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RNA folding pathways play an important role in various biological processes, such as �) the

conformational switch in spliced leader RNA from Leptomonas collosoma, which controls trans-

splicing of a portion of the 5’ exon, and �) riboswitches–portions of the 5’ untranslated region

of mRNA that regulate genes by allostery. Since RNA folding pathways are determined by

the thermodynamic landscape, we have developed a number of novel algorithms—including

FFTbor and FFTbor2D—which e�ciently compute the coarse-grained energy landscape for a

given RNA sequence. These energy landscapes can then be used to produce a model for RNA

folding kinetics that can compute both the mean �rst passage time (MFPT) and equilibrium

time in a deterministic and e�cientmanner, using a new software packagewe call Hermes. The

speed of the software provided within Hermes—namely FFTmfpt and FFTeq—present what we

believe to be the �rst suite of kinetic analysis tools for RNA sequences that are suitable for high

throughput usage, something we believe to be of interest in the �eld of synthetic design.
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Chapter �

Introduction

Introduced in 1958, the central dogma of biology has been an excellent model for the biological

�ow of information, much as Newtonian classical mechanics stood the test of time for over 200

years. But just as Einstein’s revolutionary principle of relativity has upended our understand-

ing of space in a way unheard of since Copernicus, recent research has gone to con�rm that

for all our scienti�c progress, the cell still holds fundamental mysteries, and even the central

dogma isn’t sacred. Even Francis Crick himself indicated in [�] that ribonucleic acids (RNAs)

likely had a role beyond the traditionalmessenger intermediary between DNA and proteins, as

evidenced by viral RNAs [�]. Though recent research continues to suggest that the genome is

pervasively transcribed, current estimates indicate that only �.�% of the mammalian genome

constitutes protein-coding sequences [�, �, �]. The study of the transcriptome has led to the

identi�cation of a wide variety of non-coding RNAs (ncRNAs) that highlight the diversity of

roles for which RNA can be put to use [�]. Now understood to be much more than the interme-

diary step between DNA and proteins, RNAs have been implicated in a variety of regulatory

and enzymatic activities, including gene knockdown and silencing [�, �, �, ��], transcriptional

�
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and translational regulation [��, ��], intronic splicing [��, ��], cite-speci�c cleavage [��], and

more. A prevailing theory now suggests that self-replicating RNA molecules were the pre-

decessors to all life on Earth—the RNA world hypothesis [��]. As our appreciation of RNA

diversity has increased, signi�cant e�ort has been put forth by the scienti�c community to

understand and characterize the properties of these molecules.

Unlike DNA, RNA is generally single stranded and thus able to interact with itself to form

interesting shapes with various functional characteristics, akin to proteins. RNA is a poly-

mer composed of four monomer building blocks: the purines adenine (A) and guanine (G);

and the pyrimidines cytosine (C) and uracil (U). These nucleotides can form planar base pairs

composed of energetically favorable hydrogen bonds, the stacking of which produces a sta-

ble helix structure [��]. There are only a select set of possible commonly occuring base pairs;

the Watson-Crick pairs (A-U, G-C) or the G-U wobble pair. Given an arbitrary RNA sequence

s = s1, . . . ,sn , where si 2 {A,U, G, C}, we can de�ne a secondary structure S for s as the set

of index tuples indicating those bases involved in a base pair within s. Again like proteins,

RNA molecules tend to fold into a ‘native’ conformation, usually that which minimizes free

energy. While protein folding is predominantly motivated by hydrophobic interactions, RNA

structure is driven by stacking base pair interactions, and therefore secondary structure tends

to be a much better predictor for the function of the molecule in question than is the case with

proteins, whose function is largely determined by �D ‘tertiary’ structure.

From a computational perspective, the history of RNA folding is far too long for proper treat-

ment within this introduction. Instead we will touch upon just some of the major milestones

to get a �avor for what progress has been made. In 1960, the �rst modern model of RNA sec-

ondary structure was presented [��], followed by Michael Waterman’s graph-theoretic model
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of single stranded nucleic acids such as RNA in 1978 [��]. This was followed in 1980 by the

work of Ruth Nussinov and Ann Jacobson, who together presented an algorithm for deter-

mining the maximally matching secondary structure S for a given RNA sequence [��], using

dynamic programming [��]. In the following years Michael Zuker and Patrick Stiegler de-

veloped an algorithm and accompanying software for the minimum free energy formulation

of the problem [��, ��]. In 1990, John McCaskill showed how dynamic programming could be

used to compute the partition function for an RNAmolecule, and even compute the probability

that an arbitrary base is bound [��]. Alongside these early developments, more robust energy

models were experimentally derived [��, ��], further improving the accuracy of computational

models.

Fast-forwarding to today, there is now a huge collection of software aimed at computing var-

ious properties of RNAs, be it folding, inverse folding, kinetics, design, and more. The work

that we present here intends to be a contribution to the diverse toolset that researchers have

at their disposal for the analysis and design of both existing and novel RNA sequences.

�.� Thesis Content

The work of this thesis is based on the following four journal articles, alongside unpublished

data and observations. The journal articles constituting the primary body of research include:

• Senter, E., Sheikh, S., Dotu, I., Ponty, Y., & Clote, P. (����). Using the Fast Fourier Trans-
form to Accelerate the Computational Search for RNA Conformational Switches. PloS
One, �(��), e�����. http://doi.org/10.1371/journal.pone.0050506

• Ding, Y., Lorenz, W. A., Dotu, I., Senter, E., & Clote, P. (����). Computing the Probability
of RNA Hairpin and Multiloop Formation. Journal of Computational Biology : a Journal
of Computational Molecular Cell Biology, ��(�), ���–���. http://doi.org/10.1089/
cmb.2013.0148
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• Senter, E., Dotu, I., & Clote, P. (����). RNA folding pathways and kinetics using 2D
energy landscapes. Journal of Mathematical Biology, ��(�-�), ���–���. http://doi.
org/10.1007/s00285-014-0760-4

• Senter, E., & Clote, P. (����). Fast, Approximate Kinetics of RNA Folding. Journal of Com-
putational Biology : a Journal of Computational Molecular Cell Biology, ��(�), ���–���.
http://doi.org/10.1089/cmb.2014.0193

Text, �gures, and tables from these papers are used throughout this thesis without additional

notice.

�.� Thesis Organization

The remainder of this thesis is organized in the following fashion. We begin in Chapter � with

the presentation of Ribofinder, a pipeline of software intended to facilitate the detection of

full riboswitch sequences alongside their corresponding ‘on’ and ‘o�’ structures in genomic

data. In Chapter � we introduce the program FFTbor, which computes—for each integer k—

the Boltzmann probability pk of the subensemble of structures whose base pair distance to an

input reference structure S is k . In Chapter � we extend this idea to simultaneously consider

two reference structures S,T and produce as a result the coarse-grained 2D energy land-

scape where—for each integer pair x ,�—we compute the Boltzmann probability px,� of those

structures whose base pair distance fromS [resp. T ] is x [resp. �]. This program—FFTbor2D—

allows for the e�cient approximation of kinetic characteristics of RNAmolecules, presented in

Chapter � through the software package Hermes. Finally in Chapter �we conclude with a sum-

mary of this work as a whole, and consider its place in the greater ecosystem of computational

RNA tools.
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Ribo�nder

�.� Introduction

In this chapter, we present the Ribofinder program—a pipeline to facilitate the detection of

putative guanine riboswitches across genomic data. The Ribofinder tool operates in three

stages. First we use Infernal [��, ��] and TransTermHP [��] to detect putative aptamers

and expression platforms, two distinct components of riboswitches described in Section �.�.

After coalescing this data into a pool of candidate riboswitches, we use RNAfold [��] with

constraints based on experimental data to compute the two distinct structural conformations—

gene ‘on’ and gene ‘o�’. In the third and �nal stage, we leverage FoldAlign [��, ��] to measure

the similarity between our candidate pool and a canonical guanine riboswitch well studied in

the literature, the xanthine phosphoribosyltransferase (xpt) guanine riboswitch from Bacillus

subtilis.

�
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�.�.� Organization

This chapter is organized in the following fashion. After providing background on the struc-

tural components of a riboswitch alongside their biological signi�cance, we outline the de�-

ciencies in the ‘state of the art’ software as it relates speci�cally to riboswitch detection. We

then move on to outline the three stages of Ribofinder: candidate selection, structural pre-

diction, and candidate curation. Having described the approach of the software, we move on

to present our �ndings in using Ribofinder to detect guanine riboswitches across the bac-

terial RefSeq database. Finally, we provide brief commentary on possible extensions of the

algorithm to locate other �avors of riboswitches, of which adenine-sensitive aptamers are a

straightforward extension.

�.� Background

Riboswitches are regulatory mRNA elements that modulate gene expression via structural

changes induced by the direct sensing of a small-molecule metabolite. Most often found in

bacteria, riboswitches regulate diverse pathways including the metabolism and transport of

purines, methionine, and thiamin amongst others. The structure of a riboswitch includes an

aptamer domain—involved in the direct sensing of the small-molecule—and a downstream ex-

pression platform whose structure changes upon the aptamer binding the metabolite. Because

of the discriminatory nature of metabolite sensing, groups have had great success in �nding

representative examples of aptamers across a diverse collection of bacterial species; Rfam 12.0

currently contains 26 di�erent families of aptamers involved in di�erent metabolic pathways.
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Tools such as Riboswitch �nder [��] and RiboSW [��] have used the conserved structural char-

acteristics of the aptamer as search criteria with promising results, while the webserver RibEx

relies solely on sequence conservation to detect putative aptamer domains in genomic data

[��]. Meanwhile other groups have used covariance model (CM)-based approaches to �nd ap-

tamer domains, most notably CMfinder [��].

Whereas there exists strong sequence and structural similarity within the aptamer of a ri-

boswitch family, the expression platform is highly variable, and thus challenging to capture

using traditional SCFG-based approaches. For this reason databases such as Rfam only con-

tain the aptamer portion of the riboswitch, and there exists no database providing sequences

including expression platforms, necessary for capturing the ‘on’ and ‘o�’ conformations of

this regulatory element. We have developed a new pipeline—called Ribofinder—which can

detect putative riboswitches including their expression platforms and likely conformational

structures across a wide collection of genomic sequences.

�.� The Ribofinder pipeline

At the time of our retrieval (Tuesday ��th November, ���� at ��:��), the RefSeq database hosted

by NCBI comprised 5,121 complete bacterial genomes with corresponding genomic annota-

tions. In order to both detect putative full riboswitches across this collection of data as well as

�lter the candidates down to a number tractable for experimental validation, we developed a

novel pipeline which takes a three-tiered approach to candidate selection. Our approach is to

�) identify a pool of candidate riboswitches across genomic data; �) perform a coarse-grained

�ltering of the candidate pool based on structural characteristics; and �nally �) �ne-grained
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curation of the candidates based on a collection of measures and pairwise similarity. Figure �.�

outlines this approach as a �owchart.

Run Infernal and TransTermHP to identify 
location of aptamer- and expression 
platform-like motifs in RefSeq data

Co-localize aptamers and expression 
platforms to generate pool of candidate 

riboswitches

Coarse-grained filtering of candidate pool 
based on sequence and structural 

characteristics

Fold candidates into on- and off-
conformations using RNAfold with literature-

derived constraint mask

Fine-grained filtering using Foldalign against 
xpt as well as pairwise global sequence 

alignment to find xpt-related dissimilar hits

F����� �.�: Outline of the approach for the Ribofinder pipeline.

In the following discussion, we describe the application of Ribofinder to identify unanno-

tated guanine purine riboswitches; guanine-sensing cis-regulatory elements which modulate

the expression of genes involved in purine biosynthesis.

�.�.� Step �: Candidate selection

The RefSeq data we used for analysis (downloaded on Tuesday ��th November, ���� at ��:��)

contains 5,121 annotated bacterial genomes across 2,732 di�erent organisms, totaling over 9.5⇥

109 bases. We used the program Infernal to determine the coordinates of putative aptamer
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structures within the RefSeq genomes, and TransTermHP to locate candidate rho-independent

transcription terminators.

�.�.�.� Detecting aptamers with Infernal

Infernal [��, ��] uses a stochastic context-free grammar (SCFG) with a user-provided multi-

ple sequence alignment (MSA) to e�ciently scan genomic data for RNA homologs, taking into

consideration both sequence and structural conservation. Using the purine aptamer MSA from

Rfam 12.0 (RF00167), Infernal (v1.1.1, default options) detects 1,537 signi�cant hits having

E-value <= 0.01. Because Infernal leverages the concept of a ‘local end’—a large insertion

or deletion in the alignment at reduced cost—it is possible for the software to return a sig-

ni�cant hit whose aligned structure does not have the canonical three-way junction observed

in all purine riboswitches. Ribofinder prunes these truncated Infernal hits by converting

the alignment structure into a parse tree, and only permitting trees of su�cient complexity to

contain a multiloop (described further in �.�.�.�). The pyrimidine residue abutted next to the P�

stem in the J�–� junction di�erentiates between guanine and adenine-sensing riboswitches by

binding the complimentary purine ligand; for our interest in guanine riboswitches exclusively

we require the presence of a cytidine at this residue (Figure �.�). In total, using Infernalwith

these additional �lters yields 1,280 guanine aptamers across 555 unique organisms.

�.�.�.� Detecting expression platforms with TransTermHP

TransTermHP [��] detects rho-independent terminators in bacterial genomes in a context-

sensitive fashion by leveraging the protein annotations available in NCBI Protein Table (PTT)

data. These terminator sequences canonically have a stable hairpin loop structure immediately
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P1

P2

P3

J1-2

J2-3

J3-1

F����� �.�: Diagram of the aptamer portion of the B. subtilis xpt guanine riboswitch,
with annotations to indicate the P�, P�, and P� stems of the multiloop, junctions be-
tween the hairpins, and the ligand binding site (in yellow). This structural diagram

was generated using VARNA [��].

preceding a run of 5+ uracil residues, the combination of which causes RNA polymerase to

stall and dissociate from the transcript. TransTermHP performs a genomic scan to determine

candidate loci with this motif, and returns scored hits. The scoring system considers both

structural homology and the genomic contextual information available in the PTT �le. Across

our collection of bacterial genomes acquired from NCBI RefSeq data, TransTermHP identi�ed

2,752,469 rho-independent terminators using the default �lters.

Due to the spatially-mediated structural regulation of purine riboswitches, whereby ligand in-

teraction with the aptamer domain induces local structural rearrangement in the expression

platform, we paired aptamers with corresponding terminators by minimizing the genomic dis-

tance, with an upper bound of 200 nucleotides between the end of the aptamer domain and start

of the terminator. This approach yields 577 candidate riboswitches, 81 of which have multiple
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rho-independent terminators within range of a putative aptamer produced by Infernal. For

these, we simply pair the closest TransTermHP hit with the aptamer domain.

Genomic size of bacterial NC entries in RefSeq (log10 scale, 11/25/2014 9:14AM)

log10(genome size)
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F����� �.�: Histogram displaying the distribution of genome sizes across the RefSeq
data analyzed, comprising 5,172 bacterial genomes. Genome size is shown using a

log10 scale, and appears to have a bimodal distribution.

�.�.� Step �: Structural prediction

Until this point we have been focused on the generation of candidate sequences from our Ref-

Seq dataset, without yet focusing on the speci�cs of underlying secondary structures for these

candidates. In the following section, we explain how constraint folding is used to generate

putative ‘on’ and ‘o�’ conformations for each candidate.
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�.�.�.� Notation for representing abstract RNA shapes

Given an RNA sequence s = s1, . . . ,sn , where positions si are drawn from the collection of

single-letter nucleotide codes, i.e. si 2 {A,U, G, C}, it is possible to describe a corresponding

secondary structure S compatible with s using the dot-bracket notation. In this notation, each

nucleotide ai has a corresponding state si , where si is denoted as a ‘.’ if unpaired and a ‘(’

[resp. ‘)’] if the left [resp. right] base in a base pair. Given any two base pairs (i,j) and (k,l)

in S, then i < k < j () i < l < j; pseudoknots are not permitted in the structure. A

secondary structure taking this form is said to have balanced parentheses, and can additionally

be represented using a context-free grammar such as the following, derived from [��]:

S ! • | S • | ( S ) | S ( S ) (�.�)

The grammar from equation (�.�), where the minimum number of unpaired bases � in a hairpin

loop is taken to be 1 for expository clarity, can be used to generate a parse tree T for S. The

bene�t of working with T over S is that the parse tree o�ers an abstract representation of

secondary structure shape independent of sequence length, permitting us to classify and even-

tually constrain a large collection of sequences having variable length which are all expected

to have the same abstract tree shape [��]. This is analogous to what the Giegerich lab refers to

as their ‘type �’ structural abstraction using the RNAshapes tool, and can be described using

the following grammar [��], which generates all combinations of matched brackets:

S ! [T ] S | [T ]

T ! [T ] | �
(�.�)
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Every node in T represents a helix in S, and internally tracks the indices of both its beginning

(i,j) and closing (k,l) base pair. We use a level-order naming convention to refer to helices

within the parse tree, whereby a position p� references the �rst child of the root node, p�,� ref-

erences the second child of p�, and generally pi1,i2, · · · ,in refers to the in th child of pi1,i2, · · · ,in�1 .

To reference speci�c nucleotides in the context of their location relative to a helix, we use the

opening and closing base pairs (i,j) and (k,l) as landmarks. Thus, p�(l) is the index in S of the

right-hand side closing base pair of p�. We use the notation ti to refer to the subtree of T

whose root is pi .

Finally, we introduce the concept of a tree signature. The tree signature for a tree T is a list

of the node depths when traversed in a depth-�rst pre-order fashion. To provide a concrete

example, consider the following experimentally validated xpt guanine riboswitch from Bacillus

subtilis subsp. subtilis str. 168 (NC_000964.3 2320197–2320054) with corresponding gene ‘o�’

structure as seen in Figure �.�.

A G G A A C A C U C A U A U A A U C G C G U G G A U A U G G C A C G C A A G U U U C U A C C G G G C A C C G U A A A U G U C C G A C U A U G G G U G A G C A A U G G A A C C G C A C G U G U A C G G U U U U U U G U G A U A U C A G C A U U G C U U G C U C U U U A U U U G A G C G G G C A A U G C U U U U U U U A U U

1 156

NC_000964.3 2320197-2320054 gene off

A G G A A C A C U C A U A U A A U C G C G U G G A U A U G G C A C G C A A G U U U C U A C C G G G C A C C G U A A A U G U C C G A C U A U G G G U G A G C A A U G G A A C C G C A C G U G U A C G G U U U U U U G U G A U A U C A G C A U U G C U U G C U C U U U A U U U G A G C G G G C A A U G C U U U U U U U A U U

1 156

NC_000964.3 2320197-2320054 gene on

F����� �.�: (Top) The xanthine phosphoribosyltransferase (xpt) guanine riboswitch
from B. subtilis subsp. subtilis str. 168 (NC_000964.3 2320197–2320054), and corre-
sponding gene ‘o�’ structure derived from inline probing studies both in the presence
and absence of guanine [��]. (Bottom) The experimentally derived gene ‘on’ structure
for B. subtilis xpt. These structural diagrams were generated using VARNA [��].
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The RNAshapes [��] ‘type �’ representation for this structure is [[][]][][] (note the coa-

lesced left bulge in the hairpin immediately downstream the closing multiloop stem, at helix

p�) and the tree signature for this parse tree of the structure is [0,1,2,2,1,1].

We leverage the notion of abstract structural �ltering initially to ensure that all Infernal

aptamer hits have a tree signature of [0,1,2,2], which represents a three-way junction, and

that the binding site for the guanine ligand p�(l � 1) = C. These �lters, in combination with

the proximal terminator hairpins produced by TransTermHP yield the aforementioned 577

candidate guanine riboswitches for which we then try to produce reasonable gene ‘on’ and o�

structures.

�.�.�.� Constrained folding to predict switch structures

To restrict our search to unannotated guanine riboswitches, and further ensure that we are not

re-detecting sequences based o� the Rfam covariance model provided to Infernal, we con-

strain our search to those RefSeq organisms not represented in the Rfam seed alignment. 503

of the 577 candidates, or 87.18% represent putative unannotated riboswitches not represented

by RF00167.

The gene ‘o�’ structure So� for a guanine riboswitch is the easier of the two to �nd computa-

tionally, since the terminator stem is exceptionally thermodynamically stable. In the gene ‘on’

conformation Son, the P� stem of the multiloop partially dissociates and an anti-terminator

stem forms between the region immediately �’ of the P� stem and what was the left-hand

side of the terminator stem. This truncated P� stem, which closes the three-way junction in

the aptamer, is exceptionally unstable based on present energy models available for structural

folding, and requires special treatment to reconstitute in our �nal structures.
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The software RNAfold (v2.1.8) allows for the folding of RNAmoleculeswith ‘loose’ constraints.

In this model of constrained folding, the resulting structure produced by the software guar-

antees not to explicitly invalidate any user-provided constraints, but does not guarantee all

constraints will be satis�ed in the resulting structure. For each of the candidate guanine ri-

boswitches, having TInfernal and TTransTermHP, we build the following constraint masks:

Structural constraints for both conformations of the guanine riboswitch aptamer:

�. Prohibit base pairing upstream of p�(i) and downstream of p�(l).

Do not permit any possible disruptive pairing interactions �’ of the aptamer or �’ of the

terminator stem.

�. Force base pairs and unpaired regions in t�, with the exception of p�.

Since the aptamer structure is well conserved and we have the Infernal-provided align-

ment with the covariance model, force this structure to form as aligned.

�. Explicitly prohibit formation of p� stem, which closes the three-way junction.

The only exception to above is the closing of the P� multiloop stem. In our experience, since

RNAfold uses soft constraints (meaning that constrained base pairs are only allowed to

pair with each other or not at all), in practice we rarely see the P� stem form as we would

like. Instead, restrict it from forming at all, so that it can be added in after the fact without

disrupting any other base pairs.

Constraints exclusive to the gene ‘o�’ structure:

�. Force base pairs and unpaired regions in t�.

This simply forces the formation of the terminator stem, as predicted by TransTermHP.

Constraints exclusive to the gene ‘on’ structure:

�. Requirem nucleotides starting from p�(l + 3) to pair to the right, wherem = length(p�),
and require the left-hand side of the p� helix to pair to the left.
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The formation of the anti-terminator stem involves the partial disruption of the p� stem.

Though there is no consensus for the length of the anti-terminator stem, experimental data

suggests that the left side of the terminator stem (p�(i)–p�(k)) alternatively base pairs to

the left, thus forming the anti-terminator hairpin and permitting transcription to proceed

[��].

�. Disallow pairing downstream of p�(j).

Avoid disruptive pairing downstream of the newly formed anti-terminator stem.

These constraintmasks are run using the command-line �ags -d 0 -P rna_turner1999.par

to disable dangles and use the Turner 1999 energies respectively [��]. We choose to disable

dangles (-d 0) and use the Turner 1999 energy model (-P rna_turner1999.par) based on

visual inspection of the structures output by RNAfold with constraints—these �ags appear to

yield conformationsmost frequently consistent with the known structures for the B. subtilis xpt

guanine riboswitch. Experimental evidence using inline probing and crystallographic analysis

suggests that the ‘on’ conformation of the guanine riboswitch has a reduced P� stem length of

3 base pairs [��, ��]; in practice we were unable to force RNAfold to respect this constraint

regardless of command-line options speci�ed. For this reason we reconstitute the P� stem in

both structures after constrained folding, having length equivalent to it the Infernal P� stem

[resp. 3 base pairs] in the gene ‘o�’ [resp. gene ‘on’] structure.

�.�.� Step �: Candidate curation

Until now, we have described our approach for generating the 503 guanine riboswitch candi-

dates in RefSeq, alongside their gene ‘on’ and o� structures. Unfortunately the experimental

validation of all 503 candidates is not tractable, so it was necessary to reduce this collection
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again to a more manageable size, while only keeping the most promising candidates. Our orig-

inal approach involved using FoldAlign [��, ��] alongside the needleall tool from EMBOSS

[��], to simultaneously select sequences which closely approximate the more thermodynam-

ically stable gene ‘o�’ conformation of the experimentally known B. subtilis xpt guanine ri-

boswitch, while minimizing sequence similarity between candidates selected for experimental

validation. Due to expense, we elected to instead choose a small number (n = 2) of organisms

easily available which had multiple promising hits as our experimental candidate pool.

In Figure �.�, we display a histogram of scores produced by FoldAlign for the 503 candidates,

when aligned with the B. subtilis xpt guanine riboswitch. FoldAlign is based o� a simpli�ca-

tion of Sanko�’s algorithm [��], and is a dynamic programming algorithm for simultaneous

folding and alignment that runs in O(n4) time. Because three of the sequences from our pool

of 503 candidates have no global alignment with the B. subtilis xpt sequence, we have pruned

them from our dataset and only consider those remaining 500 sequences for which FoldAlign

scores are produced. The FoldAlign scores produce have a mean of 153.798 with a minimum

[resp. maximum] score of �2698 [resp. 1908]. Running FoldAlign with the B. subtilis xpt

sequence aligned with itself produces a theoretical maximum score of 2419.

Of these 500 sequences, 335 have a FoldAlign score s > 0, representing 227 unique accession

numbers, with a distribution of candidates per accession number as shown in Figure �.�. From

the perspective of experimental validation, we have tried to maximize the chance of success

per organism by selecting those having multiple candidates within the same genome. Only 25

of the candidate organisms have more than three hits within their genome (only two have �ve

hits). Our approach for selecting the initial two organisms for experimental validation was

to take this pool of 25 organisms, sort by descending average score s , and select the �rst two
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FoldAlign Scores for RefSeq G−box Riboswitches vs. B.subtilis xpt
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F����� �.�: Histogram displaying the distribution of scores produced by FoldAlign
2.1.1 using �ags -global -summary -format commandline when folding each
of the 503 candidates against the B. subtilis xpt sequence NC_000964.3 2320197–
2320054. Three of the sequences run against FoldAlign (NC_010674.1 1516712–
1516868, NC_010723.1 1487041–1487197, and NC_020291.1 4599412–4599258) have
no global alignment with the B. subtilis xpt sequence, and thus the histogram repre-

sents 500 of the original 503 sequences.

which are available via DSMZ (https://www.dsmz.de/), the warehouse for microorganisms

used by our collaborators. Prof. Dr. Mario Mörl at Universität Leipzig is presently overseeing

Dr. Regula Aregger, a post-doc who is using the SHAPE protocol [��] to validate the compu-

tationally predicted structure of these candidates.

Proceeding in this fashion, we have selectedB.megateriumQMB1551 (NC_014019.1, DSM1804)

and B. megaterium DSM319 (NC_014103.1, DSM319) for initial validation. These organisms

have four candidate guanine riboswitches each, outlined in Table �.�.
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F����� �.�: Histogram displaying the number of candidate riboswitches we observe
per organism. From this data, it is clear that the majority of organisms have only one
putative riboswitch, however two organisms have �ve candidates each: Clostridium
botulinum B str. Eklund 17B (NC_010674.1) and Clostridium botulinum E� str. Alaska

E43 (NC_010723.1)

Downstream gene function B. megaterium QM B1551 B. megaterium DSM319
xpt 1427313–1427501 1413696–1413884
GMP synthase 231630–231806 230059–230235
guanine permease 233482–233680 231911–232108
N�-carboxyaminoimidazole 240759–240970 239188–239400

T���� �.�: The genomic coordinates for the four candidate guanine riboswitches in
both B. megaterium QM B1551 and B. megaterium DSM319. Note that the guanine
riboswitches are located upstream of the same genes, and that these two strains of B.
megaterium are highly similar. These structures are pictured in Section �.�, plotted

using VARNA [��].

�.� Extending beyond guanine riboswitches

We believe that the Ribofinder pipeline allows for the detection of both structural conforma-

tions of riboswitches beyond the guanine riboswitch. The investigation of adenine-sensitive
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purine riboswitches is a small extension of the existing implementation. As indicated in Sec-

tion �.�.�.�, adenine riboswitches have a complimentary uradine residue at the ligand binding

site in the J�–� junction within the aptamer. Beyond di�erences in ligand speci�city, the ade-

nine riboswitch anti-terminator stem is incorporated into the aptamer structure itself, and thus

stabilized with the base pairing of the adenine ligand. As a result, the adenine riboswitch per-

mits transcription when bound, unlike the guanine riboswitch. As a result of the extensive

overlap between the anti-terminator stem and adenine riboswitch aptamer, the formation of

the terminator stem completely dissociates both the P� and P� stems [��].

From a computational perspective, these changes are simple to handle within the Ribofinder

pipeline, and provide some indication to how we believe the framework could be more gen-

erally applied in the future. Rather than �lter for the discriminatory cytidine residue in the

riboswitch aptamer (Section �.�.�.�) we can only select those hits from Infernal having a

uridine at the ligand binding site. Structural on and o� conformations are known from exper-

imental data for the B. subtilis ydhL gene [��] and can be used as templates for the constraint

masks used in Section �.�.�.

In general, we believe those riboswitches using rho-independent transcription termination as a

mode of regulation—for which an aptamer alignment exists and some experimental knowledge

of the expression platform’s structural conformation is known—are well suited for more robust

structural prediction using Ribofinder.

�.� Guanine riboswitches for experimental validation
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NC_014019.1 1427313-1427501 gene off
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NC_014019.1 1427313-1427501 gene on

F����� �.�: Top: the computationally predicted gene ‘o�’ conformation of sequence
NC_014019.1 1427313–1427501, using RNAfold from the ViennaRNA 2.1.8 suite, with
dangles disabled and the Turner 1999 energies. This sequence is located upstream of

the xpt gene in B. megaterium QM B1551. Bottom: the gene ‘on’ conformation.
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NC_014019.1 231630-231806 gene off
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NC_014019.1 231630-231806 gene on

F����� �.�: The computationally predicted riboswitch located upstream of the GMP
synthase gene in B. megaterium QM B1551 (NC_014019.1 231630–231806). Top: The

gene ‘o�’ conformation. Bottom: The gene ‘on’ conformation.
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NC_014019.1 233482-233680 gene off
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NC_014019.1 233482-233680 gene on

F����� �.�: The computationally predicted riboswitch located upstream of the gua-
nine permease gene in B. megaterium QM B1551 (NC_014019.1 233482–233680). Top:

The gene ‘o�’ conformation. Bottom: The gene ‘on’ conformation.
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F����� �.��: The computationally predicted riboswitch located upstream of the N�-
carboxyaminoimidazole gene in B. megaterium QM B1551 (NC_014019.1 240759–

240970). Top: The gene ‘o�’ conformation. Bottom: The gene ‘on’ conformation.
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F����� �.��: The computationally predicted riboswitch located upstream of the xpt
gene in B. megaterium DSM319 (NC_014103.1 1413696–1413884). Top: The gene ‘o�’

conformation. Bottom: The gene ‘on’ conformation.
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F����� �.��: The computationally predicted riboswitch located upstream of the GMP
synthase gene in B. megaterium DSM319 (NC_014103.1 230059–230235). Top: The

gene ‘o�’ conformation. Bottom: The gene ‘on’ conformation.
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F����� �.��: The computationally predicted riboswitch located upstream of the gua-
nine permease gene in B. megaterium DSM319 (NC_014103.1 231911–232108). Top:

The gene ‘o�’ conformation. Bottom: The gene ‘on’ conformation.
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F����� �.��: The computationally predicted riboswitch located upstream of the
N�-carboxyaminoimidazole gene in B. megaterium DSM319 (NC_014103.1 239188–

239400). Top: The gene ‘o�’ conformation. Bottom: The gene ‘on’ conformation.



Chapter �

FFTbor

�.� Introduction

In this chapter, we present the FFTbor algorithm and accompanying software. FFTbor is a

novel algorithm developed with the intent of e�ciently computing the Boltzmann probability

of those structures which, for a given input RNA sequence s, di�er by k base pairs. By leverag-

ing polynomial interpolation via the Fast Fourier Transform, this algorithm runs inO(n4) time

and O(n2) space, a signi�cant improvement over its predecessor. The accompanying software

which implements this algorithm has been used to evaluate the correlation between kinetic

folding speed and landscape ruggedness.

�.�.� Organization

This chapter is organized in the following fashion. First, we provide background on the prob-

lem which FFTbor aims to address, as well as a brief overview of existing approaches. We

��
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follow by a formal explanation of the problem, and proceed to describe how the energy land-

scape is partitioned into discrete bins. We then develop the recursions for the parameterized

partition function using the Nussinov-Jacobson energy model, which allows us to highlight

the novel aspects of the algorithm. After developing the recursions, we indicate how they can

be reformulated as a polynomial whose coe�cients zk = Zk1,n . We then describe how the Fast

Fourier Transform can be employed to e�ciently compute the coe�cients zk , �nishing our de-

scription of the underlying algorithm. Then we proceed to present an application of FFTbor,

in the area of RNA folding kinetics.

�.� Background

In [��], a dynamic programming algorithm RNAbor—pronounced RNA neighbor—was devel-

oped which simultaneously computes for each integer k , the Boltzmann probability pk =
Zk
Z of

the subensemble of structures whose base pair distance to a given initial, or reference, structure

S⇤ is k . � RNAbor stores the value of the (partial) partition functions Zki, j for all 1  i  j  n

and 0  k  n, each of which requires quadratic time to compute. Thus it follows that RNAbor

runs in time O(n5) and space O(n3), which severely limits its applicability to genomic anno-

tation. This restriction is somewhat mitigated by the fact that in [��], we showed how to use

sampling [��] to e�ciently approximate RNAbor in cubic timeO(n3) and quadratic spaceO(n2),

provided that the starting structure S⇤ is the minimum free energy (MFE) structure. We expect

that a more e�cient version of RNAbor could be used in applications in genomics and synthetic
�As later explained,Z denotes the partition function, de�ned as the sumof all Boltzmann factors exp(�E(S)/RT ),

over all secondary structures S of a given RNA sequence, and R denotes the universal gas constant andT absolute
temperature. Similarly Zk denotes the sum of all Boltzmann factors of all structures S, whose base pair distance
to the initial structure S⇤ is exactly k .
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biology, to detect potential conformational switches— RNA sequences containing two or more

(distinct) metastable structures.

In this chapter, we describe a radically di�erent algorithm, FFTbor [��], prounounced FFT

neighbor, that uses polynomial interpolation to compute the coe�cients p0, . . . ,pn�1 of the

polynomial de�ned in equation (�.�), where pk is de�ned by pk =
Zk
Z . Due to severe numerical

instability issues in both the Lagrange interpolation formula and in Gaussian elimination, we

employ the Fast Fourier Transform (FFT) to compute the inverse Discrete Fourier Transform

(DFT) on values �0, . . . ,�n�1, where �k = p(�k ) and � = e

2� i/n is the principal complex nth root

of unity and p(x) is de�ned in equation (�.�). This gives rise to an improved version of RNAbor,

denoted FFTbor, which runs in time O(n4) and space O(n2).

�.� Formalization of the problem

FFTbor aims to compute the coe�cients p0, . . . ,pn�1 of the polynomial

p(x) = p0 + p1x + p2x2 + · · · + pn�1xn�1, (�.�)

where pk is de�ned as pk =
Zk
Z . We employ the Fast Fourier Transform to compute the in-

verse Discrete Fourier Transform on values �0, . . . ,�n�1, where �k = p(�k ) and � = e

2� i/n is

the principal complex nth root of unity and p(x) is de�ned in equation (�.�). By leveraging

complex nth roots of unity in conjunction with the inverse Discrete Fourier Transform the we

subvert numeric instability issues observed with both Lagrange interpolation and Gaussian

elimination.
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Consider an RNA sequence s = s1, . . . ,sn , where si 2 {A,U, G, C}, i.e. a sequence of nucleotides.

We can describe a secondary structure S which is compatible with s as a collection of base pair

tuples (i,j), where 1  i  i + � < j  n and � � 0 (generally taken to be 3), the minimum

number of unpaired bases in a hairpin loop due to steric constraints.

To more simply develop the underlying recursions for FFTbor, we introduce a number of con-

straints on the base pairs within S. Firstly, we require that each base pair is either a Watson-

Crick or G-U wobble, i.e. base pair (i,j) for sequence s has corresponding nucleotides (si ,sj ),

which are restricted to the set

B = {(A, U), (U, A), (G, C), (C, G), (G, U), (U, G)}. (�.�)

With this constraint satis�ed we say that S is compatible with s, and for the remainder of

this chapter will only consider those structures which are compatible with s. Secondly, we

insist that given two base pairs (i,j), (x ,�) from S, i = x () j = � (bases have at most

one partner). Finally, we require that i < x < j () i < � < j (no pseudoknots are

allowed). While pseudoknots have been shown to be present in some biologically relevant

RNAs, their inclusion greatly complicates the recursive decomposition of the structure, and

thus it is common to ignore them. As a result, sequences known to contain pseudoknots—

such as RNase P [��]—are not well suited for FFTbor, and whenever possible investigators

should take care to consider the likely structure for their sequences before proceeding with

computational analysis.

Provided two secondary structures S,T , we can de�ne a notion of distance between them.

There are a number of di�erent de�nitions of distance used across the literature; we will use
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base pair distance for FFTbor. Base pair distance is de�ned as the symmetric di�erence between

the sets S,T :

dBP(S,T ) = |S [ T | � |S \ T |. (�.�)

Given this de�nition of distance, two structuresS andT are said to bek-neighbors ifdBP(S,T ) =

k . It is important to note that the notion of base pair distance is also applicable to restrictions

of secondary structures on the subsequence si, j , i.e. S[i, j] = {(x ,�) : i  x < �  j, (x ,�) 2 S}.

For a restriction of base pairs for a given structure S[i, j], T[i, j] is said to be a k-neighbor of S[i, j]

if

dBP(S[i, j],T[i, j]) = |{(x ,�) : i  x < �  j, (x ,�) 2 S � T or(x ,�) 2 T � S}| = k . (�.�)

�.� Derivation of the FFTbor algorithm

Given an RNA sequence s = s1, . . . ,sn and compatible secondary structure S⇤, let Zk denote

the sum of the Boltzmann factors exp(�E(S)/RT ) of all k-neighbors S of S⇤; i.e.

Zk = Zk1,n =
X

S such that
dBP(S, S⇤)=k

e

�E(S)
RT (�.�)

where E(S) denotes the Turner (nearest neighbor) energy [��] of S, R = 0.00198 kcal/(mol ·K)

denotes the universal gas constant and T denotes absolute temperature. From this, it follows

that the full partition function is de�ned as
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Z = Z1,n =

nX

k=0
Zk1,n (�.�)

since the base pair distance between S⇤ and S is at most

dBP(S⇤,S)  |S⇤| + bn � �
2

c  n. (�.�)

We can then de�ne the Boltzmann probability of all k-neighbors of S⇤ as

p(k) =
Zk1,n
Z1,n
. (�.�)

By visualizing the probabilities pk as a function of k , we generate a coarse-grained view of

the one-dimensional energy landscape of s with respect to S⇤. When S⇤ is taken to be the

minimum free energy structure for example, one would anticipate to see a peak at k = 0, with

additional peaks implying additional metastable structures; local energy minima which could

suggest an energetic trap while folding.

�.�.� De�nition of the partition function Zk

1,n

For the rest of the chapter, we consider both s as well as the secondary structure S⇤ on s to

be �xed. We now recall the recursions from Freyhult et al. [��] to determine the partition

function Zki, j with respect to the Nussinov-Jacobson energy E0 model [��], de�ned by �1 times

the number of base pairs; i.e. E0(S) = �1 · |S |. Although we describe here the recursions for

the Nussinov-Jacobson model, for the sake of simplicity of exposition, both RNAbor [��] as

well as our current software FFTbor, concern the Turner energy model (described in Section
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A.�), consisting of free energy parameters for stacked bases, hairpins, bulges, internal loops

and multiloops.

The base case for Zki, j is given by

Z0
i, j = 1, for i  j, (�.�)

since the only 0-neighbor to a structure S⇤ is the structure S⇤ itself, and

Zki, j = 0, for k > 0, i  j  i + � , (�.��)

since the empty structure is the only possible structure for a sequence shorter than � + 2

nucleotides, and so there are no k-neighbors for k > 0. The recursion used to compute Zki, j for

k > 0 and j > i + � is

Zki, j = Zk�b0i, j�1 +
X

(sr ,sj )2B,
ir<j

X

w+w 0=k�b(r )
exp(�E0(r ,j)/RT ) · Zwi,r�1Zw

0
r+1, j�1, (�.��)

where E0(r ,j) = �1 if positions r ,j can pair in sequence s, and otherwise E0(r ,j) = +1. Ad-

ditionally, b0 = 1 if j is base-paired in S⇤[i, j] and 0 otherwise, and b(r ) = dBP(S⇤[i, j],S⇤[i,r�1] [

S⇤[r+1, j�1] [ {(r ,j)}). This holds since in a secondary structure T[i, j] on si , . . . ,sj that is a k-

neighbor of S⇤[i, j], either nucleotide j is unpaired in [i,j] or it is paired to a nucleotide r such

that i  r < j. In this latter case it is enough to study the smaller sequence segments [i,r � 1]

and [r +1,j �1] noting that, except for (r ,j), base pairs outside of these regions are not allowed,

since there are no pseudoknots. In addition, for dBP(S⇤[i, j],T[i, j]) = k to hold, it is necessary for

w +w 0 = k � b(r ) to hold, where w = dBP(S⇤[i,r�1],T[i,r�1]) and w 0 = dBP(S⇤[r+1, j�1],T[r+1, j�1]),
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since b(r ) is the number of base pairs that di�er between S⇤[i, j] and a structure T[i, j], due to the

introduction of the base pair (r ,j).

Given RNA sequence s and compatible initial structure S⇤, we de�ne the polynomial

Z(x) =
nX

k=0
zkx

k (�.��)

where coe�cients zk = Zk1,n . Moreover, because of equation (�.�) and the fact that theminimum

number of unpaired bases in a hairpin loop � is 3, we know that zn = 0, so that Z(x) is a

polynomial of degree strictly less than n. If we evaluate the polynomial Z(x) for n distinct

values

Z(a1) = �1, . . . ,Z(an) = �n , (�.��)

then the Lagrange polynomial interpolation formula guarantees that Z(x) = Pn
k=1�kPk (x),

where the polynomials Pk (x) have degree at most n� 1 and are given by the Lagrange formula

Pk (x) =
Q

i,k (x � xi )Q
i,k (xk � xi )

. (�.��)

Since the polynomials Pk (x) can be explicitly computed, it follows that we can compute the co-

e�cients zk of polynomialZ(x). As we describe below, the evaluation ofZ(x) for a �xed value

of x can be done in timeO(n3) and spaceO(n2). It follows that the coe�cients zk = Zk1,n can be

computed after n evaluations ofZ(x), where the space for each evaluation ofZ(x) is re-used;

hence these evaluations can be performed in timeO(n4) and spaceO(n2). Finally, Lagrange in-

terpolation is clearly computable in timeO(n3). Although this approach is theoretically sound,
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there are severe numerical stability issues related to the interpolation method [��], the choice

of values a1, . . . ,an in the interpolation, and �oating point arithmetic (round-o� error) related

to the astronomically large values of the partition functions Zk1,n , for 0  k < n. After many

unsuccessful approaches including scaling we obtained excellent results by interpolating the

polynomial p(x), de�ned in equation (�.�), rather than the polynomial Z(x), de�ned in equa-

tion (�.��), and performing interpolation with the Fast Fourier Transform (FFT) [��] where

�0, . . . ,�n�1 are chosen to be complex nth roots of unity, �k = e

2� ik/n . One advantage of the

FFT is that interpolation can be performed in O(n logn) time, rather than the cubic time re-

quired by using the Lagrange formula shown in equation (�.��) or by Gaussian elimination.

Fewer numerical operations implies increased numerical stability in our application.

�.�.� Recursions to compute the polynomialZ
i,j(x)

Given an initial secondary structure S⇤ of a given RNA sequence s, our goal is to compute

Zk1,n =
X

S such that
dBP(S, S⇤)=k

e

�E0(S)
RT (�.��)

where S can be any structure compatible with s. As previously mentioned, the recurrence

relation for RNAbor with respect to the Nussinov energy model E0 is

Zki, j = Zk�b0i, j�1 +
X

(sr ,sj )2B,
ir<j

*.,e
�E0(r , j )
RT

X

w+w 0=k�b(r )
Zwi,r�1Z

w 0
r+1, j�1

+/- (�.��)

where E0(r ,j) = �1 if r and j can base-pair and otherwise +1, and b0 = 1 if j is base paired

in S⇤[i, j] and 0 otherwise, and b(r ) = dBP(S⇤[i, j],S⇤[i,r�1] [ S⇤[r+1, j�1] [ {(r ,j)}). The following
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theorem shows that an analogous recursion can be used to compute the polynomial Zi, j (x)

de�ned by

Zi, j (x) =
nX

k=0
zk (i,j)xk (�.��)

where

zk (i,j) = Zki, j =
X

S such that
dBP(S, S⇤[i, j ])=k

e

�E0(S)
RT . (�.��)

Here, in the summation, S runs over structures on si , . . . ,sj , which are k-neighbors of the

restrictionS⇤[i, j] of initial structureS⇤ to interval [i,j], and E0(S) = �1·|S | denotes the Nussinov-

Jacobson energy of S.

Theorem �.�. Let s1, . . . ,sn be a given RNA sequence. For any integers 1  i  j  n, let

Zi, j (x) =
nX

k=0
zk x

k (�.��)

where

zk (i,j) = Zki, j . (�.��)

Then for i  j  i + � ,Zi, j (x) = 1 and for j > i + � we have the recurrence relation

Zi, j (x) = Zi, j�1(x) · xb0 +
X

(sr ,sj )2B,
ir<j

✓
e

�E0(r , j )
RT · Zi,r�1(x) · Zr+1, j�1(x) · xb(r )

◆
. (�.��)
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whereb0 = 1 if j is base-paired inS⇤[i, j] and 0 otherwise, andb(r ) = dBP(S⇤[i, j],S⇤[i,r�1][S⇤[r+1, j�1][

{(r ,j)}).

Proof. First, some notation is necessary. Recall that if F is an arbitrary polynomial [resp. ana-

lytic] function, then [xk ]F (x) denotes the coe�cient of xk [resp. the kth Taylor coe�cient in

the Taylor expansion of F (x)]. For instance, in equation (�.�), [xk ]p(x) = pk , and in equation

(�.��), [xk ]Z(x) = zk .

By de�nition, it is clear that Zi, j (x) = 1 if i  j  i + � , where we recall that � = 3 is the

minimum number of unpaired bases in a hairpin loop. For j > i + � , we have

[xk ]Zi, j (x) = zk (i,j) = Zki, j

= Zk�b0i, j�1 +
j�1X

r=i

X

k0+k1=k�b(r )

✓
e

�E0(r , j )
RT · Zk0i,r�1 · Z

k1
r+1, j�1

◆

= [xk�b0]Zi, j�1(x)

+

j�1X

r=i

X

k0+k1=k�b(r )

✓
e

�E0(r , j )
RT ·

⇣
[xk0]Zi,r�1(x)

⌘
·
⇣
[xk1]Zr+1, j�1(x)

⌘◆

= [xk�b0]Zi, j�1(x)

+

j�1X

r=i

X

k0+k1=k�b(r )

✓
e

�E0(r , j )
RT · [xk0+k1]

�
Zi,r�1(x) · Zr+1, j�1(x)

�◆
.

(�.��)

By induction, the proof of the theorem now follows. ⇤

Notice that if one were to compute all terms of the polynomialZ1,n(x) by explicitly performing

polynomial multiplications, then the computation would require O(n5) time and O(n3) space.

Instead of explicitly performing polynomial expansion in variable x , we instantiate x to a �xed

complex number � 2 C, and apply the following recursion for this instantiation:
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Zi, j (�) = Zi, j�1(�) · �b0 +
X

(sr ,sj )2B,
ir<j

✓
e

�E0(r , j )
RT · Zi,r�1(�) · Zr+1, j�1(�) · �b(r )

◆
. (�.��)

In this fashion, we can computeZ(�) = Z1,n(�) in O(n3) time and O(n2) space. For n distinct

complex values �0, . . . ,�n�1, we can compute and save only the values Z(�0), . . . ,Z(�n�1),

each time re-using the O(n2) space for the next computation of Z(�k ). It follows that the

computation resources used to determine the (column) vector

Y = (�0, . . . ,�n�1)T =

*........,

�0

�1
...

�n�1

+////////-
(�.��)

where �0 = Z(�0), . . . ,�n�1 = Z(�n�1) is thus quartic time O(n4) and quadratic space O(n2).

�.�.� Polynomial interpolation to evaluateZ
i,j(x)

Let � = e

2� i/n be the principal complex nth root of unity. Recall that the Vandermonde matrix

Vn is de�ned to be the n ⇥ n matrix, whose i,j entry is �i ·j ; i.e.

Vn =

*................,

1 1 1 . . . 1

1 � �2 . . . �n�1

1 �2 �4 . . . �2(n�1)

1 �3 �6 . . . �3(n�1)

...
...

...
...

...

1 �n�1 �2(n�1) . . . �(n�1)(n�1)

+////////////////-

(�.��)

The Fast Fourier Transform is de�ned to be the O(n logn) algorithm to compute the Discrete

Fourier Transform (DFT), de�ned as the matrix product Y = VnA:
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*............,

�0

�1

�2
...

�n�1

+////////////-
= Vn ·

*............,

a0

a1

a2
...

an�1

+////////////-
(�.��)

On page 837 of [��], it is shown that the (i,j) entry of V �1n is ��ji
n and that

aj =
1
n

n�1X

k=0
�k �

�k j (�.��)

for j = 0, . . . ,n � 1.

Since we de�ned Y in equation (�.��) by Y = (�0, . . . ,�n�1)T, where �0 = Z(�0), . . . ,�n�1 =

Z(�n�1) and �k = �k
e

2� ik/n , it follows that the coe�cients zk = Zk1,n in the polynomial

Z(x) = z0+z1x+ · · ·+zn�1xn�1 de�ned in equation (�.��) can be computed, at least in principle,

by using the Fast Fourier Transform. It turns out, however, that the values of Zk1,n are so as-

tronomically large, that the ensuing numerical instability makes even this approach infeasible

for values of n that exceed 56 (data not shown). Nevertheless, our approach can be modi�ed as

follows. De�ne Y by Y = (�1, . . . ,�n)T, where�1 = Z(�1)
Z , . . . ,�n =

Z(�n )
Z , and Z is the partition

function de�ned in equation (�.�). Using the Fast Fourier Transform to compute the inverse

Discrete Fourier Transform, it follows from equation (�.��) that we can compute the probabili-

ties p0, . . . ,pn�1 that are coe�cients of the polynomial p(x) = p0 +p1x + · · ·+pn�1xn�1 de�ned

in equation (�.�). For genomics applications, we are only interested in them most signi�cant

digits of each pk , as described in the pseudocode on the following page.
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Pseudocode for FFTbor

P������: Computes them most signi�cant digits of probabilities pk = Zk1,n/Z
I����: RNA sequence s = s1, . . . ,sn , secondary structure S⇤ of s, integerm
O�����: Probabilities pk = Zk1,n/Z tom signi�cant digits for k = 0, . . . ,n � 1

� function FFT���(s, S⇤,m)
� n  length(s)
� for k  0,n � 1 do . Compute all complex nth roots of unity
� �k  exp( 2� ikn )
� end for
� for k  0,n � 1 do . Note thatZ(�0) = Z

� �k  10m · Z(�k )
Z(�0)

� end for
� for k  0,n � 1 do . Compute IDFT from equation (�.��)
�� ak  1

n
Pn�1

j=0 �j �
�k j

�� pk  10�m · bak c . Truncate tom signi�cant digits
�� end for
�� return p0, . . . ,pn�1 . Return all pk for 0  k < n, from equation (�.�)
�� end function

F����� �.�: The function FFT��� computes the m most signi�cant digits of
p0, . . . ,pn�1, where pk =

Zk
Z . This algorithm operates in O(n4) time and O(n2) space,

a signi�cant improvement over its predecessor RNAbor.

�.� Benchmarking and performance considerations

In this subsection, we show that we need only evaluate the polynomial Z(x), as de�ned in

equation (�.��), for n/2 of the complex nth roots of unity. It is �rst necessary to recall the

de�nition of complex conjugate. Recall that the complex conjugate of z is denoted by z; i.e. if

z = a + bi where a,b 2 R are real numbers and i =
p
�1, then z = a � bi .

Lemma �.�. If Z(x) is the complex polynomial de�ned in equation (�.��), then for any complex
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nth root of unity � , it is the case that Z(�) = Z(�). In other words, if � is a complex nth root of

unity of the form a + bi , where a,b 2 R and b > 0, and if Z(a + bi) = A + Bi where A,B 2 R,

then it is the case that

Z(a � bi) = A � Bi . (�.��)

This comes from the well known fact thatZ(�) = Z(�) for any polynomial with real coe�cients.

Lemma �.� immediately entails that we need only to evaluateZ(x) onn/2many of the complex

nth roots of unity—namely, those of the form a + bi , where b � 0. The remaining values of

Z(x) are obtained by taking conplex conjugates of the �rst n/2 values. This, along with a

precomputation of powers of the complexnth roots of unity, leads to an enormous performance

speed-up in our implementation of FFTbor.

�.� Coarse-grained kinetics with FFTbor

The output of FFTbor, as shown in Figure �.�, is a probability distribution, where the x-axis

represents the base pair distance from an arbitrary, but �xed secondary structure S⇤, and the

�-axis represents the Boltzmann probability p(k) = Zk
Z that a secondary structure has base

pair distance k from S⇤. Arguably, this probability distribution is an accurate one-dimensional

projection of the rugged, high dimensional energy landscape near structure S⇤, of the sort

artistically rendered in the well-known energy landscape depicted in Figure � of [��]. A hy-

pothesis behind theoretical work in biomolecular folding theory in [��] is that kinetic folding

slows down as the energy landscape becomes more rugged. This is borne out in our computa-

tional experiments for RNA using FFTbor, as reported in Figure �.�.
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We randomly chose two TPP riboswitch aptamers from the seed alignment for Rfam fam-

ily RF00059. The �rst sequence from B. bacteriovorus has EMBL accession code BX842649.1

277414–277318 and is composed of the 97 nt sequence ACCUGACGCUAGGGGUGUUGGUG

AAUUCACCGACUGAGAAUAACCCUUUGAACCUGAUAGAGAUAAUGCUCGCGCAGGG

AAGCAAGAAUAGAAAGAU. The second sequence from the marine metagenome has EMBL

accession code AACY022101973.1 389–487 and is composed of the 99 nt sequence UAUAAG

UCCAAGGGGUGCCAAUUGGCUGAGAUGGUUUUAACCAAUCCCUUUGAACCUGAUCC

GGUUAAUACCGGCGUAGGAAUGGAUUUUCUCUACAGC. Rfam consensus and minimum

free energy structures for both sequences are depicted in Figure �.�. Despite the fact that there

is no sequence similarity according to pairwise BLAST [��], this �gure clearly demonstrates

that consensus and minimum free energy structures closely resemble each other, and that the

structures of both TPP riboswitch aptamers are quite similar, with the exception of the left-

most hairpin loop [resp. multiloop]. The MFE structures di�er from the consensus structures

principally by the addition of base pairs not determined by covariation in the Rfam alignment.

Indeed, if we let S0,S1 denote the Rfam consensus structure [resp. MFE structure] for the 97

nt sequence with EMBL accession code BX842649.1 277414–277318, then S0 \ S1 has 4 base

pairs, and S1 \ S0 has 7 base pairs. If we let T0,T1 denote the Rfam consensus structure [resp.

MFE structure] for the 99 nt sequence with EMBL accession code AACY022101973.1 389–487,

then T0 \ T1 has 1 base pair, and T1 \ T0 has 5 base pairs.

We ran FFTbor on each of the TPP riboswitch aptamer sequences, with the MFE structure

of each sequence taken as the initial structure S⇤ for that sequence. For the �rst sequence,

BX842649.1 277414–277318, the FFTbor output suggests that there are low energy structures

at a distance from the MFE structure, which might compete with the MFE structure and hence
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F����� �.�: Rfam consensus structures (Rfam) and minimum free energy (MFE) sec-
ondary structures for two thiamine pyrophosphate (TPP) riboswitch aptamers, cho-
sen at random from RF00059 Rfam family seed alignment [��]. Using pairwise BLAST
[��], there is no sequence similarity, although the secondary structures are very sim-
ilar, as shown in this �gure. From left to right: (A) MFE structure for BX842649.1
277414–277318. (B) Rfam consensus structure for BX842649.1 277414–277318. (C)

MFE structure for AACY022101973.1 389–487. (D) Rfam consensus structure for
AACY022101973.1 389–487.

slow the kinetics of folding. In contrast, for the second sequence, AACY022101973.1 389–487,

the FFTbor output suggests that there are no such competing low energy structures, hence the

second sequence should fold more quickly than the �rst.

To test the hypothesis that folding is slower for rugged energy landscapes, we ran the ki-

netic folding software, Kinfold [��], on each of the two TPP riboswitch aptamer sequences,

BX842649.1 277414–277318 and AACY022101973.1 389–487, to determine the mean �rst pas-

sage time (MFPT) to fold into the MFE structure, when starting from the empty structure. In

this computational experiment, we took MFPT to be the average number of Monte Carlo steps

taken by Kinfold—each step consisting of the addition or removal of a single base pair—to

fold the empty structure into the MFE structure, where the average was taken over 30 runs,

with an absolute maximum number of Monte Carlo steps taken to be 500,000. The �rst se-

quence, BX842649.1 277414–277318, converged within 500,000 steps only for 20 out of 30

runs. Assigning the maximum step count of 500,000 for the 10 runs that did not converge,
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FFTbor on input AACY022101973.1/389-487

"AACY022101973.1"

F����� �.�: Output from FFTbor on two randomly selected thiamine pyrophosphate
riboswitch (TPP) aptamers, taken from the Rfam database [��]. The x-axis represents
base pair distance from the minimum free energy structure for each given sequence;
the �-axis represents Boltzmann probabilities p(k) = Zk

Z , where Zk denotes the sum
of Boltzmann factors or all secondary structures, whose base pair distance from the
MFE structure is exactly k . (Left) The 97 nt sequence BX842649.1 277414–277318
appears to have a rugged energy landscape near its minimum free energy structure,
with distinct low energy structures that may compete with the MFE structure during
the folding process. (Right) The 99 nt sequence, AACY022101973.1 389–487 appears to
have a smooth energy landscape near its MFE structure, with no distinct low energy
structures to might compete with the MFE structure. Based on the FFTbor output or
structural pro�le near MFE structure S⇤, one might expect folding time for the �rst
sequence to increase due to competition from metastable structures, while one might
expect the second sequence to have rapid folding time. Computational Monte Carlo
folding experiments bear out this fact. Kinfold [��] simulations clearly show that
the second sequence folds at least four times more quickly than the �rst sequence.

See section �.� for details.

we found a mean �rst passage time of 311,075.06 steps for this sequence. The second se-

quence, AACY022101973.1 389–487, converged within 500,000 steps in 29 out of 30 runs, and

we found a mean �rst passage time of 61,575.69 steps for this sequence. From computational

experiments of this type, it is suggestive that FFTbor may prove useful in synthetic biology,

where one would like to design rapidly folding RNA molecules that fold into a designated

target structure.
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In order to more systematically determine the relation between kinetic folding speed and the

ruggedness of an energy landscape near the MFE structure, we need to numerically quantify

ruggedness. To this end, in the following we de�ne the notion of expected base pair distance

to a designated structure. Let S⇤ be an arbitrary secondary structure of the RNA sequence

s = s1, . . . ,sn . The expected base pair distance to S⇤ is de�ned by

E[{dBP(S,S⇤) : S 2 S(s1, . . . ,sn)}] =
X

S
P(S) · dBP(S,S⇤) (�.��)

whereS(s1, . . . ,sn) denotes the set of secondary structures for s = s1, . . . ,sn , P(S) = exp(�E(S)/RT )
Z

is the Boltzmann probability ofS, anddBP(S,S⇤) denotes base pair distance betweenS andS⇤.

If we run FFTbor on an input sequence s and secondary structureS⇤, then clearlyE[{dBP(S,S⇤) :

S 2 S(s1, . . . ,sn)}] =
P

k k · p(k), where p(k) = Zk
Z , obtained from the program output. If S⇤ is

the empty structure, then FFTbor output is simply the probability distribution of the number

of base pairs per secondary structure, taken over the Boltzmann ensemble of all structures.

For the benchmarking assay, we took all 61 selenocysteine insertion sequence (SECIS) se-

quences from the seed alignment of Rfam family RF00031 [��]. Average length was 64.32±2.83

nt. For each sequence, we ran both FFTbor (when starting from the empty structure rather

than the MFE structure) and a Monte Carlo folding algorithm, developed by E. Freyhult and P.

Clote (unpublished). Using the Monte Carlo algorithm, we determined the mean �rst passage

time (MFPT), de�ned as the average taken over 50 runs, of the number of Monte Carlo steps

taken to fold the empty structure into the MFE structure, where an absolute upper bound of 5

million steps was allowed in the simulation.
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Surprisingly, we found that there is a signi�cant correlation of 0.4847 with one-tailed p-value

of 0.0002 between the standard deviation of the FFTbor output (when starting from the empty

structure) and logarithm base 10 of the mean �rst passage time. As described above, FFTbor

output is simply the probability distribution for the number of base pairs per structure, taken

over the ensemble of all secondary structure for the input RNA sequence. The standard devi-

ation of this probability distribution corresponds to a notion of the width of the distribution.

It is possible that those sequences having distributions tightly centered around the mean have

faster folding times than those with a wider distribution due to other local minima causing the

RNA to get trapped while folding.

In the right panel of Figure �.�, we applied FFTbor to each of the two randomly chosen TPP

riboswitch aptamers BX842649.1 277414–277318 from B. bacteriovorus and AACY022101973.1

389–487 from the marine metagenome, starting from the empty reference structure S⇤ = ?.

The mean for the FFTbor structural pro�le near the empty structure is µ1 = 23.0203 [resp.

µ2 = 27.5821], the standard deviation � for the FFTbor structural pro�le is �1 = 2.2253 [resp.

�2 = 1.9857], and the KinfoldMFPT is 311,075.06 [resp. 61,575.69] for the TPP riboswitch ap-

tamer BX842649.1 277414–277318 [resp. AACY022101973.1 389–487]. This anecdotal evidence

supports the hypothesis that small standard deviation in FFTbor distribution is correlated with

fast folding.

We randomized the TPP riboswitches BX842649.1 277414–277318 and AACY022101973.1 389–

487 by using our implementation of the Altschul-Erikson dinucleotide shu�e algorithm [��],

and then applied FFTbor to these sequences, starting from the empty structure. The mean µ1

and standard deviation �1 for the FFTbor distribution for randomized BX842649.1 are respec-

tively µ1 = 19.93 and �1 = 2.88, while those for randomized AACY022101973.1 are µ2 = 24.39
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µ � �/µ n MFE log10(MFPT)
µ 1
� �0.4372 1
�/µ �0.6914 0.9437 1
n 0.7077 �0.1590 �0.3646 1

MFE �0.5695 0.7395 0.7596 �0.3685 1
log10(MFPT) �0.0363 0.4844 0.3762 0.4059 0.3990 1

T���� �.�: Pearson correlation between various aspects of selenocysteine insertion sequences
from the seed alignment of Rfam family RF00031 [��]. For each of the 61 RNA sequences, we
ran FFTbor, starting from empty initial structure S⇤, and we ran a Monte Carlo folding algo-
rithm, developed by E. Freyhult and P. Clote (unpublished). Using the Monte Carlo algorithm,
we determined the mean �rst passage time (MFPT), de�ned as the average taken over 50 runs,
of the number of Monte Carlo steps taken to fold the empty structure into the MFE structure,
where an absolute upper bound of 5 million steps was allowed in the simulation. From the
output of FFTbor, we computed �) the mean number (µ) of base pairs per structure, taken
over the ensemble of all secondary structures for the given sequence; �) the standard devia-
tion (� ) of the number of base pairs per structure; �) the coe�cient of variation �

µ ; �) the RNA
sequence length n; and �) the minimum free energy (MFE). Additionally, we computed the
logarithm base 10 of mean �rst passage time (log10(MFPT)), taken over 50 Monte Carlo runs
per sequence (log base 10 of the standard deviation of number of Monte Carlo steps per run
was approximately �% of log10(MFPT) on average). The table shows the correlation between
each of these aspects. Some correlations are obvious—for example, i) the standard deviation
� is highly correlated with the coe�cient of variation �

µ ; ii) the mean µ is negatively cor-
related with the coe�cient of variation �

µ ; iii) the mean µ is negatively correlated with the
minimum free energy (MFE) — if most low energy structures in the ensemble have many base
pairs, then it is likely that the minimum free energy is very low (i.e. since MFE is negative, the
absolute value of MFE increases); and iv) sequence length is negatively correlated with MFE
— as sequence length increases, the minimum free energy (MFE) decreases. However, it may
appear surprising that v) the mean µ number of base pairs per structure is independent of
MFPT (correlation �0.0363), although vi) MFE is correlated with MFPT (correlation 0.3990)
— i.e. from (iii), lower MFE is correlated with a larger average µ number of base pairs per
structure, from (vi) higher MFE is correlated with longer folding time, but from (v) the aver-
age µ number of base pairs per structure is independent of folding time. The most important
insight from this table is that vii) standard deviation � is correlated with mean �rst passage

time—the correlation is statistically signi�cant, with one-tailed p-value of 0.0002.

and �2 = 24.00. Running Kinfold, with a maximum of 500,000 steps with 30 replicates (as

explained in the text), we found that for randomized BX842649, all 30 runs converged yielding

a mean �rst passage time (MFPT) of 13,022.58with standard deviation of 15,221.78. In contrast

for randomized AACY022101973.1, only 15 out of 30 runs converged within 500,000 steps, and
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FFTbor output from empty structure for two TPP riboswitch aptamers

"BX842649.1/277414-277318"
"AACY022101973.1/389-487"

F����� �.�: This �gure represents the graphical output of FFTbor, when the empty
structure is chosen as initial structure S⇤. The x-axis represents the number of base
pairs per structure, taken over the ensemble of all secondary structures for the given
RNA sequence; the�-axis represents Boltzmann probability p(k) = Zk

Z , where Z is the
partition function for all secondary structures having exactly k base pairs. (Left) For
the M. musculus selenocysteine (SECIS) element AB030643.1 4176–4241 from Rfam
family RF00031, the standard deviation � of the number of base pairs, taken over the
ensemble of all secondary structures, is 0.7276, while the logarithm base 10 of the
mean �rst passage time (log10(MFPT)) is 4.75. (Center) For the M. musculus seleno-
cysteine (SECIS) element AL645723.11 192421–192359 from Rfam family RF00031, the
standard deviation � of the number of base pairs, taken over the ensemble of all sec-
ondary structures, is 2.6794, while log10(MFPT) is 5.69. Among the 61 sequences in
the seed alignment of RF00031, AB030643.1 4176–4241 was the fastest folder, while
AL645723.11 192421–192359 was the slowest folder. (Right) Superimposition of out-
put of FFTbor for two TPP riboswitch aptamers: the 97 nt sequence BX842649.1
277414–277318 from B. bacteriovorus and the 99 nt sequence AACY022101973.1 389–
487 from the marine metagenome, both obtained when taking the empty structure
for the initial structure S⇤. The mean µ for the FFTbor structural pro�le near the
empty structure is 23.0203 [resp. 27.5821], the standard deviation � for the FFTbor
structural pro�le is 2.2253 [resp. 1.9857], and the Kinfold MFPT is 311,075.06
[resp. 61,575.69] for the TPP riboswitch aptamer BX842649.1 277414–277318 [resp.
AACY022101973.1 389–487]. The right panel of this �gure should be compared with
Figure �.�. These anecdotal results bear up the correlation between standard deviation

� and log10(MFPT) described in Table �.�.

discounting these nonconvergent data, we obtain an average mean �rst passage time (MFPT)

of 94,446.93 with standard deviation of 157,107.43. This additional test provides more anecdo-

tal evidence supporting our hypothesis that small standard deviation � in FFTbor probability

density is correlated with fast folding, as measured by MFPT.
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This notion of correlation between the coarse-grained energy landscape and kinetics is what

motivates thework described in Chapters � and �, where amore detailed explanation of kinetics

is provided, and additional evidence is provided to support this claim.

�.� Performance characteristics of FFTbor and RNAbor

As visible from the de�ning recursions, the algorithmic time complexity of RNAbor isO(n5) and

space complexity is O(n3), where n is the length of input RNA sequence. In contrast, the time

complexity of FFTbor is O(n4) and space complexity is O(n2). While FFTbor saves an order

of magnitude in performance and memory, RNAbor has the bene�t of producing suboptimal

structures MFEk for all 0  k  n, whose free energy is minimal across all structures having

base pair distance k from input structures S⇤. Figure �.� displays run time curves for both

RNAbor and FFTbor, when the initial structure S⇤ is taken to be either the empty structure or

the minimum free energy (MFE) structure.

Here, we compare the run time of RNAbor [��] and the (unparallelized version of) FFTbor,

using a Dell Power Edge 1950, 2 x Intel Xeon E5430 Quad core with 2.80 GHz and 16 GB RAM.

For n = 20,40,60, . . . ,300, in step size of 20 nt, we generated n random RNA sequences of

length n with equal probability for each nucleotide A,C,G,U (i.e. a �th order Markov chain).

For values of n  200, 100 random sequences of length n were generated, while for values of

220  n  300, only 10 sequences of length n were generated. RNA sequences larger than

300 nt were not tested, due to O(n3) memory constraints required by RNAbor. For each RNA

sequence, RNAbor and FFTbor were both run, each starting with empty initial structure S⇤,

and also with initial sequence S⇤ taken to be the MFE structure. Each data point in the table

comprises the average run time for three independent evaluations.
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F����� �.�: Run times in seconds for RNAbor and FFTbor, on random RNA of length
20,40,60, . . . ,300 in step size of 20 nt. Each algorithm was run with the empty ini-
tial structure S⇤, see rows RNAbor (empty), FFTbor (empty), and with the minimum
free energy structure as the initial structure S⇤, see rows RNAbor (MFE) and FFTbor
(MFE). Note that for both RNAbor and FFTbor, the run time increases when S⇤ is the
MFE structure, rather than the empty structure. Notice the radical improvement in

the run time of FFTbor over that of RNAbor.

�.�.� OpenMP parallelization of FFTbor

OpenMP is a simple and �exible multi-platform shared-memory parallel programming en-

vironment, that supports parallelizations of C/C++ code—see http://openmp.org/. Using

OpenMP primitives, we created multiple threads to evaluate the polynomial Z(x) on di�er-

ent complex nth roots of unity. Figure �.� presents benchmarks, executed on a 24-core AMD

Opteron 6172 with 2.10GHz and 64GB RAM, for the speedup of FFTbor as a function of the

number of cores. The data in Table �.� describes average run time in seconds (± one standard



FFTbor: Coarse-Grained Energy Landscapes ��

deviation) for running FFTbor on random RNA of length 200,250,300,400,450,500 with either

1 or 2 cores. Figure �.� presents similar data for running FFTbor on 2,3,6,4,12,15,20 cores.

n Single core Two cores
200 123.2 ± 16.2 61.8 ± 8.0
250 331.1 ± 27.2 166.1 ± 13.7
300 723.4 ± 59.9 365.2 ± 30.1
350 1,380.8 ± 95.2 698.4 ± 46.9
400 2,239.1 ± 210.9 1,129.5 ± 104.3
450 3,635.0 ± 857.4 1,980.9 ± 126.5
500 5,076.7 ± 1,292.1 3,389.8 ± 788.4

T���� �.�: Table showing parallel run times in seconds for FFTbor, using OpenMP—
http://openmp.org/. For each sequence length 200, . . . ,500, �ve random RNAs
were generated using equal probability for each nucleotide A,C,G,U. Run time in sec-
onds, plus or minus one standard deviation, are given for a 24-core AMD Opteron

6172 running at 2.10GHz with 64GB RAM, with only 1 [resp. 2] cores used.
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F����� �.�: Graph showing parallel run time of FFTbor as a function of sequence
length, running on an AMDOpteron 6172 running at 2.10GHz with 64GB RAM, using

respectively 1,2,3,4,6,9,12,15,20 cores.



Chapter �

FFTbor�D

�.� Introduction

In this chapter, we present the FFTbor2D algorithm and accompanying software. FFTbor2D,

like FFTbor described in Chapter �, is an algorithm which computes the paramerized parti-

tion function for an input RNA sequence s. FFTbor2D computes the two-dimensional coarse-

grained energy landscape for s given two compatible input secondary structures A and B,

where position (x ,�) on the discrete energy landscape corresponds to the Boltzmann proba-

bility for those structures S which have dBP(S,A) = x and dBP(S,B) = � (where dBP is as

de�ned in equation �.�). By again leveraging the Fast Fourier Transform, FFTbor2D runs in

O(n5) time and only uses O(n2) space—a signi�cant improvement over previous approaches.

This permits the output energy landscape to be used in a high-throughput fashion to analyze

folding kinetics; a topic covered in detail in Chapter �.

��
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�.�.� Organization

This chapter is organized in the following fashion. Because the history for this work arises

naturally from the history provided in Section �.�, we provide only a brief background and

immediately fall into a technical discussion of the underlying algorithm. We �rst develop the

recursions for the Nussinov energy model for expository clarity, the underlying implementa-

tion uses the more complicated and robust Turner energy model. Recursions in place, we then

move to show how these lead to a single variable polynomial P(x) whose coe�ecients can be

computed by the inverse Discrete Fourier Transform, and map to the 2D energy landscape.

We describe two improvements over the straight-forward use of the Fast Fourier Transform to

compute P(x), a parity condition and complex conjugates, which together reduce the runtime

by a factor of 4. Finally, we contrast this software against RNA2Dfold, and outline the perfor-

mance characteristics of both softwares and highlight the bene�ts and drawbacks of both. We

elect to refrain from describing applications of FFTbor2D until Chapter �, where the software

is applied to quickly approximate mean �rst passage time and equilibrium time for the folding

of RNA molecules between any two distinct, user provided structures A,B.

�.� Background

RNA folding pathways play an important role in biological processes. For instance, in the

hok/sok (host-killing/suppression of killing) system [��], the transition between twometastable

RNA structures determines the fate of a cell as follows. The hok gene of E. coli and other

bacteria codes a small (52 amino acid) toxin causing irreversible damage to the cell membrane.

It has been shown that hok-mRNA is constitutively expressed from a weak promoter, while the
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rapidly degraded sok-RNA is constitutively expressed from a strong promoter. The hok-mRNA

is initially inactive, since a foldback sequesters the Shine-Dalgarno sequence; however, slow

exonucleolytic processing digests the last ⇡ 40 nt of the 30 end of hok-mRNA, transforming the

molecule into its active form in which the Shine-Dalgarno sequence is no longer sequestered.

If R� plasmids of E. coli are present in su�cient copy number, then a portion of the 64 nt sok-

RNA, which is complementary to hok-mRNA leader region, binds to the active conformation

of hok-mRNA, thus causing degradation of the complex by RNase III [��]. If plasmids are not

present in su�cient copy number, then the cell is killed by hok toxin, thus ensuring �tness of

the daughter cells.

In the case of spliced leader (SL) RNA from certain trypanosomes and nematodes, a portion of

the 50 exon is donated to another mRNA by trans-splicing. Intermediate structures appear to be

important in the process of splicing, as shown by LeCuyer and Crothers [��], who performed

stopped-�ow rapid-mixing and temperature-jump measurements of the kinetics for the struc-

tural transition between two low energy structures of SL RNA from Leptomonas collosoma.

Conformational switches are thought not only to play a role in such trans-splicing, but as well

in transcriptional and translational regulation, protein synthesis, and mRNA splicing.

For these reasons, substantial experimental and computational work has been done on fold-

ing pathways. In [��], RNA2Dfold—a dynamic programming method that operates in O(n7)

time and O(n4) space—is presented, a generalization of RNAbor [��] that computes a 2D pro-

jection of the energy landscape, discretized by base pair distance to two input structures. Our

work presented here, called FFTbor2D, produces a similar energy landscape inO(n5) time and

O(n2) space—e�cient enough for the analysis of folding pathways of large RNA sequences not

tractable using RNA2Dfold.
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�.� Derivation of the FFTbor2D algorithm

For expository clarity, we describe FFTbor2D [��] and all recursions in terms of the Nussinov

energy model [��] (same as in Chapter �), where the energy E0(i,j) of a base pair (i,j) is de�ned

to be�1, and the energyE(S) of a secondary structureS is�1 times the number |S| of base pairs

in structure S. Nevertheless, the implementation of FFTbor2D involves the full Turner energy

model [��], where free energy E(S) depends on negative, stabilizing energy contributions from

base stacking, and positive, destabilizing energy contributions due to loss of entropy in loops.

�.�.� De�nition of the partition function Zx ,�
1,n

Given reference secondary structuresA,B of a given RNA sequence s = s1, . . . ,sn , our goal is

to compute

Zx,�1,n =
X

S such that
dBP(S, A)=x, dBP(S, B)=�

e

�E(S)
RT (�.�)

for all 0  x ,� < n, where R is the universal gas constant, T is absolute temperature, E(S)

denotes the free energy of S, and S ranges over all secondary structures that are compatible

with s. As mentioned, we emphasize that for expository reasons alone, the Nussinov energy

model is used in the recursions in this chapter, although full recursions and the implementation

of FFTbor2D, like FFTbor, involve the Turner energy model.

For any secondary structure S of s, and any values 1  i  j  n, the restriction S[i, j] is

de�ned to be the collection of base pairs of S, lying within interval [i,j]; i.e. S[i, j] = {(k, `) :

i  k < `  j}. In [��], Lorenz et al. generalized the dynamic programming recursions of our
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earlier work [��], to yield recursions for the partition function Zx,�i, j in equation (�.�). In the

context of the Nussinov model, Zx,�i, j is equal to

Zx��0,���0
i, j�1 +

X

(sk ,sj )2B,
ik<j

*.,e
�E0(k, j )

RT
X

u+u0=x�� (k )

X

�+� 0=��� (k )
Zu,�i,k�1 · Z

u0,� 0
k+1, j�1

+/-
(�.�)

where �0 = 1 if j is base paired inA[i, j] and 0 otherwise, �0 = 1 if j is base paired in B[i, j] and

0 otherwise, E0(k,j) = �1 if k,j can base-pair (see equation �.�), and otherwise E0(k,j) = 0, and

�(k) = dBP(A[i, j],A[i,k�1] [A[k+1, j�1] [ {(k,j)}), and �(k) = dBP(B[i, j],B[i,k�1] [ B[k+1, j�1] [

{(k,j)}).

�.�.� Recursions to compute the polynomialZ
i,j(x)

Given RNA sequence s = s1, . . . ,sn and two arbitrary, but �xed reference structures A,B, we

de�ne the polynomial

Z(x) =
n�1X

r=0

n�1X

s=0
zrn+sx

rn+s (�.�)

where (constant) coe�cients

zrn+s = Zr,s1,n =
X

S such that
dBP(S, A)=r, dBP(S, B)=s

e

�E(S)
RT (�.�)

where E(S) denotes the free energy of S. If we evaluate the polynomial Z(x) at n2 distinct

pairs of values a0, . . . ,an2�1 in
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Z(a0) = �0, . . . ,Z(an2�1) = �n2�1, (�.�)

then Lagrange polynomial interpolation (equation �.��) guarantees that we can determine the

coe�cients zrn+s of Z(x), for 0  r ,s < n. Due to technical di�culties concerning numer-

ical robustness observered while working on the FFTbor software (Chapter �), we will per-

form polynomial interpolation by using Vandermondematrices and the Fast Fourier Transform

(FFT).

The following theorem shows that a recursion, analogous to equation (�.�), can be used to

compute the polynomialZi, j (x) de�ned by

Zi, j (x) =
n�1X

r=0

n�1X

s=0
zrn+s (i,j) · xrn+s =

n2�1X

k=0
zk (i,j) · xk (�.�)

where

zrn+s (i,j) = Zr,si, j =
X

S such that
dBP(S, A)=r, dBP(S, B)=s

e

�E(S)
RT . (�.�)

Here, in the summation, S runs over structures on si , . . . ,sj , which are r -neighbors of the

restriction A[i, j] of reference structure A to interval [i,j], and simultaneously s-neighbors of

the restriction B[i, j] of reference structure B to interval [i,j].

Theorem �.�. Let s1, . . . ,sn be a given RNA sequence. For any integers 1  i < j  n, let

Zi, j (x) =
n�1X

r=0

n�1X

s=0
zrn+sx

rn+s (�.�)
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where

zrn+s (i,j) = Zr,si, j . (�.�)

Inductively we de�neZi, j (x) to equal

Zi, j�1(x) · x�0n+�0+

X

(sk ,sj )2B,
ik<j

✓
e

�E0(k, j )
RT · Zi,k�1(x) · Zk+1, j�1(x) · x� (k )n+� (k )

◆ (�.��)

where �0 = 1 if j is base-paired in A[i, j] and 0 otherwise, �0 = 1 if j is base-paired in B[i, j] and

0 otherwise, and �(k) = dBP(A[i, j],A[i,k�1] [A[k+1, j�1] [ {(k,j)}), �(k) = dBP(B[i, j],B[i,k�1] [

B[k+1, j�1] [ {(k,j)}).

The proof is given in Section B.�.

Note that if one were to compute all terms of the polynomialZ1,n(x) by explicitly performing

polynomial multiplications, then the computation would require O(n7) time and O(n4) space,

the same time complexity of RNA2Dfold [��]. Instead of explicitly performing polynomial

expansion in variable x , we instantiate x to a complex number � 2 C, and apply the following

recursion, by settingZi, j (�) equal to

Zi, j�1(�) · ��0n+�0+

X

(sk ,sj )2B,
ik<j

✓
e

�E0(k, j )
RT · Zi,k�1(�) · Zk+1, j�1(�) · �� (k )n+� (k )

◆ (�.��)
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Note that this approach is similar to what we do in FFTbor—speci�cally equation (�.��)—

however notationally wewill use the variable � instead of � , to avoid confusion. In this fashion,

we can computeZ(�) = Z1,n(�) in O(n3) time and O(n2) space. For n2 distinct complex num-

bers �i where 0  i  n

2 � 1, we can compute and save only the values Z(�0), . . . ,Z(�n2�1),

each time re-using theO(n2) space for the next computation ofZ(�i ). It follows that the com-

putation resources used to determine the (column) vector

Y = (�0, . . . ,�n2�1)T =

*........,

�0

�1
...

�n2�1

+////////-
(�.��)

where �0 = Z(�0), . . . ,�n2�1 = Z(�n2�1)) are thus quintic time O(n5) and quadratic space

O(n2).

�.�.� Polynomial interpolation

Our plan is to determine the coe�cients of the polynomialZ(x) in equation (�.�) by polynomial

interpolation. For reasons of numerical stability, we instead determine the coe�cients of the

polynomial p(x), de�ned by

p(x) =
n�1X

r=0

n�1X

s=0
prn+sx

rn+s =

n�1X

r=0

n�1X

s=0

Zrn+s1,n

Z
x

rn+s , (�.��)

where the Fast Fourier Transform (FFT) is used to implement the interpolation of the coe�-

cients using the inverse Discrete Fourier Transform (DFT), as described in Section �.�.�. The
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following pseudocode describes how to compute the m most signi�cant digits for probabili-

ties prn+s =
Zr ,s1,n
Z . It is well-known that the FFT requires O(N logN ) time to solve the inverse

Discrete Fourier Transform for a polynomial of degree N . In our case, N = n

2, and so the

computation involving the FFT requires time O(n2 logn).

The pseudocode for the algorithm to compute p(x) is given in Figure �.�. In the next section,

we explain a highly non-trivial improvement of this algorithm to reduce time by a factor of 4.

�.� Acceleration of the FFTbor2D algorithm

Recall that if a +bi is a complex number, where a,b are real values and i denotes
p
�1, then the

complex conjugate of a+bi , denoted by a + bi is de�ned to be a�bi . Recall that a complex nth

root of unity is a number whose nth power equals one. Moreover, e 2� i/n is the principal complex

nth root of unity; i.e. {e 2� ik/n : k = 0, . . . ,n � 1} is a set of pairwise distinct complex nth roots

of unity. We have the following.

Lemma �.�. Let A,B denote two distinct, arbitrary but �xed, secondary structures of RNA se-

quence s, let S range over all secondary structures of s, and let d0 denote dBP(A,B). If x =

dBP(A,S) and � = dBP(S,B), then � 2 {d0 � x + 2k : k = 0, . . . ,x}.

It follows that if x = dBP(A,S) and � = dBP(S,B), then the only possible values for (x ,�) are

(0,d0), (1,d0�1), (1,d0+1), (2,d0�2), (2,d0), (2,d0+2), (3,d0�3), (3,d0�1), (3,d0+1), (3,d0+3), . . . .

As a corollary, we have the parity condition, that

dBP(A,S) + dBP(S,B) ⌘ dBP(A,B) mod 2 (�.��)
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Pseudocode for FFTbor2D

P������: Computes them most signi�cant digits of probabilities prn+s = Zr ,s1,n/Z
I����: RNA sequence s = s1, . . . ,sn , secondary structures A, B of s, integerm

O�����: prn+s =
Zr ,s1,n/Z to blog10(2m)c signi�cant digits for r ,s = 0, . . . ,n � 1

� function FFT����D(s, A, B,m)
� n  length(s)
� for k  0,n2 � 1 do . Compute all complex n2-roots of unity
� �k  exp( 2� ikn2 )
� end for
� for k  0,n2 � 1 do . Note thatZ(�0) = Z

� �k  2m · Z(�k )
Z(�0)

� end for
� for k  0,n2 � 1 do . Compute IDFT from equation (�.��)
�� ak  1

n
Pn2�1

j=0 aj ��k j

�� pk  2�m · bak c . Truncate tom signi�cant digits
�� end for
�� return p0, . . . ,pn2�1 . Return all pk for 0  k < n

2

�� end function

F����� �.�: Pseudocode to compute the m most signi�cant digits for probabilities
prn+s =

Zr ,s1,n
Z . In our implementation, due to numerical stability issues in the FFT

engine, precision parameter m has an upper bound of 27—only the blog10(2m)c =
8 most signi�cant digits are computed with FFTbor2D. It is well-known that the
FFT requires O(N logN ) time to solve the inverse discrete Fourier transform for a
polynomial of degree N . In our case, N = n2, and so the FFT requires timeO(n2 logn).

�rst noticed in [��], as well as the triangle inequality dBP(A,S)+dBP(S,B) � dBP(A,B) for base

pair distance, probably folklore. Lorenz et al. [��] exploited the parity condition and the triangle

inequality by using sparse matrix methods to improve on the e�ciency of the naïve implemen-

tation of the O(n7) time and O(n4) space algorithm to compute the partition function, Zr,s1,n , and

minimum free energy structure, MFE r,s
1,n , over all structures having base pair distance r toA and

S to B.
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Lemma �.�. If Z(x) is the complex polynomial de�ned in equation (�.�), then for any complex

nth root of unity � , it is the case thatZ(�) = Z(�).

Lemma �.�. LetZ(x) be de�ned by equation (�.�), and let � 2 C be any complex number. If the

base pair distance between reference structures A,B is even, then Z(��) = Z(�), while if the

distance is odd, thenZ(��) = �Z(�).

Lemma �.�. Suppose thatM is evenly divisible by �, � = exp( 2� iM ) is the principalM-root of unity,

and M
4 < k  M

2 . Then

�k = �(��(M0�k )) = ��M0�k . (�.��)

Lemma �.� is proved by induction; Lemma �.� is proved in Section �.� by a computation involv-

ing binomial coe�cients; Lemma �.� is proved in Section B.� by the parity observation above,

resulting from Lemma �.�; Lemma �.� is proved in Section B.�, relying on Euler’s formula and

trigonometric addition formulas.

Lemma �.� entails that either all even coe�cients, or all odd coe�cients ofZ(x) are zero, and so

by a variable change described in detail below, we require only half the number of evaluations

ofZ(x), in order to perform polynomial interpolation. Lemma �.� entails that we require only

half again the number of evaluations of Z(x), since the remainder can be inferred by taking

the complex conjugate. Lemma �.� and Lemma �.�, along with a precomputation of powers

of the complex roots of unity, lead to a large performance speed-up in our implementation of

FFTbor2D—by a factor of 4 or more.
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�.�.� Optimization due to parity condition

Let n denote the length of RNA sequence s, and let N denote the least even integer greater than

or equal to n. Since N is even, we have (r + s) ⌘ (r · (N + 1) + s) mod 2. For distinct �xed

structures A,B, let �1(k) = b k
N+1c, and �2(k) = k mod (N + 1), and de�ne the polynomial

Z(x) =
NX

r=0

NX

s=0
zrN+sx

rN+s

=

(N+1)2�1X

k=0
z�1(k )·(N+1)+�2(k )x

�1(k )·(N+1)+�2(k )

=

(N+1)2�1X

k=0
zkx

k

(�.��)

where for the last equality, we have used the fact that k = �1(k) · (N + 1) + �2(k), well-known

from row major order of a 0-indexed 2-dimensional array.

Consider the coe�cients of the polynomial

Z(x) =
NX

r=0

NX

s=0
zrN+sx

rN+s =

(N+1)2�1X

k=0
zkx

k . (�.��)

Since N is even, the parity of r + s equals the parity of r (N + 1) + s , hence it follows from

the parity condition that either �) all coe�cients z1,z3,z5, . . . of odd parity are zero; or �) all

coe�cients z0,z2,z4, . . . of even parity are zero. To simplify notation, in the remainder of this

subsection, letM be the least integer greater than or equal to (N +1)2 that is evenly divisible by

�, and let M0 = M/2. We will assume that Z(x) = PM�1
k=0 zkx

k , whereupon coe�cients zk = 0

for k > (N + 1)2.

C��� �: All coe�cients zk of odd parity in equation (�.��) are zero.
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In this case, we have Z(x) = PM0�1
k=0 z2kx

2k . But then Z(x) = Y(u) = PM0�1
k=0 bku

k , where

we have made a variable change u = x

2, and coe�cient changes bk = a2k . By evaluating

M0 =
M
2 many complex M0-roots of unity, we can use polynomial interpolation to determine

all coe�cients bk of the polynomial

Y(u) =
M0�1X

k=0
bku

k =

M0�1X

k=0
z2kx

2k . (�.��)

Since Y(x2) = Z(x), we have Y(exp( 2� ikM/2 )) = Y(exp( 4� ikM )) = Z(exp( 2� ikM )), hence we can use

the previous recursions from equation (�.��) to evaluate Z(exp( 2� ikM )). Instead of performing

M evaluations of Z(x) at M-roots of unity, this requires only M0 = M/2 evaluations of Y(u)

at M0-roots of unity; i.e. only half the number of evaluations of Z(x) are necessary to obtain

the coe�cients of Y(x). But then, we immediately obtain the full polynomial Z(x), since its

coe�cients of odd parity are zero.

C��� �: All coe�cients zk of even parity in equation (�.��) are zero.

In this case, z0,z2,z4, . . . are zero, soZ(x) = PM0�1
k=0 z2k+1x

2k+1. But thenZ(x) = x ·Y(u), where

Y(u) = PM0�1
k=0 bku

k , where we have made a variable change u = x

2, and coe�cient changes

bk = z2k+1. Similarly to Case �, we can interpolate the M0 coe�cients of the polynomial

Y(u) = PM0�1
k=0 bku

k by evaluatingM0 many complexM0-roots of unity. SinceZ(x) = x ·Y(x2),

Y(x2) = x

�1 · Z(x), so Y(exp( 2� ikM/2 )) = Y(exp( 4�kiM )) = exp(�2� ikM ) · Z(exp( 2� ikM )), employing

the previous recursions from equation (�.��) to evaluate Z(exp( 2� ikM )). Note, that unlike the

Case �, sinceZ(x) = x ·Y(x2), we haveY(x2) = Z(x )
x , which explains the presence of additional

factor exp(�2� ikM )) in Case 2. Thus, instead of performing M evaluations of Z(x) at M-roots

of unity, we perform only M0 =
M
2 evaluations of Y(u) at M0-roots of unity; i.e. only half the
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number of evaluations of Z(x) are necessary to obtain the coe�cients of Y(x). But then, we

immediately obtain the full polynomial Z(x), since Z(x) = x · Y(x2), and the coe�cients of

Z(x) of even parity are zero.

In the following, we will need the observation, that if the parity of base pair distance dBP(A,B)

between A,B is even, then

Y(x2) = Z(x) (�.��)

while if the parity is odd, then

Y(x2) = 1
x

· Z(x). (�.��)

�.�.� Optimization due to complex conjugates

As before, let M be the the least number evenly divisible by �, which is greater than or equal

to (N + 1)2, let M0 =
M
2 , let � = exp( 2� iM ) and � = �2 = exp( 2� ·2iM ) = exp( 2� iM0

). Clearly,

� is a principal complex M-root of unity, while � is a principal complex M0-root of unity.

EvaluateZ for eachM0-root of unity that belongs to the �rst quadrant, and apply Lemma �.�

to infer the values of Z for each M0-root of unity that belongs to the fourth quadrant. More

precisely, we compute Z(�k ), for k = 0, . . . ,M0
2 , and by Lemmas �.�, �.�, �.� infer that for

k = M0
2 + 1, . . . ,M0 � 1, we have Z(�k ) = �1d0 · Z(�M0�k ), where d0 = dBP(A,B). This is

justi�ed in the following.

By induction on k = M0
2 + 1, . . . ,M0 � 1, we have
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Y(�k ) = Y(�2k )

=
8>><>>:
Z(�k ) if dBP(A,B) = 0 mod 2
1
�k · Z(�k ) if dBP(A,B) = 1 mod 2

=
8>><>>:
Z(�� (M0�k )) if dBP(A,B) = 0 mod 2

��k · Z(�� (M0�k )) if dBP(A,B) = 1 mod 2

=
8>><>>:
Z(� (M0�k )) if dBP(A,B) = 0 mod 2

��k · Z(� (M0�k )) if dBP(A,B) = 1 mod 2

=
8>><>>:
Z(� (M0�k )) if dBP(A,B) = 0 mod 2

���k · Z(� (M0�k )) if dBP(A,B) = 1 mod 2

(�.��)

Line 1 follows by de�nition, since � = �2; line 2 follows by equations (�.��) and (�.��); line 3

follows by Lemma �.�; line 4 follows by Lemma �.�. Thus if dBP(A,B) is even, then

�k = Y(�k ) =
8>><>>:
Z(�k ) for k = 0, . . . ,M0

2

Z(�M0�k ) for k = M0
2 + 1, . . . ,M0 � 1

(�.��)

while if dBP(A,B) is odd, then

�k = Y(�k ) =
8>><>>:
��k · Z(�k ) for k = 0, . . . ,M0

2

���k · Z(�M0�k ) for k = M0
2 + 1, . . . ,M0 � 1

(�.��)

It follows that values �0, . . . ,�M0�1 can be obtained by only M
4 evaluations ofZ(x).

�.�.� Polynomial interpolation to evaluateZ
i,j(x)

Now let M0 =
M
2 , let � = exp( 2� iM ) be the principal M-root of unity, and � = �2 = exp( 2� iM/2 ) =

exp( 2� ·2iM ) be the principalM0-root of unity. Recall that the Vandermonde matrixVM0 is de�ned

to be theM0 ⇥M0 matrix, whose i,j entry is �i ·j = �2i ·j ; i.e.
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VM0 =

*................,

1 1 1 . . . 1

1 � �2 . . . �M0�1

1 �2 �4 . . . �2(M0�1)

1 �3 �6 . . . �3(M0�1)

...
...

...
...

...

1 �M0�1 �2(M0�1) . . . �(M0�1)(M0�1)

+////////////////-

(�.��)

As described in Chapter �, the Fast Fourier Transform is theO(n logn) algorithm, which com-

putes the Discrete Fourier Transform (DFT), de�ned as the matrix product Y = VM0A:

*............,

�0

�1

�2
...

�M0�1

+////////////-
= Vn ·

*............,

a0

a1

a2
...

aM0�1

+////////////-
(�.��)

The (i,j) entry of V �1M0
is ��ji

M0
and that

aj =
1
M0

M0�1X

k=0
�k �

�k j =
1
M0

M0�1X

k=0
�k �

�2k j (�.��)

for j = 0, . . . ,M0 � 1.

Since we de�ned Y in equation (�.��) by Y = (�0, . . . ,�M0�1)T, where �0 = Z(�0), . . . ,�M0�1 =

Z(�M0�1) and �k = �k exp(k ·2� iM0
), it follows that the coe�cients zk = Z�1(k ),�2(k )

1,n in the poly-

nomialZ(x) = z0 +z1x + · · ·+zMxM de�ned in equation (�.�) can be computed using the FFT.

However, in practice we encounter the same issues of numerical instability observed in Section

�.�.�, and adopt a similar approach to compute themmost signi�cant digits of
Z�1(k ),�2(k )1,n

Z , where

the partition function Z =
P

S exp(�E(S)/RT ) satis�es Z =
P

x,� Z
x,�
1,n . This leads to numerical
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stability, allowing FFTbor2D to compute them most signi�cant digits of p(x ,�) = Zx,�1,n
Z . Pseu-

docode for FFTbor2D which includes the performance enhancements described in Section �.�

follows below.
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Pseudocode for improved FFTbor2D

P������: Computes them most signi�cant digits of probabilities pr ·(N+1)+s = Zr ,s1,n/Z
I����: RNA sequence s = s1, . . . ,sn , secondary structures A, B of s, integerm

O�����: pr ·(N+1)+s =
Zr ,s1,n/Z to blog10(2m)c signi�cant digits for r ,s = 0, . . . ,N

� function FFT���2D I�������(s, A, B,m)
� n  length(s)
� N  n + (n mod 2)
� M  (N + 1)2 + ((N + 1)2 mod 4)
� M0  M

2

� for k  0, (N + 1)2 � 1 do . Note that k  �1(k) ·M + �2(k)
� �1(k) b k

N+1c
� �2(k) k mod (N + 1)
� end for
�� for k  0,M � 1 do . Compute all complexM andM0-roots of unity
�� �k  exp( 2� ikM )
�� if k < M0 then
�� �k  exp( 2� ikM0

)
�� end if
�� end for
�� for k  0,M0 � 1 do
�� if dBP(A,B) mod 2 = 0 then . From equation (�.��)
�� if k  M0

2 then
�� �k  Z(�k )
�� else
�� �k  Z(�M0�k )
�� end if
�� else . From equation (�.��)
�� if k  M0

2 then
�� �k  ��k · Z(�k )
�� else
�� �k  ���k · Z(�M0�k )
�� end if
�� end if
�� end for
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�� for k  0,M0 � 1 do . Note thatZ(�0) = Z
�� �k  2m · �k

Z(�0)
�� end for
�� for k  0,M0 � 1 do . Compute IDFT from equation (�.��)
�� ak  1

M0

PM0�1
k=0 �k��k j

�� end for
�� for k  0,M � 1 do . Change the polynomial back to degreeM � 1
�� if dBP(A,B) mod 2 = 0 then
�� if k mod 2 = 0 then
�� p�1(k )·(N+1)+�2(k )  ak/2

�� else
�� p�1(k )·(N+1)+�2(k )  0
�� end if
�� else
�� if k mod 2 = 0 then
�� p�1(k )·(N+1)+�2(k )  0
�� else
�� p�1(k )·(N+1)+�2(k )  a k�1

2

�� end if
�� end if
�� end for
�� for k  0, (N + 1)2 � 1 do . Truncate tom signi�cant digits
�� pk  2�m · bpk c
�� end for

�� return p0, . . . ,p(N+1)2�1 . Return all p(r ,s) = pr ·(N+1)+s =
Zr ,s1,n
Z

�� end function

F����� �.�: Pseudocode to compute the m most signi�cant digits for probabilities
pr ·(N+1)+s =

Zr ,s1,n
Z . In our implementation, due to numerical stability issues in the

FFT engine, precision parameterm has an upper bound of 27—only the blog10(2m)c =
8 most signi�cant digits are computed with FFTbor2D. It is well-known that the
FFT requires O(N logN ) time to solve the inverse discrete Fourier transform for a
polynomial of degree N . In our case, N = n2, and so the FFT requires timeO(n2 logn).
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�.� Performance characteristics of FFTbor2D

To perform comparative benchmarking between RNA2Dfold and FFTbor2D, we took precision

parameterm = 8, and proceeded as follows. For each sequence length n = 20,25,30, . . . ,300,

we generated 100 random sequences using probability 0.25 for each nucleotide A, C, G, U. For

a given RNA sequence s, the metastable structure A was taken to be the MFE structure of s.

Using RNAbor, we determined that value k0 � 10, for which partition function Zk0 constitutes

a visible peak in the graphical output—see Figure � and � of [��] for an example. Subsequently,

metastable structure B was taken to be that structure having minimum free energy over all

structures, whose base pair distance from A was k0.

For all 0  x ,�  n, RNA2Dfold and FFTbor2D were benchmarked in the computation of

all Boltzmann probabilities p(x ,�) = Zx,�
Z , where x [resp. �] represents base pair distance to

metastable structure A [resp. B]. Care was taken for both software to employ the same en-

ergy model (Turner99 energy model, no dangles, suppression of minimum free energy struc-

ture computations for RNA2Dfold) and the same number of parallel threads (� threads using

OpenMP). Nonetheless, there are slight di�erences in the energymodels — namely, RNA2Dfold

includes mismatch penalties for multiloop stems and for exterior loops, while FFTbor2D does

not. Even in the computation of the partition function Z, for spliced leader RNA from L. col-

losoma of length 56 nt, RNA2Dfold -d0 obtains a value of �9.660 kcal/mol, while FFTbor2D

obtains �9.661 kcal/mol; similarly, for attenuator RNA of length 73 nt, RNA2Dfold -d0 obtains

a value of�22.172 kcal/mol, while FFTbor2D obtains�22.173 kcal/mol. Note that the straight-

forward calculation of the partition function, following McCaskill’s algorithm [��] makes no
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use of the FFT engine, and thus the di�erences cannot be due to �oating point or precision

issues.

For benchmarking purposes, to allow for a fair comparison of FFTbor2D with RNA2Dfold, we

restricted the range of x ,� in the samemanner as done in the source code of RNA2Dfold. In that

code, parameters K [resp. L] are de�ned respectively to be the sum of the number of base pairs

in reference structure A [resp. B] plus the number of base pairs in the maximum matching

(Nussinov) structure which contains no base pair of A [resp. B]. For x � K ,� � L, both

RNA2Dfold and FFTbor2D set p(x ,�) = 0. For the benchmarking results displayed in Figures

�.�, �.�, �.�, the values x ,� are restricted in FFTbor2D to 0  x ,�  max(K ,L), while 0  x  K

and 0  �  L in RNA2Dfold.

Figure �.� depicts average run time of RNA2Dfold and FFTbor2D as a function of RNA se-

quence length, for random RNA sequences of lengths 20–200 and their metastable structures

A,B, as previously explained. We see that both programs have roughly comparable run times

for sequences of length up to approximately 80 nt, while FFTbor2D is demonstrably faster for

longer sequences. Figure �.� presents log10 run time as a function of sequence length, in order

to more clearly determine the crossover point in performance. RNA2Dfold is marginally faster

for sequences of length up to roughly 80 nt, though the di�erence is in the millisecond range.

Figure �.� shows that the standard deviation of run times on random sequences is tiny for

FFTbor2D compared with RNA2Dfold, where standard deviation increases rapidly as a func-

tion of sequence length. This �gure shows that run time of RNA2Dfold depends on sequence

details, as well as sequence length, while the run time of FFTbor2D depends only on sequence

length.
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F����� �.�: Run time in seconds for RNA2Dfold and FFTbor2D on random RNA se-
quences of length 20–200 nt, where sequence generation and choice of metastable
structures A,B is described in the text. Beyond a length of approximately 80 nt,

FFTbor2D is demonstrably faster.

An important advantage of RNA2Dfold over FFTbor2D is that the former can additionally com-

pute the structuresMx,� having minimum free energy over all structures that are x-neighbors

of metastable A and simultaneously �-neighbors of metastable B. (There is a similar advan-

tage of RNAbor [��] over the faster FFTbor [��].) As well, RNA2Dfold directly computes the

partition function values Zx,� , while FFTbor2D estimates Zx,� by computing p(x ,�) · Z. This

di�erence entails a signi�cant loss of precision, when depicting the energy landscape.
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F����� �.�: Logarithm of run time in seconds for RNA2Dfold and FFTbor2D on ran-
dom RNA sequences of length less than 200 nt, for same data as that in Figure �.�.
By taking log10 of the run times, crossover points are apparent, where FFTbor2D is
faster than RNA2Dfold. For very small sequences, RNA2Dfold is faster, though since
both programs converge in a fraction of a second, this di�erence is of no practical

consequence.
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F����� �.�: (Top) Standard deviation of run times of RNA2Dfold and FFTbor2D as
a function of sequence length n. (Bottom) Minimum and maximum run times for
RNA2Dfold and FFTbor2D. For each collection of 100 random sequences of length n,
the minimum and maximum run time for a sequence of that length was computed.
Taken together, these �gures clearly show the run time dependence of RNA2Dfold
on particular sequences, while the run time of FFTbor2D depends only on sequence

length, rather than sequence details.
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F����� �.�: 2D projection of energy landscape for Spliced Leader (SL) RNA from L.

collosoma, having sequence and metastable secondary structures:

s = AACUAAAACAAUUUUUGAAGAACAGUUUCUGUACUUCAUUGGUAUGUAGAGACUUC

A = ..((...((((((..(((((.((((...)))).)))))..))).)))..)).....
B = .......................((((((((((((.....)))))..)))))))..

The x-axis [resp. �-axis] represents base pair distance between metastable structure
A [resp. B], while the z-axis represents the ensemble free energy�RT logZx,� , where
Zx,� is computed in FFTbor2D by Zx,� = p(x ,�) · Z. Low energy positions (x ,�)
correspond to high Boltzmann probability positions. The left panel depicts a heat map
of the ensemble free energy, while the right panel depicts a contour map with level
curves. In analogy with mountain climbing, one expects an optimal path to follow
along the valley regions in traversing the landscape from A to B. Data produced

with FFTbor2D; graphics produced using Mathematica.
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F����� �.�: 2D projection of energy landscape for Spliced Leader (SL) RNA from
L. collosoma, as in Figure �.�, except that in the right panel, ensemble free energy
�RT logZx,� is computed from the values of Zx,� output by RNA2Dfold, while in the
left panel, ensemble free energy is computed from the values Zx,� = p(x ,�) ·Z, where
values p(x ,�) are output by RNA2Dfold. The loss of detail in the 2D energy landscape
is caused uniquely byworking with probabilitiesp(x ,�), rather than partition function
values Zx,� . Data produced with RNA2Dfold; graphics produced using Mathematica.
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Hermes

�.� Introduction

In this chapter, we present the Hermes software suite—a collection of programs aimed at eval-

uating the kinetic properties of RNA molecules. Provided a coarse-grained energy landscape

generated by FFTbor2D (described in Chapter �), we present software which computes both

the mean �rst passage time and equilibrium time for this discretized energy landscape. We also

provide software which computes the exact kinetics for an RNA molecule, however since this

requires exhaustive enumeration of all secondary structures—which is known to be an expo-

nential quantity for the length of the RNA in consideration—the full kinetics are not expected to

be practical for anything beyond a sequence of trivial length. The software in Hermes presents

a practical application of the energy landscapes computed by the FFTbor2D algorithm. Con-

trasted against the other kinetics software in the �eld, Hermes o�ers similar accuracy with

unparalleled performance which opens up the possibility for large-scale kinetic analysis in

silico, which we expect to be of use for synthetic design.

��
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�.�.� Organization

This chapter is organized in the following fashion. We begin by providing background on the

state-of-the-art approaches for kinetic analysis of RNAs. From there, we move into a technical

discussion of two traditional approaches for kinetics, computation of the mean �rst passage

time and the equilibrium time. With this foundation in place, we proceed to discuss the high-

level organization of the Hermes software package, and describe in detail each of the four

underlying programs which comprise the kinetics suite. We then move on to present com-

paritive benchmarking of Hermes against other methods, before �nally concluding with some

remarks on the accuracy and applicability of Hermes to computational RNA design.

�.� Background

Remarkable results in RNA synthetic biology have recently been obtained by various groups.

In [��], small conditional RNAs have been engineered to silence a gene Y by using the RNA

interference machinery, only if a gene X is transcribed. In [��] a novel theophylline riboswitch

has been computationally designed to transcriptionally regulate a gene in E. coli, and in [��] a

purely computational approachwas used to design functionally active hammerhead ribozymes.

Computational design of synthetic RNAmolecules invariably uses some form of thermodynamics-

based algorithm; indeed, NUPACK-Design [��] was used to design small conditional RNAs [��],

Vienna RNA Package [��] was used in the design of the synthetic theophylline riboswitch, and

the RNAiFold inverse folding software [��, ��] was used to design the synthetic hammerhead

ribozymes. The next step in the computational design of synthetic RNA molecules is to con-

trol the kinetics of folding—such control could be important in engineering conformational
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switches. Kinetics is already used as a design feature for synthetic design in proteins [��, ��].

In this chapter we introduce a new software suite, called Hermes [��], which e�ciently com-

putes RNA secondary structure folding kinetics by using a coarse-grained method to model

RNA transitions that add or remove a single base pair. Since our motivation in developing

Hermes is to provide a new tool to aid in engineering synthetic RNA molecules with desired

kinetic properties, Hermes does not model co-transcriptional folding, but only the refolding of

RNA sequences.

There is a rich history of both experimental and computational work on RNA folding path-

ways and kinetics. Experimental approaches to determine the kinetics of RNA folding include

temperature jump experiments [��], using �uorophores [��], using mechanical tension at the

single molecule level [��], etc. and will not be further discussed. Computational approaches to

folding kinetics commonly model stepwise transitions between secondary structures, involv-

ing the addition or removal of a single base pair, as �rst considered in [��]. Nevertheless, it

should be noted that there are a number of methods that concern the addition or removal of

an entire helical region, e.g. [��, ��].

Most computational approaches involve either �) algorithms to determine optimal or near-

optimal folding pathways; �) explicit solutions of the master equation; or �) repeated simula-

tions to fold an initially empty secondary structure to the target minimum free energy (MFE)

structure. Examples ofmethods to determine optimal or near-optimal folding pathways include

the greedy approach of Morgan and Higgs [��], the exact, optimal, exponential time program

barriers [��], the program Findpath [��], which uses bounded look-ahead breadth-�rst

search, a genetic algorithm [��], the program RNAtabupath that uses local search to determine
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near-optimal folding pathways, the Basin Hopping Graph (BHG, [��]) which uses a greedy al-

gorithm to determine local minima and approximate their barrier energies, etc. The program

barriers [��] is the only current method guaranteed to produce optimal folding pathways.

Since it has been shown that the problem of determining optimal folding pathways is NP-

complete [��], it is now understandable why barriers can take exponential time to converge,

depending on the RNA sequence. For this reason, near-optimal solutions provided by heuristic

methods, such as RNAtabupath, are very useful.

Methods that employ the master equation include Treekin [��], which uses the programs

RNAsubopt [��] and barriers [��] to determine macrostates, de�ned as basins of attraction

near a locally optimal structure. The resulting coarse-grainedMarkov chain is then su�ciently

small to allow explicit solution of the master equation. In [��], a moderate number of RNA

structures were sampled according to di�erent strategies, from which a robotic motion plan-

ning graph was de�ned to connect each sampled structure to its k nearest sampled neighbors.

Again, the resulting coarse-grained Markov chain is su�ciently small for an explicit solution

of the master equation to be given.

We now come to simulation approaches to estimate RNA folding kinetics. The program Kinfold

[��, ��] is an implementation of Gillespie’s algorithm [��], directly related to the master equa-

tion, hence is considered by many to be the gold standard for RNA kinetics. A recent extension

of the Kinfold algorithm was reported in [��]. KFOLD [��] also implements Gillespie’s al-

gorithm, but leverages memoization of transition rates to operate much more e�ciently than

Kinfold. Meanwhile Kinefold [��] uses stochastic simulations of the nucleation and disso-

ciation of helical regions to predict secondary structure and folding pathways. In contrast to
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the previously mentioned methods, both RNAKinetics [���] and Kinwalker [���] model co-

transcriptional folding, known to be necessary when simulating in vivo folding of long RNA

molecules [���]. As well, Kinefold can simulate both refolding and co-transcriptional folding

pathways. Finally, unlike all the previous simulation results, which depend on thermodynamic

free energy parameters [���], the program Oxfold [���] performs kinetic folding of RNA using

stochastic context-free grammars and evolutionary information.

In contrast to the previous methods, Hermes computes the mean �rst passage time (MFPT) and

equilibrium time for a coarse-grainedMarkov chain consisting of the ensemble of all secondary

structures having base pair distance x [resp. �] from reference structuresA [resp. B] of a given

RNA sequence. Mean �rst passage time (MFPT) is computed exactly by matrix inversion, and

equilibrium time is computed using spectral decomposition of the rate matrix for the coarse-

grained master equation.

�.� Traditional approaches for kinetics

To better understand the underlying algorithms behind the software, we describe two tradi-

tional approaches in kinetics, mean �rst passage time and equilibrium time.

�.�.� Mean �rst passage time

Consider a physical process, which when monitored over time, yields the stochastic sequence

q0,q1,q2, . . . of discrete, observed states. If the transition from state qt to qt+1 depends only

on qt at time t and not on the historical sequence of prior states visited, as often assumed in
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the case of protein or RNA folding, then a Markov chain provides a reasonable mathematical

model to simulate the process.

A �rst-order, time-homogeneous Markov chain M = (Q,� ,P) is given by a �nite set Q =

{1, . . . ,n} of states, an initial probability distribution � = (�1, . . . ,�n), and the n ⇥ n transi-

tion probability matrix P = (pi, j ). At time t = 0, the initial state of the system is qt = i with

probability �i , and at discrete time t = 1,2,3, . . . , the system makes a transition from state i to

state j with probability pi, j ; i.e. the conditional probability Pr [qt+1 = j |qt = i] = pi, j . De�ne

the population occupancy frequency of visiting state i at time t by pi (t) = Pr [qt = i]. Denote

p

(t )
i, j = Pr [qt = j |q0 = i] and notice that the (i,j)th entry of the t th power P t of matrix P equals

p

(t )
i, j .

Themean �rst passage time (MFPT) or hitting time for theMarkov chainM, starting from initial

state x0 and proceeding to the target state x1, is de�ned as the sum, taken over all paths � from

x0 to x1, of the path length length(�) times the probability of path �, where length(�0, . . . ,�n)

is de�ned to be n. In other words, MFPT =
P

� Pr [�] · length(�), where the sum is taken over

sequences � = �0, . . . ,�n of states where �0 = x0 and �n = x1, and no state is visited more

than once in the path �.

Given the target statex1, MFPT can be exactly determined by computing the inverse (I�P�x1)�1,

where I is the (n�1)⇥(n�1) identity matrix and P�x1 denotes the (n�1)⇥(n�1)matrix obtained

from the Markov chain transition probability matrix P , by deleting the row and column with

index x1. Letting e denote the (n � 1) ⇥ 1 column vector consisting entirely of �’s, it can be

shown that mean �rst passage time from state x0 to state x1 is the x0-th coordinate of column

vector (I � P�x1)�1 · e [���].
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The stationary probability distribution p

⇤ = (p⇤1, . . . ,p⇤n) is a row vector such that p⇤ · P = p

⇤;

i.e. p⇤j =
Pn

i p
⇤
i · pi, j , for all 1  j  n. It can be shown that the stationary probability p⇤i is the

limit, asm tends to in�nity, of the frequency of visiting state i in a random walk of lengthm

on Markov chain M. It is well-known that the stationary distribution exists and is unique for

any �nite aperiodic irreducible Markov chain [���].

TheMetropolisMonte Carlo algorithm [���] can be used to simulate a randomwalk from initial

state x0 to target state x1, when energies are associated with the states, as is the case in macro-

molecular folding, where free energies can be determined for protein and RNA conformations

frommean �eld theory, quantum theory, or experimental measurements. In such cases, amove

set de�nes the set Nx of conformations reachable in unit time from conformation x , and the

transition probability matrix P = (px,� ) is de�ned as follows:

px,� =

8>>>>><>>>>>:
1

|Nx | ·min
⇣
1, exp(�E(�)�E(x )

RT )
⌘

if � 2 Nx

1 �P
k 2Nx px,k if x = �

0 if � < Nx , and x , �

(�.�)

If p⇤x · px,� = p

⇤
� · p�,x holds for all distinct x ,� 2 Q , then detailed balance is said to hold,

or equivalently the Markov chain M is said to be reversible. If transitional probabilities are

de�ned as in equation (�.�), and if neighborhood size is constant (|Nx | = |N� | for all x ,�), then

it is well-known that the stationary probability distribution p⇤ = (p⇤1, . . . ,p⇤n) is the Boltzmann

distribution; i.e.

p

⇤
k =

exp(�E(k)/RT )
Z

(�.�)
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where E(k) is the energy of conformation k at temperatureT , R is the universal gas constant,T

is absolute temperature, and the partition function Z =
Pn

k=1 exp(�E(k)/RT ) is a normalization

constant [���, ���]. If neighborhood size is not constant, as in the case where states are RNA

secondary structures and transitions are restricted to the addition or removal of a single base

pair, then byHasting’s trick, an equivalent Markov chain can be de�ned which satis�es detailed

balance—see equation (�.��).

Following An�nsen’s experimental work on the denaturation and refolding of bovine pan-

creatic ribonuclease [���], the native conformation is assumed to be the ground state having

minimum free energy. These results justify the use of the Monte Carlo Algorithm �.� in macro-

molecular kinetics and structure prediction.

The mean �rst passage time from state x to state� can be approximated by repeated runs of the

Monte Carlo algorithm. In particular, Šali, Shakhnovich, and Karplus used such Monte Carlo

simulations to investigate the Levinthal paradox of how a protein can fold to its native state

within milliseconds to seconds. By repeated Monte Carlo simulations using a protein lattice

model, Šali et al. observed that a large energy di�erence between the ground state and the �rst

misfolded state appears to be correlated with fast folding.

�.�.� Equilibrium time

A continuous time Markov process M = (Q,� ,P(t)) is given by a �nite set Q = {1, . . . ,n} of

states, the initial probability distribution � , and the n ⇥ n matrix P(t) = (pi, j (t)) of probability

transition functions.
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Pseudocode for the Metropolis Monte Carlo algorithm

P������: Compute discrete time t to move from x0 to x1, with upper limit of Tmax
I����: Starting state x0, target state x1 and upper bound on time Tmax
O�����: Discrete time t taken to reach x1 from x0

� function M���������(x0, x1, Tmax)
� t  0
� x  x0

� while x , x1 AND t < Tmax do
� � 2 Nx

� if E(�) < E(x) then . Greedy move
� x  �

� else . Metropolis move
� z 2 (0,1)
�� if z < exp(�E(�)�E(x )

RT ) then
�� x  �

�� end if
�� end if
�� t  t + 1
�� end while
�� return t . Return discrete time t to travel from x0 to x1
�� end function

F����� �.�: The functionM��������� implements a discrete time simulation of folding
trajectories for a Markov chain.

Letting qt denote the state at (continuous) time t , the probability that the initial state q0 at time

0 is k is �k , while

pi, j (t) = Pr [qt = j |q0 = i]. (�.�)

The matrix P 0(t) of derivatives, de�ned by
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P

0(t) =
*.....,

dp1,1
dt (t) . . . dp1,n

dt (t)
...

. . .
...

dpn,1
dt (t) . . . dpn,n

dt (t)

+/////-
, (�.�)

can be shown to satisfy

P

0(t) = P(t) · R (�.�)

where R = (ri, j ) is an n ⇥ n rate matrix with the property that each diagonal entry is �1 times

the row sum

ri,i = �
X

j,i
ri, j . (�.�)

De�ne the population occupancy distribution p(t) = (p1(t), . . . ,pn(t)) by

pi (t) = Pr [q(t) = i] =
nX

k=1
�kpk,i (t) (�.�)

where q(t) denotes the state of the Markov process at (continuous) time t .

In the case of macromolecular folding, where Markov process states are molecular conforma-

tions and conformational energies are available, it is typical to de�ne the rate matrix R = (rx,� )

as follows:

rx,� =

8>>>>><>>>>>:
min

⇣
1, exp(�E(�)�E(x )

RT )
⌘

if � 2 Nx

�P
k 2Nx px,k if x = �

0 if � < Nx , and x , �

(�.�)
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The master equation is de�ned by the matrix di�erential equation

dp(t)
dt

= p(t) · R (�.�)

or equivalently, for all 1  x  n,

dpx (t)
dt

=

nX

�=1
(p� (t) · r�,x � px (t) · rx,� ) =

X

x,�
(p� (t) · r�,x � px (t) · rx,� ). (�.��)

As in the case of Markov chains, p⇤ = (p⇤1, . . . ,p⇤n) is de�ned to be the stationary distribution if

p

⇤ · P(t) = p⇤; i.e. p⇤k = Pr [q(0) = k] implies that Pr [q(t) = k] = p⇤k for all t 2 R and 1  k  n.

De�ne the equilibrium distribution p

⇤ = (p⇤1, . . . ,p⇤n) to be the unique solution for p(t), when

the master equation (�.��) is set to equal zero; i.e.

X

x,�
p

⇤
x · rx,� =

X

x,�
p

⇤
� · r�,x . (�.��)

If the equilibrium distribution exists, then necessarily it is equal to the stationary distribution.

A Markov process is said to satisfy detailed balance if p⇤x · rx,� = p

⇤
� · r�,x , for all 1  x ,�  n,

where the rate matrix R = (rx,� ).

The rate equation R for is usually de�ned as in (�.�) for Markov processes which model macro-

molecular folding, hence it is easy to see that such Markov processes satisfy detailed bal-

ance and moreover that the equilibrium distribution is the Boltzmann distribution; i.e. p⇤x =

exp(�E(x)/RT ) for all 1  x  n. Since detailed balance ensures that the eigenvalues of the

rate matrix R are real, one can solve the matrix di�erential equation (�.��) by diagonalizing the

rate matrix, and thus obtain the solution
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p(t) =
nX

k=1
ckvk e�k t (�.��)

where p(t) = (p1(t), . . . ,pn(t)), and the values ck are determined by the initial population oc-

cupancy distribution p(0) at time 0. Here vk denotes the kth eigenvector and �k the kth ei-

genvalue. In particular, ck =
�
p(0) ·T �1

�
k , where the jth row of T is the jth left eigenvector

of R, and p(0) is the population occupancy distribution at time t = 0. If the eigenvalues are

labeled in decreasing order, then �1 � �2 � · · · � �n , and the largest eigenvalue �1 = 0 has

eigenvector p⇤, corresponding to the equilibrium population occupancy distribution, which in

this case is the Boltzmann distribution. The remaining n�1 eigenvalues are negative, and their

corresponding eigenvectors correspond to nonequilibrium kinetic relaxation modes.

In our software Hermes, we prefer to work with column vectors and right eigenvectors due to

our usage of the GSL scienti�c computing library, and so the population occupancy frequency

p(t) is de�ned to be the column vector p(t) = (p1(t), . . . ,pn(t))T. Let P = (p1(0), . . . ,pn(0))T be

the column vector of initial population occupancy probabilities, t1, . . . ,tn be the right eigen-

vectors and �1, . . . ,�n be the corresponding right eigenvalues of the transpose RT of the rate

matrix. Letting T be the n ⇥ n matrix, whose columns are t1, . . . ,tn , using standard matrix

algebra [���], it can be shown that

p(t) =
nX

j=1
(T �1P(0))j tj e�j t . (�.��)

or for a single state i ,
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pi (t) =
nX

j=1

nX

k=1

⇣
Ti j T

�1
jk Pk (0)

⌘
j
e

�j t . (�.��)

If we assume that the initial population starts in a single state i 0, i.e. Pi0(0) = 1, equation �.��

can be simpli�ed to

pi (t) =
nX

j=1
Ti j T

�1
ji0 e

�j t . (�.��)

The equilibrium time can be directly computed by using a nonlinear solver to solve for t in

p

⇤ =
nX

j=1
(T �1P(0))j tj e�j t (�.��)

where p⇤ = (p⇤1, . . . ,p⇤n)T and p⇤k =
exp(�E(k )/RT )

Z . However, we have found it more expedient to

compute the equilibrium time as the smallest t0, such that for t 2 {t0 + 1,t0 + 2,t0 + 3,t0 + 4},

the absolute di�erence |p(t)[x1] � p(t0)[x1]| < � , for � = 10�4, where x1 is the target RNA

structure (usually taken to be the minimum free energy structure, though this is not necessary

for the software). We provide a more detailed explanation of the reasoning behind this decision

in Section �.�.�.�.

In [��] Gillespie described a very in�uential algorithm to simulate a �nite Markov process. The

pseudocode, is given in Algorithm �.�. Though Gillespie’s original applicationwas for chemical

kinetics, Flamm et al. adapted the method for the kinetics of RNA secondary structure folding,

as implemented in Kinfold [��, ��].
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Pseudocode for the Gillespie algorithm

P������: Compute continuous time t to move from x0 to x1, with a limit of Tmax
I����: Starting state x0, target state x1 and upper bound on time Tmax
O�����: Continuous time t taken to reach x1 from x0

� function G��������(x0, x1, Tmax)
� t  0
� x  x0

� while x , x1 AND t < Tmax do
� � 0 . � is the �ux out of x
� for � 2 Nx do

� rx,�  min
⇣
1, exp(�E(�)�E(x )

RT )
⌘

� � � + rx,�

� end for
�� for � 2 Nx do
�� rx,�  rx,�

�

�� end for
�� z1 2 (0,1)
�� t  t + (� 1

� ln(z1)) . Update t to re�ect time spent in state x
�� z2 2 (0,1)
�� s  0
�� for � 2 Nx do . Use roulette wheel to select new state for x
�� s  s + rx,�

�� if z2  s then
�� x  �

�� break
�� end if
�� end for
�� end while
�� return t . Return continuous time t to travel from x0 to x1
�� end function

F����� �.�: The function G�������� implements a continuous time simulation of fold-
ing trajectories for a Markov process.
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�.� Software within the Hermes suite

The Hermes software packagewas developed on theMacintoshOSX operating system (10.9.2–

10.11) and shouldworkwith anyUnix-like platform (Ubuntu, Debian, and CentOSwere tested).

Wemake the source code freely available under theMIT License in two locations. Our lab hosts

the latest stable version of the code at http://bioinformatics.bc.edu/clotelab/Hermes

and a fully version-controlled copy at https://github.com/evansenter/hermes. The data

and �gures presented in this article were generatedwith the source code hosted at the �rst URL,

and we make no guarantee as to the stability of development branches in our Git repository.

External dependencies for the software include a C [resp. C++] compiler supporting theGNU99

language speci�cation [resp. C++98], FFTW implementation of Fast Fourier Transform [���] (�

3.3.4) http://www.fftw.org/, Gnu Scienti�c Library GSL (� 1.15) http://www.gnu.org/

software/gsl/, Vienna RNA Package [��] (� 2.0.7) http://www.viennarna.at, and any

corresponding sub-packages included with the aforementioned software. For a more detailed

explanation of both external dependencies and installation instructions, refer to the ‘DOCS.pdf’

�le at the web site outlining the con�guration and compilation process for the Hermes suite.

Hermes is organized into three independent directories: �) FFTbor2D; �) RNAmfpt; and �) RNAeq

(see Figure �.�). These packages compile into both standalone executables and archive �les. The

archives provide an API which allow the development of novel applications using source from

across the Hermes package without having to copy-and-paste relevant functions. We provide

two such examples of this in the ext subdirectory: FFTmfpt and FFTeq. These applications

are simple C++ wrappers that use functions from FFTbor2D, RNAmfpt and RNAeq to replicate

a pipeline of executable calls without having to deal with intermediary data transformation,
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I/O between calls or slow-down due to a scripting language wrapper such as Python, Perl or

R. We believe the API that Hermes provides via its archives to be one of the exciting aspects of

this software for other developers—the C++ sourcecode comprising FFTmfpt is only 56 lines

of code (LOC) and FFTeq is only 58 LOC.

FFTeq
Population Proportion / Equilibrium Time 

from input RNA and Starting / Target 
Structures

Hermes
Collection of kinetics algorithms based on transition matrices derived from energy landscapes

Kinetics-Based ApproachThermodynamics-Based Approach

FFTbor2D
2D Energy Landscape from input RNA 

and Starting / Target Structures

RNAmfpt
Average Folding Time from A to B,  

from input Probability Matrix

FFTmfpt
Mean First Passage Time from input RNA 

and Starting / Target Structures

RNAeq
Population Proportion and Equilibrium 

Time from input Probability Matrix

F����� �.�: Overall organization of Hermes. FFTbor2D, RNAmfpt, and RNAeq are three
distinct software packages we have developed, which compile into both standalone
executables and archive �les, providing an API that allow novel applications devel-
opment using source from each of the packages, without having to copy-and-paste
relevant functions. The applications FFTmfpt and FFTeq are C++ wrappers that use
data structures and functions from FFTbor2D, RNAmfpt and RNAeq. FFTmfpt com-
putes the mean �rst passage time (MFPT) for an RNA secondary structure to fold from
an initial structure, such as the empty structure or a given metastable structure, into
a target structure, such as the minimum free energy (MFE) structure or possibly the
Rfam [��] consensus structure. FFTeq uses spectral decomposition to compute the
equilibrium time and the fraction of the population of RNA structures that are equal

to a given target structure, as a function of time.
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�.�.� Exact mean �rst passage time with RNAmfpt

RNAmfpt computes the mean �rst passage time (MFPT), sometimes referred to as the hitting

time of a Markov chain, by using matrix inversion [���]—see Section �.�.�. The program takes

as input a comma separated value (CSV) �le containing the non-zero positions and values of

a 2D probability grid; i.e. a CSV format �le having columns i, j, and p. The �rst two columns,

i and j correspond to the 0-indexed row-ordered position in the probability grid, and the �nal

column p is the stationary probability pi, j . From this input, the probability transition matrix

is constructed using equation (�.��) and the mean �rst passage time is computed by matrix

inversion.

Given RNA sequence s and secondary structure x , let N (x) denote the set of neighboring

secondary structures of s, whose base pair distance with x is one. De�ne the Markov chain

M(s) = (S,P), where S denotes the set of all secondary structures of s, p⇤(x) is the station-

ary probability of structure x , de�ned by p⇤(x) = exp(�E(x)/RT )/Z, Z = P
x exp(�E(x)/RT ),

and the transition probability matrix P = (px,� ) is de�ned either with or without the Hastings

modi�cation as follows.

With the Hastings modi�cation,

px,� =

8>>>>><>>>>>:
1

|N (x,�)| ·min
⇣
1, p

⇤(�)
p⇤(x ) ·

N (x )
N (�)

⌘
if � 2 N (x)

0 if x , �,� < N (x)
1 �P

k 2N (x ) px,k if x = �

(�.��)

Without the Hastings modi�cation,



Hermes: E�cient Kinetic Analysis of RNA Molecules ��

px,� =

8>>>>><>>>>>:
1

|N (x,�)| ·min
⇣
1, p

⇤(�)
p⇤(x )

⌘
if � 2 N (x)

0 if x , �,� < N (x)
1 �P

k 2N (x ) px,k if x = �

(�.��)

The exact value of mean �rst passage time (MFPT) can be computed as follows. Let x0 [resp.

x1] denote the empty structure [resp. MFE structure] for sequence s (here we have implicitly

identi�ed integer indices with secondary structures). Let HPx1 be the matrix obtained from P by

removal of the row and column with index x1, and I denote the (n�1)⇥ (n�1) identity matrix,

where n = |S| is the number of secondary structures of s. Let e denote the vector of size n � 1,

each of whose coordinates is 1. It is well-known [���] that for each k , x1, the kth coordinate

of the vector (I � H
Px1)�1 · e is exactly equal to the mean �rst passage time from the structure

with index k to the target structure x1. In particular, the MFPT from the empty structure to

the MFE structure is computable by applying matrix inversion using a computational library

such as the GSL.

Since this computation of the mean �rst passage time is mathematically exact, we consider

that MFPT to be the gold standard value for RNA folding kinetics.

Because this programwas designedwith the original intent of handling 2Dprobability grids, all

vertexes are uniquely identi�ed by index tuples (which conceptually correspond to positioning

in a 2D array). However, it is trivial to use this codewith both �D-probability grids such as those

produced by FFTbor [��] or arbitrary transitionmatrices without any change to the underlying

implementation. The software additionally provides many options for de�ning the format of

the input as well as the structure of the graph underlying the Markov chain.

Due to our interest in e�ciently estimating MFPT using coarse-grained 2D energy landscapes,

the default input for RNAmfpt (and RNAeq) is a 2D probability grid, as described above. We
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additionally allow as alternative input an energy landscape (whereby transition probabilities

are de�ned as in equation �.�). Some of the options to in�uence the underlying transition

matrix include the option to force a fully connected graph (useful in cases where there is no

non-zero path between the start / end state) or to enforce detailed balance. Finally, RNAmfpt

also accepts as input the probability transition matrix, a stochastic matrix with row sums equal

to �, and computes the mean �rst passage time for the corresponding Markov chain.

�.�.� Approximate mean �rst passage time with FFTmfpt

FFTmfpt approximates themean �rst passage time of a given RNA sequence folding from input

structure A to B, by computing exactly the mean �rst passage time from state (0,d0) to state

(d0,0) in the 2D probability grid obtained from running FFTbor2D. Here, d0 is the base pair

distance between structures A,B, and the MFPT is computed for the Markov chain, whose

states are the non-empty 2D probability grid points, and whose transition probabilities are

de�ned by p(x,�),(x 0,�0) =
P (x 0,�0)
P (x,�) .

More formally, given an RNA sequence s, starting structure A, and target structure B, we

proceed in the following fashion. Let dBP(A,B) denote the base pair distance between struc-

tures A,B. Then Zx,� =
P
S exp(�E(S)/RT ), where the sum is over structures S, such that

dBP(A,S) = x , and dBP(B,S) = �; as well the partition function Z =
P
S exp(�E(S)/RT ),

where the sum is over all secondary structures S of the sequence s.

Let d0 = dBP(A,B), the base pair distance between initial structure A and target structure B.

Let n denote the length of sequence s. De�ne the Markov chainM1(s) = (Q1,P1), where
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Q1 = {(x ,�) : 0  x ,�  n, (x + � mod 2) = (d0 mod 2),

(d0  x + �), (x  d0 + �), (�  d0 + x)}.
(�.��)

For reference, we say that the parity condition holds for (x ,�) if

(x + � mod 2) = (d0 mod 2). (�.��)

We say that the triangle inequality holds for (x ,�) if

(d0  x + �), (x  d0 + �), (�  d0 + x) (�.��)

Since we allow transitions between secondary structures that di�er by exactly one base pair,

Markov chain transitions are allowed to occur only between states (x ,�),(u,�) 2 Q1, such that

u = x ± 1, � = � ± 1. However, we have found that for some RNA sequences, there is no non-

zero probability path from (0,d0) to (d0,0) (corresponding to a folding pathway from structure

A to B). Since FFTbor2D computes probabilities p(x ,�) by polynomial interpolation using the

Fast Fourier Transform, any probability less than 10�8 is set to 0. Also with RNA2Dfold, it may

arise that there is no non-zero probability path from structure (0,d0) to (d0,0).

To address this situation, we proceed as follows. Let � = 10�8 and for all (x ,�) 2 Q1, modify

probabilities p(x ,�) by

p(x ,�) = p(x ,�) + �/|Q1|
1 + �

. (�.��)
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This operation corresponds to adding the negligeable value of � = 10�8 to the total probabil-

ity, thus ensuring that there are paths of non-zero probability between any two states. After

this �-modi�cation and renormalization, when using the Hastings modi�cation, the transition

probabilities P((u,�)|(x ,�)) are given by

P((u,�)|(x ,�)) =

8>>>>><>>>>>:
1

|N (x,�)| ·min
⇣
1, p(u,�)p(x,�) ·

N (x,�)
N (u,�)

⌘
if (u,�) 2 N (x ,�)

0 if (u,�) , (x ,�), (u,�) < N (x ,�)
1 �P

(k,`)2N (x,�) P((k,`)|(x ,�)) if (u,�) = (x ,�)

(�.��)

Here the set N (x ,�) of adjacent neighbors is de�ned by N (x ,�) = {(u,�) 2 Q1 : u = x ± 1,� =

� ± 1}, and the stationary probability p(x ,�) is obtained from FFTbor2D.

Without the Hastings modi�cation, the transition probabilities P((u,�)|(x ,�)) are instead given

by

P((u,�)|(x ,�)) =

8>>>>><>>>>>:
1

|N (x,�)| ·min
⇣
1, p(u,�)p(x,�)

⌘
if (u,�) 2 N (x ,�)

0 if (u,�) , (x ,�), (u,�) < N (x ,�)
1 �P

(k,`)2N (x,�) P((k,`)|(x ,�)) if (u,�) = (x ,�)

(�.��)

As we report in Section �.�.�, given an RNA sequence s, if A is the empty structure and B the

MFE structure of s, then FFTmfpt output is well correlated with the exact MFPT in folding

the empty structure to the MFE structure, where transitions between structures involve the

addition or removal of a single base pair.

�.�.� Exact equilibrium time with RNAeq

RNAeq computes the population proportion of a user-provided structure over arbitrary time

units. Like RNAmfpt, this program takes as input a comma separated value (CSV) �le containing
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the non-zero positions and values of a 2D probability grid. From this input a rate matrix is

constructed for the underlying Markov process. Alternatively, RNAeq can accept as input an

arbitrary rate matrix. Performing spectral decomposition of the column-ordered rate matrix

that underlies the corresponding Markov process, RNAeq computes either the equilibrium time

or population occupancy frequencies.

De�ne the continuous Markov processM = (S,R), where S is de�ned as in Section �.�.�, R is

the rate matrix de�ned by

kx,� =

8>>>>><>>>>>:
min

⇣
1, p

⇤(�)
p⇤(x )

⌘
if � 2 N (x)

0 if x , �,� < N (x)
�P

k 2N (x ) px,k if x = �

(�.��)

Clearly the rate matrix satis�es detailed balance; i.e. p⇤(x) · kx,� = p

⇤(�) · k�,x for all distinct

x ,� 2 S. In fact, the rate matrix for Markov processes is usually de�ned as above, precisely

to ensure detailed balance, which then implies that all eigenvalues of the rate matrix are real,

thus permitting explicit solution of the population occupancy frequency for all states. We

additionally considered a Hastings correction for the rate matrix, where kx,� = min(1, p
⇤(�)

p⇤(x ) ·

N (x )
N (�) ). The correlation in Table �.� for equilibrium time computed from thismodi�ed ratematrix

is somewhat better than without the Hastings correction. However, the Hastings correction is

never used for rate matrices, hence we only consider the usual de�nition of rate matrix given

in equation (�.��).

RNAeq can additionall call the Vienna RNA Package program RNAsubopt [���], with a user-

speci�ed upper bound to the energy di�erence with the minimum free energy. With this op-

tion, the rate matrix is constructed for theMarkov process, whose states consist of all the struc-

tures returned by RNAsubopt, and the equilibrium time or population occupancy frequencies
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are computed. Due to the time and memory required for this option, we do not expect it to be

used except for small sequences.

�.�.� Approximate equilibrium time with FFTeq

FFTeq allows an investigator to e�ciently estimate population kinetics for a sequence folding

between two arbitrary, but �xed, structures. The transition rate matrix underlying the Markov

process necessary for eigendecomposition is derived from the 2D energy landscape. Indices

(x ,�) in the ratematrix correspond to all strucutres having base pair distance x [resp. �] to input

structure A [resp. B], which makes the graph size more tractable than structural sampling

with RNAsubopt using RNAeq, even with constraints.

This method consists of computing the equilibrium time from the master equation for the

coarse-grain Markov processM = (Q1,R), where Q1 is de�ned in equation (�.��), and the rate

matrix R = (k((x ,�),(u,�))) is de�ned by

k((u,�),(x ,�)) =

8>>>>><>>>>>:
min

⇣
1, p(u,�)p(x,�)

⌘
if (u,�) 2 N (x ,�)

0 if (u,�) , (x ,�), (u,�) < N (x ,�)
�P

(k,`)2N (x,�) P((k,`)|(x ,�)) if (u,�) = (x ,�)

(�.��)

Equilibrium time is then computed for this Markov process using equation (�.��).

�.�.�.� Population occupancy curves with FFTeq

Population occupancy curves provide valuable visual insight into the folding kinetics of RNA

molecules. A computation for the probability distribution p(t) = (p1(t), . . . ,pn(t))T of all states

1  x  n at time t is described in equation (�.��). Rather than plot p(t) as a function of t , we
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�nd it more visually impactful to plot the log-logistic function p(log10(t)), yielding the curvess

seen in Figure �.�.
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F����� �.�: Population occupancy curves computed with FFTeq for the 56
nt conformational switch L. collosoma spliced leader RNA, with sequence
AACUAAAACAAUUUUUGAAGAACAGUUUCUGUACUUCAUUGGUAUGUAGA GACUUC. The dot
bracket format for the MFE structure, as computed by version 2.1.7 of RNAfold -d0,
is .......................((((((((((((.....)))))..))))))).. with free
energy �8.6 kcal/mol, while that of the the alternate suboptimal structure is
..((...((((((..(((((.((((...)))).)))))..))).)))..))..... with free en-
ergy �7.5 kcal/mol. In the case of the MFE structure, the equilibrium occupancy
P(t1), which Hermes approximates as 0.1789 should equal the Boltzmann probability
0.1791, since the MFE structure is the only structure at distance x0 [resp. �0] from
the reference structures A (empty structure) [resp. B (MFE structure)]. As well, if
there are few other low energy structures at the same base pair distance x1 [resp.
�1] from A [resp. B] as that of the alternate suboptimal structure, then we expect
that the occupancy probability 0.0300 for the (x1,�1) be approximately the Boltzmann

probability 0.0301 of the alternate structure.
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�.�.�.� Approximating equilibrium time from occupancy curves

The computation of an equilibrium time value from the eigendecomposition of the rate matrix

is a rather thorny issue. While in principle a nonlinear solver can be used to compute the equi-

librium time t (from equation �.��), in practice due to what we believe to be numeric instability

issues the approach was intractable. For this reason, we estimate the equilibrium time from

the population occupancy curve, an approach also taken by treekin [��]. Our �rst approxi-

mation of equilibrium time involved using a sliding window approach, where we compute the

smallest t0, such that for t 2 {t0 + t�,t0 + 2t�,t0 + 3t�, . . . ,t0 + (w � 1) · t�}, the absolute di�er-

ence |p(t)[x1] � p(t0)[x1]| < � , for � = 10�4 and step size t� across a window of length w . In

systems where there are local energy minima, this approach has the drawback of prematurely

indicating equilibrium, as seen in Figure �.�. To address this concern, we introduce the concept

of � ,� equilibrium.

Given a starting state i 0, target state i , and user de�nable parametersw = 5, t� = 10�3,� = 10�3

and � = 10�4, we compute the estimated equilirium using the following algorithm.
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Pseudocode for estimating equilibrium time

P������: Estimate time log10(t) at which state x0 appears within � of equilibrium
I����: States x0, x1; Tmin, Tmax;w = 5, t� = 10�3,� = 10�3, � = 10�4

O�����: Time log10(t) at which px1(10t ) varies by no more than � within a
window of sizew , having step size t�

� function E�������E���������(x0, x1, Tmin, Tmax, t�, � , � ,w)
� t  S���B����(x1,Tmin,Tmax, t�,� , s)
� if W�����E�(x1, t , t�,w, �) then
� while t > Tmin AND W�����E�(x1, t , t�,w, �) do
� t  t � t�
� end while
� end if
� while t < Tmax AND NOTW�����E�(x1, t , t�,w, �) do
� t  t + t�

�� end while
�� if t = Tmin then . x doesn’t leave equilibrium after Tmin

�� return �1
�� else if t = Tmax then . x doesn’t reach equilibrium before Tmax

�� return1
�� else
�� return t

�� end if
�� end function
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�� function S���B����(i , Tmin, Tmax, t�, � , s)
�� i1  pi (10Tmax) . From equation (�.��)
�� t  Tmin +

Tmax�Tmin
2

�� t

0  Tmax

�� while |t � t 0| > t� do . Binary search for time t within � of Tmax

�� ttemp  t

�� if |pi (10t ) � pi (10t
0)| > � then

�� t  t + s ⇤ |t�t 0|
2 . s is 1 [resp. �1] for the right [resp. left] bound

�� else
�� t  t � s ⇤ |t�t 0|

2

�� end if
�� t

0  ttemp

�� end while
�� return t

�� end function
�� function W�����E�(x , t , t�,w , �) . Is x within � over [t , t + (w � 1) · t�]
�� for i  1,w � 1 do
�� if |px (10t+i ·t�) � px (10t )| > � then
�� return false
�� end if
�� end for
�� return true
�� end function

F����� �.�: The function E�������E��������� computes the smallest t0 > t

0, such
that for t 2 {t0+t�,t0+2t�,t0+3t�, . . . ,t0+(w�1)·t�}, the absolute di�erence |p(t)[x1]�
p(t0)[x1]| < � and |p(t 0)[x1]�p(Tmax)[x1]| ⇡ � |. If t 0 is already in equilibrium, we relax
the constraint that t0 > t

0 and instead �nd the �rst t0 < t

0 that satis�es the equilibrium
requirements within the windoww . S���B���� is a helper function that uses binary
search to �nd the starting time t 0 from which the window starts. W�����E� returns
a boolean value if the state of interest x varies by no more than � across the window

w starting at time t .

In using the approach outlined in Figure �.�, the root-mean-square deviation (RMSD) between

px1(t0) and
exp(�E(x1)/RT )

Z is 0.0041, where RMSD is de�ned as
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rPn
i=1(Dxi � xi )2

n

. (�.��)

Visual inspection of the estimated equilibrium times (Figure �.�) are much better than the naïve

approach used by treekin, which uses a simple sliding window for all x 2 Q . We also allow

de�ning the equilibrium time to be the smallest t0, such that for t 2 {t0 + t�,t0 + 2t�,t0 +

3t�, . . . ,t0 + (w � 1) · t�}, the absolute di�erence |p(t)[x] � p(t0)[x]| < � for all x 2 Q using

Algorithm �.�; however, results suggest that this de�nition is inferior to the consideration of a

single single target state i , perhaps due to numerical instability issues when Q is taken to be

the set of all secondary structures for sequences in the benchmarking set described later.
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F����� �.�: Example of the di�erences in using the simple sliding window approach
(green) versus the approach outlined in Algorithm �.� (blue). There are two repre-
sentative sequences shown from the benchmarking dataset described in Section �.�,
sequence #146 (Left) and #427 (Right). Note that the p(t) for the approach from Al-
gorithm �.� is much closer to the computed Boltzmann probability—the root-mean-
square deviation (RMSD, equation �.��) across the dataset of 1,000 sequences is 0.0041
[resp. 0.0491] for the approach described in Algorithm �.� [resp. simple sliding win-

dow].
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�.� Benchmarking data for computational comparison

In this section, we describe a benchmarking set of 1,000 small RNAs used to benchmark the pre-

viously described kinetics methods in a comparative study. To ensure that mean �rst passage

time can be computed from (I � P�x1)�1 · e by using matrix inversion, that spectral decompo-

sition of the rate matrix is possible, and to ensure that Kinfold simulations would provide

su�cient statistics, we generated a collection of 1,000 random RNA sequences of length 20 nt,

each having expected compositional frequency of 1/4 for A,C,G,U, and each having at most

2,500 distinct secondary structures, such that the minimum free energy is less than or equal to

�5.5 kcal/mol.

For example, one of the 1,000 sequences is ACGCGACGUGCACCGCACGU with minimum free en-

ergy structure .....((((((...)))))) having free energy of �6.4 kcal/mol. Statistics for the

free energies of the 2,453 secondary structures of this 20-mer are the following: mean is 10.695,

standary deviation is 4.804, maximum is 25.00, minimum is �6.40. A histogram for the free

energy of all secondary structures of ACGCGACGUGCACCGCACGU is depicted in the left panel of

Figure �.�. The right panel of the same �gure depicts the minimum free energy structure of

the 54 nt hammerhead type III ribozyme from Peach Latent Mosaic Viroid (PLMVd), discussed

later. This secondary structure is identical to the consensus structure from Rfam 11.0 [��].

Figure �.� displays the mean and standard deviation for Kinfold simulations of folding time

for each of the 1,000 RNA sequences from our benchmarking data. For each sequence, the

mean and standard deviation of the time required to fold the empty structure to the MFE

structure were computed from 10,000 Kinfold runs, each run with an upper bound of 108

Monte Carlo steps, thus ensuring that all simulations converged. The sequences were then
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F����� �.�: (Left) Histogram of free energies of secondary structures of
ACGCGACGUGCACCGCACGU, which range from �6.5 to +25 kcal/mol, with mean of
10.7 kcal/mol. (Right) Minimum free energy structure of the 54 nt Peach Latent Mo-
saic Viroid (PLMVd) AJ005312.1 282–335, which is identical to the consensus structure
from Rfam 11.0 [��]. RNAfold from Vienna RNA Package 2.1.7 with energy parame-
ters from the Turner 1999model were used, since the minimum free energy structure
determined by the more recent Turner 2004 energy parameters does not agree with
the Rfam consensus structure—see [��]. Positional entropy, a measure of divergence
in the base pairing status at each positions for the low energy ensemble of structures,

is indicated by color, using the RNA Vienna Package utility script relplot.pl.

sorted by increasing folding time mean. Standard deviation exceeded the mean in 83.9% of

the 1,000 cases, indicating the enormous variation between separate Kinfold runs, even for

20 nt RNA sequences having at most 2,500 secondary structures. Elementary considerations

from statistics indicate that for our benchmarking set of 20-mers, the minimum sample size

n =
�z� /2 ·�

E
�2 ranges from 937,712 to 23,289,310 to have a con�dence level of 95% that the aver-

age of n Kinfold runs di�ers from the real folding time by at most 100 steps. In our opinion,

Kinfold is an expertly crafted implementation of Gillespie’s algorithm for an event driven

Monte Carlo simulation of one-step RNA secondary structure folding. From the standpoint

of biophysics and physical chemistry, there is no more reliable simulation method, except of

course the exact computation of mean �rst passage time using linear algebra. Nevertheless,
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the enormous time required for reliable Kinfold estimations and the large standard deviations

observed point out the need for a faster method to approximate folding time.

With this in mind, it is natural to turn to coarse-grained models, as done by Wol�nger et al.

[��] and by Tang et al. [���]. The software of Tang et al. appears not to be available. Concern-

ing the method of Wol�nger et al. (called BarriersEq in our benchmarking), there is now a

web server available, which runs RNAsubopt [���] to generate all secondary structures within

a user-speci�ed energy range, then runs barriers [��] to generate basins of attraction around

a user-speci�ed number of locally optimal structures, and then runs treekin on the output of

barriers. The program treekin performs some of the same operations as Hermes, by com-

puting population occupation frequencies by spectral decomposition. Nevertheless it would

require a user to write scripts and perform several manual steps, in order to determine the

equilibrium time for an input RNA sequence, with respect to the macrostate Markov process

of [��]. In addition, because barriers computes basins of attraction by utilizing the output of

RNAsubopt, estimating kinetics for the refolding of an RNAmolecule from the empty structure

requires exhaustive enumeration of all suboptimal structures having non-positive free energy.

�.�.� Pearson correlation coe�cients for various kinetics packages

In this section, we display the correlation between �) the gold standard method RNAmfpt,

both with and without the Hastings modi�cation using equations (�.��) and (�.��); �) the plat-

inum standard method RNAeq, using equation (�.��); �) the silver standard method Kinfold;

�) FFTmfpt with and without the Hastings modi�cation using equations (�.��) and (�.��);

�) FFTeq which computes equilibrium time for the 2D grid using equation (�.��); and �nally

�) RNA2Dfold with and without the Hastings modi�cation using equations (�.��) and (�.��).
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F����� �.�: (Left) Histogram of Kinfold folding times for 20-mer
CCGAUUGGCGAAAGGCCACC. The mean [resp. standard deviation] of 10,000 runs
of Kinfold for this 20-mer is 538.37 [resp. 755.65]. Note the close �t to the
exponential distribution, (Right) Mean minus standard deviation (µ � � ), mean (µ),
and mean plus standard deviation (µ + � ) of the logarithm of Kinfold folding times,
taken over 10,000 runs for each of the 1,000 sequences from the benchmarking set of
20-mers. For graphical illustration, we have sorted the log folding times in increasing

order.

Correlations with [resp. without] the Hastings modi�cation are summarized in the lower [resp.

upper] triangular portion of Table �.�. It is clear that correlations between the mathemati-

cally exact methods RNAmfpt, RNAeq, and approximation methods Kinfold, FFTmfpt, FFTeq,

RNA2Dfold are improved when using the Hastings correction.

Figures �.�, �.��, �.�� depict scatterplots for kinetics obtained by some of the algorithms above.

The left panel of Figure �.� shows a scatter plots for gold standard RNAmfpt versus platinum

standard RNAeq, with correlation value 0.5652. The right panel of the same �gure shows a

scatter plot for Kinfold versus RNAeq, with correlation 0.7814. Note the persence of two clus-

ters in this and some of the other scatter plots. Cluster A consists of RNA sequences whose

folding time, as determined by RNAmfpt or RNAeq, is rapid—speci�cally, the natural logarithm

of the MFPT is at most 7.5. Cluster B consists of the remaining RNA sequences, whose fold-

ing time is longer than that of cluster A. There are no signi�cant di�erences between RNA
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sequences in clusters A and B with respect to GC-content, sequence logo, minimum free en-

ergy, number of secondary structures, etc. The left panel of Figure �.�� shows the scatter plot

for RNAmfpt versus Kinfold, with correlation 0.7933, and the right panel shows the scatter

plot for RNAmfpt versus FFTmfpt, with correlation 0.6035. Figure �.�� shows scatter plots for

FFTmfpt versus Kinfold(Left) and for FFTmfpt versus FFTeq(Right), with respective correla-

tion values 0.7608 and 0.9589. Kinfold obviously provides a better correlation with the exact

value of mean �rst passage time; however, since the standard deviation of Kinfold runs is as

large as the mean, accurate kinetics estimates from Kinfold require prohibitively large com-

putational time—indeed, in [��] reliable kinetics for phe-tRNA from yeast were obtained by

9,000 Kinfold simulations, each for 108 steps, requiring 3 months of CPU time on an Intel

Pentium 4 running at 2.4 GHz under Linux. Although the correlation value of 0.6035 between

RNAmfpt and FFTmfpt is much less than that obtained by Kinfold, the runtime required by

our method FFTmfpt is measured in seconds, even for moderate to large RNAs. For this rea-

son, we advocate the use of FFTmfpt in synthetic biology screens to design RNA sequences

having certain desired kinetic properties. Once promising candidates are found, it is possible

to devote additional computational time to Kinfold simulations for more accurate kinetics.
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F����� �.�: Scatter plots of the natural logarithm of times from RNAmfpt versus RNAeq
(Left) and for Kinfold versus RNAeq (Right).
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F����� �.��: Scatter plots of the natural logarithm of times from RNAmfpt versus
Kinfold (Left) and for RNAmfpt versus FFTmfpt (Right).
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F����� �.��: Scatter plots of the natural logarithm of times from Kinfold versus
FFTmfpt (Left) and for FFTmfpt versus FFTeq (Right).
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Chapter �

Discussion

Over the course of this thesis, we have described a collection of tools aimed at facilitating the

computational analysis of RNA. The work in Chapter � aims to address the open problem of

determining full riboswitch sequences, along with their ‘on’ and ‘o�’ conformational states in

an e�cient and generalized manner. Riboswitches are an imporant regulatory motif that can

in�uence transcription by the introduction of an intrinsic terminator, an extended stem-loop

followed by a series of uracil residues which cause RNA polymerase to prematurely terminate

transcription [���, ���]. Alternately, riboswitches can regulate translation, generally by seques-

tration of the ribosome binding site in response to the presence or absence of a corresponding

ligand [���]. This degree of control makes riboswitches well suited for the regulation of meta-

bolic pathways, and are generally found within bacterial genomes. While the aptamer portion

of the riboswitch necessarily exhibits high sequence and structural conservation—necessary to

retain a high binding a�nity for the corresponding ligand—the downstream expression plat-

form is much more variable, and di�cult to detect using covariance models such as Infernal

[��]. For this reason, databases such as Rfam [���] only contain alignments for the conserved

���
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aptamer domain; rarely enough to understand the structural characteristics of the riboswitch

‘states’ in the greater context of the mRNA. Ribofinder aims to provide a holistic description

of riboswitches by coupling powerful aptamer-detection tools (such as Infernal) with soft-

ware designed to detect intrinsic terminators (such as TransTermHP), and use experimentally-

derived structural information from the literature in conjunction with constrained folding

methods to predict full gene ‘on’ and ‘o�’ conformations in a general manner.

The remainder of the thesis follows a natural progression. In Chapter � we present the al-

gorithm FFTbor, an e�cient approach to compute the parameterized Boltzmann probabilities

pk =
Zk
Z of those sequences having base pair distance k from an arbitrary input structure S⇤.

By using the Fast Fourier Transform along with complex nth roots of unity, FFTbor operates

in O(n4) speed, an order of magnitude faster than its predecessor. This approach of applying

the Fast Fourier Transform to compute parameterized partition functions was put to use in

[���] as well, where we develop programs FFThairpin [resp. FFTmultiloop] to describe the

probability distribution of structures having exactly k hairpins [resp. multiloops]. Though not

discussed here, by training a support vector machine (SVM) on the probability distributions

output by these programswewere able to classify Rfam families using �ve-fold cross validation

with excellent ‘area under curve’ (AUC) values.

Chapter � uses the Fast Fourier Transform to compute the 2D probability distribution, where

given two compatible input secondary structures A and B, position (x ,�) on the discrete en-

ergy landscape corresponds to the Boltzmann probability for those structures S which have

base pair distancex [resp. �] fromA [resp. B]. Compared against its closest relative RNA2Dfold,

FFTbor2D is two orders of magnitude faster, operating in O(n5) speed and only O(n2) space.
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This opens the door for using FFTbor2D in a high-throughput fashion, where the probability

landscapes can be used as a starting point for kinetic analysis.

With Hermes in Chapter �, we do just that; representing the output of FFTbor2D as a graph,

we can create a corresponding Markov chain [resp. Markov process] to estimate mean �rst

passage time [resp. equilibrium time] with correlation to the mathematically-exact values as

shown in Table �.�. The speed of these approximate tools within Hermes—namely FFTmfpt

and FFTeq—present what we believe to be the �rst suite of kinetic analysis tools for RNA

sequences that are suitable for high throughput usage, something we believe to be of interest

in the �eld of synthetic design.

Finally, though not discussed in the body of this thesis, we have also developed a collection

of packages for working with command-line tools for computational RNA analysis in a more

streamlined fashion. Two of these programs, wrnap and rbfam are among the �rst of their type

for the Ruby programming langage, a popular interpreted language that enjoys wide adoption

in the web development community. In an era of increasingly cloud-focused software, we

believe that researchers will need a robust set of tools for working with their data in a web-

oriented environment, something wrnap and rbfam aim to provide.



Appendix A

FFTbor Appendix

A.� Full recursions forZ
i,j(x) for the Turner energy model

To computeZ(x) = Z1,n(x) given input structure S, we use the recursions

Zi, j (x) = Zi, j�1(x) · xd0 +
X

(sk ,sj )2B,
ik<j

⇣
Zi,k�1(x) · ZBk, j (x) · e

�Ed
RT · xd1

⌘
, (A.�)

where d0 = 1 if j is base paired in S[i, j] and 0 otherwise, d1 = dBP(S[i, j],S[i,k�1] [ S[k, j]), and

Ed is the energy contribution due to dangling ends (energy contributions from single bases

stacking on adjacent base pairs) and closing AU base pairs (since a non GC base pair closing a

stem has a destabilizing e�ect). The sum is taken over all possible base pairs (k,j)with i  k < j.

We computeZB(x) using the recursion

���
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ZBi, j (x) = e

�EH (i, j )
RT · xd2

+
X

(sk ,sl )2B,
i<k<l<j

ZBk,l (x) · e
�EI (i, j,k,l )

RT · xd3

+
X

(sk ,sl )2B,
i<k<l<j

⇣
ZMi+1,k�1(x) · ZBk,l (x) · e

�(a+b+c (j�l�1))
RT · xd4

⌘

(A.�)

where d2 = dBP(S[i, j], {(i,j)}), EH (i,j) is the energy of the hairpin loop with closing base pair

(i,j), EI (i,j,k,l) is the energy of the stack, bulge or interior loop with the closing base pair (i,j)

and the interior base pair (k,l), d3 = dBP(S[i, j],S[k,l ] [ {(i,j)}), and d4 = dBP(S[i, j],S[i+1,k�1] [

S[k,l ] [ {(i,j)}). The �rst term in the recursion takes care of the case where (i,j) is the only

base pair in [i,j], i.e. (i,j) closes a hairpin loop. The second term handles the case where there

is an interior loop (or a bulge or a stack) closed by (i,j) and (k,l). The third term takes care

of all the structures where (i,j) closes a multiloop. To reduce complexity of the algorithm, the

interior and bulge loop size can be limited to a maximum size of L (taken by default to be 30),

by requiring that l > j � L in the above recursion.

The �nal recursion, for computingZM (x), is

ZMi, j (x) = ZMi, j�1(x) · e
�c
RT · xd0

+
X

(sk ,sj )2B,
ik<j

⇣
ZBk, j (x) · e

�(b+c (k�i ))
RT · xd5

+ZMi,k�1(x) · ZBk, j (x) · e
�b
RT · xd6

⌘

(A.�)

where d5 = dBP(S[i, j],S[k, j]) and d6 = dBP(S[i, j],S[i,k�1] [ S[k, j]). Note that since ZMi, j (x)

computes the partition function contribution under the assumption that [i,j] is part of a mul-

tiloop, there will be exactly one stem-loop structure in this region (the ZB(x) term) or more
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than one (the ZM (x)–ZB(x) term). Justi�cation of recursions (A.�), (A.�), and (A.�) follow

by induction, as in the proof of Theorem �.�.
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FFTbor�D Appendix

B.� Full recursions forZ
i,j(x) for the Turner energy model

To computeZ(x) = Z1,n(x) given input structures A,B, we use the recursions

Zi, j (x) = Zi, j�1(x) · x�0n+�0 +
X

(sk ,sj )2B,
ik<j

⇣
Zi,k�1(x) · ZBk, j (x) · e

�Ed
RT · x�1n+�1

⌘
, (B.�)

where �0 = 1 if j is base paired inA[i, j] and 0 otherwise, �0 = 1 if j is base paired in B[i, j] and

0 otherwise, �1 = dBP(A[i, j],A[i,k�1] [A[k, j]), �1 = dBP(B[i, j],B[i,k�1] [ B[k, j]), and Ed is the

energy contribution due to dangling ends (energy contributions from single bases stacking on

adjacent base pairs) and closing AU base pairs (since a non GC base pair closing a stem has a

destabilizing e�ect). The sum is taken over all possible base pairs (k,j) with i  k < j.

We computeZB(x) using the recursion

���
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ZBi, j (x) = e

�EH (i, j )
RT · x�2n+�2

+
X

(sk ,sl )2B,
i<k<l<j

ZBk,l (x) · e
�EI (i, j,k,l )

RT · x�3n+�3

+
X

(sk ,sl )2B,
i<k<l<j

⇣
ZMi+1,k�1(x) · ZBk,l (x) · e

�(a+b+c (j�l�1))
RT · x�4n+�4

⌘

(B.�)

whereEH (i,j) is the energy of the hairpin loopwith closing base pair (i,j), �2 = dBP(A[i, j], {(i,j)}),

�2 = dBP(B[i, j], {(i,j)}), EI (i,j,k,l) is the energy of the stack, bulge or interior loop with the

closing base pair (i,j) and the interior base pair (k,l), �3 = dBP(A[i, j],A[k,l ] [ {(i,j)}), �3 =

dBP(B[i, j],B[k,l ][{(i,j)}), �4 = dBP(A[i, j],A[i+1,k�1][A[k,l ][{(i,j)}), and �4 = dBP(B[i, j],B[i+1,k�1][

B[k,l ] [ {(i,j)}). The �rst term in the recursion takes care of the case where (i,j) is the only

base pair in [i,j], i.e. (i,j) closes a hairpin loop. The second term handles the case where there

is an interior loop (or a bulge or a stack) closed by (i,j) and (k,l). The third term takes care

of all the structures where (i,j) closes a multiloop. To reduce complexity of the algorithm, the

interior and bulge loop size can be limited to a maximum size of L (taken by default to be 30),

by requiring that l > j � L in the above recursion.

The �nal recursion, for computingZM (x), is

ZMi, j (x) = ZMi, j�1(x) · e
�c
RT · x�0n+�0

+
X

(sk ,sj )2B,
ik<j

⇣
ZBk, j (x) · e

�(b+c (k�i ))
RT · x�5n+�5

+ZMi,k�1(x) · ZBk, j (x) · e
�b
RT · x�6n+�6

⌘

(B.�)

where �5 = dBP(A[i, j],A[k, j]), �5 = dBP(B[i, j],B[k, j]), �6 = dBP(A[i, j],A[i,k�1] [ A[k, j]), and

�6 = dBP(B[i, j],B[i,k�1] [ B[k, j]). Note that since ZMi, j (x) computes the partition function
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contribution under the assumption that [i,j] is part of a multiloop, there will be exactly one

stem-loop structure in this region (the ZB(x) term) or more than one (the ZM (x)–ZB(x)

term). Justi�cation of recursions (B.�), (B.�), and (B.�) follow by induction, as in the proof of

Theorem �.�.

B.� Proof for Theorem �.�

Proof. Recall that if F is an arbitrary polynomial [resp. analytic] function, then [xrn+s ]F (x)

denotes the coe�cient of monomial xrn+s in the Taylor expansion of F (x). For instance, in

equation (�.��), [xrn+s ]p(x) = prn+s , and in equation (�.�), [xrn+s ]Z(x) = zrn+s .

By de�nition, it is clear that Zi, j (x) = 1 if i  j  i + � , where we recall that � = 3 is the

minimum number of unpaired bases in a hairpin loop. For j > i + � , we have
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[xrn+s ]Zi, j (x) = zrn+s (i,j) = Zrn+si, j

= Z(r��0)n+(s��0)
i, j�1

+

j�1X

k=i

X

u0+u1=r�� (k )

X

�0+�1=s�� (k )

✓
e

�E0(k, j )
RT · Zu0n+�0

i,k�1 · Z
u1n+�1
k+1, j�1

◆

= [x (r��0)n+(s��0)]Zi, j�1(x)

+

j�1X

k=i

X

u0+u1=r�� (k )

X

�0+�1=s�� (k )

✓
e

�E0(k, j )
RT

·
�
[xu0n+�0]Zi,k�1(x)

�
·
�
[xu1n+�1]Zk+1, j�1(x)

� ◆
= [x (r��0)n+(s��0)]Zi, j�1(x)

+

j�1X

k=i

X

u0+u1=r�� (k )

X

�0+�1=s�� (k )

✓
e

�E0(k, j )
RT

·[x (u0+u1)n+(�0+�1)]
�
Zi,k�1(x) · Zk+1, j�1(x)

� ◆
= [x (r��0)n+(s��0)]Zi, j�1(x)

+

j�1X

k=i

✓
e

�E0(k, j )
RT · [x (r�� (k ))n+(s�� (k ))]

�
Zi,k�1(x) · Zk+1, j�1(x)

�◆
= [xrn+s ]

⇣
Zi, j�1(x) · x�0n+�0

⌘

+

j�1X

k=i

✓
e

�E0(k, j )
RT · [xrn+s ]

⇣
Zi,k�1(x) · Zk+1, j�1(x) · x� (k )n+� (k )

⌘◆

= [xrn+s ] *,Zi, j�1(x) · x�0n+�0

+

j�1X

k=i

✓
e

�E0(k, j )
RT · Zi,k�1(x) · Zk+1, j�1(x) · x� (k )n+� (k )

◆+-

(B.�)

⇤
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B.� Proof for Lemma �.�

Proof. The lemma states that if the base pair distance d0 between reference structures A,B is

even, then Z(��) = Z(�), while if the distance is odd, then Z(��) = �Z(�). Suppose �rst

that d0 is even. By Lemma �.�,Z(x) = z0+z2x
2+z4x

4+ · · ·+zM�2xM�2), and soZ(��) = Z(�).

Suppose now that d0 is odd. By Lemma �.�, Z (x) = z1x
1 + z3x

3 + z5x5 · · · + zM�1xM�1, and so

Z(��) = �Z(�). ⇤

B.� Proof for Lemma �.�

Proof. Recall Euler’s formula in complex analysis: exp(ix) = cos(x) + i sin(x). As well, recall

that sin(� ) = 0, cos(� ) = �1, and the trigonometric addition formulas:

cos(� � �) = cos(�) cos(�) + sin(�) sin(�)

sin(� � �) = sin(�) cos(�) � sin(�) cos(�).
(B.�)

Then we have
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�M0�k = exp
 
2�i(M0 � k)

M

!

= cos
 
2� (M0 � k)

M

!
+ i sin

 
2� (M0 � k)

M

!

= cos
 
� � 2�k

M

!
+ i sin

 
� � 2�k

M

!

=

"
cos(� ) cos

 
2�k
M

!
+ sin(� ) sin

 
2�k
M

!#
+ i

"
sin(� ) cos

 
2�k
M

!
� sin

 
2�k
M

!
cos(� )

#
= � cos

 
2�k
M

!
+ i sin

 
2�k
M

!

= �1
"
cos

 
2�k
M

!
� i sin

 
2�k
M

!#
= �1 · cos

 
2�k
M

!
+ i sin

 
2�k
M

!

= �1 · exp
 
2�ik
M

!
= ��k .

(B.�)

It follows that �M0�k = ��k , so �k = �� (M0�k ) = �� (M0�k ).

This completes the proof of the lemma. ⇤
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