coverslips similar to those used for neural tube explant experiments. The RGCs 

were allowed to grow out and were imaged 24 hours later. These data illustrate the same 

significant effect of TACC3 KD on RGC axon outgrowth as demonstrated in neural tube-

derived neurons (Figure 12). 

 

 

 

Figure 12: TACC3 KD inhibits RGC outgrowth. Retinal Ganglion Cell outgrowth from cultured 
stage 32 Xenopus embryonic eye explants, demonstrating significant reduction of axon outgrowth with 
TACC3 KD. Axon length was also significantly reduced, shown by the quantification plot of axon 
length below. 
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 Following this demonstration of TACC3’s phenotypic effect conservation 

between spinal neurons and RGCs, I then sought to examine the effect of TACC3 KD on 

RGC axon guidance in vivo. The retina of one eye of stage 30 Xenopus embryos was 

electroporated with membrane-targeted RFP. This enabled effective fluorescent labeling 

of the optic nerve (all RGC axons) in the developing brain. When imaged with the ventral 

prep technique described above, these experiments examined the effects of TACC3 

knockdown on RGC guidance in vivo compared to control morpholino-injected embryos. 

 

 

Figure 13: TACC3 affects RGC outgrowth and guidance in vivo. Compared to controls, TACC3 KD 
embryos demonstrated reduced outgrowth, sloppy fasciculation, and improper termination before or after 
reaching the optic tectum. 
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These results demonstrate a significant phenotypic discrepancy in axon guidance 

between embryos injected with TACC3 morpholino and the control (Figure 13). The 

axons comprising the optic nerve in the TACC3 KD embryos demonstrate sloppier 

fasciculation (the process by which growth cones follow existing axons), with some 

veering off the optic nerve track and terminating early. Some axons seem to migrate past 

the optic tectum area, missing their synaptic targets. Furthermore significantly fewer 

RGC axons even grew out from the electroporated eye in the first place. These data 

indicate TACC3 has an important role in axon guidance in the developing brain. 

 Taken together, these data collectively implicate TACC3 as a vital component of 

the process of neuron development. TACC3 promotes axon outgrowth and increased 

axon length, and appears to enable proper axon guidance. The mechanisms by which it 

does this probably involve regulation of its presence on the growing +end of dynamic 

microtubules in the growth cone periphery. Regulation of TACC3 on the +end may in 

turn regulate the behavior of its binding partner XMAP215, to regulate polymerization of 

these dynamic microtubules and build the scaffolds of growth cone migration. 

 Through these putative processes, TACC3 may well be a critically important 

effector protein of a number of growth factors and guidance cues. Through regulating the 

growth and polymerization of dynamic microtubules, TACC3 may be the final stage of 

translating these extracellular signals to an effect on the growth cone cytoskeleton. 

Signaling kinases or proteases may phosphorylate, dephosphorylate, or cleave the 

TACC3 protein to regulate its localization and binding partners, to produce this 

regulatory effect. To evaluate this hypothesis, I had to examine the structure of TACC3 

and how it’s binding to microtubule +ends may be dynamically regulated.  
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In order to understand how TACC3 affects axon outgrowth and guidance, it was 

necessary to understand the mechanisms by which it binds the +ends of dynamic 

microtubules in the growth cone, and how this binding is regulated. To do this I began an 

analysis of the structural features of TACC3, and how each affected its ability to track 

microtubule +ends in the growth cone. Our lab had obtained a DNA construct of the 

TACC3 gene product extracted from Xenopus embryos (Barnard et al., 2005) and I fully 

sequenced it to confirm the exact protein sequence of TACC3. Comparisons of the 

Xenopus TACC3 sequence to those of human and other vertebrates revealed a number of 

conserved domains worthy of analysis. I then proceeded to subclone a series of deletion 

constructs, each eliminating a series of residues pertaining to one or more of these 

domains, and compared the localization of the resulting constructs. 

 

MATERIALS & METHODS 

Xenopus Embryos 

Eggs obtained from female Xenopus laevis frogs (NASCO, Fort Atkinson, WI) 

were fertilized in vitro, dejellied, and cultured at 13–22°C in 0.1X Marc’s modified 

Ringer’s (MMR) using standard methods (Sive et al., 2010). Embryos were staged 

according to Nieuwkoop and Faber (1994). All experiments were approved by the Boston 

College Institutional Animal Care and Use Committee and were performed according to 

national regulatory standards. 

Culture of Xenopus embryonic neural tube explants 

Embryos were cultured in 0.1× MMR at 22°C to stages 22–24, and each neural 

tube was dissected into approximately 20 similarly sized explants (Tanaka and Kirschner, 
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1991; Lowery et al., 2013). The neural tube explants were plated in culture medium on 

poly-l-lysine (100 µg/ml)– and laminin (20 µg/ml)-coated coverslips attached to a plastic 

culture dish with a hole drilled in the center (imaging chambers described in Gomez et 

al., 2003). Outgrowing axons and neural crest cells were imaged at room temperature 18–

24 h after plating. For imaging of nonneural cells, somite tissue flanking the neural tube 

was dissected and plated on poly-l-lysine (100 µg/ml)– and fibronectin (100 µg/ml)-

coated coverslips. 

TACC3 Sequencing 

The following primers were designed and used to sequence GFP-TACC3 in 

pCS2+ to derive its exact proteomic sequence. EtonBio sequencing services were used. 

Oligo0161 5’-AAGCTGATCTTCCAAGCCTTAC-3’ 
Oligo0165 5’-AGCTTCAGAACTCACCAGCA-3’ 
Oligo0219 5’-TGAAGATCGAGCACACAAGCGGAAGATC-3’ 
Oligo0220 5’-GCAGCACCAGAATCCTGGG-3’ 
Oligo0223 5’-ACCATCACACAAATTCTAGAG-3’ 
Oligo0226 5’-GCCTTCAAACTCTGCAATTATTTTC-3’ 
Constructs and RNA 

Capped mRNA was transcribed in vitro using SP6 or T7 mMessage mMachine 

Kit (Life Technologies, Grand Island, NY). RNA was purified with LiCl precipitation 

and resuspended in nuclease-free water. The following table lists DNA constructs used to 

make mRNA for experiments, and where the constructs came from: 

GFP-TACC3 in pCS2+ TACC3 pET30a was gift from the Richter lab, University of 
Massachusetts Medical School, Worcester, MA. Subcloned 
into GFP pCS2+ expression vector. 

GFP-TACC3-Ndel Subcloned from GFP-TACC3 
GFP-TACC3-CC2del Subcloned from GFP-TACC3 
GFP-TACC3-CC1/2 Subcloned from GFP-TACC3 
GFP-TACC3-BigdelN Subcloned from GFP-TACC3 
GFP-TACC3 Middle Subcloned from GFP-TACC3 
GFP-TACC3 ∆771-774 Subcloned from GFP-TACC3 
GFP-TACC3 ∆775-781 Subcloned from GFP-TACC3 
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TACC3-GFP Subcloned from GFP-TACC3 
mKate2-tubulin in pT7TS (Shcherbo et al., 2009) 
EB1-GFP in pCS107 A gift from the Danilchik lab, Oregon Health Sciences Uni-

versity, Portland, OR 
mKate2-EB1 in pCS2+ Subcloned from EB1-GFP 
The dorsal blastomeres of embryos were injected four times at the two- to four-cell stage 

(in 0.1× _MMR containing 5% Ficoll) with the following total mRNA amount per 

embryo: 100–300 pg of EB1-GFP or mKate2-EB1, 900 pg of mKate2-tubulin, and 1000-

2000 pg of GFP-TACC3 and each derived mutant TACC3 construct.  

Subcloning 

TACC3 deletion constructs were subcloned from GFP-TACC3 in pCS2+ using a 

variety of NEB High Fidelity Restriction Enzymes, as well as Quick Ligase, Antarctic 

Phosphatase, and Blunting Enzymes. For the deletions ∆771-774 and ∆775-781, the NEB 

Q5 SDM kit was used. Constructs were transformed into Top 10 Competent Cells using 

normal transformation protocols. 

Confocal Microscopy 

Live images were collected with a Yokogawa CSU-X1M 5000 spinning disk 

confocal on a Zeiss Axio Observer inverted motorized microscope with a Zeiss 63X Plan 

Apo 1.4 numerical aperture (NA) lens. Images were acquired with a Hamamatsu OCRA 

R2 charge-coupled device camera controlled with Zen software (Zeiss, Thornwood, NY). 

For time lapse, images were collected every 2 s for 1-3 min. Laser power for 488 nm was 

30%, with exposure time 1000-1500 ms. Laser power of 561 nm was 25%, with exposure 

time 850–1500 ms.  
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RESULTS & DISCUSSION 

Based on my acquired sequencing data, I was able to determine which structural 

domains of Xenopus TACC3 were highly conserved with human TACC3, and therefore 

likely to be important to the function of TACC3 (Figure 14). The family of TACC 

proteins all contain two ~100 amino acid coiled-coil domains (Figure 14, blue and 

purple) on their C-terminal (Still et al., 2004). This domain is highly conserved between 

humans and Xenopus, with our TACC3 sequence being 63% identical and 80% 

homologous to the human TACC3 sequence (Accession no. Q9Y6A5). The beginning 

~100 residues of the N-terminal of TACC3 (Figure 14, red) and a short phosphorylated 

region upstream of the coiled-coil domains (Figure 14, green) are also highly conserved. 

These domains became the primary focus of study when analyzing which regions of 

TACC3 are responsible for its various binding partners and localization activity. 

Additionally, TACC3 possesses a domain required for its interaction with eIF4E and 

regulation of translation (Figure 14, pink) (Barnard et al., 2005) and a significant 

N-terminal  
Conserved regulatory region  
Repeat region  
Coiled-coil 1 domain 
Coiled-coil 2 domain  
Conserved phosphorylated residues 
eIF4E Binding Domain  
XMAP Binding Domain? 

Figure 14: TACC3 Sequence and 
Conserved Domains. Data 
acquired from alignment of 
sequenced X. laevis TACC3 with 
human, murine, and X. tropicalis 
TACC3. Phosphorylation sites 
found in Barnard et al., 2005 and 
Kinoshita et al., 2005. 

MSLQLINDENAGNDITAEKFDLLLNPQTTGRPSILRPSQKDNLPPK
PALKSTKVTFQTPMRDPQTLRIMTPSVANKPENVFLLEDCTQALE
QLHLSLPSSCGPNPVEINSVSNNQPDSEELPVRTTGAYSIDFDNFD
DINPFKSKTQMLNSPIKADLPSLTENIETTTPVVPADEASKQMVSLN
LSAANLDSPVTVQFSSESGYIGVSEKTALDDTLPLSESGIKDLQGL
NASSNNIEEPVPLDKDICSNNEKDDATMADSTCEGTSDAHTSSNNI
EEPVTLDKDICSSNEKDNAAVADSTCEGTSDAQSPLPIPKSSYSFD
PDQFDMMNPFKTGGSKLQNSPAGKKQTPPSADLNTAKTEPVKLE
FNFGDGDVSERKPPPKKLGKRPLLKTAAKKPSPKPEIASEKQEQQ
TAKPSEDEAIVPKASYKFDWEKFDDPNFNPFGCGGSKISSSPKGQ
KIANEQPSACTQGSKPEAECTASDMAPAENADEKDHGEIEPSQDS
GAAEDRSQAEDQSVALSKVEVPHEQTTDCSPVENETQPEVSLINE
EPSQKEVEHTSSDMTPPEINGTDSEFKLATEADFLLAADMDFKPA
SEIFSEGFRQPVEIDYLENFGTNSFKESVLRKQSLYLKFDPLLRESP
KKSAAGINLLPSVPLKCSSDLFGAIPEANFPLIPSIENEEKPKGLDLL
GTFTVADTALLIVDAPSSVAVPNPFLSTSDAIVEMLKYSQKDMDAAI
EAVRLEVQEKDLEVLEWKTKHEKLYLEYVEMGKIIAEFEGTITQILE
DSQRQKETAKLELNKVLQEKQQVQVDLNSMETSFSELFRLEKQKE
ALEGYRKNEEALKKCVEDYLVRIKKEEQRYQALKAHAEEKLNRAN
EEIAHVRSKAKSEATALQATLRKEQMKIQSLERSLEQKSKENDELT
KICDDLILKMEKI* 
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repeated region of 29 amino acids on the N-terminal half of the protein (Figure 14, 

orange).  

In order to study the domains of interest of TACC3, and determine which were 

necessary for localization to the +end of microtubules, I began by subcloning a number of 

deletion constructs of N-terminal GFP-tagged TACC3 lacking certain specific domains of 

the protein (Figure 15). 

 

 
 
 

 

 

 

 

 

 

Each of these constructs was tested for +end-tracking localization in neural tube-

derived growth cones, similar to the experiments used to first identify TACC3 as a +TIP 

in the first place. I made mRNA of each construct and co-injected it with mkate2-EB1 

mRNA as a +TIP marker, and visualized the localization on a spinning disc confocal. The 

results indicated that the coiled-coil domains, and not the N-terminal, were necessary for 

TACC3 to +end-track in growth cones (Figure 16). 

Figure 15: TACC3 Deletion Constructs subcloned from GFP-TACC3 (top), each isolating a 
different set of residues (shown in parentheses).  
 



	   	   37	  

 Full length GFP-TACC3 was imaged alongside each construct as a control, and 

clearly tracks microtubule +ends in growth cones (Figure 16 B-D). When the conserved 

N-terminal region was deleted (GFP-TACC3-Ndel) TACC3 was still able to track 

Figure 16: Green fluorescent constructs described in Figure 10 imaged alongside red fluorescent mkate2-
EB1 as a +TIP marker. Bar = 5 µm. (Nwagbara et al., 2014, Figure 5 B-M). 
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microtubule +ends (Figure 16 E-G). However, when the second coiled-coil domain was 

deleted (GFP-TACC3-CC2del) TACC3 was unable to +end track (Figure 16 H-J). These 

data indicated that TACC3’s coiled-coils were what enabled its recruitment to the +TIP 

complex. This theory was further strengthened by the inability of TACC3-GFP (with 

GFP tagged to the C-terminal) to +end track (Figure 16 K-M), most likely due to steric 

hindrance of the coiled-coils by the adjacent GFP protein.  

Having identified the C-terminal coiled-coil domains of TACC3 as the probable 

domain which mediates TACC3’s +TIP activity, I then sought to isolate the coiled-coils 

themselves to see if they can still +end track independently. The construct GFP-TACC3-

CC1/2 isolated both coiled-coils with a linker region on the N-terminal side linked to 

GFP, so as to avoid the steric hindrance issue seen with TACC3-GFP. However, this 

construct failed to +end track (Figure 17 bottom). Yet when we made another construct 

that isolated the C-terminal two-thirds of the protein, dubbed “TACC3 Big∆N”, we found 

it was able to +end track (Figure 17 top).  

Figure 17: Green fluorescent constructs described in Figure 10 imaged alongside red fluorescent 
mkate2-EB1 as a +TIP marker. 
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 These localization experiments demonstrate the necessity of more than just the 

coiled-coils of TACC3 to +end track. As the GFP-TACC3-CC1/2 construct also lacked 

the conserved phosphorylated domain implicated in the regulation of TACC3’s behavior 

(Barnard et al., 2005), my focus has since turned to the role this domain may play in 

mediating TACC3’s binding.  

I also examined other studies that have focused on the means by which human 

TACC3 binds chTOG (XMAP215) to physically interact during mitosis, and narrowed 

down their binding domain to a short residue (Hood et al., 2013). This domain (Figure 

14, light blue) consists of two sets of residues within the first coiled-coil domain, 

homologous to amino acids 771-774 “EFEG” and 775-781 “TITQILE” in Xenopus. Hood 

et al. 2013 demonstrated through X-ray crystallography that deleting one of these two 

regions did not disrupt the overall structure of the coiled-coils, despite each removing a 

significant section of the alpha helix. Although the Xenopus TACC3 protein sequence is 

slightly different, it is homologous enough (80%) to predict that these residues pertain to 

the same part of the coiled-coil, and deleting them should not significantly affect 

TACC3’s coiled-coils, while effectively blocking TACC3’s interaction with XMAP215. 

I selectively deleted these residues, constructing two domains of full-length 

TACC3 lacking only one of these two short domains. These two constructs (GFP-TACC3 

∆771-774 and GFP-TACC3 ∆775-781) were both still able to +end track (Figure 18). 

These results indicate that these deletions did not disrupt the coiled-coil domain overall 

structure, as that would have blocked +end tracking ability entirely. 
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This suggests that something besides TACC3’s interaction with XMAP215 enables the 

coiled-coil domain to recruit TACC3 to the microtubule +end. This could be through 

binding and interacting with other +TIPs, or through a direct means of binding the 

polymerizing tubulin subunits. We are currently investigating the effects of TACC3 on 

the +end while unable to bind XMAP, as this may demonstrate a failure of these TACC3 

deletion constructs when overexpressed to improve microtubule polymerization velocity 

and length, as wild-type TACC3 could (Figure 9).  

I have determined that the coiled-coil domains are required for localizing TACC3 

to growing microtubule +ends. However it is clear that more than just the coiled-coils is 

required for TACC3’s recruitment. It is likely that the highly conserved and 

phosphorylated region just upstream of these domains mediates this recruitment, and this 

domain has become the focus of my latest series of projects. Understanding the 

Figure 18: TACC3 constructs lacking suspected XMAP binding domain can still +end track. 
Green fluorescent TACC3 constructs selectively lacking the specified amino acid residues imaged 
alongside red fluorescent mkate2-tubulin to visualize microtubules. Top images are of a growth cone, 
bottom images are of a neural tube-derived mesenchymal cell. 
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mechanisms of +end-binding of the coiled-coils and the structural regulation process 

behind them will help us elucidate the big picture of TACC3’s role on the +end, most 

importantly why it is there in the first place, and what makes it bind there. This is 

essential to understanding the role of TACC3 in regulating dynamic microtubules in the 

growth cone, a key component of the cytoskeletal dynamics of neurodevelopment.  
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Chapter IV: TACC1  
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 TACC3 was shown to play an important role in mediating axon outgrowth and 

guidance through its interaction with XMAP215 on the +ends of dynamic microtubules. 

It was demonstrated that this interaction was mediated through TACC3’s coiled-coil 

domains. However TACC3 is not the only protein in vertebrates to possess these 

domains. The TACC protein family has three members in most vertebrates with 

published genomes: TACC1, TACC2, and TACC3. In humans, mice, and rats, the coiled-

coil domains of these orthologous proteins is highly homologous, being almost 90% 

conserved. The coiled-coils of each TACC are also highly conserved between paralogs 

within each species’ genomes, indicating a shared function.  

Xenopus has been previously reported to only have TACC3 (Ha et al., 2013; Peset 

and Vernos, 2008). I searched the recently published Xenopus genomes on Xenbase and 

showed that both X. laevis and X. tropicalis have three TACC family members as well, 

although TACC1 and TACC2 were totally uncharacterized and only known from 

expressed sequence tag (EST data). Due to the high degree of conservation between the 

TACC family coiled-coils, and the demonstration that the coiled-coils of TACC3 are 

what mediates its +TIP behavior, I sought to examine the other TACC family members 

for similar, if not redundant, functions. Therefore I sought to clone Xenopus laevis 

TACC1 and TACC2 and study them in the same manner as TACC3.  

 

MATERIALS & METHODS 

Embryos 

Eggs obtained from female Xenopus laevis frogs (NASCO, Fort Atkinson, WI) 

were fertilized in vitro, dejellied, and cultured at 13 – 22 ̊C in 0.1X Marc’s modified 
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Ringer’s (MMR) using standard methods (Sive et al., 2010). Embryos were staged 

according to Nieuwkoop and Faber (1994).  All experiments were approved by the 

Boston College Institutional Animal Care and Use Committee (IACUC) and were 

performed according to national regulatory standards. 

Culture of Xenopus Embryonic Explants  

Embryos were cultured in 0.1X MMR at 22°C to stage 22-24, and embryonic 

explants were dissected and cultured on poly-L-lysine (100 µg /mL)- and laminin-coated 

(20 µg/mL) coverslips, as described previously (Lowery et al., 2012; Nwagbara et al., 

2014).  Cells were imaged at room temperature 18 - 24 hours after plating.   

Constructs and RNA  

Capped mRNA was transcribed in vitro using SP6 or T7 mMessage mMachine 

Kit (Life Technologies, Grand Island, NY). RNA was purified with LiCl precipitation 

and re-suspended in nuclease free water. Constructs used: GFP-TACC1, GFP-TACC1-

Cterm, GFP-TACC1-Nterm (subcloned from GFP-TACC1), mKate2-tubulin (Shcherbo 

et al., 2009) in pT7TS, and mKate2-EB1 in pCS2+. The dorsal blastomeres of embryos 

were injected four times at the two-to-four cell stage (in 0.1X MMR containing 5% 

Ficoll) with total mRNA amount per embryo: 1000 to 2000 pg GFP-TACC1 and derived 

constructs, 100 to 300 pg EB1-GFP or mKate2-EB1, 900 pg mKate2-tubulin. 

RT-PCR Time Course and Cloning of TACC1 

Total RNA was extracted from staged wild-type embryos using Trizol reagent 

(Life Technologies, Grand Island, NY), followed by chloroform extraction and 

isopropanol precipitation. Total RNA was further purified with a phenol:chloroform 

extraction and an ethanol precipitation. cDNA synthesis was performed with Super Script 
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II Reverse Transcriptase (Life Technologies, Grand Island, NY) and random hexamers. 

PCR was then performed, with the following primers.  

For cloning TACC1: 
Forward: 5’-TTTTCTCGAGATGTCGTTCAGCCCGTGG-3’ 
Reverse: 5’-TTTTCTCGAGTCACTGCGTCCCATCTTTGC-3’  
 

For testing the expression levels of TACC1, TACC3, and actin as a control:  
TACC1 Forward: 5’-CTCGAGGGCTCATCACTCGAACTGGATG-3’,  
TACC1 Reverse: 5’-TTTTCTCGAGTCACTGCGTCCCATCTTTGC-3’  
TACC3 Forward (Oligo 0165): 5’-AGCTTCAGAACTCACCAGCA-3’  
TACC3 Reverse (Oligo 0220): 5’-GCAGCACCAGAATCCTGGG-3’ 
Actin Forward: 5’-AAGGAGACAGTCTGTGTGCGTCCA-3’  
Actin Reverse: 5’-CAACATGATTTCTGCAAGAGCTCC-3’ 
 

For TACC1 cloning, the above primers were designed based upon the TACC1 annotated 

sequence from the laevis genome v6.0 gene model (www.xenbase.org).  Specifically, we 

used the UTexas Oktoberfest transcript model of Scaffold27535:373746..413683, which 

was predicted to contain the Xenopus laevis TACC1 genomic sequence.  The TACC1 

mRNA sequence was submitted to Genbank, accession number KP866215. 

Confocal Microscopy 

Live images were collected with a Yokogawa CSU-X1M 5000 spinning disk 

confocal on a Zeiss Axio Observer inverted motorized microscope with a Zeiss 63X Plan 

Apo 1.4 numerical aperture (NA) lens. Images were acquired with a Hamamatsu OCRA 

R2 charge-coupled device camera controlled with Zen software (Zeiss, Thornwood, NY). 

For time lapse, images were collected every 2 s for 1-3 min. Laser power for 488 nm was 

30%, with exposure time 1000-1500 ms. Laser power of 561 nm was 25%, with exposure 

time 850–1500 ms.  
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RESULTS & DISCUSSION 

I designed primers and attempted to PCR these genes out of extracted Xenopus 

embryonic cDNA. Unfortunately this PCR was unsuccessful, but my colleague Chris was 

able to PCR TACC1 out of the cDNA later on, and we proceeded with a full analysis of 

TACC1’s behavior. 

After extracting the expressed sequence of the TACC1 gene, we sequenced it and 

compared it to Xenopus TACC3. This alignment demonstrated that the coiled-coils of the 

Xenopus TACC1 and TACC3 paralogs are highly conserved between each other (Figure 

19), showing over 90% homology. This further warranted an analysis of the possibility 

that these proteins have similar functions. It also demonstrated that the highly conserved 

phosphorylated domain of TACC3 is notably absent in TACC1, indicating that while the 

coiled-coils may mediate similar localizations and functions, the regulation of the TACC 

Figure 19: X. laevis TACC1 (top) and TACC3 (bottom) C-terminal alignment. The coiled-
coils of TACC3 (a.a.s 744 – 931) are highly conserved in TACC1. The conserved 
phosphorylated region of TACC3 (a.a.s 619-641) are notably absent in TACC1. 
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family binding is likely to be rather different between paralogs.  

Following the demonstration that TACC1 is present in Xenopus embryos and 

shares very similar coiled-coil domains, we needed to determine how TACC1 is 

expressed. It was possible that it is barely expressed at all, and that TACC3 has taken 

over many of the (possibly redundant) functions of TACC1. I performed RT-PCR 

expression analysis of TACC1, TACC3, and actin as a control for total gene expression 

levels (as actin mRNA levels remain relatively constant between cell types and stages). I 

compared expression levels in cDNA extracted from the blastula stage, about 6 hours 

post-fertilization, or stage 8 of Xenopus development (Nieuwkoop and Faber, 1994) to 

the neurula stage (1 day post-fertilization or stage 22) and early tadpole stages (2 days 

post-fertilization or stages 32-34). I also compared expression levels in epidermal, 

mesenchymal, and neural tissue. 

These results (Figure 20) demonstrate that both TACC1 and TACC3 are highly 

expressed in early-stage embryos, probably due to a shared role in mitotic spindle 

assembly, far more important when the embryo is simply a ball of rapidly dividing cells.  

Figure 20: Xenopus TACC1 and TACC3 early expression levels. TACC1 and TACC3 expression 
levels are compared using quantitative PCR between 6 hours (blastula) 1 day (neurula) and 2 day 
(tadpole) post-fertilization developmental stages. Levels were also compared between epidermis, neural 
tube, and mesenchymal tissue. Actin used as a control for relative levels of total cDNA. (-RT) shows 
the same PCR done on extracted mRNA untreated with reverse transcriptase, as a control for 
contamination with genomic DNA. 
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The relative expression levels also showed that TACC3 remains expressed relatively 

constantly throughout the neurulation developmental process (about 1 day old, or stage 

22) and early tadpole stages (about 2 days old, or stage 32). Unlike TACC3, however, 

TACC1 levels decline significantly following neurulation. TACC1 and TACC3 are both 

enriched in stage 22 nervous system tissue, although TACC1 appears proportionally more 

enriched. TACC1 remains present and expressed in neural tissue, and although its levels 

are not as significant as TACC3 when compared to earlier stages, it is still present and 

therefore worthy of behavioral examination. 

Due to the high degree of homology in the coiled-coils, we predicted that TACC1 

might have similar localization abilities as TACC3. We subcloned a construct of TACC1 

into the GFP pCS2+ expression vector used for TACC3, and prepared mRNA of this 

construct to use for localization studies.  Our localization studies demonstrate that 

TACC1 can indeed +end-track growing microtubules (Figure 21). This conservation of 

Figure 21: TACC1 is a +TIP. Fluorescent time-lapse imaging of GFP-TACC1 alongside mkate2-EB1 as a 
+TIP marker shows TACC1 clearly +TIP tracking in neural tube-derived mesenchymal cells. Bar = 5 µm. 
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localization indicates a shared function of the TACC family of proteins within the +TIP 

complex. Our lab’s further experiments have shown this effect is maintained in neuronal 

growth cones as well as neural tube-derived mesenchymal cells and fibroblasts. 

To determine if the coiled-coils were responsible for this interaction, we 

subcloned two constructs. One, GFP-TACC1-Nterminal, consisted of amino acids 1-370 

of the TACC1 protein tagged with GFP. The other consisted of the remaining amino 

acids, 371-631. These constructs were co-injected with mkate2-EB1 to determine which, 

if either could localize to the +end of microtubules like the full TACC1 protein. We 

determined that like TACC3, TACC1 requires the C-terminal coiled-coil domains to 

localize to the +end (Figure 22). TACC1 C-terminal could still +end track just fine 

(Figure 22, top), whereas TACC1 N-terminal could not (Figure 22, bottom). These 

Figure 22: TACC1 requires its C-terminal to +end track. Fluorescent imaging of GFP-TACC1-
Cterminal (a.a.s 371-631) on top and GFP-TACC1-Nterminal (a.a.s 1-370) on bottom, alongside 
mkate2-EB1 as a +TIP marker. TACC1 C-terminal shows a clear ability to +end track, unlike TACC1 
N-terminal. Bar = 5 µm. 



	   	   50	  

localization studies indicate a conservation of the role of the coiled-coils between TACC1 

and TACC3. These structures are over 90% homologous between the paralogs, and are 

necessary to mediate the recruitment of both proteins to the +TIP complex of 

microtubules.  

To determine if TACC1 shares similar functions as TACC3 on the +end of 

microtubules, our lab performed a number of additional TACC1 overexpression 

experiments to quantify TACC1’s role in regulating microtubule dynamics. These data 

(submitted for publication as Lucaj and Evans et al., 2015) demonstrated that TACC1 

does have an effect in promoting microtubule polymerization (Figure 23) through 

increasing the polymerization velocity and total growth length of microtubules, but not 

the lifetime of microtubule growth. This profile is identical to that of TACC3’s effect on 

microtubule dynamics, and indeed joint overexpression studies revealed that this effect is 

synergistic; that increased levels of both TACC1 and TACC3 increase microtubule 

growth velocity and length more than either does independently. 

Figure 23: TACC1 promotes microtubule growth velocity and length, but not lifetime. 
Quantification of microtubule (MT) growth track parameters in cultured cells following overexpression 
(OE) of TACC1, TACC3, or both (double). EB1-GFP localizes to the ends of growing MTs and is thus 
a marker for MT polymerization. Automated tracking of EB1-GFP comets calculate MT growth-track 
velocity (A), MT growth-track lifetime (B), and MT growth-track length (C). An unpaired t test was 
performed to assess significance of over-expression conditions compared to control. ***p<0.001, 
****p<0.0001;  n.s., not significant.  
Data from Lucaj and Evans et al. (submitted for publication) Figure 4 A-C. 
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The conservation of structure and function between the TACC family members 

indicates that this protein family may share the roles of TACC3 in neurodevelopment. 

The coiled-coil domains of each family member may serve to promote microtubule 

polymerization through interacting with XMAP215. The highly variable remainder of the 

protein may serve other functions, like those demonstrated for TACC3 in mitosis and 

translational regulation (Kinoshita et al., 2005 and Barnard et al., 2005), and for 

regulating the binding and activity of the coiled-coil domains within the +TIP complex. 

The differential regulation of TACC1 and TACC3 might serve as a mechanism by which 

different guidance cues or signaling cascades are translated into an effect on microtubule 

dynamics. Understanding the regulation of the TACC family members and how it affects 

localization to microtubule +ends is essential to elucidating how they may translate 

environmental signals to dynamic growth cone microtubules to enable correct guidance 

of developing neurons. 
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 Our quest into the structure and function of the TACC family is only just 

beginning. This thesis and our recent publications have demonstrated that both TACC1 

and TACC3 play an important role in regulating microtubule dynamics through their 

localization to the +TIP complex, mediated by their coiled-coil domains. Furthermore, I 

showed TACC3 to have an effect in mediating axon guidance in vivo. Based on these 

data and the nature of +TIPs in regulating dynamic microtubules in growth cones, I 

believe that TACC3 (and possibly the other TACCs) are the target of signaling cascades 

begun on the growth cone membrane by guidance cues. The central role of the TACC 

family in neurodevelopment may to translate these signals into an effect on the growth 

cone cytoskeleton, promoting microtubule growth towards positive guidance cues or 

away from negative guidance cues. 

 In order to confirm or refute this hypothesis, we must first fully understand 

exactly how the +end-binding activity of the TACCs is regulated in the first place. There 

are a number of means by which TACC3 and the other TACCs might be regulated, 

including (but not limited to) alternative splicing, proteolytic cleavage, and 

phosphorylation by signaling kinases. I have begun to study the regulation of TACC3 by 

each of these processes, although unfortunately my time in the Lowery Lab is limited and 

I will not be able to complete this analysis. The frameworks of these future experiments 

are presented here. 

 We determined that TACC3 is alternatively spliced in nervous system tissue, 

compared to the gene expressed in earlier-stage Xenopus embryos. We PCR’ed TACC3 

out of cDNA extracted from isolated axons, and I used the same primers used to fully 

sequence our original TACC3 (See Chapter III Materials & Methods) to sequence neural 

TACC3 and compare any discrepancies. I determined that a significant portion of the 
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mid-section double repeat domain of TACC3 is alternatively spliced out of the TACC3 

mRNA present in neurons (Figure 24). This alignment demonstrated that this double 

repeated section must be relevant in some way to the functional differences between 

neural TACC3 and the full-length 

TACC3 present in early-stage 

blastula embryos. The high 

degree of single nucleotide 

polymorphisms are likely due to 

high variability found within 

Xenopus laevis genomes.  

 The spliced-out region in 

neural TACC3 was shown to be 

unnecessary for TACC3’s +end-

binding abilities, however, as the 

“TACC3 Big∆N” construct was still able to +TIP track (Figure 17). As the other 

discrepancies in amino acid sequence are minor enough and the coiled-coil domains in 

neural TACC3 are still present, we know that neural and full TACC3 both +end-track via 

the same mechanisms. However, the fact that this exact double repeat section was mostly 

spliced out in neural TACC3, as well as a few other residues, indicates that some 

Figure 24: Alignment of Neural 
TACC3 and Full-Length (Blastula) 
TACC3 Spliceoforms. Full-length 
TACC3 (top) was aligned with fully 
sequenced neural TACC3 (bottom), 
demonstrating five small splicing 
differences between amino acids 245 
and 479 (of full TACC3).  
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functional difference between the spliceoforms may be relevant in the behavior of neural 

TACC3, and therefore these regions warrant further investigation.  

In addition to determining that TACC3 is alternatively spliced in neurons, we 

sought to investigate if TACC3 is proteolytically cleaved. We performed a Western blot 

of embryos injected with mRNA of either GFP-TACC3 or TACC3-GFP (N- or C-

terminal tagged, respectively) and blotted with a GFP antibody or a TACC3 antibody 

targeting the coiled-coil domains. These results demonstrated that TACC3 is indeed 

proteolytically cleaved in vivo, and that each (known) cleavage product appears to 

include the coiled-coil domains 

(Figure 25). 

 
 

 
 
 
 
 
 
 

These data demonstrate that proteolytic cleavage of TACC3 does occur in vivo. 

The largest band corresponds to the full-length isoform of TACC3, the only one that can 

be detected by a GFP antibody in embryos injected with GFP-TACC3. However, in 

Figure 25: TACC3 is 
proteolytically cleaved. 
The same Western blot with GFP 
antibody (left) and TACC3 antibody 
(right) showing distinct proteolytic 
cleavage of TACC3 occurring in 
developing Xenopus embryonic 
cells. Possible cut sites are shown 
below on each construct to help 
explain the differential banding 
pattern seen here. 
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embryos injected with TACC3-GFP, four distinct molecular weights can be detected; 

full-length TACC3 and three smaller isoforms, indicating TACC3 is proteolytically 

cleaved at three sites, each removing the N-terminal side of the protein for degradation. 

Possible cut sites are shown at the bottom of the figure. The bands detected in the GFP-

TACC3 lane by the TACC3 antibody correspond to the remainder of the cleaved protein, 

but without GFP, therefore being 27 kDa smaller than the corresponding isoform in 

TACC3-GFP, which maintains the GFP tag on the C-terminal of the truncated protein. 

Further evaluation of the location of these cleavage sites and their possible regulation is 

warranted, and constitutes an ongoing phase of my research. One of the cleavage sites is 

probably located shortly upstream of the coiled-coil domains, within the highly conserved 

and phosphorylated domain (noted in Figure 9). Phosphorylation of certain sites here, 

most notably Serine 638 (found in a highly basic set of residues much like a thrombin cut 

site) may be what triggers proteolytic cleavage of TACC3 and the resultant effects on 

microtubule dynamics. Further mutagenesis experiments are being performed to create a 

construct lacking only this domain, to see if it can still be cleaved in the same way. 

TACC3 also contains a number of conserved phosphorylation sites (Figure 14, 

yellow) and surrounding consensus sequences homologous to those characterized in 

human TACC3. I compiled information on these sites and the few studies characterizing 

them in Xenopus. These sites include several phosphorylated by Aurora A Kinase (AAK) 

(Serine 33, Serine 620, Serine 626) found to be relevant for TACC3’s localization to the 

spindle apparatus in mitosis (Kinoshita et al., 2005). There are a number of other residues 

phosphorylated by Cdk1 (Threonine 58, Serine 152, Serine 311, Serine 343, Serine 451, 

Serine 638) to enable TACC3 to bind the translational regulator eIF4E and play a role in 

regulating translation of certain mRNAs (Barnard et al., 2005). These residues, and 
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others we found to be phosphorylated in TACC3 in collaboration with the Ballif lab at 

the University of Vermont (Serine 509, Threonine 562) were determined to be promising 

candidates to investigate. Phosphorylation of TACC3 on these specific sites is likely to be 

an important means of regulating TACC3’s binding and possibly the proteolytic cleavage 

observed above. Each of these sites are described in the table below. 

TACC3 Known Phosphorylated Sites 
Xenopus site (Q9PTG8) Human site (Q9Y6A5) Kinase responsible Homologous region? Citation 

Ser33 Ser34 AAK Yes Kinoshita 2005 

Thr58 Thr59 Cdk1 Yes Barnard 2005 

Ser152 n/a Cdk1 No Barnard 2005 

Ser311 Thr271 Cdk1 Yes Barnard 2005 

Ser343 Ser317 Cdk1 Yes Barnard 2005 

Ser451 Ser434 Cdk1 No Barnard 2005 

Ser509 Ser468 ? Yes 
 

Thr562 n/a ? No 
 

Ser620 Ser552 AAK Yes Kinoshita 2005 

Ser626 Ser558 AAK, PKA Yes Kinoshita 2005 

Ser638 Ser570 Cdk1 Yes Barnard 2005 

To evaluate which sites were of the most significant interest, the sequence of 

Xenopus TACC3 surrounding the phosphorylated site was compared to the Human 

TACC3 sequence. If the Xenopus phosphorylated residue is still present and flanked by 

similar amino acids in Human TACC3, it was described as “homologous” in the table 

above and considered of greater interest, being evolutionarily conserved. 

Several of these sites were chosen to selectively mutate to alanine residues, 

thereby blocking phosphorylation of that site without sterically affecting surrounding 

protein structures. I have tried to mutate Serines 311, 509, 626, and 638 and Threonine 

562. These mutageneses have been successful so far with S311, T562, and S638, and I 
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will try again with the remaining sites. In the near future, localization experiments with 

these constructs should provide a clearer picture of the phosphorylation of TACC3 and its 

effects on TACC3’s localization and overall structure. 

TACC1 phosphorylation is also likely to be relevant to its +end localization. No 

studies on Xenopus TACC1 besides ours have ever been performed, however, so to begin 

to analyze TACC1 phosphorylation I had to first examine the little that is known about 

Human TACC1. Examination of a few studies (Olsen et al., 2006; Gabillard et al., 2011; 

Pu et al., 2001) that characterized genome-wide phosphorylation found a number of sites 

phosphorylated in human TACC1 that are conserved in Xenopus TACC1. These are 

shown in the table below: 

TACC1 Possible Phosphorylated Sites 
Xenopus possible 
site 

Human TACC1 (O75410) 
site 

Homologous region? Citation 

Ser4 Ser4 Yes Olsen et al., 2006 

Ser10 Ser10 Yes Olsen et al., 2006 

Ser50, Ser55, 
Ser57 

Serine series: 
50,52,54,55,57 

Yes but 52+54 not present Olsen et al., 2006 

Ser239 Ser228 Yes Gabillard et al., 2011 

Tyr551 Tyr719* Yes Pu et al., 2006 

*Tyr719 is also homologous to Tyr821 in human TACC2 (O95359), also phosphorylated. 

These sites represent possible targets for future studies of TACC1 

phosphorylation and regulation. Of particular interest are Serine 239, known to be 

phosphorylated by Aurora C Kinase (Gabillard et al., 2011) and Tyrosine 551, 

homologous not only to human TACC1 Tyr719 but also human TACC2 Tyr821, which is 

also phosphorylated. These tyrosines are present at what seems to be at or near the 

junction of the two coiled-coil domains of TACCs 1+2, and are within a set of residues 

not just homologous but identical to the Xenopus orthologs. I have planned out the 
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mutagenesis of these two sites in TACC1 and intend to create the mutant constructs for 

analysis shortly before leaving our lab. Future studies of these sites may reveal additional 

means of regulating the structure and function of the TACC family, and how this 

regulation may be critically important to the process of axon guidance and 

neurodevelopment as a whole.  

Finally (and most obviously), our lab will also seek to clone and study TACC2 in 

the same manner as TACCs 1 and 3. It is clear that it is present in the Xenopus genome 

but no other studies have even begun to examine its expression and functions in this 

model organism. This thesis’ investigations into the totally uncharacterized TACC1 gene, 

and it’s further evaluations of the role of TACC3 in neurodevelopment have laid good 

methodological groundwork for this future series of experiments. 
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