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Abstract: 

In this work, we present our findings regarding the low-temperature, solid-state 

conversion of Cu2S nanowires to Cu2S/Cu5FeS4 rod-in-tube structures, Cu2S/ZnS 

segmented nanowires, and a full conversion of Cu2S nanowires to ZnS nanowires. These 

conversion reactions occur at temperatures as low as 105 °C, a much lower temperature 

than those required for reported solid-state reactions. The key feature of the Cu2S 

nanowires that enables such low conversion temperatures is the high ionic diffusivity of 

the Cu+ within a stable S sublattice. 

The second portion of this work will focus on the oxide-stabilization and utilization 

of TiSi2 nanonets as a lithium-ion battery anode. This nanostructure, first synthesized in 

our lab, was previously demonstrated to possess a lithium storage capacity when cycled 

against a metallic Li electrode. However, with subsequent lithiation and delithiation 

cycles, the TiSi2 nanonet structure was found to be unstable. By allowing a thin oxide 

layer to form on the surface of the nanonet, we were able to improve the capacity 

retention of the nanonets in a lithium-ion half-cell; 89.8% of the capacity of the oxide-



 

coated TiSi2 was retained after 300 cycles compared to 62.3% of the capacity of as-

synthesized TiSi2 nanonets after 300 cycles. The layered structure of C49 TiSi2 exhibited 

in the nanonets allows for a specific capacity greater than 700 mAh g-1, and the high 

electrical conductivity of the material in conjunction with the layered structure confer 

the ability to cycle the anode at rates of up to 6C, i.e., 10 minute charge and discharge 

cycles, while still maintaining more than 75% of the capacity at 1C, i.e., 1 hour charge 

and discharge cycles. 
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Chapter 1 : The low-temperature, solid-state conversion of Cu2S 

nanowire arrays 

1.1 Background 

An ever increasing demand for clean energy conversion constantly provides new 

challenges that can be addressed through materials chemistry. Photovoltaic materials, 

those that convert electromagnetic radiation to electrical current, can be modified 

chemically, e.g., by tuning their composition, or mechanically, e.g., by modifying their 

physical structure. By changing the composition of photovoltaic materials, we can 

manipulate key parameters that control the performance of photovoltaic devices they 

compose; these parameters include the band gap and conductivity of the material of 

interest.1,2 By modifying the physical structure of a photovoltaic material, e.g., 

synthesizing the material in the form of NWs or nanorods, the performance of a 

photovoltaic device can be improved by decoupling the light absorption and charge 

conduction pathways.3 As a background to the information contained in sections 1.2–

1.7 the proceeding paragraphs in section 1.1 will explain our interest in Cu2S and how, 

over time, we arrived at the point of utilizing Cu2S as a template and chemical precursor 

to access materials in unique and new morphologies. 

In a previous work, Shockley and Quiesser determined the theoretical maximum 

solar conversion efficiency of a single p-n junction solar cell with a band gap of 

approximately 1.3 eV to be around 30% (Figure 1.1).4 A search for a useful photovoltaic 

material may begin by attempting to find a material with a band gap that would not 
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limit the efficiency. The aforementioned 1.3 eV band gap factored into our group’s 

decision to study Cu2S. Cu2S is an indirect band gap semiconductor with a band gap of 

approximately 1.2 eV. A promising power conversion efficiency of 17.8% in Cu2S/ZnO 

based solar cells has been predicted,5 and efficiencies of up to 9.15% have been 

demonstrated in Cu2S/CdS thin film solar cells.6 Having selected Cu2S as a target 

material, a room-temperature synthesis of Cu2S NWs was developed in our lab and the 

growth mechanism was examined.7 In summary, an ionic vacancy diffusion model was 

proposed as the growth mechanism: H2O and S react to form S2-; S2- forms a close-

packed sublattice containing vacancies that should contain Cu+; the Cu+ vacancies 

subsequently diffuse to the underlying Cu substrate where they are consumed; and Cu+ 

diffuses in the opposite direction to fill the vacancies formed by the S2- sublattice.7 This 

high diffusivity of Cu+ within the sulfur sublattice, demonstrated by the low temperature 

required for the NW synthesis, would prove to be problematic in our attempts to 

interface the Cu2S NWs with CdS to fabricate photovoltaic devices. 

In previous works, CuxS/CdS solar cells had been demonstrated to degrade through 

multiple processes, including the diffusion of Cu+ within the stable sulfur sublattice.8,9 

Although the Cu+ diffusion proved to be detrimental to the material’s implementation in 

photovoltaic devices, our group found that Cu2S/ZnO NW devices exhibited negative 

differential resistance and resistive switching behaviors.10 An explanation for this 

behavior was proposed: the high diffusivity of Cu+ leads to an accumulation of Cu+ at the 

Cu2S/ZnO junction. This accumulation decreases the p-doping of Cu2S, weakening the 
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junction between Cu2S and ZnO and leading to the observed deviations in expected 

behavior. Although the high diffusivity of Cu+ led to a discontinuation of its use in 

photovoltaic materials, our group was able to capitalize upon the behavior to produce 

devices that could be used for the fabrication of memristors, for instance. This 

exploitation of the qualities of Cu2S that were once perceived as negative sets the stage 

for our utilization of Cu2S in conversion reactions. That is to say, we are taking an 

undesired trait of Cu2S, i.e. the high diffusivity of Cu+, and utilizing it to obtain other 

interesting materials. 

Our investigation of Cu2S transformation reactions was prompted by both the high 

diffusivity of Cu+ and our failures to successfully fabricate a working Cu2S/CdS solar cell. 

Cu2ZnSnS4 (CZTS) is an attractive photovoltaic material due to the abundance of Zn and 

Sn in the Earth’s crust. With reported band gaps of 1.45–1.6 eV11-14 and a theoretical 

power conversion efficiency of 32.2%15, CZTS is a worthwhile synthetic target. At the 

time the conversion research was conducted, there was a lack of reported high-quality 

CZTS NW arrays. We envisioned a reaction that involved the following process: Cu2S NW 

arrays would be coated with a component present in our desired end composition, e.g., 

Zn; the coated wires would then be exposed to elevated temperatures in a sulfur-rich 

atmosphere; and after heating, hopefully the coating would be incorporated into the 

Cu2S wires through a solid-state diffusion process aided by the diffusivity of the Cu+. 

Although we set out to produce vertically-aligned arrays of CZTS NWs, we did not 

accomplish that goal. However, along the way, we discovered a unique solid-state 
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reaction process that yielded two interesting structures: an unreported RIT morphology 

and a segmented NW morphology. The results of our investigations into the conversion 

of vertically-aligned Cu2S NW arrays are featured in the remainder of Chapter 1. 

The following sections are adapted from the published work: Mayer, M. T.; Simpson, Z. 

I.; Zhou, S.; Wang, D., Ionic-Diffusion-Driven, Low-Temperature, Solid-State Reactions 

Observed on Copper Sulfide NWs, Chem. Mater., 2011, 23 (22), 5045-5051. Copyright 

2011 American Chemical Society 

1.2 Introduction  

With sufficient mixing, applied thermal energy, and time, solid-phase reactants can 

be transformed into new and possibly interesting materials. The chemical 

transformation occurs via solid-state diffusion-driven reactions that provide access to 

tunable binary, ternary, or polynary compositions obtained through a versatile and 

simple route. By utilizing solid-state reactions, researchers have prepared a plethora of  

semiconducting, super-conducting, ionic conducting, and magnetic materials.16 Recent 

research has highlighted the ability to utilize these reactions to fabricate target 

materials with specific morphologies, e.g., NWs or nanotubes.17-20 Although solid-state 

reactions are versatile and relatively simple, their nature dictates that they proceed at 

intrinsically slow paces. Due to the slow solid-state diffusion inherent to these reactions, 

high temperatures, e.g., 500–2000 °C, high pressures, or combinations of the two are 

usually necessary; these stringent requirements lead to a limitation of both where and 
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how the synthesis method can be employed. For example, high temperatures were 

required in works by Gösele et al. that demonstrated the Kirkendall effect formation of 

hollow structures resulting from heating interfaces between metal oxide 

heterostructures at temperatures in the range of 500–800 °C.17,21 Other groups have 

utilized similar thermally activated solid-state diffusion processes to form unique 

nanostructures, including Lieber et al.,22 Wang et al.,23 Buhro et al.,24 and others.25-27 

Although these reports utilized nanostructures, which should facilitate a diffusion-

controlled reaction due to the small diffusion distances, in each instance, temperatures 

over 500 °C were required to overcome the significant thermal barrier to diffusion. 

Other methods have been developed to convert nanostructures; the conversion of 

nanostructures has been demonstrated using solution-based chemistry at significantly 

lower temperatures. The use of solution-based approaches is fundamentally different 

from solid-state reactions, with solvent- or solute-mediated ion exchange being a critical 

enabling factor in the solution-based reactions.18,20 As an example, researchers have 

employed chemical reagents to selectively extract chalcogen anions,28 or metal 

cations,29,30 leaving the nanocrystalline size and shape intact in the converted product. 

Comparatively, solvent-free, all-solid-state reactions of nanomaterials have been rare. 

In this research, solvent-free, solid-state reactions at ambient pressure and at 

temperatures as low as 105 °C are enabled through the use of Cu2S as a starting 

material. Driven by the diffusivity of metal ions in a stable S sublattice, these reactions 

are shown to yield either unique heteronanostructures, e.g., the RIT structure or 
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segmented NWs, or fully converted NWs. This mechanism holds promise as a new 

conversion chemistry for the production of nanostructures with desired morphologies 

and compositions. 

The critical components of this discovery are Cu2S NWs that grow on Cu, the growth 

of which follows a recently described cation-vacancy diffusion model.7 The high 

diffusivity of Cu+ within Cu2S, a hindrance to its utilization in photovoltaic applications31-

33 and a boon to its application in memory storage devices10,34-36 and solution-phase ion-

exchange reactions29,30 facilitates the aforementioned growth mechanism. In our 

studies, we further exploited the diffusivity and demonstrated that this unique property 

can be used to create nanostructures more complex than simple NWs or NRs. By 

utilizing the Cu2S NWs as both a template and reactant, we were able to achieve the 

synthesis of three distinct morphologies, i.e., RIT structures, segmented NWs, and fully 

converted NWs, at significantly lower temperatures than those normally required for 

solid-state reactions.29,30 Interestingly, the reactions were found to exhibit a novel 

dependence on the basal interface between the NW and the Cu substrate, across which 

Cu transport takes place. 

1.3 Experimental Section 

Cu2S NW Synthesis: Cu2S NW arrays were synthesized according to a previously 

published procedure.7 The synthesis will be briefly outlined here. Cu foils (99.9%, Alfa 

Aesar) were anodically polished in orthophosphoric acid (85% w/w aq., Alfa Aesar), 
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rinsed well in water, and dried thoroughly using N2. The foils were then placed inside a 

homemade tube reactor and exposed to a gas mixture of N2, O2, and H2S (99.5% 

chemically pure, Airgas) at flow rates of 160, 80, and 12 sccm, respectively, with the N2 

being diverted through a bubbler filled with water to provide humidity. At room 

temperature and ambient pressure, a continuous Cu2S film developed across the Cu 

substrate, from which vertically aligned Cu2S NWs emerged over the course of several 

hours. An extended reaction duration of approximately 36 h can yield NW lengths 

upward of 5 μm. 

Metal deposition: Fe was deposited via sputtering onto as-grown Cu2S NW arrays 

using an AJA International ATC Orion sputtering system. Deposition times ranged from 5 

to 25 min, resulting in coating thicknesses of approximately 20 nm. The deposition rate 

was approximately 0.3 Å s-1 in all instances of Fe deposition. Zn was thermally 

evaporated onto as-grown Cu2S NW arrays using a Sharon Vacuum evaporation system. 

The thicknesses of the Zn coatings were varied between 20 and 120 nm. 

Synthesis of Cu–Fe–S Rod-in-Tube Structures: As-deposited Cu2S/Fe NW arrays 

were placed in a tube furnace (Lindberg/Blue M model TF55035A-1), purged with N2 gas 

(250 sccm), then heated to 105 °C at a rate of 26 °C/min and held at this temperature 

for 30 min in the presence of N2 and H2S at 250 sccm and 12 sccm, respectively. After 30 

min had elapsed, the lid of the furnace was opened and the chamber was allowed to 

cool to room temperature. 
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Synthesis of Segmented Cu2S–ZnS and ZnS NWs: The annealing procedure for Zn-

coated Cu2S was similar to that of Fe-coated NWs, except that the Zn incorporation was 

found to take place with or without the presence of H2S. In this case, the heating rate 

was approximately 50 °C min-1, and the final temperature was varied in the range of 

105–200 °C. Reaction times were fixed at 30 min. 

Structural Characterizations: Micrographs, EDS measurements, and ED patterns 

were obtained using a JEOL 2010F transmission electron microscope with an electron 

acceleration voltage of 200 kV, equipped with an Oxford Inca EDS spectrometer. 

Statistical Study of Nanostructure Sizes: For the statistical determination of 

nanostructure diameter change upon heating, at least 100 measurements were 

performed by TEM observation of two different Cu2S NW specimens, followed by 100 

measurements after heat treatments on metal-coated Cu2S. 

1.4 Fe−Cu2S System 

 The RIT morphology is accessed through the heating of Fe-coated Cu2S NWs in an 

environment of N2 and H2S gases; Figure 1.1 demonstrates the obtained morphology: a 

rod nested within a tube, each individual part being a discrete structure. This unique 

morphology was discovered through our attempt to access the Fe−Cu2S system which 

was prompted by the potential of pyrite (FeS2),37-39 chalcopyrite (CuFeS2),40 and related 

materials in electronic, magnetic, and energy-related applications. At the time of 

publishing and to the best of our knowledge, NWs belonging to the Fe−Cu2S  class of 
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materials, particularly those in a vertically aligned form, had not been reported 

previously. This lack of Fe−Cu2S materials in interesting morphologies may be addressed 

by using Cu2S NW arrays as a new precursor and templating platform. 

 

Figure 1.1. An overview of the Cu2S NWs before and after the conversion process. (a) A TEM 
micrograph of a Cu2S NW before an Fe coating was applied. (b) A Cu2S NW with a 20 nm Fe 
coating applied via sputtering. (c) The RIT morphology after the Fe-coated Cu2S NW had 
reacted at 105 °C in N2/H2S for 30 min. The scale bars in 1.1a,b,c represent 100 nm. (d) An 
electron diffraction pattern of the tube material depicted in 1.1c. The electron diffraction 
pattern was indexed to the Cu5FeS4 bornite phase (JCPDS no. 83-2266). (e) A high resolution 
TEM micrograph depicting the quality of the crystalline domains in the polycrystalline tube. 
The scale bar represents 2 nm. Reprinted with permission from Chem. Mater., 2011, 23 (22), 
5045-5051. Copyright 2011 American Chemical Society. 

As a proof-of-concept, we used sputtered thin films of Fe (approximately 20 nm in 

thickness) on preformed Cu2S NWs as the starting material (Figure 2.1a and b). A brief 
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heating treatment of 30 minutes under a gas flow of 5% H2S and 95% N2 (by volume) at 

105 °C was sufficient to produce the morphology depicted in Figure 1.1c. In order to 

determine that the transformation was not limited to only a handful of NWs, over 100 

structures were examined; examinations revealed that the rod and tube in each RIT 

structure are clearly separated by a hollow void, distinguishing the RIT morphology from 

the more commonly reported core/shell morphologies. Low-magnification TEM images 

showed that the tubes were continuous from the base, where the NWs were physically 

connected to the Cu substrate from which they grew, to the encapsulated tip (Figure 

1.1c), with tube wall thicknesses varying in the range of 25−50 nm. High-resolution TEM 

indicated that the tubes were polycrystalline in nature, with grain sizes ranging between 

5 and 30 nm (Figure 1.1e, and Figure 1.2). The high-resolution TEM images were 

consistent with the interpretation of the ED patterns (Figure 1.1d). Elemental analysis of 

the tube material by EDS revealed the average ternary composition of 54.5% Cu, 12.4% 

Fe, and 33.1% S, in good agreement with the ED characterizations, whose patterns were 

indexed to the Cu5FeS4 phase (JCPDS no. 83-2266). While the EDS-measured 

composition deviates from Cu5FeS4, several factors may contribute to the observed 

deviation of stoichiometry. These factors include the inaccuracies of elemental analysis 

by EDS and the possibility of excess Cu and Fe within a reasonable range (see Figure 1.2 

and its caption for further discussion). 
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Figure 1.2. Representative TEM micrographs depicting the reactants and products involved in 
RIT formation reaction. (a) An as-grown, uncoated Cu2S NW; the scale bar is 100 nm, and the 
inset is an electron diffraction pattern generated from the Cu2S NW. (b) A Cu2S NW that has 
been coated with approximately 20 nm of Fe utilizing a sputtering method; the scale bar is 100 
nm. (c) The RIT morphology that results from heating the Fe-coated Cu2S NW at 105 °C in 5% 
H2S (by volume) for 30 minutes; the scale bar is again 100 nm. (d) A high resolution image of 
the tip and void space of an individual RIT. The leftmost inset demonstrates the preserved 
crystallinity of the encapsulated wire and the rightmost inset demonstrates the polycrystalline 
nature of the Cu5FeS4 tube; the scale bar in this image is 100 nm. (e) An overview of the RIT 
structure; the scale bar is 200 nm. (f) A representative EDS spectrum of the tube and tabulated 
average percent compositions of the tube material. The observed composition varies from 
Cu5FeS4 with an expected composition of 50% Cu, 10% Fe, and 40% S, and this may be 
accounted for by the following three reasons: i) 3 Cu+ + Fe0   3 Cu0 + Fe3+ is spontaneous, 
based on standard reduction potentials, and may result in metallic Cu being trapped in 
different portions of the shell; ii) excess unreacted Fe0 may remain from the deposition; and 
iii) sulfur may be lost from the porous, high-surface area tube due to vacuum exposure in TEM 
observation. Reprinted with permission from Chem. Mater., 2011, 23 (22), 5045-5051. 
Copyright 2011 American Chemical Society. 
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Figure 1.3. A schematic depiction of RIT morphology formation. The magnitudes of the arrows 
depict the fast Cu diffusion and slow Fe diffusion through the stable S sublattice. Reprinted 
with permission from Chem. Mater., 2011, 23 (22), 5045-5051. Copyright 2011 American 
Chemical Society. 

We postulate that the reaction proceeds through a mechanism similar to the 

Kirkendall effect, in which the highly diffusive Cu+ ions are critical to the observed 

transformation. As shown schematically in Figure 1.3, the outward diffusion of Cu+ is 

driven by the formation of ionic vacancies in the shell which result from the sulfidation 

of Fe, in which H2S serves as an oxidizer. During subsequent examination after the 

completion of the reaction, Fe was confirmed to be present in the inner, enclosed rods 

by EDS examination. This observation suggests that Fe2+ ions also diffuse inward, albeit 

to a lesser extent than the Cu+ diffusing outwards. The imbalance between Cu+ and Fe2+ 

diffusion results in a significant incorporation of Cu+ by the shell. As sulfidation of the 

shell continues and as vacancies accumulate at the core−shell interface, a separation 

and expansion of the shell occurs. This separation and expansion lead to the observed 
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RIT morphology. After physical separation between the rod and the outer tube occurs, 

the Cu+ diffusion routes are likely cut off and any further expansion of the tube results 

from the continuous supply of sulfur from the gas phase. Literature reports regarding 

the diffusion rates of Cu and Fe in chalcopyrite CuFeS2 support these observations; in 

the temperature range of 100−300 °C, the upper limits of the diffusion coefficients for 

Cu and Fe are 9.4 × 10−7 and 5.4 × 10−12 cm2/s, respectively.41 Although this reaction 

shares similarities with a typical Kirkendall process, it is different because the core NW is 

not consumed by the process owing to a continuous supply of Cu from the substrate. 

This hypothesis is supported by the following observations. 

 

Figure 1.4. TEM micrographs demonstrating the suppression of diffusion-driven reactions 
caused by the electron beam effect. (a) An Fe-coated Cu2S NW that has been exposed to an e-
beam before the conversion reaction. (b) The same NW after heating the Fe-coated NW to 105 
°C in 5% (by volume) H2S. After reaction, the wire has thickened but does not exhibit the 
typical expansion into a tube that is demonstrated by unexposed wires. (c) Other NWs in the 
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same sample that were not exposed to the e-beam before heating; these samples exhibit the 
typical RIT morphology. (d) Zn-coated Cu2S NWs at room-temperature. (e) The same wires 
from panel d after in situ heating within the TEM to a temperature of 200 °C. These wires 
show few signs of Zn incorporation. (f) Other wires in the same sample that were not exposed 
to the e-beam prior to in situ heating reacted normally, exhibited the typical segmented Zn 
incorporation. Reprinted with permission from Chem. Mater., 2011, 23 (22), 5045-5051. 
Copyright 2011 American Chemical Society. 

First, the RIT morphology was less pronounced or entirely absent when the diffusion 

of Cu+ was disrupted. Three avenues were utilized to disrupt the diffusion of Cu+: 

electron beam irradiation, disconnection of Cu2S NWs from the underlying Cu substrate 

by physical removal, and the use of an intermediate blocking layer of Al2O3. Previous 

studies from our group indicated that the ionic behavior of Cu+ can be forced to deviate 

significantly from expected thermodynamically defined behaviors by irradiating a 

sample with a high energy electron beam which concentrates Cu+ within the NWs and 

hence reduces its mobility.7 Using this knowledge, we designed an experiment in which 

Fe-coated Cu2S NWs were exposed to a 200 keV TEM e-beam prior to carrying out the 

reaction in H2S; we found that when the NWs had been treated in this manner, the RIT 

morphology did not form. Interestingly and in contrast to the observed behavior, 

unexposed NWs in close proximity to electron beam exposed wires reacted normally, 

yielding the RIT morphology; this behavior is demonstrated in Figure 1.4a-c. These 

results, in conjunction with our experience with electron beam exposed Cu2S NWs lead 

us to conclude that the electron beam irradiation is critical in producing the differences 

between wires. The disruption of the RIT morphology formation also occurs when Cu2S 

NWs are separated from the underlying Cu substrate before heating; the extent of the 

rod-in-a-tube reaction is less pronounced and a noticeable Cu out diffusion from the 
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bases of the wires occurs (Figure 1.5a). In this experiment, Cu+ diffusion is also 

disrupted, but rather than being caused by electron beam exposure, the cause lies in the 

removal of the Cu substrate; the Cu substrate acts as a reservoir to receive excess Cu+ 

ions or to replace depleted Cu+ in the Cu2S NWs, and the removal of this reservoir leads 

to a disruption in Cu+ diffusion behavior.7 In a third experiment in which we attempted 

to disrupt diffusion between the NWs and their Fe coatings, an intermediate layer of 

Al2O3 was deposited via sputtering between the Cu2S and Fe coating (Figure 1.6) before 

carrying out the reaction. The presence of a blocking layer led to a decreased 

concentration of Cu compared to unblocked reactions and less-pronounced expansion 

and separation of the shells from their core NWs; a thicker Al2O3 coating may have led 

to an even more drastic reduction in the extent of the reaction.  The fact that Cu+ 

diffusion is critical to the formation of the RIT structure is reinforced by this third 

experiment and highlights the important role that the Cu+ diffusion plays in the 

formation of this unique morphology. 



16 
 

 

Figure 1.5. Images depicting the results of heating metal-coated Cu2S NWs after having 
removed them from the underlying Cu substrate. (a) Fe-coated wires still form the RIT 
structure, but the expansion is significantly less pronounced and a significant amount of Cu 
has diffused out from the base of the wire. (b) A Zn-coated Cu2S NW that has been scraped 
from its supporting Cu substrate onto a C-film TEM grid. (c) The same wire from panel b after 
heating the grid under the listed reaction conditions; no noticeable Zn incorporation occurred. 
Reprinted with permission from Chem. Mater., 2011, 23 (22), 5045-5051. Copyright 2011 
American Chemical Society. 



17 
 

 

Figure 1.6. A TEM image demonstrating the effect of a thin Al2O3 blocking layer placed 
between the Cu2S NWs and the deposited Fe; EDS composition analysis is also tabulated to 
the right of the picture. The presence of the Al2O3 layer led to a small separation of the Fe 
coatings and the NWs. The significantly inhibited diffusion of Cu+ is also apparent in the 
resulting shell composition. Reprinted with permission from Chem. Mater., 2011, 23 (22), 
5045-5051. Copyright 2011 American Chemical Society. 
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Figure 1.7. In this figure, the statistical measurements of as-grown NWs, Fe-coated NWs, core 
NWs after reaction, and Cu5FeS4 tube, are presented. For each histogram, 100 measurements 
of the listed structure were collected. A Gaussian fit for each set is presented in red and the 
average of the set is represented by the dotted blue line. Reprinted with permission from 
Chem. Mater., 2011, 23 (22), 5045-5051. Copyright 2011 American Chemical Society. 

Upon noting that the inner rods in the RIT structure appeared to be unchanged in 

diameter after reaction, a closer inspection was warranted. Statistical investigations of 

the diameters of the starting Cu2S NWs and the resulting rods and tubes were 

performed; interestingly,  the diameters of the encapsulated rods were approximately 

the same as those of the starting NW templates (Figure 1.7), suggesting that there are 

no measurable changes in the sublattice of the Cu2S NWs during reaction. The final 

stoichiometry of the outer shell suggests that a large amount of Cu+ moves from the 
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encapsulated rod to the outer shell before disconnection occurs, and the amount of Fe 

diffusing inward to the NWs is not nearly enough to replenish the vacancies left by the 

outward diffusion of Cu+. Since the influx of Fe is not sufficient to maintain 

electroneutrality, Cu+ must be replenished by the only other source from which to draw 

cations during the reaction: the underlying Cu foil from which the Cu2S NWs were 

grown. Lastly, no RIT formation was observed when Fe-coated Si NWs or ZnO NWs were 

heated under similar conditions (Figure 1.8). From this we infer that the sulfidation of Fe 

alone is insufficient for the RIT formation. When considering the outcomes of all three 

experiments, it is clear that a continual supply of Cu from the substrate is critical to the 

formation of the RIT morphology. This dependence upon a supply of Cu differentiates 

the structures from the common zero-dimensional analogues referred to as “rattle” or 

“yolk-shell” nanostructures, or nanotubes formed from core/shell NWs, both of which 

generally form via a normal Kirkendall process in which the core material is consumed 

and depleted during the reaction process.21 
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Figure 1.8. TEM micrographs of control experiments involving exposing Fe-coated NWs of 
compositions other than Cu2S to the conversion reaction conditions. (a) An Fe-coated Si NW 
that has been exposed to conversion reaction conditions. The dark spot on the tip of the NW 
is a Au growth catalyst particle from the VLS NW synthesis. (b) An Fe-coated ZnO NW that has 
been exposed to the conversion reaction conditions. Neither sample demonstrated significant 
tube formation or expansion. Reprinted with permission from Chem. Mater., 2011, 23 (22), 
5045-5051. Copyright 2011 American Chemical Society. 

The temperature at which the RIT morphology forms is highly unusual when 

compared to other solid-state reactions that result in hollow inorganic structures that 

derive their morphology from the reaction of a core/shell structure.21,25,42,43 The high 

diffusivity of Cu+ is likely the enabler of the low-temperature reaction. Proceeding at 105 

°C, the reaction temperature coincides with the Cu2S phase transition from monoclinic 

to hexagonal (i.e., low- to high-chalcocite), with the latter phase known to exhibit 

increased Cu mobility.44-46 TEM and ED observations suggest that such a transition may 

play a role in activating this reaction (Figure 1.2). During our investigations, we also 

discovered that the role of H2S in the transformation reaction is a critical one. When Fe-

coated Cu2S NWs were heated at 105 °C in an environment containing no H2S, no 

significant morphology or crystal structure changes were observed. Although to fully 
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understand the role of H2S, more research would be required; we currently believe it 

serves at least two purposes: the reaction between H2S and Fe creates ionic vacancies in 

the Fe-shell to drive Cu+ diffusion outward and a continuous reaction between H2S and 

the Cu-incorporated Fe-shell leads to further shell expansion and subsequent 

disconnection from the underlying Cu2S NWs.  Further oxidation of multivalent Fe ions 

driven by the decomposition of H2S likely occurs to maintain electroneutrality once the 

Cu+ diffusion pathway is broken. Afterward, the shell continues to expand until a 

thermodynamically stable phase of the Cu−Fe−S system is formed (i.e., bornite). 

Although ionic-solubility-effect-driven ionic exchange reactions have been reported 

at similarly low temperatures,29,30 reports of low-temperature, solid-state, diffusion-

driven reactions in solvent-free systems are rare.47-49 Thus, our results are deemed to be 

both significant and new. These results demonstrate the potential of using Cu2S NWs as 

both physical templates and chemical precursors to generate high-quality, closed-end, 

hollow tubes which may be harvested for use in varying applications. 

1.5 Zn−Cu2S System 

Although a scenario had been examined in which the outward diffusion of Cu+ was 

much greater than the diffusion of another metal ion inward, a situation in which the 

diffusion of both ions was comparable had yet to be investigated. In order to rectify this 

situation and to further validate the hypothesis that Cu+ diffusion enables low-

temperature, solid-state reactions, we next examined the Zn-Cu2S system. Zn was 
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utilized as the deposited coating on Cu2S NWs instead of Fe because Zn2+ is of similar 

size to Cu+ and has been observed to exhibit appreciable diffusivity within a sulfide 

sublattice.50-52 Our interest in exploring new synthetic routes to obtain complex 

chalcogenides for energy conversion applications, such as Cu2ZnSnS4 (CZTS),53,54 the 

production of which in a vertically aligned NW form remains a challenge,55 led to our 

utilization of Zn to access the Zn−Cu2S system. The resulting morphology was distinctly 

different from the morphology formed in the Fe−Cu2S system. 

 

Figure 1.9. The solid-state reaction of Zn-coated Cu2S NWs. (a) A TEM micrograph featuring the 
overall segmented incorporation of Zn into a Cu2S NW; the scale bar is 100 nm. (b) A bright-
field image demonstrating the abrupt interface between ZnS and Cu2S segments; the scale bar 
is 50 nm. (c) A dark-field image to further highlight the interfaces; the scale bar is 50 nm. (d) 
The results from an EDS line scan (the scanning path is shown in panel b by the dotted line) 
that show the Cu2S and ZnS compositions of the alternating segments. (e) A high-resolution 
TEM image shows the lattice-resolved spacing that is attributable to the wurtzite ZnS phase; 
this assignment is corroborated by the inset ED pattern that can be indexed to wurtzite ZnS. 
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Reprinted with permission from Chem. Mater., 2011, 23 (22), 5045-5051. Copyright 2011 
American Chemical Society. 

By heating Zn-coated Cu2S NWs at 105 °C for 30 min in the presence of H2S, we were 

able to obtain a segmented NW morphology, as depicted in Figure 1.9. Upon examining 

the NW samples using bright-field TEM, we found that the dark segments in Figure 1.9a 

and 1.9b were Cu2S and the gray segments were ZnS; segment identification was 

achieved by performing an EDS line scan across the alternating segments, as seen in 

Figure 1.9d. To determine the crystal structure of the ZnS segments, ED patterns were 

collected; indexing of the ED patterns led to the conclusion that the ZnS segments are 

present in the wurtzite phase (Figure 1.9e, inset). The observed interfaces between ZnS 

and Cu2S segments were sharp and abrupt, as evidenced by both the TEM images and 

the EDS line scan. A statistical analysis was carried out on the diameters of the 

converted NWs; on average, ZnS segment diameters were similar to the Cu2S NW 

diameters before conversion and the Cu2S segment diameters increased markedly 

(Figure 1.10). From these observations and those that follow, we present the reaction 

mechanism as we understand it. 
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Figure 1.10. Statistical diameter measurements of the Zn-coated Cu2S NW conversion process. 
Each histogram comprises 100 diameter measurements of as-grown Cu2S NWs, ZnS segments 
after conversion, and Cu2S segments after conversion. A Gaussian fit is presented in red on 
each panel and the average is represented by a dotted blue line. Reprinted with permission 
from Chem. Mater., 2011, 23 (22), 5045-5051. Copyright 2011 American Chemical Society. 

Zn2+ ions are produced by the oxidation of the deposited Zn coating; these ions are 

mobile and can diffuse into and throughout the sulfide sublattice to occupy the 

interstices. As Zn2+ diffuses inward, Cu+ is displaced and concentrated into adjacent 

portions of the wire, leading to the formation of the segmented structure that we have 

observed. This mechanism can be likened to phase segregation in a multicomponent 

system. The increased diameters of the Cu2S segments in the final structures can be 

attributed to further reaction with the H2S present in the reaction environment. The 
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proposed mechanism is summarized schematically in Figure 1.11, and we offer the 

following observations to support our claim. 

 

Figure 1.11. Schematic representation depicting the ionic diffusion which drives the formation 
of segmented ZnS/Cu2S heterostructured NWs. An inward diffusion of Zn leads to Cu diffusion 
to either the surface of the NW or back into the Cu substrate. Reprinted with permission from 
Chem. Mater., 2011, 23 (22), 5045-5051. Copyright 2011 American Chemical Society. 

Control experiments that were utilized in the probing of the Fe−Cu2S system were 

also utilized to examine the Zn−Cu2S system. Electron beam irradiation and removal of 

the underlying Cu substrate (Figure 1.4d-f; Figure 1.5b and c) resulted in significantly less 

pronounced or no conversion. Although H2S was critical for the conversion process that 

occurred in the Fe−Cu2S system, it was found to play a noncritical role in the Zn−Cu2S 

conversion process, a distinguishing difference between the two reactions; it should be 

noted, however, that the implementation of H2S in the Zn−Cu2S conversion process led 

to smoother surfaces on post-reaction segmented NWs (Figure 1.12). This phenomenon 

can be explained by the ionic diffusions. Because the reaction with H2S is not a 

prerequisite for the Zn2+ and Cu+ diffusion, the segregation takes place with or without 
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H2S. When H2S is absent, the excess Cu concentrates on the surface of the Cu-rich 

segments to yield rough morphologies. When H2S is present, the dynamic reactions 

between Cu and H2S result in smooth surfaces and increased diameters of the Cu-rich 

segments. That H2S is not critical for the reactions with Zn further suggests that Zn can 

be oxidized by Cu+. The reaction Zn + Cu2S → Cu + ZnS is exothermic (ΔrH° = −126.5 kJ 

mol-1), reinforcing the fact that H2S plays a non-critical role and that Zn can be oxidized 

by the Cu+ found within the Cu2S NWs. 

 

Figure 1.12. Segmented NWs form from heated Zn-coated Cu2S with or without the presence 
of H2S. (a) When H2S is used in the conversion reaction, the dark Cu2S segments are smooth 
and bulging. (b) NWs that are converted through in situ heating in a TEM column result in 
surfaces that are less smooth. Reprinted with permission from Chem. Mater., 2011, 23 (22), 
5045-5051. Copyright 2011 American Chemical Society. 

There did not appear to be a specific pattern or order to the arrangement of the 

segments formed after the conversion of the NWs occurred. We also found that the 

amount of Zn incorporated into the underlying Cu2S NWs was dependent upon the 

amount of Zn deposited before the reaction occurred. Because the supply of Zn is the 

limiting factor in the conversion reaction, we postulate that the segmented NWs that 
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were initially observed reflect a partial conversion; to test whether this was the case, 

the thickness of the Zn coating was increased to roughly 90 nm before carrying out the 

conversion reaction. After the reaction, we found that the initial Zn-coated Cu2S NWs 

had been converted to ZnS NWs. The converted ZnS NWs are displayed in Figure 1.13 in 

both bright- and dark-field TEM images. Trace amounts of Cu were noted to be present 

when examining the wires with EDS. However, the remaining Cu is likely present in the 

form of Cu2S or Cu embedded within the wire or on the surface. Although Cu was 

present after conversion, the amount does not account for the original Cu content 

present in the Cu2S template. Since the amount of Cu retained after full conversion is 

limited, the excess Cu+ must be displaced into another location; the only location to 

which the excess Cu+ can be moved is to the underlying Cu support. The possibility of 

such displacement is quite possible when considering the fact that the Cu2S NWs are 

attached to a reservoir for the outward diffusing ions: the Cu substrate. The dark-field 

image appears to show strain within the NW lattice, presumably due to the lattice 

mismatch between ZnS and Cu2S. The amorphous particles on the surface are primarily 

excess Zn. 
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Figure 1.13. Full conversion from Cu2S to ZnS NWs. (a) A bright-field TEM image depicts the 
texture of excess Zn on the NW surface. (b) A dark-field TEM image depicts the intact 
crystallinity of the NW; the crystallinity is corroborated by the inset ED pattern that can be 
indexed to wurtzite ZnS. The scale bars of both panels a and b are 100 nm. (c) Radial and (d) 
axial EDS line scans verify the lack of Cu and the presence of ZnS and excess Zn. Reprinted with 
permission from Chem. Mater., 2011, 23 (22), 5045-5051. Copyright 2011 American Chemical 
Society. 

Distinctly different morphologies were obtained through the utilization of the 

Zn−Cu2S reaction, morphologies which were strikingly different from the RIT structures 

produced by the Fe−Cu2S system, demonstrating the versatility of the solid-state 

process. The resulting segmented NWs suggest a simple reaction process for achieving 

compositionally modulated NWs which may be shown to demonstrate unique opto- or 

thermo-electronic properties. Finally, the full conversion from Cu2S to ZnS NWs may 
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offer a method for achieving, through conversion reactions, other NWs of varying target 

compositions. 

1.6 Materials Considerations 

Appreciable ion diffusion at low temperatures and an interface between Cu2S and 

the Cu substrate across which mass transfer occurs are two key characteristics of the 

Cu2S NW arrays that enable the aforementioned conversion reactions. Although the 

conversion reactions in this section were demonstrated using Cu2S—a material well-

known for its highly diffusive Cu cations—as a precursor material, there is no reason to 

discount the possibility that this approach may be extended to other chemical systems, 

even some that are not known for their high ionic diffusivities, which may behave in a 

similar fashion when utilized in solid-state reactions. The large variety of compounds in 

which solution-based low-temperature exchange reactivity have been demonstrated, 

including a large number of metal chalcogenides and oxides, supports the notion that 

the conversion reaction presented in this text may be extensible to other 

systems.18,20,29,30,56,57 In a manner that is similar to the results of the previously 

mentioned studies, the nanoscale effect of increased reactivity may permit solid-state 

reactions in such materials via similar mechanisms to those presented herein.  

1.7 Conclusions 

A defining attribute of the Cu2S system that renders it to be unique is the diffusivity 

of Cu+ within the S sublattice. An equally unique characteristic found within the Cu2S 
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system is the presence of ionic diffusion channels between the NWs and the substrate 

from which the NWs grow; These ionic diffusion channels can be utilized to provide 

additional Cu+ or to store excess Cu+ as evidenced in the Fe−Cu2S and Zn−Cu2S systems, 

respectively. A more interesting result of the combination of differing diffusion rates, a 

high Cu+ diffusivity, and a reservoir to provide and collect Cu+ is the production of two 

very different morphologies, one of which, the RIT morphology, has been observed for 

the first time. While this current research did not explore applications for the resultant 

structures, they may prove to be useful in various applications; for example, the 

increased surface of area and available void space of the RIT structure may be suitable 

for catalysis or sensing applications, and the segmented wires may prove to possess 

interesting thermoelectric and optoelectronic properties.  Moreover, the reactive 

template, Cu2S, may be further exploited to obtain more complex conversion reactions, 

e.g., the production of Cu2ZnSnS4, with the target materials being attractive solar energy 

harvesting candidates. 
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Chapter 2 : The oxide-stabilization and utilization of TiSi2 nanonets 

as a lithium-ion battery anode 

2.1 Background 

An ever increasing demand for portable energy storage continually pressures 

material scientists to improve existing battery technologies and possibly develop new 

electrode chemistries. As demand for mobile energy storage increases, challenges 

pertaining to energy storage are made apparent. Stability, a large capacity, and the 

ability to charge and discharge a battery quickly are all desirable properties of 

electrochemical energy storage devices. A brief and non-comprehensive outline of 

previous anode developments that attempted to meet some of these challenges is 

provided in the following paragraphs. 

 Li-ion batteries are composed of multiple electrochemical cells arranged in parallel 

and/or series to provide target voltages and desired capacities. The individual 

electrochemical cells comprise an anode and a cathode separated by an electrolyte 

solution containing dissociated lithium salts that enable Li+ transport between the 

anode and cathode. Initial lithium-ion primary batteries, i.e., non-rechargeable, 

contained a Li metal anode. One of the main shortcomings of the Li metal anode was an 

uneven deposition of Li during subsequent charging and discharging cycles leading to 

dendritic growth of Li; the dendrites eventually bridge the two electrodes causing 

electrical short circuits that could lead to fires or explosions.1 
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To address the issue of dendritic growth that could potentially lead to catastrophic 

failure of a Li-ion cell, new anode chemistries were investigated. The replacement of a 

lithium metal anode with an Al-Li alloy addressed the problematic formation of 

dendrites.2 Although the shorting issue was addressed through the implementation of Li 

alloys, they also brought their own challenges. Silicon-based anodes offer high 

theoretical capacities (4,200 mAh g-1) and low discharge potentials.3,4 Although this 

material demonstrates attractive characteristics, it also possesses the same problem 

that plagued earlier alloying electrodes—severe capacity fade occurs due to extreme 

volume changes caused by the alloying and dealloying of lithium. These volume changes 

pulverize the electrode. In the case of silicon, the capacity change upon lithiation or 

delithiation can be as large as 400%.3  

Lithium-ion cathodes, on the other hand, have been fabricated using layered-type 

structures rather than lithium alloys. One of the earliest examples of a promising Li-ion 

battery was Exxon’s configuration of a TiS2 cathode, Li metal anode, and lithium 

perchlorate in dioxolane electrolyte.5 Further progress was made in the field of cathode 

development by moving away from heavier sulfur-containing compounds to lighter 

oxide materials, which possessed both higher voltages and capacities. In 1980, 

Mizushima et al. demonstrated that LixCoO2 could be utilized as a Li-ion cathode 

material.6 Indeed, the commercial success of LixCoO2 electrodes speaks of their stability 

and satisfactory performance. 
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So, what if we could combine the stability imparted through a layered structure with 

the capacity of a Li alloy while addressing the volume expansion and degradation 

properties of Li alloy anodes? We would end up with the TiSi2 nanonet, a unique 

morphology that was previously synthesized in our lab7 and a promising candidate that 

possesses the best characteristics of layered- and alloy-type lithium-ion electrodes.  TiSi2 

NNs have previously demonstrated their versatility as supporting electrodes that can be 

modified with other functional materials in photoelectrochemical water splitting 

applications8 and in both anode9,10 and cathode11 roles in Li-ion batteries. Our findings 

will be covered in the following sections. But briefly, TiSi2 NNs are one of the first 

reported layered-type structure inorganic anode materials; possess a good specific 

capacity of approximately 800 mAh g-1; and demonstrate good stability when cycled, 

losing less than 20% of their original capacity after 500 cycles. 

The following sections are adapted from the published work: Zhou, S.; Simpson, Z. I.; 

Yang, X.; Wang, D., Layered Titanium Disilicide Stabilized by Oxide Coating for Highly 

Reversible Lithium Insertion and Extraction, ACS Nano, 2012, 6 (9), 8114-8119. Copyright 

2012 American Chemical Society. 

2.2 Introduction 

The lithium-ion battery, a technology that presents significant advantages—such as 

long cycle lifetimes and comparatively high specific capacities—over competing battery 

technologies, is currently at the forefront of energy storage technology. Numerous 
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developments have led to its current position in the energy storage hierarchy, including 

but not limited to the formulation and discovery of new electrode materials, e.g., 

graphite anodes and LiCoO2 cathodes. 12 A defining feature of potential electrode 

materials is that they often possess a layered structure, allowing Li+ insertion and 

extraction with minimal negative effects upon the host material’s structure; the non-

invasive nature of the Li+ insertion and extraction enables long cycle lifetimes in these 

layered materials. 1 Although these materials possess a beneficial layered configuration, 

they also present low measured specific capacities, limited by their chemical nature13; 

with an ever-increasing demand for larger amounts of portable energy storage, layered 

materials have begun to fall behind. On the other hand, a host of non-layered materials 

are available for utilization as electrode materials, such as Si,4,14-16 Si-alloys,17-19 Sn,20,21 

and SnO2,22,23. While the aforementioned materials possess much higher capacities than 

their layered counterparts, they also suffer from short cycle lifetimes due to structural 

degradations caused by the insertion and extraction of Li+. To push the limits of lithium-

ion technology, new layered materials with both high specific capacities and increased 

cycle lifetimes must be sought. In our work, we found that TiSi2, in a specific, 

nanostructured configuration, enables the obtainment of the goals of both a high 

specific capacity and long cycle lifetime; these qualities are conferred by the high Si 

content found in TiSi2 and the material’s layered crystal structure. 
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Figure 2.1. The C49 TiSi2 crystal structure—illustrated schematically. (a) A side view of the unit 
cell when viewed along the [001] direction. (b) A polyhedral representation of the TiSi2 crystal 
structure. The green polyhedrons are formed by the Ti-Si layer, and the Si-only layers are 
represented by the intermediate discrete atoms. (c) An overview of the TiSi2 NN structure is 
displayed on the left. The diagrams on the right depict the Li+ insertion and extraction process. 
The outer green boundary represents the oxide coating. Reprinted with permission from ACS 
Nano., 2012, 6 (9), 8114-8119. Copyright 2012 American Chemical Society. 

The TiSi2 NN is unique due to its C49 crystal structure. As shown in Figure 2.1, the 

structure of TiSi2 comprises flat Si-only layers separated by polyhedrons constructed 

from Ti and Si. Since Si is well-known for its ability to alloy with Li, it does not take a leap 

of faith to suspect that the layered C49 structure can serve as an anode material in a Li-

ion battery. However, it has been difficult to study this hypothesis because bulk C49 

TiSi2 has been reported to be metastable, converting to a C54 structure upon heating.24 
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The latter structure is still of orthorhombic symmetry but lacks the Si-only layers. 

Without the presence of Si-only layers in C54, the likelihood that Li+ would be 

incorporated to a large extent is lessened; accordingly, C54 TiSi2 has been previously 

demonstrated to not have an appreciable capacity in the Li-ion system.25 From previous 

work in our laboratory, it was discovered that the NN form of C49 TiSi2 is stable up to 

900 °C, avoiding the unwanted conversion to the low capacity C54 structure.7 Although 

we have not undertaken in-depth studies to ascertain the reasons for the stabilization of 

the C49 structure, the NNs still prove to be a promising test bed in which to determine 

the feasibility of a C49 TiSi2 lithium-ion electrode. Although C49 appears to be a 

promising electrode candidate, reactions between Li+ and Si, cause significant structural 

degradation of TiSi2, leading to a loss of Ti into the electrolyte and the formation of 

amorphous Si on the surfaces of the NNs.26 The previously mentioned reaction that 

prevented long cycle lifetimes, also made it difficult to discern whether Li+ was 

incorporated into the body of TiSi2 rather than the surface; without this knowledge, we 

were unable to rule out a competing explanation for the observed capacity—that is, 

surface reactions primarily compose the observed capacities of TiSi2 NNs.. By preventing 

the degradation of the TiSi2 structure, we should be able to study the system in more 

detail, determining which aspect of the material the observed capacity should be 

attributed to and the mechanism of lithiation. To achieve this goal, a thin oxide coating 

was formed on the surface of the TiSi2 NNs; this addressed the previously noted stability 

issues and allowed us to determine that Li+ reacts with Si in the bulk of TiSi2 rather than 
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the surface. Specific capacities close to 800 mA h g-1 were measured (705 mA h g-1 at the 

200th cycle), and more than 80% of the original capacity was retained after 500 cycles of 

repeated lithiation and delithiation. The results here are fundamentally different from 

previous reports from our laboratory where TiSi2 NNs were used as a charge collector to 

improve the performance of Si nanoparticles,9,10 as the present work focuses on 

understanding the intrinsic properties of TiSi2. 

2.3 Experimental Section 

TiSi2 Synthesis: TiSi2 NNs were synthesized by chemical vapor deposition. Briefly, 50 

standard cubic centimeters per minute (sccm) SiH4 (10% in He), 2.5 sccm TiCl4 (98%, 

Sigma-Aldrich), and 100 sccm H2 (Airgas) were delivered into a heated reactor in 

tandem. By keeping the reactor at 675 °C and 5 Torr for 12 min, we were able to collect 

highly dense TiSi2 NNs on a piece of Pt-coated Ti foil (Sigma). The supplies of precursors 

were then cut off, and the reactor was cooled to room temperature with H2 protection. 

The sample was then immediately transferred into an Ar-filled glovebox (O2 < 2 ppm, 

Vacuum Atmosphere Co.) for coin-cell or electrochemical cell fabrication. 

TiSi2/SiO2 Synthesis: The TiSi2 NNs with SiO2 coatings were produced in the same 

fashion as those above, except that the reactor was opened to air at an elevated 

temperature of 350 °C. A layer of SiO2 was thermally formed during the cooling process. 

TiSi2/Al2O3 Synthesis: After growth, the TiSi2 NNs were transferred into the atomic 

layer deposition chamber immediately. Trimethylaluminum (Sigma) and water were 



41 
 

kept at room temperature and used as the Al and O precursors, respectively. The 

chamber was maintained at 200 °C during growth. The pulse time and purge time were 

15 ms and 10s for both trimethylaluminum and water, respectively. 

Coin Cell Fabrication: The as-synthesized samples were cut into 0.5 x 0.5 cm2 pieces 

and assembled into CR2032-type coin cells with Li foils (0.38 mm, Sigma-Aldrich) by a 

hydraulic crimping machine (MTI) in a glovebox. LiPF6 (1.0 M) in 1:1 wt/wt ethylene 

carbonate and diethyl carbonate (Novolyte Technologies) was used as electrolyte. Two 

CR2500 membranes (Celgard) were employed as separators between the two 

electrodes. 

Electrochemical Tests: After assembly, the coin cells were kept in a home-built box 

at a constant temperature of 30 °C. The cycling stability was characterized by a 16-

channel battery analyzer (current range: 1 μA–1A; Neware, China). The electrochemical 

impedance measurements were conducted using a CHI 600C potentiostat/galvanostat in 

an electrochemical cell. Two Li foils were used as both counter and reference 

electrodes, respectively. After fully lithiating or delithiating the materials at a slow 

charging/discharging rate (100 mA g-1), we allowed the electrochemical cells to 

equilibrate for 2 h before collecting impedance data. The frequency was set between 50 

kHz and 0.1 Hz, with a 10 mV AC amplitude. All simulations were performed used 

ZSimpWin. 
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Structural Characterization: To obtain the structural information of the NNs after 

testing, coin cells were opened in a glovebox and the tested electrodes were soaked in 

dimethoxyethane (99.5%, anhydrous, Sigma) for 24 h to remove any electrolyte. The 

solvent was refreshed every 4 h. The morphology was characterized by a scanning 

electron microscope (JEOL JSM-6340) and a transmission electron microscope (JEOL 

JEM-2010F). 

Electron Energy Loss Spectroscopy: Electron energy loss spectroscopy 

measurements were conducted for both unlithiated and lithiated samples. The 

measurements were conducted on a JEM-2010F equipped with a parallel detection EELS 

spectrometer. 

2.4 Results and Discussion 

 

Figure 2.2. An examination of the oxide-coated TiSi2 NNs. (a) A SEM micrograph 
demonstrating the structural purity of the NN synthesis. In this instance, purity is used to refer 
to the lack of non-NN structures, e.g., rods, tubes, or wires, in the NN synthesis. (b) A low-
magnification TEM micrograph that demonstrates the connectivity of the individual beams in 
the NN structure. The inset shows the oxide layer clearly. (c) A high-resolution TEM image 
viewed along the {020} plane is presented in this panel. The experimental image (left) 
matches the simulated image (right), confirming the TiSi2 is, indeed, C49 TiSi2. Reprinted with 
permission from ACS Nano., 2012, 6 (9), 8114-8119. Copyright 2012 American Chemical 
Society. 
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The TiSi2 NNs utilized for the experiments performed in this chapter were obtained 

via the CVD reaction between TiCl4 and SiH4 in a H2-rich environment. A moderate 

growth temperature of 675 °C and a short growth time of 12 min yield a dense 

deposition; the average areal density of the synthesis was approximately 100 μg cm-2. 

To form a conformal oxide overlayer, as-synthesized TiSi2 NNs were exposed to ambient 

air at 350 °C and allowed to cool to room temperature naturally. Figure 2.2 includes a 

TEM micrograph in the inset, demonstrating that the coating was 4 nm in thickness and 

amorphous in nature. To determine whether any beneficial effects were bestowed upon 

the system irrespective to the deposition method of the oxide coating, oxide coatings 

were deposited via other methods, e.g., atomic layer deposition, to serve the purpose of 

stabilizing TiSi2 almost as well as the amorphous coatings. 

Oxide-coated TiSi2 NNs produced according to the abbreviated procedure in the 

previous paragraph were tested using a two electrode coin cell for charge and discharge 

characterizations or a three-electrode electrochemical cell for impedance studies. 

Representative charge and discharge behaviors are plotted in Figure 2.3a and b. In the 

first cycle, a significant portion of the electrons that passed through the electrode were 

consumed in irreversible reactions, e.g., the formation of an SEI layer, as evidenced by 

the disparity between the charge step with a lithiation capacity of 3045 mA h g-1 and 

discharge step with a  delithiation capacity of 943 mA h g-1. Similar behaviors have also 

been frequently reported in other systems, although the exact nature of the irreversible 

processes remains unclear at this stage.27 With continued cycling, the coulombic 
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efficiency increased and the disparity between charge and discharge curves disappeared 

after the first five cycles. Figure 2.3b demonstrates the stability of the oxide-coated TiSi2 

NNs between the sixth and ninth cycles at a charge/discharge rate of 2000mA g-1; the 

similarity of the overlapping curves is indicative of the stability of the system in this 

instance. Consistent with the plots, the calculated coulombic efficiencies were greater 

than 98%. Note that due to the limited data sampling capability at the relatively fast 

charge and discharge rates of 2000 mA g-1  exhibited by the battery analyzer (BTS-5 V1 

mA, Neware, China) utilized in the cycling tests, the coulombic efficiencies listed herein 

may be systematically underestimated. 

 

Figure 2.3. Electrochemical profiles of oxide-coated TiSi2 NNs. (a) Charge/discharge 
characteristics of the first charge and discharge cycle. The cycling parameters are as follows: 
rate: 200 mA g-1; potential range: 1.5 to 0.01 V. (b) Charge/discharge characteristics of the 
cycles 6 through 9. The traces overlap well, demonstrating the stability of the electrode. The 
cycling parameters are as follows: rate: 2000 mA g-1; potential range: 1.0 to 0.01 V. (c) A chart 
plotting the capacity of the battery over cycles 0 to 500 on the left y axis and the coulombic 
efficiency for cycles 0 to 500 on the right y axis. For this test, the rate was 2000 mA g-1 with a 
potential range of 1.0 to 0.01 V. (d) Rate-dependent specific capacities of the oxide-coated 
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TiSi2 electrode. The cell was cycled between 1.0 and 0.01 V, and a rate of 1C is equivalent to 
1029 mA g-1. Reprinted with permission from ACS Nano., 2012, 6 (9), 8114-8119. Copyright 
2012 American Chemical Society. 

While the sufficient overlap demonstrated between the charge and discharge curves 

in 3 cycles is indicative of the short-term cycling stability of a battery, observation during 

an increased number of cycles is necessary to determine the long-term cycling stability 

of an electrode material. Figure 2.3c contains the charge and discharge behaviors of the 

system when the charge and discharge tests were extended to 500 cycles. For this group 

of data, the first five cycles were carried out at a rate of 200 mA g-1 in order to condition 

the electrode; this rate was increased by 10-fold to a rate of 2000 mA g-1 for all 

subsequent cycles. In order to present the data in a more uncluttered fashion we have 

opted to display one data point every five cycles. The capacity decreased from 744 mA h 

g-1 at the 26th cycle to 606 mA h g-1 at the 500th cycle, corresponding to an overall 

capacity loss of 18.8%, or 0.04% cycle-1. 

The rate performance of TiSi2 is noteworthy. For a measured capacity of 744 mA h g-

1 at a rate of 2000 mA g-1, a charge or discharge process takes approximately 22 min. 

This excellent rate performance is enabled by the good electrical conductivity of TiSi2: 

approximately 105 S cm-1. Through the employed synthesis of the TiSi2 NNs, an intimate 

contact between the nets and the underlying substrate, which also acts as a conductive 

charge collector, is formed, making the use of additional conductive binders 

unnecessary. The gaps between the beams of individual TiSi2 NNs, typically larger than 

50 nm, are expected to enable fast electrolyte diffusion as well. Figure 2.3d plots how 
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the capacity changed as the charge rates were varied between 0.3C and 6C, if we define 

1C as 1029 ma g-1. At 6C (6174mA g-1), the measured capacity was 574mA h g-1, 

corresponding to 74% of the value at 0.3C. Remarkably, more than 99.9% of the initial 

capacity was recovered when the cell was again measured at 1C. 

 To calculate the value of 1029 mA g-1 that we used for 1C, we utilized the 

structure depicted in Figure 2.1c and assumed that only the Si layer contributes to the 

capacity of the electrode. We also assumed that each Si atom can host 4 Li+, leading to a 

lithiated formula of Li4TiSi2 and, hence, a specific capacity of 1029 mA h g-1. Of course, 

while this coarse approximation predicts a capacity that is close to the capacity of 943 

mAh g-1 demonstrated by the electrode, it lacks a theoretical basis and, as such, should 

be used only as a general reference. 

 

Figure 2.4. A comparison of oxide-coated TiSi2 NNs and as-grown TiSi2 NNs. The capacities of 
both oxide-coated (green) and as-grown (purple) were plotted against their respective cycle 
numbers. From the 26th to 300th cycles, SiO2-coated NNs lost 10.2% of their 26th cycle capacity, 
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whereas the unprotected NNs lost 37.7% of their 26th cycle capacity. The stability conferred by 
a protective oxide coating is highlighted by these results. Reprinted with permission from ACS 
Nano., 2012, 6 (9), 8114-8119. Copyright 2012 American Chemical Society. 

 

  

Figure 2.5. The cycling stability of a NN protected with an oxide other than thermally formed 
SiO2. In this case, the NN was protected with a 1 nm thick coating of Al2O3 deposited via ALD. 
After 500 cycles, only 12.7% of the initial capacity is lost. The capacity of the Al2O3-coated 
sample is lower than those of the uncoated or SiO2-coated NN samples. Reprinted with 
permission from ACS Nano., 2012, 6 (9), 8114-8119. Copyright 2012 American Chemical 
Society. 

 

Although the electrode material demonstrates good performance characteristics, it 

must be reiterated that the oxide that has been formed on the surface of the electrode 

is invaluable to the performance of the TiSi2 anode. When charge and discharge tests 

are performed on oxide-free TiSi2 samples, the capacity fades at a rate more than 

double that of an oxide-coated sample; this behavior is demonstrated in Figure 2.4 and 

Figure 2.5. The effect of an oxide coating has been discussed by other authors as well.28-

33 Some groups believe an oxide coating, when sufficiently thin, is permeable to ions, in 

this case Li+,  but blocks electron transfer, preventing the occurrence of side reactions 



48 
 

that degrade electrode performance. The oxide layer, in essence, acts as a desired SEI or 

serves to facilitate SEI formation.28 Others have proposed that oxides, SiO2 in particular, 

may participate in the charge and discharge processes by reacting with Li+ to form LixO 

and SiOx, where x < 2.34-36 In order to understand the nature of the improved 

performance imparted by an oxide coating, we carried out EIS measurements. The data 

for oxide-stabilized TiSi2 in fully lithiated and delithiated forms are shown in Figure 2.4, 

and they should be compared to previous work from our laboratory where EIS 

measurements of oxide-free TiSi2 were reported.26 A fundamental difference is 

observed in the impedance after delithiation. For TiSi2 samples lacking an oxide coating, 

a drastic increase of impedance typically accompanied the delithation process; this 

behavior is attributed to changes in the SEI layer induced by lithiation and delithiation 

reactions.27,37 Such an impedance change was largely absent in the oxide-stabilized TiSi2 

(Figure 2.6). This result implies that the oxide coating alters the nature of and the 

formation of the SEI layer. The oxide coating also has a second purpose—it acts a 

mechanical constraint that prevents the exfoliation of layered TiSi2 during 

lithiation,29,33,38 which would otherwise lead to an eventual mechanical breakdown of 

the electrode material and a resulting loss of capacity. Taken as a whole, the improved 

SEI and the mechanical protection conferred by an oxide coating enable significantly 

enhanced cyclability of TiSi2. In addition, by fitting the lithiated data, the charge transfer 

resistance was found to be only approximately 100 Ω, indicating that although the TiSi2 

is coated with an insulating material, the NNs still demonstrate good charge conduction 
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(Figure 2.7). While it is clear that adding an oxide layer to the system is beneficial to the 

stability of the anode, it is not clear whether the conferred stability is solely due to 

properties of the oxide or due to the possible modification of the SEI layer. Therefore, 

further work needs to be conducted to clarify this matter. 

 

Figure 2.6. Electrochemical impedance spectra of oxide-stabilized TiSi2 NNs. A sample was fully 
lithiated to a potential of 0.01 V at a rate of 100 mA g-1. The sample was then allowed to reach 
equilibrium for 2 h before impedance data were collected. The frequency was swept between 
50 kHz to 1 Hz, with an AC amplitude of 10 mV. After collected the lithiated state spectrum, 
the sample was fully delithiated to 1.0 V at a rate of 100 mA g-1. After delithiation, the 
impedance data were collected using the same 50 kHz to 1 Hz range with an amplitude of 10 
mV. Reprinted with permission from ACS Nano., 2012, 6 (9), 8114-8119. Copyright 2012 
American Chemical Society. 
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Figure 2.7. The electrochemical impedance spectrum of SiO2-coated TiSi2 NNs in Nyquist plot 
form. The Nyquist plot of a fully lithiated sample is depicted here, accompanied by a 
simulated spectrum generated by the inset equivalent electric circuit. The spectra comprise a 
semi-circle and an inclined line. From these shapes, the information pertaining to charge 
transfer and Li+ diffusion in the electrode can be extracted. Reprinted with permission from 
ACS Nano., 2012, 6 (9), 8114-8119. Copyright 2012 American Chemical Society. 

 

The claim that Li+ inserts into the Si-only layers in TiSi2 is one that requires evidence. 

In this section, that evidence is presented. We begin with the assumption that the 

observed capacity results from reactions between Si and Li+ because there are no known 

reactions between Ti and Li. If Li+ is being incorporated into the Si-only layers of TiSi2, a 

subsequent increase of the lattice spacing of the {020} planes should occur. Indeed, 

When the lattice spacings of the {020} planes were compared before and after lithiation, 

we observed an increase from 0.667 to 0.675 nm, corresponding to a 1.2% change; no 

other measurable differences were observed along other crystal planes (Figure2.8). This 

small but non-negligible change indicates the insertion of Li+ into the {020} planes, 

where Si-only layers reside. To verify that Li+ was incorporated into the TiSi2 after 
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lithiation, EELS was employed; the results confirm the presence of Li in the lithiated 

sample, as shown in Figure 2.9d. There is a distinct lack of a signal attributable to the 

presence of Li in as-grown TiSi2 samples, as expected (Figure 2.9c). The combination of 

lattice spacing changes in addition to the verification of the presence of Li after lithiation 

support the proposed mechanism of Li incorporation into the Si-only layers of TiSi2. The 

small changes in volume upon Li+ insertion and extraction also lead to better cycling 

stability in the layered-structure TiSi2 when compared to Si-based alloy anodes. 

Additionally, the NN morphology and crystalline nature are well preserved after 100 

cycles (Figure 2.10). 

 

Figure 2.8. TEM images of fully-lithiated TiSi2 NNs. (a) A low-magnification image highlighting 
the intact beam of a NN after lithiation to 0.01 V. (b) A high-resolution TEM micrograph 
demonstrating that the lattice of TiSi2 along the [002] and [200] directions does not exhibit 
obvious expansion upon full lithiation. Reprinted with permission from ACS Nano., 2012, 6 (9), 
8114-8119. Copyright 2012 American Chemical Society. 
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Figure 2.9. High-resolution TEM images of TiSi2 before (a) and after (b) lithiation. (c  and d) 
Electron energy loss spectroscopy results of single TiSi2 NNs before (c) and after (d) lithiation. 
Reprinted with permission from ACS Nano., 2012, 6 (9), 8114-8119. Copyright 2012 American 
Chemical Society. 

Ideally, powder XRD patterns taken before lithiation and at various stages of charge 

and discharge would be useful in the task of elucidating the lithiation mechanism of 

TiSi2. However, in this situation, specific limitations preclude the use of powder XRD 

data. On the basis of the observed d-spacing change presented in Figure 2.8, the shift in 

the (020) peak position would be 0.16°; this shift is based on the calculated values of 

13.27° and 13.11° 2θ (Cu Kα). In addition to the small peak shift, the (020) peak is not 

present in XRD diffraction patterns collected from as-grown TiSi2 NNs.39 The broadening 

of the diffraction peak due to the small size of the nets would also complicate matters. 
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Finally, the (060) peak could possibly be used, but it is partially eclipsed by the presence 

of the (131) peak.39 

 

Figure 2.10. Electron micrographs of SiO2-coated TiSi2 after 100 cycles of lithiation and 
delithiation. (a) A SEM micrograph highlighting the densely packed NNs on the Ti growth 
substrate. (b) A low magnification TEM image verifying the preservation of the NN structure 
after repeated lithiation and delithiation. (c) A high-resolution TEM micrograph demonstrates 
that the NNs are still crystalline after 100 cycles. Reprinted with permission from ACS Nano., 
2012, 6 (9), 8114-8119. Copyright 2012 American Chemical Society. 

 

2.5 Conclusion 

In the case of electrochemical devices, their performance is intimately reliant upon 

the properties of their individual components; electrochemical performance 

characteristics rely particularly heavily upon the electrodes. With the discovery of new 

electrode compounds or mechanism, advancements in storage technology can occur. It 

is within this context that we believe our results are significant. The TiSi2 NNs, which are 

of the C49 crystal structure, represent a rare example of a layered, non-graphitic anode 

material. This study was enabled by our strategy to stabilize layered TiSi2 NNs using an 

easy-to-implement oxide coating formed by the simple exposure to air while the 

electrode was at elevated temperatures. The stabilized material survives up to 500 
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cycles of lithiation and delithiation, enabling the possibility of the material’s application 

as an electrode in lithium ion batteries. The stabilization also allowed us to perform 

detailed structural studies to confirm that Li ions are indeed reversibly inserted and 

extracted from the Si-only layer in TiSi2 NNs. This simple structure opens a doorway to 

significantly improved energy storage devices in terms of cyclability and power rate. 
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