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ABSTRACT

Objective: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of
genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent.
The extent to which these genetic effects are consistent across different populations is unknown.

Methods: Investigators from the Genetic Epidemiology of Parkinson’s Disease Consortium were
invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955
controls. Fixed as well as random effects models were used to provide the summary risk esti-
mates for these variants. We evaluated between-study heterogeneity and heterogeneity between
populations of different ancestry.

Results: In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed signifi-
cant associations with protective per-allele odds ratios of 0.78–0.87 (LAMP3, BST1, and MAPT)
and susceptibility per-allele odds ratios of 1.14–1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and
HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogene-
ity in the effect sizes (I2 estimates ranged from 39% to 48%). Subgroup analysis by ethnicity
showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian popula-
tions and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian
populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian
population, highlighting the role of population-specific heterogeneity in PD.

Conclusion: Our study allows insight to understand the distribution of newly identified genetic
factors contributing to PD and shows that large-scale evaluation in diverse populations is impor-
tant to understand the role of population-specific heterogeneity. Neurology® 2012;79:659–667

GLOSSARY
CI � confidence interval; GEO-PD � Genetic Epidemiology of Parkinson’s Disease; GWAS � genome-wide association stud-
ies; HWE � Hardy-Weinberg equilibrium; MALDI-TOF � matrix-assisted laser desorption/ionization time-of-flight; MSA �
multiple system atrophy; OR � odds ratio; PD � Parkinson disease; SNP � single nucleotide polymorphism.

Genome-wide association studies (GWAS) have provided tangible gains in understanding the
genetic architecture of complex diseases,1,2 including Parkinson disease (PD).3 Several GWAS
have been conducted in PD in Caucasian populations and only 1 in the Asian popula-
tion.3–11 Consistent and reproducible association signals were confirmed in �-synuclein
(SNCA), leucine-rich repeat kinase 2 (LRRK2), and microtubule-associated protein tau (MAPT),
thus underscoring the importance of these 3 genes in the pathophysiology of the common sporadic
forms of PD.3–10,12 In addition to that, different studies have provided some evidence for an associa-
tion for BST1, GAK, and HLA-DRB5 with PD.6–9,13

A recently published GWAS meta-analysis in PD increased the number of identified PD
genetic loci to 11.14 This study reported significant between-study heterogeneity for some of the 11
genetic loci14 even though data were restricted to Caucasian descent populations.

It is important to establish whether the 11 genetic loci that have been postulated to be
associated with PD are replicated when tested with direct genotyping in a larger spectrum of
diverse populations. The consistency or lack thereof of the genetic effects of these genetic
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variants across different populations may help
to determine whether they represent genuine
loci for PD susceptibility and whether they
can be used for risk prediction across these
diverse populations.15 To gain further insight
into genetic factors contributing to PD across
different populations and define the implica-
tions of between-population heterogeneity,
we performed a large-scale replication study
within the GEO-PD consortium.

METHODS Consortium. Investigators from the Genetic

Epidemiology of PD (GEO-PD) Consortium were invited to

participate in this study. A total of 21 sites representing 19 coun-

tries from 4 continents agreed to contribute DNA samples and

clinical data for a total of 17,705 individuals (8,750 cases and

8,955 controls). Healthy individuals matched for age and gender

served as controls. They underwent neurologic examination and

were excluded from the study whenever there was clinical evi-

dence for any extrapyramidal disorder.

Genotyping. We selected 1 SNP per each gene locus, exactly as

they were proposed by the recently published GWAS meta-

analysis.14 Genotyping was performed by a central genotyping

core (Department of Human Genetics, Helmholtz Zentrum,

Munich). Each site provided 100–200 ng of DNA to the labora-

tory core. In total 11 SNPs located in and around the genes

encoding SYT11, ACMSD, STK39, LAMP3, GAK, BST1,

SNCA, HLA-DRB5, LRRK2, HIP1R, and MAPT were geno-

typed. The genotyping core was blinded to case-control status of

each site. Genotyping was performed using a matrix-assisted la-

ser desorption/ionization time-of-flight (MALDI-TOF) mass

spectrometry on a MassArray system (Sequenom, San Diego,

CA). Cleaned extension products were analyzed by a mass spec-

trometer (Bruker Daltronik, USA) and peaks were identified us-

ing the MassArray Typer 4.0.2.5 software (Sequenom). Assays

were designed by the AssayDesigner software 4.0 (Sequenom)

with the default parameters for the iPLEX Gold chemistry and

the Human GenoTyping Tools ProxSNP and PreXTEND (Se-

quenom). All variants were genotyped in 1 multiplex assay. An

experienced investigator blinded to case or control status of the

samples visually checked genotype clustering. The average call

rate of the variants was �97%.

In order to further enrich the samples of Asian ancestry

populations, we also included GWAS data from a Japanese pop-

ulation (988 cases, 2,521 controls).6 We used r2 threshold of

0.8–1.0 to select proxy SNPs from the Japanese GWAS. Using

this threshold, we were able to capture only 3 SNPs from BST1,

SNCA, and LRRK2 genes.

Standard protocol approvals, registrations, and patient
consents. The local Ethics Committee approved the study. All

participants signed an informed consent.

Analysis. An exact test was used to assess whether the genotype

distributions for each SNP deviated from Hardy-Weinberg equi-

librium (HWE) among controls; each site was tested separately

and deviation from HWE was considered significant at �0.01.

We excluded data from sites where the missing rate was �5%.

For our analysis, we adhered to the same allele coding as in the

previous GWAS meta-analysis.14

For consistency effect estimates based on minor vs major
allele contrast were computed. We used an additive model ad-
justed for age and gender to obtain effect estimates. Results were
then synthesized using fixed and random effects models. Fixed
effect models assume that the genetic effect is the same in popu-
lations from different sites and that observed differences are due
to chance alone. For associations showing between-study hetero-
geneity, fixed effect estimates yield narrower confidence intervals
(CIs) and smaller p values as compared to random effects mod-
els, which incorporate between-study heterogeneity.16–18 Fixed
effects analysis tests the null hypothesis of no association in all
studied populations that are analyzed. Routinely, this assump-
tion is used in GWAS settings to increase the power of meta-
analysis to detect associations that may exist in some (at least 1)
population. However, in presence of heterogeneity the effects
may differ substantially in different populations and not all pop-
ulations may show a genetic effect for the variant of interest.
Random effects models allow the genetic effects might be differ-
ent due to genuine heterogeneity that may exist across different
sites. Random effects calculations take into account the esti-
mated between-study heterogeneity. We used the inverse vari-
ance method for fixed effects models. Cochran Q test of
homogeneity and the I2 metric were used to evaluate the
between-site heterogeneity. The Q statistics follows �2-based
distribution with k �1 degrees of freedom (k � number of stud-
ies). I2 is estimated by the ratio (Q-df)/Q, where df is degrees of
freedom. The I2 metric ranges from 0% to 100% and measures
the proportion of variability that is beyond chance. Typically
estimates of I2 �25% are considered to reflect little or no heter-
ogeneity, 25%–50% moderate heterogeneity, 50%–75% large
heterogeneity, and �75% very large heterogeneity. It should be
acknowledged that I2 can have large uncertainty in its estimation
especially for variants with low minor allele frequency. There-
fore, we also estimated the 95% CI of I2.17

The overall main analysis considered all sites and popula-
tions irrespective of ancestry. Then, we separately analyzed Cau-
casian and Asian sites and we compared the genetic effects in
these 2 major ancestry groups.

The SNPs evaluated in the recently published GWAS meta-
analysis are common with minor allele frequencies varying from
13% to 46%,14 except for SNP, rs34372695 (SYT11) where the
minor allele frequency is 2%. Therefore, based on minor allele
frequency and effect estimates obtained in the GWAS meta-
analysis,14 power calculations showed that our study would have
at least 99% power to detect an allele-based odds ratio (OR) of
1.2 for minor allele frequencies of 10% or higher for � � 0.05.
Based on genome-wide significance level (� � 5 � 10�8), our
study would have 43% power to detect an allele-based OR of 1.2
for minor allele frequency of 10%, but it would be 99% for same
minor allele frequency and on OR of 1.4. Power would be only
69% for a minor allele frequency of 2% and OR of 1.2, but it
would be 99% for the same minor allele frequency of 2% and an
OR of 1.5.

Meta-analyses were performed using STATA 9.0 (Stata
Corp., College Station, TX) and Review Manager 4.2.7. p Val-
ues are 2-tailed.

RESULTS Characteristics of sites and overall data-
base. Twenty-one sites contributed a total of 8,750
cases and 8,955 controls. Characteristics of all partic-
ipating sites are shown in table 1. Most sites contrib-
uted participants of Caucasian ancestry (n � 16); 5
sites (counting also the GWAS performed in the Jap-
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anese population6) included participants of Asian an-
cestry. We excluded 1 site with 114 cases and 67
controls from the analysis due to a plate layout error.
The median age at onset was 59 years and median
age at examination was 67 years.

We observed that for one site, effect estimates for
all SNPs were “inverse” as compared to other Cauca-
sian sites. Allele flipping for one particular site in the
same Caucasian descent might reflect error in sam-
pling ascertainment and is unlikely to reflect genuine
effects.19 This site (n � 181) was therefore excluded
from further analyses. Overall, genotype call rates
were �97%. The genotype distribution for each
SNP in the controls of each site showed no departure
from HWE, except for rs6599388 (GAK) in samples
from 4 Asian sites. We therefore excluded this SNP
(rs6599388) from analyses in the Asian population.

Overall data synthesis. We observed consistent and
reproducible associations for SNCA, LRRK2, MAPT,
BST1, GAK, STK39, SYT11, LAMP3, and HIP1R
loci but not for ACMSD (rs10928513) or HLA-
DRB5 (rs3129882) where the per-allele OR was very
close to the null (1.02 and 0.95, respectively) and

statistically nonsignificant (table 2). Thus we provide
unequivocal support for the involvement of these
newly identified genetic loci in the pathogenesis
of PD.

Summary effect estimates were generally compa-
rable with the previous GWAS meta-analysis results
(table 2), although effect estimates in this study were
stronger for STK39 and somewhat weaker for
LRRK2 compared to the previous GWAS meta-
analysis.14 Exclusion of 1,625 samples that overlap
with the previously published GWAS did not change
any of the estimates (table e-1 on the Neurology®

Web site at www.neurology.org). The protective per-
allele OR ranged from 0.78 to 0.87 (LAMP3, BST1,
and MAPT) and the susceptibility per-allele OR
ranged from 1.14 to 1.43 (STK39, GAK, SNCA,
LRRK2, SYT11, and HIP1R). Cochran Q statistics
were nominally significant for STK39, LAMP3,
BST1, and SNCA with I2 estimates ranging from
39% to 48%. The heterogeneity reflected primarily
differences in the magnitude of the effect sizes across
different sizes, while the direction of the effect was
consistent in all sites, with rare exceptions.

Table 1 Description of datasets contributed by each study site

Site Country No. Case Control Male (%) Female (%)
Mean
AAO

Mean age
at study

Diagnostic
criteria

Annesi Italy 394 197 197 204 (51.7) 190 (48.2) 61.5 63.7 UKPDBB

Bricea France 505 272 233 302 (59.8) 203 (40.1) 47.6 57.8 UKPDBB

Bozi Greece 222 114 108 107 (48.1) 115 (51.8) 69.9 74.5 UKPDBB

Wszolek US 1,518 692 826 794 (52.3) 724 (47.6) 64.4 71.7 UKPDBB

Garraux Belgium 82 68 14 45 (54.8) 37 (45.1) 62.1 69.6 UKPDBB

Hadjigeorgiou Greece 714 357 357 379 (53.0) 335 (46.9) 63.4 63.7 UKPDBB

Jeon Korea 749 408 341 314 (41.9) 435 (58.0) 57.6 UKPDBB

Opala Poland 629 352 277 340 (54.0) 288 (45.7) 50.2 68.1 UKPDBB

Lynch Ireland 740 368 372 340 (45.9) 400 (54.0) 50.5 70.7 UKPDBB

Lin Taiwan 320 160 160 160 (50) 160 (50) 62.0 70.8 UKPDBB

Facheris Italy 181 114 67 86 (47.5) 95 (52.4) 63.0 UKPDBB

Maraganore US 1,024 801 223 600 (58.5) 361 (35.3) 59 74.7 Bower

Mellick Australia 2,024 1,012 1,012 1,042 (51.4) 981 (48.4) 59 72.2 Bower

Morrisona England 1,120 766 354 606 (54.1) 514 (45.8) 66.1 UKPDBB

Mok China 436 260 176 264 (60.5) 170 (38.9) 63.5 UKPDBB

Aasly Norway 1,278 656 622 721 (56.4) 557 (43.5) 58.8 72.9 UKPDBB

Wirdefeldt Sweden 299 83 216 147 (49.1) 152 (50.8) 65.8 71.4 Gelb

Van Broeckhoven Belgium 1,010 501 509 500 (49.5) 509 (50.3) 60.5 66.3 Pals/Gelb

Rogaeva Canada 560 387 173 303 (54.1) 257 (45.8) 49.7 64.2 UKPDBB

Tan Singapore 391 194 197 244 (62.4) 147 (37.5) 59.7 54.0 UKPDBB

Toda Japan 3,509 988 2,521 1,844 (52.6) 1,665 (47.4) 58.7 66.0 UKPDBB

Total 17,705 8,750 8,955 59.5 67.6

Abbreviations: AAO � age at onset; GWAS � genome-wide association studies; UKPDBB � UK Parkinson’s Disease Brain
Bank.
a Also included in the previously published GWAS.7,8
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Analysis including only Caucasian sites. Restricting
the analysis to Caucasian sites only resulted in per-allele
ORs that ranged from 0.78 to 0.90 for the 3 replicated
protective loci (BST1, LAMP3, and MAPT) and from
1.14 to 1.43 for the 6 replicated susceptibility loci
(STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R),
while ACMSD and HLA-DRB5 still had no significant
effect (table 3 and figure e-1).

Summary effect estimates were generally compa-
rable to those of the previous GWAS meta-analysis,14

except for modest differences in STK39 and LRRK2
effect sizes, as noted above also for the overall analy-
sis. There was nominally significant heterogeneity
only for SNCA and LAMP3 (I2 estimates 51% and
46%, respectively), but this reflected primarily differ-
ences in the magnitude of the effect size estimates
rather than direction of effects across sites (figure e-1).

Analysis including only Asian sites. In the Asian se-
ries, not only the SYT11 SNP, but also the ACMSD
and MAPT SNPs were monomorphic (table e-2).
Summary effect estimates for the remaining SNPs are
shown in table 4. We again observed consistent nom-
inally significant evidence of association for all loci
except for STK39 (which still had an effect size esti-
mate consistent with what was seen in the overall
analysis) and HLA-DRB5 (which had a point esti-
mate very close to the null), which still had an effect
size estimate consistent with what was seen in the
overall analysis. Results were generally consistent across
sites, with the exception of STK39 that showed very
large heterogeneity (I2 � 73%) (figure e-2).

Comparison of effect size estimates. Five gene loci
(HIP1R, LAMP3, LRRK2, SNCA, and STK39)

Table 2 Overall analysis irrespective of ethnicity and influence of between-study heterogeneity

Gene SNP
Q test
p value I2 (95% CI)

Odds ratio
(95% CI) by
random effects

Fixed effects
p value

Random
effects
p value

IPDGC study
odds ratio
(fixed effects
p values)

ACMSD rs10928513 0.71 0 (0–54) 1.02 (0.96–1.08) 0.479 0.479 1.07 (0.003)

STK39 rs2102808 0.02 46 (0–68) 1.21 (1.08–1.35) 0.0001 0.001 1.12 (0.0016)

LAMP3 rs11711441 0.04 39 (0–64) 0.85 (0.77–0.94) 3.01 � 10�5 0.002 0.87 (6.92 � 10�5)

GAK rs6599388 0.06 39 (0–64) 1.19 (1.10–1.28) 3 � 10�6 0.001 1.14 (7.46 � 10�8)

HLA-DRB5 rs3129882 0.23 18 (0–53) 0.95 (0.90–1.01) 0.12 0.15 0.80 (9.3 � 10�8)

BST1 rs11724635 0.02 43 (0–65) 0.87 (0.83–0.91) 2.01 � 10�6 0.00001 0.87 (2.43 � 10�9)

SNCA rs356219 0.02 48 (0–69) 1.30 (1.21–1.40) 4.23 � 10�23 4.23 � 10�23 1.27 (4.23 � 10�23)

SYT11 rs34372695 0.38 6 (0–50) 1.43 (1.15–1.78) 0.001 0.001 1.44 (1.18 � 10�6)

LRRK2 rs1491942 0.75 0 (0–50) 1.14 (1.07–1.21) 1.06 � 10�8 1.06 � 10�8 1.30 (1.06 � 10�8)

HIP1R rs10847864 0.90 0 (0–44) 1.15 (1.09–1.21) 9.06 � 10�7 9.06 � 10�7 1.13 (9.06 � 10�7)

MAPT rs2942168 0.14 29 (0–62) 0.78 (0.71–0.85) 1.37 � 10�13 1.37 � 10�13 0.80 (1.37 � 10�13)

Abbreviations: CI � confidence interval; IPDGC � International Parkinson disease Genomics Consortium; SNP � single
nucleotide polymorphism.

Table 3 Caucasian specific effect estimates and influence of between-study heterogeneity

Gene SNP
Q test
p value I2 (95% CI)

Odds ratio (95% CI)
by random effects

Fixed effects
p value

Random effects
p value

ACMSD rs10928513 0.71 0 (0–54) 1.02 (0.96–1.08) 0.479 0.479

STK39 rs2102808 0.10 37 (0–65) 1.21 (1.08–1.35) 0.000 0.001

LAMP3 rs11711441 0.02 46 (0–70) 0.86 (0.76–0.97) 0.001 0.025

GAK rs6599388 0.27 17 (0–57) 1.14 (1.06–1.23) 1.01 � 10�4 0.001

HLA-DRB5 rs3129882 0.10 32 (0–63) 0.95 (0.88–1.02) 0.11 0.16

BST1 rs11724635 0.14 29 (0–62) 0.90 (0.85–0.95) 0.001 0.003

SNCA rs356219 0.01 51 (0–72) 1.30 (1.19–1.42) 4.23 � 10�23 4.23 � 10�23

SYT11 rs34372695 0.38 6 (0–50) 1.43 (1.15–1.78) 0.001 0.001

LRRK2 rs1491942 0.80 0 (0–47) 1.15 (1.07–1.23) 1.06 � 10�8 1.06 � 10�8

HIP1R rs10847864 0.90 0 (0–47) 1.15 (1.08–1.22) 9.06 � 10�7 9.06 � 10�7

MAPT rs2942168 0.14 29 (0–62) 0.78 (0.71–0.85) 1.37 � 10�13 1.37 � 10�13

Abbreviations: CI � confidence interval; SNP � single nucleotide polymorphism.
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where both Caucasians and Asian populations were
represented showed no difference in effect size esti-
mates that were different beyond chance (figure 1).
Conversely for BST1, the effects were different be-
yond chance for Asian and Caucasian populations
with stronger genetic effects in the former.

DISCUSSION We performed a large-scale evalua-
tion to assess the role of recently discovered genetic
risk variants in the pathogenesis of PD in different

populations. Our study confirms 9 of the 11 pos-
tulated susceptibility SNPs for PD. The confirmed
SNPs include the previously well documented
LRRK2, SNCA, BST1, GAK, and MAPT associa-
tions,3,6 – 8,10,20 and 4 of the 5 more recently pro-
posed associations in STK39, SYT11, LAMP3, and
HIP1R SNPs that might act as risk factors for PD.
Conversely, we were unable to confirm the associ-
ation between PD risk and SNPs rs10928513,
rs3129882 in ACMSD and HLA-DRB5, respec-

Table 4 Asian specific effects and influence of between-study heterogeneity

Genea SNP
Q test
p value I2 (95% CI)

Odds ratio (95% CI)
by random effects

Fixed effects
p value

Random effects
p value

STK39 rs2102808 0.01 73 (0–88) 1.14 (0.85–1.52) 0.28 0.37

LAMP3 rs11711441 0.33 12 (0–72) 0.81 (0.67–0.97) 0.01 0.03

BST1 rs11724635 0.07 53 (0–81) 0.74 (0.68–0.81) 1.2 � 10�6 0.001

HLA-DRB5 rs3129882 0.81 0 (0–68) 0.98 (0.85–1.13) 0.85 0.85

SNCA rs356219 0.49 0 (0–68) 1.24 (1.08–1.43) 0.002 0.002

LRRK2 rs1491942 0.31 16 (0–73) 1.13 (1.02–1.24) 0.005 0.01

HIP1R rs10847864 0.36 6 (0–70) 1.14 (0.99–1.32) 0.05 0.06

Abbreviations: CI � confidence interval; HWE � Hardy-Weinberg equilibrium; SNP � single nucleotide polymorphism.
a ACMSD, SYT11, MAPT SNPs were monomorphic; GAK SNP showed departure from HWE and thus is not included in the
table.

Figure 1 Forest plot showing the comparison of effect of each single nucleotide polymorphism (SNP) in
Caucasian and Asian population

Boxes indicate the summary effect estimate. SNPs in 3 loci (MAPT, SYT11, and ACMSD) were monomorphic in the Asian
population and thus are not included in the graph. GAK SNP showed deviation from Hardy-Weinberg equilibrium in Asian
series and thus excluded from the graph.
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tively. Three SNPs were monomorphic in the
Asian datasets.

The recently proposed ACMSD locus is likely to
have represented a spurious association. The OR is
very close to the null and 95% CI also excludes an
OR larger than 1.08. Of note, even in GWAS meta-
analysis, the OR estimate was only 1.07 in the repli-
cation phase, as compared with 1.38 in the discovery
phase. Our results are in agreement with a recently
published study.21 This finding suggests that large-
scale replication with direct genotyping is useful even
for SNPs that pass conventional genome-wide signif-
icance thresholds. It is possible that with the use of
the more extended imputation platforms using the
1,000 Genomes Project, the number of comparisons
made is larger than what was done in the past with
more limited imputation platforms and this may
thus require more stringent levels of significance to
claim genome-wide significance.

As observed in a recently published study,9 the
frequency of the HLA-DRB5 SNP, rs3129882, varies
considerably even within seemingly homogenous
Caucasian populations; the frequency of risk allele is
low in subjects of Northern European descent as
compared to subjects from Southern European de-
scent. Therefore, the observed lack of association for
the HLA-DRB5-specific SNP rs3129882 should be
interpreted with caution. Moreover, directionality as
well as the magnitude of effect estimates obtained in
our study for the HLA-DRB5 locus specific SNP are
comparable with previously published studies.9,22

Our study shed light on the role of heterogeneity
in PD genetics. Detection of heterogeneity could
provide new insight to understand the genetic archi-
tecture of the disease.17,23,24 A number of factors can
be attributed to the observed heterogeneity. First,
clinically overlapping pathologies may lead to heter-
ogeneity. Indeed the presence of distinct subgroups
of patients during early clinical stages of PD could
contribute to clinical heterogeneity.25 Therefore, it is
worth it to consider that genetic variants may exert
different pathologic processes that eventually lead to
complex clinical phenotypes.26 For example, it has
been shown that multiplications of SNCA gene lead
to clinical phenotype, which clinically overlap with
multiple system atrophy (MSA).27 Moreover, SNPs
in the 3�UTR of SNCA were shown to be associated
with PD as well as MSA.3,6–8,28 The most significant
SNPs in both diseases clustered around 3��UTR of
SNCA; SNP rs11931074, that was significantly asso-
ciated with MSA in contrast to rs356219 in the PD
meta-analysis.14,28 The r2 between these 2 markers
was only 0.16 in the Caucasian population. These 2
distinct signals in different yet overlapping patholo-
gies therefore might reflect one cause of genetic het-
erogeneity. Second, heterogeneity might reflect that

different tagging polymorphisms were used in previ-
ously published GWAS. Of note, a recently pub-
lished GWAS from United Kingdom, France, and
Netherlands provided weak (as they did not surpass
genome-wide significant threshold) yet consistent as-
sociation signals for the BST1 and GAK gene.7,8,13

This probably reflects that the investigated markers
were not causal variants but in linkage disequilibrium
with a potential causal variant across different studies.

Our study helps to understand the role of
population-specific heterogeneity in PD risk loci.
Some risk variants exist only in populations of spe-
cific ancestry. For example, it is known that an an-
cient inversion (�900 kb) in the MAPT region
occurred, which led to the formation of 2 nonrecom-
bining haplotypes, H1 and H2.29 The H2 haplotype
is absent in East Asian populations as has been shown
also by a recently published Asian GWAS that re-
vealed no association for the MAPT locus.6 This is in
contrast to previously published candidate gene studies
and GWAS in Caucasian populations that have shown
consistent association with the MAPT locus.3,7,8,13

Some other variants may have a different magni-
tude of effect in populations of different ancestry. In
our data, this is well exemplified by BST1, where the
OR was significantly larger in populations of Asian
than those of Caucasian ancestry. Conversely, we
found that associations in 5 loci (SNCA, LRRK2,
LAMP3, HIP1R, and STK39) had similar effects in
these 2 ancestries.

The consistency or diversity of effect sizes in iden-
tified associations may reflect different patterns of
linkage disequilibrium in these loci in diverse popu-
lations. It may also reflect differences in the suscepti-
bility to develop PD and perhaps also differences in
age at onset in different ancestry groups. The diver-
sity in the magnitude of effects is important to take
into account when considering the use of such infor-
mation for personalized risk modeling.30 Therefore
caution should be used in extrapolating risks across
different populations.

Our study provides strong and independent sup-
port for the role of 9 loci in the pathogenesis of PD
in different populations. The detection and docu-
mentation of heterogeneity across different popula-
tions is useful in understanding the genetic
architecture of this complex disease and in properly
framing our ability to use this information in differ-
ent clinical populations.
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