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Abstract 
 
 
 
In my work presented in this dissertation, I have focused on simulation studies of light 

interaction with nanostructures made of metals and dielectrics. Of particular interest have 

been plasmonic effects. The structures included the wire and coaxial nanowaveguides, as 

well as periodic arrays of planar quasi-triangles, and periodic arrays of nanoholes in thin 

metallic films. In the nanowaveguides I focused on plasmon polariton modes which 

resemble the TEM modes propagating in the corresponding conventional radio 

transmission lines. This collaborative research, involving an experimental effort, showed 

how the nanoscopic plasmon polariton modes reduce in the retarded limit to the TEM 

modes, and in the non-retarded limit to the corresponding surface plasmon modes. My 

simulations explained details of recent experimental results involving plasmonic 

waveguiding in metallic nanowires. Similar results have been obtained for nanocoaxial 

waveguides. My simulations of the optical absorption in the arrays of nano 

quasi-triangles, recently observed experimentally, helped identify those as due to Mie 

plasmonic resonances in these nanoparticles. They also explained the peak shifts in terms 

of the 2D surface plasmon dispersion, and the plasmon momentum quantization. In the 

study of the arrays evolution from holes to quasi-triangles, my simulations provided the 

clue to the critical behavior of the peak position for structures approaching the 

percolation threshold (the transitional structure in the series, for which film resistance 

diverges), and allowed to identify the series of structures as an analog of the percolation 

threshold problem. Finally, I have simulated optical performance of nanorod arrays (or 

multi-core nanocoax), which have been employed as platform for novel solar cells. My 

simulations have been employed to predict and optimize these cells. My work resulted in 

5 publications and 2 manuscripts in preparation. 
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Chapter 1  

Introduction 

 

Plasmonics, a field emerged several decades ago, studies the interactions between 

electromagnetic waves, essentially light, and nanostructures consisting of metal and 

dielectrics.  Because the charge carriers (often times free electrons) in metal form a 

plasma, these interactions can be viewed through the plasma dynamics (plasma waves 

and their resonances).  Plasma frequency is the most important parameter for any plasma. 

The details of plasma frequency will be examined later, but its general physics 

significance can be described as: below plasma frequency, light reflects or scatters from 

the plasma; and above plasma frequency, light propagates through [Howard, 1992; 

Swanson, 2003].   
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The optical effects of nanostructures are tightly associated with surface plasma waves, 

which are electromagnetic waves at the interfaces of plasmas (free electron in metal).  

My PhD dissertation research is in the field of Plasmonics, and I focus on two kinds of 

nanostructures: nanowaveguides & the developed structures, and nanoparticle arrays & 

the developed structures.  The dissertation is organized as follows.   

 

In Chapter 1, a general introduction to plasmonics is given, including a brief history of 

the field, major achievements made and the challenges that still exist.  The theoretical 

background of bulk plasmons and surface plasmons will then be given.  Chapter 2 

presents the two main methods used in my research which involve solving Maxwell’s 

equations: the analytical method and the simulation method.  The information about the 

material dispersion model and the actual parameters used in simulations is also 

introduced.  In Chapter 3, the plasmonics of nanowires is investigated and its use in the 

fabrication of nanophotonic devices is presented. Chapter 4 studies nanocoaxial 

waveguide using both the analytical and the simulation method.  The dissertation then 

moves on to a different nanostructure based on thin films.  Chapter 5 studies the 

plasmonics of thin-film quasi-triangular nanoparticles and Chapter 6 studies the optical 

response of the nanostructure when it evolves from a nanohole array to a nanoquasi-

triangular particle array.  Chapter 7 presents the simulation results of the interaction of 

light with an array of nanopillars, including the propagation and absorbance of the light.  

Here also a proposal is made of the possible application in solar cell designs.  Finally, a 

summary of the whole dissertation is given in Chapter 8.   
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1.1 Past, present and future  

 

Long before investigations were made of the underlying physics of the optical effects of 

nanoparticles, its effects have been well-known and exploited to create vibrant colors in 

glass for thousands of years.  One famous piece of work is the “Lycurgus cup” produced 

by Roman artisans dating back 2400 years ago.  On the cup, the scene with Lycurgus is 

green when light comes from outside, but it turns bright red when the light is lit from 

inside the cup.  The reason behind this exotic phenomenon, which remained unknown 

until about 100 years ago, is that the glass was stained by silver and gold particles of 

roughly 60nm and these nanoparticles reflect green light while transmitting red.  

 

Some of the early scientific studies involving light and nanoparticles dates back to end of 

the 19th century, when Lord Rayleigh formulated the theory of light scattering of 

dielectric particles that are much smaller than the wavelength of the incident light, and 

explained the blue color of the sky and red color of sunset.  A few years after the 

development of the Drude Model [1900] of electric conduction in metals, it was used by 

Garnett to describe the bright colors of metal-stained glass [1904].  Soon after that, in 

1908, Gustav Mie formulated his now well known “Mie theory” describing the general 

spherical scattering of the light by particles, dielectric or not, of various sizes.  Mie theory 

agrees with the Rayleigh scattering theory for small particles and with geometric optics 

for large particles.  Even to date, Mie theory is well cited in many areas of physics. 
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The field of plasma physics was developing around this time too.  The first man-made 

plasma was discovered in the Crookes Tube in 1879, and its nature was identified by 

Thomson in 1897 as ionized gas.  In the 1920’s Langmuir borrowed the name “plasma” 

from biology to describe this state of matter, and used charge density waves, also known 

as Langmuir waves, to explain the oscillations of the plasma [Langmuir, 1928; Langmuir 

& Tonks, 1929].  The first person who derived the correct formula for the characteristic 

plasma frequency p  was actually H. Mott-Smith [Langmuir, 1928].  mnep 0
2 /  , 

where n  is the carrier density, e  and m  are charge and mass of an electron, respectively, 

and 0  is a constant called the vacuum permittivity.  

 

A plasma is a gas composed of one or more of the following: ionized atoms and 

molecules (ions), and electrons. The nature of a plasma is not confined to the gas-state, as 

plasmas can exist in the 'solid-state'. Metals are the simplest solid-state plasma systems.  

In 1953, Bohm and Pines showed that one class of excitations in a strongly interacting 

electron gas (like that in metal) were longitudinal bulk plasmons, while the other was 

single-electron excitations.  In 1956, David Pines predicted the “characteristic energy 

losses” experienced by fast electrons traveling through metals due to collective 

oscillation of free electrons.  The existence of “surface plasmons” in thin metal films was 

first theoretically described as “collective oscillations” on metal surfaces by Ritchie 

(1957).  These oscillations/excitations were experimentally demonstrated by Powell and 

Swan (1959), and were studied and named by Stern and Ferrell in 1960 “Surface 

plasmons”, which are the quanta of the charge oscillations occurring at the interface.  
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1968 witnessed a major event in the development of the surface-plasma waves study 

when the methods used to optically excite surface-plasma waves on metal thin films were 

presented by Otto [1968], and  Kretschmann and Raether [1968].  From then on, surface 

plasmons have became experimentally  accessible to many researchers.  In the same year, 

the uneven distribution of light on metal gratings, which was observed more than 60 

years ago by Wood [1902], was explained [Ritchie, et al., 1968] by surface plasmon 

resonances excited on the gratings.  

 

It wasn't until 1970 that the connection between the surface plasmons and the optical 

properties of metal nanoparticles was made [Kreibig and Zacharias, 1970].  Later, the 

term “surface plasmon polariton” was introduced to more accurately address the 

interaction between the oscillating electrons and the electromagnetic waves in the metal 

[Cunningham, et al., 1974]. 

 

Surface plasmons (SPs) describe the quantization of electron charge oscillations at the 

interface of a metal and a dielectric material.  Surface plasmons have two major forms, 

from which various combinations can result: surface plasmon polaritons, often referred as 

surface plasmons, in which an electron density wave propagates along the metal-

dielectric surface; and localized surface plasmons, in which an electron density wave 

becomes localized like a standing wave on the surface of the nanoparticles. SPs have 

many unique physical and optical properties which can result in interesting and exotic 

effects upon combination with different nanostructures, much of which is still under 
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investigation.  These unique properties and effects can possibly be exploited in many 

practical applications in such fields as optical imaging, nano-manipulation, biotechnology, 

solar energy, and meta-materials.  

 

Early work on SPs mainly focused on understanding the fundamental properties of solid 

state matter, and gradually has made the transition to more application-driven research.  

There have been many properties that have been studied and promising applications are 

currently being developed and predicted.  Here I will give a brief introductory of a few of 

these unique structures and their optical properties in the field.  Of course I will not be 

able to list all the work/ publications, and many good books and review papers collect 

more recent developments in the field [Brongersma & Kik, 2007; Maier, 2007; Pitarke et 

al., 2007; Shalaev & Kawata, 2007; Sweatlock, 2003].  

 

The first system to address, one that has been mentioned a few times above, is one 

involving nanoparticles.  Metal nanoparticles exhibit very different optical properties 

from their respective bulk-material properties.  For example, silver and gold can show 

different colors (red and yellow etc.) from, well “silver” and “gold”, depending on their 

sizes.  The optical properties, including transmission and absorption, are closely related 

to the plasma frequency of nanoparticles, which is very sensitive to the sizes and shapes 

of nanoparticles [Bohren & Huffman, 1983; Kreibig & Zacharias, 1970; Kreibig & 

Vollmer, 1994].  The SPs on metal nanoparticles can also couple to each other and can 

then be used to guide light.  A lot of research has been done in this area, and possible 
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applications include optical waveguides, field enhancement, bridging-gaps in dielectric 

materials etc. 

 

Structures based on metallic thin films are also being studied for their wave-guiding 

properties and their extraordinary transmission.  SPs can propagate along the surface, and 

the slot waveguides have been studied by many researchers [Pendry, 2000; Lee et al.; 

2000; Dionne et al., 2006; Wang & Kempa, 2007].  With simple structures built on 

metallic films, many exotic optical properties can result.  The “extraordinary optical 

transmission” effect is one of these properties, and it was reported by Thomas Ebbesen 

and his coworkers in 1998.  They studied the transmission of light through a sub-

wavelength hole array on a 200nm thick silver film, and observed that there were sharp 

peaks at wavelengths a few times the hole size, with overall transmission more than that 

of the classical results from the 'open area'.  Other properties and possible applications of 

thin metal film-based nanostructures include negative reflection perfect lenses, sub-

wavelength lensing, and cloaking [Pendry, 2000; Barnes et al., 2003; Wang & Kempa, 

2004; Zentgraf et al., 2007].   

 

SPs can be strongly localized at the interface of the metal and dielectric material.  The 

plasmonics on rough and smooth surfaces can be very different [Raether, 1988; Boyd et 

al., 1986].  It is the size and geometry of the interface, particularly one formed by 

nanoscale structures, rather than the light wavelength that determines the propagation 

properties of the SP fields.  Nanostructures made from noble metals, such as silver and 
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gold, can support the propagation of SPs with wavelengths much shorter than the 

corresponding free-space wavelength [Nelayah et al., 2009; Sanders et al., 2006].  Many 

structures have been proposed to guide SPs, such as channel, groove, slit, hole, chain of 

particles and nanowires [Ebbesen et al., 1998; Kiyan et al., 2007; Krenn, 2000; 

Lamprecht et al., 2001; Lezec et al., 2002; Maier et al., 2002; Thio et al., 1999].    

 

Junichi Takahara (1997) proposed the idea that metallic nanowires, which he called 

negative dielectric wires, could guide light with a sub-wavelength diameter.  The metal 

nanowires can take different forms: wires, cylinder, coaxial cable etc.  A lot of research 

has been done since then [Dickson & Lyon, 2000; Ditlbacher et al., 2005; Graff et al., 

2005; Sanders, 2006; Baida et al., 2006; Rybczynski, et al., 2007; Peng et al., 2008].  The 

mechanism of waveguides made of metal nanowires is different from that of optical 

fibers, which use internal total reflection.  Metal nanowire waveguides are based on SP 

propagation to create new opportunities to transport light at the sub-wavelength scale, 

and they mayprovide possibilities to build optical circuits.  

 

The above mentioned areas are not classified as entirely distinct and often times they are 

intertwined with each other. There are many potential devices and applications of 

nanooptics developed recently based on plasmonics of nanostructures, such as bio-

sensing (which was mentioned in almost half of the surface plasmon papers published), 

efficient photon collection (which can be useful in solar cell applications), photon switch, 

single-photon transistors, and long-range optical coupling [Englund, et al., 2005; 
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Birnbaum et al., 2005; Imamoglu et al., 1999] and many new meta-materials.  Some other 

novel properties are also predicted for metal nanostructures [Schwartzberg & Zhang, 

2008].  

 

The prospect of controlling the propagation of light and the interactions of photons and 

optical structures is an exciting one and is a challenging field to enter in today’s cutting 

edge nanoscale science and technology.  The current fast development of plasmonics 

coincides with a crucial 'moment' of technology.  A lot of current technologies are facing 

issues concerning fundamental physical 'limits'.  Areas such as data storage, electronic 

circuits, and optical sensing are desperately in need of a make-over (or new substitution) 

to be able to keep developing.  Some of these areas may be able to improve with the help 

of plasmonics, where SPs play an essential role in the optical properties.  The possibilities 

of so many practical applications attract a lot of interest, and plasmonics has become a 

popular field for the last two decades.  The fast growth of the field is also stimulated by 

the parallel development of many technological areas, such as advanced nanofabrication, 

and powerful computer and simulations algorithms/software.   

 

With such fast development in the field, a lot of opportunities and challenges lay ahead 

too.  First of all, a lot of the physics is still unknown or not fully explored.  Secondly, due 

to SPs’ unique dependency on the nanostructure, we are still just on our way to discover 

and develop a lot of new nanostructures/meta materials with new exotic optical properties 

and applications.  Another challenge is that many of the applications are still ideas, and 
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we are still waiting for the better technology to be able to test and realize them.  Even 

though prototypes are invented for some, most of them are still far away from mass 

production and commercialization.   

 

1.2 Theory   

 

We start with the elegant macroscopic Maxwell's equations, which summarize the basic 

electromagnetic phenomena and can be found in many textbooks [Jackson, 1999; Kong, 

2005]  

        Gauss’s law                                    D ,                                     (1.1.1) 

        Gauss’s law for magnetism           0 B ,                                      (1.1.2) 

        Faraday’s law                                0




t

B
E ,                           (1.1.3) 

        Ampere’s law                                J
D

H 




t

.                          (1.1.4) 

Here D is the electric displacement,   the free charge density, B the magnetic induction, 

E  the electric field, H  the magnetic field,  and J is the free charge current density.  If 

we have the electric and magnetic properties of the material, which will provide relations 

between D  and E , and between B  and H , then we can solve the Maxwell equations for 

a given problem. 
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1.2.1 Solutions of Maxwell’s equations in a uniform 

medium 

 

We can analytically solve Maxwell's equation, with a proper material-electromagnetic 

property model, to achieve a more fundamental understanding of the bulk plasmon.  We 

start with material properties.  We assume that E  is small enough for us to only consider 

the linear excitation of D.  We consider non-chiral material, i.e. electric displacement D 

depends on electric field E  not magnetic induction B .  We also consider an isotropic 

material, which means the dielectric function is not a tensor.  Then the general form of 

the material electronic response relation is:  

                     
)';'(),';',(ˆ'),( 0 tttdtdt rErrr'rD 





 ,                                   (1.2.1) 

where 



2

1
ˆ  , and  is for relative permittivity, and 0  is the vacuum permittivity. 

 

We first assume the response is local,    

                     )',;'(ˆ)'()',;',(ˆ tttt rrrrr   ,                                           (1.2.2) 

and equation (1.2.1) becomes 

                     )';()',,(ˆ'),( 0 tttdtt rErrD 




 .                                               (1.2.3) 

We assume   to be constant in space.  If there is non-uniformity, it is approximated by 

uniform regions with constant  , so we have 
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                     )',(ˆ)',;(ˆ tttt  r .                                                                    (1.2.4) 

Now equation (1.2.3) becomes 

                     
)',()',(ˆ'),( 0 tttdtt rErD 





 .                                                  (1.2.5) 

We also assume translational invariance in time, i.e. there is no absolute time: an 

experiment can begin anytime, and the results will be same. Then we have 

                 )',()'('
2

1
)',()'(ˆ'),( 00 tttdttttdtt rErErD  












 .        (1.2.6) 

Note that the 't  integral is unrestricted, but the physics is, since the response must be 

causal, i.e. it cannot depend on future impulse.  This requires that )'( tt   vanishes for 

tt ' .  Since we assume linear responses, Maxwell's equations are linear.  We can use 

linear algebra, which involves choosing a complete set of functions forming a base set in 

the Hilbert space.  Maxwell's equations can be solved for these functions, and then for an 

arbitrary impulse, the complete solution is given by the linear superposition of these 

functions.  Here we choose harmonic functions tie  , which are known to form a 

complete set in Hilbert space. So we can write 

                       
ti

ti

et

et















),(),(

),(),(

rErE

rDrD
 ,                                                            (1.2.7) 

and equation (1.2.6) now becomes, for each and every  , 

            

  

          

'
0 ),()'('

2

1
),( titi ettdte  


 





   rErD .  

which leads to 
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),()(),( 0  rErD   ,                                                      (1.2.8) 

where 

                        )()(
2

1
),( tietdt 


 




r  .                                                    (1.2.9) 

 

Note: We can follow the same procedure for the magnetic response relation and get 

                     
),()(),( 0  rHrB   ,                                                      (1.2.10) 

where  is the relative permeability and 0  is the vacuum permeability.   

 

When there is no free charge or current sources, 0  and 0J .  The third of 

Maxwell's equations (1.1.3) becomes 

                      
0)],()(),([

0]),([]),([

0 











ti

titi

ei

e
t

e









rHrE

rBrE
.  

Now we have 

                      0),(),(   rBrE i .
                 

                                          (1.3.1) 

Following the same procedure with the fourth of Maxwell's equations (1.1.4), we get 

                      0),(),(   rDrH i .                                                         (1.3.2) 

By applying the operator   to both sides of the equation (1.3.1), we get 

                     0)),()((),()),((

0)),(),((

0
2 







rHrErE

rBrE

i

i
.  
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By inserting Eq. (1.3.2) into above equation, and using Eq. (1.2.7), we get  

                     0),()()(),()),(( 00
22   rErErE .         (1.4.1) 

 

Now we also consider the fields being harmonic in space krErE ie)(),( 0   , where k  

is the wave vector.  We consider the medium being uniform in space.  If there is non-

uniformity, it is approximated by a set of uniform media regions. 

             

),(

))((

))(ˆ())(ˆ())(ˆ(

)()()(

)(

) ,(
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
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










i

ei
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.

 

Using ki , Equation (1.4.1) becomes 

            0),()()(),()),(( 2
00

2   rErE-rEkk k ,                        (1.4.2) 

where k  is the magnitude of the wave vector k .   

 

Note: The equivalent equation for magnetic field can be achieved by applying   both 

sides of Eq. (1.3.2).   

             0),()()(),()),(( 2
00

2   rHrH-rHkk k .                      (1.4.3) 

As one can see, the electric field and magnetic field follow exactly the same equations, 

and so most times we can simply just study one of the equations.  
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Transverse modes 

For the transverse modes, k  is perpendicular to E  and  H , in which case 0Ek .  

Equation (1.4.2) becomes 

                    0),(),( 00
2   rErEk .                                                   

For non-zero fields, we get 

                    kc )/(   .                                                                  (1.5) 

Here  00/1 c is the speed of light in vacuum. 

 

Longitudinal modes 

For the longitudinal modes, i.e. k  is parallel to E , this means k (k E)  k2E.  Equation 

(1.4.2) becomes 

                        0),(00  rE ,  

For non zero fields, this leads to two conditions,  

                       0 ,                                                                                (1.6.1) 

and/or 

                       0 .                                                                               (1.6.2) 

Equation 1.6.1 is for the electric longitudinal bulk plasmon, and Equation 1.6.2 is for the 

magnetic longitudinal bulk plasmon. 

 

For a case with nonmagnetic material, 1 , and Equation 1.5 reduces to the well-known 

dispersion relation of photons in uniform, nonmagnetic media: 
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  
 kc
  .                                                                           (1.7) 

 

The plasmon dispersion relation depends on materials’ properties.  In my research, we 

only work with non-magnetic material, so the permittivity is the physical parameter that 

we primarily work with.  It has been shown that the classic Drude model works very well 

for alkali metals with very low losses, and has the form 

                       
2

2

1)(



 p  ,                                                                (1.8) 

where p  is the plasma frequency. 

Inserting Eq (1.8) into (1.7), one can get the dispersion for the transverse bulk plasmon 

mode, 

                

       

2222 kcp  .                                                               (1.9)  

 

The transverse mode can propagate through the medium, and it is shown as the solid line 

in Fig. 1.1.  It is clear that the spectrum has a propagation gap from 0 to p , where no 

modes can propagate through the medium.  In the vacuum, 1)(  , the dispersion 

relation becomes ck . This is also known as the light line and is shown as the dashed 

line in Fig. 1.1.  As mentioned before, longitudinal bulk plasmon mode is also allowed 

from Maxwell's equations, with 0  leading to p  .  This longitudinal mode is 

shown as the dot-dashed line in Fig. 1.1. 
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Light line

Longitudinal bulk plasmon

k

 

 

 

 


p



Transverse bulk plasmon

 

Fig. 1.1 Dispersion relation of a metal (schematic).  Solid line: dispersion of the 

transverse bulk plasmon.  Dashed line: photon line in vacuum.  Dot-dashed line: 

dispersion of the longitudinal bulk plasmon. 

 

1.2.2 Surface Plasmons 

 

Surface plasmons, the propagation of coupled electromagnetic-charge waves along an 

interface, are generated when there is an interface between two media, often between a 
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metal and a dielectric material.  Let us consider an ideal interface (an abrupt flat surface) 

at z  0 between two non-magnetic materials with dielectric functions )(1   for z  0, 

and )(2   for z  0, as shown in Fig. 1.2. We consider p-polarized waves, i.e. the 

electric field is parallel to the incidence plane, which is formed by the incident light ray 

and the normal line at the point the incident light ray hits the surface. 

 

                                 

Fig. 1.2 Electromagnetic waves (p-polarized) transmit and reflect on the surface. The two 

materials have relative dielectric functions )(1   for z  0, and )(2   for z  0. The 

wave vectors and electric fields are shown for incident, reflected and transmitted waves.  

 

We will not write )(  for now, and it will come back explicitly a little later.  As shown in 

Fig. 1.2, we consider a transverse wave that is p-polarized.  We have 

                 

            

tzz

rzizz

ED

EED

202

10101







,                                                   (1.11.1) 

and 
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txx

rxixx

EE

EEE




2

1 .                                                              (1.11.2) 

 

On the surface, the boundary conditions require the parallel components of the electric 

field E and perpendicular component of electric displacement D  to be continuous at the 

interface [Jackson, 1998], this means 

                          
22

21

xx

zz

EE

DD




 

.                                                                        (1.11.3) 

Insert Eq. (1.11.1) and (1.11.2) to (1.11.3), we have 

                          
txrxix

tzrziz

EEE

EEE


 211 

.                                                          (1.11.4) 

 

For transverse waves, the wave vector and electric field are related by 0Ek  , or 

                          

0

0

0





tztztxtx

rzrzrxrx

izizixix

EkEk

EkEk

EkEk

 

.                                                            (1.11.5) 

Keeping in mind that 

                          
zrziz

xtxrxix

kkk

kkkk

1


,                                                            (1.11.6) 

and also writing tzE  as zE2 , and tzk  as zk2 ,  Eqs. (1.11.5) become, 

                          

xzztxzztxx

xrzzrxrzzrxx

xizzixizzixx

kEkEEkEk

kEkEEkEk

kEkEEkEk

/0

/0

/0

2222

11

11





.                          (1.11.7) 
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By inserting Eq. (1.11.7) into the second equation in Eq. (1.11.4), it is seen that there is 

no solution for 0xk .  For non-zero xk , Eq. (1.11.4) becomes 

                          
zzrzzizz

zrziz

EkEkEk

EEE

2211

2211


 

 

.                                                   (1.11.8) 

 

We define the reflection and transmission coefficient as 

                         
iztz

izrz

EEt

EEr

/

/




.                                                                      (1.12.1) 

Dividing both equations in Eq. (1.11.8), and using definition (1.12.1), we have 

                          
tkrkk

tr

zzz 211

211


 

 

.                                                              (1.12.2) 

Now solving for r  and t , we find 

                          

zz

z

zz

zz

kk

k
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kk

kk
t

2112
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2112

2112

2














 

.                                                          (1.12.3) 

The system has an eigenmode when the reflection coefficient and/or transmission 

coefficient diverge.  From the equations (1.12.3),  t   and r  diverge when  

                          02112  zz kk  .                                                             (1.12.4) 

 

The wave vector components satisfy the following relations: 222 kkk jjzx  ;
 

c
k






2
 is the vacuum wavelength and 2,1j for the two media.  Plugging the 
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expression for jzk into Eq. (1.12.4), the resulting surface plasmon dispersion takes a more 

familiar form,  

 

                          

21

21

21

21













c
kkx ,                                  

 

(1.13.1) 

or if one medium is vacuum, 

    

                        

12

2







c
kx .                                                          (1.13.2) 

We can first get the asymptotic value of the surface plasma frequency in the non-retarded 

limit ( c ) by letting  

                             012  .                                                                  (1.13.3)                                

Then we insert the classic Drude model for prefect metal: the dielectric function eq. (1.8) 

to Eq. (1.13.3); we can get the well-known formula for the surface plasmon frequency 

                            2/psp    .                                                           (1.13.4)                                     

We can also get the dispersion relation of SPs by inserting eq. (1.8) to eq. (1.13.2):      

                             22

22

2 p

p
x c

k





 .                                                  (1.13.5) 

 

Figure 1.3 shows in solid lines the two branches of SP’s, which are solutions to equation 

(1.13.5).  The upper branch represents the dispersion of light in the metal, and it has a 

cut-off frequency at the bulk plasmon frequency.  This mode is not stable, and it will 

quickly dissipate into light as shown in the plot.  The “light line (x-direction)” represents 

the light propagating in vacuum along the x  direction, and all other light-modes have 
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smaller xk  for a given .  There are an infinite number of light lines to the left of the 

“light line (x-direction)” and going through the origin, each corresponds to a light wave 

propagating at a different angle to the surface.  For all the points on the surface plasmon 

upper branch, we can find a light line crossing at that point, the crossing representing 

simultaneous conservation of energy   and momentum xk , so that the surface 

plasmon can dissipate into light propagating in vacuum.   

 

0 1 2
0.0

0.5

1.0

1.5

 

 

 

ck
x
/

p

Light line (x direction)

Surface plasmon
lower branch

Surface plasmon
upper branch


p

 

Fig. 1.3 Normalized frequency vs. the normalized in-plane wave vector for the surface 

plasmon (solid lines) (schematic).  The dispersion relation for the x  direction light line is 

shown as the dashed line, and for the longitudinal bulk plasmon p
 
the dash-dotted line.  

The surface plasmon frequency sp  is shown as the dotted line. 
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Since all light lines reside to the left of the light line (x-direction), the simultaneous 

conservation of energy and momentum cannot happen to the right of the “light line (x-

direction)”, thus the lower branch represents the stable SP’s. They can exist on the 

interface and propagate.  To excite a surface plasmon, extra momentum needs to be 

provided by a rough surface or some grating [Raether, 1988; Maier, 2007], for example.  

The lower branch approaches the surface plasmon frequency,  p / 2 , for large xk .   

 

Surface plasmons described in the Fig. 1.3 is also electric surface plasmons.  If we 

consider an interface between vacuum and a magnetic medium, equation 1.13.1 will be 

   

[Wang, Plummer &Kempa, 2011].  

                          

                         

1

)(
2 






c

k x .                                                    

 

(1.14) 

 

If we consider the s-polarized wave, i.e. the electric field is perpendicular to the incidence 

plane, solutions on an interface between vacuum and a magnetic medium 1 , we will 

get the dispersion for magnetic surface plasmon dispersion (equivalent of equation 1.14) 

[Wang, Plummer & Kempa, 2011].  

                         

1

)(
2 






c

k .                                                     (1.15) 

The non-retarded limit for the magnetic surface plasma waves frequency can be derived 

from 01  . 
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1.2.3 Localized surface plasma waves  

 

The localized surface plasmon (LSP) is the other fundamental form of surface plasmons, 

and it is electron charge density oscillations that are localized on the surface of 

nanoparticles.  These are standing surface plasma waves.  A very important property of 

LSP’s is that they have their own characteristic resonant frequencies.  The interaction of 

light and small metal particles can be viewed as a boundary problem that can be solved 

using Maxwell’s equations.  Gustav Mie, though not the first to examine this problem, 

was however the first to formulate this problem beautifully as an electromagnetic 

scattering problem [1908].  Mie theory is able to treat the scattering problem of spherical 

particles of various sizes.   

 

For a particle of radius ~a , according to Mie Theory, the localized surface plasmon of 

spherical metal nanoparticles can be circumferentially quantized.  Figure 1.4 illustrates an 

easy approximate way to understand this concept. When light hits the metal nanosphere, 

the electrons are momentarily shaken out of the surface, the Coulomb force will then pull 

them back and create surface electromagnetic waves (surface plasmon).  The 

circumference is an integer number of the wavelength of the surface plasmon, which can 

also be expressed as 
k

lld
 2

 .  For a particle of certain diameter d , this equation 

defines the wave vector k  for the resonant SP’s (LSP’s), and the corresponding 

frequency can be obtained approximately from the dispersion relation shown in Fig 1.3, 
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with xkk  .  It is the characteristic resonant frequency that gives the silver/gold particles 

their different beautiful colors depending on their sizes.   

 

Fig. 1.4 Illustration of Mie’s theory of circumferential quantization for metal sphere   

 

For a particle of radius a   , one assumes that the external field is uniform, which is a 

quasi-static approximation.  Mie’s theory is analyzed and gives the resonant condition 

[Bohren & Huffman, 1983; Kreibig & Vollmer, 1995]:  

                                2m  0 .                                                               (1.16) 

Considering a Drude metal sphere in vacuum, we use m 1, and substitute in the Drude 

model Eq (1.8) for  , and we find the Mie frequency for nanoparticles 

                              3/pMie   .                                                         (1.17) 

 

Even though it is not studied as extensively as the propagating SP’s, recent theoretical 

and experimental work suggests that LSP’s might contribute to the enhanced 

transmission [Maier, 2007], and play a role in sharp metal tips and some nanoantennas 

[Bozhevolnyi& Lozovski, 2002; Bozhevolnyi et al., 2006]. 
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Chapter 2  

Methods 

 

Two main methods to solve Maxwell’s equations are used in this research: One is the 

traditional analytical method, and the other is the computational/calculation method, also 

referred to as the simulation.  The given projects were first approached through the 

analytic method to solve Maxwell’s equations given the boundary conditions.  In the 

simplest case, the TEM mode in the nanocoaxial cable, a numerical solution has been 

found, and agrees well with the simulation results.  As shown later, it is rather 

complicated, and in some cases almost impossible, to get sensible solutions for higher-

order mode and/or complicated structures.  A simulation method will be introduced to 

deal with the more complicated cases, which also result in sensible results.   
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2.1 Analytical method 

 

The conventional analytical methods to solve Maxwell’s equations have been used to 

solve simple homogeneous problems [Jackson, 1999; Shen, 1998; Yuan et al, 2000]. The 

analytical method can give exact answers to simple problems, such as homogeneous 

media in 1, 2 and 3 dimensions [Carlos, 2005], and multilayered solid structures 

[Caviglia & Morro, 2000].  Many examples, including these mentioned in the above 

references can be found to illustrate the analytic method.  In this Chapter, I have solved 

for the electromagnetic wave propagation in a nanocoaxial waveguide.  These results will 

be useful for the wire waveguide as well.   An improved analytical method will be used to 

solve for the one-plasmon mode of the nanocoaxial cable by matching solutions of 

Maxwell’s equations in cylindrical coordinates across the nanocoaxial interfaces.  The 

geometry of the coaxial waveguide is shown schematically in Fig. 2.1.  The metal core is 

a solid cylinder with radius a .  The outer conductor is a hollow metallic cylinder with 

inner radius b , and outer radius c .  Since we are interested here only in internally-guided 

modes, i.e. modes with fields localized between the core and the outer conductor, the 

outer conductor can be assumed to be infinitely thick (i.e.  c ).  This is a good 

approximation for any coaxial waveguide with an outer conductor much thicker than the 

field penetration depth of these internally guided modes.   
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Fig.  2.1   Geometry of the nanocoaxial cable. Metal core has radius of a ; Outer 

conductor shell has inner radius b  and outer radius c .  Dielectric cladding is in between 

radius a  and b .  

 

As shown previously, solving Maxwell’s equations leads to equation (1.4.1), and for 

transverse waves and materials with 1)(  , it yields 

                0),()(),( 2
0

2   rErE k .                                                       (2.1) 

The dielectric function takes the value 1   inside the core and it changes to 2  in the 

cladding, and then changes to 3  in the outside material.  ck /000  
 
is the 

wave vector in vacuum. 

 

It is obviously helpful to work in a cylindrical coordinate system with  , , z .We 

choose, as is common,  zE  and zH as independent components.  The equation for zE in 

cylindrical coordinates becomes: 
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while zH satisfies the same equation as above. 

 

We use the method of separation of variables, and let )()()(),,( zZFzEz   . We 

then obtain three ordinary differential equations (ODE’s): 
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,       (2.3) 

where  and m  are two constants ( m  must be an integer). 

 

The first two equations in (2.3) can be solved easily to obtain 

)exp()( zizZ  and )exp()(  im . While )(F  satisfies the Bessel equation. 

 

For simpler problems, such as a one-cylinder problem, Takahara et al. (1997) have given 

solutions with proper Bessel functions in different regions.  Inspired by their paper, we 

also divide the space into three regions according to their refraction index number.  We 

can write the general solutions of the electric field and magnetic field (by following the 

same recipe) of the above ODE’s: 
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Here nI  and nK  are the modified Bessel Function of the first and second kinds. A , B , 

C , D , E , F , G , and H  are some constants.  Also p , q  and r  are given by 
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The eight boundary conditions are listed below as, 

(1) zE  continues at a ,  (2) zE  continues at b , (3) zH  continues at a  

(4) zH  continues at b , (5) E
 
continues at a , (6) E

 
continues at b  

(7) H  continues at a , (8) H  continues at b  

 

We then get the following eight equations, written in the format of a matrix: 
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Setting the determinant of matrix S  equal to zero, i.e. 0det S , gives the dispersion 

relation.  For the TEM mode, 0n , and the relation becomes the following equation 

after some simplifications, 
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                                 (2.5.1) 

 
Furthermore, we assume that both conductors are made of the same nonmagnetic metal 

described by the Drude dielectric function,  



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i
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31

 
 

where   is the frequency, p  is the metal’s plasma frequency,   is the damping 

parameter, and   is the contribution from the “bound” electrons.  A dielectric material, 

with dielectric constant 2 , fills the space between the conductors.  All fields are 

assumed to be transverse, and ](exp[ tzki z  , where zk  is the z-component of the 

wave vector.  Each material interface is assumed to be abrupt, with standard boundary 

conditions used to match the electromagnetic fields.   
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The dispersion relation equation then becomes  
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    ( 2.5.2) 

here   jzj ckk  22 / , 3,2,1j  , and nI , nK  are the n th ( 1,0n ) order modified 

Bessel functions of the first and the second kind, respectively.   

 

Equation 2.6 is the desired dispersion relation for the “TEM-like” mode, the details of 

which will be discussed in a later chapter.  In the limit of b  (a single electrode 

transmission line), it reduces to the formula for the “negative dielectric pin” as described 

in the paper of Takahara et al (1997), as expected  
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2.2 Computation/Simulation method  

 

As the studied systems and phenomena become more and more complicated, as the above 

analysis has already given us an idea of how complicated the analytical method can 

become for some not-so-complicated structures, it is impossible to use the conventional 

analytical method to solve the problems.  It requires that we use the help of computers to 

perform simulations for the research involving more complicated structures.  There have 

been a lot of computational methods and software [Hafner, 1999; Hafner, Karkashadze et 

al, 2004; Smajic & Agio, 2010; Peters, 2010; Taflove, 1995; Toflove & Hagness, 2005] 

developed and employed to simulate electromagnetics in nanostructures.  Some examples 

include the discrete dipole approximation (DDA) [Yang et al, 1995; Kelly et al, 2001; 

Kelly et al, 2003], which is particularly powerful for small isolated nanostructures; the 

multiple multipole method [Hafner, 1990; Hafner 1999], which is very difficult to use;  

T-matrix methods [Waterman, 1971], which is good for no-loss axially symmetric 

particles.  The Finite-Difference Time-Domain (FDTD) method is one of the most 

popular numerical methods to solve electromagnetic problems and is discussed in many 

publications [Choi et al, 1986; Kunz & Luebbers, 1993; Taflove, 1995].  A brief 

introduction to the FDTD method is given below. 
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2.2.1 Finite-Difference Time-Domain (FDTD) method 

 

Yee (Yee, 1966) proposed Yee’s scheme, which later became the Finite-Difference 

Time-Domain (FDTD) Method, almost half century ago, and it has been proven to be a 

simple yet efficient way to solve Maxwell’s equation in the time domain.  Taflove, 

collaborating with Brodwin (1975), and later with Dugness [2000, 2005], further 

developed this method based on Yee’s scheme, and the details are discussed in their book 

“Computational Electrodynamics: The Finite-Difference Time-Domain Method” (1995).   

 

In the FDTD method, both space and time are discrete.  Fields are represented differently 

at the mesh points on the Cartesian grid, as shown in Yee’s lattice in Fig 2.2, which is 

one of the many kinds of Yee’s 3d unit cells illustrations.  The different electromagnetic 

field components are not located at the same place, but instead staggered around a grid.  

 

In addition to the fact that they are discrete in space, fields are also evolving at discrete 

time steps.  Given a function f  at a discrete point in space and time as 

                  n
kjiftnzkyjxif ,,),,,(    .                                                         (2.7) 

One example of the expressions is the first partial derivative in space of f  in the x  

direction, at a particular time tntn  [Taflove, 1995]: 
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Here  are the integers and indices in coordinates;   is an integer and 

corresponds to the time steps;  is the increment of time; and are the 

increment of space in each direction.   

 

 

 

Fig. 2.2 Yee’s lattice (unit cell) in a 3D meshed grid in FDTD method. 

kji ,, zyx ,, n

t zyx  ,,

(i,j,k+1) 

(i,j,k+1) 

(i,j,k+1) 

(i,j,k) 
(i,j,k) 

(i,j,k) 

(i,j+1,k+1) 

(i,j+1,k) 

(i,j+1,k) 
(i+1,j,k) 

(i+1,j,k) (i+1,j+1,k) 

(i,j,k) 

(i,j+1,k) (i,j,k) (i,j,k) 

(i+1,j,k) 

(i+1,j,k+1) 



38 
 

Similarly, the first time partial derivative in space of f , at a particular space point 

),,( kji is [Taflove, 1995]: 
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 .                     (2.9) 

Yee used a central-difference expression for both space and time derivatives, so that 

Yee’s scheme is accurate to the second order in both space and time.   

 

Considering a source-less situation with a non-chiral, linear material, Maxwell’s 

equations (1.1.3) Faraday’s law and (1.1.4) Ampere’s law, together with the relations 

between B and H , D  and E , are listed as:  

                             
0
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H  ,                            (2.10.1) 

                            
 0





t

B
E   ,                           (2.10.2) 

                             
ED   ,                                         (2.10.3) 

                             
HB   ,                                        (2.10.4) 

Here   is electric permittivity, and   is magnetic permeability.  

 

We can write the FDTD time stepping formulas in a Cartesian coordinate system that are 

induced from above four equations 
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The discreteness of fields and time gives approximated results of the given 

electromagnetic problem.  With the space grid and time step made smaller, this 

approximation becomes closer and closer to the true continuous fields, until convergence 

problems arise. Many practical problems can be simulated using this scheme, by reducing 

the size of the cell to achieve desired accuracy.  
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2.2.2 MEEP (MIT Electromagnetic Equation Propagation).   

 

In this dissertation, the computational simulations are done with the FDTD method, using 

a freely available software package MEEP (MIT Electromagnetic Equation Propagation).  

Detailed information about the functions of the software can be found in their publication 

[Farjadpour et al, 2006; Oskooi et al, 2009; Oskooi et al, 2010], as well as on their 

website http://ab-initio.mit.edu/wiki/index.php/Meep.  Relevant physics knowledge and 

examples can be found in the book “Photonic Crystals” [Joannopoulos, 2008].  Here, I 

will give a brief summary of the MEEP software. 

 

Electric permittivity   is in general frequency   dependent, and MEEP supports any 

dielectric function in the form of a Lorentzian model, the details of which will be given 

later.  The form is given as 

                           
 

 
j jj

jj

i 



22

2

 .                                               (2.12) 

The dielectric function has a term that is frequency independent, and a set of the 

harmonic resonances.    is the frequency independent instantaneous dielectric constant,  

j  is the j th resonant frequency, j  is the resonance loss rate, and j  is a function to 

define the strength the j th resonance.  Here all variables except  , which is the 

frequency of the field, are user-defined constants.  Theoretically, any )(  can be 
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modeled by a number of these terms.  Practically, we choose only several terms because 

the limitation of the memory and speed of the computer. 

 

For the equations (2.10) and (2.11), having frequency-dependent   causes computational 

difficulties (divergence etc.).  A technique can be used to solve this problem.  Using the 

original definition of electric displacement,  

                              PED 0   .                                                           (2.13.1)   

Knowing the electric polarization EP 0 ]1)([    and considering equation (2.12), the 

polarization P  along the electric field evolves via equation:  

                             EPPP 2
2

2
2 jjj tt

 







 .                                 (2.13.2) 

The equation (2.10.3) is substituted by two equations (2.13.1) and (2.13.2), in which the 

coefficients are no longer frequency   dependent.  The same procedure can be followed 

for the magnetic permeability. Thus for equations (2.10.1) - (2.10.4), we have six 

equations without the explicit frequency   dependence.  This will make the 

computational scheme more stable and more easily convergent. 

 

Using the FDTD method described in earlier section, the new set of equations can be 

solved to get the electric and magnetic fields throughout the whole space.   

Simulations must obey some boundary conditions, and there are different ways to define 

the boundary conditions [Anderson, 2001; Taflove, 2005; Oskooi et al, 2010].  Three 

basic types of boundary conditions are supported in MEEP: Bloch-periodic boundaries, 
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with the fields satisfying ;  metallic walls, where the fields are forced to 

be zeros; and the perfect matching layer (PML) boundary condition, first proposed by 

Berenger [1994], which is a boundary made by fictitious material that absorbs all fields 

and has zero reflections.  Different boundary conditions are chosen to be used in the 

simulations, depending on the problems.  MEEP can be used to analyze electromagnetic 

problems in a few different ways, such as Field patterns and Green's functions, 

transmission/reflection spectra, and resonant modes.  Different functions are chosen to 

help with the research to be accomplished.  

 

2.3 Material parameters 

 

Just as good samples are critical for obtaining good results in experiments, a precise 

description of the material (optical) parameters and permittivity over the chosen spectra is 

needed in order to perform high-fidelity simulations.  The models with one Drude term 

and some Lorentzian terms are more commonly used [Vial et al, 2005; Lee & Gray, 

2005; Skinner & Byrne, 2006; Pernice et al, Liu et al, 2007; Rodrigo, 2008].  Some 

improved extended models with four or five Lorentzian terms are claimed to be more 

accurate in different wavelength ranges [Hao & Nordlander, 2007, Rakic, 1998].  There 

)()( xfLxf 
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are also other models, such as the critical points (CP) model [Etchegoin et al, 2006; 2007] 

having been introduced recently.   

 

In my research, for the different materials involved, a lot of the dielectric parameters are 

complex and frequency dependent functions.  We choose to develop our own models 

based on the experimental data.  Because the complexity of the multiple Lorentzian terms 

slows down the simulation and may cause divergence during the computation, more than 

one model is developed for some materials.  For example, for metals, we have a simple 

classical Drude model and a Lorentz-Drude multi-oscillator model which consists of one 

Drude term and multiple Lorentzian terms.  Simpler models are often used for a quick 

test; then a more complicated model will be used to achieve precise results.  For dielectric 

materials, we only need to consider the real part of    for most dielectrics. However, 

Lorentzian terms are used to model dielectrics with complicated dielectric functions.  

 

2.3.1 Material dielectric functions 

 

We work with non-magnetic materials, i.e.  1. We need to find a good model for only 

the dielectric functions to further our theoretical research.  We first consider the classic 

Drude model [Drude, 1900].  The basic assumptions include: independent electrons, i.e. 

electron-electron interactions are not considered; free electrons, i.e. electron-ion 

interactions are not considered; and core scattering, i.e. only the scattering of electrons - 
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ion cores are considered. Electrons oscillate in response to an external driving field E .  

The oscillations are damped at a characteristic damping frequency  1/ . Here  is the 

relaxation time of free electrons. The equation of the electron plasma motion is  

                           mx m x  eE  ,                                                    (2.14) 

where m  is the effective mass of an electron; and e  is the effective charge of an electron. 

Since we assume the driving field has a harmonic time dependence of 

                           E(t)  E0 exp(it),  

so a time-harmonic solution for the position of the electrons can be written as 

                           x(t)  x0 exp(it) , 

and we have x   2x  and x  ix . Substituting these into Eq (2.14), we find  

                           m 2x  imx  eE      

So                        
x  

(e / m)E

 2  i
 .                                                   (2.15) 

The dipole moment of each electron is p  ex , so the macroscopic polarization is 

                             P  nex  ,                                                                   (2.16) 

where n  is the charge density.  Inserting Eq. (2.14) into Eq. (2.16), we get  

                            P  
(ne2 / m)E

 2  i
  ,                                                    (2.17) 

and since D  0E  P , insertion of Eq. (2.17) into this gives  

                            D  (1
(ne2 / 0m)

 2  i
)0E  ,                                         (2.18) 
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or                         D  (1
 p

2

 2  i
)0E  .                                            (2.19) 

where 
m

ne
p

0

2


  is the plasma frequency of free electron gas [Langmuir, 1928].  

Now we have the dielectric function as 

                             1
 p

2

 2  i
  .                                                    (2.20) 

For alkali metals, there is no loss/decay, so that .  Eq (2.20) reduces to Eq. (1.8). 

 

Yet for noble metals, some of the bound electrons also contribute to the polarization, 

which requires a small correction to the dielectric function, and it becomes  

                              b 
 p

2

 2  i
 ,                                                  (2.21) 

 whereb  is usually between 1 and 10.  Eq. (2.21) is also called the extended Drude 

model.  

 

The classic Drude model works well for alkali metals throughout the spectrum, but begin 

to show discrepancies for noble metals for the visible light portion of the spectrum.  The 

Lorentz model considers an extra linear restoring force experienced by a single electron. 

Then equation (2.14) can be rewritten as  

                           mx m x  Kx  eE  .                                              (2.22) 

By following the same procedure and defining the resonant frequency as 0
2  K / m  

0
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                           x 
(e / m)E

 0
22  2  i

  .                                                    (2.23) 

The complete dielectric function will then be  

                              b 
 p

2

0
2  2  i

 .                                             (2.24) 

 

Combining equations (2.21) and (2.24), we have the Lorentz-Drude multi-oscillator 

model:  

                              b 
 p

2

 2  i


f j p, j
2

0, j
2  2  i jj

  .                  (2.25) 

The first term is the bound-electron contribution; the second term is often referred as the 

Drude term; and there are j  Lorentz terms.  Each Lorentz term has its strength f j , the 

plasma frequency  p, j , resonant frequency0, j , and the damping frequency  j .   

 

Comparing the physics model Eq. (2.25) and the model used in the MEEP equation 

(2.12), and noting that the Drude term can be viewed as one of the Lorentz terms with 

resonant frequency as 0 ,  we understand that MEEP’s model bears a close relation with 

the Lorentz-Drude model.  Most times, by using 1 to 4 Lorentz terms, as shown later, we 

are able to build good models for the noble metals, such as silver and gold, which fits 

well with the experimental dielectric data.  For the dielectric, we can just treat equation 

(2.14) as a mathematic model, and the same method can also be used to model the 

dielectric function of dispersive dielectrics based on experimental data. 
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2.3.2 Metals 

 

Metals are an essential part of the different nanostructures being explored in this 

dissertation.   of the metals can be determined by optical experiments, and data 

banks of the refractive indexes are readily available [Johnson & Christy, 1972].  Silver 

(Ag) is one of the metals we use a lot in our simulations.  I use silver as an example to 

show how we develop metal parameters in out simulations.  Other metals, such as gold 

(Au) and Titanium (Ti), are dealt with in similar way.   

 

We have developed different simulation models based on the experimental data given in 

the paper by Johnson and Christy [1872], using both the classic Drude model with only 

the Drude term, and the Lorentz-Drude model with one Drude term and multiple 

Lorentzian terms.  Fig. 2.3 shows two sample models of the dielectric function of Ag, 

together with the experimental data.  The classic Drude model gives surprisingly good 

results in most calculations done within the optical range.  The extended Lorentz-Drude 

model gives more precise results throughout the whole spectra. 

 

 

 

 

 

 

)(
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Fig. 2.3 Dielectric function of silver corresponding to the photon energy in eV.  In all the 

plots, the scattered points are experimental data, and the solid lines are fit from the 

models.  The imaginary part ( 2 ) is shown in the top plot, and the real part ( 1 ) is shown 

in the bottom plot. a). Classic Drude model, b). Extended Lorentz-Drude model with four 

Lorentz terms.  
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2.2.3 Dielectric materials 

 

Dielectrics are represented by real dielectric constants, or dielectric functions.  The 

parameters are either known from data banks, or can be determined by reflection/ 

transmission experiments.   

 

Some of the dielectric materials we use in the simulations have simple forms, e.g. only 

the real part of the dielectric constants.  The examples include air ( 1 ), glass ( 2 ) 

and ITO ( 2 ) and other simple non-loss materials.  These materials are very easy to 

define, and seldom cause problems in the simulations.   

 

Other dielectric materials have both real and imaginary parts of the permittivity, and 

situations may be a little bit more complicated for these materials.  One example of this 

kind of dielectric materials that we use in the simulations, is the amorphous silicon (a-Si).  

The experimental dielectric parameters are known in the literature [McKenzie et al, 1983; 

Willardson et al, 1984].  Fig. 2.4 shows the experimental complex dielectric function vs. 

vacuum wavelength, and the corresponding fits.  The more important part is the 

imaginary part, since we use a-Si as an absorber in our nanostructures, and the imaginary 

part of the permittivity controls the absorbing property.   

 

 

 



50 
 

 

 

 

Fig. 2.4 Dielectric function of a-Si. The scattered points are experimental data, and the 

solid lines are fit from the models.  Imaginary part ( ) is shown in the top plot, and real 

part ( ) is shown in the bottom plot. The model has two Lorentz terms.  
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Chapter 3  

Plasmonics of a nanowire   

 

On the metal-dielectric interface, light can excite surface plasmons, which can propagate 

along the interface for some distance, then couple back into the light at an outlet.  In this 

chapter, I study the SPs in Ag nanowires with the help of MEEP, and the research 

findings are in agreement with the analytical results [Takahara et al, 1997], experimental 

results [Ditlbacher et al, 2005; Schider et al, 2003] and some preliminary simulation 

results [Laroche & Girard, 2006; Laroche & Vial, 2007]. The plasmon dispersion 

relations of the Ag nanowire, along with other properties, are achieved through the 

simulations.  Portions of the materials from this chapter are being prepared for 

submission to a peer reviewed journal. 
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3.1 Introduction 

 

Surface plasmons interact with photons to form surface plasmon polaritons, which are 

often referred to as surface plamons (SPs).  SPs can be excited by light, can propagate 

along the interface, and be coupled back into light.  Ag nanowires have been fabricated 

[Krenn, 2002; Sun et al, 2002; Sun et al, 2003] and studied for their plasmonic 

applications [Sanders 2006; Takajara, 1997].  Visible light that is coupled into a Ag 

nanowire, and the SPs can propagate for many micrometers, and their plasmonics have 

been studied both experimentally and theoretically [Dickson & Lyon, 2000; Ditlbacher et 

al, 2005; Graff et al, 2005; Sanders, 2006; Takahara, 1997].   My research continues the 

theoretical research on plasmonics of the Ag nanowires.  

 

For Ag, the bulk free-electron plasmon frequency is well known, with the value

eVp 99.8 .   The surface plasmon frequency for a flat planar interface between Ag 

and a medium with dielectric constant m   is given by mbpsp   / .  We assume 

the medium is air, so 1m .  Since 6.5b  for Ag, the surface plasmon frequency is 

eVsp 5.3 .  For Ag nanospheres, the plasmon frequency (Mie frequency), is given by 

mbpMie  2/   [Mie, 1908], which leads to eVMie 2.3 .  I show that for Ag 

nanowires, the non-retarded surface plasmon frequency spwire   . 
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The ends of silver nanowires can act as a “lightening-rod”, enhancing a local, optical-

frequency electric field [Bader & Jamid, 2007; Muhlschlegel et al, 2005; Tao & Yang, 

2005].  A group of our collaborators (Fourkas et al) have utilized this effect to drive 

nonlinear generation of the luminescence at the ends of the nanowires [Nah et al, 2010].  

Polymerization in certain photoresist happens at both the proximal and distal nanowire 

ends.  In addition to the luminescence at the ends, light leakage/coupling also occurs 

when another nanostructure is brought close to the nanowire [Fang et al, 2010; Sanders et 

al, 2006].  I simulate the phenomena of both the “lightening rod” and “light leakage/ 

coupling” effects, and visualize them in terms of the electric field intensity.   

 

3.2 Simulation Results 

 

A silver nanowire of 2 µm length and 50 nm radius is placed in a low refractive constant 

material.  Fig. 3.1 (a) shows the cross section of a silver nanowire submerged in a 

material with refractive index 1.7.  A laser beam is focused on the left end of the wire in 

an area of 150x150 nm, moving along the y-direction, with the E field polarized along the 

z-direction.  Fig. 3.1 (b) and (c) show the field propagation maps for incident vacuum 

wavelengths of 365 nm and 730 nm, respectively. 
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Fig. 3.1 Illustration of SPs propagation along a Ag nanowire. (a) Ag nanowire with 2 µm 

length and 50 nm radius submerged in a dielectric material with 4.3n . (b) and (c) SPs 

propagation maps for different incident wavelengths of 365 nm and 730 nm. The color 

intensity is proportional to Ez amplitude, and color represents Ez sign (direction).   

 

 

Fig. 3.2 SPs propagating along a 18.6 µm long Ag nanowire. (a) Microscopic image: the 

bright spot to the left is due to the focused exciting light. The arrow indicates light 

scattered from the distal wire end. (b) SNOM image—the image area corresponds to the 

white box in (a).  The pictures are taken from [Ditlbacher et al, 2005].    

z 

x
y
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Knowing that the energy density is proportional to the square of the field amplitude, one 

easily oberves that Fig. 3.1 (c) agrees nicely with Fig. 3.2, which is the scanning near-

field optical microscopy (SNOM) image reported by Ditlbacher et al (2005).    

 

I have developed a more systematic way to study the plasmonics of a similar system.  

This involves a Ag nanowire surrounded by air.  A laser beam is focused on the left end 

(the proximal end) of the wire in an area of 150x150 nm, and is going along the y-

direction, with the E field polarized along the z-direction. The flux spectra are measured 

on the other end, the distal end, of the nanowire.  Spectra for Ag nanowires of length 2, 4, 

6, 8, 10, and 12 µm are simulated. The results are shown in Fig. 3.3.   

 

The oscillations in Fig. 3.3 show that the nanowire behaves much like a resonating 

nanoFabry-Perot cavity, in which standing waves form.  Similar phenomenon have been 

observed in experiments [Ditlbacher et al, 2005], and simulations [Laroche & Girard, 

2006; Laroche & Vial, 2007].  Assuming that the nanowires act like Fabry-Perot cavities 

means that the spectra minima occur at the Febr-Perot resonances with the resonant 

wavelength nln /2 , where n  is an integer. Knowing the energy/frequency of the 

corresponding resonances, we can obtain the dispersion relation; this is shown as small 

black dots in Fig. 3.4.  As can be seen from Fig. 3.4, the simulation results are very close 

to the experimental values, as indicated by the crosses.  These are experimental results 

obtained by Ditlbacher et al (2005), where the Ag nanowires of 120 nm diameter and of 

various lengths are deposited on glass.  The experimental results have been normalized to 
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their vacuum values by dividing their wave vectors by effective refractive index number  

275.1n  ( 275.12/)(  airglassn  , with 25.2glass ).  My calculations agree well 

with the normalized experimental results, and it is clear from Fig. 3.4 that we can treat 

silver nanowires as Fabry-Perot resonators.   
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Fig. 3.3 Simulated flux spectra vs. vacuum wavelength for various wire lengths.  From 

the bottom to the top, the lengths are 2, 4, 6, 8, 10, and 12 µm respectively.  The spectra 

are offset for clarity. 
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Fig. 3.4 Photon energy vs. wave vector in the z-direction for a Ag nanowire.  Solid line: 

Light line in vacuum. Dotted line: surface plasmon frequency eVsp 5.3 .  Dashed line: 

nanosphere plasmon frequency eVmie 2.3 .  Small black dots: Dispersion relation 

calculated from the flux spectra, assuming that the spectra minima happen at Fabry-Perot 

resonances.  Big red squares: Dispersion relation derived directly from simulation results 

for an infinitely long nanowire.  Blue crosses: Normalized experimental results from 

Ditlbacher et al (2005). 
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We also want to find out whether these resonances are Fabry-Perot resonances of surface 

plasmons.  We have uses a direct way to simulate the surface plasmon dispersion relation 

of an infinitely long silver nanowire.  We simply simulate the field distribution of the 

propagating surface plasma wave, and take “snapshots/maps” of the field before the wave 

reaches the other end of the nanowire.  Direct measurement of the field maxima locations 

determines the wavelength sp  of SPs in an infinitely long wire.  From this we obtain the 

wave vector sp /2 .  Fig. 3.5 shows such an electric field distribution map along the 

silver nanowire surface at a given incident photon energy.  By repeating this procedure 

for a number of frequencies of incident light, I obtain the dispersion relation of an 

infinitely long Ag nanowire.  The results are shown in Fig. 3.4 as big red squares.  

 

The dispersion of surface plasmons on an infinitely long Ag wire, agrees with the results 

for Fabry-Perot resonances, so we can conclude that the Ag nanowire can indeed be 

viewed as Fabry-Perot resonator of surface plasmons.  Another convenient result, as 

indicated in Fig. 3.4, is that the limit of the SP frequency of Ag nanowire seems to be 

very close to eVsp 5.3 .  This is also what we can derive from our analytic results. In 

equation (2.6) from the previous chapter, when akz ,  
ak

akKakI
z

zz

1
)()( 10   and 

ak
akKakI

z
zz

1
)()( 01  .   This immediately implies 021  .  Given our Ag parameter, 

we have eVspwire 5.3 .  
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Fig. 3.5 Ez field distribution along a Ag nanowire-air surface. The nanowire is 8 µm in 

length and has a 50 nm radius. The incident light has photon energy of 2.8 ev, e.g. 

vacuum wavelength 442 nm. The measured SPP wavelength is 287 nm, so the SP wave 

number is calculated to be 21.89 (1/µm).  The colored electric field map across the Ag 

nanowire is shown to scale with the plot.  The color intensity is proportional to the Ez 

amplitude, and color represents the Ez sign (direction).   

 

 

p
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By using the same method of taking snapshots, and plotting along the direction 

perpendicular to the silver nanowire, the decay in the axial direction can be extracted.  

One example is shown in Fig. 3.6, where we plot the Ez field distribution across the 

nanowire.  Considering the lowest TM mode, one can follow the analytic method 

described in Chapter 2, and easily find that the field’s axial decay follows the modified 

Bessel function )(02 qBKEz   for a , where a  is the radius of the nanowire.  From 

the plot in Fig. 3.6, one can see that the field slowly decays with the distance from the 

wire to about half of its magnitude at 150 nm.  Our simulation results are in good 

agreement with the predictions of Takahara (1997). 
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Fig. 3.6 Ez field distribution along the middle line perpendicularly across the silver 

nanowire.  The electric field is normalized against the electric field at the surface, where 

the field is the strongest. The colored background shows the map of the Ez field across 

the silver nanowire. The color intensity is proportional to the Ez amplitude, and color 

represents the Ez sign (direction).   
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3.3 Experimental Studies 

 

Ag nanowire can guide the SPs that are excited by light for a long distance of a few 

microns, and then emit light at the end of the nanowire.  Our collaborators at Maryland 

University, John Fourkas’s group, use these nanowires to guide luminescence to induce 

polymerization in a photoresist at both the nanowire ends.  In addition, as shown in my 

simulation, the field of the SP wave extends well outside the wire along the surface as 

well. It is not hard to imagine that when another nanostructure is brought in the proximity 

of the nanowire, SPs can couple to the other nanostructure.  The leakage of guided light 

[Sanders et al, 2006; Fang et al, 2010] induces polymerization and “spot-welds” the 

nanostructure to the nanowire. By combining this technique with a method for solution-

based nanomanipulation [Ropp et al, 2010; Ropp et al, 2010], Fourkas et al demonstrate 

the high-precision fabrication of nanophotonic devices.  Our research helps to understand 

the procedure and predict more possible applications. 

 

Simulations show that the field enhancement occurs along the entire surface of the wire, 

and thus the surface field enhancement should polymerize a thin film of resist (tens of 

nanometers) along the wire surface.  This indeed happens in the experiment, and this thin 

film acts as “instant glue” that immobilizes the adjacent wires or quantum dots (QDs) to 

the wire.  Fig. 3.7 shows the simulation of the field distribution of a silver nanowire and 

different adjacent nanostructures.   
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Fig. 3.7 Plasmonic coupling: Ez field at different cross sections showing an 

electromagnetic wave of 800 nm (vacuum) wavelength propagating along a Ag nanowire 

of diameter 100 nm coupling optically to a), or a Ag nanosphere (a QD) of diameter 100 

nm;  b), another Ag nanowire that is parallel to the first nanowire;  c), another Ag 

nanowire that is perpendicular to the first nanowire.  The left end of the Ag nanowire is 

excited locally by an electromagnetic wave. The distance between the Ag nanowire and 

the adjacent nano-structure is 50 nm. The color intensity is proportional to the Ez 

amplitude, and color represents the Ez sign (direction).   
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As shown in Fig. 3.7, the SPs couple onto the adjacent nanostructures and enhance the 

electric field on the ends and their surfaces.  The pictures are only snapshots of the field 

distribution at a given time; more information is available from looking at the field 

evolution over time.  In the appendix, a series of pictures of the electric field distribution 

evolving over time clearly illustrates that the coupling between the silver nanowire and 

other nanostructures can be strong at times.   

 

Fourkas et al. utilize the “lightening-rod” and “leakage” effects, combined with solution-

based nanomanipulation [Ropp et al, 2010; Ropp et al, 2010], to fabricate nanophotonic 

devices of high precision; and their results are to be published soon [Nah et al].  The 

detailed experimental set-up and procedure can be found in their publications [Nah et al, 

2010; Nah et al, to be published].  The basic idea will be introduced briefly here.  Ag 

nanowires are deposited on substrates, and submerged in certain liquid photoresist 

solution.  A laser beam shines on the Ag nanowire in the solution.  Non-linear optical 

excitations happen and SPs are excited and propagate along the nanowire.  

Polymerization happens where SPs are, on the surface and the ends of the nanowire. 

Polymer forms a thin film around the cylindrical side and big clusters at both the 

proximal and distal ends.  SPs can couple onto adjacent metal nano-structures, for 

example, when another silver nanowire is deposited on (close to) the chosen nanowire, it 

can be glued or “welded” onto the original nanowire due to the polymerization.  One can 

easily imagine that we can build complicated structures following these procedures, 

depending on our ability to manipulate the “building bricks” (different nanostructures).  
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3.4 Conclusions 

 

Our simulation results demonstrate that the nanowires can be treated as efficient Fabry-

Perot resonators.  We proposed a way to directly simulate the plasmon dispersion relation 

of Ag nanowire, with a convenient result: spwire   .  

 

The decay of the field perpendicular to the Ag nanowire is also calculated, and simulated 

to be in agreement with the well-known results of Takahara et al (1997).  Besides 

demonstrating agreement with classic theory and experimental results, our research 

provides important information on plasmonics in one dimensional structures, and guides 

future research on the applications in many different fields such as: surface plasmon 

channeling, nano-transmission lines, nano-circuit building [Assefa et al, 2010], and 

nanostructure fabrication [Nah et al, 2010] etc.  The interaction between Ag nanowire 

and other nanostructures are also simulated and analyzed to serve as confirmation and 

guidance for experiments to build nanophotonic devices, experimental results of which 

have been submitted for publication [Nah et al, submitted].   
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Chapter 4  

Nanocoaxial waveguide 

 

In this chapter, we study propagation of electromagnetic waves in a single nanocoaxial 

waveguide for frequencies around and below the surface plasmon frequency.  We show, 

that for frequencies sufficiently lower than the surface plasmon frequency, the waveguide 

supports a plasmon polariton mode that resembles, and indeed reduces to the 

conventional transverse electromagnetic (TEM) mode of the conventional coaxial 

transmission line, known in radio technology.  Some of the results presented in this 

chapter are published [Yun et al, 2008]. 
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4.1 Introduction  

 

Commonly used optical waveguides, of which optical fiber is the most common one, 

have been used in several applications, including telecommunication and optical sensing 

[Midwinter, 1971; Monro et al, 2001; Okamato, 2000].  Conventional optical waveguides 

are usually limited by the diffraction limit: n2/~  [Lamprecht et al, 2001; Pile & 

Gramotnev, 2004], where  is the wavelength, and n  is the refraction index number of 

the waveguide.  This means the minimal size of a conventional waveguide is limited to

n2/~  , below which the waveguides have very poor, if any, ability to transmit light 

[Lee et al, 2000, Yariv & Yeh, 1984].   

 

There are many ways to transport light more efficiently; and to be able to transmit light in 

a large range of frequency (wavelength) is one of the challenges.  The idea of a 

nanocoaxial transmission line, known in the radio technology, is examined.  A coaxial 

cable (as shown previously in Fig. 2.1), constructed with a metal core, some dielectric 

cladding and a metal shell, is a good candidate to transmit TEM waves without having a 

cutoff frequency.  Actually coaxial cables are already in our daily life, transmitting 

electromagnetic signals for our radio, television, phone and internet.  Can we adapt the 

ideas from radio technology to the optical regime?  Will light behave the same way, 

given the complexity of the plasmonic phenomenon? 
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Recently, transmission of visible light through nanoscopic, coaxial transmission lines 

based on carbon nanotubes, has been demonstrated [Rybczynski et al, 2007].  The light 

propagates, without any frequency cut-off, along narrow channels much thinner than the 

light wavelength (λ), and over large distances much larger than  λ.  This resembles the 

transmission of radio-waves through the conventional coaxial cable [Pozar, 2005] via its 

basic mode, the transverse electromagnetic (TEM) wave, which does not possess any cut-

off frequency (i.e. it is gapless).   

 

In this chapter, we demonstrate theoretically, that a metallic nanocoax indeed supports a 

gapless polaritonic mode, the 0th order transverse magnetic (TM0) mode, which for 

frequencies sufficiently lower than the surface plasmon frequency of the metal, resembles, 

and for much smaller frequencies, reduces to the text-book TEM coax mode.  This allows 

for a “radio engineering” treatment of the light propagation through nanocoaxial 

transmission lines, involving, for example, an impedance analysis for the line matching 

and coupling [Pozar, 2005].  While the dispersion of the gapless polaritonic mode has 

been calculated by various authors such as Kushwahal and Djafari-Rouhani (2003, 2005), 

Ancey et al (2004), Baida et al (2006), Garcia and Bai (2006), and Takahara et al (1997), 

its detailed character in the low frequency limit has not been identified.   
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4.2 NanoCoax study  

 

4.2.1 Analytical approach  

 

We begin with a standard analytical approach, based on matching solutions of the 

Maxwell’s equations (in cylindrical coordinates) across the nanocoax interfaces.  This 

approach has been commonly used in the theory of fiber optic transmission lines.  In the 

case of the nanocoax, the difference is the presence of metallic regions, in which the 

dielectric function is a strong function of frequency, and below the plasma frequency 

becomes negative.  Optics of such systems, with “negative dielectrics”, were investigated 

in general by Takahara et al (1997), and a “gapless” mode was referred to as a “one 

dimensional (1D) optical wave”.  We call it a “TEM-like” mode.   

 

The geometry of the coaxial waveguide is shown in Fig. 2.1.  With the assumption that 

both conductors of the coaxial cable are made of the same, nonmagnetic metal described 

by the Drude dielectric function  


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A dielectric material, with dielectric constant 2 , fills the space between the conductors.  

All fields are assumed to be transverse, and ](exp[ tzki z  , where zk   is the z-

component of the wave vector.   

 

The details of solving the Maxwell’s equations analytically are given in the previous 

chapter.  The achieved dispersion relation equation is rewritten here 
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( 2.6) 

where   mzm ckk  22 / , 3,2,1m  , and nI , nK  are the n th-order modified Bessel  

functions of the first and the second kind, respectively.   

 

To evaluate the solutions to Equation (2.6), we chose a nanocoax made of silver, a low 

loss metal, which also is known to have negligible, non-local, quantum mechanical 

corrections [Wang & Kempa, 2007].  The Drude parameters of silver are evp 9.9 , 

ev04.0 , and 8.6b  [Wang & Kempa, 2007].   

 



71 
 

Results for other metals are similar if properly scaled in plasmon units (i.e. by expressing 

the frequency as p /  , and the damping parameter as p / ).  For simplicity, we also 

assume that 12  .  It is clear from Equation 2.6, that only ratios of dielectric functions 

are relevant, and thus changing the value of 2  is a simple simultaneous scaling of the 

parameters zk ,  , a/1  and b/1 .  We chose the following nanocoaxial dimensions: 

nma 50  and nmb 150 .   

 

Numerical solutions of Equation 2.6 are shown in Fig. 4.1 and represented as crosses.  

The mode is gapless, with a linear (acoustic) dispersion for small frequencies (see Fig. 

4.1).  In fact, it is a plasmon polariton, a hybrid of photons and plasmon excitation, 

exactly like its slot waveguide “cousin” [Wang & Kempa, 2007].  The imaginary part of 

zk , the inverse of which is the TEM-like mode propagation length L, is shown in Fig. 4.2.  

There is a plateau for frequencies above  , and well below the renormalized plasma 

frequency ( /8.3/ eVbpp   ), where )Im( xk ranges from 100005.0 nm  to 

10001.0 nm , which corresponds to )Im(/1 xkL   ranging from m20 to m10 .  This is 

in agreement with the experimental results of Rybczynski et al (2007).  For frequencies 

approaching p , )Im( xk rapidly increases (and so  L decreases).  This is characteristic of 

the plasmonic domain, and reflects increasing losses due to the EM energy entering the 

metal as plasma waves.  The inset in Fig. 4.2 shows the dispersion for very low (below γ) 

frequency domain.  The solid line is for the TEM-like mode, and the dashed curve is for 



72 
 

the TEM mode of a classic, macroscopic coaxial cable, given by the textbook formula 

[Pozar, 2005]  

   
 

 
  




 ab

ba

ab

ba
k

p

z /ln

/1/1
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/ln
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1
Im

0

0 



    (4.1) 

where   is the static conductivity of the metal, and   is the penetration depth.   

 

Fig. 4.1.  Dispersion of the selected nanocoax modes.   Frequency ω (real) vs real part of 

the wave vector kz.  “TEM-like” mode dispersion is represented by crosses (from 

Equation 2.6), and open circles (FDTD calculation).  The solid circles represent 

dispersion of the plasmonic gapped mode.   
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Fig. 4.2 Dispersion of the selected nanocoax modes.   Imaginary part of zk  vs   for the 

TEM-like mode (solid squares) obtained from Equation (2.6).  The inset is the zoomed-in 

section of this curve for very small  , with solid curve from Equation (2.6), and dashed 

from the formula for macroscopic coax (Equation 4.1).   
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From Fig. 4.2, it is clear that for eV03.0 , the dependence of the damping constant 

on frequencies for the “TEM-like” mode is indistinguishable from that for the classic 

TEM mode (given by Equation 4.1).  Simultaneously, in this frequency range, the 

dispersion of the “TEM-like” mode is purely “acoustic” (see Fig. 4.1).  There is a ~ 36% 

reduction of the slope of this “acoustic” section (i.e. reduced velocity), as compared with 

the light propagating in free space (velocity equal to speed of light). This renormalization 

of the light-line dispersion is well known [Baida et al, 2006; Takahara et al, 1997; Wang 

& Kempa, 2007].  The effect that the dispersion relation deviates from the “light line” is 

negligible for gap dimensions much larger than the penetration depth   of light into 

metal (conventional coax), but is significant in the nanocoax.  Apart from this 

renormalization of the mode velocity, the “TEM-like” mode dispersion relation (both for 

real and imaginary wave vector) in the acoustic section is identical to that for the classical 

TEM mode of the conventional coax.   

 

From Fig. 4.2, one can also see that in the low frequency range (roughly from 0 to 2 eV), 

the damping constant  )Im( zk  is small, below 10001.0 nm .  This translates into long 

propagation length of ~ 10 µm.  Similar phenomena were observed in nanostrip line 

[Dionne et al, 2006].  On the other hand, in the plasmonic regime, i.e. when the 

frequencies approaching the surface Plasmon frequency ~ 3.5 eV, the propagation length 

quickly reduces to ~ 1 µm.   
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4.2.2 Numerical approach  

 

To further develop this problem, we have performed computational simulations of the 

fields inside the nanocoax using the FDTD method, described in detail in the first chapter.  

This method allows us to calculate the mode structure of all modes for real zk .  Our 

results are consistent with the results obtained Baida et al (2006).  The circles in Fig. 4.1 

show the dispersion of the “TEM-like” mode obtained in our simulation, in perfect 

agreement with the solution of Eq. 4.1.  In addition, a branch of a higher, surface plasmon 

guided (gapped) mode [Baida et al, 2006] is also shown as solid circles in Fig. 4.1.   

 

Figure 4.3 shows color maps representing radial components of the electric field ( E ) 

inside the nanocoax for the two modes of Fig. 4.1.  On the left is for the “TEM-like” 

mode, and right for the gapped mode.  In each plot the color intensity is proportional to 

the field amplitude, and color change represents the field sign (direction) change.  Both 

maps are obtained for 1005.0  nmkz , so that according to Fig. 4.1, the “TEM-like” 

mode has frequency  /98.0 ev , and the gapped mode /4.3 ev .  The gapped mode is in 

the plasmonic domain, which results in a lot of penetration of fields into metal, clearly 

visible in Fig. 4.3.  In contrast, the fields of the low frequency “TEM-like” mode have a 

marginal penetration into metal.  The plot in Fig. 4.3 shows E  (solid line) and E  

(dashed line) vs   .  Since E  is essentially constant, it must be that  /1~E , which 

is precisely the form for the classical TEM mode for conventional coax [Pozar 2005].     



76 
 

 

 

Fig. 4.3 Distribution of the electric field E  inside the nanocoax for the two modes of 

Fig. 4.1.  The left distribution is for the “TEM-like” mode, and the right for the plasmonic 

gapped mode.  The color intensity is proportional to the field amplitude, and color 

represents the sign (field direction).  1005.0  nmkz .  The inset shows E  vs.    (solid 

line), and E vs.   (dashed line).   
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4.3 Conclusion  

 

In conclusion, we have investigated the propagation of electromagnetic waves in a 

coaxial nanowaveguide made of silver.  We show, that for frequencies sufficiently lower 

than the surface plasmon frequency, but still in the infrared or visible ranges, the 

waveguide supports a plasmon polariton mode, the “TEM-like” mode, that resembles and 

indeed reduces to the conventional TEM mode of the conventional, macroscopic coaxial 

transmission line, known in the radio technology.  This gapless mode is capable of 

transmitting electromagnetic waves with wavelengths far exceeding the coax diameter, 

and therefore allows for truly nanoscopic dimensions of the nanocoax transmitting light 

waves.  For light of lower energy (under ~3eV), the propagation length is on the 

micrometer scale, long enough for nanowires to be used in nanophotonic applications 

such as nanoplasmonic circuits.  Existence of this TEM-like mode was demonstrated 

experimentally in the work of Rybczynski et al (2007).  The nanocoax operating with the 

“TEM-like” mode will enable numerous potential applications in the nanooptics.   
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Chapter 5 

Plasmonics of thin film 

quasi-triangular nanoparticles 

 

In this chapter, we investigate optical responses of arrays of flat, quasi-triangular 

nanoparticles. Our simulationed optical absorption spectra show strong, particle-size 

dependent resonances, in excellent agreement with the experimental results. We identify 

those resonances as due to standing surface/edge plasmon-polariton waves.  Some of the 

work presented in this chapter is published [Yun et al, 2010].   
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5.1 Introduction 

 

Arrays of flat, quasi-triangular gold nano particles can be made by self-assembly sphere 

lithography (SSL) on a 20 nm thick gold film.  Our German collaborators (Patoka, P., 

Hilgendorff, M., and Giersig, M.) made these arrays, and the measured optical absorption 

spectra show strong, particle size dependent resonances.  In this chapter, we investigate 

and simulate the optical responses of these nano particle arrays and find that our 

simulation results in excellent agreement with the measured results.   We show that these 

structures have the characteristics of resonant electromagnetic spectra due to surface/edge 

plasmon resonances.   

 

5.2 Experiment 

 

The details of the SSL process can be found in our publication [Peng et al, 2010].  This 

technique employs a hexagonal array of removable polystyrene spheres (PS) self-

assembled on a sapphire substrate.  These spheres, in turn, act as a shadow mask for the 

subsequent metal evaporation [Kandulski, 2007; Koisirek et al 2004].  The resulting 

pattern is that of a honeycomb array of quasi-triangular thin film gold nanoparticles.  The 



80 
 

sphere diameters, and thus the dimensions of the nanoparticles can be controlled over a 

wide range.  The top panel of Fig. 5.1 are the SEM pictures, done by Dr. Ren’s group, 

showing SEM images of the substrate deposited with PS (left) and the quasi-triangles 

after deposition of metal and removel of PS (right).  The bottom panel of Fig. 5.1 is an 

atomic force microscope (AFM) image of such an array, with the colored scanning 

electron microscope (SEM) image of single ring of nanoparticles in the inset.  By using 

different PS diameters the overall planar scale of the array can be changed, including 

sizes of the individual nanoparticle.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 The top panel shows the SEM image of the substrate deposited with PS (left) and 

the quasi-triangles after deposition of metal and removel of PS (right).  The bottom image 

is an AFM image of an array of gold quasi-triangles, obtained by using SSL.  The inset 

shows SEM of a single ring of nanoparticles. 
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The experimental results, obtained by our German collaborators, of the absorbance over 

the spectra are shown in the top panel of Fig. 5.2.  The results are for structures obtained 

with sphere diameters a = 380, 540, 980, and 1710 nm (peaks from left to right, 

correspondingly).  The absorbance is in arbitrary units.  As we can see, each spectrum is 

dominated by a pronounced resonance peak, the position of which strongly depends on a.  

In addition to the main peaks, smaller peaks are also visible.   

 

 

Fig. 5.2 Absorbance (in arbitrary units) of quasi-triangle arrays measured (top), and 

simulated (bottom), for the SSL sphere diameters a = 380, 540, 980, and 1710 nm: peaks 

from left to right respectively.  Inset shows the FDTD unit cells of the array. 
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5.3 Simulations 

 

The simulation methods and tools we use are similar to the ones described in previous 

chapters.  To make a model of the nanostructure, we simulate making air holes on a thin 

gold film. By controlling the diameter of the holes, we are able to control the size of these 

quasi-triangular nanoparticles. We have tried the holes, corresponding to those removable 

PS in the experiments, of diameters a = 380, 540, 980, and 1710 nm. Since the diameter 

is, in the cases of this chapter, also defined as the distance from the center of one hole to 

that of the other, we basically achieve a set of quasi-triangles that are geometrically the 

same yet proportional in size.  Fig. 5.3 illustrates how the modeled structures look. 

 

 

Fig. 5.3 Illustration of the gold quasi-triangle structures used in the simulations, with hole 

diameters a = 380, 540, 980, and 1710 nm. 
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We simulate the absorbance of the structures illustrated in Fig. 5.3.  The results are show 

in the bottom panel of Fig. 5.2.  As one can see, the experiment and simulation results are 

in good agreement. 

 

According to Mie theory [Kempa, 2006], the surface plasmon of spherical metal 

nanoparticles is circumferentially quantized.  The electromagnetic response of metallic 

clusters of any shape can be viewed as due to circumferentially quantized surface 

plasmon waves, which requires that an integer multiple of the wavelength of the wave 

equals the nanoparticle circumference [Kolwas, 1998; Brechignac & Connerade, 1994].  

Fig. 1.4 in chapter 1 illustrates an easy way to understand this concept.  It is expected that 

the resonances we observed are also from a highly dispersive plasmon-polaritonic mode 

that is very similar to the resonances in the metallic clusters.   

 

To investigate further, we assume that these resonances (as well as the higher order 

resonances that are also visible in Fig. 5.2) can be viewed as circumferentially quantized 

surface plasmon waves.  We ignore for the moment particle-particle interactions.  Since 

each side of the quasi-triangular particle equals approximately 1/6 of the sphere 

circumferencea, so the circumference of the particle is ~ a /2.  Thus the 

circumferential quantization condition requires that this circumference be equal to an 

integer multiple of the wavelengths of the resonating surface/edge plasmon wave ( λp ), so 

we have 
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    a
a

l p 5.1
2


 ,              (1)  

where 3,2,1l  are for first (main peak), second, and third order resonances, 

respectively.  This relation gives straight line as shown in Fig. 5.4.  The absorbance peaks, 

shown in Fig. 5.2, seem to be quantized.  For a quantitative study, we plot, for each hole 

size, positions of the peaks max as a function of a.  The results are shown in Fig. 5.4.  

squares represent the main peaks (black for experiment, and white for the simulations, 

both from Fig. 5.2).  White circles represent simulation of the main peak position for a 

single quasi-triangle.  Correspondingly the secondary peaks maxima locations are shown 

in Fig. 5.4 as identical, but subsequently smaller symbols.   

 

The fact that the single quasi-triangle (circles) dependency is essentially identical to that 

for the array of triangles, shows that the inter-particle interactions play a secondary role 

(we will return to this point later).  For large a, all the data asymptotically approach 

straight lines la /5.1max   (l = 1, 2, 3).  In fact, the main peak data follow this 

dependency for 1l  rather well in the whole range of a.   
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Fig. 5.4 Absorbance peak positions max as a function of a.  Squares represent the main 

peaks (black for experiment, and white for the simulations).  White circles represent 

simulation of the main peak position for a single quasi-triangle.  For 3,2l the same 

symbols, except correspondingly smaller, are used.  Solid lines are generated by using 

la /5.1max   ( 3,2,1l ). 
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To get a better understanding of the physics, we plot the data another way as shown in 

Fig. 5.5.  It shows the resonating mode dispersion, plotted as max/12/  n  versus 

pq  /12/  , obtained by using Eq. (1)  to define  p  and the data shown in the inset to 

define  max  (wavelength at a peak), for the corresponding a  and l .  Here we use n  for 

the effective refractive index of the medium surrounding the nanoparticles (of order 1).   

 

Fig. 5.5 Dispersion of the resonating surface/edge plasmon in an array of quasi-triangle 

nanoparticles.  Black squares represent the experiment (all orders), and white squares the 

simulation.  The square sizes decrease for 3,2,1l , respectively.  The dashed line is the 

light line, and the solid line is a fit to the data.  The horizontal dashed line represents the 

Mie resonance for nanoparticles.  
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All data, for three orders (encoded as white squares of diminishing sizes for 3,2,1l , 

correspondingly), congregate around a single line (solid blue line), drawn here as a guide 

to the eye, confirming that all the resonances belong to a single mode.  In addition to the 

simulations that we have performed, based on the FDTD computational scheme, we also 

show the experimental data in the plot as black squares.  The agreement between 

simulations and experiment is clearly good, in particular regarding the peak maxima 

locations, most of which overlap, or at least fall within the standard deviation of the same 

order as that for the experimental results.  Even the line shape of the simulated spectra 

(the bottom panel in Fig. 5.2), the most difficult feature of the spectral response to 

reproduce, compares well to the corresponding experimental results (the top panel in Fig. 

5.2), except for the peak width, which for purely numerical reasons is larger for the 

simulated spectra [Note 1].  The dashed line in Fig. 5.5 represents the corresponding light 

line (photon dispersion):  nqc / ω, or simply p /1/1 max  .  Clearly, the 

surface/edge plasmon mode in our nanoparticles follows the light line for wavevectors 

1008.0  nmq .  This is the retarded, or polaritonic regime, in which the mode is a 

photon-plasmon hybrid (plasmon polariton) [Wang & Kempa, 2005].    

 

For large wavevectors 1008.0  nmq  (non-retarded regime), the dispersion deviates from 

the light line.  This is due to the presence of the Mie resonance [Mie, 1965; Vandenbem 

& Vigneron, 2005; Scharte et al, 2001], which results from the center of mass (collective 

motion of the electron gas) oscillating in the confining potential of the positive ions.  To 
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lowest order, this potential is parabolic, with the single electron eigenfrequency 0 .  It 

has been shown [Brey et al, 1989; Bakshi et al 1990], that in such circumstances the long 

wavelength, non-retarded response of the system, is dominated by a single resonance at 

0 s , regardless of the electron-electron interactions (generalized Kohn’s theorem 

[Kohn, 1961; Kempa, 2006]).  For a spherical nanoparticle made of a simple metal with 

bulk plasmon frequency p , the Mie resonance is 3/ nps    [Kempa, 2006].  For 

complex metals, such as Au or Ag, the resonant condition is modified and leads to n  

much closer to the corresponding bulk plasmon frequency [Brechignac & Connerade, 

1994].  The dotted horizontal line in Fig. 5.5 is the measured Mie resonance for ultra-

small Au particles [Note 2], in an environment with a refractive index that is similar to 

the one in our structures [Scaffardi & Tocho, 2006].  The saturation frequency for our 

quasi-triangles is of the same order.   

 

Now, we will go back to the discussion about the difference between quasi-triangle arrays 

and a single quasi-triangle.  Fig. 5.6 compares the dispersion for the arrays to that from a 

single quasi-triangle.  In the retarded range, both dispersions follow closely the light line, 

showing that the inter-particle interaction is negligible in this range.  In the non-retarded 

range, in contrast to the array dispersion, the dispersion for a single quasi-triangle follows 

the light line for all q’s available here.  This shows that the Mie resonance frequency for 

an array is lower than that for a single particle from this array.   This inter-particle effect 

has been predicted in Ref.  [Kempa, 2006], and is the result of the Coulomb contribution 
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of ions in the neighboring nanoparticles, which softens the parabolic confinement inside a 

particle, and thus reduces 0  and consequently s , for arrays of nanoparticles. 

 

 

Fig. 5.6 Comparison of the simulated dispersions for arrays (white squares), and for a 

single quasi-triangle (white circles).  The dashed line is the light line, and the solid line is 

a fit to the array data.  The simulated color maps of the field distribution in the arrays, for 

2,1l  resonances, are also shown as insets.   
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Finally, we show the simulated electric field distributions in the nanoparticles.  The maps 

of the in-plane, horizontal electric field component for the main peak ( 1l ), and a higher 

order resonance ( 2l ), are shown as insets in Fig. 5.6.   These field patterns are 

generated by a planar, horizontally polarized electromagnetic wave propagating in the 

direction perpendicular to the substrate surface.  These field patterns are in good 

agreement with those observed experimentally in the Ag triangular nanoparticles in the 

work of Nelayah et al [2009], including tip localization of the electric field for the first 

order peak (the lightning rod effect), and a second order pattern (right) involving maxima 

located at the edges of the triangle between tips [Kirkland et al, 1990; Wang et al , 1999; 

Johnson et al, 2002; Jin et al, 2003; Chen et al, 2005; Lofton & Sigmund, 2005; Sanchez-

Iglesias et al, 2006] [footnote: Note, that Au is similar to Ag.]. 

 

5.4 Conclusion 

 

In conclusion, we have investigated the optical response of arrays of quasi-triangular gold 

nanoparticles, with different sizes, made by the self-assembly sphere lithography.  Our 

simulated results are in excellent agreement with the experiment, and show that the 

physics is due to a surface/edge plasmon polariton resonating in the nanoparticles.   



91 
 

 

 

Chapter 6 

Plasmonics of a perforated 

metallic film 

 

In the previous chapter, I have studied how the optical responses of the quasi-triangle 

arrays change, with the holes’ diameter and the “center to center” distance changing at 

the same time.   Here we study how the optical response changes when we change the 

holes’ diameter while fixing the “center to center distance” distance.   The structure 

changes from a solid film to an array of holes, to an array of islands (as shown in Fig. 
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6.1).  This transition resembles a percolation problem. The work in this chapter is 

partially published [Yun et al, 2010]. 

 

6.1 Introduction 

 

In this chapter, we study interaction of the electromagnetic radiation with a series of thin 

film periodic nanostructures evolving from holes to islands.  We provide such a study 

based on a series of nanostructures, in the plasmonic frequency range. We show, through 

model calculations and simulations, together with experimental results, that the responses 

(polaritonic effects) of these structures evolve accordingly, with two topologically 

distinct spectral types for holes and islands.  We find also, that the response at the 

transitional pattern is singular.  We show that the corresponding effective dielectric 

function follows the critical behavior predicted by the percolation theory, and thus the 

hole-to-island structural evolution in this series is a topological analog of the percolation 

problem, with the percolation threshold at the transitional pattern. 

 

Percolation theory studies the connected clusters in a random graph.  Percolation theory 

was first introduced into a physics problem by Broadbent and Hammerskey (1957) as 

below:  Imagine some liquid is being poured on top a piece of amorphous material, the 

question is will the liquid make its way from the top and drip out of the bottom?  The 
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main idea of percolation theory is to find a percolation threshold, often being defined as 

the critical probability of the “degree of connectivity” [Zalen, 1983] or a parameter value 

at which the phase transition takes place [Kesten, 2006].  Below the threshold, the system 

is viewed as isolated holes; and above it, the system becomes “connected”.  The “global 

behavior” is very different on either side [Kesten, 2006]; the percolation threshold is the 

point where the phase transition or critical phenomenon happens.  

 

Percolation theory has been used to explain the physical behavior in heterogeneous 

systems, such as forest fires [Drossel & Schwabl, 1992], the refill of an oil well [King et 

al, 2001; Stauffer, 2001], and electric resistance of a mixture of conductor and resister 

[Grimmet, 1999].  In this chapter, we study the optical response of nanostructure 

transitions and find it helpful to use percolation theory. 

 

6.2 Simulations  

 

Let us consider making a series of hexagonal arrays of circular air holes in a thin metallic 

film.  The hole diameter d  changes from 0   to a , and beyond, while the lattice constant 

(nearest neighbor inter-hole distance) remains fixed at a  throughout the series.  The unit 

cells of the arrays are shown in Fig. 6.1.  The pattern changes gradually from the solid 
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film, to hexagonal arrays of circular holes of increasing diameter, to honeycomb arrays of 

disconnected quasi-triangular metallic islands (nanoparticles).  Beginning from pattern 1 

(solid film), the density of holes within the continuous metallic film grows until, at the 

transitional pattern 8 (d = a), the continuity of the film is interrupted. 

 

 

 

Fig. 6.1 The simulated structure: 20nm Au deposited on Sapphire.  The unit cell is 470 

nm x 814nm.  Air holes are drilled in HCP symmetry.  The lattice constant (the distance 

between two adjacent holes) of the hexagonal array of spheres a = 470 nm.  Hole 

diameters are d = 0, 150, 250, 350, 420, 450, 460, 465, 470, 472, 480, 490 nm for 

patterns 1-12 respectively.  

 

We chose Au as the metal, and the Lorentzian expansion of the Au dielectric function 

used in the simulations was fitted to the experimental data given in Ref. [Johnson & 

Christy, 1972].  The film thickness is chosen to be 20 nm, and the lattice period a = 470 

nm.  The substrate is glass.  We begin with simulations of the electromagnetic response 

of these nanostructures based on the finite difference time domain (FDTD) computational 

scheme described in previous chapters.  The transmittance spectra of each structure is 

calculated and shown below in Fig. 6.2.  The number (1 to 12) identifies the 
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corresponding unit cells of the nanostructures shown in Fig. 6.1, and also attached next to 

the spectra for convenience. 

 

 

 

 

Fig. 6.2 FDTD simulated transmittance spectra (Transmittance vs  ) for the twelve 

nanostructures.  Pattern numbers (1 to12), and the unit cells of the corresponding pattern 

arrays are shown next to each corresponding spectrum. The unit cell for each pattern 

(from 1 to 12) is shown next to its transmittance spectra respectively.  
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In addition to the simulation, the collaborating team member has made and took 

measurements with selected structures from our series: the solid film (pattern 1), an array 

of holes (pattern 3), and array of nanoparticles (pattern 12).  To make the structures self-

assembly lithography was employed; the details were described in previous chapter. Fig. 

5.1, also the inset of Fig. 6.3, shows SEM images of an array of polystyrene spheres (a), 

and the resulting quasi-triangle metallic island array (b).  All patterns in the series can be 

made by thermal processing and reactive ion etching [Ctistis et al, 2007].  The 

experimental results for the selected patterns 12, 3 and 1 are shown as red dashed lines in 

Fig. 6.2, with their simulation counterparts, respectively. The results for the structure 

corresponding to pattern 3 have been published earlier [Ctistis et al, 2007].     

 

These experimental results are also compared directly to the corresponding FDTD 

simulations, shown as solid lines in Figs. 6.3 (a), (b), and (c).  The agreement between the 

experimental results and simulations (no adjustable parameters) is clearly good.  The 

right panel, the plots (d), (e) and (f) in Fig. 6.3, are the results of theoretical calculation.  

The unit is arbitrary chosen for the theoretical model, and the shapes and key figures of 

the plots are to be compared with experimental and simulation results.  The details of the 

theoretical calculation will be given in the following context. 
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Fig. 6.3 (Color online) Left panel: FDTD simulated (solid line) and measured (open 

squares) transmittance spectra for selected patterns: (a), (b), and (c) for patterns 12, 3, and 

1, respectively.  Right panel: calculated ε [from Eqs. (1) and (2), thin black lines] and the 

corresponding transmittance T [from Eq. (4), bold red line] vs ω, for patterns 12 (d), 3 (e), 

and 1 (f).  Real ε (ω) in (d), (e), (f) scales from −2 ε b to 2 ε b.  Inset in Fig. 6.3 (a): SEM 

images of an hcp polystyrene sphere array (left image), and the resulting honeycomb 

island array (right image), bigger pictures are shown as Fig. 5.1.   
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6.3 Theory 

 

The characteristics of these spectra can be easily understood by employing a simple, 

effective medium model [Kempa, 2006], based on the generalized Kohn’s Theorem 

[Kohn, 1961].  The theory shows that an effective dielectric function of a system of 

isolated nanostructures is given by a sum of Lorentzian terms, each controlled by the 

single electron confinement in a specific nanostructure, produced by a uniform positive 

ionic charge.  In the simplest case one obtains 
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where b is the background dielectric constant; l  the losses;   the frequency of the 

electromagnetic radiation; and 1  is the eigenfrequency of the confining potential (Mie 

resonance) [Kempa, 2006].  The corresponding dielectric function for holes is 
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.                          (6.2) 

The derivation is done by following the formalism in the work of Kempa (2006), and 

after noticing that the problem can be reduced to that of an array of complementary 

negatively charged islands, which attract positive effective carriers (“holes”) instead 

electrons.  This leads to the third term in Eq. 6.2, with 2p  and 2  of the same order as 

1p  and 1 , respectively.  The second term in Eq. 6.2 (the Drude term), reflects existence 
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of unconfined electrons, which move freely along the structure (nonzero effective static 

conductivity eff ).  A simple analysis shows that leffp  42
0  , with the effective static 

conductivity 

   )(~ daeff   
,      (6.3) 

which vanishes at the transitional pattern ( ad  ).  Equations 6.1 and 6.2, which can be 

justified by a variety of other methods, are consistent with the extracted dielectric 

functions for various heterogeneous metal-dielectric systems, including composites 

[Kempa et al, 2005], and meta-materials [Zentgraf et al, 2007; Chen et al, 2007]. 

 

With the dielectric functions defined, the transmittance formula [Heavens, 1965] for the 

effective thin film (assuming for simplicity 0l ) is 

    
222 )](1[1

1

 
T  ,         (6.4) 

where cd 2/   ( 122   ), and c  is the speed of light.   

 

The dielectric functions (given by Equations 6.1 and 6.2, with arbitrarily chosen 

parameters), and the corresponding transmittances for the selected patterns are shown on 

the right panel in Fig. 6.3.  There are two, topologically distinct spectral forms: first for 

islands Fig. 6.3 (d), and the second one for the holes Fig. 6.3 (e).  The solid film form of 

Fig. 6.3 (f) belongs to the second type, but without the resonance.  For the second type 

structures 2~ T  for 0 , according to Eq. 6.4.  This is in full qualitative agreement 
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with spectral features seen in the simulations and experiment in the corresponding Fig. 

6.3 (a), (b) and (c). 

 

Simulations for all patterns reveal the critical behavior of the response, and of the 

dielectric function, at the transitional pattern.  This is clearly demonstrated in Fig. 6.4, 

which shows positions of the minima of transmittance for different d.  The inset in Fig. 

6.4 shows the data at the transitional pattern (for *ad  ), plotted as )ln( 2  vs 

*)/1ln( ad , where *a = 464.5nm a  [14].  From the fit we find that 

    071.0
2 )*(~ da   .               (6.5) 

This is not surprising, since the evolution of the structures in the series indeed resembles 

that of the evolution of heterogeneous phases (e.g. conducting and dielectric) in the 

percolation problem, where critical phenomena are expected at the percolation threshold 

[Bergman & Imry, 1977].   

 

To demonstrate this further, we calculate the low frequency limit of Eq. 6.2 
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where the effective dielectric constant is 

  2
22

2

2
2 ~  




 p
beff  .       (6.7) 

It has been shown in Ref.  [Bergman & Imry, 1977] that  )1(|~|   ceff pp , where p  is 

the conducting phase fraction, and ppc   is the conducting phase fraction at the 
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percolation threshold.  Combining this with Eq. 6.7, and noticing that *~ apc  and 

dp ~ , yields 

  2/)1(
2 |*~|   da  ,      (6.8) 

which is in agreement with Eq. 6.5, provided that 071.02/)1(   .  Furthermore, the 

theory of Bergman & Imry [1977] shows that  |~| ppceff  , and therefore because of 

Eq. 6.3 1 , which leads to 88.0 , and 14.1 .  These values are in the range of 

the critical exponents observed in the systems with random percolation.  For example, 

parameters obtained from the recent experiments with the 3223 / OAlSiCTi  hybrids are 

919.0 , and 1  [Wu et al, 2007].  Thus, we show that the evolution of structures 

not only resembles, but in fact is a topological analog of the percolation problem, with 

the transitional pattern representing the percolation threshold.  Similar effects have been 

studied in the Babinet series by Kempa [2010]. 

 

The hypersensitivity of response at the transitional pattern can lead to other exotic optical 

effects, as was already envisioned in ref [Bergman & Imry, 1977], as well as it can be 

exploited in applications.  A slight modification of d at the percolation threshold 

(transitional pattern), for example by compression, temperature variation, defect 

formation due to adsorbed biological molecules, etc., will drastically change the 

transparency of the structure at the frequency corresponding to the transmission 

minimum.  Thus, various sensors and switches can be based on this effect. 

 



102 
 

 

Fig.  6.4 (Color online) Simulated positions (black squares connected by solid lines) of 

the Transmittance minima positions vs. the diameter of the holes d.  Red triangles are the 

experimental results of Transmittance minima positions.  Inset: )ln( 2  vs. *)/1ln( ad  

below the threshold (for d < a*).  The extracted slope is 0.071. 
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6.4 Conclusion 

 

In conclusion, using model calculations and simulations, together with experimental 

results, we show that an electromagnetic response of a series of thin film periodic 

nanostructures, which evolve from small diameter holes into island arrays, follows the 

geometric evolution.  Two topologically distinct spectral types have been identified; one 

for holes and one for islands.  We demonstrate that the critical behavior of the effective 

dielectric function agrees with that predicted by the percolation theory, and thus conclude 

that the hole-to-island structural evolution in this series is a topological analog of the 

percolation problem, with the percolation threshold at the transitional pattern.  These 

percolation transitions based on structural changes can help in designing light switches, 

light filters and other optical devices.  
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Chapter 7  

Multicore nanocoax and its 

solar cell application 

 

In the previous chapter, we have shown that electromagnetic waves can propagate in the 

dielectric cladding of a coax cable as a TEM mode, which is low loss and broadband (i.e.  

no cut-off frequency).   Light can also propagate along a multicore coax configuration 

(details described below), and in this chapter, we will show how this can be used in a new 

generation of solar cell.  Some of the work is published [Naughton et al., 2010; Paudel et 

al., 2010]  
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7.1 Introduction  

 

As shown in Chapter 4, light can propagate, via a TEM-like mode, multi-wavelength 

distances along a thin nanocoaxial cable with radial dimensions much shorter than the 

wavelength.  Such a TEM mode can also propagate in a so-called multicore coax 

configuration, in which more than one coaxial core is present [Pozar, 2005].   

 

Multi core coax
(no cut off frequency, broadband propagation)

pillar arrays

 

Fig. 7.1  Illustration of the transition from one nanocoaxial cable to the multicore coax 

configuration.   
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As the number of pillars in an array goes to infinity, i.e. the area of the cross section 

becomes very big (> wavelength), a conventional outer coax electrode is not fornally 

needed.   Fig. 7.1 illustrates the transition of this configuration design.   With the long 

pillars standing closely parallel to each other, even without an outer electrode, the 

structure can still allow a TEM mode to propagate long distance into the pillars.   

 

7.2 Light Propagation  

 

The main reason for us to study the multi-core coax configuration is the fact that it is 

proposed as a basis for novel solar cells.  A photovoltaic absorber material was proposed 

to be deposited on the surface of the pillars, and the multi-core coax would expose this 

absorber to light along the pillars.  The remaining part of this Chapter presents the 

improvement processes attempting to maximize this absorption. 

 

We use MEEP to confirm light propagation and observe the detailed field distribution in 

and around a structure, to optimize light penetration in the array geometry such as pillar 

length, spacing, etc.  The parameters are defined as described earlier, and various 

dimension parameters have been simulated.  Some initial parameters were used as a start, 

and Fig. 7.2 is an example. 
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Fig. 7.2 Electric field x-component (Ex) in and around a simple square array of Ag 

nanopillars (shown are three unit cells of the array).  The color intensity is proportional to 

the field amplitude, and color represents the sign (field direction).   
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Fig. 7.2 shows a series of simulations of the electric field in a single unit cell of a simple 

square array of Ag nanopillars, in various circumstances of medium, coating and 

substrate.  The different field maps give us a basic sense of where the light goes and how 

the energy (field) is distributed inside the nanostructures. The incident light source is a 

plane wave excited from a plane located on the top of the structure.  The incident light is 

of 500 nm wavelength and Ex-polarized.  The light propagates along the z-direction 

down through the nanopillars, and the field map shows the detected Ex field in the given 

plane cut though the center of the pillars. (a) shows the field distribution in air.  (b) has 

nanopillars in a square array made with Ag, each of 1 µm length and 100 nm diameter.  

In (c), the Ag pillars are embedded in ITO.  In (d), the Ag pillars are coated with 20 nm 

Si on their surfaces.  Then (e) shows that the nanopillars are coated with 20 nm Si first 

and then imbedded in ITO; and finally in (f), another layer of Si substrate is added to the 

bottom of the structure in (e). The color code and intensities are consistent and relative 

within each individual nanostructure.    

 

In Fig. 7.2 (a), one sees how a plane wave propagates in the vacuum.  In Fig 7.2 (b), 

despite the formation of some SPs on the surface of the Ag pillars, the light propagates 

through the nanopillar array without field distortions or much decrease in intensity.  Light 

essentially just goes right through these nanopillars.  This information tells us that even 

though this nanostructure may not be ideal for high absorbance, it can serve as a good 

transmission line.  Then in Fig. 7.2 (c), when the nanopillar array is embedded in ITO, 

there are SPs formed and some Ex field distortion but only inside the array.  There is also 
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some reduction in the transmitted light.  In Fig. 7.2 (d), when the nanopillars are each 

coated with 20 nm Si on the surface, but not embedded in ITO, the Ex field is shown with 

different SPs forming in the Si coating, and significantly damped along the pillars in the 

Si coating.  While some of the field still manages to propagate through the nanopillar 

array.  Then in Fig. 7.2 (e), the nanopillars are each coated with 20 nm Si on the surface 

first and then embedded in ITO. We can see that still different SPs are forming, and the 

distortion of the Ex field is pronounced and the Ex field pattern is quite complicated.  

Some, yet less than in (d), light propagates through the array.  Lastly, Fig. 7.2 (f) shows 

the field map for the same structure as in Fig. 7.2 (e) except it has a Si substrate at the 

bottom of the nanopillars. The field maps are similar for the last two, but in Fig. 7.2 (f), 

the distortion of the Ex field seems to continue outside the array, and very little light 

propagates though the array because of the Si substrate at the bottom.  We can conclude 

that the structure in Fig 7.2 (f) has high absorbance and may be a good candidate for the 

solar cell design. 

 

After we get basic information about how the field is distributed in the nanopillar array, 

we started to investigate more complicated structures: the ones that can be experimentally 

made and are inspected to be used in the experimental nanostructure design. Fig. 7.3 

shows the Ex field around amorphous silicon (a-Si) coated Ag nanopillars in a 

honeycomb array.  Various directional cuts through the unit cell are used to illustrate the 

field variation.   
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Fig. 7.3 Radial component of the electric field around a-Si-coated Ag nanopillars in a 

honeycomb array; shown is only one unit cell of the array.  The color intensity is 

proportional to the field amplitude, and color represents the sign (field direction).   

 

As one can see in the field map, this simulation shows that the honeycomb geometry has 

a large back reflection of light from the flat bottom sections of the structure; this causes 

an undesired, relatively large reflectance from the structure.  Similar simulation for an 

HCP structure (also denoted as triangle symmetry in the figures) is shown in Fig. 7.4 and 

shows a much more efficient light distribution and attenuation in the absorber.   
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Fig. 7.4 Radial component of the electric field around aSi-coated nanopillars in an HCP 

array; shown is only one unit cell of the array.  The color intensity is proportional to the 

field amplitude, and color represents the sign (field direction).   

 

In addition to the vertical field analysis, we have also performed the horizontal field 

mapping.  Fig. 7.5 shows an example of electric field maps at three vertical heights 

relative to pillar tips: 500 nm above, at, and 500 nm below, for a honeycomb array.  The 

incident light has wavelength of 500 nm. 
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Fig. 7.5 Horizontal maps of the electric field at three heights relative to nanopillar tips: 

500 nm above (left), at the tips (middle), and 500 nm below the tips.  The color intensity 

is proportional to the field amplitude, and color represents the sign (field direction).   

 

From reading the field maps, we have been able to achieve basic information about how 

good each structure is at absorbing the electromagnetic waves.  A series of simulations 

were then performed to select the best array structure, thicknesses of all relevant layers of 

metals, transparent conducting oxide (TCO) and the absorber.  Additionally, anti-

reflection schemes, phase and space randomization, pillar shape modifications, etc. were 

also studied.  We have determined that the optimal structure is the HCP array of Ag 

nanopillars.  In the array, each pillar should be ~2 µm long, and have diameter of at most 

200 nm.  In the normal configuration, pillar length of 1 µm is sufficient, but efficient 

pillar arrangements are needed (e.g. HCP is better than honeycomb).   Fig. 7.5 shows, 
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that the nanopillar array structure traps light well, in spite of the thin absorber.  This 

shows the potential of the nanopillar array architecture, which can be used as an ultimate 

light trapping scheme.   

 

Other metals or metallic materials can also be used in place of Ag at the core of the 

coaxial cable.  Multi-walled carbon nanotubes have been used in simulations, and the 

results are published [Paudel, 2011] and also shown below in Fig. 7.6.  A plane wave of 

500 nm wavelength propagates from vacuum toward the array (from the top), with the 

electric field polarized in the horizontal direction.  The area structure is honeycomb, the 

nanopillars length is set at 1500 nm, and the closest inter-pillar distance is 870 nm.  Color 

maps show the in-plane component of the electric field in the vicinity of neighboring 

coaxial wires, with top and side views.  Propagation of the waves, transverse 

electromagnetic (TEM)-like mode (as discussed in Chapter 4), along the coax is clearly 

visible.  Simulations for other frequencies show similar patterns. The action of the a-Si 

absorber is clearly visible, with electric field strongly damped toward the base of the 

coaxes inside the absorber and in between the closely spaced coaxes; this demonstrates 

the efficiency of the absorption along the long optical direction. However, it is also clear 

that a large fraction of the light energy propagates in the voids of the honeycomb 

structure (left and right sides of lower image), and escapes absorption. 
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Fig. 7.6 simulation of light penetration into nanopillar array, with top and side views. The 

dotted lines are the places to cut to get the views of the other plot. Plotted is the 

horizontal component of the electric field strength with vacuum wavelength of λ=500 nm.  

The color intensity is proportional to the field amplitude, and color represents the sign 

(field direction).  The nanopillar length is 1.5 mm, and the closest inter-pillar distance is 

0.87 mm. 
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7.3 Total absorbance of model solar 

cells 

 

Absorbance is an important parameter of a nanodevice.   The top panel of Fig. 7.7 

compares the experimental results of the total absorbance of three nanostructural a-Si 

absorber samples [Courtesy of Solasta, Inc.].  The black thin line is the planar sample, 

with 300 nm thick a-Si grown on a Ag coated Si wafer.  The blue thick line is 300 nm 

thick a-Si grown on a Ag coated textured-ZnO substrate.  The red line is the hexagonal 

closed packed (HCP) Si nanopillar array.  The array was subsequently coated with an 50 

nm conformal film of metal (Ti+Au+Ag) and a-Si (~200nm on pillar tops and in between 

pillars; ~150 nm on the pillar walls).  SEM image of a typical HCP array with L = 900nm 

is shown in the bottom panel of Fig. 7.7.   

 

By calculating the flux, we conduct the flux analysis to simulate the nanopillar array 

absorbance.   We have designed nanopillar arrays with lattice constant (center of a pillar 

to center of the adjacent one), denoted as L, ranging from 900 to 1500 nm.  We have 

started with making gradual adjustments to the film thickness and the computational 

model of the dielectric functions of a-Si so that the simulated result for the planar 

structure is within 5% of the measured values (black line in Fig. 7.7) at each frequency.  

The details can be referred to the parameter section in Chapter 2. 
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Fig. 7.7 Top: Experimental total absorbance of planar (black line), textured planar (blue 

line) and nanopillar (red line) samples.  Bottom: SEM image of an HCP array of a Si 

nanopillar array. 



117 
 

 

Fig. 7.8 Measured (red) and simulated (blue) total absorbances of the nanopillar arrays 

with L = 900 nm (top) and L= 1500 nm (bottom). 



118 
 

The total absorbance is the absorbance of the light into the total structures, accounting for 

light energy loss into a-Si and Ag.  Measured and simulated total absorbance of 

nanopillar arrays with L = 900 nm and L = 1500 nm are plotted in Fig. 7.8.  Note, that 

while the thickness of the a-Si (i) film for the array with L = 900 nm is about 200 nm (on 

pillar tops, and in between nanopillars), and about 150 nm on the pillar walls; It is much 

thicker for the L = 1500 nm array: ~ 300 nm (on pillar tops, and in between nanopillars), 

~ 200 nm on the pillar walls.  The agreement between the first principle simulations and 

experiment is very good.  The simulated integrated absorbance is well within 10% of the 

measured one, in the frequency range of interest.  

 

7.4 More examples 

 

A nanopillar array is a transmission line for light, and if properly designed, light will 

propagate vertically until absorbed by the absorber (or maybe on the way of returning 

after reflecting from the bottom).  In order to improve the total absorbance, we have tried 

different ways.  In addition to trying different parameters to find an optimal geometric 

structure, we also simulate the application of an anti-reflection coating (ARC) on top of 

the whole structure.  Indeed, this concept works very well, as shown in Fig. 7.9.  It shows 

the simulated structure of the L= 900 nm pillar array and the computed absorbance, 

without and with the anti-reflection coating.  We choose ITO to be the ARC material to 
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put on the outer-layer of Si.  We calculate the total absorbance for the nanostructure with 

ARC coating, and we try the ARC coating with different thickness, layering places (on 

Ag or Si) and with a thin Au layer. We found significant improvement of the absorbance 

with the ARC (ITO) coating of 70 nm on top of the Si of the whole structure.   

 

 

 

Fig. 7.9 Simulated total absorbance of the nanopillar array (top) with L = 900 nm: with 

ARC (red), and without ARC (blue).    
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There are technological difficulties with the conformal deposition of films on high aspect 

structures, in particular with vertical surfaces.  One of the potential problems is cavity 

formation, when a top TCO film is deposited on long nanopillar structures.  Fig. 7.10 

shows the FIB image of such cavities forming in between the nanopillars.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.10 FIB image of the nanopillar array showing formation of micro-cavities in 

between the nanopillars after deposition of the top TCO (ZnO) layer.  (Courtesy of 

Solasta, Inc., and G. McMahon, Boston College) 

 

We simulate the electric field distribution in such a cavity area as shown in Fig. 7.11.  

Micro cavities do not prevent light from entering the a-Si film, and thus they are only an 
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electrical contact problem, not optical.  This is further confirmed by flux simulations (not 

shown), which show only minor modifications on the absorbance spectrum.   

 

 

 

Fig. 7.11 Simulation of the electric field in the micro-cavities.  The color intensity is 

proportional to the field amplitude, and color represents the sign (field direction).   

 

We have also investigated the possibility of changing the pillar shape into a conical one, 

which is much easier to deposit films on.  Fig. 7.12 shows that such a shape not only does 

not prevent the coax action, but in fact somewhat enhances it.  Both of these simulations 

should have provided guideline for the future design of solar cells.  



122 
 

 

 

 

Fig. 7.12 Simulation of absorbance (red line) in the conical pillar array, with pitch of 900 

nm.   Pillar height 2 µm, a-Si thickness on the top and bottom (200 nm), on the wall (100 

nm on top, 150 nm on the bottom).  Black line is for the corresponding cylindrical pillar 

array.  The color intensity is proportional to the field amplitude, and color represents the 

sign (field direction).   
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7.5 Conclusions 

 

We have simulated the optical characteristics, mainly the absorbance, of many 

nanostructures starting from nanopillars. We started with known experimental structures 

and results, and employed accurate parameters and dielectric functions are used in the 

simulations.  We were able to find an optimal structure to give similar results as the 

measured ones, as shown in Fig 7.8.  Then after numerous trials, we proposed a 

nanostructure (as shown in Fig. 7.9) with certain ARC coating, to be used in the next 

version of solar cell design. We believe this new scheme is going to help improve the 

total efficiency of the solar cells. We also simulated a major structural imperfection 

caused by technology constraints, and proved that it does not affect the ability to absorb 

the light.  Another possible structure, which is easier to make experimentally, is 

simulated and proven to give a more even and high absorbance.   
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Chapter 8  

Summary and Final remarks 

 

This dissertation studied a few new and interesting projects in the area of plasmonics, a 

field to study the optical effects of nanostructures based on surface plasmons.   

 

We studied the wire transmission line, and we obtained the plasmon dispersion relation of 

silver nanowire from the simulations, confirming that nanowires can be treated as Fabry-

Perot resonators of SPs.  Some preliminary research on the interaction/coupling between 

silver nanowire and other nanostructures were also done.   
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We investigated in detail a silver coaxial nanowaveguide and show that the waveguide 

supports a plasmon polariton mode, the “TEM-like” mode, at low frequency.  This 

gapless mode show promises of being capable of transmitting sub-wavelength 

electromagnetic waves for long distances.   

 

We simulated the optical characteristics of the multi-core coaxial cable, which can be 

used as a basis for novel solar cells. These studies determined configurations that 

maximize cell performance. 

 

We investigated the optical response of arrays of quasi-triangular gold nanoparticles of 

different sizes, and show that the physics was due to a surface/edge plasmon resonance in 

these nanoparticles.   

 

We also investigated the electromagnetic responses of a series of thin film periodic 

nanostructures, which evolve from small diameter holes into island arrays, and showed 

that the critical behavior of the effective dielectric function agreed with that predicted by 

percolation theory.  

 

All the work in this dissertation provides important information of the plasmonics in 

nanostructures, and guides future research on numerous potential applications in the 

nano-optics. 
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Notes: 

 

Note 1: The Lorentzian expansion of the Au dielectric function used in the simulations 
was fitted to the experimental data given in P. B. Johnson and R. W. Christy, Phys. Rev. 
B 6, 4370 (1972). However to aid the code convergence, the imaginary part was 
increased, which leads to broader resonance peaks (inset in Fig. 3), as compared to those 
from the experiment (inset in Fig. 2). This purely numerical adjustment did not affect 
significantly the peak maxima locations, the main feature studied in this work.  

 

Note 2: This assures the non-retarded limit at the frequencies of interest. 

 

Note 3: This small threshold adjustment is numerical and due to the finite size of the 
mesh (5 nm) used in the FDTD simulations. 
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Appendix: 

 The file code for the 4th figure is attached as below as an example, among 

hundrends of MEEP control files that have been run for this dissertation. 

;square symmetry 

;carbon nanotube coaxial 

 

(define-param fcen 0.2) 

(define-param sx 4) 

(define-param sy 4) 

(define-param sz 21) 

(define-param lz 10) 

(define-param dpml 0.5) 

(set-param! resolution 20) 

 

(define force-complex-fields? false) 

(set! ensure-periodicity true) 

 

(define eps-averaging? false) 

 

; angle in degrees. 

(define-param theta_deg 30)  

 

(define-param mat (make dielectric (epsilon 1) 

            (polarizations 

             (make polarizability 

               (omega 1e-20) (gamma 0.001) (delta-epsilon 0.3e40)) 

            ))) 
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(define-param subs (make dielectric (epsilon 25) 

            (polarizations 

             (make polarizability 

               (omega 0.2) (gamma 0.2) (delta-epsilon 1)) 

            ))) 

 

(define-param buff (make dielectric (epsilon 5) 

)) 

 

(define-param glass (make dielectric (epsilon 2) 

)) 

 

(set! geometry-lattice (make lattice (size sx sy sz))) 

 

(set! geometry 

              (append 

               (list 

                (make block (center 0 0 1.5) (size sx  sy  11) 

                      (material buff)) 

                (make block (center 0 0 -4.28) (size sx sy 0.56) 

                      (material buff)) 

                (make cylinder (center 0 0 1.5) (radius 1.5) (height 11) 

                      (material subs)) 

                (make cylinder (center 0 0 2) (radius 0.5) (height lz) 

                      (material mat))  

  (make block (center 0 0 8.5) (size sx sy 3) 

                      (material subs))  

))) 

 

(set! pml-layers (list (make pml (direction Z) (thickness dpml)))) 
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;;;;;;;;;;;;;;;make the incident wave be tilted certain degrees 

(define ((pw-amp k x0) x) 

   (exp (* 0+1i (vector3-dot k (vector3+ x x0))))) 

 

(define theta_rad (/ (* pi theta_deg) 180)) 

 

; direction of k (length is irrelevant) 

(define-param kdir (vector3 (sin theta_rad) 0 (cos theta_rad))) 

 

(set! k-point (vector3-scale fcen (unit-vector3 kdir))) 

 

; k with correct length 

(define k (vector3-scale (* 2 pi fcen) (unit-vector3 kdir))) 

;;;;;;;;;;;;;;;;; 

 

(define-param source-component Ex) 

 

(set! sources (list 

        (make source 

         (src (make continuous-src (frequency fcen))) 

         (component source-component) 

  (center 0 0 (+ dpml (* -0.5 sz))) 

  (size sx sy 0) 

         (amp-func (pw-amp k (vector3 0 0 (* -0.5 sx))))) 

)) 

 

(run-until 120 

    ;    (at-every 10 (output-png source-component "-y 0x0 -Zc dkbluered")) 

           (to-appended "ex" (at-every 20 output-efield-x)) 

) 

;end 
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 More nanowire analysis 

 

Above figure is part of an analysis of light propagation along Ag nanowire of 2um length 

and 100nm diameter. Ex polarized light of 730nm is incident as shown onto one end of 

the Ag nanowire, and the electric field maps at different cross sections are labeled and 

shown on the right.  The field maps along x-direction (both x-z plane and x-y plane) 

show clearly the propagation of the SPPs.  Bottom left is a plot of the Ex field along x-

axis, showing the field enhancement on the ends of the nanowires. 
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Above three figures are the same as the first one, except that the incident light is Ey 

polarized light of 73n0m wavelength; Ex polarized light of 365nm wavelength; Ey 

polarized light of 365nm wavelength respectively. 
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 Series of pictures of the electric field distribution evolving over time illustrate that 

propagation of SPPs along the silver nanowire.   
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 Convergence analysis at different resolutions 

Above figure shows the one set of the results for convergence analysis of the simulation.  

The same simulation as in above figure is a convergence analysis: field maps of the same 

cross sections of HCP structure and at different resolutions.  The color intensity is 

proportional to the field amplitude, and color represents the sign (field direction).  Fig. 

7.4 was conducted, with changing the resolution level.  The numbers (10, 20 and 30) 

mean how many grids are there in one unit (100nm) defined in MEEP.  The field maps 

were plotted through the same three cross sections, and put together as below.  It 

demonstrates the high quality of the simulations, insensitive to the changing resolution 

level (10, 20 or 30).   
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 Many simulations are done to observe the field distribution in different nano 

structures to study how light is propagating in nanostructures.  Here are limited 

selected examples of the nano pillar array structure and the field maps at different 

cross sections and different times.  
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 Numerous simulations are also done when I am trying to optimize the absorbance. 

Here are limited selected examples of structures and corresponding absorbance. 
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 Plasmonics of Nano particles of other shapes are also simulate 

 

 

 

Above figure shows the field maps on top and bottom of the thin Ag square.  The incident 

light is 500nm x-polarized plane wave incident from the top of the structure and 

propagates along z-direction.   The Ag square is of 20nm thickness and 300nm on each 

side, and another shape (Quadro-star) that is made by cutting out part of the material from 

Ag square by using a circle of given diameter (1000nm in this case) on each of the four 

sides. The top two field maps are at the tops of the particle, and the bottom two 

correspond to the bottoms of the particle. The field is enhanced on the edges/sides of the 

triangle, and there are SPPs on the surface.  The plot on the right shows the Ex field along 

the center (shown in figure) for both shapes. 
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Same as last figure, except this is only for a cone showing the SPPs and Ex field. 

 

Same as last figure, except this is for a wedge showing the SPPs and Ex field. 
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Above figure shows the field maps at three moments on top and bottom of a thin metal of 

Ellipsoid shape.  The SPPs are visible, and the field in the whole space are on the right.  

 

 

 Antenna Effect (EZNEC) 

At the beginning of my phd work, I started by using a commercially available software 

EZ NEC to do simulations.  Below is part of the study I did then.  It provided some 

interesting information on how the parasitic antennas couple to a source, based on their 

lengths, and alignment directions etc.  For all the configurations, the source antenna is 
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located at the origin of the reference frame.  For each configuration, the plot on the right 

shows how the parasite antennas are located and aligned, and the plot on the left shows 

how the corresponding field is radiated in space. 

 

I. Half wavelength parasite antennas  

 

1. Random orientation of the parasites.  

 

2. Some parasites are tilted 30 degrees. 
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3. Different some of parasites tilted 30 degrees in one direction.  

 

4. All parasites are tilted 30 degrees in one direction. 

  

5. All parasites are tilted 45 degrees in one direction 
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6. All parasites tilted 60 degrees in one direction.  

 

II. Quarter wavelength parasites  

7. All parasites are straight up  in one direction 

 

8. All parasites tilted 30 degrees in one direction  
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III. Three quatrer wavelength parasites 

 

9. All parasites are straight up  in one direction 

  

10. Three quarter wavelength parasites tilted 30 degees in one direction  
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