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ABSTRACT

High temperature superconductivity has been one of the most challenging prob-

lems in condensed matter physics since its discovery. This dissertation presents sys-

tematic studies on the single layer high temperature superconductor Bi2Sr2−xLaxCuO6+δ

by scanning tunneling microscopy. The STM results have been compared to Angle-

resolved photoemission spectroscopy (ARPES) data.

Using STM spectroscopy and ARPES we observed two distinct gaps that coexist

both in real space and in the antinodal region of momentum space, below the super-

conducting transition temperature. By looking at the energy scale of these two gaps

along with the temperature dependence data, we find that the small gap is associ-

ated with superconductivity. The large gap persists above Tc, and seems linked to

observed charge ordering. We also find a strong correlation between the large and

small gaps suggesting that they are affected by similar physical processes.

This is the first time that two coexisting and competing energy scales have been

directly observed in STM spectroscopy. Combining this with ARPES data, we show

that the pseudogap may be a different order parameter from the superconducting

phase. This provides support to the recently proposed “two gaps scenario” and should

lead to more experimental discovery and theoretical discussions.

In this dissertation we also discuss the spatial properties of the scanning tunneling

microscopy conductance maps, as well as the charge ordering pattern at high energies.

We observe interesting periodic patterns at low energies which can not be explained

by a simple charge density wave picture. We also find the surprising bias dependence



in terms of the contrast reversal. We propose a model of STM measuring effect to

explain these phenomena.
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Chapter 1

Introduction to high Tc cuprates

It has been more than 20 years since the discovery of the first copper-oxide high-

temperature superconductor La2−xBaxCuO4 by J. G. Bednorz and K. A. Müller

in 1986 [5] and 75 years after the great discover of superconductivity by Onnes in

1911 [43]. Despite the great efforts on both theoretical and experimental fronts the

mechanism of high temperature superconductivity (HTSC) still remains elusive.

In this chapter, we review basic properties of the cuprate superconductors and

look into current theoretical and experimental progress.

1.1 Crystalline structure and phase diagram

After the discovery of the new high Tc superconductor family: Fe-based supercon-

ductor in 2008 [27], the term of ‘high Tc superconductor’ no longer applies to only

the cuprates, We emphasize that this thesis only focuses on the high Tc cuprates. In

this section we will review the crystalline structure and phase diagram of High Tc

cuprates.

1.1.1 Crystalline structure of the high Tc cuprates

All the cuprate superconductors have layered perovskite structure. The common

structural unit is the CuO2 plane, which is believed to hold the key for superconduc-

tivity. The primary differences between the variety of cuprates are in layered scheme

of the CuO2 planes and how charges are introduced into them.

Figure 1.1 shows the crystallographic structure of a prototypical high Tc cuprate

Bi2Sr2CaCu2O8+δ. All the planes except calcium oxide plane are square lattices and

1



formed by oxygen and corresponding elements.

Figure 1.1: Crystalline structure of Bi2Sr2CaCu2O8+δ

Most of the cuprates studied to date are hole-doped materials. According to their

parent compounds, they can be classified into the following families:

Bismuth family-Bi2Sr2Can−1CunO2n+4+δ

Lanthanum family-La2−x(Ba,Sr)xCuO4+δ

Yttrium family-YBa2Cu2+nO6+n+δ

Thallium Mercury family-(Tl,Hg)2Ba2Can−1CunO2n+4+δ.

Table s 1.1 shows the critical temperature of a few compounds in these families.
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Table 1.1: Critical temperature of some cuprates

Compound Tc at optimal doping (K)

Bi2Sr2Can−1CunO2n+4+δ

n=1 (2201) ∼10

n=2 (2212) 85

n=3 (2223) 110

La2−xMxCuO4+δ 38

(M=Ba, Sr, Ca)

RBa2Cu2+nO6+n+δ

(R=Y, La, Nd, Sm, Eu, Ho, Er, Tm, Lu)

n=1 (123) 92

n=1.5 (247) 95

n=2 (124) 82

(Tl,Hg)2Ba2Can−1CunO2n+4+δ

n=1 (2201) 85

n=2 (2212) 105

n=3 (2223) 125

Nd2−xCexCuO4−y (electron doped) 30

Ba1−xKxBiO3 30

Pb2Sr2Y1−xCaxCu3O8 70

1.1.2 Electronics structure of high Tc cuprates

As shown in Figure 1.2, in the parent compound (undoped cuprates), the Cu atom in

the plane is in the 3d9 configuration. Due to the octahedral crystal field, the 3d states

split into two degenerate states, a doubly degenerate eg state and a triply degenerate

t2g state. The presence of oxygen and the associated Jahn-Teller distortion split the

eg orbital of Cu further into 3dx2−y2 and 3d3z2−r2 . The t2g states also split into 3dxy,

3dxz and 3dyz states. All the states are fully occupied except the 3dx2−y2 which is half

filled.

The Cu dx2−y2 orbital and the doubly occupied O px, py orbitals form a strong

covalent bonding. In the absence of interaction among electrons, the hybridization

of these three orbitals will build bonding and half-filled anti-bonding bands which

3



Figure 1.2: 3d orbitals configuration.

predicts a good metal instead of the large charge gap observed in the undoped com-

pounds. But is the interaction among electrons really absent? It is not!

The failure of band theory, and hence that of conventional Fermi liquid approach

to high Tc problems, stems from the existence of a large on-site Coulomb interaction

(U) that well exceeds the bandwidth (W) of the tight-binding anti-bonding band. The

band splits into an upper Hubbard band (UHB) and lower Hubbard band (LHB). The

LHB is fully filled and UHB is empty. The energy difference is called Mott Gap which

can be a few electrovolts and the system becomes an insulator (Mott insulator). The

unpaired spins are anti-ferromagnetically aligned via the super-exchange interaction

that involves virtual hopping to the neighboring O p orbitals. As a result, the parent

compounds are anti-ferromagnetic Mott insulators.

The mechanism of how the Mott insulators become superconducting is still not

clear yet. But it is well recognized that the transition happens when the charge carries

are added to the parent compounds. Typically charge carriers in the form of holes are

added by doping oxygen (e.g. Bi2Sr2CaCu2O8+δ), by substituting a monovalent atom

with a divalent atom (e.g. replacing La with Sr in La2−xSrxCuO4), or by removal of

oxygen from their stoichiometric positions (e.g. YBa2Cu3O7−δ ). More discussion on

theoretical models will be introduced later.
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1.1.3 Phase diagram of high Tc cuprates

The current state of the understanding of high Tc can be summarized by the generic

phase diagram, as shown in Figure 1.3. This is only applicable to the hole-doped

cuprates, where x is the number of holes per Cu and T is the temperature.

Figure 1.3: The phase diagram of hole doped high Tc cuprate

There are several important phases and phase boundaries, as marked in the figure.

When x is close to zero, the system is in a long-range, anti-ferromagnetic state (AF)

below the Néel temperature TN . The AF state is destroyed when more holes are

doped into the Cu-O2 plane, and superconductivity (SC) emerges as x exceeds 0.05.

The transition temperature (Tc) has a characteristic dome shape that peaks around

x=0.15 and ends at x=0.05 and x=0.25.

The AF and SC states are the only well defined phases in the phase diagram. In

the underdoped regime, a so called “pseudogap” (PG) phase appears below a poorly

defined crossover temperature T∗. The nature of the PG phase and its relation to the

SC phase has been one of the central issues of recent debate. And for samples with

very high hole concentration, conventional Fermi liquid behavior starts to reappear.

We will revisit these phases in the following sections.
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1.2 Review of current theoretical and experimen-

tal status

To solve the puzzle of the high temperature superconductivity, physicists have been

working on both theoretical and experimental fronts for more than 2 decades. Many

theoretical models have been proposed and a huge amount of experimental data has

been published.

In this section, a brief introduction to the theoretical progress will be made. We

then go on to the highlights of recent experimental data.

1.2.1 Theoretical models of high Tc cuprates

To understand superconductivity was not easy. It was not until half a century after

the discovery of superconductivity that the understanding of superconductivity was

advanced by three American physicists, John Bardeen, Leon Cooper, and John Schri-

effer. Their theory of superconductivity is known as the BCS Theory [4]. The BCS

theory shows that electrons form Cooper pairs, despite the fact that electrons have

the same charge and they are repelled by each other. When the atoms of the lattice

oscillate, the cooper pair is pulled together or pushed apart without a collision. Once

the two electrons are bound into a cooper pair, they no longer behave like Fermions

but as one boson. They can therefore condense into a lower energy state.

BCS theory predicts a theoretical maximum to Tc of around 30 - 40 K for phonon

based pairing. Above this temperature, thermal energy would cause electron-phonon

interactions of an energy too high to allow formation of Cooper pairs. While BCS

worked well for the conventional superconductors, once it met the challenge of HTSC

in 1986 [5], the difficulties became life-threatening.

The breakdown of the BCS theory is mainly due to strong interactions between

electrons in these systems [1], in particular the strong Coulomb repulsion between

valence electrons at the same atomic site, or so called electron correlation U. Such

a system with strong on-site electron-electron interactions is also called a highly

correlated electron system. Any reliable theoretical calculation for a highly correlated

system is extremely difficult, given its many-body nature, which can not be reduced

to a single quasiparticle picture.

So far theorists have proposed dozens of new models, trying to solve the mystery

of High Tc superconductivity. However they are still far from explaining everything.

6



Among all the new theories, one promising approach is based on the idea of a doped

resonant valence bond (RVB) state, first proposed by Philip Anderson [3].

In 1987, Anderson revived his earlier work on a possible spin-liquid state in a

frustrated antiferromagnet. He named this state resonating valence bond (RVB) [3].

RVB has no long-range antiferromagnetic order and is a unique spin-singlet ground

state. It has spin -1/2 fermionic excitations which are called spinons. The idea is

that when doped with holes, the RVB is a singlet state with coherent mobile carriers

and is indistinguishable in terms of symmetry from a singlet BCS superconductor,

RVB expands the life of BCS theory into the field of HTSC.

Other competing theories include those based on fluctuating stripes [28], SO(5)

theory [19], and theories based on polarons (strong coupling between electrons and

phonons) [13]. Recently most theorists seem to have reached agreement that the

starting point of the physics of HTSC is the physics of the doping of a Mott insulator.

Strong correlation is the driving force behind the phase diagram.

To calculate, the simplest model is the Hubbard model and its strong-coupling

limit, the t-J model.

H = −
∑

<i,j>,σ

tijc
+
iσcjσ + J

∑
<i,j>

(Si · Sj − 1

4
ninj) (1.1)

where ni is the number operator. The one band t− J model captures the essence

of the low energy electronic excitations of the Cuprates.

1.2.2 Experimental study of high Tc cuprates: ARPES

With major improvements of resolution in electron spectrometers and photon flux

of light sources, ARPES has played a powerful role in the field of high Tc super-

conductivity, and made significant contributions to our understanding of underlying

physics.

ARPES is the first experimental probe that made the observation of a large Fermi

surface that satisfies Luttinger theorem, suggesting that the high Tc cuprates are

doped Mott insulators [12] [15] [16]. ARPES also made the discovery of an extended

Van Hove singularity in high Tc cuprates. The enhancement of density of states due

to this singularity has significant influence to many-body interactions [25]. ARPES

found the convincing evidence for the d -wave symmetry of the superconducting order

parameter. Along with phase sensitive experiments, this ARPES finding has been
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widely cited as for the establishment of d -wave order parameter with nodes along

(0,0)-(π,0) direction [48] [17] [18].

ARPES was the first tool to make the discovery of a pseudogap in the normal

state of high Tc cuprates. The pseudogap has since become one of the most studied

phenomena in the high Tc cuprates field [14]. ARPES also made the observation

of spectral dip and dispersion kink, revealing possible collective (either magnetic or

phonon) modes which may respond to pairing glue in the high Tc cuprates [41] [33].

1.2.3 Experimental study of high Tc cuprates: STM

For more than ten years, scanning tunneling microscopy (STM) has been playing an

important role in the experimental physics in High Tc field. STM studies have made

many remarkable contributions to this field such as the gap inhomogeneity, electronic

properties of the vortex cores, the observation of quasiparticle interference, and the

observation of pseudogap. In this section we will quickly go through some of the

primary STM results. The full review can be found in Fisher et al. [22].

Since Scanning Tunneling microscopy is an experimental technique that probes

local properties. STM was critical to revealing the inhomogeneity of gap size in

real space [27] [32] [37]. Figure 1.4 concludes the results. We also observed the

inhomogeneity of the gap size in single layered BSCCO which will be presented in

Chapter 4.

Scanning tunneling microscopy observed the existence of pseudogap in the high

temperature Bi2212 and Bi2201. As the temperature is raised from T<Tc the super-

conducting gap ∆sc remains constant and smoothly evolves into a pseudogap across

Tc.

By applying a magnetic field, STM is also able to observe the vortex state. The

evolution of the spectra across a vortex core in overdoped Bi2212 is shown in Figure

1.5 [30]. When entering the core, the spectra evolve in the same way as when the

temperature is raised above Tc. In this sense the vortex core spectroscopy provide

new insights into the understanding of the pseudogap.

A single spectrum is not adequate to provide the global information of a material.

Using local density of states mapping STM has observed periodic local density of

states modulations, and this phenomena can be divided into two classes: one with

dispersing wavelength and the other does not disperse. The dispersing one is due to

quasi particle interference [36](Figure 1.6). The non-dispersing spatial modulation

have been observed in the pseudogap state at high temperature, at low doping, or

8



Figure 1.4: 560 Å × 560 Å maps of the spatial gap distribution in (A) underdoped

and (B) as grown Bi2212 single crystals. Adapted from Lang et al. 2002. [32] (C)

Range of tunneling conductance spectra measured on inhomogenneous superconduct-

ing Bi2212. From McElory et al. 2005. [37] (D) Scatter plot of the superconducting

gap versus the integrated local DOS inoptimally doped Bi2212. From Pan et al.

2001. [27]
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Figure 1.5: Conductance spectra taken along a 12nm path across a vortex core in

overdoped Bi2212 (Tc=77K) at T=2.6K and H=6T. The spectra acquired at the

center of the core reveal a pseudogap-like similar to the one observed above Tc. From

Kugler et al. 2000. [30]

in the vortex cores. In chapter 6, we will present our data on the observation of the

local density state modulation on La-Bi2201 samples, we will also come back to the

findings on Bi2212 and make a comparison.

At the beginning, physicists focused on the easiest and most outstanding data

could be collected from STM experiments such as the gap magnitue, the spatial

properties. Then the experiments were expanded to the temperature dependence and

doping dependence on all kinds of materials. Recently, along with the improvement

of the energy resolution and spatial resolution, more and more physicists are trying

to connect their data to other techniques and theoretical models. More and more

analysis methods have been used and discussed as well.

There is one paper published by Davis’ group recently can be an example [14].

By imaging the electronic structure of Bi2Sr2CaCu2O8+δ in real space and ~k space

simultaneously, Kohsaka et al. demonstrated that the unusual real space excitation

exists in the pseudogap state. Thus, as the Mott insulating state is approached by

decreasing the hole density, the delocalized Copper pairs vanish from ~k space, to be

replaced by locally translational- and rotational-symmetry-breaking pseudogap states

in real space.

Another example can be taken from the work presented by the Yazdani’s group

[26]. Over a wide range of doping from 0.16 to 0.22, K. Gomes et al. found that

pairing gaps nucleate in nanoscale regions above Tc. Despite the inhomogeneity, they

observed that every pairing gap develops locally at a temperature Tp, following the
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Figure 1.6: (A) Atomic resolution image of a 640 Å × 640 Å region on near optimally

doped Bi2212. Inset: 160 Å × 160 Å magnification. (B) Conductance map of the

same field view acquired at V=-10mv. (C) and (D) FFT of conductance maps at -8

and -10mv, respectively. The square of intense points near the corners of each panel

corresponding to the atomic lattice, and the arrow in (C) indicate the q vectors of

the supermodulation. These two sets of spots do not disperse with energy. The maps

clearly show an addition pattern with fourfold symmetry. The corresponding wave

vectors disperse in energy. From McElroy et al. 2003. [36]
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Figure 1.7: Gap evolution for overdoped (Tc=65K) Bi2212 samples. (A)-(D). Gap

maps taken on the same 300Å area of an OV65 sample at different temperature near

Tc. (E) The probability of finding a gap of a given size (gap distribution) for the gap

maps shown in (A)-(D) and an additional gap map taken at 40K. (F) The probability

P(<∆) that the gaps are less than a given ∆ (lower x axis). From K. Gomes et al.

2007. [26]
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relation 2∆/KBTp=7.9±0.5. At very low doping (≤0.14), systematic changes in the

DOS indicate the presence of another phenomenon which is unrelated and perhaps

competes with electron pairing, as shown in Figure 1.7.

Besides these great STM contributions, we must not forget the many great discov-

eries made by other experimental groups which have not been discussed here due to

space and time constraints. This active field continues to progress both theoretically

and experimentally. With the improvement of the STM system in terms of spatial

and energy resolution, data acquiring techniques and new analysis methods, we be-

lieve the scanning tunneling microscopy will continue make remarkable contribution

to the experimental side of this field.

1.3 Summary

In this chapter we introduced the concept of high Tc cuprate superconductor. We

briefly went through current theoretical models have been proposed. We also browsed

experimental data mainly by STM and ARPES experiments. In the next chapter we

will look into the further details of these two experimental techniques.
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Chapter 2

Experimental techniques: STM

and ARPES

Scanning tunneling microscopy was invented in 1982 by Binnig and Rohrer, for which

they shared the 1986 Nobel prize in physics. In this chapter we will review the physics

treatment of scanning tunneling microscopy. We will also review another experimental

techniques: ARPES.

Figure 2.1: Schematic drawing of STM tip and sample.

17



2.1 Scanning tunneling microscopy

The core part of a scanning tunneling microscopy system consists of a sharp conduct-

ing tip which is used to scan a flat conducting or semi-conducting sample surface.

When the distance between the tip and the sample is within the tunneling range

and a voltage V is applied between them, a current will flow and this current can be

measured as a function of (x,y) location and as a function of V. Figure 2.1 shows the

basic idea schematically.

2.1.1 Calculation of tunneling current

The tip-sample current is based on quantum tunneling and the tunneling current can

be calculated as following:

If the sample is biased by a positive voltage +V with respect to the tip, this

effectively raises the Fermi level of the tip with respect to the sample. Electrons will

flow out of the filled states of the tip into the empty states of sample as shown in

Figure 2.2.

Using time independent perturbation theory the tunneling current from the filled

states of tip to the empty states of sample, integrate over all energies ε (with respect

to the Fermi level of the sample) can be written as:

Itip→sample = −2e
2π

~

∫ eV

0

|M |2(ρt(ε)f(ε))(ρs(ε− eV )[1− f(ε− eV )]) dε (2.1)

Where the factor of 2 is for spin, -e is the electron charge. ~ is the planck constant,

|M|2 is the matrix element, ρs(t)(ε) is the density of states of the sample (tip), and

f(ε) is the Fermi distribution.

Although the overall flow direction of the electron is from the tip to the sample,

there is also a smaller amount of tunneling from the sample to the tip:

Isample→tip = −2e
2π

~

∫ eV

0

|M |2(ρt(ε)[1− f(ε)])(ρs(ε− eV )f(ε− eV )) dε (2.2)

We sum these two currents and get rid of the Fermi function by going to T=0.

We get the total tunneling current below:

I ≈ −4πe

~

∫ eV

0

|M |2ρt(ε)ρs(ε− eV ) dε (2.3)
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Figure 2.2: Schematic of tunneling current. Energy is along the vertical axis, and the

density of states of the tip and sample are shown along the horizontal axis. Filled

states are shown in red. In this case, a negative bias voltage -V has been applied to

the sample, which effectively raises its Fermi level by eV with respect to the Fermi

level of the sample. This allows for filled states on the right (Tip) to tunnel into

empty states on the left (Sample).
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In the Bardeen theory the matrix element |M| is the expectation value of the

single-particle current in the direction z normal to the plane of the junction, through

a surface S lying entirely in the barrier region [1]:

|M | = − ~
2m

∫

S

(ϕ∗ρ
∂ϕλ

∂z
− ϕλ

∂ϕ∗ρ
∂z

) dS (2.4)

Because of the lateral confinement, the one-electron states of the STM tip cannot

be characterized by a single momentum in the (x,y) plane. Tersoff and Hamman

proposed an expression for |M|, represented the tip apex by a spherical potential well

and found that Bardeen’s matrix element is proportional to the sample wave function

at the center x of the tip apex [27] [28]:

|M |2 ∝ |ϕρ(x)|2 (2.5)

2.1.2 Scanning tunneling microscopy data-sets

Basically there are two main type of scanning modes for measurements: constant

current mode and constant height mode.

Compared to the constant height mode, the constant current mode invloves a

feedback loop. The tunneling current which usually ranges from 0.01mA to 50mA is

converted into a voltage by a current amplifier. To get a linear response with respect to

the tunneling gap (the current is exponentially dependant on the tip-sample distance,

see the text of last equation.) the signal is processed by a logarithmic amplifier. The

output of the logarithmic amplifier is compared with a predetermined voltage which

is used as a reference current. The error signal is passed to feedback electronics,

which applies a voltage to the z piezo to keep the difference between the current set

point and the tunneling current small. Constant current is more popular and safer,

although constant height mode will provide faster scanning speed since there is no

extra time taken by the feedback loop. So it can be a efficient choice for a very flat

sample surface. In this thesis, all the data were acquired under constant current mode

to ensure the safety and data quality.

Under constant current mode, we employ a feedback loop which controls the

voltage on the piezo to keep the tunneling current constant. By recording the voltage

value, we can effectively map the height of the surface, and because the material

studied in this thesis has well known atomic resolution and lattice constant, obtaining
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a clear topographic image with good atomic resolution usually is our first step when

we approach on a fresh sample or/and with a fresh tip to ensure the data quality.

Using the STM in spectroscopy mode, we can also measure the differential con-

ductance dI/dV to get the local density of states (LDOS). From the equation (2.3) we

know the tunneling current I is proportional the integrated local density of states (IL-

DOS). Therefore the derivative of the ILDOS (dI/dV ) is proportional to the LDOS.

Usually people choose a tip material which has a flat density of states within

the energy range of the Fermi surface that we wish to study, tips like W or Pt

that are used in STM experiments. The matrix element |M|2 is also assumed to be

independent of energy. So we arrive at that the tunneling current I proportional to

the integrated local density of states (ILDOS) of the sample. Therefore the derivative

of the ILDOS (dI/dV ) will proportional to the LDOS of the sample. We employ a

lock-in amplifier to measure dI/dV. A voltage modulation dV is applied to the bias,

a resulting response in current dI is measured. Figure 2.3 shows a schematic of STM

spectroscopy.

In our experiments, the bias voltage is always applied on the sample, as shown

in Figure 2.3. When the bias voltage is negative, the electrons are moving from the

filled states of the sample to the empty states of the tip, so we are actually measuring

the filled states of sample considering the flat density of state of tip. And when the

bias voltage is positive, the electrons are flowing from the filled states of the tip to

the empty states of the sample, we are measuring the empty states of the sample.

Usually a detailed DOS map (dI/dV map) with high spatial resolution and energy

resolution will be desired. In this thesis, the main type of data are dI/dV maps. Some

high quality linecuts were also taken and presented.

2.2 Angle-resolved photoemission spectroscopy

When light impinges on solids, an electron in a solid can absorb a photon and be

excited into an unoccupied state. If photon energy is high enough, electrons will

get out of the surface and go into vacuum. This photoelectric phenomenon was first

discovered by Hertz in 1887, which was explained later by A. Einstein in 1905, with

quantization of light. Experimentally photoelectrons are analyzed with respect to

their kinetic energy E and their momentum p. Given the energy of light and work

function, the binding energy of electrons before excitation can be determined by:

|EB| = hν − φ− Ekin (2.6)
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Figure 2.3: The dI/dV is proportional to the LDOS.
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where hν is the incident photon energy, φ is the work function of the solid and Ekin

is the kinetic energy of photoelectrons.

Figure 2.4: Photoemission spectroscopy. Electrons with binding energy EB absorbs

an photon ~ν and escapes into vacuum becoming an photoelectron with kinetic energy

Ekin = ~ν − φ− EB.

As shown in Figure 2.4, in the case of metal, core levels are at high binding

energies and non-dispersing, valence bands are at low binding energies and the Fermi

energy EF is at the top of valence band and separated from vacuum by the work

function φ. If an electron with a binding energy EB absorbs an photon with energy

~ν, the electron can excited into vacuum and an photoelectron can be detected with a

kinetic energy Ekin = ~ν−φ−EB. The kinetic energy distribution of photoelectrons

reflects the binding energy distribution of the electrons in solids, and can reveal

detailed information about the electronic structure of solids. Based on photoelectric

23



effect, photoemission spectroscopy(PES) was developed and has been widely used in

studying the electronic structure of solids.

Figure 2.5 shows schematically an ARPES setup, including a light source, a

sample, and a detector. When photons impinge on the surface of a sample, electrons

in solid can absorb photons and escape into vacuum, which are called photoelectrons

and will be collected by the detector with energy and angle resolution.

Figure 2.5: Schematic ARPES experiment. Photon with energy ~ν impinges on the

surface of samples. Electrons can absorb photon and will be excited into vacuum.

Those photoelectrons will be analyzed with respect to energy and momentum by an

electron analyzer.

The kinetic energy Ekin can be measured and the momentum of photoelectrons

can be derived by p =
√

Ekin/2m. During the process of photoemission, the energy

E and parallel momentum k// are conserved and can be expressed as below in terms

of the kinetic energy Ekin and angle θ, φ:

kx =
1

~
√

2mEkinsinθcosφ (2.7)

ky =
1

~
√

2mEkinsinθsinφ (2.8)
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ARPES measures the electron distribution I(Ekin, θ, φ) with respect to Ekin, θ and

φ, there is one-to-one mapping to I(ω, kx, ky). The intensity map I(k, ω) can be

described as:

I(k, ω) = A(k, ω)f(ω)I0(k, ω,A) (2.9)

where A(k, ω) is the single particle spectral function, f(ω) the Fermi-Dirac distribu-

tion function and I0(k, ω,A) the magnitude of matrix element |Mf,i(k)|2.
Figure 2.6 shows a typical 2-dimensional intensity map I(k, ω). The x-axis is the

momentum and y-axis is the energy, the value gives the counting of photoelectrons

at that momentum and energy.

Figure 2.6: ARPES intensity map. The image plot is a typical ARPES intensity map.

The upper panel is the MDC line. The right one is the EDC line.

ARPES has made significant contributes to the experimental condensed matter

physics over the last two decades, a good summary can be found in the review articles

[5] [23], we also need to notice that there are a few caveats when we compare it to

STM:

(1) ARPES works well only on 2d systems. If the electrons in the materials

are moving with an z component in their momentum, then it is more difficult to
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reconstruct the z-axis dispersion relation.

(2) ARPES measures spatially averaged quantity. Therefore, all of the spatial

dependence study on high temperature superconductors, such as electronic inhomo-

geneity, impurity and vortices states, are difficult to be detected by ARPES.

(3) ARPES measures mostly filled states, thus the information of empty states

above the Fermi level is missing from ARPES measurement.

(4) ARPES can’t work with a magnetic field, due to the interference of magnetic

field and electron motion.

In summary, STM gives us the energy landscape in real space and ARPES gives

us the energy landscape in ~k space, which makes them a perfect match for the study

of the high Tc superconductivity.

2.3 Summary

In summary, this chapter we document the physics treatment of tunneling microscopy.

We also compare it to ARPES, which is another important experimental technique

in high temperature superconductivity field. Both STM and ARPES are surface sen-

sitive techniques which require clean, flat surfaces for effective study. In next chapter

we will start to look into the basic instrumentation of a scanning tunneling microscopy

system including UHV subsystem, cryogenics subsystem, electronics subsystem and

STM head.
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Chapter 3

Experimental setup and sample

preparation

Building and trouble-shooting a scanning tunneling microscopy system operating at

cryogenic temperature and in ultra high vacuum is part of this thesis. In this chapter

we will review the instrumentation of this system along with a commercial STM

system which is also located in Boston College. Most of our data has been taken

using these two systems. In this chapter, we first describe the STM setup, and then

we discuss the sample preparation procedures.

3.1 Instrumentation of STM

In this section, we will briefly review the instrumentation of the STM system, starting

from the STM head which is the core part of the system. As a complete experimental

system, the home made STM system can be divided into a few subsystems: the

electronics subsystem, UHV subsystem and cryogenics subsystem.

3.1.1 STM head

There are a variety of distinct STM designs. In general, they differ in how the coarse

approach is implemented and in their rigidity against vibrations. We adopted Pan’s

STM design with some variation [28] [30]. Pan’s design employs a modified “Stick-

slip” coarse approach mechanism that exploits the friction between parts to hold the

unit against vibrational noise coupling.
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As shown in Figure 3.1, the STM head consists of a macor housing (1), six shear-

piezo stacks (2) with alumina contacts (3), a sapphire prism (4) that carries the

scanning unit, a BeCu spring plate (7). The scanning unit is made of a macor inset

(5), a piezo-tube scanner (6), and a metallic tip holder. The metallic tip holder is

attached to the center of the piezo-tube scanner, and the scanner is glued to the top

of the macor inset with Torr-Seal. The macor piece fits tightly to the central hole of

the sapphire prism, and the scanning unit is locked to the sapphire with screws and

Torr-Seal. By pressing down a 1/8” diameter sapphire ball (8) against the top macor

block (1), the BeCu spring plate (7) holds the sapphire prism firmly between the six

piezo stacks. All of the materials chosen are non-magnetic and UHV compatible.

Figure 3.1: Schematic drawing of STM head. (A) Top view. (B) Side View. (1)

Macor body. (2) Shear-piezo stacks. (3) Alumina plate contacts. (4) Sapphire prism.

(5) Macor inset of the scanning unit. (6) Piezo-tube scanner. (7) BeCu spring plate.

(8) Sapphire ball bearing.

This design is superior in its stability against external mechanical perturbations.

The sapphire prism and the tip it carries are held steady by friction between the

alumina contacts and the prism. The strength of the friction can be adjusted by

varying the curvature of the thin BeCu spring plate. Therefore, there is very little

relative motion between the macor body and the tip. Furthermore, after each step

completed, all piezos return to their neutral positions. Thus, no voltage is needed to

hold the prism in place, and the vibrational noises transmitted through the voltage

noise applied to the piezos are eliminated.
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One additional advantage of the design is its stability against thermal expansion.

The STM head is designed to be concentric with the tip and sample located at the

center. Therefore, it minimizes thermal drifting and enhances the STM performance

at variable temperatures. The piezo stacks and piezo tube take care of all the motions

needed by piezoelectric effect.

Although this whole delicate apparatus is only about half palm size, I still want

to divide them into two parts according to their functions: Walker and Scanner.

Walker The walker consists of all the parts in Figure 3.1 except part 5 and 6.

The six piezo stacks do the coarse approach whose schematic drawing is shown in

Figure 3.2.

Figure 3.2: Schematic drawing of the working principle of the piezo stacks for the

coarse approach: The sequence of the motions of shear piezo stacks and sapphire

prism is caused by applying the sequence of voltage to each piezo stacks.

As shown in Figure 3.2, four stacks of piezo holds the sapphire prism. When a

voltage is applied to one of them, it shears while the friction force between the other

three stacks and the prism is still strong enough to hold the prism stationary. After

an appropriate delay, the same voltage applied to one of the other stacks. After all the

stacks have been sheared, the voltage on all stacks is ramped down, simultaneously.

The stacks carry the prism one step forward together.

31



Scanner The scanner basically includes the part 5 and part 6 in Figure 3.1, A

detailed drawing of scanner is shown in Figure 3.3 and a schematic drawing of the

piezo tube is shown in Figure 3.4. By applying voltages to the X, Y and Z sections

of the tube, the tube can make fine XYZ motions during the scanning.

Figure 3.3: Detailed drawing of the scanner.

Figure 3.4: Schematic drawing of the Piezo tube.

3.1.2 STM electronic, UHV and cryogenics subsystems

Electronic subsystem The electronic subsystem takes care of STM control and

data-acquisition. It consists of a high-gain low-noise current pre-amplifier, a controller

and a homemade triggering circuit that controls the coarse approach piezos. The pre-

amplifier and controller box are commercial products from RHK Technologies.

UHV subsystem UHV subsystem has three stages, as shown in Figure 3.5.
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Figure 3.5: Detailed drawing of UHV subsystem (A) the manipulator on the second

stage, (B) main chamber for second stage, (C) the vibration isolation table and (D)

the dewar which shield the third stage.

33



The first stage or so called “Loadlock stage” has a six-way cross(a small volume

chamber also will work) connected with four main parts: a turbo pump which sup-

ported by a rough pump, pressure gauge (here a pirani and a full range ion gauge do

the job), a short transfer arm or manipulator and a easy-access door (the easy-access

door can replaced by a simple flat flange cover, which provides better vacuum but

need to be removed for sample transfer making it rather inconvenient.). The vacuum

ranges from 10E-7 to 10E-9 Torr depending on how long it has been pumped. It may

also need the bakeout for better vacuum performance.

The second stage consists a big chamber connected to the loadlock, ion pump, ion

gauges, sample post magazine and the cleaver along with the pin basket, This stage

is mainly for sample storage and cleaving. The pressure is always maintained below

10E-10 torr and even better. Ion pump’s speed is more than 300L/s.

The third stage is the last stage, and this one also can be referred as cold stage

which includes the manipulator which can transfer the sample to the STM head. It

has a shutter/valve separating the cold stage from other stages and we keep it shut

during the experiment. Not only for isolating the different spaces due to the vacuum

(cryo-pumping), the noise and thermal influences are also considered here.The cold

stage’s pressure could be better than 10E-12 Torr although we do not have a gauge

here since no gauge can measure these pressure. Unlike other stages, a thermal sensor

is definitely needed and is placed on the STM head.

Another kind of detailed design for a versatile ultralow temperature scanning

tunneling microscopy system can be found in the H. Kambara et al. [13]

Cryogenics subsystem The cryogenics subsystem has two parts, as shown in Fig-

ure 3.6.

One is the dewar whose volume is more than 80L. The dewar is accompanied by

helium level sensor, thermal sensor and a heater for the variable temperature control.

The boil off rate at 4.2K is about 10L/day. The other part is the exchange gas can.

Usually there are two basic designs according to the thermal medium which help to

adjust the STM head’s temperature. One is using liquid and the other is using gas.

We choose the helium gas as the thermal medium for our homemade STM system.

And on the top of this part, the pressure is being monitored using a regular pirani

gauge. Usually the pressure will be around a few torr to 10E-2 torr. The lowest

temperature is 4.2K (liquid helium temperature).
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Figure 3.6: Detailed drawing of (A) the dewar and (B) exchange gas can.
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3.1.3 STM systems at Boston College STM lab

In the last section we discussed the instrumentation of our home-made STM system.

At Boston College, we have another commercial STM from Unisoku. These two STM

systems share a lot in common such as sample preparation, approaching mechanism,

controller boxes. The commercial Unisoku STM system also has the ability to go

below 4K, there are extra parts designed for pumping down the Helium vapor.

The picture of the homemade STM system is shown in Figure 3.7. Figure 3.8

shows the topographic image using homemade STM system took on the optimal

doped Bi2212 sample. The picture of the commercial Unisoku STM system is shown

in Figure 3.9.

3.2 Experimental environment

Because bismuth family including Bi2Sr2−xLaxCuO6+δ has weak bonds between the

two BiO layers, so it can be easily cleaved to achieve an atomically flat surface. And

because the STM approaches the sharp tip within a few Angstroms to the sample

surface, it is very essential that the surface be atomically flat. So the following are

two requirements for STM study of a surface.

(1) The surface must cleave between layers, make sure there is no residual parts

of a missing layer which will cause a huge step of the surface and make a mess with

the signals.

(2) The surface must be free from other contaminants, such as helium and water

molecules.

To satisfy the requirements above, we cleave the Bi2Sr2−xLaxCuO6+δ sample while

it is in a UHV environment, the vacuum is usually better than 2E-10Torr. Cleaving

is mechanically simple. We glue a small sample to the copper sample holder and glue

a small metallic rod to the other side of the sample, then we insert the whole setup

into the system and knock off the rod when the vacuum is ready. Figure 3.10 shows

the typical cleaved surface after the experiment.

Right after cleave, the sample is inserted to the STM head which sitting in the

cryogenics environment. Because of the cryo-pumping, the vacuum is much better

than the cleave stage (<1E-11Torr). So the quality of the surface is guaranteed after

a successful cleave. A sample in the cryogenic UHV environment can be used for

weeks and even months.
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Figure 3.7: The homemade STM system at BC.
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Figure 3.8: STM topographic image of optimal doped Bi2212 sample 100Å× 100Å.

Figure 3.9: The Unisoku STM system at BC.
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Figure 3.10: Photograph of a cleaved Bi2Sr2−xLaxCuO6+δ, glued with conducting

epoxy to a copper sample holder. The samples we use are typically 1mm square.

There are a few things need to be addressed. One thing is whether the cleave

causes surface re-distribution. So far, from the topographic measurements with

atomic resolution we can tell the bismuth atoms remain ordered as expected. But the

cleave may affect the oxygen dopant atoms which are invisible to STM right now.

Another issue is the cleave temperature. It is a easy to think that a cold cleave

may be difference from the warm cleave. And because the sample will be inserted to

the 4.2K environment in most of the experiments. The cooling down procedure can be

damped by a warm cleave, and the cold cleave also can be good for lowing the atoms’

mobility during and after the cleavage. The difficulty is the excise measurement of the

cleaving temperature, we have tried the 100K and room temperature, luckily, so far we

have not seen any difference of the data. It may because of the Bi2Sr2−xLaxCuO6+δ is

one “good” sample for STM, but this can be a really serious issue for other materials

such as the new iron pnictide samples.

Last thing need to be addressed here is the following: We believe the key layer for

superconductivity is the CuO layer, why are we taking the STM tip to the BiO layer?

Actually there are two layers between the STM tip and CuO layer, BiO and SrO

layers. We believe the BiO and SrO layers are insulating or at least semi-conducting

with a large gap, so the tunneling current is going through these two layers regarding
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them as part of the vacuum tunneling barrier. And there is another “good” side-

effect, the BiO and SrO layers actually protect the CuO layer from losing the charge

carrier concentration in the CuO planes.

To summarize, we cleave the sample at UHV, and put the sample into the cold

stage right away, by thinking through all the issues mentioned above, we are good to

go.

3.3 Summary

In this chapter we reviewed the instrumentation of our home-made STM system in

details. We also documented the sample preparation procedures and experimental

environments. Start from next chapter we will go into the part of STM data analysis

and discussions.

40



Bibliography

[1] K. Eisaki et al, Phys. Rev. B 69, 064512 (2004).

[2] K. Fujita et al, Phys. Rev. Lett. 95, 097006 (2005).

[3] H. Kambara et al, Rev. of Sci. Insturm. 78, 073703 (2007).

[4] H. Luo, et al, Supercond. Sci. Technol. 21 125024 (2008).

[5] W. Meevasana et al, Phys. Rev. Lett. 96, 157003 (2006).

[6] S. H. Pan et al, International Patent Publication NUmber WO 93, 19494 (1993).

[7] S. H. Pan et al, Rev. Sci. Instrum. 70, 1459 (1999).

41



Chapter 4

Two coexisting and competing

energy scales

4.1 Introduction

STM and ARPES studies have played a critical role in the observation of the pseudo-

gap in the high Tc cuprates such as Bi2212 and Bi2201. It has been observed that, in

the underdoped cuprates, as the temperature is raised from T<Tc the superconduct-

ing gap ∆sc remains almost constant and smoothly evolves into a pseudogap across

Tc. Above Tc, the pseudogap is gradually filled up and remains essentially a constant,

before vanishes at the crossover temperature T∗ [29] [11] [17]. Figure 4.1 shows some

representive STM data on Bi2212 and Bi2201 samples. The spectroscopies in red

color on Bi2212 and Bi2201 panels mark the Tc, and the gap persists through Tc

while the coherence peaks start to smear out.

Right after the discovery of the pseudogap, the following question became one of

the hottest issue in high Tc superconductivity: What is the origin of the pseudogap

and what is the relationship between the pseudogap and superconducting gap? The

energy scales for both gaps are one important parameter to look at. S. Hufner et

al. summarize the gap values from several experimental techniques [10], as shown

in Figure 4.2. Most results on the pseudogap published so far are from ARPES,

inelastic neutron scattering, Raman experiments and NMR. It is clear that there

are two different energy scales observed from these experiments. The large body of

experimental data which suggests a coexisting two-gap scenario, i.e. superconducting

gap and pseudogap, over the whole superconducting dome.
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Figure 4.1: T dependencies of the DOS measured by STM. (A) Junction between

an iridium tip and UD Bi2212 with Tc=9K,83K, ∆sc=44mev, and the T∗ near room

temperature. From Renner et al. 1998. [11] (B) Bi2201 From Kugler et al. 2001. [17]
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Figure 4.2: Pseudogap (Epg=2∆pg)and superconducting (Esc∼5KBTc) energy scales

for a number of HTSCs with Tc
max∼95K (Bi2212, Y123, Tl2201 and Hg1201). The

datapoints were obtained, as a function of hole doping x, by ARPES, Tunneling (STM,

SIN, SIS), Andreev reflection (AR), Raman scattering (RS) and heat conductivity

(HC). From Hufner et al. 2008. [10]
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Explanations for the origin of the pseudogap fall into two general categories. (1)

The pseudogap is a precursor pairing state without the superconducting coherence.

(2) The pseudogap is a competing phase with a hidden order parameter, for instance,

CDW, SDW, etc. [5] [19]. Both of these have strong consequences for superconduc-

tivity.

Many earlier experimental results on the pseudogap demonstrated characteristics

of a precursor pairing gap, including similar gap amplitudes and d -wave-like momen-

tum dependence above and below Tc, and smooth temperature evolution through

Tc [38], as shown in Figure 4.1. This also has led to a belief that the superconduct-

ing phase is characterized by a single d -wave pairing order parameter which finds

support in the observation of a single d -wave gap function in cases where the Bogoli-

ubov quasiparticle peak survives at the antinode [33].

Recently, there has been increasing evidence for the existence of two distinct gaps

associated with different order parameters coexisting below Tc, such as opposite dop-

ing dependence for the two gaps [10] [26], and different temperature dependencies of

the two gaps [33] [37] [12]. Figure 4.3 shows different doping dependence of the these

two gaps. At temperature ≈10K above Tc, we can see there exists a gapless Fermi arc

region near the node. With the increasing doping, this gapless Fermi arc elongates, as

the pseudogap effect weakens. At T<Tc a d -wave like superconducting gap begins to

open near the nodal region; however, the gap profile in the antinodal region deviates

from the simple d wave form. At the temperature well below Tc, the superconduct-

ing gap with the simple d -wave form eventually across entire Fermi surface in the

underdoped sample with Tc=92K and the overdoped sample with Tc=86K but not in

the underdoped sample with Tc=75K. Besides Bi2212, there are other samples show

strong deviations from a single d -wave gap function such as Bi2201 [37] [11], as shown

in Figure 4.4. The plot of gap versus Fermi angle shows stronger deviation from a

single d wave form which may imply there are two coexisting gaps. Unlike the Bi2212,

the Bi2201 samples has well separated energy scales between the supercondcuting gap

and pseudogap which make it a good candidate for this study.

4.2 Bi2Sr2−xLaxCuO6+δ

Among the families of the high Tc cuprates, the bismuth family is one of the most pop-

ular materials for surface probes such as STM and ARPES. Bi2212 has been studied

extensively by STM due to the availability of high quality crystal, and good cleave
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Figure 4.3: Schematic illustrations of the gap function evolution for three doping

levels of Bi2212. (A) Underdoped sample with Tc=75K. (B) Underdoped sample

with Tc=92K. (C) Overdoped sample with Tc=86K. From W. S. Lee et al. 2007. [12]
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Figure 4.4: ARPES results on La-Bi2201 (A) Symmetrized EDCs show the peak

gap values. (B) Plot of peak gap values versus Fermi angles. From T. Kondo et al.

2007. [11]
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surface, which is critical to STM measurements. Many phenomena have been re-

vealed within last 10 years on Bi2212, including spatial inhomogeneity, quasi-particle

interference, vortex states, etc.

In this thesis, we study the single layer high Tc cuprate: Bi2Sr2−xLaxCuO6+δ (La-

Bi2201), In this section we will introduce this sample’s crystalline structure, transport

measurements, and sample growing methods.

4.2.1 Crystalline structure of Bi2Sr2−xLaxCuO6+δ

LnxBi2Sr2−xCuO6+δ is a single layer system with the highest Tc of 36K. Figure 4.5

shows the crystal structure. The copper oxide plane is separated by SrO and BiO

planes, Sr can be substituted by lanthanide (such as La, Nd, Sm, Eu, Gd) and bis-

muth. This substitution occurs right above the copper oxide plane which is believed

to be the crucial plane to the superconductivity, so the substitution is expected to

have strong effect on the electronic structure and chemical environment. Essentially,

one can separate the effects of Ln-substitution into two parts: changing carrier con-

centration and introducing the out-of-plane disorder [7]. It is still not very clear how

these effects influence superconductivity. But there is an important observation that

the mismatch between the size of substituted ions introduces A-site disorders, which

results in different Tc ranging from 30 to 10K at the optimal doping level in each

system [6], as shown in Figure 4.6. The LaxBi2Sr2−xCuO6+δ system has the weak-

est influence from the mismatch of the atoms’ sizes and thus the highest Tc in this

family, while the Bi2+xSr2−xCuO6+δ system represents the opposite extreme. The

relationship between the disorder and Tc sheds light in the mechanism of HTSC.

4.2.2 Sample growth and transport measurements

The samples we studied in this thesis were provided by Hai-Hu Wen’s group, Chinese

Academy of Science in China.

Bi2Sr2−xLaxCuO6+δ single crystals with high quality have been grown successfully

using the traveling-solvent floating-zone technique. The patterns of X-ray diffraction

indicate high crystalline quality of the samples. The crystals show sharp supercon-

ducting transitions revealed by AC susceptibility, which can be observed from the

susceptibility results [6] [20] (Figure 4.7). The hole concentration p is deduced from

the superconducting transition temperature, which exhibits a linear relation with La

doping level x (Figure 4.8). It ranges from the heavily overdoped regime (p≈0.2) to

48



Figure 4.5: Crystalline Structure of Ln0.4Bi2Sr1.6CuO6+δ samples.
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Figure 4.6: (a)La0.4Bi2Sr1.6CuO6+δ susceptibility curves, normalized to -1 at the low-

est temperature. (b) Tc values as a function of 4R.

the extremely underdoped side (p≈0.08) where the superconductivity is absent [22].

In this thesis, we focused on two dopings: nearly optimally doped Bi2Sr1.6La0.4CuO6+δ

with a Tc of 32K (0.4La) and overdoped Bi2Sr1.9La0.1CuO6+δ with a Tc of 18K (0.1La).

4.2.3 Bi2Sr2−xLaxCuO6+δ for STM study

Recently LaxBi2Sr2−xCuO6+δ has attracted a lot of interest from STM groups all

over the world along with other experimental techniques. In earlier text we put a few

sentences on why we choose LaxBi2Sr2−xCuO6+δ for our study. Here we summarize

the reasons in detail:

(1) The single layer sample has lower Tc, so it is easier to probe the normal state.

(2) LnxBi2Sr2−xCuO6+δ can be substituted with different elements and has differ-

ent behavior, this can expand our study from doping dependence to dopant depen-

dence and enrich our understanding of the physics.

(3) LaxBi2Sr2−xCuO6+δ can cover a wide doping range from heavily underdoped

region to heavily overdoped region.

(4) LaxBi2Sr2−xCuO6+δ has the well separated energy scales for superconducting

gap and pseudogaps.
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Figure 4.7: (a) The normalized AC susceptibility for the annealed single crystals

with x=0.05,0.10,0.20,0.40,0.60 and 0.80. The Tc was defined as the point where

the real part deviates from the flattened normal state part. (b) The typical AC

susceptibilities under different external DC fields, which show the easy suppression

of superconductivity under low DC fields. From H. Luo et al. 2008. [20]
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Figure 4.8: (a) The linear relation between hole concentration p and Ln doping level

x. The solid lines are linear fitting for the scattering points. Inset: the real content

doping of La for La-Bi2201, which is determined by DEX measurements. The crystal

composition is very close to the starting material, where the segregation coefficient

K=Cs/Ci is only about 1.05, slightly above 1. (b) The superconducting dome for

Bi and La doped Bi2201, where the hole concentration is deduced from the linear

formulas in (a). It can be seen that the ’bell shape’ is distorted in Bi-Bi2201. From

H. Luo et al. 2008. [20]
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4.3 Observation of two coexisting gaps

4.3.1 Bimodal gap distribution

Right after we approach the STM tip to a fresh cleaved sample, the first STM data

we take is a topographic image. Bi2Sr2−xLaxCuO6+δ has a well known surface and

lattice constant. Once we obtain a surface with good atomic resolution then we can

proceed with the confidence of having a good sample. (Figure 4.9 and Figure 4.10)

Typical linecuts of spectral data on 0.4La and 0.1La samples are shown in Fig-

ure 4.11 and Figure 4.12 respectively. which covers a 100Å distance. From the spectra

shown in Figure 4.11 and Figure 4.12, we observe two distinct gaps coexisting at a

given spatial location. Figure 4.13 shows how we define these two gaps. It is worth

while mentioning that this is the first time coexistence of two energy scales clearly

visible in a single STM spectrum.

Figure 4.14 shows the gap histograms based on the gap values. Both samples

show a clear bimodal gap distribution histogram. For 0.4La sample, the small gap

averages at 10.50meV and has a standard deviation of 2.8meV and the large gap

has an average of 27.2meV and standard deviation of 5.4meV. For 0.1La sample, the

small gap averages at 7.40meV and has a standard deviation of 1.6meV, the large

gap averages at 20.7meV and has a standard deviation of 3.9meV. We also did the

same gap analysis on dI/dV maps to extract the small and big gap maps, the results

will be presented in later text. We emphasize that the average gap values and their

standard deviations taken from the maps are consistent with the number taken from

the linecuts.

One thing needs to be addressed is that the second gap or large gap of 0.1La is

not visible for every single spectroscopy, the reason will be discussed in next chapter.

For the moment we just include every single spectroscopy which shows a clear second

gap for the histogram.

When we consider earlier data from other group we see that there are small gaps

that have been neglected, as shown in Figure 4.15 [35]. A. Sugimoto et al. performed

STM experiments on the same sample with a slightly different doping level. Their

data did have the coexistence of two energy scales, but these small features were not

defined as a gap. Instead the large gaps were counted as the only gap associated with

the superconductivity. The red arrows show the small gaps which were neglected.

Therefore the corresponding histogram of gap distribution only has one peak instead

of our two. Attributing the large gap as the superconducting gap also cause some
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Figure 4.9: (A) STM topographic image of 0.4La at 4.2K 128 Å× 128 Å. (B) 256 Å×
256 Å. (C) 451 Å× 451 Å.
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Figure 4.10: (A) STM topographic image of 0.1La at 4.2K 128 Å× 128 Å. (B) 192

Å× 192 Å. (C) 256 Å× 256 Å.
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Figure 4.11: STM linecut spectrum taken on 0.4La sample 100Å distance.
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Figure 4.12: STM linecut spectrum taken on 0.1La sample 100Å distance.
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Figure 4.13: A single STM spectroscopy taken on 0.4La sample.

confusion since it exaggerated the value of the SC gap, resulting in a ratio of 2∆/KBTc

as large as 20-30.

Based on our data, the 2∆/KBTc for small gap of 0.4La sample is 7.6, the

2∆/KBTc for small gap of 0.1La sample is 9.5. These numbers are close to the

usual number of the superconducting gap value of high Tc cuprates. The 2∆/KBTc

for large gap of 0.4La sample is 19.7 while the 2∆/KBTc for large gap of 0.1La sample

is 26.7 which are too large to be associated with superconductivity.

4.3.2 Comparison between STM and ARPES data

From the data shown above, we know there is clear bimodal distribution of gap values

from STM results. The 2∆/KBTc ratio for the small gap indicates that it may be the

gap associated with superconductivity. Trying to identify the small gap with more

convincing evidence, we obtained ARPES data on the same samples. (Figure 4.16).

ARPES experiments were performed by ARPES group at BC at the Synchrotron

Radiation Center in Wisconsin, and at the Tohuku University ARPES lab using a

microwave-driven Xenon source (hν=8.437eV) with very high resolution (ERe<4meV,

kRe<0.005Å−1). Comparing the ARPES energy distribution curve (EDC) data along

with our STM spectroscopy results, we find out that the average STM small gap is

comparable to the ARPES gap at the arc tip (∼11mev). (Figure 4.17) And the small

gaps observed by ARPES follows the d wave fitting when we plot the ∆ against the

Fermi angle. (Figure 4.18) Here two questions appear: (1) Is there any counterpart
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Figure 4.14: Bimodal gap histogram for (A) 0.4La sample, the small gap averages at

10.50meV and has a standard deviation of 2.8meV and the large gap has an average

of 27.2meV and standard deviation of 5.4meV. (B) 0.1La sample, the small gap

averages at 7.40meV and has a standard deviation of 1.6meV, the large gap averages

at 20.7meV and has a standard deviation of 3.9meV.
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Figure 4.15: STM spectrum of optimal doped La-Bi2201 samples published by A.

Sugimoto et al. (A) The averaged STM spectrum based on the gap values on optimal

doped La-Bi2201 sample Tc=34K measuring temperature is 9K. Red arrows show the

small gaps neglected. (B) the corresponding gap histogram.

60



of the large gap observed in STM spectrum in ARPES EDCs? (2) Earlier ARPES

experiments on similar samples found a large antinodal gap of about 35meV both

above and below Tc without seeing the small gaps. How do we reconcile the two

observations?

Our low photon energy, high resolution ARPES enhances the features of the co-

herent excitations such that even data near the antinodal region reveal smaller gaps

which follow the d-wave fit reasonably well. This indicates a superconducting gap

persisting to the antinodals. The observed “pairing beyond the Fermi Arc” can be

explained by the fact that the large pseudogap near the antinodes. is a soft gap with

suppressed but finite in-gap density of states that could facilitate pairing below Tc.

In our data, we believe the reason why we don’t see clear large gap near the antinode

is the spectral weight associated with the superconducting coherence masks the signal

from the large gap.

Further support for this idea comes from the temperature dependence of ARPES

data. The large gap is clearly visible at the antinodal positions when we raise the

temperature across Tc, as shown in Figure 4.19. For both 0.4La and 0.1La samples,

the temperature dependent data show that while the small gap disappears above Tc,

a large gap remains until the temperature reaches T∗.

Figure 4.20 summarizes our findings regarding the gap values extracted from both

ARPES and STM data on the two samples with different doping levels. Because STM

is a probe sensitive to antinodal signals, we put the extracted values from STM at

the antinodal positions. When T<Tc we observe the two coexisting and competing

energy scales at both real space and antinodal positions of momentum space. When

T>Tc the small gap disappears while the large gap survives.

4.3.3 Small gap and superconductivity

Here we summarize the evidence that allows us to associate the small gap with su-

perconductivity.

(1) The temperature dependence data from STM experiments shows the small

gap feature disappears and the large gap persists above the transition temperature

(Tc). Figure 4.21 shows the linecut spectrum taken on 0.4La sample at 50K. The

temperature dependence data from ARPES measurements are also consistent with

this scenario, as shown in Figure 4.19.

(2) The gap value extracted from ARPES EDC data satisfy the d-wave gap func-

tion, as shown in Figure 4.18.
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Figure 4.16: (A) and (B) Fermi surface mapping and EDCs along the Fermi surface of

0.4La sample at 5K. (C) and (D) Fermi surface mapping and EDCs along the Fermi

Surface of 0.1La sample at 5K.
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Figure 4.17: (A) Single STM spectrum (red) representative of the average ∆s and ∆L

and spatially averaged STM spectrum (black) from a 240 Å dI/dV map (B) Sym-

metrized ARPES energy distribution curves (EDCs) taken at the antinodal position

and at the arc tip (θ∼21◦) (C) and (D) Similar data as (A) and (B), arc tip θ∼18◦.

Figure 4.18: k-dependent gap value versus Fermi surface angle (defined in the inset)

for data shown in Figure 4.16 (A) 0.4La.
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Figure 4.19: T-dependent EDC at antinodal positions for (A) 0.4La Tc=32K. (B)

0.1La Tc=18K.

Figure 4.20: Gap values extracted from STM and ARPES results on 0.4La sample

when (A) T<Tc. and (B) TÀTc.
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Figure 4.21: Linecut spectrum taken on 0.4La sample at 50K.
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(3) The 2∆/KBTc calculated based on the small gap value for 0.4La sample equals

to 7.6. For 0.1La sample, the ratio is 9.5 These numbers are consistent with other

optimal doped high Tc cuprates.

Therefore we claim the small gap associated with the superconductivity. For

the large gap, becaue in ARPES data we find these gaps survive above Tc, it can

be considered as “Pseudogap”. The detailed discussion on the pseudogap will be

presented in next chapter. But one thing we will try here is when we replaced the Tc

by T∗ in the calculation of The 2∆/KBTc. The new 2∆/KBT∗ for large gap of 0.4La

sample is 4.2 while the 2∆/KBT∗ for large gap of 0.1La sample is 6.0. The number

of T∗ comes from the ARPES experiments, the T∗ of 0.4La sample is around 140K

and 0.1La sample is around 80K. These ratios make more sense.

4.4 Strong correlation

Another important observation is that there is a strong correlation between these

small and large gaps observed in STM experiments. Figure 4.22 shows STM spectra

on 0.4La samples that were sorted and averaged based on ∆L. One can clearly see

that as the large gap increases, so does the magnitude of the small gap. This is

confirmed when we consider the dI/dV maps. Figure 4.23 shows the gap map based

on a 256Å dI/dV map on 0.4La and Figure 4.24 shows the gap map based on a 128Å

dI/dV map on 0.1La.

The cross correlation (Figure 4.25) between the two gaps gives a rather strong

correlation on-site coefficient of 0.6 indicating both order parameters are influenced

by the same underlying physical processes. A key point to note here is that while

the second larger gap in the 0.1La samples is rather weak and not always observed,

wherever it is visible it shows the same correlation with the superconducting gap

as the 0.4La samples. This strong correlation is also true statistically by doing the

scatter plot, as shown in Figure 4.26. Furthermore, the seamless continuation of

the scatter plot for the 0.1La samples with the 0.4La samples suggests that the gap

variations for both gaps may arise from doping inhomogeneities [27] [29] [44].

Recently L. Niestemski and Z. Wang proposed a VBG scenario for the coexis-

tence of superconducting gap and pseudogap [26]. The low-energy fluctuations of the

valence bond due to the superexchange are pinned by the electronic disorder from

off-stoichiometric dopants, leading to a valence bond glass (VBG) pseudogap phase

in underdoped high Tc Cuprates. The antinodal Fermi surface sections are gapped
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Figure 4.22: Spectrum from a 240Å× 240 Å map sorted and averaged on the basis of

∆L.
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Figure 4.23: (A) Small gap map and (B) Large gap map on 0.4La sample. (256Å ×
256Å).
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Figure 4.24: (A) Small gap map and (B) Large gap map on 0.1La sample. (128Å ×
128Å).
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Figure 4.25: The spatial dependence of cross correlation between the ∆s and ∆L

maps which retains a finite value up to a few lattice constants.
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Figure 4.26: Scattering plot of occurrences of ∆L and ∆s
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out, giving rise to a normal state Fermi arc whose length shrinks with underdoping.

Below Tc, the superexchange interaction induces a d -wave superconducting gap that

coexists with the VBG pseudogap. This might be one possible explanation for the

same underlying physical processes we proposed above.

4.5 Summary

To summarize, through a combined scanning tunneling microscopy and angle-resolved

photoemission spectroscopy study, we report the observation of two distinct gaps

(a small and a large gap) that coexist both in real space and in the antinodal

region of momentum space, below the superconducting transition temperature of

Bi2Sr2−xLaxCuO6+δ. We show that the small gap is associated with superconduc-

tivity. The large gap persists above transition temperature and can be considered

pseudogap. We also find a strong correlation between the large and small gaps sug-

gesting that they are affected by similar physical processes.
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Chapter 5

Pseudogap and charge density

wave

5.1 Pseudogap

In last chapter we identified small gap (∆s) as superconducting gap. Here we ad-

dress the question: what is the nature of this pseudogap? Usually the pseudogap

is defined as the gap observed above the transition temperature and occurs mostly

in the underdoped samples. There are many conjectures for the pseudogap state in

hole-doped cuprates ranging from static order to fluctuating order of density waves

in the particle-particle or the particle-hole channels. But recently there have been

many reports on the observation of a second gap in the superconducting phase (below

Tc)other than the superconducting gap.

Trying to understand the origin of the larger gap ( Since the second typically large

gap persists above Tc, we call this the “Pseudogap”. )observed in our STM data, we

obtain Fourier transforms of dI/dV maps at various energies. We find fourier spots

representing a periodicity other than the atoms and/or supermodulation. Revisiting

the dI/dV maps, we see where it comes from, as shown in Figure 5.4. There are

patterns about 4 to 5 times the lattice constant. The Fourier transform of all energies

data shows the pattern is non-dispersive and it represents a periodicity of 5a◦. Figure

5.1 shows the FFT linecut marked on the inset FFT image. The fact that charge

ordering has been observed in similar samples [3] [6] suggest that this pattern may

due to charge ordering. Since a charge density wave (CDW) is expected to generate

a CDW gap, is there any relationship between the large “pseudogap” and the CDW
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gap?

Figure 5.1: The linecut taken on the Fourier Transform images of 20 energies layers

showing the 5a◦ periodicity is not dispersing. The position of the linecut is showed

in the inset.

To claim that this is a charge density wave, we still need to answer two questions:

(1) Is there any STM phenomenal evidence for CDW? (2) Is there any Fermi surface

nesting effect because nesting is one of the well known driving force to form the CDW?

In STM studies, contrast reversal is an important signature for CDW. Figure 5.2

shows the conductance maps at high energies: 50mev,0meV and -50mev. And when

we choose two random linecuts at both 50meV and -50meV conductance maps, we

find there is clear contrast reversal, as shown in Figure 5.3. To answer the second

question, we first obtain the corresponding wave vectors for both 0.4La and 0.1La

sample, as shown in Figure 5.4. For 0.4La sample, the STM q vector matches

well with the vector connecting the Fermi arc tip observed in ARPES data which

is 2π/(5.2±0.7)a◦. The Fermi surface nesting effect could potentially induce the

charge density wave. The nesting vector matches the CDW pattern very well in both

amplitude and direction. So we believe the charge density wave (CDW) may be the
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explanation for the patterns we observe.

In the overdoped 0.1La samples, the vector connecting the arc tip observed by

ARPES (2π/(7±0.5)a◦) is expected to result in a spatial ordering with periodicity∼27

Å. Since the CDW displays short-range coherence, this larger periodicity is not likely

to be sustainable. More importantly, the kinetic motion of the increasing number

of doped holes is enhanced in the overdoped samples. Correspondingly, we find no

clear CDW pattern at this doping and the large gap is suppressed in magnitude.

The concomitant suppression of the large gap and the CDW pattern suggests an

intimate connection between the two, even implying a likely causal relationship. The

weak pseudogap in the overdoped samples could potentially arise either from CDW

fluctuations or a static CDW that is too weak or disordered to be observed by STM.

Finally, CDW ordering is just one amongst many explanations for this pseudogap

and while we cannot entirely rule out the possibility that the occurrence of the CDW

is coincidental or a surface phenomenon.

5.2 STM measurement effect

5.2.1 Behavior of contrast reversal at low energy

In our conductance maps we observe a “Checkerboard” pattern at all energies on 0.4La

[9] [13]. Now let’s focus on the low energy data. Figure 5.6 shows the conductance

maps at the energies: 7meV,0meV and -7meV. And when we choose a random linecut

on the 7meV and -7meV conductance maps, we find there is no contrast reversal, as

shown in Figure 5.7. To conclude, we observe a “checkerboard” pattern through all

energies, but we only see the contrast reversal between opposite bias at high energies.

There is no contrast reversal within the low energy states.

The observation of contrast reversal at high energies and no contrast reversal

between low energies poses an immediate question. If the STM bias is chosen ran-

domly, will the low energy states’ pattern follow the positive high energy states or the

negative ones. Are we confronting some logical difficulties? Furthermore we find a

surprising behavior in the low energy patterns. Depending upon the sign of the bias

the low energy pattern aligns itself with either the positive or negative bias [25] [24].

If we use a positive bias on the sample, then the low energy states follow the contrast

of the negative high energy maps and show a reversed contrast from the positive bias

maps. Similarly we use a negative bias on sample, the low energy states follow the
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Figure 5.2: Conductance maps at (A) 50meV, (C) 0meV and (E) -50meV (256 Å×
256 Å) 0.4La sample. (B), (D) and (F) are the corresponding FFT image to (A), (C)

and (E).
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Figure 5.3: Two random linecuts showing clear contrast reversal taken at +50meV

and -50meV. The position of the linecuts is marked on the inset topographic image.
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Figure 5.4: (A) 160 Å dI/dV map of 0.4La sample at energy (E)=+7meV. Inset

shows simultaneous topography. (B) 160 Å dI/dV map of 0.1La sample at energy

(E)=-11meV. Inset shows simultaneous topography. (C) Fourier transform of map

in (A) showing the q vectors arising from the CDW pattern. The unit for the axis

is 2π/a◦ where lattice constant a◦=3.83Å. (D) Fourier transform of map in (B). (E)

ARPES Fermi surface mapping of 0.4La sample. The inset shows the nesting vector

at the arc tip which matches the average STM periodicity. (F) ARPES Fermi surface

mapping of 0.1La sample showing the smaller q vector.
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Figure 5.5: Energy and spatial dependence of the DOS of Bi2212 sample at 100K.

(A) A typical conductance spectrum shows a pseudogap in the DOS at the Fermi

energy. (B) A typical topograph. (C)-(F) Real space conductance maps recorded

simultaneously at 41mV, 24mV, 12mV and 6mV show the appearance and energy

evolution of DOS modulation along the Cu-O bond directions. From M. Vershinin et

al. 2004. [28]
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Figure 5.6: Conductance maps at (A) 7meV, (C) 0meV and (E) -7meV (200 Å× 200

Å) 0.4La sample. (B), (D) and (F) are the corresponding FFT image to (A), (C) and

(E).
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Figure 5.7: One random linecut showing clear contrast reversal taken at +7meV,

0meV and -7meV. The position of the linecut is marked on the inset topographic

image.

positive high energy maps and are reversed from the negative high energy maps. Fig-

ure 5.8 shows the results when we using the negative bias, and the -50meV states has

the strong contrast reversal with the last two layers: -30meV and -10meV. Figure 5.9

shows the similar results but using the positive bias, and the 40meV states has the

strong contrast reversal with the last two layers: 20meV and 0meV.

5.2.2 STM measurement effect

Besides these interesting contrast reversal phenomena in last section, questions remain

such as what is the nature of the “checkerboard” pattern at low energies? To explain

our observations, we make the following proposal [29] [31]:

Our STM measurements are all under constant current mode which means during

scanning, the tunneling current is kept in a constant value by the feedback loop.

Since the tunneling current is determined by both LDOS and the tunneling range,

once the LDOS is changing, the tunneling distance will be changing as well to keep

the constant current. Therefore instead of the “Real LDOS”, the data we collected

is the “Observed LDOS” modified by the tunneling distance.

Here we use Figure 5.10 as a simple simulation. Spectrum in red represent the A

84



Figure 5.8: One random linecut showing clear contrast reversal taken at -50meV,

-30meV and -10meV. The position of the linecut is marked on the inset topographic

image.

Figure 5.9: One random linecut showing clear contrast reversal taken at 40meV,

20meV and 0meV. The position of the linecut is marked on the inset topographic

image.
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Figure 5.10: (A) Ideal DOS showing the CDW contrast reversal. Inset shows the

corresponding dI/dV map. (B) Using positive bias setting so the two spectrum were

normalized to the positive side spectral weight. (C)Using negative bias setting so the

two spectrum were normalized to the negative side spectral weight.
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spot in the inset simulated LDOS map while the spectrum in black represent the B

spot. The map is at positive high energy (50meV). Black and white represent high

and low intensity of the LDOS maps respectively. The tunneling current is in fact

the integration of the conductance over the energy range. Under the positive bias,

the two spectrum must be re-normalized to have the same tunneling current on the

positive bias side. As we can see in the Figure 5.10(B), the contrast between A and

B spot does not change at high energies after the re-normalization; it only become

weaker at positive side and stronger at negative side. But the low energy maps now

start to show a weak pattern which is new. A similar phenomenon occurs at the

negative bias. In summary since the spectra are re-normalized to the negative side

spectral weight, a contrast shows up at low energies, and the contrast becomes weaker

at negative high energy side and stronger at positive high energy side.

The re-normalized LDOS map is shown in Figure 5.11. In this figure we use the

same color scale for all the panels. The observed change in contrast matches our

observation and be understood as one possible explanation for the appearance of the

residue checkerboard effect at low energies.

To verify this proposal, we can do the normalization in reversal direction. By

doing so, we should be able to recover the “constant height mode” data which should

have no periodic feature at the low energies. However in reality we still see some

murky periodic feature and the reason we believe is that the atomic feature in our

data dominates the tunneling current.

A simple test of our proposal is to check if the CDW pattern is observed in the

topography. By removing the atomic feature, we do find the CDW pattern at exactly

periodicity and direction as in the conductance map, which supports our explanation

for the residue checkerboard effect. Figure 5.12 shows the topographic image we

obtained along with the conductance map. Because the sharp atomic features mask

the CDW, we do not see the pattern clearly in the raw data. After blocking the spots

representing the atoms and their satellite dots in the fourier image, the inverse FFT

brings up the CDW pattern as expected.

While our explanation for the residue checkerboard effect certainly fits the data,

it is possible that there are other explanations. More data and analysis are required

to settle this issue.
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Figure 5.11: The real DOS at (A) 50meV. (B) 10meV. (C) -10meV and (D) -50meV.

Using positive bias makes the conductance map to be re-normalized at (E) 50meV.

(F) 10meV. (G) -10meV and (H) -50meV. Showing the last three layers has the same

contrast but reverse to 50meV layer. Using negative bias makes the conductance map

to be re-normalized at (I) 50meV. (J) 10meV. (K) -10meV and (L) -50meV. Showing

the first three layers has the same contrast but opposite to -50meV layer.
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Figure 5.12: (A) The raw data of STM topographic image. (B) The Fourier Trans-

form image corresponding to (A). (D) FFT image in which we masked the atomic

and supermodulation feature. (C) Inverse FFT of (D) showing clear pattern hide

underneath the atomic and supermodulation features.
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5.3 Comparison with “checkerboard pattern” of

Bi2212

We now make a comparison to the Bi2212. Since the CDW pattern observed here

looks like the checkerboard feature of Bi2212, it is possible that they are all associated

with the charge ordering. In paper published by McElroy et al. [16] as shown in

Figure 5.13, The authors claimed to observe a checkerboard only at low energies.

They first setup a gap value of 65mev as the threshold. By doing fourier transform

of the integrated conductance map above and below this energy, they observed two

different phases respectively: the one with the “checkerboard” fourier spot and the

one without.

The similarity between their data and ours make us believe there is an unified sce-

nario in both Bi2212 and Bi2201 materials i.e. there are two coexisting and competing

phases below Tc. The difficulty is how to distinguish between these two phases. In

Bi2201, we clearly have two different energy scales corresponding to the two phases.

The large gap which associated with the pseudogap phase is well separated from the

superconducting phase. So it is easier to see the spatial difference below and above

the pseudogap energy scale. In Bi2212, it is more difficult since these two gaps are

not well separated according to ARPES results. The threshold of 65meV for ∆ helps

to separate these two phases [6] [7] [5] [10] [4] [26].

5.4 Summary

dI/dV maps on La-Bi2201 observed a pattern whose periodicity is about five times

lattice constant and not energy-dispersive. Based on the contrast reversal evidence at

the high energies, we believe this is charge density wave. By making the comparison

with the ARPES Fermi surface nesting vector, we think the charge density wave can

be a possible explanation for the pseudogap.

Besides the “checkerboard” pattern observed at high energy states, we also ob-

served the pattern at the low energies, where there is no contrast reversal. In this case

we propose that the pattern is mainly due to the STM setup condition that demand

a constant current at every point. By comparing to a similar “checkerboard” feature

of Bi2212, we believe that a unified picture emerges for the cuprates when there are

two coexisting and competing phase below Tc.

90



Figure 5.13: (A) FT of integrated conductance map from E=-65meV to E=-150meV.

(B) FT of integrated conductance map from E=-65mev to E=+65meV. (C)Dispersion

of ~q1 in regions with dSC coherence with ZTPG spectra. ∆<65meV (red circles) and

in regions with ZTPG spectra for ∆<36meV (black squares). At low energies the

dispersive LDOS modulation q1 are identical in the two regions. For E>65meV, a

new wave vector, ~q∗, modulation is found only in the ZTPG regions (black). To

within our uncertainty they do not disperse and ~q∗=(±2π/4.5a◦,0), (0,±2π/4.5a◦).

(D) The magnitude of the integrated conductance map along the ~q‖ (π, 0) direction for

∆≮65meV (∆<65meV) black (red). (E) The magnitude of the FFT of the masked

topographic image along the ~q‖ (π, 0) direction for ∆≮65meV (∆<65meV) black

(red). (F) A plot of the amplitude of the ~q1 LDOS modulation as a function of ~q1. The

maximum intensity of the modulation in the ZTPG regions occurs at ~q1=2π/4.5a◦.

No enhanced scattering of the quasiparticle in the dSC regions (red) is seen. From

McElroy et al. 2005. [16]
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Chapter 6

Technical notes

In this chapter, we will review some technical notes collected during the construction

and operation of the STM systems. Some notes are also from the data-acquisition

and analysis.

These notes are important not only for the experiments on STM system, but also

can be referred to other experimental techniques in the field of condensed matter

physics.

6.1 Introduction to charge density wave

The charge density wave is one of the usual phase can be found in many materials.

The easiest way to understand CDW is the one dimensional model proposed by Peierls

[1] [2] [3]. Figure6.1 shows the schematic drawing of the basic idea.

A one dimensional chain of atoms, with lattice constant a, has a dispersion relation

as pictured in Figure6.1 A. In the case of half-filling, electrons will occupy those states

within ±KF , out to the Fermi wave vector kF (half the Brillouin zone). The electronic

energy of this system can be significantly reduced, however, if the edge of the Brillouin

zone were to be brought into coincidence with the Fermi wave vector (in this case, if

it were cut in half). This can occur, as pictured in Figure6.1 B, if every other atom in

the chain is displaced slightly from its equilibrium position. In that case, the unit cell

is doubled (now with lattice constant 2a) and the Brillouin zone is halved. The gap

that opens at the edge of the Brillouin zone now has the effect of significantly lowering

the energies of the occupied states (and raising the energies of the unoccupied states),

thus reducing the overall energy of the system.
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Figure 6.1: (A) A 1D material at half filling. (B) A periodic lattice distortion occurs,

inducing a charge density modulation with wave vector qCDW =2KF , then a gap opens

up about the fermi energy,reducing the energy of the filled electron states.

Charge density waves can in general form in any system where the presence of a

periodic lattice distortion, which costs potential energy, leads to a more than offsetting

reduction of the electronic energy by opening a gap at the Fermi energy. As there

is a strong relationship between the wave vector of the charge density wave qCDW

and the Fermi wave vector kF (qCDW∼2 kF ), CDW’s occur most often in materials

whose Fermi surfaces are nested, that is, whose Fermi surfaces have fairly flat, parallel

portions. In these cases a single CDW wave vector can gap more of the Fermi surface,

and thus produce a larger energy reduction.

Usually CDW is accompanied by a periodic lattice distortion with the presence of

the charge density modulation. Also CDW is accompanied by a gap in the density of

states.

NbSe2 along with CeTe3 [5] are the some of the famous material which have the

obvious CDW state, and there are also a lot of high temperature Superconductivity

were reported to have the similar CDW states, for instance, the checkerboard charge

modulation found in large gap regions/underdoped Bi2212 [7], KMoO samples [4]

and the YBCO samples [8]. Here we will try to find the signature of CDW in our

study: 0.4La and 0.1La of LaxBi2Sr2−xCuO6+δ samples. Some similar results are also
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presented recently [9] [6].

6.2 Tip preparation

The STM tips for the present study in this thesis were made of 20 mil Pt/Ir (0.85/0.15)

wires by hand cutting. During our experiments, we have tried a number of tips made

of different materials and different preparation procedures.

To image a flat sample, such as that of a highly ordered pyrolytic graphite

(HOPG), and the Bi2201 samples we studied in this thesis. a simple mechanically

cut tip can produce good atomic images as long as the apex of the tip is free of

undesirable atoms or molecules. To avoid the future oxidization, we choose the inert

metals such as Pt/Ir wires and Pt/Rd wires.

Besides the cutting, electrochemical etching is the other important method to

yield sharp and high quality tips [10]. After the tips are pulled out of the chemical

solution, certain cleaning procedure such as cleaning with saturated hydrochloric acid

(HCl) or field emission should be followed to remove the unwanted materials. The

etch tungsten tips are proved to be very stable probes compared to mechanically

cut tips. Some scanning electron microscopy (SEM) images of the tips are shown in

Figure 6.2.

Figure 6.2: (A) SEM image of Pt/Rd cut tip. (B) SEM image of Pt/Ir etched tip.

(C) SEM image of W etched tip.

Besides the W and Pt/Rd tips, other materials are also been used for STM study.

Recently there is also proposed the bulk Cr tips can be used for spin-polarized STM

and yields high quality and high resolution results. that also confirms that different

tips suit different samples [12].
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6.3 Piezo calibration

To calibrate the shear piezos of the coarse approach motor, a Michaelson interferome-

ter is set up to measure both their polarization and displacement coefficient. Among

all piezos, we pick those with similar coefficients for the STM head construction.

For the fine motion, a 0.125” O.D., 0.19” long, 20 mil thick EBL2 tube serves as

our STM scanner. To calibrate the piezo tube scanner, atomic resolved images on

HOPG are taken at room temperature, 100K and 4.2K. (Figure 6.3)

Figure 6.3: (A) STM topographic images of HOPG at room temperature (50 Å× 50

Å). (B) at 100K (50 Å× 50 Å).(C) at 4.2K (50 Å× 50 Å).

Knowing the lattice constant of HOPG, we then extract the piezo coefficient for

lateral scanning. Notice that the coefficient decreases linearly with decreasing tem-

peratures. Therefore, at any intermediate temperatures, a simple linear interpolation

is sufficient to re-scale the STM data.

Also the topographic images of NbSe2 sample can be used to calibrate the piezo

coefficient as well because of it’s well known lattice constant although people studied

NbSe2 mostly because its vortex states [11]. Figure 6.4 shows the topographic images

we acquired under similar experimental environments as we used in LaxBi2Sr2−xCuO6+δ

samples

6.4 Noise Measurement and control

Noise measurement and control is always one of the center issue of scanning tunneling

microscopy system construction and operation. To measure the noise’s frequency and

amplitude, several ways can be applied, the most used way is the accelerometer (or
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Figure 6.4: (A) STM topographic images of NbSe2 at 4.2K (60 Å× 60 Å) using

negative bias on sample. (B) using positive bias on sample.

called Geophones). By doing FFT on the noise signals, we got s power spectrum

which we can tell the frequency and amplitude. Figure 6.5 shows the FFT of our

noise data, the noise spectrum were acquired from the tunneling current. By getting

rid of the biggest noise peaks, we can proceed with our experiments.

The noise can from different sources, according to its driving force, we attribute

them into two basic categories: Mechanical Noise and electronics noise. They also

can tell from the frequencies.

The mechanical noise usually comes from the vibration of the building, system

setup, operation shaking and the environmental audio noise. The typical frequencies

are from a few Hz (floor vibration), dozens Hz (system operation shaking) to a few

hundreds Hz (Environmental audio noise).

To decrease the mechanical noise as much as possible, people usually set up the lab

in the lower level or basement of the building and the STM room should be isolated

and sound proof. Also a special set of vibration isolation system should be provided

such as a sound table or springs. Figure 6.6 shows one of the commercial vibration

isolation table which we use in our STM system.

The electronics noise are much more complicated. Beside the easy-telling 60Hz

noise (AC power), the grounding loop can easily introduce the electronics noises.

Here we will discuss three special and important sources of the electronics noise:

(1) Crosstalk refers to a signal transmitted on one circuit or channel of a trans-

mission system creates an undesired effect in another circuit or channel. Crosstalk

is usually caused by undesired capacitive, inductive, or conductive coupling from one
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Figure 6.5: (A) FFT noise spectrum showing huge noise. (B) FFT noise spectrum

showing noise improved from (A). (C) FFT noise spectrum showing noise level during

the experiment after getting rid of the noise on (B).
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Figure 6.6: TMC Active Vibration Isolation Tables 20 series.

circuit, part of a circuit, or channel, to another. In STM case, the tunneling current

wire can be very close to the piezo tube which have a few wires carrying high voltage,

high frequency signals, so the tunneling current wire need to be separated from the

other parts very well.

(2) Feedback oscillation is another common case when the feedback look is taking

control improperly, it’s not a single noise source but usually coming with some noises

with different frequencies. But the feedback loop will amplify this noise effect to

unacceptable situation.

(3) Radio frequency noise (also called electromagnetic interference) is another

unwanted disturbance that affects an electrical circuit due to either electromagnetic

conduction or electromagnetic radiation emitted from an external source. And since

the RF noise can not be killed from the source, RF filter can be applied here to reduce

the amplitude.

Last thing need to be addressed is the preamplifiers. All voltage amplifiers can

have a cutoff frequency (also called bandwidth), a carefully selected range can get rid

of noise and keep the signal, easily improve the signal noise ratio.
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6.5 Pumps

A brief introduction to the main kind of pumps is presented below:

Mechanical pump A typical mechanical pump consists of an inlet, and an exhaust

with a one-way valve, and an off-center rotating piston in a cylindrical cavity. When

the piston rotates, gas is pulled into the cavity, and then forced out through the

exhaust port. The rotating piston has spring-loaded vanes to create a seal with the

cavity wall. The seal, and the exhaust port valve, are lubricated with a low-vapor-

pressure oil (Oil need to be filled constantly to avoid the damage caused by the friction

when running out of oil). Also there is design for a two-stage mechanical pump which

consists of two pumping cavities in series to achieve a lower vacuum pressure.

Accessories of a pump are a mist filter (or vent) to trap oil mist in the pump

exhaust, and a trap to prevent oil vapor from backstreaming into the volume being

evacuated [13].

There is Diaphragm pump also named dry pump or membrane pump and can do

the same rough pumping as the mechanical pump (oil pump) mentioned above.

Turbo pump Turbomolecular pumps use a series of high-speed rotors (25,000 to

75,000 rpm) and flow stabilizing, stationary stators to impart a preferential motion

to gas molecules and create molecular flow through the pump.

A turbomolecular pump mechanism cannot exhaust directly to atmosphere and

thus requires a backing pump such as a scroll or oil sealed rotary vane pump to reduce

the pressure in the exhaust of the turbo pump. The turbo inlet is typically connected

directly to a vacuum chamber and the exhaust is fed into a backing pump [13].

Ion pump Ion pumps utilize a sputtering process to ionize gas molecules and embed

them into anode or cathode wall. The entrainment process can utilize a getter such as

titanium to bind and bury the molecules. They can operate in the ultra high vacuum

range and eliminate contamination by organic molecules.

Sputter ion pumps operate by ionizing gas within a magnetically confined cold

cathode discharge. Burial is the basic means of pumping heavy noble gases. Argon

ions neutralized via glancing collisions with a sputter cathode impact the pump wall

and are coated with sputtered titanium. Triode pumps are specially designed to

maximize the kind of collisions that produce energetic neutrals [13].
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Sublimation pump Getter or titanium sublimation pumps (TSP) entrain gas

molecules in a getter, or material that is vaporized in order to absorb or capture

the molecules, and embed them on the cold outer wall of a chamber. One can also

use non-evaporating Gettering sorption technique by using a large-surface-area porous

matrix for entrainment [13].

Cryogenic pump Cryogenic pumps utilize extremely cold (liquid N2 and He tem-

peratures) surfaces and absorption surfaces to freeze or trap molecules. Cryogenic

pumps can operate with relatively high force or exhaust pressures. Cryogenic pumps

must be periodically re-generated to purge the frozen or trapped gases. Cryosorption

pumps evacuate gas molecules from a volume by adsorbing them on the chilled sur-

face of a molecular sieve. These molecular sieves are designed to have a large surface

area-to-volume ratio to maximize the adsorbing area [13].

In our STM system, the cold stage is automatically working as a cryo pump. So

when the pressure of main chamber (2nd stage) is about 1E-10 Torr, the STM head

area (3rd stage) is in much better vacuum.

We are lucky to have all of the pumps mentioned above to help to improve the

vacuum of our system, and the lowest vacuum we achieved at this system was 2E-11

Torr in the main chamber.

6.6 Pressure gauges

A brief introduction of two main kind of pressure gauges: Pirani gauge and Ion gauge.

Pirani gauge Pirani gauge works from 100 Torr to 10E-3 Torr. Arguably it is the

most common gauge used in surface science for measurement at the high pressure end

of the scale. The physical principle underlying the operation of a pirani gauge is the

pressure dependence of the thermal conductivity of a gas below a pressure of ∼100

Torr. (Above 100 Torr thermal conductivity of a gas does not vary with pressure

because the increase in the number density of molecules is exactly compensated by a

reduction in the mean free path. However the smaller number density of molecules

at lower pressures means that the kinetic model picture of heat transfer as being due

to colliding molecules breaks down.)

The setup of the pirani gauge can be described as following: A metal filament,

usually tungsten, is held within a metal tube connected to the vacuum system and is
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heated by an electric current. The variation of the filament temperature (and thus

its resistance) with pressure is monitored using a simple Wheatstone bridge set-up.

Ion gauge Ion gauge measures the pressure of 10E-3 Torr to 10E-11 Torr). Its

operation is based on the ionization of molecules via a sufficiently high energy electron

beam. The ionization rate and thus the ion current (I+) is directly dependent on the

gas pressure.

The ion Gauge consists of three distinct parts, the filament, the grid, and the

collector. The filament is used for the production of electrons by thermionic emission.

A +V charge on the grid attracts the electrons away from the filament; they circulate

around the grid passing through the fine structure many times until eventually they

collide with the grid. Gas molecules inside the grid may collide with circulating

electrons. The collision can result in the gas molecule being ionized. The collector

inside the grid is -V charged and attracts these +V charged ions. Likewise they are

repelled away from the +V grid at the same time. The number of ions collected by

the collector is directly proportional to the number of molecules inside the vacuum

system. By this method, measuring the collected ion current gives a direct reading

of the pressure.

6.7 List of some vendors

Here we list some of the manufacturers and distributors for the reference reason:

Scanning tunneling microscopy system

—Omicron

—RHK

—Unisoku

UHV parts

—VG

—Nor-cal

—Fisher

—Pfeiffeer

—Varian

—Kurt J. Lesker
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—MDC

Cryogenics System

—LakeShore Cryotronics, Inc

—AMI

Vibration Isolation system

—Technical Manufacturing Corporation

Sample preparation

—Varian: Torr-Seal

—EPOXY Technology, Inc: Ag Epoxy

Elements, Ceramics and wires

—Alfa Aesar

—Ceramic Products

—California Fine Wire

—Staveley Sensor, Inc: Pizeo stacks/tube

—FerroCeramic, Inc: Macor parts

—Amphenol

—Belden

Electronics, Instruments

—D.L instruments

—Stanford Research system: Lockin Amplifier

Miscellanies

—McMaster

—Small parts, Inc

—Newark in One

—Digikey
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