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Abstract 

A comparison of equating/linking using the Stocking-Lord method and concurrent 

calibration with mixed-format tests in the non-equivalent groups common-item design 

under IRT 

 

By Feng Tian 

Larry Ludlow Ph.D., Chair 

 

There has been a steady increase in the use of mixed-format tests, that is, tests 

consisting of both multiple-choice items and constructed-response items in both 

classroom and large-scale assessments. This calls for appropriate equating methods for 

such tests. As Item Response Theory (IRT) has rapidly become mainstream as the 

theoretical basis for measurement, different equating methods under IRT have also been 

developed. This study investigated the performances of two IRT equating methods using 

simulated data: linking following separate calibration (the Stocking-Lord method) and the 

concurrent calibration. The findings from this study show that the concurrent calibration 

method generally performs better in recovering the item parameters and more importantly, 

the concurrent calibration method produces more accurate estimated scores than linking 

following separate calibration. Limitations and directions for future research are 

discussed.  
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Chapter One: Introduction 

Background of the Study 

There are different formats of items that can be used in a t est, each with its 

strengths and weaknesses. The formats usually fall into two categories: multiple-choice 

(MC) items and constructed-response (CR) items. The term constructed-response is 

generally used to refer to any question format that requires the examinees to produce a 

response in any way other than selecting from a list of alternative answers as they usually 

do for a MC item. Typically, MC items are dichotomously scored (DS) and CR items are 

polytomously scored (PS). MC items are economically practical and allow reliable and 

objective scoring; however, MC items are generally considered not to be able to measure 

students’ higher-order thinking skills and limit the opportunity for demonstrating in-depth 

knowledge (Madaus, Haney & Kreitzer, 1992). CR items are considered to be able to 

measure traits that cannot be tapped by MC items; however, they are expensive to 

develop and difficult to score objectively and reliably (Wainer & Thissen, 1993). So a 

test composed of a mixture of different item formats is often used in assessments because 

combinations of different item formats allow for the measurement of a broader set of 

skills than the use of a single format (Kim & Lee, 2004). Such a test is referred to as a 

mixed-format test. There has been a steady increase in the use of mixed-format tests in 

both classroom and large-scale assessments. In 2008, 49 states used mixed-format tests in 

the subject of English language and 28 s tates used mixed-format tests in subjects other 

than English language in their state assessment programs (Quality Counts, 2009).  
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Overview of Test Equating/Linking 

Most major testing programs, particularly large-scale or high-stakes testing 

programs, require the construction and administration of multiple forms of the same test. 

The main reason for this is that many testing programs administer tests several times in a 

year, and testing programs rarely administer the same test more than once to protect the 

security of the tests and meet the demands of an examinee population for flexible testing 

dates. Therefore, the construction and administration of alternate forms of the same test is 

a necessary requirement for operating these testing programs (Cook, 2007). The use of 

different forms of the same test raises the issue of the comparability of test scores. In 

order to use the scores from different forms of a test interchangeably, they must be put on 

a common scale. Different terms have been used to describe the procedure of 

transforming scores from different tests or test forms to make them comparable. Two 

frequently used terms are equating and linking.  

Earlier efforts (Linn, 1993; Mislevy, 1992) were made to bring coherence to the 

definitions of linking and equating; however, the literature was not completely consistent 

in the use of the terminology (Feuer, Holland, Green, Bertenthal, & Hemphil, 1999). As 

more and more attention is paid to establishing linkage between tests, practitioners 

gradually realize that there are different types of linking and become aware of the 

importance of making distinctions among linkage types and linking scenarios, which on 

the surface appear to be essentially the same (Dorans, Pommerich, & Holland, 2007). 

Various frameworks (Feuer et al., 1999; Holland, 2007; Holland & Dorans, 2006; Kolen 

& Brennan, 2004; Pommerich & Dorans, 2004) have been presented to distinguish 
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among and develop terminology for different types of linking. The Holland (2007) and 

Holland and Dorans (2006) frameworks are the most up-to-date and most comprehensive 

ones and are followed in this study. According to Holland and Dorans (2006), the term 

linking refers to the general class of transformations between the scores from one test and 

those of another test, and there are three basic categories of linking: predicting, scale 

aligning and equating.  

Predicting is the oldest form of linking (Holland, 2007). The goal of predicting is 

to predict an examinee’s score on one test from other information sources, which are also 

called predictors by Dorans and Walker (2007) about that examinee such as a score from 

one other test, scores from several other tests or demographic information (Holland, 

2007). Clearly, predicting is based on t he linear regression method. It was recognized 

very early that linear regression was not a satisfactory way to find comparable scores 

(Thorndike, 1922, cited in Holland 2007; Otis, 1922, cited in Holland, 2007).  

Scale aligning is the second oldest group of linking methods (Holland, 2007). The 

goal of scale aligning is to transform the scores from different tests onto a common scale 

(Dorans & Walker, 2007). Holland (2007) reported that scale aligning has several 

subcategories that can be used in different situations, including battery scaling (Kolen, 

2004), anchor scaling (Holland & Dorans, 2006), vertical scaling (Kolen & Brennan, 

2004), calibration (Holland & Dorans, 2006) and concordance (Pommerich & Dorans, 

2004). Battery scaling is used when two or more tests that measure different constructs 

are administered to a common population; anchor scaling is used when two or more tests 

that measure different constructs are administered to different populations of examinees 
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and a common measure called an anchor measure is available for all the examinees in 

these different populations. Vertical scaling is used when tests that measure similar 

constructs are administered to different populations of examinees and a common measure 

is available for all examinees. Calibration is used in situations where the tests measure 

the same construct, have similar level of difficulty but differ in test length. Dorans (2007) 

pointed out that calibration also refers to the process of estimating the parameters of an 

item in the parlance of Item Response Theory.  

 Equating is the strongest kind of linking and is viewed widely as possessing the 

following desirable properties (Lord, 1980):  

1. The same construct property. The two tests must measure the same construct. 

2. Equity property. Once the two test forms have been equated, it should not 

matter to the examinees which form of the test is administered. 

3. Symmetry property. The equating transformation should be symmetric. The 

equating of Form A to Form B should be the inverse of equating to Form B to Form A. 

4. Group invariance property. The equating relationship should be the same 

regardless of the group of examinees used to conduct the equating.  

In addition to these properties, Dorans and Holland (2000) added another property 

for test equating, that is, 

5. Equal reliability property. The tests to be equated should have equal reliability.  

In practice, these properties mean that different forms of a test need to be built to the 

same explicit content and statistical specifications and administered under the same 

conditions. These forms are referred to as alternate forms of a test or sometimes parallel 
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or equivalent forms, which according to (Kolen, 2007) have nearly identical content 

features and differ only in the particular items that appear on the alternate forms. Other 

cases of score linking are likely to violate at least one of the five properties for equating.  

There are two main forms that equating can take: horizontal equating and vertical 

equating. For horizontal equating, the tests to be equated are designed to be as 

psychometrically identical as possible, that is, the tests are constructed to be parallel in 

both content and difficulty (Kolen, 2007). Most equating applications are of this type. 

Equating new versions to old versions of standardized tests such as SAT or ACT is an 

example of horizontal equating. For vertical equating, the tests to be equated are 

intentionally designed to be different in difficulty level but still measure the same 

construct. Most often vertical equating occurs in the context of an achievement test 

battery. For example, a fourth grader takes a mathematics achievement test at the fourth-

grade level in a year and the following year the same student takes the same test battery 

at the fifth-grade level. This is a typical situation where vertical equating is required to 

compare the scores from the two tests. However, Kolen (2007, 1988) does not think that 

vertical equating should be included in test equating, because the content of the tests 

administered to students at various educational levels is different and scores on the tests 

at different levels cannot be used interchangeably. According to Kolen (2007), this 

process can be referred to as vertical scaling. In the terminology of the Standards for 

Educational and Psychological Testing (AERA, APA, NEME, 1995), this process is 

referred to as scaling to achieve comparability.   
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The major distinction between the terms linking and equating and between 

vertical equating and vertical scaling is conceptual in nature and there is not so much 

distinction in terms of the data collection design and statistical procedure to establish the 

relationship between the scores from different tests or test forms because the 

methodology remains essentially the same regardless of whether all of the properties for 

equating are met or not. For this reason the two terms linking and equating are used 

interchangeably in this study and they both generally refer to the procedure of 

establishing comparable scores from different tests or test forms.  

 

Data Collection Designs for Equating 

Test equating starts with data collection. Three factors may have an impact on the 

linking function, which are respectively differences in conditions of the test, differences 

in test content, and differences in examinees (Kolen & Brennan, 2004). The role of data 

collection is crucial to successful linking. It is the key to control for differences in test 

content and in examinees. Three commonly used data collection designs are (1) single-

group design (2) equivalent groups design and (3) non-equivalent groups common-item 

design or non-equivalent groups anchor test (NEAT) design (von Davier, Holland, & 

Thayer, 2004).  

 In the single-group design, two test forms are administered to the same group of 

examinees. The advantage of this design is that it directly controls for the differences in 

both the test content and examinees. A disadvantage is that there could be an order effect. 

If fatigue is a factor in examinee performance, the form administered later may tend to be 
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more difficult than the form administered earlier; if familiarity with the test is related to 

examinee performance, then the form administered later may tend to be easier. One way 

to deal with the order effect is to counterbalance the order of administration of the forms. 

Because two forms must be administered to the examinees, it requires more testing time 

than is practically allowed. So this design is rarely used in practice.  

 In the equivalent-group design, two test forms are administered to two equivalent 

groups of examinees. The groups are randomly formed, so this design is also referred to 

as random groups design (Kolen & Brennan, 2004). The advantage of this design is that it 

avoids the issue of the order effect that can arise in the single-group design due to fatigue 

and familiarity with the test and it also requires less testing time compared to the single-

group design. So the difference in the performance between the two groups can be taken 

as a direct indication of the difference in difficulty between the two test forms. However, 

equating is usually done to link a new test form to an old test form in practice. So this 

design is not appropriate for some high-stakes testing for purposes like admission, 

certification, and licensure because many of these testing programs usually use a new test 

at every administration to help maintain test security. Some other disadvantages are that 

this design requires a relatively large sample and random assignments of test forms to a 

large sample is not always practically possible.  

 Finally, in the NEAT design, two test forms are administered to two different 

groups of examinees. A set of common items or anchor test is included in both test forms. 

The role of the anchor test is to quantify the differences between the two groups. The 

anchor test may be internal if the score on t he common items contributes to the 
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examinee’s score on t he test, or external if the scores on t he common items do not  

contribute to the examinee’s score. The NEAT design is probably the most prevalent 

design in practice (Cook, 2007; Skaggs & Lissitz, 1986a). A major reason for its 

popularity is that this design requires administration of only one test form per test date, 

and the groups do not need to be from a common population. In contrast, the other two 

designs mentioned previously require administration of more than one test per test date. 

So the NEAT design has greater operational flexibility than the other two designs. 

However, this flexibility comes at a price. For this design to work best, certain conditions 

have to be met: similarity of the two groups taking the two forms, similarity of the two 

forms and a high correlation between the scores of the two forms and the anchor test 

(Cook, 2007). So this design is also the most difficult one to implement. Because of the 

prevalence, the importance and the complexities of the NEAT design, this study focuses 

on equating based on this design.  

 

Overview of Equating Methods 

Two theories dominate the field of measurement, Classical Test Theory (CTT) 

and Item Response Theory (IRT). Test equating methods, according to the testing theory 

on which they are based, can generally be classified into two categories: traditional or 

conventional equating methods and IRT equating methods. Traditional equating methods 

are based on CTT, which include (a) mean equating, (b) linear equating, and (c) 

equipercentile equating. There are two alternative procedures of using IRT in equating. 

One is to calibrate all the items in different forms together so that they are on a same 
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metric, which is known as concurrent calibration; another is to estimate the item 

parameters separately for different forms first and then put them on a same metric 

through a linking process.  

The major advantages of CTT are its relatively weak theoretical assumptions, 

which make CTT easy to apply in many testing situations (Hambleton & Jones, 1993). 

However, the analysis of item responses in CTT is heavily dependent on the sample that 

completed the test. This causes the major disadvantage of CTT models, that is, item 

parameter estimates (item difficulty) are dependent on examinees and person parameter 

estimates (ability) are dependent on the test. These dependencies limit the utility of the 

person and item statistics in practical test development work and complicate analyses 

(Hambleton & Jones, 1993). In the case of test equating/linking, each of the CTT 

methods is of limited utility because they do not satisfy conditions of equity, symmetry 

and invariance (Hambleton, Swaminathan & Rogers, 1991). Kolen (1981) clearly stated 

that ‘…conventional equipercentile or linear equating can be strictly used only with 

parallel tests…’ (p.1-2). However, this is not the case for IRT. Compared to CTT, IRT 

has several advantages (Hambleton & Swaminathan, 1985). One of them is that item 

parameter estimates are independent of the ability level of examinees responding to the 

item and at the same time, ability estimates are also independent of the performance of 

other examinees and the items used in the test. So even if different samples are used in 

the calibration of the items, the item parameter estimates are not expected to change and 

if different sets of items are used, the person ability estimates are not expected to change. 

This is known as the “invariance” feature of IRT. Another advantage is that item 
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difficulty and person ability estimates are set on the same scale. So equity, symmetry and 

invariance are the basic properties of IRT models (Hambleton & Swaminathan, 1985; 

Lord, 1980). In theory, IRT models can be used to equate both parallel and nonparallel 

tests (Kolen, 1981).  

In addition to the theoretical advantages of IRT equating over CTT equating, 

there are also several practical advantages through the use of IRT equating (Cook & 

Eignor, 1983).  First, IRT equating offers better equating results than CTT methods at the 

upper ends of score scales where important decisions are often made; whereas for CTT 

methods, reasonable equating can only take place for only those scores actually obtained 

by the test takers. Second, IRT methods provide greater flexibility in choosing previous 

test forms for equating purposes. Because all previous test forms are calibrated on t he 

same scale, the new form can be equated to any or all of the old forms. Third, re-equating 

becomes easier. If an item is dropped, the shortened form can easily be reconstructed 

based on the item information from the remaining test forms. Finally, IRT equating 

makes pre-equating possible. Pre-equating is an attempt to prepare a raw-to-scale score 

conversion table even before a test or form is administered. This is possible when item-

level pretest data are available and can be calibrated. The parameters will be invariant 

when applied to new groups.  

Studies have also been conducted to compare different equating methods 

including the comparison between the CTT and IRT equating methods (Marco, Petersen 

& Stewart, 1983; Kolen, 1981; Petersen, Cook & Stocking, 1983; Cook & Eignor, 1983). 

The results demonstrated some superiority of IRT equating methods over CTT equating 



11 

methods. For example, Marco et al. (1983) showed that when tests of unequal difficulty 

were equated, the IRT methods displayed the least amount of error. This study suggests 

the superiority of IRT methods when samples are not randomly chosen. Peterson et al. 

(1983) compared IRT methods and CTT methods for the SAT-Verbal tests and found that 

the IRT methods produced substantially smaller equating errors than the CTT methods. 

In another study, Cook and Eignor (1983) compared IRT methods and CTT methods for 

a variety of achievement tests of the College Board Admission Testing Program and 

Graduate Record Examination (GRE) and found that the equipercentile method was 

extremely inadequate in all cases. They felt that this method suffered from a lack of data 

at extreme scores.  

IRT, however, also has some disadvantages. It has some restrictive assumptions 

such as unidimensionality and local independence to meet to be satisfactorily 

implemented. Whereas a single dimension is implicit in any test equating, IRT methods 

might be less robust with respect to violation of this assumption and failure to meet the 

unidimensionality assumption could potentially be a major source of problems for IRT 

equating methods (Skaggs & Lissitz, 1986a). Also, IRT models, especially the three-

parameter model, usually require a l arge sample size for stable estimation of item 

parameters. Studies (Patience, 1981; Kolen & Whitney, 1982) attributed small sample 

size to be a contributing factor to the poor performance of IRT equating methods using 

three-parameter model because the estimation procedure either could not converge or 

produced extreme (unstable) item parameter estimates with small sample size.  
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Statement of the Problem 

Although CTT has served test development well over several decades, IRT has 

rapidly become mainstream as the theoretical basis for measurement (Embretson & Reise, 

2000). In practice, IRT models are applicable to various formats of items on a  mixed-

format test. As Baker & Kim (2004) pointed out, any combination of dichotomous 

models such as the 3PL model and a polytomous model such as Graded Response (GR) 

model or Generalized Partial Credit (GPC) model can be used to analyze data from 

mixed-format tests in situations where the choice is feasible. As the use of IRT in testing 

applications has grown considerably over the last few decades, different equating 

methods under IRT methods have also been developed. A key issue in IRT equating 

when dealing with test data from multiple test forms with multiple groups of examinees is 

how to calibrate the data and place all the item parameter and ability estimates on a 

common scale so that they are comparable and can be used interchangeably. This metric 

issue is usually dealt with using one of two types of calibrations: (a) separate calibration 

with linking and (b) concurrent calibration (Hanson & Béguin, 2002; Kim & Cohen, 

2002; Kolen & Brennan, 2004; Vale, 1986). Separate calibration is performed by form, in 

which the item parameters from different forms are estimated using separate runs of the 

estimation software. When separate calibration of test forms is conducted in each 

examinee group, a process of linking the resulting scales should be followed to develop a 

common scale because each scale is group or form dependent. The linking process uses 

IRT linking methods to find a linear transformation between different scales usually via a 
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set of common items. There are different IRT linking methods such as the mean/mean 

method (Loyd & Hoover, 1980), mean/sigma method (Marco, 1977), Haebara method 

(Haebara, 1980), and Stocking-Lord method (Stocking & Lord, 1983). The former two 

are also called moment methods (Hanson & Béguin, 2002; Kim & Lee, 2004) and the 

latter two, characteristic curve methods (Hanson & Béguin; 2002; Stocking & Lord, 

1983). These methods have been developed first under the dichotomous IRT model and 

then extended to polytomous IRT models (Baker, 1992, 1993, 1997; Cohen & Kim, 1998; 

Kim & Cohen, 1995; Kim & Hanson, 2002). In contrast, concurrent calibration does not 

involve the linking process and therefore, is more efficient and is easy to apply in practice. 

In concurrent calibration, parameters of all items from multiple forms are simultaneously 

estimated through a single calibration run with all response data from the multiple forms 

being combined together. As a result, all of the estimates are placed on a common scale.  

Studies have been conducted to compare different IRT equating procedures. In 

regard to the different separate calibration procedures, two studies (Kim & Lee, 2004; 

Hanson & Béguin, 2002) used simulated data and drew a similar conclusion that 

characteristic curve methods are preferable to the others. Several studies also compared 

the performance of methods following separate calibration and concurrent calibration. 

Petersen et al. (1983) and Wingersky, Cook, & Eignor (1987) both concluded that 

concurrent calibration performed somewhat better than methods following separate 

calibration. Hanson & Béguin (2002) studied separate versus concurrent calibration with 

simulated data and concluded that concurrent calibration generally resulted in lower error 

than separate calibration. Kim & Cohen (1998) also studied separate versus concurrent 
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calibration with simulated data and concluded that separate and concurrent calibration 

provided similar results except when the number of common items was small, in which 

case separate calibration provided more accurate results. However, most of the studies 

were conducted for tests consisting only of MC items and little research has been done to 

compare the different IRT equating procedures for mixed-format tests. Kim & Lee (2004) 

compared the performance of different equating approaches following separate 

calibration with mixed-format tests and concluded that the moment methods seem 

ineffective at linking mixed-format tests. Yet, this study did not investigate the 

performance of the linking methods following separate calibration as compared to the 

performance of concurrent calibration and called for further investigation into this.  

 

Purpose and Research Questions 

The purpose of this study is to evaluate the performance of linking methods with 

mixed-format tests following separate calibration versus concurrent calibration. The 

research question addressed in this study is: with mixed format tests, which IRT equating 

method performs better under different conditions for the non-equivalent groups common 

item design: the characteristic curve method following separate calibration or the 

concurrent calibration method?   
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Significance of the Study 

Test scores are often used as an important information source for important 

decision-makings, be it a t individual level, institutional level or public policy level. 

Regardless of the type of decision that is to be made, it should be based on t he most 

accurate information possible: the more accurate the information, the better the decision 

(Kolen & Brennan, 2004). However, due to security and other reasons, different forms of 

a test are often administered to different examinees and equating is often employed to 

adjust the scores on different forms to achieve fairness; therefore, test equating is critical 

in making important decisions and accurate test equating is highly desired.  

More and more assessments contain a mixture of MC and CR items. If IRT is 

used to analyze the test data, the comparability of IRT item parameter estimates across 

different test forms is an important matter, since all decisions about examinees are 

derived from these estimates. Different IRT equating methods do not  yield the same 

parameter estimates; therefore, it is essential to make comparisons between different IRT 

equating methods to determine what is the best equating procedure especially for mixed-

format tests, since there has been a s teady increase in the use of them. Unfortunately, 

little research has been done in this regard. Research has been done to compare different 

IRT equating methods following separate calibration, but no comparison has been made 

between the equating methods following separate calibration versus concurrent 

calibration for mixed-format tests. This study tries to fill the gap. It is expected that the 

findings of this study will provide useful guidelines on w hich IRT equating method is 

more appropriate under different conditions for mixed-formats equating in practice.  
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Summary 

 Multiple test forms are usually used in a test program for test security reasons and 

the scores from different forms have to be statistically transformed onto a common scale 

so that they are comparable, a procedure referred to as equating or linking. The increasing 

use of mixed-format tests, that is, tests that consist of both Multiple-choice items and 

Constructed-response items, calls for appropriate equating methods. This chapter 

provided a brief introduction to the concept of equating/linking, the different types of 

equating/linking approaches and the different data collection designs used in 

equating/linking. The purpose of this study is to compare two Item Response Theory 

(IRT) equating methods for mixed-format tests, namely the Stocking-Lord method and 

the concurrent calibration method for the non-equivalent groups common item design. 

The focus on IRT equating methods is because IRT has become mainstream as the 

theoretical basis for measurement and the focus on the non-equivalent groups common 

item design is because it is the most widely used equating design. A complete review of 

related literature is presented in Chapter Two. 
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Chapter Two: Review of related literature 

Traditional Equating Methods 

As mentioned previously, there are three methods based on CTT, namely, mean 

equating, linear equating and equipercentile equating. The three traditional equating 

methods are introduced briefly here and more discussions of these equating methods can 

be found in Angoff (1982, 1984), Braun and Holland (1982), Livingston (2004), and 

Kolen and Brennan (2004).  

In mean equating, one test form is considered to differ in difficulty from another 

test form by a constant amount along the score scale (Kolen & Brennan, 2004). Scores on 

the two forms that are an equal distance away from their respective means are set equal: 

𝑥 −  𝜇𝑥 =  𝑦 −  𝜇𝑦      (2.1) 

where 𝑥 and 𝑦 are the raw scores and  𝜇𝑥  and 𝜇𝑦  are the means of the two test forms 

respectively. Mean equating involves the addition of a constant, which is the difference 

between the means of the two test forms. Mean equating assumes that differences in 

difficulty between the two forms are constant throughout the entire score range (Barnard, 

1996).  This assumption might be overly restrictive in many testing situations (Kolen & 

Brennan, 2004) and therefore, this method is seldom used in practice.  

In linear equating, scores that are an equal distance from their mean in standard 

deviation units are set equal (Kolen & Brennan, 2004), or mathematically: 

𝑥 − 𝜇𝑥
𝜎𝑥

=
𝑦 − 𝜇𝑦
𝜎𝑦

                    (2.2)    
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where 𝑥 and 𝑦 are the raw scores, 𝜇𝑥 and 𝜇𝑦 are the means and 𝜎𝑥 and 𝜎𝑦 are the standard 

deviations of the two tests respectively. Actually, the above equation is also the equation 

for z-score transformation, and linear equating can conceptually be considered as 

establishing equivalent z-scores for two different tests. Linear equating assumes that, 

apart from differences in means and standard deviations, score distributions on two forms 

of a test are the same.  

In equipercentile equating, scores that have the same percentile rank in the two 

forms are considered to be equal. The equipercentile equating procedure can be 

demonstrated using graphical methods. The first step of equipercentile equating is to 

determine the percentile ranks for the score distributions on each of the two tests to be 

equated. Percentile ranks are then plotted against the raw scores for each of the two tests 

and percentile rank-raw score curves can be constructed. Fig. 1 illustrates such a plot of 

two hypothetical tests, each with 40 items. As long as the percentile rank-raw score 

curves are constructed, it is fairly easy to convert equivalent scores from the plot. For 

example, a score of 15 in Test X is equivalent to a score of 13 in Test Y.  
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Fig 2.1 Equipercentile Equating on Two Hypothetical Tests  
 
 
 
 
 
 
 
 
 
 

 
The main problem with equipercentile equating is that the score distributions on 

real tests taken by real test-takers are often irregular. The percentage of the test-takers 

with a given score does not change gradually as the scores increase; it fluctuates. 

Irregularities in the score distributions cause problems for equipercentile equating. They 

produce irregularities in the equipercentile equating adjustment, and those irregularities 

do not generalize to the population. So it usually requires a very large sample size for the 

score distribution and equipercentile relationship to be reasonably smooth (Kolen & 

Brennan, 2004). Or it requires a complicated technique called “smoothing” to produce 

estimates of the empirical distribution and the equipercentile relationship will have the 

smoothness property which is characteristic of the population. A detailed introduction of 

smoothing can be found in Kolen and Brennan (2004).  
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IRT Equating Methods 

A Brief Introduction of Item Response theory 

To better understand the different IRT equating methods, some basic knowledge 

about IRT is necessary. IRT, or Item response theory, as the name suggests, is a 

response-centered model. Briefly, IRT describes what happens when an examinee takes 

an item. The purpose of IRT is to estimate the probability of answering an item correctly. 

The probability is a function of the examinee’s ability (considered a latent trait and Item 

Response Theory is also called latent trait theory) and the difficulty level of the item. The 

higher an examinee’s ability, the more likely he/she will get an item right. The function, 

often referred to as item response function (IRF), can be graphically depicted as an s-

shaped curve, called the Item Characteristic Curve (ICC). The summation of the ICCs of 

all the items in a test will form the Test Characteristic Curve (TCC), also an s-shaped 

curve. The TCC is a function of the examinee’s ability and his/her expected score on the 

whole test: the higher the ability, the higher the score he/she is expected to achieve.  

Several IRT models that vary in assumptions and in item parameters required to 

define the ICC are available. For dichotomous data, IRT models can be classified into 

one-, two- and three-parameter models depending on how many item parameters are 

incorporated in the model. In the one-parameter model, also called the Rasch model, 

named after its developer, only the b parameter or the item difficulty parameter is 

incorporated. Item difficulty is the point on t he ability continuum at which individuals 

have a 50% chance of answering the item correctly. Statistically, the Rasch model can be 

expressed by the following equation which defines the ICC:  
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( )
)exp(1

)exp(

i

i
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−+

−
=

θ
θθ      (2.3) 

What is expressed in the equation is that the probability of a randomly selected examinee 

with ability θ  succeeding on an item i is a function of the ability level of the person θ  in 

relation to the difficulty level of the item bi. In the model, exp = e is the natural logarithm 

base and has a value of roughly 2.718. In the Rasch model, it is assumed that the all items 

have the same discrimination and there is no guessing. 

In the two-parameter model, a s econd item parameter, the item discrimination 

parameter, a, is incorporated. The addition of a allows the examination of item 

discrimination, which refers to how well the item can distinguish among individuals with 

different latent trait levels. Statistically, the two-parameter model can be expressed by the 

following equation:  

( ) [ ]
[ ])(exp1

)(exp

ii

ii
i bDa

bDap
−+

−
=

θ
θθ     (2.4) 

where D is a scaling factor and is customarily set to equal to 1.7. It is also assumed that 

there is no guessing in this model.  

In the three-parameter model, a third parameter c, the pseudo guessing parameter 

is incorporated, which estimates the likelihood of examinees getting an item correct by 

guessing. The three-parameter model can be expressed by the following equation:  

( ) [ ]
[ ])(exp1

)(exp)1(
ii

ii
iii bDa

bDaccp
−+

−
++=

θ
θθ   (2.5) 
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For polytomous data, two popular models are available, which are both extended 

from the two-parameter model. One is the graded response model (GRM) developed by 

Samejima (1969, 1997). In the GRM, an item i has m ordered polytomous categories. The 

GRM specifies the cumulative probability of a response in category k or higher versus a 

response in categories lower than k and incorporates another parameter, the category 

parameter. The probability that an examinee obtains a certain score category is explained 

as follows,   

( ) ( ) ( )θθθ *
1

*
+−= kikiki ppp    (2.6) 

where ( )θ*
kip  and ( )θ*

1+kip  represent the cumulative probability of a response above 

category k and k+1  for item i and  

( ) =θ*
kip

[ ]
[ ])(exp1

)(exp

iki

iki

bDa
bDa
−+

−
θ

θ
  (2.7) 

where bik is the so called item-category threshold parameter, ai 
is the discrimination 

parameter for item i. Another model for polytomous data is the generalized partial credit 

model (GPC) developed by Muraki (1992). In the GPC, the probability of choosing a 

category k for an item i is expressed by the conditional probability of responding in 

category k, given the probability of responding in categories k – 1. The models are 

constructed by recursively applying a dichotomous model to the probability of choosing 

category k over another adjacent category k -1 for each pair of binary categories. The 

probability function of scoring in category k on item i given the examinee’s trait level, θ, 

for the partial credit model is defined as:  
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   (2.8) 

where biv is the so called item step parameter, ai 
is the discrimination parameter for item i. 

All IRT models share some common assumptions. The first assumption is 

unidimensionality. It assumes that there is only one underlying trait (latent trait) which 

decides the performance of examinees. However, this assumption is hardly tenable in 

practice since there are always cognitive, personality, and test taking factors that may 

affect test performance. So if test performance can be determined by a dominant factor, 

that is, the examinees’ ability, this assumption is considered met. The assumption of 

unidimensionality also implies another assumption: local independence, which means 

that when examinees’ ability is held constant, there is no ot her reason which could 

explain examinees’ performance. Or the test performance of examinees at the same 

ability level is independent, so the response of an examinee to one item will not affect 

his/her response to the next one. 

The Transformation of IRT Scales 

Since invariance of item parameters is assumed in an IRT model, theoretically, 

there is no need for equating. The item parameters, once calibrated, can theoretically be 

used to estimate the abilities of any group of examinees. However, it is not completely 

true in real testing practice. The invariance feature will hold only if there is a single 

calibration in which a scale is set up. If two test forms are administered to different 

groups of examinees sampled from different populations and item parameters for the two 
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forms are estimated separately, then the item parameter estimates for the two forms will 

in general be on di fferent IRT scales. This is due to the intrinsic indeterminacy of the 

latent variable scale in IRT, that is, there is not an absolute origin and unit of 

measurement for the latent variable scale. To resolve this problem, the scale, which could 

be either the persons or the items because in IRT they are on the same metric, is often 

arbitrarily set as having a mean of 0 and a standard deviation of 1 for the set of data being 

analyzed when conducting IRT analysis to fix the metric. Since the mean and the 

standard deviation are usually different for different groups, item parameter estimates are 

also usually not on a same scale. This indeterminant nature has an impact on how 

equating is conducted under different equating designs (Kolen & Brennan, 2004).  

In the single group design, the examinees take both test forms and the parameters 

for the two forms are estimated together in a single calibration on the same examinees, so 

the parameters are assumed to be on the same scale. And there is no need for further 

action. In the equivalent/random groups design, if the same scaling convention of mean 

of 0 a nd standard deviation of 1 i s used in separate calibration, then the parameter 

estimates for the two forms can be assumed to be on the same scale without further 

transformation. This is because the groups are randomly equivalent and the abilities are 

scaled to have the same mean and standard deviation in both groups. If different scaling 

conventions are used in the equivalent groups design, then a transformation is needed to 

adjust the differences in the scaling convention to make scores and item parameters on 

two IRT scales comparable. When conducting equating with nonequivalent groups as in 

the NEAT design, the parameter estimates that result from different calibrations are often 
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different on IRT scales. Thus, a transformation of IRT scales is also needed to convert 

one scale to the other. Actually as the NEAT design is the commonly used one (Kim & 

Hanson, 2002; Peterson, 2007) or even the most prevalently used one in practice (Cook, 

2007), it is the focus of IRT equating methods and related IRT equating studies because 

most studies are based on this design and the present study takes no exception.  

Kolen and Brennan (2004) show that the relationship between the two sets of item 

parameters from two separate calibrations is actually a linear one. So equating tests under 

IRT involves estimating two constants for a linear transformation that can be used to 

convert the item parameter estimates from one scale to the other one. If there are two 

scales, J and I and we use θJ for scale J and θI for scale I, then the values on the two 

scales are related as follows: 

θJ  = A θI + B      (2.9) 

where A and B are the constants of the linear function. A and B are often referred to as 

linking coefficients. Given the relation in equation (2.9), the item parameters on the two 

scales should also be related as follows (Baker 1992; Kolen & Brennan, 2004; Lord, 

1980):  

  aJj = 
A

jIa
      (2.10) 

bJj =  AbIj + B      (2.11) 

and  

 cJj= cIj       (2.12) 
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where aJj, bJj, and cJj are the item parameters for item j on scale J and aIj, bIj, and cIj  are the 

item parameters for item j on scale I. The pseudo guessing parameter c is independent of 

the scale transformation as is shown in equation (2.12).  From equations (2.10) and (2.11), 

it is easy to get that  

A = 
jJ

jI

a
a

      (2.13) 

B =  bJ j – AbI j      (2.14) 

 Equations (2.13) to (2.14) show the relationship between the two scales via the 

link by just one item administered to two different groups of examinees. In practice, a set 

of items is always used to link different test or test forms as in the NEAT design. Kolen 

and Brennan (2004) demonstrate that from equations (2.13) and (2.14), it follows that  

A  = 
)(
)( )

J

I

a
a

µ
µ

   

     = 
)(
)(

I

J

b
b

σ
σ

      (2.15) 

)()( IJ bAbB µµ −=      (2.16) 

Where )( )Iaµ and )( Jaµ are the means of the a parameters of the common set of items 

from both scales, )( Jbµ  and )( Ibµ  are the means of the b parameters of the common 

items from both scales, and )( Jbσ and )( Ibσ are the standard deviations of the b 

parameters of the common items from both scales.  

Equations (2.15) to (2.16) are just theoretical models. In real testing situations, the 

true item parameters are seldom known and item parameter estimates are only available. 
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As a result, the linking coefficients have to be properly estimated so as to minimize 

linking error due to sampling error. There are different approaches to estimate the 

appropriate A and B values for the transformation of different IRT scales when separate 

calibration is conducted for each test or test form; hence, there are different IRT linking 

methods. These methods are introduced in the following section. 

 Four IRT Linking Methods Following Separate Calibration 

 Four commonly used IRT linking methods are mean/mean, mean/sigma, Haebara, 

and Stocking-Lord methods. In mean/mean method as described by Loyd & Hoover 

(1980), the means of a parameter estimates for the common items of the two scales are 

used to replace the parameters in equation (2.15) to estimate the slope A and the means of 

b parameter estimates from the common items are used to replace the parameters in 

equation (2.16). This method can be summarized in the following equations: 

−

A  = 
)(

)(
_

J

I

a

a

µ

µ
−

      (2.17) 

)()(
−−−−

−= IJ bAbB µµ      (2.18) 

where 
−

A  and 
−

B  are the linking coefficient estimates, )(
−

Iaµ and )(
_

Jaµ  are the means of 

the a parameter estimates from the common items in scale I and J respectively, and 

)(
−

Jbµ and )(
−

Ibµ ) are the means of the b parameter estimates from the common items in 

both scales.  

 In the mean/sigma method as described by Marco (1977), the standard deviations 

and means of the b parameter estimates from the common items are used to replace the 
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parameters in equations (2.15) and (2.16). As a result, the equation for estimating the B 

constant in the mean/sigma method is the same as in the mean/mean method. The 

difference lies in how the A constant is estimated. This method can be summarized as in 

the following equations.  

)()(
−−−−

−= IJ bAbB µµ      (2.18) 

−

A = 
)(

)(
−

−

I

J

b

b

σ

σ
      (2.19) 

where )(
−

Jbσ  and 
−

Ib(σ ) are the standard deviations of the b parameter estimates of the 

common items from both scales and the equation for estimating the B constant remains 

the same as in the mean/mean method.  

Equations (2.17), (2.18) and (2.19) are appropriate for the dichotomous IRT 

model. Cohen and Kim (1998) extended these methods to the polytomous IRT model. 

For the mean/mean method, the means of the category or step parameter estimates of the 

common items from both scales are calculated then substituted for the parameters in 

equation (18). For the mean/sigma method, the means and the standard deviations of the 

category or step parameter estimates of the common items from both scales are calculated 

then substituted for the parameters in equation (2.18) and (2.19).  

The moment methods follow a very straightforward way to transform the scales 

by substituting the means and standard deviations of the item parameter estimates of the 

common items. So they are conceptually simple and computationally easy. However, 

Kolen and Brennan (2004) pointed out one potential problem with the moment methods, 
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that is, the item parameters are not considered simultaneously. The characteristic curves 

of the common items from different groups are supposed to be the same or very similar 

after the parameter estimates are transformed onto a same scale. The characteristic curve 

of an item is determined simultaneously by the a-, b-, and c- parameters. In the moment 

methods, all the item parameters are treated separately. In this case, the moment methods, 

especially the mean/sigma method could be overly influenced by the differences between 

the b- parameter estimates. In contrast, the two characteristic curve methods developed 

by Haebara (1980) and Stocking and Lord (1983) consider all the item parameters 

simultaneously and therefore, are more complicated. The two characteristic curve 

methods attempt to find the linking coefficients that minimize the difference in test 

characteristic curves between the common items in different groups. The following figure 

gives a hypothetical example of test characteristic curves of two forms.  

Fig 2.2 Hypothetical TCCs of Two Test Forms 
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As can be seen from the above graph, there are gaps between the two TCCs at 

different θ levels. The characteristic curve methods’ strategy is to take the parameters of 

the items common to both measures and apply a transformation to them to find two 

equating coefficients A and B such that the TCC of one form, usually the new form, is as 

similar as possible to that of the other, usually the old form. To put it in another way, the 

characteristic curve methods find two equating coefficients that minimize the differences 

between the two TCCs. 

The difference between the two characteristic curve methods lies in how they 

express the difference between the item characteristic curves.  

Stocking and Lord (1983) expressed the difference between the characteristic 

curves as the square of the sum of the difference between the item characteristic curves 

for each item for examines of a particular ability θ. For a given θi , the sum of the squared 

difference over the common items (j:V) can be displayed in the following equation 

according to Kolen & Brennan (2004): 

2

: :
)ˆ,ˆ,
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a

pcbapSLdiff θθθ  (2.20) 

Then SLdiff is then cumulated to get∑
i

iSLdiff )(θ . The SLdiff can be cumulated in 

different ways. One is to sum over the examinees who are administered one form, usually 

the old form to get∑
N

i
iSLdiff )(θ , where N is the number of examinees who take the old 

form. Another is to sum over an arbitrary set of quadrature points along the ability scale 
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to get∑
Q

i
iSLdiff )(θ , where Q is the number of the quadrature points within the theta 

scale and θi is the theta value at the i-th quadrature point. The next and final step is to find 

the combination of A and B in equation (2.20) through a multivariate search that 

minimizes∑
i

iSLdiff )(θ .  

In contrast to the Stocking-Lord method, Haebara (1980) expressed the difference 

between the characteristic curves as the sum of the squared difference between the item 

characteristic curves for each item for examinees of a particular ability (Kolen & Brennan, 

2004). For a given ability θi , according to Kolen and Brennan (2004) the sum of the 

squared difference over the common items can be displayed : 
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A
a

pcbapHdiff θθθ  (2.21) 

The summation is over the common items (j:V). Then Hdiff is cumulated over all 

examinees to get∑
i

iHLdiff )(θ in the same way as how ∑
i

iSLdiff )(θ is cumulated. 

The next and final step is to find the combination of A and B that minimizes 

∑
i

iHLdiff )(θ .  

Equations 2.20 a nd 2.21 c onceptually describe how the characteristic curve 

methods work. As can be seen from the equations, the characteristic curve methods are 

more complicated than the moment methods. The mathematical procedure to find A and 
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B is also very complicated and computationally intensive. The application of the 

characteristic methods in practice often requires specially developed computer programs.  

 

Characteristics of the Anchor Test  

Equating designs have two key components: the design for data collection and the 

statistical model used to equate the score. As mentioned previously, the NEAT design 

provides great administrative flexibility and probably is the most prevalently used design 

in practice (Cook, 2007). However, this design is also the most difficult one to implement 

(Cook, 2007). In this design, the groups taking different tests or test forms are not 

considered to be equivalent. The central purpose of the anchor test is to separate group 

differences from form differences. However, studies have shown that different choices 

for anchor tests may have different equating results. Cook, Eignor, and Taft (1985) 

contrasted the equating results of using four different anchor tests to equate two forms of 

a biology test and the results of equating based on different sets of common items are not 

always the same. Cook and Petersen (1987) later discussed the results and pointed out 

that when the groups are similar in ability, the various anchor tests yield similar equating 

results and when the groups differ in level of ability, the different anchor tests yield very 

disparate equating results. So special care must be taken when selecting the set of 

common items constituting the anchor test (Cook & Petersen, 1987).  

For this design to function well, a number of considerations have to be taken into 

account on how to choose the anchor test or common items, especially when the groups 

differ in level of ability. Some important considerations of the anchor test include content 
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representativeness, length of the anchor test and whether an item shows differential item 

functioning (DIF) or not. To reflect group differences accurately, the set of common 

items should be proportionally representative of the total test in content. That is, the 

common-item set should be a “mini-version” of the total test form (Kolen & Brennan, 

2004).  

Content Representativeness 

Content representativeness means that anchor tests should be built to have the 

same specifications proportionally as the test itself. Klein and Jarjoura (1985) defined 

content representativeness as a match between anchor test and total test of the percentage 

of items in each of the several content areas. Whether the anchor items are representative 

of the overall items of tests being equated, in terms of content and statistical properties is 

especially important when groups vary in ability (Budescu, 1985; Cook & Pertersen, 

1987). Budescu (1985) pointed out that the magnitude of the correlation between the 

anchor test and the unique components of each test form was the single most important 

determinant of the efficiency of the equating process. Brennan and Kolen (1987a) also 

pointed out that any substantial content change entailed a re-scaling of the test with a new 

“origin” form to which subsequent forms were equated. Klein and Jaroura (1985) 

evaluated the importance of the content representativeness of the anchor test and 

concluded that it was quite important to use content representative anchors with 

nonrandom groups and a failure to do so may lead to substantial equating errors. Cook 

and Petersen (1987) reported that inadequate content representation of the common-item 
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set creates especially serious problems when the examinee groups that take the alternate 

forms differ considerably in achievement.  

Length of Anchor Test 

Long tests are usually more reliable than short tests. So anchor tests have to be 

long enough to provide reliable measures so as to reflect group differences accurately. 

Too few common items could lead to equating problems (Petersen et al., 1983) while a 

larger number of common items results in less random equating error (Budescu, 1985; 

Wingersky et al., 1987). Klein and Kolen (1985) investigated the relationship between 

anchor-test length and accuracy of equating result and concluded that longer anchors did 

result in more accurate equating when the groups of examinees are dissimilar. However, 

long anchor tests also add to the burden of cost and time, especially when used as an 

external anchor.   

There are no uni versal guidelines for selecting the length of the anchor. When 

considering the length of the anchor tests, Budescu (1985) suggested that each testing 

program needs to take into account the time, cost and context constraints as well as the 

particular index of efficiency when determining the length of the anchor test for its 

specific purposes; Kolen and Brennan (2004) pointed out that in constructing the 

common item sections, they should be long enough to represent test content adequately.  

 Although there is no absolute standard in regard to an appropriate length of an 

anchor test, a rule of thumb is given by Angoff (1984) that the appropriate number for 

anchor items should be at least 20 items or 20 percent of the total number of items in a 

test, whichever is larger. Kolen and Brennan (2004) recommended a similar rule of 
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thumb: the common item set should be at least 20 percent of a total test containing 40 or 

more items, unless the test is very long, in which case 30 common items might suffice.  

 Other numbers were also proposed as appropriate for the length of the anchor. 

Based on t heoretical values of standard errors of item estimates, Wright (1997) 

considered 10 t o 20 common items as sufficient for most equating situations and 10 

common items may be adequate if the items are good. Mckinley and Reckase (1981) 

investigated effects of anchor test length on precision of the item parameter estimates and 

concluded that a 5-item anchor might be adequate but a 15-item anchor was suggested. 

Raju, Edwards, and Obsberg (1983) and Lord (1980) suggested that as few as five or six 

carefully chosen items could perform as satisfactory anchors in IRT equating when the 

items parameters of both tests were estimated in a s ingle analysis using IRT concurrent 

methods. Hills, Subhiyah, and Hirsch (1988) studied the effects of anchor test length and 

found that five randomly chosen anchor items of a mathematics test were not sufficient to 

produce satisfactory equating results. An anchor of 10 i tems was found satisfactorily 

sufficient when an IRT method was adopted.  

 No DIF Items in the Anchor Test 

 Differential item functioning, or simply DIF, is present when individuals of the 

same ability but from different groups have different probabilities of success on a given 

item (Hambleton et al., 1991). Items showing DIF do not  behave in the same manner 

across different groups. If test items operate in a different fashion, then the scores for 

different groups are not comparable. When the anchor test consists of DIF items, they 

tend to lower the reliability and validity of the anchor test and pose a serious threat in the 
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accurate detection of the group differences. So when an anchor test is used, differential 

item functioning analyses should be run to evaluate whether the items on the anchor test 

perform in the same way across different tests or test forms. In practice, the common 

items should be administered in approximately the same position across different test or 

test forms to avoid having the common items function differently across groups (Cook & 

Petersen, 1987).   

 

Construct/Trait Equivalence of MC and CR Items 

According to Frederiksen (1984), item format affects the meaning of the test 

scores by restricting the nature of the content and processes that can be measured. 

Tatsuoka (1991) thinks that multiple-choice items are suitable for measuring static 

knowledge. In the same line of research, researchers argue that multiple-choice 

assessments tend to encourage the teaching and learning of discrete facts and 

decontextualized procedures as well as rote memorization at the expense of deep 

conceptual understanding and the development of problem-solving skills (Resnick & 

Resnick, 1992; Shepard, 1991).  

The limitation of MC items in measuring in-depth knowledge has prompted a 

search for alternatives to multiple-choice testing (Pollack, Rock, & Jenkins, 1992). CR 

items are thought to offer such an alternative. The primary motivation for the use of 

constructed-response formats thus stems from the idea that they can measure traits that 

cannot be tapped by multiple-choice items, for example, assessing dynamic cognitive 

processes (Bennett, Ward, Rock, & Lahart, 1990; Fiske, 1990; Fredericksen & Collins, 



37 

1989; Guthrie, 1984; Nickerson, 1989), identifying students' misconceptions in 

diagnostic testing (Birenbaum & Tatsuoka, 1987), and communicating to teachers and 

students the importance of practicing real-world tasks (Sebrechts, Bennett, & Rock, 

1991). 

A key assumption of IRT is that of unidimensionality, which assumes that there is 

only one underlying trait (latent trait) that decides the performance of examinees. To 

apply IRT models to mixed-format tests, MC items and CR items have to be calibrated 

together; a critical question to ask is: Do MC and CR items measure the same construct? 

Or to put it in a different way, is a mixed-format test unidimensional? The answer to the 

question affects the appropriateness of the use of unidimensional IRT models for mixed-

format tests.  

Messick (1993) regards the comparability of construct between multiple-choice 

and constructed-response items in a single test as an issue of trait equivalence and trait 

equivalence is an important part of evidence for construct validity. This psychometric 

issue has been raised in one form or another from almost the day that MC items were first 

used to test human subjects (Hogan, 1981; Traub & MacRury, 1990; cited in Traub, 

1993). Many empirical studies were conducted to investigate this issue following 

different approaches. These studies can be categorized into two groups based on t he 

methods used to examine trait equivalence. Some reported correlations between the two 

formats and some used factor analysis.  
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Correlational Studies  

The correlational studies were based on the traditional psychometric framework, 

which examines whether or not different measures may be considered to be congeneric, 

that is, whether they have perfectly correlated true-scores (Joreskog, 1971; Lord, 1973 

cited in Messick, 1993). In correlational studies, correlations between forms composed of 

MC items and forms composed of CR items are reported. Because measurement errors 

may affect the true-score correlations and different formats may differ in measurement 

precision, the reported correlations are usually corrected using the estimated reliability 

for attenuation due to measurement error as follows: 

yyxx

xy
correctedxy rr

r
r =.     (2.22) 

Where rxy is the estimated correlation between forms X and Y and rxx  and ryy  are 

the estimated reliability of forms X and Y respectively.  

In his review of the related studies, Rodriguez (2003) pointed out three primary 

types of investigations regarding the construct equivalence of MC and CR items. The first 

type employs stem-equivalent items in both formats, where the CR items use the same 

stem as the MC items without the options (in some cases with minor editing to make the 

stem sensible). The second type employs content-equivalent items with independent 

stems, where these items in the two formats tap the same content and cognitive domains. 

The third type employs CR items that are qualitatively different than the MC items and 

they were explicitly written to tap a different aspect of the content domain or cognitive 

ability. Examples of such CR items include an essay item or an extended-response item.  
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The investigation of trait equivalence began with correlational studies. Rodriguez 

(2003) located a total number of twenty-nine correlational studies dated back to 1925. Of 

the twenty-nine studies, eleven used stem-equivalent forms. Six studies reported 

correlations at unity (Ackerman & Smith, 1988; Davis & Fifer, 1959; Frisbie & Cantor, 

1995; Heim & Watts, 1967; Magill, 1934; Smith & Smith, 1984, c ited in Rodriguez, 

2003). The remaining five studies reported lower corrected correlations of between 0.78 

and 0.95 ( Hurd, 1932; Hurlbut, 1954; Ruch & Stoddard, 1925; Thiede, Klockars, & 

Hancock, 1991; Traub & Fisher, 1977, cited in Rodriguez, 2003).  

Of the remaining eighteen studies, six used content-equivalent forms. These 

studies reported corrected correlations ranging between 0.68 and 0.98, mostly near 0.92 

(DeMars, 1998; Hancock, 1992; Harke, Herron, & Leffler, 1972; Paterson,1926; Vernon, 

1962; Ward, 1982, cited in Rodriguez, 2003). 

The other twelve studies used essay items or CR items that were neither stem-

equivalent nor content-equivalent. These studies reported corrected correlations ranging 

from 0.48 to 0.90 and mostly near 0.80 (Bennett, Rock, Braun, Frye, Spohrer, & Soloway, 

1990; Bracht & Hopkins, 1970; Breland & Gaynor, 1979; Coffman, 1966; Fisher, 1996; 

Godshalk, Swineford, & Coffman, 1966; Hogan & Mishler, 1980; Horn, 1966; Loyd & 

Steele, 1986; Manhart, 1996; Moss, Cole, & Khampalikit, 1982, c ited in Rodriguez, 

2003). 

Although according to the definition of trait equivalence described by Traub 

(1993) that the true-score correlations of unity suggest trait equivalence, coefficients of 

correlation less than one often arise as a consequence of measurement error, so higher 
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correlations are often considered as evidence for trait equivalence. The review of 

correlational studies showed mixed results. The reported correlation coefficients range 

from as low as 0.4 to as high as unity.  After a close examination of the methods used in 

different studies, Rodriguez (2003) found that the magnitude of the correlations is related 

to the item design characteristics. Where the items are more similar (particularly stem-

equivalent), the resulting corrected correlations tend to be higher. Where the items in the 

two formats are more dissimilar (particularly with the use of essay-type items), the 

corrected correlations are lower. One limitation with the correlational studies is that MC 

items and CR items had to be treated as two separate tests by design in these studies for 

the calculation of correlation coefficients and therefore correlational studies could not 

examine whether MC items and CR items measure the same construct in a whole single 

test, that is, they could not provide direct evidence whether the mixed-format test is 

unidimensional.   

Studies Using Factor Analysis  

One way to examine whether MC and CR items measure the same construct 

simultaneously is to conduct factor analysis and the dimensionality of mixed-format tests 

has been examined by several researchers using factor analysis. In a study of the College 

Board's Advanced Placement Computer Science (APCS) examination, Bennett, Rock, 

and Wang (1991) posed a two-factor confirmatory factor analysis (CFA) model 

composed of multiple-choice and free-response (CR) factors to test the relationship of the 

skills measured by the multiple-choice and free-response items. They found that the MC 

items have high loadings on the MC factor and CR items have high loadings on the CR 
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factor and a two-factor model fit the data reasonably well. However, the two factors were 

highly correlated (r =.93 and .97 for two samples). So next they fit a one-factor model 

restricting all items to load on the same factor and found that little or no loss in fit 

occurred in moving from the two-factor model to the one-factor model. They concluded 

that one-factor model provided the most parsimonious model fit.  

In their study of the Analytical scale of the Graduate Record Examination (GRE) 

General Test, Bridgeman and Rock (1993) took a similar approach to what Bennett et al. 

(1991) did by posing a two-factor CFA model to the data. The findings are also similar. 

MC items and CR items have higher loadings on two different factors respectively but the 

two factors have very high correlations (r = .93). They concluded that the open-ended 

version (CR items) does not appear to tap any significantly different new dimension and 

despite the apparent differences in the surface features of the tasks in the different 

formats, the underlying skills may be nearly identical.  

In another study, Thissen, Wainer, and Wang (1994) examined the relationship 

between MC and CR sections of the computer science and chemistry tests of the College 

Board's Advanced Placement Program using an alternative approach. Instead of fitting a 

two-factor model to the data, they posed what they called a “general-plus-specific” model 

to the data. This model restricted all items to load on one general factor and the CR items 

to load on a separate factor. One advantage of this approach is that it makes it possible to 

compare the factor loadings of the CR items on different factors. After comparing the 

result of their “general-plus-specific” model to those of the two-factor model and one 

factor model by Bennett et al. (1991) for the APCS, Thissen et al. (1994) concluded that 
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their model fit the data considerably better and there are clearly free-response factors. 

However, they also found that although these free-response factors have loadings that are 

significantly different from zero, they account for relatively little of the observed 

covariance among the items. The loadings of the free-response items on the free-response 

factors are uniformly smaller than the loadings of the free-response items on the general 

factor. So their conclusion is that the free-response items measure the same proficiency as 

the multiple-choice items for the most part.  

Ercikan and Schwarz (1995 cited in Ercikan, Schwarz, Julian, Burket, Weber, & 

Link, 1998) examined the relationship between MC and CR items in reading, 

mathematics and science tests in a state assessment program. These researchers found 

that the two-factor model, with separate factors for each item type, fit the data 

consistently better than the one-factor model. Although the two factors are highly 

correlated with correlation coefficients between 0.71 a nd 0.8 for the three tests, they 

concluded that CR items in this study measure a different construct than their MC 

counterparts in all three content areas  

Pollock and Rock (1997) also examined the relationship between MC items and 

CR items in the mathematics and science tests in the High School Effectiveness Study 

(HSES) of the National Education Longitudinal Study of 1988 (NELS:88). They first 

conducted an exploratory factor analysis to examine the factor structure of the two tests. 

Two distinct factors were identified in each of the two tests, and were associated with the 

two different test formats, that is, all of the CR questions had high factor loadings on one 

factor, and all of the MC questions loaded on the other. Next, they tried to fit a two-factor 
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CFA model to the data to “statistically reproduce the results of the exploratory solutions” 

(p.37). They did not report how the model fit the data but reported that MC items had 

high loadings on t he MC factor and CR items on t he CR factor and the correlation 

between the two factors was .86. They concluded that although the correlation between 

the two factors is relatively high, it s till is low enough to suggest that while they share 

much in common, the two formats still have some unique variance.  

Tian (2009) examined the assumption of unidimensionality of the 12 booklets of 

the science and mathematics test of the Trends in International Mathematics and Science 

Study (TIMSS), which consists of both MC and CR items by fitting a one-factor CFA 

model to the data using samples from four different countries. The results are mixed. 

Some booklets in both content areas show a good model fit and some do not. The twelve 

booklets in both content areas are of different lengths. All the booklets where the 

unidimensionality assumption does not hold are those with fewer items (less than 30) in 

that subject. The assumption holds pretty well for booklets with more items (more than 

50) in that subject.   

Like the correlational studies reviewed previously, studies using factor analysis 

also showed mixed findings. It is especially interesting to see studies using the same 

method draw different conclusions. Bennett et al. (1991) and Ercikan & Schwarz (1995 

cited in Ercikan et al., 1998) both  fit a one-factor model and a two-factor CFA model to 

the data,  but after comparing the two models  Bennet et al. (1991) found that the one-

factor model provides the most parsimonious fit and concluded that MC items and CR 

items measure the same construct while Ercikan & Shwarz (1995, cited in Ercikan et al. 
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1998) found that the two-factor model fit better than the one-factor model and concluded 

that CR items measure a different construct than their MC counterparts. Bridgeman & 

Rock (1993) and Pollock & Rock (1997) both fit a two-factor model to the data. In spite 

of the similar results that the two factors were highly correlated, they drew somewhat 

different conclusions.   

 

Research Studies Comparing Different Equating Methods 

Since the advances in computer technology permitted the application of IRT 

around late 1970s and early 1980s, interest in equating research has intensified (Skaggs & 

Lissitz (1986a). IRT equating has been researched and compared empirically in many 

studies. Skaggs and Lissitz (1986a) provided a comprehensive review of the early 

literature concerning IRT equating methods. Their review shows that the focus of many 

early equating studies was on t he comparison of effectiveness between IRT equating 

methods and conventional equating methods such as linear equating and equipercentile 

equating and on the development of new equating techniques.  

One comparative study was conducted by Marco et al. (1983). In this study, the 

anchor test design was used. Linear equating, equipercentile equating and IRT 

characteristic curve equating using the one-parameter model and the three-parameter 

model were examined under a variety of conditions including random and dissimilar 

samples, the relative difficulty levels of the anchor test to the total tests and unequal 

difficulty of the two tests. When tests of equal difficulty were equated, the following 

conclusions were drawn from the study. When the anchor test was equal, the type of 
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sample mattered very little and all the methods performed well except one of the 

variations of equipercentile method. When the anchor test was easier or more difficult 

than the total tests, equating with random samples showed very little error. On the other 

hand, in the case of dissimilar samples, the IRT methods were greatly superior to the 

conventional methods regardless of which IRT model was used. When tests of unequal 

difficulty were equated, the IRT method using the three-parameter model was superior 

while the linear method and IRT method using the one-parameter model displayed larger 

total error.  

Kolen (1981) also conducted a study comparing linear equating, equipercentile 

equating and the IRT mean and sigma equating method using the one-parameter model 

and the three-parameter model for tests of equal difficulty level and of different difficulty 

level using the random group design. The results showed that in general the IRT equating 

using the three-parameter model and the equipercentile equating performed well whether 

the tests to be equated were of similar or dissimilar difficulty. Linear equating performed 

well when the equating tests were of similar difficulty. IRT equating using the one-

parameter model did not produce satisfactory results. Kolen (1981) attributed the 

inadequacy of the IRT equating using the one-parameter model to failure to account for 

guessing in the model. This conclusion is consistent with the findings from Skaggs and 

Lissitz (1986b) that the one-parameter model equating worked well when the same 

degree of chance scoring (guessing) was present in both tests and that when test 

discriminations or the degree of chance scoring were unequal between the two tests, the 

one-parameter model was inadequate.   
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Another comparative study was conducted by Petersen et al. (1983), in which 

different IRT equating methods were compared against the linear equating method and 

the equipercentile equating method for the SAT-Verbal and SAT-Mathematical tests. In 

this study, one form of the SAT was equated to itself through several intervening forms. 

Each equating in this chain was conducted using the anchor test design. Three IRT 

equating methods involved in this study were the concurrent calibration method, the 

Stocking- Lord method and what is referred to as the “fixed b’s method”. In the fixed b’s 

method, the anchor tests were calibrated together with the first test. Then, the item 

parameter estimates for the anchor test were fixed to estimate the item parameters for 

other tests so that all the item parameters from different tests were automatically placed 

on the same scale. All the IRT equating methods were based on t he three-parameter 

model. Their results showed that all the three IRT equating methods produced 

substantially smaller errors than any of the conventional methods for the Verbal test and 

they performed similarly to the linear equating method for the Mathematics. The 

equipercentile equating method produced the worst results. This was mainly because no 

smoothing was used for this method in their study. Of the three IRT equating methods, 

the concurrent calibration method produced the most stable results overall.  

 Other studies that compared IRT equating methods and conventional equating 

methods include Cook, Dunbar, and Eignor (1981), Cowell (1981), Kolen and Whitney 

(1982), and Skaggs and Lissitz (1986b).  

One general finding from many comparative studies is that IRT equating methods, 

especially those using the three-parameter model, perform as well as, if not better than, 
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the conventional methods. However, the superiority of IRT equating over conventional 

equating is not consistent. Violation of the unidimensionality assumption is a potentially 

major source of problems for IRT equating (Skaggs & Listz, 1986a). Also small sample 

size may lead to poor performances of IRT equating. This is because the application of 

IRT models often requires a l arge sample size to get stable parameter estimates. For 

example, Patience (1981) found that IRT equating was outperformed by equipercentile 

equating when equating tests of different difficulty with a sample size of 1,000 for each 

test. He suggested that small sample size might be a co ntributing factor because the 

estimation procedure had difficulty converging. Another study by Kolen and Whitney 

(1982) found that with small sample sizes (170-198), a number of extreme item 

parameter estimates were produced with the IRT model. This suggests a problem with the 

estimation procedure that contributed significantly to equating errors, a finding consistent 

with Patience’s results. So Skaggs and Listz (1986a) do not  recommend the use of the 

three-parameter model IRT equating with small sample sizes (less than 1,000 responses 

per item) because the equating results will not be accurate.  

Studies were also conducted to compare different IRT equating methods. The 

focus of the studies was first on t he comparison between different methods for the 

dichotomous IRT models. One study (Ogasawara, 2000) compared the two moment 

methods using simulated data and real data and concluded that the mean/mean method 

produced linking coefficients with smaller standard errors and therefore was superior to 

the mean/sigma method. More studies focused on comparing characteristic curve 

methods to the moment methods. Baker and Al-Karni (1991) compared the Stocking-
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Lord method and the mean/mean method using both simulated data and real data and 

found that the two methods produced similar linking coefficients in real data settings and 

the Stocking-Lord method recovered the true parameters with less error than the 

mean/mean method using simulated data. Ogasawara (2001a, 2001b) also compared the 

characteristic curve methods, which are referred to as the test response functions (TRFs) 

method in the studies and the mean/mean method using both simulated and real data and 

concluded that the former produced more stable results than the latter. Other comparative 

studies include Hanson and Beguin (2002), Kim and Cohen (1992) and Way and Tang 

(1991). A common finding from all these studies is that the characteristic curve methods 

(the Stocking-Lord method and the Haebara method) are more accurate than, and should 

be preferred over, the moment methods. Studies were also conducted to examine the 

performance of the Stocking-Lord method to that of the Haebara method and found that 

both methods produced very similar results (Way & Tang, 1991; Hanson & Beguin, 

2002).  

Concurrent calibration was also compared to the four equating methods following 

separate calibration. Petersen et al. (1983) compared the results using different IRT 

equating methods and concluded that concurrent calibration performed somewhat better 

than the Stocking-Lord method. Using simulation procedures in which the data fit the 

3PL model, Kim and Cohen (1998) compared scale linking using the Stocking-Lord 

method to concurrent calibration but drew a somewhat different conclusion. For a small 

number of common items, Kim and Cohen (1998) found that the Stocking-Lord method 

produced more accurate results than concurrent calibration. Both methods yielded similar 



49 

results with a large number of common items. However, Hanson and Buguin (2002) 

pointed out one limitation of this study, that is, different IRT software programs were 

used for separate and concurrent estimation. Thus, the differences between separate 

calibration and concurrent calibration were confounded with the difference between 

computer programs. In order to provide further information concerning the relative 

performance of concurrent calibration versus equating/linking following separate 

calibration, Hanson and Buguin (2002) conducted another study. Also using simulation 

procedures, they compared the two moment methods, the two characteristic methods and 

concurrent calibration. In that study, the concurrent calibration procedures were found to 

produce more accurate results than the characteristic curve methods and as was found in 

many studies, the two moment methods did not perform as well as the characteristic 

methods and concurrent calibration.  

 The comparative studies were also extended to polytomous IRT models. Cohen 

and Kim (1998) conducted a study using simulation procedures to compare the two 

moment methods and the Stocking-Lord method under the graded response model. They 

concluded that the methods produced similar results. Kim and Cohen (2002) compared 

linking using the Stocking-Lord method and concurrent calibration for data that were 

simulated to fit the graded response model. They found that concurrent calibration was 

slightly more accurate.  

Little research has been conducted that compares different equating methods for 

mixed-format tests. Kim and Lee (2004) conducted a simulation study to examine the 

performance of the characteristic methods and the moment methods when linking mixed-
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format tests that consists of MC and CR items. In that study, the MC items were 

calibrated using the 3PL model and the CR items, the GPC model. They concluded that 

the characteristic curve methods are superior to the moment methods, which is consistent 

with the findings from previous studies that deal with single-format tests. No research has 

been done to investigate how the performance of the linking methods following separate 

calibration compares to the performance of concurrent calibration. The present study tries 

to fill the gap.  

 

Overview of Research Methods in Comparative Studies of Equating Methods 

One difficulty in comparing and evaluating different equating methods is that no 

definitive criterion exists, which makes it difficult to judge the relative merits of equating 

methods. Researchers have come up w ith different ways to overcome such difficulty.  

Three commonly used approaches are cross-validation or replication, circular equating 

and simulation.  

 In cross-validation or replication, researchers attempt to replicate or cross 

validate the results found in one sample in another sample. This approach was used in a 

number of studies conducted to compare different equating methods. For example, Kolen 

and Whitney (1982) used the cross-validation method in their comparison of four 

equating methods; Loyd and Hoover (1980) tried to equate several subtests from an 

achievement test battery using the Rasch model. To examine their results, they equated 

the same tests again using examinee groups of comparable abilities  
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When no t rue equating relationship is known, the cross-validation/replication 

method is quite useful because it provides some external criteria for comparing the results 

of the different equating methods. However, the qualities measured by cross-validation or 

replication are not sufficient though they are desirable in equating (Harris & Crouse, 

1993). This is because this method mainly provides a measure of the stability of the 

results by different methods rather than a measure of the accuracy of the equating. 

Moreover, Lord and Wingersky (1984, cited in Harris & Crouse, 1993) have suggested 

that it is possible for inaccurate procedures to yield more stable results than accurate 

procedures. Thus, the results of studies using these criteria fail to address the question of 

which equating is better in a particular situation in terms of which equating is closer to 

the true equating relationship (Harris & Crouse, 1993). 

In circular equating, the test under consideration is equated to itself, usually 

through a chain of intervening test forms. An example of circular equating would be 

equating Form A to Form B, Form B to Form C, and Form C back to Form A. In circular 

equating there could be a different number of intervening forms. The procedure always 

starts with the test under study, which serves as the initial scale. The focus is how closely 

the transformed scale from the circular chain of equating agrees with the initial scale. 

This approach has been used in multiple equating studies. This is the approach Petersen 

et al. (1983) took to compare the performance of a variety of IRT and conventional 

equating methods for a standardized verbal test. Cook and Eignor (1985) equated tests in 

a chain and compared the final and initial conversions in an investigation of the 

feasibility of using IRT methodology to equate achievement tests. Kingston and Holland 
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(1986) used equating in a ci rcle to examine alternate ways of equating the Graduate 

Record Exam. Klein and Kolen (1985) equated a test to itself in an examination of the 

effect of the number of common items in common-item equating with nonrandom groups.  

Circular equating has the advantage of having a known criterion against which to 

compare the accuracy of different equating methods. However, there is some doubt as to 

whether equating a test to itself can really accomplish this and the use of equating in a 

circle as a p aradigm for comparing equating methods has been challenged (Harris & 

Crouse, 1993). Harris and Crouse (1993) reviewed related literature and found several 

problems with this approach. One problem is that equating methods involving the 

estimation of only one or two moments will frequently appear more accurate than 

methods involving the estimation of more moments (such as mean or linear equating 

compared to equipercentile equating). Brennan and Kolen (1987a) cautioned that the use 

of equating in a circle to compare equating methods be limited to those methods that 

estimate the same number of moments. However, in their study of three linear methods, 

Gafni and Melamed (1990) discovered an interaction between the type of linear method 

used and the paradigm used to evaluate them. Based on t heir findings, Gafni and 

Melamed (1990) questioned the use of the circular paradigm even for comparing methods 

with the same number of estimated moments. Another problem with this method 

discussed by Brennan and Kolen (1987b) is that the results obtained may be dependent on 

the form one chooses to start and end on. In their article they provide an example of this 

phenomenon, in which different results are obtained when the equating begins and ends 

on one form rather than on another. 
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Simulation or using simulated/generated data is a technique often used in equating 

studies. This approach has a great advantage over the other two approaches, that is, when 

using simulated data, one knows the true equating relationship he/she is trying to recover 

and therefore, there exists a d efinitive criterion against which to compare different 

equating methods. Simulation has been frequently used in equating studies. For examples, 

Baker and Al-Karni (1991) used both real and simulated data for computing IRT-

equating coefficients to compare two IRT equating methods; Stocking, Eignor, and Cook 

(1988) examined factors affecting the invariant properties of four linear and curvilinear 

equating procedures using simulations; also Way and Tang (1991) compared four 

different equating methods using both real and simulated data. Other studies using this 

approach include Kim and Cohen (1998, 2002), Ogasawara (2000, 2001a, 2001b), and 

Hanson and Beguin (2002). However, the use of simulation is not without problems. First, 

there is also a question of bias accruing to the data-- that is, if the data are generated from 

a specific IRT model, will that bring bias to the results if the same model is also used in 

one of the equating methods being compared (Hwang & Cleary, 1986); also, the 

generated data may not closely resemble the real data to which the study results will be 

applied. Harris and Crouse (1993) suggested that using simulated data is most useful 

when the data closely resembles the real data so that results of the simulation studies 

could be generalized to real data equating situations and when it is accompanied by 

analyses involving the real data.  
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Summary  

This chapter first presented an introduction of the traditional equating methods, 

introduction of the Item Response Theory (IRT), its assumptions and IRT based equating 

methods and an introduction of the characteristics of the anchor test. Then it reviewed 

related literature from three perspectives.  

First, do MC items and CR items measure the same construct or does the 

unidimensionality assumption of IRT hold for mixed-format tests? The review showed 

mixed findings in regard to the construct equivalence of the MC and CR items. Some 

concluded that MC and CR items measure the same construct and some concluded that 

they do not measure the same construct. 

Second, how do different equating methods compare? The review showed that in 

general the IRT equating methods perform as well as, if not better than, the conventional 

methods when the IRT assumptions hold and the sample size is sufficient and that in 

general the two characteristic curve methods perform similarly and better than the two 

moment methods and the concurrent calibration method performs slightly better than the 

characteristic curve methods. 

Lastly, what are the methods used in comparative studies of equating methods? 

The review showed that one widely used technique in those comparative studies is 

simulation. The full research design for this study is presented in Chapter Three.  
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Chapter Three: Methodology 

As reviewed in the previous chapter, there are three commonly used approaches 

in equating studies: cross-validation or replication, circular equating and simulation, each 

with its shortcomings. However, simulation is the technique most frequently used in the 

IRT equating studies that compared linking following separate calibration versus 

concurrent calibration and that compared different linking methods for mixed formats. 

For this reason, this study also used simulated data so that the true equating relationship 

is known.  

 

Instrument  

To mimic a real data situation as Harris and Crouse (1993) suggested, the 

simulated examinee responses were based on actual item parameter estimates obtained 

from the TIMSS 2003 8 th grade Mathematics assessment, which are available from the 

TIMSS 2003 Technical Report (Martin, Mullis, Gonzalez, & Chrostowski, 2004). 

A Brief Introduction of TIMSS 

TIMSS, or Trends in International Mathematics and Science Study, a project of 

the International Association for the Evaluation of Educational Achievement (IEA), is the 

largest and longest running international comparative education study in mathematics and 

science. It is conducted on a 4-year cycle, with the first data collection in 1995. TIMSS 

2003, the third data collection in the TIMSS cycle of studies, was administered at the 

fourth and eighth grade in 49 countries, of which 26 participated at the fourth grade and 

46 at the eighth grade.  
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The TIMSS 2003 Framework (Mullis, Martin, Smith, Garden, Gregory, Gonzalez, 

Chrostowski, & O’Connor, 2003) at the eighth grade categorized mathematics items into 

five content domains, which are respectively, number, algebra, measurement, geometry, 

and data. There were 194 items in mathematics. Of the 194 mathematics items, 66 were 

CR items, requiring students to generate and write their own answers, and the rest were 

MC items with 4 to 5 options. There were two types of CR items: short-answer questions 

and extended-response questions. In scoring the items, correct answers to the MC and 

short-answer questions were worth one point. Responses to extended response questions 

were evaluated for partial credit, with a fully correct answer being awarded two points 

and a partially correct answer being awarded one point. A summary of the TIMSS 2003 

mathematics items by item format and content domain is shown in Table 3.1. 

Table 3.1 Summary of Item Characteristics TIMSS 2003 Mathematics, Grade 8 
  Number of Items 
Item Format Multiple Choice 128 
 Constructed-response 66 
Content domain Algebra 47 
 Data 28 
 Geometry 31 
 Measurement 31 
 Number 57 

 

In TIMSS 2003, a family of IRT models was used in the scaling procedure. For 

MC items, the three-parameter model was used. For CR items, two parameter model was 

used. For extended response items, the GPC model was used; but for short answer items, 

the two-parameter model was used instead of a typically used polytomous IRT model for 
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constructed-response items, because the short answer items had only two response 

options and were scored as correct or incorrect in TIMSS 2003.  

In addition to the 194 mathematics items, there is also a total of 189 science items 

in TIMSS 2003 at 8th grade. It is impossible for every student to complete all the items, 

because it would require much more testing time than could be allotted for individual 

students. Therefore, TIMSS 2003 us ed a matrix-sampling technique that involved 

dividing the entire assessment item pool into a set of unique item blocks, distributing 

these blocks across a set of booklets, and rotating the booklets among the students. Each 

student took just one booklet.  The TIMSS design for 2003 divided the 194 mathematics 

items at eighth grade into 14 item blocks. Each block contained 12-15 content-balanced 

mathematics items. 

The Instrument in This Study 

For this study, a total of 70 items were selected from the 194 items including 55 

MC items and 15 extended response items to create under different simulated conditions 

two mixed-format test forms: Form A and Form B. At the 8th grade, the usual number of 

items administered in a mathematics test is around 50. For example, in the Florida 

Comprehensive Assessment Test (FCAT), each student answered 50 mathematics 

questions; in the Massachusetts Comprehensive Assessment System (MCAS), each 

student answered 49 mathematics questions; in the New Jersey Assessment of Skills and 

Knowledge (NJASK), each student answered 46 mathematics questions; and in the New 

York State Testing Program (NYSTP), each student answered 45 mathematics questions. 

So in this study, each form consisted of 50 items. In the design of a mixed-format test, the 
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balance of item formats is important. One way to balance the item formats is to divide the 

testing time evenly between the MC items and CR items as is done in the National 

Assessment of Educational Progress (NAEP). However, as CR items usually require 

students to consider a situation that requires more than a numerical response or a short verbal 

communication and the student is expected to take more time to complete them than the MC 

items, the number of CR items is often less than that of MC items. CR items usually account 

for about 20 to 40 percent of the total number of the items. For example, about 24% (11 out 

of 46) of the items are CR items in the NJASK,  about 27% (13 out of 49) in the MCAS, 40% 

(20 out of 50) in the FCAT,  and 40% in the NYSTP. In the present study, 30 percent (15 out 

of 50) of the total items were CR items. Special care was taken in the formation of the two 

forms to balance the content in each form such that the content and statistical 

characteristics of the three sets were as similar as possible. Both forms have the same 

item difficulty range between -1.3 and 2.207 and both forms are of the same difficulty 

level, with a same mean difficulty of 0.26.  Obviously the two forms are actually parallel 

forms and this study is an equating study. Since there is not so much distinction between 

equating and linking in terms of the data collection design and statistical procedure, it is 

believed that the results from this study may also apply to other forms of linking using 

the same data collection design and the same methods. 

A summary of items characteristics for both forms is presented in Table 3.2. 

Table 3.2   Item Characteristics Used for Simulating Two Mixed-format Test Forms 

Item # domain format slope location guessing step 1 step 2 Forms 
A B 

1 algebra CR 0.465 -0.402  -2.368 2.368 √ √ 
2 algebra CR 0.413 -0.107  -2.75 2.75 √ √ 
3 algebra CR 0.530 0.021  -0.861 0.861 √ √ 
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4 algebra CR 0.772 0.554  -1.484 1.484 √ √ 
5 algebra CR 0.706 1.001  -2.048 2.048 √ √ 
6 algebra CR 1.297 1.131  -0.134 0.134 √ √ 
7 data CR 1.066 0.648  -0.25 0.25 √ √ 
8 data CR 1.089 0.820  -0.016 0.016 √ √ 
9 data CR 0.842 1.460  -0.313 0.313 √ √ 

10 data CR 0.839 1.590  -0.694 0.694 √ √ 
11 geometry CR 0.687 0.022  -1.006 1.006 √ √ 
12 geometry CR 0.499 2.207  -1.288 1.288 √ √ 
13 measurement CR 0.742 0.612  -0.632 0.632 √ √ 
14 measurement CR 0.521 1.498  -2.52 2.52 √ √ 
15 number CR 0.815 0.925  -1.549 1.549 √ √ 
16 algebra MC 0.585 -1.304 0.001   √ √ 
17 algebra MC 0.706 -0.611 0.106   √ √ 
18 algebra MC 1.116 0.037 0.132   √ √ 
19 data MC 0.583 -0.998 0.073   √ √ 
20 data MC 0.562 0.600 0.135   √ √ 
21 data MC 0.701 0.702 0.044   √ √ 
22 geometry MC 0.662 -0.315 0.171   √ √ 
23 geometry MC 1.108 0.260 0.167   √ √ 
24 geometry MC 1.244 0.370 0.185   √ √ 
25 measurement MC 0.983 -0.299 0.355   √ √ 
26 measurement MC 0.911 -0.197 0.073   √ √ 
27 measurement MC 1.275 0.491 0.137   √ √ 
28 number MC 1.013 -0.498 0.154   √ √ 
29 number MC 0.819 0.181 0.173   √ √ 
30 number MC 1.236 0.945 0.157   √ √ 
31 algebra MC 0.858 0.050 0.233   √  
32 algebra MC 0.841 0.831 0.102   √  
33 data MC 1.064 -0.838 0.278   √  
34 data MC 0.822 -0.768 0.104   √  
35 data MC 0.721 -0.549 0.183   √  
36 data MC 1.334 0.366 0.226   √  
37 geometry MC 0.558 -0.121 0.288   √  
38 geometry MC 1.089 0.041 0.129   √  
39 geometry MC 0.555 0.540 0.086   √  
40 geometry MC 0.978 0.552 0.010   √  
41 measurement MC 0.979 -0.382 0.086   √  
42 number MC 0.615 -0.839 0.086   √  
43 number MC 0.833 -0.674 0.086   √  
44 number MC 0.405 -0.538 0.184   √  



60 

45 number MC 1.330 -0.234 0.053   √  
46 number MC 1.046 -0.112 0.122   √  
47 number MC 0.407 0.018 0.000   √  
48 number MC 1.466 0.030 0.154   √  
49 number MC 0.902 0.046 0.139   √  
50 number MC 1.434 0.088 0.334   √  
51 algebra MC 1.217 -0.357 0.082    √ 
52 algebra MC 0.733 0.077 0.127    √ 
53 algebra MC 1.627 1.121 0.142    √ 
54 algebra MC 0.826 1.272 0.158    √ 
55 data MC 0.864 -0.777 0.205    √ 
56 data MC 1.163 -0.020 0.285    √ 
57 geometry MC 0.868 -0.545 0.058    √ 
58 geometry MC 0.830 0.224 0.182    √ 
59 geometry MC 0.986 1.078 0.204    √ 
60 measurement MC 1.231 0.136 0.193    √ 
61 measurement MC 1.579 0.387 0.141    √ 
62 measurement MC 0.755 0.830 0.241    √ 
63 measurement MC 1.060 1.029 0.275    √ 
64 number MC 0.790 -0.596 0.118    √ 
65 number MC 0.801 -0.272 0.202    √ 
66 number MC 1.133 0.064 0.170    √ 
67 number MC 1.235 0.231 0.243    √ 
68 number MC 1.440 0.462 0.289    √ 
69 number MC 1.352 0.510 0.211    √ 
70 number MC 1.330 1.157 0.182    √ 
 

Factors investigated 

Three factors are investigated in this study: (a) two types of linking, (b) three 

types of length for the common items, and (c) three types of common-item set. There are 

a total of 18 conditions studied (2 × 3 ×3).   

Two Types of Linking: Concurrent Calibration versus the Stocking-Lord Method  

This study focuses on the comparison between the concurrent calibration method 

and the Stocking-Lord method following separate calibration. This is for two reasons. 
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First, a general finding from related comparative studies shows that among the four 

different IRT linking methods following separate calibration, the two characteristic curve 

methods, namely the Stocking-Lord method and the Haebara method perform better than 

the two moment methods, namely the mean/mean and the mean/sigma methods; second, 

the two characteristic methods perform very similarly but the Stocking-Lord method is 

used more widely. So this study focuses on t he comparison between the concurrent 

calibration method and the Stocking-Lord method for the sake of simplicity and 

efficiency.   

Three Different Lengths of the Common Items: 5, 10 and 15 Common Items 

Long tests are usually more reliable than short tests and anchor tests have to be 

long enough to provide a reliable measure and reflect group differences accurately. 

However, long anchor tests also add to the burden of cost and time, especially when used 

as external anchor. Although there is no a bsolute standard in regard to an appropriate 

length of an anchor test, a rule of thumb is given by Angoff (1984) and also 

recommended by Kolen and Brennan (2004) that the appropriate number for anchor items 

should be at least 20 items or 20 percent of the total number of items in a test. This study 

compares the performance of the concurrent calibration method and the Stocking-Lord 

method when the common items are of three different lengths: (1) less than 20% (5 out of 

50) of the total items, (2) 20 % (10 out of 50) of the total items, and (3) more than 20% 

(15 out of 50) of the total items. Hopefully, the findings of this study can provide some 

evidence for an appropriate length of an anchor test.  
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Three Types of Common-item Set: Both MC & CR Items, MC Items Only and CR Items 

Only 

Since mixed-format consists of only two types of items, anchor items can be 

selected in three possible ways: (1) both MC and CR items, (2) MC items only, and (3) 

CR items only. This study compares the performance of the concurrent calibration 

method and the Stocking-Lord method under the three different types of common items. 

The inclusion of both types of items is because when two mixed-format test forms have 

both MC and CR items in common, it is considered ideal to have both types of items 

included in the common items because they better represent the total test in content and 

characteristics (Kim & Lee, 2004). However, linking through MC items only is often 

chosen for practical reasons such as concerns about CR items in terms of reliability, 

security, and rater drift (Kim & Lee, 2004). The use of only CR items in linking is rare in 

practice, and it is included in this study only for comparative purposes. It is hoped that 

the findings from this study can provide some guidance in the selection of the appropriate 

types of common items. A summary of the characteristics of the common items is 

presented in Table 3.3.  
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Table 3.3  Characteristic of Common Items.  

Item # domain format slope location 
 

guessing 
 

Number and type of common items 
5 common items 10 common items 15 common items 

MC & CR MC only CR only MC & CR MC only CR only MC & CR MC only CR only 
1 algebra CR 0.465 -0.402  

  √ √  √   √ 
2 algebra CR 0.413 -0.107  

      
  √ 

3 algebra CR 0.530 0.021  
     √ √  √ 

4 algebra CR 0.772 0.554  
     √   √ 

5 algebra CR 0.706 1.001  
         √ 

6 algebra CR 1.297 1.131  
     √ √  √ 

7 data CR 1.066 0.648  
  √ √  √   √ 

8 data CR 1.089 0.820  
     √   √ 

9 data CR 0.842 1.460  
       √  √ 

10 data CR 0.839 1.590  
     √   √ 

11 geometry CR 0.687 0.022  
         √ 

12 geometry CR 0.499 2.207  √  √ √  √ √  √ 
13 measurement CR 0.742 0.612  

         √ 
14 measurement CR 0.521 1.498  

  √   √   √ 
15 number CR 0.815 0.925  

  √   √ √  √ 
16 algebra MC 0.585 -1.304 0.001 √ √  √ √   √  
17 algebra MC 0.706 -0.611 0.106    √   √ √  
18 algebra MC 1.116 0.037 0.132        √  
19 data MC 0.583 -0.998 0.073     √  √ √  
20 data MC 0.562 0.600 0.135       √ √  
21 data MC 0.701 0.702 0.044 √ √  √ √  √ √  
22 geometry MC 0.662 -0.315 0.171        √  
23 geometry MC 1.108 0.260 0.167  √   √  √ √  
24 geometry MC 1.244 0.370 0.185    √   √ √  
25 measurement MC 0.983 -0.299 0.355 √ √  √ √   √  
26 measurement MC 0.911 -0.197 0.073     √  √ √  
27 measurement MC 1.275 0.491 0.137     √  √ √  
28 number MC 1.013 -0.498 0.154     √   √  
29 number MC 0.819 0.181 0.173 √   √ √  √ √  
30 number MC 1.236 0.945 0.157  √  √ √  √ √  
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Data Generation 

Harris and Crouse (1993) suggested that using simulated data is most useful when 

it is accompanied by analyses involving the real data. However, in TIMSS 2003, all items 

were calibrated using a combined sample from participating countries and the calibration 

data are not available. This makes analyses involving the real data impossible, so all 

analyses in this study are based on the simulated data. The data generation procedure is 

described in detail in the following section.  

 The item parameters of the selected MC items and CR items listed in Table 3.3 

were treated as the true item parameters for simulating data. Two sets of person 

parameters were also generated from a normal distribution as the true person parameters: 

for Form A with a mean of 0 and standard deviation of 1 and for Form B with a mean of 

1 and a standard deviation of 1 so that they were non-equivalent groups.  A dichotomous 

MC item response (Uij) of an individual on on e item was generated by comparing a 

random number (R) from the uniform distribution in the range between 0 and 1 t o the 

probability of getting the item (Pij) right computed based on the unidimensional three-

parameter model. If R ≤ P ij, then Uij =1; otherwise, Uij=0. A polytomous CR item 

response (Uijk, where k =1, 2, 3,  is the number of category of the item responses) of an 

individual on one item was generated in a similar way. In this case, a random number (R) 

from the uniform distribution in the range between 0 a nd 1 w as compared to the 

probability of getting each response category (Pijk) computed based on t he 

unidimensional GPC model. If Pij(k-1) < R ≤ Pijk , then Uijk =k-1, where Pij0 =0.  



65 
 

For each of 18 conditions investigated in this study, 50 s ets of samples with 

sample size of 10,000 will be generated using Wingen 2 (Han, 2007), 

Evaluation Criteria 

 The results are evaluated from two aspects: the recovery of the item parameters 

after equating and how close the estimated person parameters are to the true person 

parameters.   

Recovery of the Item Parameters after Equating 

In each condition to be studied, there are 50 sets of item parameter estimates for 

Form A and corresponding item parameter estimates for Form B. The Form B item 

parameter estimates should be on the same metric as the known true parameters after a 

transformation in each of the replications. The closer the Form B parameter estimates are 

to the true parameters, the more accurate the transformation. The results were compared 

in terms of the equating errors and the stability of item parameter recovery. The 

magnitude of equating errors was evaluated by calculating the commonly used mean 

squared error (MSE) (Kim & Lee, 2004; Kim & Cohen, 1998; Hanson & Béguin, 2002; 

Yao & Boughton, 2009). Let ftrue be the true parameter and let ijf be one estimated 

parameter of item i from sample j,  
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where m is the number of  items and n is the number of replications.  

The standard deviation (SD) of the recovered item parameters across replications is a 

measure of the stability of the item recovery. It is calculated as  
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Where f is the average parameter estimates from all replications, and 
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The MSE and SD were computed separately for the discrimination parameter a, difficulty 

parameter b and guessing parameter c. The smaller the MSEs, the better the method in 

recovering the parameters; the smaller the SDs, the more stable the method in recovering 

the parameters.  

The Difference between the Estimated Person Parameter sand the “True” Person 
Parameters 
 
 Since it is possible that a method may perform better in recovering one type of 

item parameter than another, it is  more helpful to use a single index in evaluating the 

overall quality of the two equating methods. Also because the purpose of equating is to 

put scores from different metrics onto one metric, it is of greater importance to evaluate 

the quality of the different equating methods by examining how close the estimated 

person or ability parameters, which often appear in some form of test scores, are to the 

true person parameters. The root mean squared difference (RMSD) is a measure of the 

average difference between the estimated person parameters and the true person 

parameters for each examinee across all replications. It is calculated as: 

2
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 Where N is the number of examinees, ijθ is the estimated ability parameter of person i on 

Form B in the nth replication based on the equated item parameter estimates, and trueijθ is 

the true ability parameter of person i on Form B in the nth replication based on the true 

parameters used to generate the data. The latter is treated as the true person parameter for 

the examinees because it is based on the true parameters. As equations 3.4 shows, the 

difference between the estimated person parameters and true person parameters are first 

summed up across all cases in the sample and all replications and then averaged out. So 

its magnitude is not related to the sample size and large sample size makes the calculation 

of RMSD more stable. One property of the RMSD is that it is measured at the same unit 

as the data, so it is a criterion not only to evaluate the relative performances of the two 

equating methods but also to evaluate the accuracy of the two equating methods 

independently.  

The MSE, SD and RMSD were computed for each of the 18 c onditions as the 

criteria to answer the question: which IRT equating method performs better under 

different conditions for the non-equivalent common item design: the characteristic curve 

method following separate calibration or the concurrent calibration method.  

 

Data Analysis Procedure 

Step 1.  C oncurrent calibration. Data from Form A and Form B are merged 

together for each replication with different sets of common items as listed in Table 3.3 to 

get 50 different sets of combined samples. Then the item parameters for the items on the 

two forms were estimated for each replication;   
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Step 2. Separate calibration. The item parameters for the items on the two forms 

were estimated separately for Form A and Form B for each replication;  

Step 3. Linking Form B scale to Form A scale. The item parameter estimates for 

Form B were put on the scale of the item parameters for Form A following the Stocking-

Lord method using the computer program IRTEQ (Han, 2009) for each replication; and  

Step 4.  Generation of true person parameters and estimates person parameters for 

Form B. The true person parameters were generated based on t he parameters used to 

generate the data and the estimated person parameters were generated based on parameter 

estimates derived from the two equating methods.  

All item calibration and score generation were conducted using the computer 

program IRT Command Language (ICL) (Hanson, 2002) since ICL can handle multiple 

group analysis. Sample ICL syntaxes are presented in Appendix A.  

 

Summary  

This Chapter outlines the complete analysis plan to address the research question 

posed in Chapter One. To compare the performance of the Stocking-Lord method and the 

concurrent calibration method with the mixed-format tests, the commonly used 

simulation technique was used. 70 MC and CR items from TIMSS 2003 mathematics 

assessment were used to form two 50-item mixed-format tests with 35 MC items and 15 

CR items. The simulation study was conducted using simulated unidimensional data 

based on the parameters of these items, which were treated as the true parameters. The 

two test forms were equated using both the concurrent calibration method and the 
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Stocking-Lord method. Their performances were evaluated in two ways: the accuracy 

and stability of the item parameter recovery and how close the estimated person 

parameters were to the “true” person parameters based on the true parameters. Results of 

the above outlined analyses are presented in Chapter Four.  
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Chapter Four: results 

This chapter presents the results from the simulation study described in Chapter 

Three. The performances of two equating approaches, the concurrent calibration method 

and the Stocking-Lord method, were investigated under different conditions. Their 

performances were evaluated based on the recovery of the item parameters and the 

difference between the estimated person parameters and the true person parameters. The 

present chapter is divided into two main sections: (a) the recovery of item parameters 

after equating, and (b) the differences between the estimated person parameters and the 

true person parameters.  

 

Recovery of Item Parameters  

 Two criteria were used in the evaluation of the recovery of item parameters: the 

mean squared error (MSE) between the estimated and true item parameters as calculated 

in equation 3.1 measures the magnitude of the equating errors and the standard deviation 

(SD) of the recovered item parameters as calculated in equation 3.2 measures the stability 

of the item recovery. The recovery of item parameters was evaluated separately for the 

discrimination parameter a, the difficulty parameter b and the guessing parameter c.  

Recovery of the Discrimination Parameter a 

The MSEs and SDs for the recovery of the a parameters after equating for all 18 

conditions including two equating methods (the concurrent calibration and the Stocking-

Lord method), three different lengths of common items (5, 10 and 15) and three types of 
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common items (MC items only, both MC & CR items and CR items only) are 

summarized in Tables 4.1 and 4.2 and are graphically depicted in Figures 4.1 and 4.2.  

Table 4.1 MSEs of the a Parameter 

 
5 common items 10 common items 15 common items 

 
MC  Both  CR MC  Both  CR MC  Both  CR 

CC 0.1267 0.1249 0.1212 0.0991 0.0871 0.0847 0.0912 0.0852 0.0836 
SL 0.1275 0.1268 0.1268 0.1079 0.0981 0.0973 0.1027 0.0868 0.0852 

Note:  1. CC - Concurrent calibration, SL - the Stocking-Lord method 
2. MC - multiple-choice items, CR - constructed response item, Both - multiple-choice 
and constructed response items 

Table 4.2 SDs of the a parameter 

 
5 common items 10 common items 15 common items 

 
MC  Both  CR MC  Both  CR MC  Both  CR 

CC 0.0102 0.0101 0.0102 0.0098 0.0096 0.0097 0.0095 0.0095 0.0092 
SL 0.0126 0.0125 0.0102 0.0118 0.0106 0.0100 0.0111 0.0101 0.0099 

Note:  1. CC - Concurrent calibration, SL - the Stocking-Lord method 
2. MC - multiple-choice items, CR - constructed response item, Both - multiple-choice 
and constructed response items 

 
Figure 4.1 MSEs of the a Parameter 
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Figure 4.2 SDs of the a Parameter 
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From Tables 4.1 & 4.2 and Figures 4.1 & 4.2, the major findings are summarized 

as follows: 

 1). In general, the concurrent calibration method has smaller MSEs than the 

Stocking-Lord method in recovering the a parameter. The difference of the MSEs 

between the two methods is largest when the common items are all MC items; it is 

smaller when the common items consists both types of items; and it is  smallest and 

remains almost the same when the common items are all CR items.  

2). In general, the length of the common-item set impacts the recovery of the a 

parameter in a consistent way for both methods. The MSE tends to decrease as the length 

of the common-item set increases for the same type of common items.  

3). The type of the common-item set impacts the recovery of the a parameter in a 

consistent way. For both the concurrent calibration method and the Stocking-Lord 
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method, when the common items are all CR items, the recovery of a parameter has the 

smallest MSEs for each of the three different lengths of the common-item sets and when 

the common items are all MC items, the recovery has the largest MSEs for each of the 

three different lengths of the common-item set. So the MSE tends to decrease as the 

number of CR items increases in the common-items set when the number of common 

items is the same.  

4). The SDs of the recovered a parameter across all replications are very low, 

ranging from .0092 to 0.0126. The differences between the two methods are at the third 

or even the fourth decimal place, so the SDs remain very close for all 18 conditions as 

shown graphically in Figure 4.2.  

Recovery of the Difficulty Parameter b 

The MSEs and SDs for the recovery of the b parameters after equating for all 18 

conditions are summarized in Tables 4.3 and 4.4 and are graphically depicted in Figures 

4.3 and 4.4.  

Table 4.3 MSEs of the b Parameter 

 5 common items 10 common items 15 common items 

 MC Both CR MC Both CR MC Both CR 
CC 0.0843 0.0668 0.0646 0.0837 0.0651 0.0606 0.0811 0.0656 0.0545 
SL 0.1025 0.0994 0.0837 0.0981 0.0885 0.0832 0.0972 0.0867 0.0833 

Note:  1. CC - Concurrent calibration, SL - the Stocking-Lord method 
2. MC - multiple-choice items, CR - constructed response item, Both - multiple-choice 
and constructed response items 

Table 4.4 SDs of the b Parameter 

 5 common items 10 common items 15 common items 

 MC Both CR MC Both CR MC Both CR 
CC 0.0482 0.0449 0.0446 0.0480 0.0414 0.0427 0.0475 0.0433 0.0386 
SL 0.0538 0.0521 0.0484 0.0531 0.0492 0.0481 0.0520 0.0492 0.0482 

Note:  1. CC - Concurrent calibration, SL - the Stocking-Lord method 
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2. MC - multiple-choice items, CR - constructed response item, Both - multiple-choice 
and constructed response items 

 
Figure 4.3 MSEs of the b Parameter 
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Figure 4.4 SDs of the b Parameter 
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From Tables 4.3 & 4.4 and Figures 4.3 & 4.4, the major findings are summarized 

as follows: 

1). When the number and the type of the common items are the same, the 

concurrent calibration method consistently has smaller MSEs than the Stocking-Lord 

method in recovering the b parameter.  

2). In general, the length of the common-item set impacts the recovery of the b 

parameter in a consistent way for both methods. The MSE tends to decrease as the length 

of the common-item set increases. For the Stocking-Lord method, however, when the 

common items are all CR items, the MSEs remain almost the same when the number of 

common items is 10 (20%) or more.  

3). The type of the common items impacts the recovery of the b parameter also in 

a consistent way. For both the concurrent calibration method and the Stocking-Lord 

method, when the common items are all CR items, the recovery of the b parameter has 

the smallest MSEs for each of the three different lengths of the common-item set and 

when the common items are all MC items, the recovery of the b parameter has the largest 

MSEs for each of the three different lengths of the common-item set. So the MSE tends 

to decrease as the number of CR items increases in the common-item set when the 

number of the common items is the same.  

4). For both the concurrent calibration method and the Stocking-Lord method, the 

SD tends to decrease as the number of common items increases and as the number of CR 

items increases in the common items. The concurrent calibration method has smaller SDs 

than the Stocking-Lord method under all conditions. The SDs of the recovered b 
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parameter across all replications are also very low, ranging from 0.0386 to 0.0538. The 

differences between the two methods are at the third decimal place and are very close to 

each other for all 18 conditions as shown graphically in Figure 4.4.  

Recovery of the Guessing Parameter c 

The MSEs and SDs for the recovery of the c parameters after equating for all 18 

conditions are summarized in Tables 4.5 and 4.6 and are graphically depicted in Figures 

4.5 and 4.6.  

Table 4.5 MSEs of the c Parameter 

 5 common items 10 common items 15 common items 

 MC Both CR MC Both CR MC Both CR 
CC 0.0335 0.0259 0.0258 0.0340 0.0254 0.0239 0.0337 0.0250 0.0219 
SL 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 0.0333 

Note:  1. CC - Concurrent calibration, SL - the Stocking-Lord method 
2. MC - multiple-choice items, CR - constructed response item, Both - multiple-choice 
and constructed response items 

 
Table 4.6 SDs of the c Parameter 
  5 common items 10 common items 15 common items 
  MC Both CR MC Both CR MC Both CR 
CC 0.01927 0.01736 0.01772 0.01929 0.01667 0.01731 0.01929 0.01775 0.01608 
SL 0.01926 0.01926 0.01926 0.01926 0.01926 0.01926 0.01926 0.01926 0.01926 
Note:  1. CC - Concurrent calibration, SL - the Stocking-Lord method 

2. MC - multiple-choice items, CR - constructed response item, Both - multiple-choice 
and constructed response items 
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Figure 4.5 MSEs of the c Parameter 
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Figure 4.6 SDs of the c Parameter 
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From Tables 4.5 & 4.6 and Figures 4.5 & 4.6, the major findings are summarized 

as follows: 
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1). When the number and type of the common items are the same, the concurrent 

calibration method tends to have smaller MSEs than the Stocking-Lord method in 

recovering the c parameter.  

2). For the concurrent calibration method, when the number of common items 

remains the same, the MSEs are smallest when the common items are all CR items and 

are biggest when the common items are all MC items. So the MSE tends to decrease as 

the number of the CR items increases in the common-item set. When the type of common 

items is the same, generally the MSEs tend to decrease as the number of common items 

increases.  

3). For the Stocking-Lord method, the MSE remains the same regardless of the 

number and the type of the common items. This is because the guessing parameter c is 

independent of the scale transformation when different forms are calibrated separately as 

shown in equation 2.12 in Chapter 2.  

4). The SDs of the recovered c parameter across all replications are very low, 

ranging from .0161 to 0.0193. The differences between the two methods are at the third 

or even the fifth decimal place, so the SDs remain very close for all 18 conditions as 

shown graphically in Figure 4.6. 

 
The Differences between the Estimated Person Parameters and the “True” Person 
Parameters 
 

In the previous section, the recovery of item parameters by the concurrent 

calibration method and the Stocking-Lord method was evaluated separately for the 

discrimination, difficulty and the guessing parameters. The results show that the 
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concurrent calibration method performs better in recovering all three parameters. The 

differences between the estimated person parameters generated based on the item 

parameters after equating and the true person parameters generated based on the item 

parameters to simulate the response data were also examined to evaluate the overall 

quality of the two equating methods. The criterion is the root mean squared difference 

(RMSD) as calculated in equation 3.4. The RMSD provides a single index in evaluating 

the overall performance of the two equating methods. The RMSDs between the estimated 

person parameters and the true person parameters for all 18 conditions are summarized in 

Tables 4.7 and are graphically depicted in Figures 4.7.  

Table 4.7 RMSDs between the Estimated Person parameters and the “True” Person 
parameters 

 
5 common items 10 common items 15 common items 

 
MC  Both  CR MC  Both  CR MC  Both  CR 

CC 0.0314 0.0271 0.0167 0.0170 0.0169 0.0162 0.0170 0.0166 0.0159 
SL 0.0540 0.0285 0.0194 0.0262 0.0178 0.0162 0.0248 0.0169 0.0159 

Note:  1. CC - Concurrent calibration, SL - the Stocking-Lord method 
2. MC - multiple-choice items, CR - constructed response item, Both - multiple-choice 
and constructed response items 
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Figure 4.7 RMSDs between the Estimated Person parameters and the “True” 
Person parameters 
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From Table 4.7 and Figure 4.7, the major findings are summarized as follows:  

1). For the concurrent calibration method, the RMSD ranges from 0.0159 t o 

0.0314 and for the Stocking-Lord method, 0.0159 t o 0.054. T he true person parameter 

was simulated to have a standard deviation of 1, so on average the difference between the 

true person parameters and the estimated person parameters for each examine ranges 

from about 0.0159 s tandard deviation to about 0.0314 standard deviation when the 

concurrent calibration method is used and from about from about 0.0159 s tandard 

deviation to about 0.054 of a standard deviation when the Stocking-Lord method is used. 

When the number and type of the common items are the same, the concurrent calibration 

method has smaller RMSDs than the Stocking-Lord method. The gap between the two 

methods is widest with a difference ranging from 0.0078 to 0.0226 in the RMSD when 

the common items are all MC items, and it tends to get narrower or even disappear as the 

number of CR items increases in the common-item set.   
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2). In general, the RMSD tends to decrease as the length of the common-item set 

increases, when the type of the common items is the same. However, for the concurrent 

calibration method, the RMSDs remain almost the same when the number of the common 

items is 10 (20%) or more and for the Stocking-Lord method, the RMSDs remain almost 

the same when the number of the common items is 10 (20%) or more and the common-

item set contains CR items.  

3). The type of the common items impacts the differences between the true person 

parameters and the estimated person parameters in a consistent way. For both the 

concurrent calibration method and the Stocking-Lord method, when the common items 

are all CR items, the RMSDs are lowest and remain very close for each of the three 

different lengths of the common-item set. When the common items are all MC items, the 

RMSDs are highest for each of the three different lengths of the common-item set. So the 

RMSD tends to decrease as the number of CR items increases in the common-item set 

when the number of the common items is the same.  

 

Summary  

This Chapter presents the results of the analyses outlined in Chapter Three. In 

general, the analyses showed that both methods provide very stable results in recovering 

item parameters and the concurrent calibration method performs slightly better than the 

Stocking-Lord method in recovering all three item parameters. The estimated person 

parameters based on the concurrent calibration method were closer to the “true” person 

parameters than those based on the Stocking-Lord method. The analyses also showed that 



82 
 

the longer the common-item sets, the better the performance for both methods and the 

more CR items in the common-item sets, the better the performance for both methods.  
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Chapter Five: Conclusions 

In this chapter, the goal and the methodology of this study are reviewed; the main 

findings are summarized, and the implications of these findings are discussed. Finally, 

the limitations of the study and suggestions for future research are presented.  

 

Review of the Goal and Methodology of the Study 

 The steady increase in the use of mixed-format tests in large-scale assessments 

calls for appropriate equating methods. As IRT has become the mainstream as the 

theoretical basis for measurement, different IRT equating methods were also developed. 

The primary goal of this study is to compare the performance of two IRT equating 

methods, namely, the concurrent calibration method and linking following separate 

calibration using the Stocking-Lord procedure. Their performance was examined under 

different conditions with the non-equivalent groups common-item design. These 

conditions included three different numbers of common items (5, 10 and 15) and three 

types of common items (MC items only, both MC and CR items, and CR items only).  

 In this study, the simulation technique was used because the true equating 

relationship is known when simulated data are used and because it is the technique most 

frequently used in the IRT equating studies. For this study, a total of 70 items were 

selected from the TIMSS 2003 8 th grade Mathematics assessment to form two mixed-

format test forms, Form A and Form B, each consisting of 35 MC items and 15 CR items. 

The person parameters were generated from a normal distribution as the true person 

parameters with a mean of 0 and a standard deviation of 1 for Form A and a mean of 1 
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and a standard deviation of 1 for Form B. Item response data were then generated based 

on the item parameters of the selected items and the chosen unidimensional IRT models 

(three-parameter model for MC items and the GPC model for CR items). Fifty Form A 

and Form B samples with a sample size of 10,000 were generated.  

 For the concurrent calibration method, the item parameters were estimated in a 

single run using both Form A and Form B samples. For the separate calibration, the item 

parameters for Form A and B were estimated separately first; then the item parameter 

estimates for Form B were put on the scale of the item parameters for Form A following 

the Stocking-Lord method. 

 The results were evaluated from two aspects: the recovery of the item parameters 

after equating and how close the estimated person parameters are to the true person 

parameters. The criteria used were the MSE for the accuracy and the SD for the stability 

of the recovery of item parameters and the RMSD for the difference between the 

estimated person parameters and the true parameters. For all the criteria, the smaller the 

number, the better the equating method performs.   

 

Summary of the Findings 

Recovery of Item Parameters 

 From the results of the analysis, it can be concluded that the two methods perform 

differently in recovering the item parameters and that the length and the type of the 

common items have an impact on the performance of the two equating methods in 

different ways under different circumstances. The findings can be summarized as follows: 
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1). The concurrent calibration method yields smaller MSEs in all simulated 

conditions and therefore, performs better in recovering all three parameters than the 

Stocking-Lord method.  

2). The length of the common-item set impacts the recovery of all three 

parameters in the same way for both methods. The longer the common-item set, the 

smaller the MSEs for both methods and the better the performance.  

3). The type of the common items impacts the recovery of the three parameters 

for both the concurrent calibration method and the Stocking-Lord method. Both methods 

yield the smallest MSEs in recovering all three item parameters when the common items 

are all CR items and the biggest MSEs when the common items are all MC items. The 

MSE tends to decrease as the number of CR items increases in the common items. So 

both methods perform best when the common items are all CR items and their 

performance declines as the number of CR items decreases. It is also noticed that for the 

Stocking-Lord method, when the common items are all CR items, the length of the 

common-item set does not make any difference in recovering the difficulty parameter.  

4). The SDs of the recovered item parameters across all replications are very low 

and very close to each other for all 18 conditions. This shows that both methods provide 

very stable results regardless of the number and the type of common items.  

The Differences between the Estimated Person Parameters and the “True” Person 
Parameters 
 
 When the number and type of the common items are the same, the concurrent 

calibration method has smaller RMSDs than the Stocking-Lord method. So the estimated 

person parameters based on t he concurrent calibration method are closer to the true 
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person parameters than those based on t he Stocking-Lord method and therefore, the 

concurrent calibration method performs better than the Stocking-Lord method. However, 

a closer examination of the RMSDs shows that the difference between the two methods is 

very small. The largest difference in the RMSD between the two methods occurs when 

the common items consists of only 5 MC items with a value of 0.026, that is, on average 

the estimated person parameters for each examine based on t he concurrent calibration 

method is at best just 0.026 standard deviation closer to the true person parameters than 

the estimated person parameters based on the Stocking-Lord method.  

The RMSDs tend to decrease as the number of common items increases and as the 

number of CR items increases in the common items, so an increase in the number of 

common items or the number of CR items in the common items will make the estimated 

person parameters closer to the true person parameters. However, when the anchor test 

consists of 10 (20%) items or more of the total test, the RMSDs remain almost the same, 

especially when the common-item set contains CR items. So an increase in the number of 

common items when the number of common items is 20% or more of the total test may 

not result in a great improvement in the performance of the two equating methods.  

 

Conclusions, Implications and Discussions 

 The findings from this study show that the concurrent calibration method 

generally performs better in recovering the item parameters and, more importantly, the 

concurrent calibration method produces more accurate estimated person parameters than 

the Stocking-Lord method. Therefore, overall the concurrent calibration method performs 
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better than the Stocking-Lord method with mixed format tests for the non-equivalent 

groups common-item design. But the difference in the performance between the two 

methods is very small. This result is consistent with what has been found in other studies 

(Petersen et al., 1983; Wingersky et al., 1987; Hanson & Beguin, 2002; Kim & Cohen, 

2002) that dealt with only a single type of item. Hanson & Beguin (2002) pointed out that 

the advantage of the concurrent calibration method is due to the lower error on t he 

common items, which is expected because the common item parameter estimates are 

based on larger samples from different groups.  

 Although the concurrent calibration method has been found to perform better than 

linking after separate calibration, researchers (Hanson & Buguin, 2002; Kolen & Brennan, 

2004) do not recommend completely avoiding separate calibration in favor of concurrent 

calibration. This is because previous research has not shown consistent findings in favor 

of concurrent calibration. For example, Kim and Cohen (1998) concluded that the 

performance of separate calibration was equal to or better than concurrent calibration for 

MC items. Because not many studies have been done to compare the performance of the 

concurrent calibration method and linking after separate calibration for mixed-format 

tests, the evidence in this study is not sufficient to recommend completely avoiding 

separate calibration for mixed-format tests.  L inking after separate calibration also has 

one potential benefit to identify possible individual item problems for the common items 

(Hanson & Beguin, 2002; Kolen & Brennan, 2004). This is of great importance because 

problematic items such as items showing DIF tend to lower the reliability and validity of 

the anchor test.  Having two sets of item parameter estimates from separate calibration 
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may facilitate examining item parameter estimates for the common items. One simple 

way to do so as Kolen & Brennan (2004) suggested is to plot the parameter estimates for 

the common items from different calibrations to look for outliers. Items with estimates 

that do not appear to lie on a straight line may function differently in different groups and 

might need to be eliminated from the anchor test. Such examination is not possible for the 

concurrent calibration method because only one item parameter estimate for each 

common item is produced.  

 Another factor that may limit the use of concurrent calibration in practice is the 

availability of commercial computer programs. In his review of commercial computer 

software, Meng (2007) found that PARSCALE (Muraki, & Bock, 2003) and 

MULTILOG (Thissen, 1991) can be used to calibrate mixed-format test data. However, 

after trials on bot h programs, he found that neither is appropriate for non-equivalent 

groups common-item design, especially when more than two forms are involved. In his 

trials with PARSCALE, the program stopped running at PHASE II during the item 

parameter estimation iteration processes without providing any error messages and this 

problem could not be solved even by the PARSCALE technical support personnel (Meng, 

2007). PARSCALE was also originally chosen as the IRT computer program for this 

study. However, the same problem occurred in the item parameter estimation iteration 

processes even though there were only two forms. Eventually, this study had to turn to 

the computer program ICL (Hanson, 2002) for the item and person parameter estimation. 

Hanson and Benguin (2002) also found that the concurrent calibration method puts more 

of a burden on t he computer programs than separate calibration and results in some 
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performance problems, especially with more than two forms being equated 

simultaneously. In their analysis using MULTILOG to calibrate two test forms 

simultaneously, some runs failed to converge but there were no convergence problems 

when the two forms were calibrated separately. Although the concurrent calibration 

method may produce more accurate results, the difference between the two methods is 

not great. Given the potential benefit of separate calibration and the limit in the use of the 

concurrent calibration method, as Kolen and Brennan (2004) pointed out, separate 

calibration using the characteristic curve method seems to be safest and the concurrent 

calibration method could be used as an adjunct to the separate calibration method.   

The findings from this study also show that an increase in the number of CR items 

when the number of common items is fixed or an increase in the number of common 

items may improve the performance of both equating methods. Kim (2004) provides 

some theoretical explanations for the relationship between the equating results and the 

type and the length of the common items, which has do w ith the number of response 

categories: the more response categories involved in the linking process, the more 

accurate and stable the results. Hence, the result here makes sense because when the 

number of common items is fixed in the tests, an anchor test consisting of only CR items 

usually contains the most response categories, an anchor test consisting of both types of 

items contains the second most response categories and an anchor test consisting of only 

MC items contains the least response categories. Also adding more common items in the 

tests will increase the number of response categories, and therefore improve the accuracy 

of the linking results. Similar results were also found in other studies. Meng (2007) 
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examined the performance of different equating methods with mixed-format tests in a 

vertical scaling situation and concluded that when the type of common-item set is 

changed from dichotomous-only to mixed-format, errors and biases are likely reduced. 

He also found that doubling the number of common items typically lowered errors and 

biases in the linking results. Kim and Lee (2004) also found that using both types of 

items, which they termed simultaneous linking, yielded more accurate results than linking 

through a single item type only.  

Although an anchor test consisting of only CR items may produce better results, 

there are several limitations in using such an anchor test. First, CR items tend to be easy 

to memorize (Muraki, Hombo, & Lee, 2000). It may be difficult to find CR items that can 

be reused across forms considering that CR items are usually more expensive to develop. 

Second, even if the same CR items are used, the standards of the raters scoring the CR 

items almost always differ across the administrations (Fitzpatrick, Ercikan, Yen, & 

Ferrara, 1998), making their item parameter estimates unstable and therefore, influencing 

the accuracy of equating. So the best approach in practice would be to include both types 

of the items in the anchor test. This is also considered ideal by Kim and Lee (2004) 

because they better represent the total test in both content and characteristics.  

As for the appropriate length of the anchor test, both Angoff  (1984) and Kolen 

and Brennan (2004) recommend that the common items should be at least 20 percent of 

the total test. The findings in regard to the difference between the estimated person 

parameters and the true person parameters from this study provide further support for 

their recommendations. When the anchor test consists of 10 (20%) items or more of the 
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total test, a further increase in the number of common items may not result in a great 

improvement in the performance of the two equating methods.  

 

Limitations 

As with any other simulation study, the findings in this study have some 

limitations because of the unique design using simulation. The following limitations are 

acknowledged.  

First, Harris and Crouse (1993) suggested that using simulated data is most useful 

when the data closely resemble the real data and when it is accompanied by analyses 

involving the real data so that results of the simulation studies could be generalized to 

real data equating situations.  In this study, although the data were simulated to resemble 

the real TIMSS 2003 data, the analyses did not involve the real data because the 

calibration data in TIMSS 2003 are not available. This may put some limitations on the 

generalizability of the findings from this study to real data equating situations.  

Second, mixed-format tests may vary greatly in length and composition. So may 

the anchor test accordingly. However, the findings pertain to only the two specific forms 

used in this study, each consisting of 50 items (35 MC items and 15 CR items). In 

addition, only three levels of the number of common items and three different types of 

common items were considered. Therefore, considerable caution needs to be taken in 

generalizing the results to broader situations because of the small number of conditions 

investigated. 
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Third, the findings from this study were based on an ideal situation where the data 

were simulated from the same model used for item parameter estimation and where the 

sample size was ample. So the assumption of unidimensionality for IRT held and the item 

parameter estimates were stable. A partial justification for such an ideal situation is that 

ideally simulated situations should be preferred over real situations to show that the 

theoretical extension has been made properly (Kim & Lee, 2004). Because of the ideal 

situation simulated in this study, the findings and conclusions drawn from this study are 

limited only to unidimensional data with a large sample size. However, the model fit may 

not hold well with real data. Although IRT equating is fairly robust to violations of the 

unidimensionality assumption when equating alternate forms of a test as long as the 

violation is not too severe (Bolt, 1999; Camilli, Wang, and Fesq, 1995; Cook, Dorans, 

Eignor, and Petersen, 1985; De Champlain, 1996; Dorans and Kingston, 1985; Yen, 1984; 

cited in Kolen and Brennan, 2004), such violation may affect the performance of the 

equating methods. One study (Beguin, Hanson and Glas, 2000) compared the Stocking-

Lord method to the concurrent calibration method for MC items using simulated data that 

purposefully did not fit the IRT model due to multidimensionality. They found that when 

groups were nonequivalent, the Stocking-Lord method produced more accurate equating 

than the concurrent calibration method. This finding is different from what was found in 

this study and by others like Kim and Cohen (1998) and Hanson and Benguin (2002) in 

which the data were simulated to fit the model and provides more evidence that separate 

calibration using the characteristic curve method seems to be safest in practice before 

more studies are conducted to examine the performance of the two equating methods for 
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mixed-format tests when the data do not fit the IRT model well due to 

multidimensionality.  

 

Suggestions for Future Research 

 One limitation of this study is that the data were simulated to be in an ideal 

situation where the assumption of the unidimensionality fits. However, the simple 

unidimensional model would probably be misspecified to some extent with real data. 

This is more likely to be the case with mixed-format tests as studies show mixed findings 

in regard to whether MC items and CR items measure the same construct. Such model 

misspecification could affect the relative performance of the linking method following 

separate calibration versus the concurrent calibration method. So the performance of the 

two equating methods needs to be further examined under different simulation situations 

and real situations. One important research question for future studies is how the linking 

following separate calibration and the concurrent calibration method perform in situations 

where the assumptions of the IRT models involved in a mixed-format test do not  hold 

well.  

 There is another method to transform item parameters from different scales onto 

one. This procedure is called the fixed parameter or item anchoring method (Hanson & 

Benguin, 2002) or referred to as the “fixed b’s method” (Petersen et al., 1983). In this 

method, item parameters are estimated first for one form and then the item parameters in 

the other form are estimated with the common item parameters fixed at their estimated 

values using the first form. So this method does not involve a linking procedure as in the 
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concurrent calibration method and the two forms are calibrated separately. Obviously, the 

item anchoring method combines features of the concurrent and separate calibration. 

However, this method has been rarely studied. Only one study (Petersen et al., 1983) was 

found to compare it to the concurrent calibration method, the Stocking-Lord method, the 

linear equating method and the equipercentile equating method for MC items and the 

results showed that when compared to the conventional equating methods, the item 

anchoring method performed similarly to the concurrent calibration method and the 

Stocking-Lord method and better than the conventional methods. How this method 

performs with mixed-format tests as compared to the concurrent calibration and linking 

after separate calibration requires further investigation.  

 

Summary  

This chapter provides a review of the goal of the study, the general research 

design and a summary of the findings from the analysis results. A conclusion was drawn 

based on the findings. The conclusion and its implications were discussed in detail. Three 

limitations of this study were acknowledged and directions for future research in this area 

were suggested.  
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APPENDIX A: ICL CODES 
A 1. Sample ICL codes used to separately calibrate Forms A and B 
 
set data formA1.dat 
output -log_file formA1.log 
set model [concat [rep 3 15] [rep 1 35]]  
allocate_items_dist 50 -models $model 
read_examinees formA1.dat 50i1 
starting_values_dichotomous 
EM_steps  
print -item_param  
set fileID [open formA1.par w] 
write_item_param_channel $fileID -format %+.4f -no_item_numbers 
close $fileID 
release_items_dist 
 
 
A 2. Sample ICL codes used to calibrate Form A and Form B simultaneously  
 
set data form5both1.dat 
output -log_file form5both1.log 
set model [concat [rep 3 15] [rep 1 35] [rep 3 14] [rep 1 31]] 
allocate_items_dist 95 -num_groups 2 -models $model 
read_examinees form5both1.dat {@2 95i1} {i1} 
starting_values_dichotomous 
EM_steps -estim_dist -scale_points -max_iter 200 
print -item_param 
set fileID [open form5both1.par w] 
write_item_param_channel $fileID -format %+.4f -no_item_numbers 
close $fileID 
release_items_dist 
 
A3. Sample ICL codes used to generate True scores for Form B 
 
set data formB1.dat 
output -log_file form5both1.log 
set model [concat [rep 3 15] [rep 1 35]] 
allocate_items_dist 50  -models $model 
read_examinees formB1.dat  50i1 
starting_values_dichotomous 
EM_steps -estim_dist -scale_points -max_iter 200 
print -item_param -latent_dist -latent_dist_moments 
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read_item_param true.par -no_item_numbers 
set estep [new_estep] 
estep_compute $estep 1 1 
delete_estep $estep 
set eapfile [open form5both1true.theta w] 
for {set i 1} {$i <= [num_examinees]} {incr i} { 
set resp [examinee_responses $i] 
set numcorrect 0 
foreach r $resp { 
if {$r > 0} then {incr numcorrect}} 
set eap [examinee_posterior_mean $i] 
set mle [examinee_theta_MLE $i -6.0 6.0] 
puts $eapfile [format "%+.5f\t%+.5f\t%d" $eap $mle $numcorrect]} 
close $eapfile 
release_items_dist 
 
 A3. Sample ICL codes used to generate estimated scores for Form B 
 
set data formB1.dat 
output -log_file form5both1score.log 
set model [concat [rep 3 15] [rep 1 35]] 
allocate_items_dist 50  -models $model 
read_examinees formB1.dat  50i1 
starting_values_dichotomous 
EM_steps -estim_dist -scale_points -max_iter 200 
print -item_param -latent_dist -latent_dist_moments 
read_item_param form5both1.par -no_item_numbers 
set estep [new_estep] 
estep_compute $estep 1 1 
delete_estep $estep 
set eapfile [open form5both1.theta w] 
for {set i 1} {$i <= [num_examinees]} {incr i} { 
set resp [examinee_responses $i] 
set numcorrect 0 
foreach r $resp { 
if {$r > 0} then {incr numcorrect}} 
set eap [examinee_posterior_mean $i] 
set mle [examinee_theta_MLE $i -6.0 6.0] 
puts $eapfile [format "%+.5f\t%+.5f\t%d" $eap $mle $numcorrect]} 
close $eapfile 
release_items_dist    
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