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Abstract

The resonant modes of a sequence of periodically spaced microstrip resonators is studied.
The system is analyzed as transmission line with periodic capacitive gaps, as a waveguide
with apertures via normal mode expansion, and through a derivation of the static fields in
the gap between two microstrip resonators via conformal mapping. FDTD simulations are
also performed to numerically calculate the resonant modes of the sequence and also its
absorption spectrum when it contains a lossy dielectric. It is found, as expected, that when
the gap size is large, the microstrip resonators are uncoupled and there resonant modes
are unperturbed. As the gap size narrows, the resonators become strongly coupled, and
changing boundary conditions perturb the resonant modes upwards in frequency. Moreover,
an additional resonant mode is observed that does not correspond to any uncoupled mode.
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Chapter 1

Introduction

1.1 Motivation

Research during the summers of 2009 and 2010 with Prof. Kris Kempa in designing broad-

band near perfect absorbers was successful and brought up several areas of possible further

research. The experimental configuration for a near perfect absorber, conceived as a method

of increasing the efficiency of a solar cell, is shown in Fig. 1.1. This design consists of a

microstrip resonator that traps incoming solar radiation in a lossy dielectric. A lattice of

such microstrip resonators of varying sizes and orientations could then be used to create a

functional broadband perfect absorber.

The analysis of such a lattice assumed uncoupled microstrip resonators, which behave

largely like rectangular cavity resonators. However, computer simulations showed that there

is in fact strong coupling between neighboring microstrip resonators when they are spaced

close together. It is sufficient to consider a 1D lattice or sequence of microstrip resonators

to study this coupling. In Fig. 1.1, s is the distance between two the corresponding edges

of two resonators, i.e. the unit size of the periodic sequence. The variable l is the length of

each resonator; the ratio s/l measures the ratio of the size of the unit cell to the size of the

resonator and d = s − l is the width of the gap between neighboring resonators. Fig. 1.2

shows some of the results of simulation. In this plot ω is the resonant frequency of the system,

determined by finding the frequency of maximum absorption in the simulation. It was found

that as the ratio s/l increases and the resonators become decoupled, ω rapidly converges to

a value ω0, as expected since in this limit coupling becomes unimportant. This frequency

3
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s l

Figure 1.1: A lattice of rectangular microstrips atop a dielectric and metallic substrate traps
incoming solar radiation to increase the efficiency of a solar cell.

Figure 1.2: The resonant frequency of the microstrip resonator appears to decrease as it is
brought closer to and couples more strongly to its neighbors.

ω0, moreover, corresponds to a resonant mode of the microstrip resonator. In the other

limit, as the microstrip resonators become closely spaced together, ω decreases significantly,

indicating strong coupling. Analyzing this coupling in greater detail will provide insight

into the behavior of the resonant absorber system, and could lead to ways of optimizing the
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efficiency of a broadband perfect absorber.

1.2 Analytical Methods

This problem can be approached using several computational and analytical methods. The

original simulation modeled a three dimensional photovoltaic cell, and featured gold mi-

crostrips and a lossy silicon dielectric, and found resonances in the lossy structure by com-

puting transmission spectra and finding absorption peaks. This problem would be intractable

to solve analytically. A simpler model to study eliminates one of the spatial dimensions (the

normal in Fig. 1.1), which is justified since all the important spatial variation in the problem

is in the given plane). Additionally, replacing the lossy metal and silicon with a perfect con-

ductor and perfect dielectric will great simplify the problem, which can then be approached

by finding the behavior of resonant modes rather than the transmission spectra. A set of

computer simulation will demonstrate that these resonant modes correspond roughly to the

absorption peaks in a simulation of a lossy system (radiation is trapped at the resonances and

with a longer mean free path in the lossy material, more is absorbed). This simpler model

system can be studied analytically using tools from basic electromagnetic theory, waveguide

theory, and transmission line and microwave network theory. These tools include model two

ports, equivalent circuit representations, normal mode analysis, and conformal mapping. All

these results can be compared to data from computer simulations.

1.3 Resonant LC Circuit

A quick and dirty approach to modeling the coupled microstrip resonators treats them as

LC circuits. The fundamental mode of a microstrip resonator is represented as that of an

LC circuit, with frequency 1/
√
LC. As the microstrip sits atop the conducting ground plate,
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it behaves naively like a parallel plate capacitor. For a microstrip with length l (in the

direction of coupling), width w, and height h above the ground plate, and a dielectric with ε

and µ, this capacitance is roughly C = εwl/h. The inductance of the microstrip, meanwhile,

is a property of the raised strip, and should be proportional to the length l and inversely

proportional to the width w (in analogy with the resistance of a finitely sized conductor).

Knowing furthermore that the inductance is a magnetic effect, we can hand waive and say

that it is L = µhl/w. Then the fundamental frequency is

ω0 =
1√
LC

=
1
√
µε

1

l
=

c

nl

It makes similar sense to treat the gaps between neighboring resonators as capacitors. If the

thickness of the resonator is t and the distance between resonators is d, then this capacitance

is Cg = ε′wt/d, where ε′ is an effective dielectric constant. In terms of C, this is

Cg
C

=

(
ε′

ε

)
ht

ld
=

(
ε′

ε

ht

l2

)
1

r − 1
,

where r = s/l = d/l + 1 is the dimensionless ratio of the periodicity length to the resonator

length. Ignoring the lossy effects of the gaps between the resonators, the effect of the

capacitance can be accounted for in a very rough sense by adding an extra capacitor in

parallel to the LC circuit model. The resonant frequency of the circuit is then shifted to

ω =
1√

L(C + Cg)
=

ω0√
1 + Cg/C

= ω0

√
r − 1

r − 1 + α
, (1.1)

where α is a constant. Assuming ε′ ' ε, the numerical parameters used in the simulation of

Fig. 1.2 are l = 1µm, w = 0.35µm, h = 0.185µm, and t = 0.1µm, giving α ' 0.0185. This

prediction can be plotted against the data in Fig. 1.2. As shown in Fig. 1.3, this model is

not in great agreement with data. This can be improved numerically by adjusting the value



1.3 Resonant LC Circuit 7

Figure 1.3: The LC circuit model fails to account for the behavior of the coupled resonant
strips.

of the constant α, but doing so eliminates the physical motivation for the model (α must be

adjusted by nearly an order of magnitude) and the end result predicts much greater coupling

at longer separations than simulation shows. Moreover, it makes more intuitive sense to add

the capacitor to the circuit in series, which gives different predictions that do not agree at

all with these simulations.



Chapter 2

Review

Transmission lines and waveguides are well studied topics of electromagnetism and electrical

engineering. In principle, the two concepts are not very different. Both transmission lines

and waveguides are devices used to propagate electromagnetic energy, usually along metallic

guides. Such a device tends to be called a transmission line when dealing with low frequency

electromagnetic waves such as radio waves or microwaves, in which case it is treated ana-

lytically as an extended electric circuit. When dealing with higher frequencies waves closer

to the optical spectrum, such a device is called a waveguide and is studied by directly ap-

plying Maxwell’s equations. The distinction is not very clear cut, and two approaches are

both useful. The simplified equivalent circuit treatment of a transmission line is not able

to describe the normal modes of an unterminated line, for example, but is better equipped

to study discontinuities in the line by modeling them as impedances. A further difference

is that waveguide theory is equipped to study propagating TE and TM modes down a line,

while the transmission line theory is only equipped to study TEM modes [6, pp. 218-219].

Both types of analysis will be useful in studying the sequence of microstrip resonators. A

microstrip resonator is simply a finite section of a microstrip transmission line, which con-

sists of a rectangular metallic strip atop a dielectric and metal substrate. Microstrips are an

important class of transmission line, and have been studied intensely, but for our purposes

it is not important to delve too deeply into their intricacies.

8
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a
direction of propagation

Figure 2.1: A parallel plate waveguide propagates electromagnetic waves between two con-
ducting surfaces.

2.1 Waveguides

Instead, consider a two dimensional parallel plate waveguide, such as the one shown in Fig.

2.1. Define z to be the direction of propagation, x to be the vertical (top of the page), and

y to be the normal (out of the page). The behavior of this waveguide can be found easily

using Maxwell’s equations. Note that a complete solution in fact treats a 3D waveguide with

rectangular cross section [1, p. 361]. This extra complication is unnecessary here, as will be

discussed later. An electromagnetic wave with time dependence exp(−ı̇ωt) propagating in

the interior of this waveguide obeys Maxwell’s equations for empty space [1, 8.16]:

∇× E = ı̇ωB ∇ ·B = 0

∇×B = −ı̇µεωE ∇ · E = 0
(2.1)

Finding the modes that travel in this waveguide is simply a matter of following Jackson’s work

in two dimensions rather than three. If we look for wave solutions of the form E(x, z, t) =

E(x) exp (±kz − ı̇ωt), and similarly for B, fields satisfying the equations 2.1 necessarily

satisfy (
∇2

x +
(
µεω2 − k2

)) E

B

 = 0, (2.2)

where ∇x is the ∂/∂x operator (in assuming that the waveguide is 2D, we assume that

there is no variation in the fields in the y direction) [1, 8.19-20]. This equation treats each
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of the components of E and B separately. Recall that we are considering the wave to be

propagating in the positive z direction. It can be derived from (2.1) that if either Ez 6= 0 or

Bz 6= 0, the transverse components of the electric and magnetic fields are given in terms of

the z components by [1, 8.26]

Et =
ı̇

µεω2 − k2

(
±k∂Ez

∂x
x̂− ω∂Bz

∂x
ŷ

)
(2.3)

Bt =
ı̇

µεω2 − k2

(
±k∂Bz

∂x
x̂ + µεω

∂Ez
∂x

ŷ

)
. (2.4)

It is apparent that the wave must be a superposition of two classes of simpler modes. These

are the the transverse magnetic (TM) mode, in which the magnetic field is completely trans-

verse to the direction of propagation (i.e. Bz = 0), and similarly the transverse electric (TE)

mode. In each case, the tangential fields are completely determined by the normal electric

or magnetic field component. It is traditional at this point to use the field H rather than B.

The tangential components of a TM mode are given in terms of Ez by

Ex =
±ı̇k

µεω2 − k2

∂Ez
∂x

Ey = 0

Hx = 0 Hy =
ı̇εω

µεω2 − k2

∂Ez
∂x

(2.5)

It is often useful to remember that the tangential electric and magnetic fields are related to

each other by the TM impedance ZTM = k/εω:

Ht =
±1

ZTM
ẑ× Et (2.6)

The normal component Ez satisfies equation (2.2) and moreover has boundary conditions

Ez|S = 0, since the boundary is a metallic surface. Defining γ2 = µεω2 − k2, this is an

eigenvalue equation ∇2
xEz = −γ2Ez where Ez(0) = Ez(a) = 0. The eigensolutions to this
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equation are

Ez = sin (γmx) , (2.7)

where m is an integer ≥ 1 and γm = mπ/a. Note that this means that propagation of the

wave is given by km =
√
µεω2 − γ2

m, and that there is a cutoff frequency ωm = γm/
√
µε

below which the mth mode will not propagate. Substituting this into (2.5), we see that the

transverse fields are

Ex =
±ı̇ka
mπ

cos
(mπx

a

)
, Hy =

ı̇εωa

mπ
cos
(mπx

a

)
(2.8)

The ±ı̇ factor in Ex signifies that this component is a quarter cycle out of phase with Ez

in the z direction, while the ı̇ factor in Hy signifies that this is a quarter cycle out of phase

with Ez in time. The tangential components of a TE mode are given in terms of Hz by

Ex = 0 Ey =
−ı̇µω

µεω2 − k2

∂Hz

∂x

Hx =
±ı̇k

µεω2 − k2

∂Hz

∂x
Hy = 0

(2.9)

In analogy with (2.6), we define ZTE = µω/k, and the electric and magnetic tangential

components are related by

Ht =
±1

ZTE
ẑ× Et (2.10)

The normal magnetic field Bz satisfies (2.2) and has boundary conditions ∂Hz/∂n|S = 0.

The is an eigenvalue equation in this case is ∇2
xHz = −γ2Hz where H ′z(0) = H ′z(a) = 0. The

eigensolutions to this equation are

Hz = cos (γmx) , (2.11)
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where m is an integer ≥ 0 and again γm = mπ/a. The transverse fields are given by

Ey =
ı̇µωa

mπ
sin
(mπx

a

)
, Hx =

∓ı̇ka
mπ

cos
(mπx

a

)
(2.12)

In the case that both Ez = 0 and Bz = 0, equations (2.3) and (2.4) do not hold. In this

case a degenerate type of wave called, naturally, a TEM wave is in general possible. For

such a wave ∇x×ETEM = 0 and ∇x ·ETEM = 0, meaning that the electric field in the cross

section of the waveguide is an electrostatic solution to the boundary conditions given by the

waveguide [1, p. 360]. In the present case, the two parallel plates are equipotential surfaces,

so the electric (and consequently magnetic) fields between them can take static values [6, p.

399]. However, a TEM mode is not always possible for other types of waveguides in which

the metallic boundaries are disconnected and where there are non-metallic boundaries, such

as for the microstrip transmission line.

Equations (2.7) - (2.12) fully describe the modes of the parallel plate transmission line.

Using these equations to describe the behavior of a microstrip transmission line is in fact the

lowest-order tenable approximation [6, p. 411]. Much more complicated methods have been

used to describe the properties of a true microstrip transmission line [7]; however, most of

these results are outside the scope of this thesis. One notable result is that the microstrip

transmission line supports a quasi TEM mode, since the electric field is not forced to be

simultaneously zero on all edge faces of the transmission line. In the more precise treatments

mentioned above, this quasi TEM mode is usually identified with the lowest order TE or

TM of the the approximate parallel plate transmission line.
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a

L

Figure 2.2: A 2D rectangular cavity resonator is a terminated section of a parallel plate
waveguide.

2.2 Cavity Resonators

When a microstrip transmission line is terminated to a finite length roughly comparable

to the wavelength of the radiation it supports, it becomes a lossy resonant cavity. With

its rectangular dimensions, the microstrip resonator is a variant of a rectangular resonant

cavity. Consider a 2D rectangular cavity with dimensions (a, L) in the (x, z) directions, as

shown in Fig. 2.2. This is simply a portion of a parallel plate waveguide with conducting

plates at z = 0 and z = L. So, its resonant TM and TE modes (which are superpositions of

the forwards and backwards propagating modes of the parallel plate waveguide) must have

their transverse electric fields take the value 0 at these two faces. The first consequence of

this is that the propagation factor k must be an integer multiple of π/L, i.e. nπL, just as

γm was constrained to be an integer multiple of π/a. Consequently, the related constants γm

and ω are restricted. In summary, the mode is described by two integer parameters m and

n such that

µεω2
mn = γ2

m + k2
n =

(mπ
a

)2

+
(nπ
L

)2

(2.13)

It is clear now that a resonant mode is completely described by three pieces of information:

a) whether it is TM or TE, b) its value of m, and c) its value of n. A convenient symbol

for a particular mode, therefore, is TMmn or TEmn, as the case may be. Since TM and TE
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modes with identical m and n are degenerate in this case (and most others), a mode will

often be labelled simply as mn when there is no confusion whether it is a TM or TE mode

or when this distinction is unimportant. This notation is not ambiguous, since the modes

considered in this thesis will never reach into the double digits.

Inspecting (2.7) and (2.8), we see that transverse electric fields in the TM case are a

quarter period out of phase with Ez (because of the ±i), and so they are zero when Ez is at

a local maximum on the edge faces. Evidently, Ez varies with z as cos(knz) and the other

fields are in phase or out of phase as required. So, the field components of a TMmn mode

are given by

Ex =
na

mL
cos
(mπx

a

)
sin
(nπz
L

)
(2.14)

Hy =
ı̇εωa

mπ
cos
(mπx

a

)
cos
(nπz
L

)
(2.15)

Ez = sin
(mπ
a

)
cos
(nπz
L

)
(2.16)

For a TEmn phase, (2.11) and (2.12) show that the tangential electric field is in phase with

Hz (the ı̇ is a time phase), and the resulting components of the mode are given by

Hx =
na

mL
cos
(mπx

a

)
cos
(nπz
L

)
(2.17)

Ey =
ı̇µωa

mπ
sin
(mπx

a

)
sin
(nπz
L

)
(2.18)

Hz = cos
(mπ
a

)
sin
(nπz
L

)
(2.19)

A microstrip resonator behaves like a rectangular resonator, but with fringing fields

at the ends and sides where it has open (rather than metallic) boundary conditions (see

Fig. 2.3. This can be accounted for heuristically by (1) assuming that the resonator has

slightly perturbed effective dimensions and (2) ensuring zero tangential magnetic field at the
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a

L

Figure 2.3: A 2D microstrip resonator has open boundary conditions.

boundaries [6, pp. 501]. Call the perturbed dimensions of the microstrip a′ = a + δa and

L′ = a + δL. For a TM mode, repeating the above arguments with these new boundary

conditions gives the components of the TMmn mode of the (2D) microstrip resonator:

Ex =
na′

mL′
cos
(mπx

a′

)
cos
(nπz
L′

)
(2.20)

Hy =
ı̇εωa′

mπ
cos
(mπx

a′

)
sin
(nπz
L′

)
(2.21)

Ez = sin
(mπ
a′

)
sin
(nπz
L′

)
(2.22)

The components of the TEmn mode of a microstrip resonator are

Hx =
na′

mL′
cos
(mπx

a′

)
sin
(nπz
L′

)
(2.23)

Ey =
ı̇µωa′

mπ
sin
(mπx

a′

)
cos
(nπz
L′

)
(2.24)

Hz = cos
(mπ
a′

)
cos
(nπz
L′

)
(2.25)

The literature treats actual three dimensional microstrip resonators, such as in [6, pp.

500-501]. Here, there are also open boundary conditions on the side faces (in the xy plane)

of the microstrip resonator. The literature states that this further restricts the possible

behavior of the resonator. One consequence is that the modes of the microstrip resonator

must be TE and cannot have variation in the x direction (i.e. m = 0; also note that the
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literature uses different axes). Neither of these applies to the 2D microstrip resonator, and

in fact m = 0 modes will not be studied because (as will be explained later) they were

difficult to excite using FDTD simulation software. However, the remainder of the thesis

will concentrate on TE modes.

2.3 Transmission Lines

An alternative method of studying transmission lines treats them as extended electric cir-

cuits. Since light is an electromagnetic wave, the radiation confined to propagate down a

transmission line is in principle very similar to sinusoidally varying electric waves travel-

ing through a circuit. The literature on these techniques is very well developed (see [2]

and [6]) and, unlike the waveguide and resonator modes reviewed above, this background

is not needed to interpret the results of the simulations described later. However, several

techniques from this literature are used in analysis. Here is a brief review of the principles

behind the equivalent circuit techniques used in the study of transmission lines.

A transmission line (such as a microstrip transmission line) propagating fields in the

direction z can be modeled as an extended circuit with voltage V (z) and current I(z),

rather than directly using Maxwell’s equations to study E and B. A simple line consisting

of two parallel conductors, for example, is assumed to have a distributed inductance L and

capacitance C per unit length. Then a differential element of the transmission line behaves

like a small two port circuit element with series inductance Ldz and parallel (or shunt)

capacitance C dz. The behavior of the transmission is described by Heaviside’s Telegrapher’s
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Equations [6, pp. 214-5]:

∂V

∂z
= −L∂I

∂t
∂I

∂z
= −C∂V

∂t

The analysis of these equations reveals that the most important parameter describing prop-

agation on the transmission line is its characteristic impedance [6, p. 217], defined as

Z0 =

√
L

C

This can be generalized to more complicated waveguides by considering alternative differ-

ential elements, containing extra series or shunt losses, inductances, or capacitances. Al-

ternatively, transmission lines where the basic two port units are discrete chunks and not

differentials can be studied with matrix techniques. More importantly, defects, obstacles,

or other discontinuities (standalone or periodic) in the transmission line can themselves be

modeled as circuit elements, and matrix techniques can be used to analyze their effects.

Later, the gaps between neighboring microstrip resonators will be treated as periodic series

capacitive elements on a transmission line, and use some of these techniques will be employed

to study the their effect on the transmission line.



Chapter 3

Numerical Simulation

3.1 Resonator Modes

The program Meep is an open source open source FDTD electromagnetic simulation project

developed at MIT [5]. It is capable of modeling dielectric, metallic, and lossy media in several

dimensions and computing transmission spectra and resonant modes (using a specialized

algorithm [3] that is a variant of a Fourier transform).

Meep’s accuracy can be demonstrated by using it to calculate the resonant frequencies

of a 2D rectangular resonator filled with a vacuum. Several difficulties were encountered

while performing these simulations. First, only modes with odd values of m and n were

excited because these all share a common node in the geometric center of the resonator.

The even labeled modes do not in general share a common node with each other or with

the odd numbered modes, and so it is generally much easier to excite multiple odd modes

simultaneously (simply by placing a point source in the center) than even modes. Second,

exciting TE modes in Meep was more reliable than exciting TM modes, for unknown reasons.

The TE11 mode was the lowest order mode of the rectangular cavity resonator or microstrip

resonator that could be reliably studied using Meep, and so for the purposes of this research

this was effectively the fundamental mode.

Meep uses dimensionless units in which c, µ0, and ε0 are all equal to 1. The program takes

advantage of the scale invariance of the equations of electromagnetism by reporting distance

in multiples of some arbitrary unit length a. Correspondingly, frequency is reported in units

of 2πc/a (cyclical frequency rather than angular frequency). The simulation file used for this

test is given in the appendix (A.1). This simulation describes a 2D rectangular resonator

18
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Mode Calculated Frequency Meep Error

1x1 0.128846490613857 4.47612618237562e-6
1x3 0.156240803293938 4.80319514495409e-7
1x5 0.200122142332131 7.38085104600644e-6
1x7 0.251862861842301 2.57585377387968e-6
1x9 0.307724322870505 1.81950335916637e-6
1x11 0.363651067905817 2.65983802340615e-4
3x1 0.374275045285169 7.32461359363812e-4
3x3 0.389307662941443 0.00121686619537507

Figure 3.1: Frequencies of several TE modes of 2D rectangular resonator

with dimensions 4 and 16 (again in units a, where the value of a does not matter). The

resonant frequencies should be exactly as given by (2.13) with x = 4a and y = 16a. In

Meep’s units the frequency of the 11 mode, for example, should be

f =
1

2

√(
1

4

)2

+

(
1

16

)2

=

√
17

32
= 0.1288470508

The resonant frequencies and corresponding errors calculated by Meep are listed in Fig.

3.1, where “Mode 1x1” denotes TE11, etc. Meep runs a harmonic inverse algorithm to

find the frequencies of the normal modes, and their corresponding modes can be found by

outputting a graphical representation of the field intensity from within Meep. Fig. 3.2 shows

time slices of the transverse electric field intensity for three separate modes. The frequencies

obtained by Meep agree with theory quite well, with error generally 1 part in 104 or lower.

The simulated frequencies for the highest order modes are off by close to one part in a

hundred, but for these modes Meep indicated a higher internal error than in lower modes.

Across the board, Meep’s estimation of its error is too low, but overall its performance is

still more than adequate.

The next step is to use Meep to find the resonant modes of a microstrip resonator and
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Figure 3.2: Modes of the rectangular resonator. From top to bottom: TE11, TE15, TE33.

compare these to theory. Recall that literature states that the modes of a microstrip res-

onator should correspond to the the TE modes of the corresponding rectangular cavity with

extended effective dimensions and with no x variation (i.e. m = 0). As mentioned, it was

difficult to perform simulations that could observe m = 0 modes. The file used for this

simulation is shown in Appendix A.2. The justification given in the literature that m 6= 0

modes should not exist is that there should be zero tangential magnetic fields at the sides

of the microstrip, which is an idealization. In the Meep simulation the 11 mode appears at

the frequency (in Meep units) ω = 0.127466. The effective length of the resonator in this

simulation is

Leff
L

=
ω0

ω
=

0.128846

0.127466
' 1.011 (3.1)

This resonant mode is clearly analogous to the 11 mode of the rectangular cavity, as shown

in Fig. 3.3. Visually, the “length” of the resonance appears to be more than 1.1% greater

than the length of the microstrip, but as an abstraction of the more complicated boundary

conditions in this problem, the effective length does not correspond to a geometric length.
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Figure 3.3: The TE11 mode of the resonator (the magnitude of Ey is plotted) is clearly
analogous to the equivalent rectangular cavity mode, but it is lossy and radiates away energy.
The sharp changes in the fields seen on the left and right sides are an artifact of Meep’s use
of PML to represent semi-infinite vacuums.

It is immediately clear that the magnitude of Ey is proportional to sin knz for some

kn, since Ey reaches its maximum in the middle of the resonator and its minimum at the

fringe edges. This contradicts (2.23) - (2.25), which were derived from the open boundary

conditions listed in the literature. These boundary conditions are clearly not correct in this

instance. They possibly hold for the 3D microstrip resonator but not for the 2D microstrip

simulated here. Alternatively, the analysis in [6] described the boundary conditions of the

microstrip resonator when it is coupled to a transmission line (evidence for this will be shown

below).

3.2 Coupled Resonator Modes

The behavior of the system once coupling between neighboring microstrip resonators is

introduced can be numerically by taking the same geometry as before but requiring the fields

to be translationally periodic. The effect of this periodicity is that the fields are exactly those



3.2 Coupled Resonator Modes 22

a

d

Figure 3.4: The gap between neighboring microstrip resonators creates new boundary con-
ditions.

that would be caused by the periodic geometry shown in Fig. 3.4. The simulation file to

find the resonant modes of this geometry is given in Appendix A.3. The frequencies of the

resonant (TE) modes are plotted as a function of the ratio s/l in Figs. 3.5. The results

are not at all what was expected. Instead of the resonant frequency decreasing with the

lattice ratio s/l, as seemed to occur in the simulations conducted in previous research, the

modes actually increased in frequency. In fact, for the lowest modes, there appears to be

a clear pattern. The coupled 11 mode increases in frequency and converges towards the

uncoupled 12 mode as s/l → 0. Additionally, a resonant mode that is not expected based

on analogy to a rectangular cavity appears as s/l decreases (presumably once its Q factor

becomes high enough for it to be observed) and converges towards the uncoupled 10 mode

as s/l→ 0. Some images of the electric fields in these modes can aid interpretation of these

effects. Consider the 11 mode first. When s/l is large, this mode is essentially that shown

in Fig. 3.3. As s/l decreases, it shifts as shown in Fig. 3.6 and Fig. 3.7.

It is visually apparent what occurs during this transition. As the coupling between

neighboring resonators becomes strong, the boundary conditions at the two edges of each



3.2 Coupled Resonator Modes 23

Figure 3.5: The resonant frequencies of the low order TE modes increase as the resonators
couple more strongly, and there is a new mode below TE11. The blues lines represent the 10,
11, 12, and 13 modes of the rectangular cavity of identical dimensions, which the microstrip
resonator should resemble.

resonator are replaced by new conditions at the middle of the gaps between neighboring

resonators. These new boundary conditions are obviously that the tangential electric fields

should be at their maximum on the xy planes at each gap location. Equivalently, there should

be zero tangential magnetic fields on these planes; these boundary conditions are simply the

open circuit boundary conditions discussed above. The resonant modes take the form given

by equations (2.23) - (2.25). Note that the coupled TE11 mode at s/l ≈ 1 corresponds to

m = 1, n = 2 in these equations. This notation will continue to be used, since this mode

deforms continuously into the uncoupled TE11 mode and not the uncoupled TE12 mode.

As can be seen in (2.23) - (2.25), a third formulation of the coupled boundary condi-

tions is that there should be zero normal electric field on the xy planes at the gaps. These

boundary conditions make physics sense. The symmetry created by the two opposing edges
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Figure 3.6: The resonant frequency of the TE11 mode begins to shift higher as the microstrip
separation distance decreases (s/l = 1.20).

Figure 3.7: The TE11 mode has been perturbed to a degenerate mode with the same fre-
quency as the uncoupled TE12 mode (s/l = 1.01).

of neighboring microstrips facing each other across the gap (see Fig. 3.4) implies that there

should be no normal (symmetry-breaking) electric field in this gap. As the distance be-

tween neighboring resonators approaches zero, the 11 mode where initially Ey ∼ sin πz/L′

is perturbed until in the end Ey ∼ cos 2πz/L (Fig. 3.7).

Additionally, a new mode is observed below the uncoupled TE10 frequency (Fig. 3.5).

This cannot be a TE0x mode, since these “modes” must take the value 0 everywhere in the

waveguide. Moreover, this mode converges to the uncoupled TE10 mode in the same manner

that TE11 converges to the uncoupled TE12. By analogy, it will be called the TE1,−1 mode.

Several images of the electric field in this mode are shown in Figs. 3.9 and 3.10. Again, it

is easy to make intuitive sense of this resonant mode. Before the gaps approach zero size,

there are resonances located around each one. As the gaps decrease in size, these individual
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Figure 3.8: The increase is resonant frequency is numerically attributable to a decrease
in the effective width of the microstrip resonator, although this isn’t the most physical
interpretation.

Figure 3.9: The TE1,−1 mode appears once the gap becomes small enough that it is not too
lossy (s/l = 1.20).

resonance combine until their magnitude is constant across z. This mode, the coupled TE1,−1

mode in the limit s/l ≈ 1, is described by (2.23) - (2.25) with m = 1 and n = 0 (so it is at

the same frequency as the uncoupled TE10 of the rectangular cavity resonator).
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Figure 3.10: The TE1−1 is essentially identical to the uncoupled TE10 mode when s/l ≈ 1
(s/l = 1.01).

3.3 Absorption Spectrum

Unfortunately, Meep is not capable of modeling a material with constant complex ε. Instead,

any lossy material must be modeled with a Lorentzian function

ε(ω) =

(
1 +

ı̇σD
ω

){
ε∞ +

∑
n

σnω
2
n

ω2
n − ω2 − ı̇ωγn

}
, (3.2)

where σD is a parameter representing conductivity and each triple (ωn, γn, σn) characterizes a

resonance at frequency ωn with a width related to γn and a relative strength σn. Representing

a flat and complex dielectric constant is a matter of gaming Meep’s system. Take the task

of modeling a dielectric constant ε = εr + ı̇εi. The simplest way to do so with only one

Lorentzian term is to first let σD = 0 and ε∞ = εr. Then let ω0 be a frequency in the middle

of the frequency range of interest (so that ω2
0−ω2 is small) and let σ0 = εiγ0/ω0. In the limit

γ0 →∞ (in Meep we can set γ0 = 1010 or some other arbitrarily high number), we have

ε(ω) = εr +
εiγ0ω0

ω2
0 − ω2 − ı̇ωγ0

→ εr + ı̇εi

(ω0

ω

)
. (3.3)

This is not an ideal situation, but it the best that can be done without resorting to numerical

approximations involving multiple Lorentzian terms (in fact, a least squares fit with just one

Lorentzian term does barely any better). This numerical fit can be performed with a program
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Figure 3.11: Absorption spectra of the microstrip resonator lattice on a broader frequency
range shows rough correspondence to low order resonant modes of microstrip resonator
(s/l = 1.35).

such as Mathematica, giving excellent results. A fit to the parameters εr = 1 and εi = 0.5

using Mathematica is given in the appendices (B.1). However, using these parameters within

Meep caused numerical convergence issues for unknown reasons. Further research could try

to modify these fits to work with Meep or use an alternate FDTD simulation program. For

now, the less than ideal approximation given by (3.3) is used.

Using this approximation, Meep can simulate the absorption spectra of the lattice of

two dimensional microstrip resonators. The file used to perform this simulation is shown

in Appendix A.4. Fig. 3.11 shows the absorption spectra across a broad frequency range

spanning the low order 1n and 2n modes. The peaks are not located exactly at the system’s

resonant frequencies (partly because the dielectric simulated is a function of frequency).

However, they do appear to correspond roughly to these frequencies, with several peaks

between ω = 0.12 and 0.2 (in Meep units, as described above) corresponding to 1n modes
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Figure 3.12: Absorption spectra of the microstrip resonator lattice (black line s/l = 1.30,
red line s/l = 1.25, and blue line s/l = 1.20).

and a group of more tightly spaced peaks around ω = 0.25 corresponding to 2n modes.

Figs. 3.12 shows the absorption in a narrower frequency band centered around the 10

and 11 modes as the spacing s/l between resonators is decreased. These plots show two

peaks, the lower of which should contain the nearby TE1,−1, TE10, and TE11 modes, and

the higher of which is around the TE13 mode. As the ratio s/l is decreased to 1 and the

microstrip resonators are brought together, the absorption peaks rise in frequency along with

the resonant modes, although they change in relative strength. These results clearly do not

agree with the results of previous research that prompted this thesis, which found that the

peak in absorption decreased in frequency as the microstrips were brought together. It is

observed here that an unexpected absorption spike appears at the new resonant mode TE1,−1.

Perhaps in three dimensions, there is a continuous class of these extra resonant modes that

accounts for the smooth transition to lower frequencies observed in earlier simulations.



Chapter 4

Analysis

4.1 Periodically Loaded Transmission Line

The transmission line literature treats transmission line coupling to resonators [6, pp. 564-72].

However, the manner in which it does so presupposes knowledge of the resonant modes of

the resonator, and does not consider perturbations to these modes caused by coupling to the

transmission line. Instead, in the limit where s/l ≈ 1, the sequence of microstrip resonators

can be treated as a periodically loaded transmission line with series capacitive elements. The

equivalent circuit for this representation is shown in Fig. 4.1. Following a similar textbook

example [2, pp. 230-233], consider the propagation of a wave along this transmission line. Let

θ be the effective propagation from one cell to the next, i.e. Vn+1 = Vne
−ı̇θ and In+1 = Ine

−ı̇θ.

Let k be the propagation constant along each transmission line segment, treated as a two port

with characteristic impedance Z0 =
√
L/C. Then the transmission line equations (which

imply that the current and voltage vary sinusoidally in between the capacitors) together with

In

Vn

In+1

Vn+1V
L

Figure 4.1: When the coupling between neighbors is large and the loss is low, the sequence of
microstrip resonators behaves like a periodically capacitively loaded transmission line. Each
segment of this transmission line can be represented by this characteristic two-port.

29
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Kirchoff’s laws give

Vn+1 = Vn cos k`− ı̇Z0In sin k`−
(

1

ı̇ωC0

)
In+1 (4.1)

In+1 = −ı̇Y0Vn sin k`+ In cos k` (4.2)

Substituting the θ propagation terms and multiplying the two equations yields (after a little

big of algebra)

cos θ = cos k`+
Y0

2ωC0

sin k`. (4.3)

Physically, we are interested in the case where the coupling between the neighboring res-

onators is arbitrarily strong, i.e. ωC0 � Y0. When length ` of transmission line segment

(resonator) is near an integer multiple of half the wavelength, k` ≈ nπ and cos k` ≈ (−1)n.

If n is odd and sin k` < 0, then cos θ < −1 and there will be no real solution for θ. Sim-

ilarly, when n is even and sin k` > 0, there cannot be a real solution for θ. In general

there are no real solutions for the propagation constant θ in the narrow frequency bands

nπ < k` < nπ + ∆ (where ∆� 1).

This analysis supports the behavior seen in the simulations. The high capacitance gaps

in the “transmission line” act as boundary conditions that create resonant conditions at

certain frequencies. Waves at these frequencies cannot propagate through the transmission

line because they become trapped inside the resonators, leading to the stop gaps in θ. The

success of this transmission line model indicates that it might have the potential to describe

the microstrip resonator system between the uncoupled and completely coupled (ωC0 � Y0)

limits.
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4.2 Normal Mode Expansion

The gaps between successive microstrip resonators act as periodically spaced apertures on

a microstrip transmission line (or, as a more manageable approximation, a parallel plate

transmission line). As outlined in Jackson [1, pp. 398 - 294], such a model can be studied

by assigning harmonic sources to the apertures and calculating the excited field inside the

waveguide as a superposition of its orthonormal modes, i.e. the modes normalized such that

∫
A

Em · En = δmn ,

where A is a cross section of the waveguide. The orthonormal TM and TE normal modes

can be calculated easily from (2.7) - (2.12). The components of the forward propagating

mth orthonormal TM mode are

Ex =

√
2

a
cos
(mπx

a

)
(4.4)

Hy = ± εω
km

√
2

a
cos
(mπx

a

)
(4.5)

Ez = ∓ ı̇mπ
kma

sin
(mπx

a

)
(4.6)

Similarly, the components of the forward propagating mth orthonormal TE mode are

Hx = ±km
µω

√
2

a
sin
(mπx

a

)
(4.7)

Ey =

√
2

a
sin
(mπx

a

)
(4.8)

Hz =
−ı̇mπ
µωa

cos
(mπx

a

)
(4.9)
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The total electromagnetic fields caused by the incident fields is the superposition of the

forward propagating and backwards propagating fields that are excited, i.e. E = E(+) +E(−)

[1, 8.137]. Each of these traveling waves can be given as a superposition of orthonormal

modes

E(±) =
∑
λ

A
(±)
λ E

(±)
λ , (4.10)

where λ is an index thats runs over all TE and TM orthonormal modes of the waveguide

(given by (4.4) - (4.9)). In this particular case, where the waveguide is excited by a source

at an aperture, the coefficients can be calculated using (8.147) from Jackson [1].

Consider a TE electric field applied at the apertures on the resonator sequence (Fig.

1.1), i.e. Ey = E0e
−iωt. Since the excitation is a TE mode, it turns out that it does not

excite any TM modes of the waveguide. This excitation is compatible with the heuristic

observations made of the resonant modes of the coupled resonator system (that the periodic

gaps became boundaries at which the normal component of the electric field is forced to be

zero; see above). Moreover, this case is much simpler than the corresponding TM case. The

coefficients for the excited TE modes are determined using (8.147) from Jackson:

A(±)
m =

ZTE
2

∫
A

(
Ẽ×H(∓)

m

)
· n̂ dz

=
µω

2km

∫
A

(
E0 ·
−ı̇γm
µω

√
2

a
e∓ı̇kmz

)
(ŷ × ẑ) · x̂ dz

= ı̇E0
γm
2km

√
2

a

∫ b

a

e∓ı̇kmz dz.

Now take the points a and b to be the two end points of an aperture centered at z = c. The
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integral term above becomes

∫ c+d/2

c−d/2
e∓ı̇kmz dz =

1

∓ı̇km
e∓ı̇kmz

∣∣∣∣c+d/2
c−d/2

=
1

∓ı̇km
(
e∓ı̇km(c+d/2) − e∓ı̇km(c−d/2)

)
=

2e∓ı̇kmc

km

(
e∓ı̇kmd/2 − e±ı̇kmd/2

∓2ı̇

)
=

2 sin(kmd/2)

km
e∓ikmc.

Substituting these into (4.10) gives an an expression for the excited electric field as a super-

position of normal modes of the waveguide. At first glance the resulting expression does not

seem likely to convert. However, recall that each mode has a cutoff frequency below which

it cannot propagate. A frequency ω can only excite propagating modes with real km when

mπ/a <
√
µεω. This ensures that only a finite number of propagating modes are excited.

The non-propagating modes can then be safely ignored. With this caveat,

E =
∑
m

A(+)
m E(+)

m +
∑
m

A(−)
m E(−)

m

=
∑
m

{(
ı̇E0mπ

k2
ma

√
2

a
sin

(
kmd

2

)
e−ikmc

)√
2

a
sin
(mπx

a

)
eı̇kmzŷ

}

+
∑
m

{(
ı̇E0mπ

k2
ma

√
2

a
sin

(
kmd

2

)
eikmc

)√
2

a
sin
(mπx

a

)
e−ı̇kmzŷ

}

=
4ı̇E0

a2

∑
m

{(
mπ

k2
m

sin

(
kmd

2

))
sin
(mπx

a

)
cos (km(z − c))

}
ŷ

A particular segment of the waveguide is terminated by two apertures located at c = L/2

and c = −L/2. If these are the only two apertures present, the total electric field inside

the waveguide can be found by superimposing the fields caused by each of these apertures.

With the trigonometric relation cos(a+ b) + cos(a− b) = 2 cos a cos b, the total electric field



4.2 Normal Mode Expansion 34

present in the waveguide is

Ey =
8ı̇E0

a2

∑
m

(
mπ

k2
m

sin

(
kmd

2

)
cos

(
kmL

2

))
sin
(mπx

a

)
cos (kmz) (4.11)

The cos(kmL/2) term regulating the magnitude of the excited field reaches its maximum

magnitude when km = 2nπ/L for some integer n, i.e. when ω is the resonant frequency

of a TEm,2n mode of rectangular cavity resonator of dimensions (a, L). Furthermore, this

resonant mode will be the dominant mode when the waveguide is excited at this frequency

ω. Consider another (waveguide) with propagation factor km̃, where m̃ > m. Physically,

a� L, and so

k2
m̃ =

(
2nπ

L

)2

+
(mπ
a

)2

−
(
m̃π

a

)2

< 0 (4.12)

Essentially, since a is much less than L the mode number describing periodicity in the direc-

tion of a has a much larger effect on the frequency and propagation of wave than the number

describing periodicity in the direction L. Explicitly, when m̃ ∼ n, 1 ∼ m̃/n� a/L and thus

m̃/a� n/L, justifying (4.12). On the other hand, when m̃ < m, the propagation factor km̃

is greater than km, and inspection of (4.11) shows that this mode does not contribute nearly

as much to the total excited field. Since additionally d� L, the magnitude of the resulting

electric field varies simply with respect to the geometric and mode parameters as

|Ey| ∝
(m
n

)(Ld
a2

)
(4.13)

These results agree to a degree with the simulated absorption spectra of the system of

microstrip resonators. Normal mode analysis predicts that maximum absorption will occur

when ω is the frequency of some mode, in fact a mode TEm,2n, of the system. This agrees

completely with previous results, but the restriction of the second parameter to 2n (i.e. to

even integers) has not been seen before. This does not necessarily contradict the simulations,



4.3 Conformal Mapping 35

since the absorption spectra did not seem to have peaks at each resonant mode, and warrants

further investigation. Secondly, normal mode analysis predicts that the strength of the

excited field in the dielectric should be proportional to m/n. The simulations did seem to

show decreasing resonant strength with n, though not increasing strength with m. Again,

this is a target for further investigation.

4.3 Conformal Mapping

The analysis of fields around the gaps between neighboring microstrip resonators is possible

using the techniques of conformal mapping. Conformal mapping can be used, for example,

to analyze the fringing fields at the ends of a parallel plate capacitor, specifically by using the

Schwarz transformation (see [6, pp. 345-348]). This leads to hope that the gap between the

microstrip resonators, which is essentially a symmetric version of the parallel plate capacitor

fringing problem, can be approached by similar means. However, a direct attempt to use the

Schwarz transformation becomes unmanageable. Instead, consider the similar problem of

finding the fringing fields between two disconnected parallel plate capictors, as shown in Fig.

4.2. Mathematically, this consists of solving Laplace’s equation on the plane with boundary

conditions in which two of the plates are grounded and the other two are at a potential V .

This problem is treated in [4, p. 197], which gives the conformal map f : D → C from the

unit disk (shown in Fig. 4.3) given by

w = f(z) =
1

2
sin2 α log

(
1 + z

1− z

)
+

1

2
cos2 α

(
2z

1 + z2

)
(4.14)

Here, α is a constant such that f(exp ı̇α) = a+ bı̇, where the four boundaries are separated

horizontally by a distance a and vertically by a distance b (so (a + bı̇)/2 is the complex
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V V

0 0

Figure 4.2: The electrostatic fields between two coupled microstrips (or simply parallel plate
capacitors) are more easily found by making the problem symmetric with respect to both
axes.

V V

00

Figure 4.3: The unit disk D with these boundaries is conformally equivalent (via the map
f) to the complex plane C with boundaries shown in Fig. 4.2.

coordinate of the end of the boundary in the first quadrant). The boundaries on the plane

are mapped onto by the boundary of the unit circle in the obvious way (each being associated

with its corresponding quadrant), as shown in Fig. 4.3. Laplace’s equation is easier to solve

on the unit disk, but only through the use of an infinite series of Bessel functions. Instead,



4.3 Conformal Mapping 37

V V 0 0

Figure 4.4: The upper half plane H is conformally equivalent (via the map g) to Fig. 4.2.

f can be modified into a conformal map from the complex upper half plane H onto C by

composing it with the Cayley transform z 7→ (z− ı̇)/(z+ ı̇), which maps the upper half plane

onto the unit disk. The resulting map g : H→ C is given by

w = g(z) =
1

2
sin2 α log (−ı̇z) +

1

2
cos2 α

(
z2 + 1

z2 − 1

)
, (4.15)

As shown in Fig. 4.4, the boundaries in C are the images of the pieces (−∞,−1), (−1, 0),

(0, 1), and (1,∞) of the real axis in H. Luckily, this works out such that Laplace’s equation

on the upper half plane H has boundary conditions V for x < 0 and 0 for x > 0. This

problem is solved in [6, pp. 339-40] by introducing a transformation from W = {z ∈ C : 0 ≤

=(z) ≤ V } to H, given by z 7→ exp(πz/V ), that maps lines of constant imaginary part in

W to equipotential lines in the H plane (which are mapped to equipotential lines in C by

g). Combining this logarithmic transformation with (4.15), we arrive at the transformation

h : W→ C given by

w = h(z) =
1

2
sin2 α

(
πz

V
− ı̇π

2

)
+

1

2
cos2 α coth

(πz
V

)
(4.16)

that takes each line u + ı̇φ ⊂ W to the equipotential lines at potential φ in the Fig. 4.2. A

plot of these equipotential lines is shown in Fig. 4.5 (the constant α has been arbitrarily set

to 1 for convenience).
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Figure 4.5: The equipotential lines for a static electromagnetic field between two microstrip
resonators can be found with (4.16).

These equipotential lines do not, of course, give the solution to the wave equation around

this area of the gap. As shown in [6, pp. 348-349], the conformal map h can be used to pull

back the Helmholtz equation (describing the separated spatial component of a wave) in C to

the region W, on which the boundary shapes are lines of constant imaginary part. Letting

u and v be the real and imaginary coordinates of the region W and letting w = h(z), this

equation is of the form

∇2
uvψ +

∣∣∣∣dwdz
∣∣∣∣2 k2ψ = 0 (4.17)

It is beyond the scope of this thesis to consider treating this equation, as it is complicated and

quite likely impossible to solve analytically. There are perhaps regions where the equation

can be solved at least approximately, aiding understanding of the coupling between two
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microstrip resonators, and this is a possible avenue for further research.



Chapter 5

Conclusion

The results of the studies presented in this thesis were mixed. It was necessary for both

computational reasons and analytical reasons to restrict focus to the 2D equivalent of a

microstrip resonator. Neither simulation nor analysis showed the 2D resonator to behave in

the manner that previous simulations suggested the 3D microstrip should. In fact, the 2D

resonator had the opposite behavior - its resonant modes and absorption peaks increased in

frequency as the neighboring microstrip resonators were coupled more strongly, rather than

decrease in frequency. However, the observed behavior of the 2D resonators made physical

sense and mostly agreed with the analytical results.

The results suggest several promising routes for further research. As mentioned, there

are several areas in which the simulations and analyses presented here could be extended,

such as fixing the dielectric model used in absorption simulation. Similarly, the normal

mode expansion performed could be further analyzed to better understand the relationship

between the absorption spectrum of the system and its resonant modes, and the conformal

map derived could be used as the starting point of a more exact analysis of the propagation of

fields between two resonators. With the better understanding of the behavior of microstrip

resonators that has been gained from these simulations, the computational time cost of

performing similar 3D simulations should be manageable. Other analogous physical problems

not considered here could be simulated, such as the of a microstrip resonator coupled to two

transmissions lines (a non-periodic problem) or studying the effect of the thickness of the

microstrip on its modes and absorption spectrum.
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Appendix A
Meep Simulations

A.1 Rectangular Cavity Resonator

1 ; Using a=100nm convent ion
2
3 ( define−param r 1 . 25 )
4 ( define−param l 16)
5 ( define−param s (∗ l r ) )
6 ( define−param w 4)
7 ( define−param d (/ l 16) )
8 ( define−param dpml (/ s 16) )
9 ( define−param sx s )

10 ( define−param sy s )
11 ( define−param fcen 0 . 2 )
12 ( define−param df 0 . 3 )
13 ( define−param re s 16)
14
15 ( set−param ! r e s o l u t i o n r e s )
16 ( set ! eps−averaging ? f a l s e )
17 ( set ! k−point ( vec tor3 0 0 0) )
18 ( set ! en su r e−pe r i od i c i t y t rue )
19
20 ( set ! geometry− l a t t i ce (make l a t t i c e ( s i z e sx sy no−s ize ) ) )
21 ( d e f i n e geom ( l i s t
22 (make block
23 ( cente r 0 (/ (+ w d) 2) )
24 ( s i z e l d i n f i n i t y )
25 ( mate r i a l metal ) )
26 (make block
27 ( cente r 0 (/ (+ w d) −2))
28 ( s i z e l d i n f i n i t y )
29 ( mate r i a l metal ) )
30 (make block
31 ( cente r (/ (+ l d) 2 ) )
32 ( s i z e d w i n f i n i t y )
33 ( mate r i a l metal ) )
34 (make block
35 ( cente r (/ (+ l d) −2))
36 ( s i z e d w i n f i n i t y )
37 ( mate r i a l metal ) ) ) )
38
39 ( set ! geometry geom)
40
41 ( set ! pml− layers ( l i s t (make pml
42 ( th i c kne s s dpml ) ) ) )
43
44 ( set ! s ou r c e s ( l i s t (make source

42
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45 ( s r c (make gauss ian−src
46 ( f requency f cen )
47 ( fwidth df ) ) )
48 ( component Ez)
49 ( c ente r 0)
50 ( s i z e 0 0 ) ) ) )
51
52 ( use−output−directory )
53
54 ( run−sources+ 100
55 ( at−beginning output−eps i lon )
56 ( a f t e r− sourc e s
57 ( harminv Ez
58 ( vector3 0 0)
59 f c en
60 df ) ) )
61
62 ( run−unti l (/ 1 f c en )
63 ( to−appended ” ez ” ( at−every (/ 1 f c en 20) output−ef ie ld−z ) ) )

A.2 Microstrip Resonator

1 ; Using a=100nm convent ion
2
3 ( define−param r 1 . 25 )
4 ( define−param l 16)
5 ( define−param s (∗ r l ) )
6 ( define−param w 4)
7 ( define−param d (/ s 16))
8 ( define−param dpml (/ l 16) )
9 ( define−param sx s )

10 ( define−param sy s )
11 ( define−param fcen (/ 1 s p i ) )
12 ( define−param df f c en )
13 ( define−param nf req 500)
14 ( define−param re s 16)
15
16 ( set−param ! r e s o l u t i o n r e s )
17 ( set ! eps−averaging ? f a l s e )
18 ( set ! k−point ( vec tor3 0 0 0) )
19 ( set ! en su r e−pe r i od i c i t y t rue )
20
21 ( set ! geometry− l a t t i ce (make l a t t i c e ( s i z e sx sy no−s ize ) ) )
22 ( d e f i n e geom ( l i s t
23 (make block
24 ( cente r 0 (/ (+ w d) 2) )
25 ( s i z e l d i n f i n i t y )
26 ( mate r i a l metal ) )
27 (make block
28 ( cente r 0 (/ (+ w d) −2))
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29 ( s i z e i n f i n i t y d i n f i n i t y )
30 ( mate r i a l metal ) ) ) )
31
32 ( set ! geometry geom)
33
34 ( set ! s ou r c e s ( l i s t (make source
35 ( s r c (make gauss ian−src
36 ( f requency f cen )
37 ( fwidth df ) ) )
38 ( component Ez)
39 ( c ente r 0 0)
40 ( s i z e (/ w 2) (/ w 2 ) ) ) ) )
41
42 ( set ! pml− layers ( l i s t (make pml
43 ( th i c kne s s dpml ) ) ) )
44 ( use−output−directory )
45
46 ( run−sources+ 150
47 ( at−beginning output−eps i lon )
48 ( a f t e r− sourc e s
49 ( harminv Ez
50 ( vector3 0 0)
51 f c en
52 df ) ) )
53 ( run−unti l (/ 1 f c en )
54 ( to−appended ” ez ” ( at−every (/ 1 f c en 20) output−ef ie ld−z ) ) )

A.3 Periodic Microstrip Resonators

1 ; Using a=100nm convent ion
2
3 ( define−param r 1 . 1 )
4 ( define−param l 16)
5 ( define−param s (∗ l r ) )
6 ( define−param w 4)
7 ( define−param d (/ s 16))
8 ( define−param dpml (/ s 16) )
9 ( define−param sx s )

10 ( define−param sy s )
11 ( define−param fcen (/ 1 s p i ) )
12 ( define−param df f c en )
13 ( define−param nf req 500)
14 ( define−param re s 16)
15
16 ( set−param ! r e s o l u t i o n r e s )
17 ( set ! eps−averaging ? f a l s e )
18 ( set ! k−point ( vector3 0 0 0) )
19 ( set ! en su r e−pe r i od i c i t y t rue )
20
21 ( set ! geometry− l a t t i ce (make l a t t i c e ( s i z e sx sy no−s ize ) ) )
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22 ( d e f i n e geom ( l i s t
23 (make block
24 ( cente r 0 (/ (+ w d) 2) )
25 ( s i z e i n f i n i t y d i n f i n i t y )
26 ( mate r i a l metal ) )
27 (make block
28 ( cente r 0 (/ (+ w d) −2))
29 ( s i z e l d i n f i n i t y )
30 ( mate r i a l metal ) ) ) )
31
32 ( set ! geometry geom)
33
34 ( set ! s ou r c e s ( l i s t (make source
35 ( s r c (make gauss ian−src
36 ( f requency f cen )
37 ( fwidth df ) ) )
38 ( component Ez)
39 ( c ente r 0 . 1 (/ w 3 ) ) ) ) )
40
41 ( set ! pml− layers ( l i s t (make pml
42 ( th i c kne s s dpml )
43 ( d i r e c t i o n Y) ) ) )
44 ( use−output−directory )
45
46 ( run−sources+ 100
47 ( at−beginning output−eps i lon )
48 ( a f t e r− sourc e s
49 ( harminv Ez
50 ( vector3 0 0)
51 f c en
52 df ) ) )
53 ( run−unti l (/ 1 f c en )
54 ( to−appended ” ez ” ( at−every (/ 1 f c en 20) output−ef ie ld−z ) ) )

A.4 Lossy Periodic Resonators

1 ; Using a=100nm convent ion
2
3 ( define−param r 1 . 1 )
4 ( define−param l 16)
5 ( define−param s (∗ l r ) )
6 ( define−param w 4)
7 ( define−param d (/ s 16))
8 ( define−param dpml (/ s 16) )
9 ( define−param sx s )

10 ( define−param sy s )
11 ( define−param fcen (/ 1 s p i ) )
12 ( define−param df f c en )
13 ( define−param nf req 500)
14 ( define−param re s 16)
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15
16 ( set−param ! r e s o l u t i o n r e s )
17 ( set ! eps−averaging ? f a l s e )
18 ( set ! k−point ( vector3 0 0 0) )
19 ( set ! en su r e−pe r i od i c i t y t rue )
20
21 ( set ! geometry− l a t t i ce (make l a t t i c e ( s i z e sx sy no−s ize ) ) )
22 ( d e f i n e geom ( l i s t
23 (make block
24 ( cente r 0 (/ (+ w d) 2) )
25 ( s i z e i n f i n i t y d i n f i n i t y )
26 ( mate r i a l metal ) )
27 (make block
28 ( cente r 0 (/ (+ w d) −2))
29 ( s i z e l d i n f i n i t y )
30 ( mate r i a l metal ) ) ) )
31
32 ( set ! geometry geom)
33
34 ( set ! s ou r c e s ( l i s t (make source
35 ( s r c (make gauss ian−src
36 ( f requency f cen )
37 ( fwidth df ) ) )
38 ( component Ez)
39 ( c ente r 0 . 1 (/ w 3 ) ) ) ) )
40
41 ( set ! pml− layers ( l i s t (make pml
42 ( th i c kne s s dpml )
43 ( d i r e c t i o n Y) ) ) )
44 ( use−output−directory )
45
46 ( run−sources+ 100
47 ( at−beginning output−eps i lon )
48 ( a f t e r− sourc e s
49 ( harminv Ez
50 ( vector3 0 0)
51 f c en
52 df ) ) )
53 ( run−unti l (/ 1 f c en )
54 ( to−appended ” ez ” ( at−every (/ 1 f c en 20) output−ef ie ld−z ) ) )



Appendix B
Mathematica Files

B.1 Flat Complex Epsilon Fit

freqs = Table[i, {i, 0.1, 0.2, 0.001}];
L = Length[freqs];
epsreal = Table[1.0, {i, 1, L}];
epsimag = Table[0.5, {i, 1, L}];
realdata = Transpose[{freqs, epsreal}];
imagdata = Transpose[{freqs, epsimag}];
epsexp = epsreal + I ∗ epsimag;
model = ε+ σ1 ∗ ω1∧2/(ω1∧2− f∧2− f ∗ I ∗ γ1) + σ2 ∗ ω2∧2/(ω2∧2− f∧2− f ∗ I ∗ γ2)+
σ3 ∗ ω3∧2/(ω3∧2− f∧2− f ∗ I ∗ γ3);
epsmodel = Table[model/.f → freqs[[i]], {i, 1, L}];
diffs = Table[epsmodel[[i]]− epsexp[[i]], {i, 1, L}];
MIN = Sum[Abs[diffs[[i]]]∧2, {i, 1, L}];
LSQ = NMinimize[{MIN}, {ε, σ1, ω1, γ1, σ2, ω2, γ2, σ3, ω3, γ3}]
{0.000162035, {ε → 0.696189, σ1 → −0.349479, ω1 → −0.343672, γ1 → −1.17164, σ2 →
0.348749, ω2→ −0.423157, γ2→ 0.408676, σ3→ 0.431395, ω3→ 0.260096, γ3→ 0.969677}}
F [f ] = model/.LSQ[[2]];
Show[ListPlot[realdata,AxesOrigin→ {0.1, 0}],
Plot[Re[F [f ]], {f, freqs[[1]], freqs[[L]]},AxesOrigin→ {0.1, 0}]]

0.12 0.14 0.16 0.18 0.20

0.2

0.4

0.6

0.8

1.0

Show[ListPlot[imagdata,AxesOrigin→ {0.1, 0}],
Plot[Im[F [f ]], {f, freqs[[1]], freqs[[L]]},AxesOrigin→ {0.1, 0}]]
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B.2 Conformal Map

V = 1;
W [z ] = 1/2 ∗ Sin[α]∧2 ∗ Log[(1 + z)/(1− z)] + z ∗ Cos[α]∧2/(1 + z∧2);
W3[z ] = 1/2 ∗ Sin[α]∧2 ∗ (Pi ∗ z/V − I ∗ Pi/2) + 1/2 ∗ Cos[α]∧2 ∗ Coth[Pi ∗ z/V ];
α:=1
a = Re[N [W [Exp[I ∗ α]]]];
b = Im[N [W [Exp[I ∗ α]]]];
W3C[x , y ] = {Re[W3[x+ I ∗ y]], Im[W3[x+ I ∗ y]]};
P = ParametricPlot[{{a+ x, b}, {a+ x,−b}, {−a− x, b}, {−a− x,−b}},
{x, 0, 2},AxesOrigin→ {0, 0},PlotRange→ {−2, 2},
PlotStyle→ Directive[Black,Thick]];
Show[P,ParametricPlot[{W3C[0.05, x],W3C[0.1, x],W3C[0.2, x],
W3C[0.3, x],W3C[0.4, x],W3C[−0.05, x],W3C[−0.1, x],W3C[−0.2, x],
W3C[−0.3, x],W3C[−0.4, x]}, {x, 0, 1},AxesOrigin→ {0, 0},
PlotRange→ All]]
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Show[P,
ParametricPlot[{W3C[x, 0.1],W3C[x, 0.2],W3C[x, 0.3],W3C[x, 0.4],
W3C[x, 0.5],W3C[x, 0.6],W3C[x, 0.8],W3C[x, 0.9],W3C[x, 0.95],
W3C[x, 0.05]}, {x,−2, 2},AxesOrigin→ {0, 0},PlotRange→ All]]
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