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ABSTRACT

Orhan Aygun, Three Essays on Matching with Contracts, Major Professor: Prof.
Tayfun Sönmez

This dissertation consists of three theoretical essays. In all essays matching

with contracts is a key factor. The �rst essay tries to explain e¤ects of choosing

primitives of the model and irrelevance of rejected contracts condition on some key

existence theorems and results in matching with contracts literature. The second

essay analyzes the properties of cumulative o¤er algorithm and presents an application

of matching with contracts. It studies the achievability of responsive choices under

a constrained setup. The last essay presents a new market design application of

program-student matching where a¢ rmative action policies are e¤ective.

The �rst essay develops a hospital-doctor many-to-one matching with contracts

model. Doctor preferences over contracts are part of primitive of the model. The other

primitive of the model, our �rst essay suggests, hospital choice functions on sets of

contracts. The �rst essay shows that if choice functions of hospitals are primitives

of the model, then existence theorems used in many papers do not hold even when

they satisfy strongest conditions. As a remedy, we introduced Irrelevance of Rejected

Contracts (IRC) which guarantees stability if it is satis�ed along with one substitutes

condition.

Next, we show the relation between IRC and law of aggregate demand (LAD)

conditions. Since LAD is satis�ed by many application naturally, many models sat-

isfying LAD and the strongest substitutes conditions are immune to our criticism.



On the other hand, many of the new and exiting applications satisfy only weakened

substitutes condition. Therefore, assuming IRC explicitly does not only make their

proofs accurate and also close the gap between theory and application.

The second chapter studies properties of cumulative o¤er algorithm under

weakened substitutes condition. In this part we showed that in many-to-one matching

with contracts problems order of proposals of COA does not change the outcome,

under bilateral substitutes and IRC conditions. Also, bilateral substitutes and IRC

conditions make COA equivalent to generalized deferred acceptance algorithm which

produces the outcome in fewer steps.

This chapter also presents a new application area of matching with contracts.

We used cadet-branch matching problem in USMA. In this application our main

objective is, for a given branch, increasing cadet quality without giving up useful

properties of allocation mechanism, such as stability and strategy-proofness.

The third essay studies a college admission with a¢ rmative action problem.

With this application, for the �rst time in the literature, we presented an a¢ rmative

action problem where students need to claim privilege if they want to be subject to

a¢ rmative action. We analyzed the current system and showed that current guideline

is unfair and causes incentive compatibility issues. Also we showed that it fails to

satisfy a¢ rmative action requirements described in a¢ rmative action law.

To solve these problems with the current system, we introduced a new choice

function which is fair, respects a¢ rmative action requirements and makes student



optimal stable allocation stable and incentive compatible when used in conjunction

with generalized deferred acceptance algorithm.
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CHAPTER 1.

MATCHING WITH CONTRACTS: THE CRITICAL ROLE

OF IRRELEVANCE OF REJECTED CONTRACTS

1.1 Introduction

Formulation and analysis of matching with contracts model (Hat�eld and Mil-

grom 2005) is widely considered as one of the most important developments of the

last twenty years in theory of matching markets.1 This powerful model embeds Gale

and Shapley (1962) two-sided matching model and Kelso and Crawford (1982) labor

market model ,2 among others, and it has given impetus to a �urry of theoretical re-

search as well as to new practical applications of market design. Utilizing �xed-point

techniques from lattice theory, Hat�eld and Milgrom (2005) analyze the set of stable

allocations in their rich framework. One of the main messages of their paper is that

the set of stable allocations is non-empty under a substitutes condition. The substi-

tutes condition that plays a key role in the analysis of Hat�eld and Milgrom (2005),

also induces a strong isomorphism between matching with contracts model and Kelso

and Crawford (1982) labor market model (Echenique 2012). This isomorphism is

considered to be a highly negative result since it reduces the scope of Hat�eld and

Milgrom (2005) to that of Kelso and Crawford (1982). Fortunately this restrictive

�equivalence�between the two models breaks under two weaker conditions, bilateral

substitutes and unilateral substitutes, introduced by Hat�eld and Kojima (2010). The

1See also Adachi (2000), Fleiner (2003), and Echenique and Oviedo (2004).
2Kelso and Crawford (1982) builds on Crawford and Knoer (1981).
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signi�cance of these weaker substitutes conditions was further increased when Sönmez

and Switzer (2011) - Sönmez (2011) introduced a brand new market design applica-

tion of matching with contracts, cadet-branch matching, which satis�es the unilateral

substitutes condition but not the substitutes condition.

In this paper we show that both Hat�eld and Milgrom (2005) and Hat�eld

and Kojima (2010) implicitly assume an additional irrelevance of rejected contracts

(IRC) condition throughout their analysis, and in the absence of IRC several of their

results, including the guaranteed existence of a stable allocation, fail to hold. The

implicit assumption of IRC is a result of choosing strict preferences as the primitive

of their model. Unlike these two theoretical papers, many applications of matching

with contracts do not assume strict preferences. That is the reason why choosing

strict preferences as the primitive of the model and analyzing the model using IRC

as an implicit assumption creates an ambiguity in results. There are two possible

remedies to resolve this ambiguity. Of the two remedies, the �rst (and scienti�cally

more sound) one results in the failure of many theorems in the absence of an addi-

tional irrelevance of rejected contracts (IRC) condition, whereas the second remedy

eliminates the transparency of the results, reduces the scope of the model, and con-

tradicts authors�interpretation of the role of the substitutes conditions. Fortunately

all results are restored when IRC is explicitly assumed under the �rst remedy.

Since Hat�eld and Milgrom (2005) and Hat�eld and Kojima (2010) will likely

play an important role in further applications of market design, it is important to

remove the inconsistency in the model. Fortunately most market design applications

of matching with contracts, including the above described cadet-branch matching,
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satisfy IRC, and as such they are shielded from our criticism.

The paper is structured as follows. The next section sets up the model. After

introducing the model, background de�nitions and assumptions, we de�ne stability

notion and present a counter example. Having the example in hand, the paper pro-

ceeds with a remedy with the IRC and relation with the LAD condition. Then we

analyze e¤ect of choosing strict hospital preferences as primitives on results in the

literature and on the scope of the model. It concludes with a brief discussion of the

�ndings and provides the proofs for some of the results in the appendix part.

1.2 The Model

We mostly follow the notation of Hat�eld and Milgrom (2005) and Hat�eld

and Kojima (2010). Since the purpose of this paper is presenting the implications

of a major inconsistency in Hat�eld and Milgrom (2005) and Hat�eld and Kojima

(2010), our presentation will also closely follow theirs.

There are �nite sets D and H of doctors and hospitals, and a �nite set X

of contracts. Each contract x 2 X is associated with one doctor xD 2 D and one

hospital xH 2 H. Given a set of contracts Y � X, let YD denote the set of doctors

who has contracts in Y . That is, YD = fd 2 Dj 9y 2 Y s.t. yD = dg. Each doctor

d 2 D can sign at most one contract and his null contract where he signs no contract is

denoted by ;d. A set of contracts X 0 � X is an allocation if each doctor is associated

with at most one contract under X 0.
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For each doctor d 2 D, �d is a strict preference relation on his contracts�
fx 2 Xj xD = dg [ f;dg

�
. A contract is acceptable by doctor d if it is at least as

good as the null contract ;d, and unacceptable by doctor d if it is worse than the null

contract ;d. For each doctor d 2 D and a set of contracts Y � X, the chosen set

Cd(Y ) of doctor d is de�ned as

Cd(Y ) = max�d

�
fx 2 Y j xD = dg [ f;dg

�
:

For a given set of contracts Y � X, de�ne CD(Y ) =
S
d2D Cd(Y ).

Given a hospital h 2 H, de�ne Xh = fx 2 Xj xH = hg to be the set of its

non-empty contracts in X. Each hospital h 2 H can sign multiple contracts and has

preferences �h on

n
Y � Xhj y; y0 2 Y and y 6= y0 =) yD 6= y0D

o
:

Unlike doctor preferences, hospital preferences are not assumed to be strict in Hat�eld

and Milgrom (2005) and Hat�eld and Kojima (2010). This point, which may initially

seem to be a detail, will prove to be very important. For any Y � X, the chosen

set Ch(Y ) of hospital h is de�ned in Hat�eld and Kojima (2010) as

Ch(Y ) = max�h

n
Y 0 � Y \Xhj y; y0 2 Y 0 and y 6= y0 =) yD 6= y0D

o
:

Observe that the above de�nition of Ch(Y )may include more than one set of contracts

unless hospital preferences are also assumed to be strict. Since choice sets are assumed

to be singletons throughout the analysis in Hat�eld and Milgrom (2005) and Hat�eld

and Kojima (2010), this de�nition is not well-de�ned. There are two possible remedies

for this inconsistency. Either hospital preferences shall be assumed to be strict (as in
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the case of the doctors), or Ch(Y ) shall be given as a selection from

max
�h

n
Y 0 � Y \Xhj y; y0 2 Y 0 and y 6= y0 =) yD 6= y0D

o
:

As it turns out, each remedy introduces its own complications to the analysis of

matching with contracts models. However, we will argue that the complications

associated with the latter are considerably easier to resolve, and as such, we will for

now allow indi¤erences in hospital preferences and assume that

Ch(Y ) 2 max�h

n
Y 0 � Y \Xhj y; y0 2 Y 0 and y 6= y0 =) yD 6= y0D

o
:

For a given hospital h 2 H, we refer the function that maps each set of contracts to

a chosen set as the choice function of hospital h. For a given set of contracts Y � X,

de�ne CH(Y ) =
S
h2H Ch(Y ).

An important advantage of this modeling choice is that, it introduces no a

priori constraints on the structure of chosen sets. That is because, the preference re-

lation where a hospital h is indi¤erent between all subsets of Xh is consistent with any

selection of chosen sets. Thereby this modeling choice is equivalent to considering hos-

pital choice functions to be primitives of the model. In contrast, if one adopts the �rst

remedy assuming hospitals have strict preferences, that would introduce constraints

on the structure of hospital choice functions including but not limited to a version

of the strong axiom of revealed preference, and as such, the entire analysis would be

superimposed on the implied structure, inconsistent with the authors�interpretation

of the results in Hat�eld and Kojima (2010). We will return to this important issue

in Section 5, but for now, we adopt the �rst remedy and thereby assume that there

is no a priori structure on hospital choice functions.
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1.3 Stability Under Substitutes and Weakened Substitutes Conditions: A Counter

Example

Stability axiom plays a central role in analysis of two-sided matching models,

and it is extended to matching with contracts as follows:

De�nition 1 A set of contracts X 0 � X is a stable allocation (or a stable set of

contracts) if

1. CD(X
0) = CH(X

0) = X 0, and

2. there exists no hospital h 2 H and set of contracts X 00 6= Ch(X
0) such that

X 00 = Ch(X
0 [X 00) � CD(X

0 [X 00):

When the �rst condition fails, the allocation X 0 fails individual rationality and

there is a blocking doctor or a hospital. When the second condition fails, there is a

blocking coalition made of an hospital h and a subset of doctors fxDgx2X00. In this

case we say that X 00 blocks X 0 .

Hat�eld and Milgrom (2005) claim that the set of of stable allocations is always

non-empty under the following condition:

De�nition 2 Contracts are substitutes for hospital h if there do not exist a set of

contracts Y � X and a pair of contracts x; z 2 X n Y such that

z 62 Ch(Y [ fzg) and z 2 Ch(Y [ fx; zg):
6



Loosely speaking, the substitutes condition captures the intuitive idea that a

contract that is rejected from a set of contracts shall remain to be rejected when

there is "increased competition". The following example shows that the set of stable

allocations may be empty under the substitutes condition, in the absence of additional

structure.

Example 1 Consider a problem with one hospital, h, and two doctors d1; d2. Doctor

d1 has two contracts x; x0 and doctor d2 has one contract y. Preferences of the doctors

and the choice function of the hospital are given as follows:

� d1 : x �d1 x0 �d1 ;d1

� d2 : y �d2 ;d2

Ch(fxg) = fxg Ch(fx; x0g) = fxg Ch(fx; x0; yg) = ;

Ch(fx0g) = fx0g Ch(fx; yg) = fyg

Ch(fyg) = fyg Ch(fx0; yg) = fx0g

It is easy to verify that Ch satis�es the substitutes condition. Moreover no

allocation is stable in this example. Here is a list of blocking coalitions for each

possible allocation:

Allocation Blocking Coalition Allocation Blocking Coalition

fxg fh; d2g via y fx; yg fhg via removing x

fx0g fh; d1g via x fx0; yg fhg via removing y

fyg fh; d1g via x0 ; fh; d1g via x

The existence claim of Hat�eld and Milgrom (2005) is not only key for several

of their results, but also for a large number of follow-up papers on matching with
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contracts. Primary contributions of Hat�eld and Kojima (2010) are (1) the intoduc-

tion of two weaker versions of the substitutes condition, and (2) the analysis of the

structure of stable allocations under these weaker conditions. The weakest version of

substitutes introduced in Hat�eld and Kojima (2010) is the following:

De�nition 3 Contracts are bilateral substitutes for hospital h if for any set of con-

tracts Y � X and any pair of contracts x; z 2 X n Y ,

z 62 Ch(Y [ fzg) and z 2 Ch(Y [ fx; zg) =) zD 2 YD or xD 2 YD:

In Theorem 1 of Hat�eld and Kojima (2010), the authors claim that bilateral

substitutes is su¢ cient for the existence of a stable allocation. More speci�cally,

they claim that the following cumulative o¤er algorithm (Hat�eld and Kojima 2005)

always produces a stable allocation:

Step 1: One of the doctors o¤ers her �rst choice contract x1. The hospital

receiving the o¤er, h1 = (x1)H , holds the contract if x1 2 Ch1
�
fx1g

�
and rejects it

otherwise. Let Ah1(1) = fx1g, and Ah(1) = ; for all H n fh1g.

In general, at

Step t: One of the doctors with no contract on hold o¤ers her most preferred

contract xt that has not been rejected in earlier steps. The hospital receiving the

o¤er, ht = (xt)H , holds the contracts in Cht
�
Aht(t � 1) [ fxtg

�
and rejects the rest.

Let Aht(t) = Aht(t� 1) [ fxtg, and Ah(t) = Ah(t� 1) for all H n fhtg.

The algorithm terminates when either every doctor is matched to at least one hospital

or every unmatched doctor has had all acceptable contracts rejected. Since each

8



contract is o¤ered at most once, the algorithm terminates in some �nite Step T . The

outcome of the algorithm is,
S
h2H Ch

�
Ah(T )

�
.3

Given that the original (and stronger) substitutes condition is not su¢ cient for

the existence of a stable allocation, it is clear that Theorem 1 of Hat�eld and Kojima

(2010) cannot hold in the absence of additional structure.

1.4 A Remedy with the Irrelevance of Rejected Contracts

A close look at the proof of Theorem 1 in Hat�eld and Kojima (2010) reveals

the source of the complication. The following additional condition on hospital choice

functions is implicitly assumed throughout the paper.

De�nition 4 Contracts satisfy the irrelevance of rejected contracts (IRC) for hos-

pital h if

8Y � X;8z 2 X n Y z 62 Ch(Y [ fzg) =) Ch(Y ) = Ch(Y [ fzg):

This condition simply requires that, the removal of rejected contracts shall

not a¤ect chosen sets.4 It turns out that, results of Hat�eld and Milgrom (2005)

and Hat�eld and Kojima (2010) are restored once IRC is assumed throughout their

analysis.

3Observe that while the algorithm necessarily terminates, in principle it may pick a set of contracts
which is not an allocation. That is, multiple contracts of a given doctor may be chosen by the
algorithm, in the absence of additional assumptions.

4This condition is earlier used by Blair (1988) in the context of many-to-many matching. In an
extension of Blair�s results, Alkan (2002) refers it as consistency . More recently Echenique (2007)
refers this condition as independence of irrelevant alternatives in the context of combinatorial choice
rules.
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In the absence of IRC, of the seven theorems in Hat�eld and Kojima (2010),

six theorems do not hold. Likewise, in Hat�eld and Milgrom (2005), several theorems

including existence of stable allocation do not hold. Fortunately, in both cases, all

results are recovered once IRC is assumed in addition to existing hypotheses. In

Appendix, we provide proofs for the modi�ed versions of Theorems 1, 4, and 5 of

Hat�eld and Kojima (2010) which follow the general �ow of the original proofs and

emphasizes the role of IRC. We omit the proof for the modi�ed version of Theorem 3,

since it is not directly related to the structure of stable allocations. We also omit the

proofs for the modi�ed versions of Theorems 6 and 7 of Hat�eld and Kojima (2010)

since their original proofs are valid, once Theorems 1, 4, and 5 are recovered, without

additional need to invoke IRC.

Recall that the substitutes condition together with IRC guarantee the existence

of a stable allocation. Indeed, the cumulative o¤er algorithm gives the same stable

outcome as the celebrated agent-proposing deferred acceptance algorithm under these

conditions. This is no longer the case when substitutes is replaced with bilateral

substitutes since a hospital may hold a contract at Step t of the cumulative o¤er

algorithm that was rejected at an earlier Step t0 < t. Hat�eld and Kojima (2010)

refers this feature as renegotiation. In Theorem 4 of Hat�eld and Kojima (2010),

the authors claim that the renegotiation feature ceases to exist and the cumulative

o¤er algorithm yields the same outcome as the agent-proposing deferred acceptance

algorithm under the following version of substitutes, that is still weaker than Hat�eld

and Milgrom (2005) substitutes condition, but stronger than the bilateral substitutes:

10



De�nition 5 Contracts are unilateral substitutes for hospital h if for any set of

contracts Y � X and any pair of contracts x; z 2 X n Y ,

z 62 Ch(Y [ fzg) and z 2 Ch(Y [ fx; zg) =) zD 2 YD:

Showing that the inconsistencies in this important research program can be

eliminated with an easy �x is important because bilateral substitutes and unilateral

substitutes have already established themselves not only as important conditions in

theoretical analysis of matching with contracts but also for its practical applications.

While these conditions might initially appear to be minor technical deviations

from the substitutes condition, a recent paper by Echenique (2012) makes it clear

that they di¤er from it in one very signi�cant way. In a surprising result Echenique

(2012) shows that, Hat�eld and Milgrom (2005) matching with contracts model is

isomorphic to Kelso and Crawford (1982) labor market model under the substitutes

condition. He has also shown that this isomorphism breaks under bilateral substi-

tutes. Hence applications of matching with contracts that are outside the scope of

Kelso and Crawford (1982) have to rely on conditions other than the substitutes con-

dition. Sonmez and Switzer (2011) - Sonmez (2011) have recently introduced the �rst

market design application of matching with contracts of that nature: Cadet-branch

matching at U.S. Army programs. Both of these market design papers heavily uti-

lize the unilateral substitutes condition, and as such it is important to emphasize

that Hat�eld and Kojima (2010) research program is not broken in a substantial

way. We shall also emphasize that market design applications of matching with con-

tracts, including cadet-branch matching, are shielded from our criticism, since these
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applications almost always satisfy IRC.

1.5 Relation with the Law of Aggregate Demand

Much of the literature on matching with contracts, including several results

in Hat�eld and Milgrom (2005), assumes the following condition in addition to the

substitutes condition.

De�nition 6 Contracts satisfy the law of aggregate demand (LAD) for hospital h if

8Y; Y 0 � X;8z 2 X n Y Y � Y 0 =) jCh(Y )j � jCh(Y 0)j:

A bit of a good news is that substitutes along with LAD implies IRC, and

hence results in the literature assuming LAD are immune to our criticism.

Proposition 1 Suppose contracts satisfy the substitutes condition along with the

LAD condition for hospital h. Then contracts also satisfy the IRC condition for

hospital h.

Proof. Suppose contracts satisfy the substitutes condition along with the LAD

condition for hospital h. Let Y � X and z 2 X n Y be such that z 62 Ch(Y [ fzg).

We want to show that Ch(Y ) = Ch(Y [ fzg).

For any x 2 Ch(Y [ fzg), we have x 6= z by assumption. This implies x 2 Y

which in turn implies x 2 Ch(Y ) by the substitutes condition. Therefore

Ch(Y [ fzg) � Ch(Y ).
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Moreover we havejCh(Y )j � jCh(Y [ fzg)j by the LAD and hence the above

inclusion must hold with equality completing the proof.

Recall that results of Hat�eld and Milgrom (2005) which assume LAD in addi-

tion to the substitutes condition are accurate. It turns out that, in contrast, Theorem

1 of Hat�eld and Kojima (2010) fails to hold even if LAD is assumed. The following

example shows that, not only the cumulative o¤er algorithm may produce an unstable

allocation under unilateral substitutes, which is stronger than bilateral substitutes,

and LAD, but also the set of stable allocations may be empty under these conditions:

Example 2 Consider a problem with one hospital, h, and two doctors d1; d2. Doctor

d1 has three contracts x; x0; x00 and doctor d2 has two contracts y; y0. Preferences of

the doctors and the choice function of the hospital are given as follows:

� d1 : x �d1 x0 �d1 x00 �d1 ;d1

� d2 : y0 �d2 y �d2 ;d2

Ch(fxg) = fxg Ch(fx; x0g) = fxg Ch(fx0; yg) = fyg

Ch(fx0g) = fx0g Ch(fx; x00g) = fxg Ch(fx0; y0g) = fx0g

Ch(fx00g) = fx00g Ch(fx0; x00g) = fx0g Ch(fx00; yg) = fyg

Ch(fyg) = fyg Ch(fx; yg) = fyg Ch(fx00; y0g) = fx00g

Ch(fy0g) = fy0g Ch(fx; y0g) = fxg Ch(fy; y0g) = fyg
13



Ch(fx; x0; x00g) = fxg Ch(fx; y; y0g) = fyg Ch(fx; x0; x00; yg) = fyg

Ch(fx; x0; yg) = fyg Ch(fx0; x00; yg) = fyg Ch(fx; x0; x00; y0g) = fxg

Ch(fx; x0; y0g) = fxg Ch(fx0; x00; y0g) = fx0g Ch(fx; x0; y; y0g) = fyg

Ch(fx; x00; yg) = fyg Ch(fx0; y; y0g) = fyg Ch(fx; x00; y; y0g) = fyg

Ch(fx; x00; y0g) = fxg Ch(fx00; y; y0g) = fyg Ch(fx0; x00; y; y0g) = fyg

Ch(fx; x0; x00; y; y0g) = fx; yg

It is easy to verify that contracts satisfy unilateral substitutes as well as the

LAD condition for hospital h.

Consider the cumulative o¤er algorithm and start the sequence of o¤ers with

doctor d1. Hospital h receives the following sequence of o¤ers: x; y0; y; x0; x00. The cu-

mulative o¤er algorithm terminates when all contracts are o¤ered, and at this point

Ch(fx; x0; x00; y; y0g) = fx; yg. Hence the outcome is fx; yg. However the allocation

fx; yg is not stable, since hospital h blocks it: Ch(fx; yg) = fyg. This directly con-

�icts with the proof of Theorem 1 in Hat�eld and Kojima (2010) where the authors

argue that the cumulative o¤er algorithm always results in a stable allocation under

bilateral substitutes. Indeed, not only the cumulative o¤er algorithm yields an unsta-

ble allocation in this example, but also the set of stable allocations is empty. Here is

a list of blocking coalitions for every possible allocation in this example.
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Allocation Blocking Coalition Allocation Blocking Coalition

fxg fh; d2g via y fx; yg fhg via removing x

fx0g fh; d2g via y fx0; yg fhg via removing y

fx00g fh; d2g via y fx00; yg fhg via removing x

fyg fh; d2g via y0 fx; y0g fhg via removing y0

fy0g fh; d1g via x fx0; y0g fhg via removing x00

fx00; y0g fhg via removing y0

1.6 Strict Hospital Preferences as Primitives

We have so far argued that the preferred way to recover the results of Hat�eld

and Kojima (2010) is

1. maintaining the original structure that allows for weak hospital preferences over

sets of contracts that name them,

2. but adjusting the original results by imposing the IRC condition on hospital

choice functions throughout the analysis.

This approach allows us to treat hospital choice functions as primitives of

the model, consistent with the presentation of several of the results in Hat�eld and

Kojima (2010). One might be tempted instead to recover the results by assuming

hospitals have strict preferences, since IRC is directly implied in this case. We will

next present why this would be a poor modeling choice.
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Loss of Transparency via a Priori Structure Imposed Hospital Choice Functions Let�s

suppose each hospital h has a strict preference relation �h over

n
Y � Xhj y; y0 2 Y and y 6= y0 =) yD 6= y0D

o
, and

for a given set of contracts X 0 � X its chosen set Ch(X 0) is derived as

Ch(X
0) = max

�h

n
Y � X 0 \Xhj y; y0 2 Y and y 6= y0 =) yD 6= y0D

o
.

Under this modeling choice, chosen sets are derivatives of strict hospital preferences,

and as such, they must be consistent with these preferences. One potential appeal of

this approach is, it assures that the resulting hospital choice functions automatically

satisfy the IRC condition.5 The IRC condition, however, is not the only condition

that shall be satis�ed by the resulting hospital choice functions. They shall also

satisfy the following condition to assure that the underlying hospital preferences are

transitive.

De�nition 7 Contracts satisfy the Strong Axiom of Revealed Preference (SARP) for

hospital h, if there is no distinctX1; X2; : : : ; Xk � X and no distinct Y 1; Y 2; : : : ; Y k �

X with k > 1, such that

8l 2 f1; : : : ; kg Y l = Ch(X
l), and

8l 2 f1; : : : ; k � 1g Y l � X l \X l+1 and Y k � Xk \X1

So before the analysis even starts, there is strong a priori structure imposed on

hospital choice functions under this approach. This is especially troubling since the

5See, for example, Lemma 1 in Hat�eld, Immorlica and Kominers (2012) for a short proof of this
observation.
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key results of Hat�eld and Kojima (2010) concern the impact of particular properties

of hospital choice functions on sets of stable allocations or mechanisms that select

stable allocations. A loose analogy here would be, trying to appreciate a picture that

is drawn on top of another picture. To illustrate how this a¤ects the interpretation of

their results, let�s take Theorem 1 of Hat�eld and Kojima (2010). This result reads:

"Result 1: Suppose that contracts are bilateral substitutes for every hospital.

Then there exists a stable allocation."

The reader, however, is expected to interpret this statement as follows:

"Consider hospital choice functions that can be obtained from strict hospital

preferences via derivation above. In addition, suppose that contracts are bilateral

substitutes for every hospital. Then there exists a stable allocation."

As such, the exact role of bilateral substitutes in this existence result is not

transparent. Perhaps the existence is "mostly" due to the underlying structure of

feasible hospital choice functions which is already imposed before bilateral substitutes.

Hence all results shall be interpreted in the context of an underlying structure which

is not even discussed in the paper.

At the end, majority of results in Hat�eld and Kojima (2010) rely on IRC no

matter how the ambiguity is resolved. When hospital choice functions are treated

as primitives (or alternatively when underlying hospital preferences allow for indif-

ferences), this condition is explicitly stated in the results. When hospital preferences

are strict, this condition is not only hidden in the results, but also accompanied by

another implicit assumption, SARP, which has no role in any of the proofs. We next

elaborate on how this redundancy re�ects itself on applications of this important
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research program.

As far as we can see, SARP is not needed in any of the proofs of Hat�eld and

Milgrom (2005). Hence assuming that hospital choice functions are derivatives of the

underlying strict hospital preferences not only imposes a strong structure on "feasible"

choice functions on which the substitutes condition must be superimposed, but also

potentially weakens the scope of their analysis. As such, assuming hospital choice

functions to be primitives of the model and restating the results by explicitly assuming

IRC might be the preferred approach. If, however, one takes strict hospital preference

relations to be primitives, it is important to understand how SARP interacts with

the substitutes condition. Here an important observation is, as in the case of the

IRC condition, SARP might be violated even when contracts satisfy the substitutes

condition. However, as we show next, the substitutes condition together with IRC

implies SARP.

Proposition 2 Suppose contracts satisfy the substitutes condition along with the

IRC condition for hospital h. Then contracts also satisfy SARP for hospital h.

Proof. Suppose contracts satisfy the substitutes condition along with the

IRC condition for hospital h. Towards a contradiction, suppose SARP is violated.

Then there exists distinct X1; X2; : : : ; Xk � X and distinct Y 1; Y 2; : : : ; Y k � X with

k > 1, such that

8l 2 f1; : : : ; kg Y l = Ch(X
l), and

8l 2 f1; : : : ; k � 1g Y l � X l \X l+1 and Y k � Xk \X1
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De�ne X =
S
l�kX

l, Y =
S
l�k Y

l, and Y =
T
l�k Y

l. Also de�ne Y k+1 � Y 1 and

Xk+1 � X1 for notational convenience. For any x 2 X,

x 2 X n Y =) 9l � k s.t. x 2 X l n Y l =) x =2 Ch(X) (1)

where the last implication holds by the substitutes condition. Moreover for any x 2 X,

x 2 Y n Y =) 9l � k s.t. x 2 Y l n Y l+1 =) x 2 X l+1 n Y l+1 =) x =2 Ch(X) (2)

where the second implication holds by the relation Y l � X l \X l+1 � X l+1 and the

third implication holds by the substitutes condition. Therefore by (1) and (2) we

have, for any x 2 X,

x 2 X n Y =) x =2 Ch(X) =) Ch(X) � Y (3)

Pick any l � k. We have X � X l � Y l � Y � Ch(X) where the last inclusion

holds by (3). Therefore for any l � k, we must have Y l = Ch(X
l) = Ch(X) by IRC

contradicting the distinct choice of sets Y 1; Y 2; : : : ; Y k and completing the proof.

An immediate corollary of Propositions 1 and 2 is the following.

Corollary 1 Suppose contracts satisfy the substitutes condition along with the LAD

condition for hospital h. Then contracts also satisfy SARP for hospital h.

Reduced Scope of the Analysis None of the results in Hat�eld and Kojima (2010)

rely on the SARP condition as discussed here, and its sole purpose is assuring the

existence of underlying strict preferences for the hospitals. While it is certainly im-

portant to cover choice functions that are derivatives of strict hospital preferences,

imposing such a structure signi�cantly reduces the scope of the analysis without any
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clear bene�t. Indeed, Sonmez and Switzer (2011) and Sonmez (2011) have recently

presented the �rst practical application of the unilateral substitutes condition in a

brand new application of market design, cadet-branch matching, and this �rst appli-

cation builds on choice functions that are derivatives of branch priorities that capture

Army policies, and they are not derivatives of branch preferences. This and similar

potential applications of Hat�eld and Kojima (2010) might be left outside the scope

of their paper, if hospital choice functions are required to be derivatives of underlying

strict preferences.

Adverse Impact on Interpretation of the Results While the substitutes condition and

SARP are logically independent in the absence of other conditions, the substitutes

condition together with IRC (or alternatively together with LAD) imply SARP (Ay-

gun and Sonmez 2012). What that means is, once IRC is assured, the substitutes

condition guarantee the existence of underlying strict hospital preferences. It turns

out that, this result has no counterpart for bilateral substitutes or even for the stronger

unilateral substitutes. In other words relaxing the substitutes condition to its weaker

versions may not be "free." This is in sharp contrast with the authors�interpretation

of their results, and promotion of their weaker substitutes conditions. To illustrate

this point, consider the following statement in page 1715:

"We have seen that the bilateral substitutes condition is a useful notion in

matching with contracts in the sense that it is the weakest condition guaranteeing the

existence of a stable allocation known to date."

Since bilateral substitutes guarantee existence of a stable allocation only in
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the presence of an underlying structure a priori imposed on hospital choice functions,

the interaction of bilateral substitutes with the underlying structure is important. In

the presence of IRC, the substitutes condition guarantee compatibility with the un-

derlying structure, whereas bilateral substitutes or unilateral substitutes do not. As

such, bilateral substitutes (or unilateral substitutes) can no longer be considered to

be a "costless" relaxation of the substitutes condition. Observe that this issue is en-

tirely caused by compatibility with SARP, which was never needed in entire analysis.

Therefore taking strict hospital preferences as primitives of the model introduces an

arti�cial di¢ culty in interpretation of the role of the weaker substitutes conditions.

1.7 Concluding Remarks

We presented two remedies to resolve a critical inconsistency in Hat�eld and

Milgrom (2005) and Hat�eld and Kojima (2010). We believe the �rst one which

essentially treats hospital choice functions as the primitives of the model is the sci-

enti�cally sound remedy since it maintains the transparency of the results, increases

the scope of the paper by embracing applications such as cadet-branch matching,

and allows for more transparent comparisons between the roles of various substitutes

conditions. It is important to emphasize that market design applications of matching

with contracts almost always satisfy the IRC condition, and therefore shielded from

our criticism.

Our observations have potentially adverse implications on a large number of

follow-up papers on matching with contracts. However two strands of the literature

are mostly shielded from our criticism. A signi�cant portion of the literature assume
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LAD in addition to the substitutes condition. Substitutes along with LAD implies

IRC and hence our criticism has no bite under LAD. In addition, market design ap-

plications of matching with contracts, including the earlier mentioned applications on

school choice with soft caps and cadet-branch matching, typically construct choice

sets based on other primitives including but not limited to preferences, thereby auto-

matically satisfy the IRC condition. Therefore most of the results in market design

applications are likely correct, even though their proofs might be slightly inaccurate.

1.8 References

Adachi, H. (2000), "On a Characterization of Stable Matchings." Economics

Letters, 68, 43-49.

Alkan, A. (2002), "A Class of Multipartner Matching Markets with a Strong

Lattice Structure." Economic Theory, 19, 737-746.

Blair, C. (1988), "The Lattice Structure of the Set of Stable Matchings with

Multiple Partners." Mathematics of Operations Research, 13-4, 619-628.

Crawford, V. P. and E. M. Knoer (1981), "Job Matching with Heterogeneous

Firms and Workers." Econometrica, 49, 437-450.

Echenique, F. (2007), "Counting Combinatorial Choice Rules." Games and

Economic Behavior, 58, 231-245.

Echenique, F. (2012), "Contracts vs. Salaries in Matching." American Eco-

nomic Review, 102, 594-601.

22



Echenique, F. and J. Oviedo (2004), "Core Many-to-One Matchings by Fixed-

Point Methods." Journal of Economic Theory, 115, 358-376.

Fleiner, T. (2003), "A Fixed Point Approach to Stable Matching and Some

Applications." Mathematics of Operations Research, 38, 103-126.

Gale, D. and L. Shapley (1962), "College Admissions and the Stability of Mar-

riage." American Mathematical Monthly, 69, 9-15.

Hafalir, I.E., M. B. Yenmez and M. A. Yildirim (2011), "E¤ective A¤rmative

Action in School Choice." Theoretical Economics, 8(2), 325-363.

Hat�eld, J.W., N. Immorlica and S.D. Kominers (2012), "Testing Substitutabil-

ity." Games and Economic Behavior, 75-2, 639645.

Hat�eld, J.W. and F. Kojima (2008), "Matching with Contracts: Comment.",

American Economic Review, 98, 1189-1194.

Hat�eld, J.W. and F. Kojima (2010), "Substitutes and Stability for Matching

with Contracts." Journal of Economic Theory, 145, 1704-1723.

Hat�eld, J. W. and P. R. Milgrom (2005), "Matching with Contracts." Amer-

ican Economic Review, 95, 913-935.

Kelso, A. S. and V. P. Crawford (1982), "Job Matchings, Coalition Formation,

and Gross Substitutes." Econometrica, 50, 1483-1504.

Sonmez, T. (2013), "Bidding for Army Career Specialties: Improving the ROTC

Branching Mechanism.", Journal of Political Economy, 121(1), 186-219.

23



Sonmez, T. and T. B. Switzer (2013), "Matching with (Branch-of-Choice) Con-

tracts at the United States Military Academy." Econometrica, 81(2), 451-488.

1.9 Appendix

Proofs for Modi�ed Versions of Theorems 1, 4 and 5

We will mostly follow the general outline of the original proofs in Hat�eld and

Kojima (2010), so that the extensive role of IRC can be clearly observed.

Theorem 1 (Theorem 1 of Hat�eld and Kojima (2010)) Suppose that contracts

are bilateral substitutes for every hospital and they satisfy IRC. Then there exists a

stable allocation.

Proof. Suppose that contracts are bilateral substitutes for every hospital and

they satisfy IRC. We will show that the cumulative o¤er algorithm yields a stable

allocation under these conditions. Cumulative o¤er algorithm always terminates in

�nite steps and produces a set of contracts since there are �nite number of contracts,

and no contract can be o¤ered more than once. Let the algorithm terminate at Step

T producing the set of contracts X 0. We want to show that X 0 is a stable allocation.

We �rst show that X 0 is an allocation. To do so, we will show that no doctor

can have multiple contracts in his name under X 0. This is a direct implication of

the following Claim which states that a hospital cannot hold at any step a contract
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it rejected in the previous step unless in the previous step it holds another contract

of the same doctor. This does not rule out the possibility that a previously rejected

contract to be held later on, but it rules out the possibility that multiple contracts of

the same doctor to be on hold at any given step across all hospitals.

Claim 1 For any h 2 H, z 2 X with zH = h, and t � 2,

z 2 Ah(t� 1) n Ch(Ah(t� 1)) and zD =2 [Ch(Ah(t� 1))]D =) z =2 Ch(Ah(t)).

Proof. Proof of the Claim: We have three cases to consider.

Case 1 : Hospital h receives no o¤ers at Step t. This case immediately follows

since Ah(t� 1) = Ah(t).

Case 2 : Hospital h receives an o¤er z0 from doctor zD at Step t. Since

z 2 Ah(t � 1), we have z 6= z0, and thus Ah(t) = Ah(t � 1) [ fz0g. Towards a

contradiction suppose z 2 Ch(Ah(t)). Then z0 =2 Ch(Ah(t)) and hence by IRC we

have Ch(Ah(t)) = Ch(Ah(t � 1)) contradicting z 2 Ah(t � 1) n Ch(Ah(t � 1)) and

completing Case 2.

Case 3 : Hospital h receives an o¤er x from doctor xD 6= zD at Step t. Let

Y = Ah(t� 1) n fy 2 XjyD 2 fxD; zDgg. Observe that xD; zD =2 YD. Since doctor xD

makes an o¤er at Step t, we have xD =2 [Ch(Ah(t� 1))]D; furthermore by assumption

zD =2 [Ch(Ah(t� 1))]D. Finally by IRC, Ch(Ah(t� 1)) = Ch(Y [ fzg), and therefore

z =2 Ch(Y [ fzg), which in turn implies z =2 Ch(Y [ fx; zg) by bilateral substitutes.

Towards a contradiction suppose z 2 Ch(Ah(t)). Since z =2 Ch(Ah(t � 1)), that

means Ch(Ah(t � 1)) 6= Ch(Ah(t)), which in turn implies x 2 Ch(Ah(t)) by IRC

and Ah(t) = Ah(t � 1) [ fxg. Thus x; z 2 Ch(Ah(t)) which means neither doctor
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xD nor doctor zD can have another contacts in Ch(Ah(t)). Therefore IRC implies

x; z 2 Ch(Y [ fx; zg) contradicting relation and completing Case 3. This completes

the proof of the Claim.

We will next show that allocationX 0 is stable. First observe that no doctor can

block X 0 since a doctor never o¤ers an unacceptable contract. Hence CD(X 0) = X 0.

Next suppose CH(X 0) 6= X 0, and observe that CH(X 0) =
S
h2H Ch(Ah(T )) under IRC.

Therefore there exists a hospital h and a contract x such that x 2 Ch(Ah(T )) but

x =2 Ch(Ch(Ah(T ))). This is ruled out by IRC and hence CH(X 0) = X 0.

Finally, towards a contradiction, suppose there exists a hospital h and a set of

contracts X 00 6= Ch(X
0) such that

X 00 = Ch(X
0 [X 00) � CD(X

0 [X 00):

Let X 0
h = fx 2 X 0jxH = hg. That is, X 0

h is the subset of X
0 that pertains

to hospital h. Observe that X 0
h = Ch(Ah(T )) by the mechanics of the cumulative

o¤er algorithm. Also recall that, we have already shown Ch(X 0) = X 0
h by the above

individual rationality argument. Hence

X 0
h = Ch(X

0) = Ch(Ah(T )).

Since X 00 = Ch(X
0 [ X 00), we have xH = h for all x 2 X 00. Moreover since

X 00 � CD(X
0 [X 00),

8x 2 X 00; x �xD x0xD

Therefore each contract in X 00 is o¤ered to hospital h by step T by the mechanics of

the cumulative o¤er algorithm. Hence X 00 � Ah(T ). This in turn implies

X 00 = Ch(X
0 [X 00) = Ch(X

0
h [X 00) = Ch(Ch(X

0) [X 00) = Ch(Ah(T )) = Ch(X
0)
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contradicting X 00 6= Ch(X
0). This shows that X 0 is stable completing the proof.

The next theorem by Hat�eld and Kojima (2010) states that a contract that

is rejected at any step is rejected for good under unilateral substitutes and IRC.

Theorem 2 (Theorem 4 of Hat�eld and Kojima (2010)) Suppose that contracts

are unilateral substitutes for every hospital and they satisfy IRC. A contract z that is

rejected by a hospital h at any step of the cumulative o¤er algorithm cannot be held

by hospital h in any subsequent step.

Proof. Towards a contradiction let t0 be the �rst step a hospital h holds a

contract z it previously rejected at Step t < t0. Since z is rejected by hospital h at

Step t, either it was on hold by hospital h at Step (t� 1) or it was o¤ered to hospital

h at Step t. In either case no other contract of doctor zD could be on hold by hospital

h at Step (t � 1). But then, since z is the �rst contract to be held after an earlier

rejection, hospital h cannot have held another contract by doctor zD at Step t. That

is,

zD =2 [Ch(Ah(t))]D

Then by IRC z 2 Ah(t) n Ch(Ah(t)) implies

zD =2 Ch (Ch(Ah(t)) [ fzg)

and yet

z 2 Ch(Ah(t0))

Since (Ch(Ah(t)) [ fzg) � Ah(t
0), three relations above contradict unilateral substi-

tutes completing the proof.
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Theorem 3 (Theorem 5 of Hat�eld and Kojima (2010)) Suppose that contracts

are unilateral substitutes for every hospital and they satisfy IRC. Then there exists

a doctor-optimal stable allocation each doctor weakly prefers to any other stable al-

location. The allocation that is produced by the cumulative o¤er algorithm is the

doctor-optimal stable allocation.

Proof. Since unilateral substitutes implies bilateral substitutes, there exists a

stable allocation by Theorem 1 of Hat�eld and Kojima (2010). To prove the theorem,

it su¢ ces to show that for any stable allocation X 0 � X and any contract z 2 X 0,

contract z is not rejected by the cumulative o¤er algorithm. To obtain the desired

contradiction, suppose not. Let t be the �rst step where a hospital h = zH rejects such

a contract z, and let Y = Ch(Ah(t)). Then by IRC, z =2 Ch (Y [ fzg). By Theorem

4 of Hat�eld and Kojima (2010), zD =2 YD. Since t is the �rst step a contract in any

stable allocation is rejected, every doctor in YD weakly prefers their contract in Y to

their contract in X 0 which is stable by assumption. We complete the proof via two

cases each of which yields the desired contradiction:

Case 1 : z =2 Ch (Y [X 0). In this case hospital h blocks allocation X 0 together

with doctors in YD (unless YD = ; in which case hospital h blocks X 0 by itself). That

is, Y blocks X 0 contradicting its stability.

Case 2 : z 2 Ch (Y [X 0). This case immediately gives a contradiction by

unilateral substitutes since (Y [ fzg) � (Y [X 0), z =2 Ch (Y [ fzg), and zD =2 YD.

Hat�eld and Kojima (2010) observe that, the cumulative o¤er algorithm over-

laps with the doctor proposing deferred acceptance algorithm (for any sequence of
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o¤ers). This observation is directly implied by Theorem 5.
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CHAPTER 2.

ORDER INDEPENDENCE OF CUMULATIVE OFFER

ALGORITHM AND CADET QUALITY IN USMA

2.1 Introduction

Matching with contract literature is young and very exciting literature with

its brand new applications. In most of the applications, as in matching literature,

achieving a stable allocation is one of the main goals. In the matching with contracs

literature, the weakest set of conditions known that guarantees existence of stablity

is shown in Aygün and Sönmez (2012) paper. These conditions are bilateral substi-

tutes condition and Irrelevance of Rejected Contracts (IRC) condition. In their paper,

Aygün and Sönmez (2012) showed that under bilateral substitutes and IRC condition

assumptions, existence of stable allocation can be guaranteed. These conditions are

satis�ed by most of the applications of matching with contract literature. To achieve

stable allocation, Hat�eld and Kojima (2010) described Cumulative O¤er Algorithm

(COA) in the paper and Hat�eld and Kojima (2010) and Aygün and Sönmez (2012)

showed that under bilateral substitutes and IRC assumptions, Doctor Proposing COA

produces a stable allocation in any doctor hospital matching problem. In this paper,

we study cadet-branch matching problem and we analyze Cadet Proposing Cumu-

lative O¤er Algorithm. Cadet Proposing version of this algorithm is a generalized

version of the Student Proposing Deferred Acceptance Algorithm (DAA) described

by Gale and Shapley (1962). There are two main di¤erences between COA and DAA.

The �rst one is that COA keeps rejected contracts considered after rejection. The
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second di¤erence is that under COA cadets propose their contracts one by one but

not altogether. Cadets make their o¤er one at a time and in each step cadet is chosen

randomly among the ones whom there is no contract held by a branch.

In the �rst part of this paper, we analyze COA and show that the selection of

cadets in each step of COA does not a¤ect the outcome under bilateral substitutes

and IRC condition assumptions. Also under these assumptions, COA eqiuvalent

to Generalized Deferred Acceptance Algorithm (GDAA) described in Hat�eld and

Milgrom (2005) which allows cadets make their o¤er altogether. In the second part,

we study cadet-branch matching problem where the new choice function we designed

only satis�es bilateral substitutes and IRC conditions, yet GDAA produces stable

allocation.

The United States Military Academy, to increase manpower in the army,

changed its matching mechanism to match cadets and branches. In the new choice

function used by branches in the allocation process, cadets can get priority for the

%25 of the seats of any branch if they apply with longer term contracts. Therefore,

USMA gives incentive to cadets to serve more and increases manpower in the US

Army. First, we showed that for any given branch, we can increase cadet quality by

changing choice function and to increase cadet quality, we designed a new choice func-

tion for branches. Next, we showed that the new choice function proposed satis�es

bilateral substitutes and IRC which makes cadet-branch matching problem perferct

application for GDAA if we use new alternative choice function.

Next, we study incentive compatibility property of Cadet Optimal Stable

Mechanism induced by GDAA. Prior to this paper, Hat�eld and Kojima (2010)
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showed that bilateral substitutes and IRC are not su¢ cient for strategy-proofness

of COA. However, the lexicographic choice functions described in Kominers and Son-

mez (2012) satisfy bilateral substitutes and IRC and guarantee strategy-proofness.

The choice function we suggest is not in the class of lexicographic choice functions.

But, it makes Cadet Optimal Stable Mechanism strategy-proof. Therefore, the ap-

plication we present here is the second application in the matching with contracts

literature such that choice functions only satis�es the weakest substitutes condition

and IRC, yet makes COA, equivalently GDAA, strategy-proof.

The paper is structured as follows. The next section sets up the model. After

introducing the model, we analyze order independence property of COA. Then, we

analyze cadet-branch matching problem in USMA and propose an alternative choice

function. It concludes with a brief discussion of the �ndings and provides the proofs

for some of the results in the appendix part.

2.2 The Model

There are �nite sets I and B of cadets and branches, and a �nite set X of

contracts. Each contract x 2 X is associated with one cadet xI 2 I and one branch

xB 2 B. Each cadet i 2 I can sign at most one contract or his null contract which is

denoted by ;i. A set of contracts X 0 � X is an allocation if each cadet is associated

with at most one contract under X 0. For any set of contracts Y � X, YI and YB are

the set of cadets and set of branches that has at least one contract in Y respectively.

Also, for any set of contracts Y � X, Y (j) is the subset of Y that includes all
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contracts of j 2 I [B.

For each cadet i 2 I, Pi is a strict preference relation on his contracts X(i) [

f;ig. A contract is acceptable by cadet i if it is at least as good as the null contract

;i, and unacceptable by cadet i if it is worse that the null contract ;i. For each cadet

i 2 I and a set of contracts Y � X, the chosen set Ci(Y ) of cadet i is de�ned as

Ci(Y ) = max
Pi
(Y (i) [ f;ig).

For a given set of contracts Y � X, de�ne CI(Y ) �
S
i2I Ci(Y ).

Given a branch b 2 B and any set of contracts Y � X, the chosen set Cb(Y )

of an branch b is a subset of the contracts associated with branch b. That is, Cb(Y ) �

Y (b). Moreover, a branch can sign only one contract with any given cadet:

8b 2 B; 8Y � X;8x; x0 2 Cb(Y ) x 6= x0 =) xI 6= x0I .

For a given set of contracts Y � X, de�ne CB(Y ) �
S
b2B Cb(Y ). For a given branch

b 2 B, we refer the function that maps each set of contracts to a chosen set as the

choice function of branch b.

In a given cadet-branch matching problem stable allocation can be described

as the situation where no cadet or branch would be better o¤ by either walking away

of forming bilateral arrangements outside of the allocation.

De�nition 8 A set of contracts X 0 � X is a stable allocation if

1. CI(X 0) = CB(X
0) = X 0, and

2. there exists no branch b 2 B and set of contracts X 00 6= Cb(X
0) such that

X 00 = Cb(X
0 [X 00) � CI(X

0 [X 00).
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As in the matching literature, �rst condition of stable allocation is individual

rationality and the second condition is no blocking pair of cadets and branches. By

Hat�eld and Milgrom (2005) and Aygun and Sonmez (2013) papers, we know that if

choice functions of branches satisfy substitutes condition along with IRC condition,

set of stable allocations is not empty and Cadet Proposing GDAA produces a stable

allocation which is Pareto E¢ cient among stable allocations and strategy-proof if

cadets are considered as the only strategic agents in the problem.

De�nition 9 A choice function satis�es substitutes condition if for any set of con-

tracts Y � Y 0 � X and a contract x 2 Y;

x =2 C(Y ) =) x =2 C(Y 0)

De�nition 10 A choice function satis�es Irrelevance of Rejected Contracts condi-

tion if for any set of contracts Y; Y 0 � X;

C(Y 0) � Y � Y 0 =) C(Y ) = C(Y 0)

In Hat�eld and Kojima (2010), it is shown that although substitutes condition

is su¢ cient to guarantee existence of stable allocation, it is not necessary. To widen

the scope of the model they de�ned weaker versions of substitutes condition, unilat-

eral substitutes and bilateral substitutes conditions. The weakest version, bilateral

substitutes condition, is de�ned below.

De�nition 11 A choice function satis�es bilateral substitutes condition if for any

set of contracts Y � X and a pair of contracts x; y 2 XnY;

x =2 C(Y [ fxg) and x 2 C(Y [ fx; yg) =) xI 2 YI or yI 2 YI
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So, by Hat�eld and Kojima (2010) and Aygun and Sonmez (2012b) papers,

we know that if choice functions of branches satisfy bilateral substitutes condition

along with IRC condition, set of stable allocations is not empty and Cadet Proposing

GDAA produces a stable allocation. Next, it is shown that substitutes or unilateral

substitutes conditions along with the IRC condition make DAA, COA and GDAA

equivalent. On the other hand, there is no equivalence result for these three algorithms

under bilateral substitutes condition. In this paper, we show that although DAA and

COA are di¤erent due to possible renegotiations, COA and GDAA are equivalent

under bilateral substitutes and IRC conditions.

2.3 Order Independence of Cumulative O¤er Algorithm

In this section, we formally describe GDAA and COA and show the relationship

between these two algorithms.

Generalized Deferred Acceptance Algorithm The generalized deferred acceptance al-

gorithm description we use here, was previously introduced by Hat�eld and Milgrom

(2005). For any given many to one matching with contracts problem, cadet proposing

GDAA works as the following:

Step 1: All cadets o¤er their �rst choice contracts. Call the set of contracts

o¤ered in this stepX1. Let A0(0) = ;, and A0(1) = X1. Each branch b, holds contracts

in set Cb(X1) and rejects the rest of the contracts.
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In general,

Step l � 2: All the cadets for whom no contract is currently held by a branch

o¤er their most preferred contracts that has not been rejected in previous steps. Call

the set of contracts o¤ered in this step Xl. Let A0(l) = A0(l � 1) [Xl. Each branch

b, holds contracts in set Cb(A0(l)) and rejects the rest of the contracts.

The algorithm terminates when either every cadet has a contract that is held

by a branch or every unmatched cadet has had every acceptable contract rejected.

As there are a �nite number of contracts, the algorithm terminates in some �nite

number L of steps. At that point, the algorithm produces X 0 =
[
b2B

Cb(A
0(L)), i.e.,

the set of contracts that are held by some branch at the terminal step L.

As we mentioned above, in general, keeping previously rejected contracts avail-

able to branches is the main di¤erence between DAA and GDAA. However, under

substitutes or unilateral substitutes conditions, no rejected contracts have chance to

be chosen in the GDAA. Therefore, DAA and GDAA are equivalent.

Cadet Proposing Cumulative O¤er Algorithm The cumulative o¤er algorithm descrip-

tion we use here, was previously introduced by Hat�eld and Kojima (2010). For any

given many to one matching with contracts problem, cadet proposing COA works as

the following:

Step 1: One randomly selected cadet i1 o¤ers her �rst choice contract x1,

according to her preferences Pi1. The branch that receives the o¤er b1 = x1B holds

Cb1(fx1g). Let Ab1(1) = x1, and Ab(1) = ; for all b 6= b1.

In general,
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Step k � 2: One of the cadets for whom no contract is currently held by

a branch, say ik, o¤ers the most preferred contract, based on her preferences Pik ,

that has not been rejected in previous steps. Call the new o¤ered contract, xk.

Branch bk = xkB holds Cbk(Abk(k � 1) [ fxkg) and rejects all other contracts. Let

Abk(k) = Abk(k � 1) [ fxkg, and Ab(k) = Ab(k � 1) for all b 6= bk.

The algorithm terminates when either every cadet is matched to a branch or

every unmatched cadet has no contract left to o¤er. The algorithm terminates in

some �nite number K of steps due to a �nite number of contracts. At that point,

the algorithm produces X 0 =
[
b2B

Cb(Ab(K)), i.e., the set of contracts that are held

by some branch at the terminal step K.

Order Independence of Cumulative O¤er Algorithm Assume that we use cadet propos-

ing cumulative o¤er algorithm described above. In each step, cadet who is proposing

her contract, ik, is randomly selected among cadets for whom no contract is currently

held by a branch. Therefore, in general, outcome of the algorithm depends on the

selection of cadet who makes o¤er in each step. On the other hand, in many appli-

cations we observe that at least bilateral substitutes and IRC are satis�ed and our

main theorem states that under bilateral substitutes and IRC conditions assumptions

outcome of cumulative o¤er algorithm is independent of the selection of cadets.

An order �, is a function that gives the name of the cadet that o¤ers a contract

for each step, � : N �! I. Set of all possible orders is denoted as �. For a �xed

problem and a cumulative o¤er algoritm, an order � is feasible if each cadet o¤ers a

new contract when their turn comes.
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De�nition 12 An order � 2 � is feasible if 8k; �(k) 2 fi 2 I : @x 2 CB(A(k � 1))

and xI = ig.

By the de�nition above, one can say that any cadet proposing cumulative

o¤er process can be described by a feasible order. To prove order independency of

COA, �rst we show that under bilateral substitutes and IRC conditions, if all of the

proposed contracts of a cadet are rejected in some step, no other cadet makes the

rejected contracts desirable.

Lemma 1 Assume that all choice functions satisfy bilateral substitutes condition

along with the IRC condition. If � is feasible, a cadet i has no chosen contract at k1

and o¤ers his next contract at k2, then k1 < k < k2 =) @x 2 CB(A(k)) s.t. xI = i.

Unlike unilateral substitutes and substitutes conditions, bilateral substitutes

condition allows renegotiation. Therefore, in general, COA is not equivalent to DAA.

Our �rst lemma, Lemma 1, states that renegotiation is possible for chosen cadets

only.

Next, we show that swapping orders of two cadets does not change the outcome.

Assume that we have a feasible order � such that �(k�) = i0; �(k� + 1) = i and i 6= i0

for a given k�. Now, we construct a new order �0 by swapping i and i0�s turns.

�0(k) =

8>>>>>><>>>>>>:
�0(k) = �(k� + 1) if k = k�

�0(k) = �(k�) if k = k� + 1

�0(k) = �(k) otherwise

Lemma 2 Assume that all choice functions satisfy bilateral substitutes condition

along with the IRC condition. For any feasible order �, if there is no chosen contract
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of cadet i at step k�� 1, then the outcome of cumulative algorithm remains the same

if one changes ordering from � to �0.

The lemma above is the main part of the proof ot the main theorem. By

swapping orders of cadets one at a time will let us achieve any feasible order without

changing the outcome. Now, think about the following class of order, ��:

In the �rstK1 period each cadet o¤ers her best contract one at a time. Between

K1 and K2, each cadet for whom no contract is currently held by a branch at K1

(fi 2 I : @x 2 CB(A(K1)) and xI = ig) o¤ers her next best contract among contracts

that are not o¤ered yet. Between Kl�1 and Kl, each cadet for whom no contract is

held by a branch at Kl�1 (fi 2 I : @x 2 C(A(Kl�1)) and xI = ig) o¤ers her next

best contract among contracts that are not o¤ered yet. Algorithm terminates when

either every cadet has a contract held by a branch or every unmatched cadet has no

contract left to o¤er.

Lemma 3 Assume that all choice functions satisfy bilateral substitutes condition

along with the IRC condition. The order �� given above is feasible and the outcomes

of all orders in class �� are identical.

We are going to use the lemma above to show order independence of cumula-

tive o¤er algorithm by transforming any feasible order to an order in class ��. The

transformation can be done changing order of cadets one at a time by making all

cadets o¤er their top contracts in the �rst K1 steps, making rejected cadets o¤er

their next best contracts in the next K2 � K1 steps etc. The �rst main theorem is

stated below.
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Theorem 4 Assume that all choice functions satisfy bilateral substitutes condition

along with the IRC condition. Cumulative o¤er algorithm induced by any feasible

order gives unique, stable allocation.1

As a corollary, we can state the equivalence of GDAA and the COA induced

by any feasible order under bilateral substitutable choice functions that satisfy IRC

condition. For any step l of GDAA, set of contracts o¤ered A0(l) is identical to the

set of contracts A(Kl) that is constructed under COA induced by any order in class

��. Therefore, under bilateral substitutes and IRC conditions assumption, GDAA

and COA are equivalent. Also, GDAA produces its outcome much faster since it

allows all the cadets o¤er together. The result we mentioned here uni�es algorithms

used generally in matching with contracts applications. In the rest of the paper, we

present an application of this result in the cadet-branch matching problem in USMA.

2.4 Cadet-Branch Matching Problem in USMA

Prior to 2006, cadet-branch assignment in USMA was a typical application

of Balinski and Sonmez (1999). Assignment used to be done according to cadets�

preferences over branches and their unique priority ranking. These priorities are

known as order of merit list (OML) that is based on order of merit score which is

a weighted average of cadet�s academic performance, physical �tness test score and

military performance. Prior to 2006, USMA used serial dictatorship as a matching

mechanism to assign cadets to branches due to the unique priority structure. At

1This theorem is independently studied and proved by Hirata and Kasuya (2014).
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the end of the assignment process, cadets used to serve 5 years at the army branch

assigned.

As of 2006, USMA changed its policy on cadet-branch assignment to increase

manpower in the US Army. The new policy introduced two new aspect to this as-

signment problem. The �rst one is introducing 8-year contract. By introducing the

8-year contracts USMA aimed to increase manpower. The second one is giving cadets

incentive to sign 8-year contracts by giving higher priority for 25% of the seats in all

branches.

There are �nite sets I = fi1; i2; : : : ; ing and B = fb1; b2; : : : ; bmg of cadets and

branches. Each branch b has its own capacity qb and
P

b2B qb � n. There are two

possible serving times for each cadet (t0; t+). In our setup, t0 represents �ve years

serving time, or "low cost", and t+ represents eight years serving time, or "high cost".

Set T is the potential contract terms. Order of merit list for each cadet is determined

by a priority ranking function � : I ! f1; 2; : : : ; ng.

A contract x 2 X is a tuple (i; b; t), where i 2 I, b 2 B and t 2 T . For

a contract x; xI , xB and xT represent cadet, branch and term of the contract x

respectively. Let X be the set of all contracts. For any cadet i 2 I, Pi is the

preference of cadet i over her possible contracts and being unassigned X(i)[f;g. Let

Pi be the set of all possible preferences over contracts for cadet i. An allocation is a

set of contracts X 0 � X, such that for every i 2 I and every b 2 B, jX 0(i)j � 1 and

jX 0(b)j � qb. Let � be set of all possible allocations.
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USMA Priorities In general, the chosen set of branch b from a set of contacts Y

depends on the policy on who has higher claims for slots in branch b. Here our focus

is the current USMA policy, where cadets with higher OML ranking have higher

claims for the top (1� �)qb slots and the priority for the last �qb slots is adjusted to

favor cadets who are willing to pay the increased service cost. We are ready to de�ne

the USMA chosen set of branch b from a set of contracts Y .

For a given order-of-merit priority ranking �, � 2 [0; 1] and Y , chosen set

Cb(Y ) is constructed as follows:

1. Branch chooses contracts of cadets based on their OML rankings, one contract

at a time. If there are two contracts of a cadet, branch chooses the one with

lower cost, t0 and rejects the other. Either all contracts will be considered or

(1 � �)qb contracts are chosen. If the former happens branch terminates the

procedure and rejects all the remaining contracts if the latter happens then

branch continues with the next step.

2. Branch only considers contracts with high cost, t+. Branch chooses contracts

of cadets based on their OML rankings, one contract at a time. If there are two

contracts in Y of a cadet whose contract is chosen in this step, branch chooses

the one with high cost, t+ and rejects the other. Either qb contracts are chosen

or all contracts with high cost, t+, will be considered. If the former happens

branch terminates the procedure and rejects all the remaining contracts if the

latter happens then branch continues with the next step.

3. All the remaining contracts are low cost contracts by construction. Branch
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chooses contracts of cadets based on their OML rankings, one contract at a

time. Branch terminates the procedure when either all the remaining contracts

are chosen or qb contracts chosen.

In this paper, our objective is choosing "better" sets of cadets for any given

branch. The idea of choosing better set is based on responsive preferences in college

admission problem. As we mentioned, before 2006, branches were used to choose their

cadets based on single OML rankings. Given any set of applications branches chose

top cadets in the application pool up to their capacities. In that sense, prior to 2006,

branches had responsive preferences. Like the college admission with a¢ rmative

action problems, due to the new policy shift in 2006, responsive choices are not

available for branches anymore. However, by replacing lower ranked cadets with

higher ranked cadets without hurting incentive policy introduced by USMA, we can

choose sets of cadets closer to a responsive choice function chooses. Next, example

shows that if there exists a cadet that prefers a contract with the higher cost to a

contract with the base cost, choice function derived from USMA priorities may not

choose best set of cadets among the available contract set.

Example 3 Let I = (i1; i2; i3); B = fbg with qb = 2. Let the merit ranking be �(i1) <

�(i2) < �(i3) and � = 0:5. Let Y = f(i1; b; t+); (i2; b; t0); (i3; b; t+)g. If we use choice

function derived from USMA priorities we get CUSMA
b (Y ) = f(i1; b; t+); (i3; b; t+)g.

Therefore, cadets i1; i3 will be chosen by branch b. However, if we use choice function

described above we get C 0b(Y ) = f(i1; b; t+); (i2; b; t0)g. Here cadets i1; i2 will be chosen

by branch b. which improves cadet quality of branch b without violating reserve for
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contracts with the higher cost t+.

De�nition 13 A choice function C() is q-acceptant if for any set of contracts Y �

X,

jC(Y )j = minfjYI j; qg

For any given set of cadets I 0 = (i1; : : : ; ijI0j) � I function O(j; I 0) is internal

order of cadets and de�ned as the following:

O(1; I 0) = argmin
i2I0

�(i)

O(�; I 0) = arg min
i2I0n[j<�O(j;I0)

�(i)

De�nition 14 Among two q-acceptant choice functions C() and C 0(), C() domi-

nates C 0() if for any set of contracts Y � X such that jYI j > q and any � 2 f1; : : : ; qg,

�(O(�; C 0(Y )I)) � �(O(�; C(Y )I)).

Alternative Choice Function For a given order-of-merit priority ranking, � 2 [0; 1]

and Y chosen set Cb(Y ) is constructed as follows:

1. Branch chooses contracts of cadets based on their OML rankings, one contract

at a time. If there are two contracts of a cadet, branch chooses the one with

lower cost, t0 and rejects the other. During the process if the number of chosen

contracts with low cost, t0, reaches (1 � �)qb, branch tentatively rejects all

remaining contracts with the with low cost and continue with the contracts with

the high cost, t+. If qb contracts are chosen, branch terminates the procedure

and rejects all remaining and tentatively rejected contracts. If all contracts are

considered and jCb(Y )j; qb, branch continues with the next step.
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2. Branch rejects tentatively rejected contracts of cadets that have a chosen con-

tract in the �rst step.

3. For the remaining potential elements of Cb(Y ), branch only considers contracts

tentatively rejected contracts in Phase 1 and chooses contracts of cadets based

on their OML rankings, one contract at a time. Branch terminates the procedure

when either all the tentatively rejected contracts are chosen or qb contracts

chosen.

Proposition 3 The alternative choice function, C 0(), de�ned above dominates choice

function induced by USMA priorities, CUSMA().

Following example shows that contracts are not necessarily unilateral substi-

tutes under the choice function described above.

Example 4 Let I = (i1; i2; i3); B = fbg with qb = 2. Let the merit ranking be

�(i1) < �(i2) < �(i3) and � = 0:5. Let Y = f(i1; b; t+); (i2; b; t0); (i3; b; t+)g and Y 0 =

f(i1; b; t0); (i1; b; t+); (i2; b; t0); (i3; b; t+)g. We have C 0b(Y ) = f(i1; b1; t+); (i2; b1; t0)g

and C 0b(Y
0) = f(i1; b; t0); (i3; b; t+)g. Hence, even though contract (i3; b; t+), the only

contract of cadet i3 in Y , is rejected from Y , it is not rejected from Y 0 � Y .

Proposition 4 Elements of X are bilateral substitutes for each branch b under the

choice function de�ned above.

Proposition 5 The alternative choice function satis�es IRC condition.

A mechanism is a strategy space �i for each cadet i along with an outcome

function ' : (�i1 ;�i2 ; : : : ;�in)! � that selects an allocation for each strategy vector
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(�i1 ; �i2 ; : : : ; �in) 2 (�i1 ;�i2 ; : : : ;�in). Given a cadet i and a strategy pro�le �i 2 �i,

let ��i denote the strategy of all cadets except cadet i. A direct mechanism is a

mechanism where strategies are preferences over contracts. Hence a direct mechanism

is simply a function  : (Pi)n ! � that selects an allocation for each preference pro�le.

Cadet Optimal Stable Mechanism is a direct mechanism where cadets submit

their preferences over contracts and central authority runs cadet proposing generalized

deferred acceptance algorithm with submitted preferences and some choice functions

(Cb())b2B. By the help of propositions above, one can guarantee existence of stability.

Next proposition states that stable allocation can be achieved by Cadet Optimal

Stable Mechanism.

Proposition 6 Cadet Optimal Stable Mechanism induced by alternative choice func-

tion C 0() is a stable machanism.

Cadet Sub-Branch Matching Problem In this section, we are going to study incentive

properties of cadet optimal stable mechanism induced by alternative choice func-

tion. It is well known by Hat�eld and Kojima (2010) that bilateral substitutes prop-

erty, even along with LAD, is not su¢ cient for existence of strategy-proof and stable

mechansims. Although, Kominers and Sonmez (2013) provides a class of choice func-

tions satisfying only bilateral substitutes and making cadet proposing COA strategy-

proof, the alternative choice function proposed here is not in that class. In order

to show strategy-proofness of Cadet Optimal Stable Mechanism, in this section, we

are going to construct a new problem which is parallel to our cadet branch matching

problem.
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To construct a cadet sub-branch matching problem we extend the contract set

X to the set ~X de�ned by

~X � fhx; si = h(i; b; t); si : x 2 X and s = 1; 2g

Consider a parallel problem where each branch b is divided into two sub-

branches, i.e. b1 and b2, where qb1 = qb(1 � �) and qb2 = qb�. In this setup, for any

contract hx; si, s denotes the sub-branch associated with the contract and preference

of cadet i, P �i ,over the contracts in set ~X are as the following:

h(i; b; t0); 1iP �i h(i; b; t0); 2iP �i h(i; b0; t0); si ; for s = 1; 2 if (i; b; t0)Pi(i; b0; t0)

h(i; b; t+); 2iP �i h(i; b; t+); 1iP �i h(i; b0; t0); si ; for s = 1; 2 if (i; b; t+)Pi(i; b0; t0)

For any branch b, choice functions of b1 and b2 are examples of lexicographic

choice functions described in Kominers and Sonmez (2013). The priorities of slots

and the precedence orders are the following:

Cb1(Y ):

All the slots give priority based on OML ranking of cadets and among the

contracts of same cadet priority is given to contracts with low cost. Since all priorities

are the same, any precedence order produces the same choice choice function.

Cb2(Y ):

All the slots prefer high cost contracts to low cost contracts and among the

contracts of same cost, priority is given based on merit list of cadet. Since all priorities

are the same, any precedence order produces the same choice choice function.

It is clear that any allocation in the parallel cadet-branch matching problem,

say ~X 0 � ~X, corresponds to an allocation in original cadet-branch matching problem,
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X 0 � X. This correspondence can be shown by the following projection, $:

$( ~X 0) � fx 2 X : hx; si 2 ~X 0 for some s 2 f1; 2gg

We start with existence of stability in the cadet sub-branch matching problem.

In order to guarantee existence of stable allocation and strategy-proofness of cadet

proposing COA in cadet sub-branch problem, we are going to use following properties

mentioned in the following three lemmas.

Lemma 4 For any branch b, choice functions Cb1 and Cb2 satis�es substitutes con-

dition.

Lemma 5 For any branch b, choice functions Cb1 and Cb2 satis�es IRC condition.

Lemma 6 For any branch b, choice functions Cb1 and Cb2 satis�es LAD condition.

Three lemmas above help us to utilize theorem 1 and theorem 11 in Hat-

�eld and Milgrom (2005) and theorem 1 in Aygun and Sonmez (2013) to show that

cadet proposing COA gives stable allocation and is strategy-proof in cadet sub-branch

matching problem. Next, we are going to show that the allocation chosen by cadet

proposing COA in cadet sub-branch matching problem coincides with the allocation

chosen by cadet proposing COA in original cadet branch matching problem.

Proposition 7 For any cadet-branch matching problem with preference pro�le (Pi)i2I ,

outcome of cumulative o¤er process, ~X 0, for cadet-branch matching problem with pref-

erence pro�le (P �i )i2I , is identical to outcome of cumulative o¤er process, X
0, for

cadet-branch matching problem under projection $:
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In the �nal step, we are going to de�ne strategy-proofness formally and show

this property on cadet optimal stable mechanism.

De�nition 15 A mechanism is strategy-proof if

@i 2 I; @��i 2
Y

j2Infig

�j and @Pi; P 0i 2 �i; such that  (P 0i ; ��i)Pi (Pi; ��i).

The de�nition above states that for any cadet, no matter what preference a

cadet has and no matter what kind of strategies other cadets submit, submitting

actual preferences over contracts should be weakly dominant strategy.

Theorem 5 Cadet Optimal Stable Mechanism induced by alternative choice function

C 0() is strategy-proof.

By the teorem above, we showed that by a small modi�cation branches can

choose better set of cadets without sacri�cing useful properties of allocation mecha-

nism such as stability and strategy-proofness.

2.5 Concluding Remarks

In this paper, we �rst studied properties of cumulative o¤er algorithm which is

designed to produce a stable allocation for matching with contracts problems. Next,

we presented a new market design application where our result help us to design a

mechanism which gives identical outcome with the COA and process ends in fewer

steps. The application we introduce is particularly interesting in the sense that the

choice function we designed is the second in the literature that satis�es only weakest
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substitutes condition, yet strategy proofness of the mechanism is preserved. Also, �rst

time in literature, we dealt with constrained responsive preferences due to incentive

objectives of USMA. On the other hand, this issue is not unique to this problem,

since in any a¢ rmative action model schools, �rms etc. cannot use their responsive

preferences. Therefore, the choice function suggested here may serve as a second best.

This paper shows that for a given set of applications, the current USMA prior-

ities may not choose top cadets if there exists a cadet preferring long term contracts

to short term contracts.

We proposed a new choice function that can also be used together with the

cadet optimal stable mechanism to generate assignments. The choice function chooses

a "better" set of cadets than current USMA priorities for any given set of contracts.

Moreover, the mechanism we suggest is strategy-proof and yields a stable allocation

for any problem.
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2.7 Appendix

Proof of Lemma 1. Assume that is not true. Therefore, there is a contract

y such that yI = i and a step k such that @x 2 CB(A(k � 1)) and xI = i, and
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y 2 CB(A(k)). Let �(k) = i0 and y0 be the contract o¤ered by i0 at step k . We can

construct two sets Y and Y 0 in the following way:

Y = A(k � 1) n fx 2 � : xD 2 fi; i0gg

Y 0 = Y [ fy; y0g

In words, to costruct Y we remove all rejected contracts of i and i0 at k�1 and

for Y 0 we just add contracts y and y0 to set Y . By feasibility of the order � and our

assumption, no contract that belongs to cadets i and i0 are chosen in step k�1. Next,

by IRC condition, CB(Y ) = CB(A(k � 1)) since there is no chosen contract of i or i0

at k � 1 and CB(Y 0) = CB(A(k)) since all contracts we removed are some rejected

contracts of i or i0 at k. Also, by IRC condition y =2 C(Y [ fyg), since Y [ fyg is a

subset of A(k � 1) and includes all chosen contracts in A(k � 1).

Since choice functions C() satis�es bilateral substitution condition and there

is no contract of i and i0 in Y , following must be true:

y =2 C(Y [ fyg) =) y =2 C(Y [ fy; y0g)

However, by our assumption we have y 2 C(A(k)) = C(Y 0) = C(Y [ fy; y0g),

a contradiction. Hence, for any step k1 < k < k2 we have @x 2 C(A(k)) s.t. xI = i.

Proof of Lemma 2. First, one can observe that up to step k� � 1, A(k)

and outcomes of CB(A(k)) under both orders � and �
0 are identical. By lemma 1, we

know that there is no chosen contract of cadet i at step k�, so cadet i can o¤er her

next best contract without violating feasibility of the order. Also, under �0, we can
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say that there is no chosen contract of cadet i0 at step k�� 1, because A(k�� 1)�s are

identical under both orders and we know that i0 o¤ers a new contract at k� under �,

that means there is no chosen contract of cadet i0 at step k� � 1 under �0. Then, by

the help of lemma 1, we can say that cadet i�s o¤er at k� does not make any contract

of i0 chosen, so i0 can make her new o¤er at step k�+1 without violating feasibility of

the order. Therefore, A(k�+1) and C(A(k�+1)) under both orders are still identical.

Since order of cadets are the same for the rest of the steps under � and �0, A(k) and

C(A(k)) under both orders are the same for the rest. Hence, outcome of cumulative

o¤er algorithm remains unchanged.

Proof of Lemma 3. First of all, we are going to show that �� is feasible.

For 0 < k � K1, each cadet o¤ers her �rst contracts. So feasibility is not violated in

the �rst K1 step.

ForK1 < k � K2, each cadet �
�(k) for whom no contract is held by a branch at

K1 o¤ers her next contract at time k. By lemma 1, we know that �rst o¤er of �
�(k) is

not accepted before time K1. So, for K1 < k � K2, �
�(k) =2 fi 2 I : 9x 2 C(A(k�1))

and xI = ig. Hence, feasibility is not violated in the �rst K2 steps.

For steps between Kl�1 and Kl, each cadet �
�(k) for whom no contract is

currently held by a branch at Kl�1 o¤ers her next contract at time k. By lemma 1, we

know that any o¤er of ��(k) is not accepted before time Kl�1. So, for Kl�1 < k � Kl,

��(k) =2 fi 2 I : 9x 2 C(A(k�1)) and xI = ig. Hence, feasibility is satis�ed in the �rst

Kl steps. Since l is arbitrary, one can say that 8k; ��(l) 2 I nfi 2 I : 9x 2 C(A(k�1))

s.t. xI = ig. Hence, �� is feasible.

Next, we are going to show that any order in the class �� gives identical out-
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come. For any cumulative o¤er algorithm induced by an order in class ��, no matter

what is the order between 0 and K1, one gets A(K1) at the end of step K1. Since

A(K1) and set of cadets giving new o¤ers between K1 and K2 are the same for any

order, one gets A(K2) at the end of step K2. By induction, A(Kl) for any l should

be the same for any order in class ��. Hence, outcomes for any order in class �� must

be identical.

Proof of Theorem 4. Stability of outcome comes directly from Hat�eld and

Kojima (2010) and Aygun and Sonmez (2012). We are going to prove that outcomes

for any feasible order of o¤ering are identical. To prove this theorem, we are going to

convert any feasible order to some order in class �� without changing outcome.

In the �rst step, consider cadets o¤ering their �rst contracts. By lemma 1,

we know that we can swap their turn with the ones come before them. So, one can

change their �rst o¤ering times one at a time and make them o¤er their �rst contract

in the �rst K1 steps without changing outcome. Let the new order be �
1.

In the second step, consider set of cadets for whom no contract is currently

held by a branch at K1. Since �
1 is feasible, �1(K1 + 1) should o¤er her next best

contract. Take the second cadet making her next o¤er. Since that doctor is rejected

at stepK1, by lemma 1, we can say that she has no accepted contract two steps before

her next o¤er and we can swap her turn with the one who o¤ered before her. By

doing this procedure one at a time, we can change her turn to K1 + 2. Then we can

use the same technique to change o¤ering orders of other cadets in the set and make

them o¤er their next best contracts in steps between K1 and K2 without changing

outcome. Let the new order be �2.
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In step l, consider set of cadets for whom no contract is currently held by

a branch at Kl�1. Since �
l�1 is feasible, �l�1(Kl�1 + 1) should o¤er her next best

contract. Take the second cadet making her next o¤er. Since cadet is rejected at step

Kl�1, by lemma 1, we can say that she has no accepted contract two steps before

her next o¤er and we can swap her turn with the one who o¤ered before her. By

doing this procedure one at a time, we can change her turn to Kl�1+2. Then we can

use the same technique to change o¤ering orders of other cadets in the set and make

them o¤er their next best contracts in steps between Kl�1 and Kl without changing

outcome. Let the new order of o¤ering be �l.

If we continue untill we cover all steps in � and construct some order of o¤ering

�L, it is easy to verify that �L belongs to the class �� and since we keep outcome

unchanged during the procedure, one can say that feasible order of o¤ering � gives

the same outcome as any order in class ��. Since we choose � arbitrarily, this result is

true for any feasible order. Hence, cumulative o¤er algorithm with any feasible order

gives one identical, stable allocation.

Proof of Proposition 3. For any given set of contracts Y such that

jYI j > q, top q(1 � �) cadets will be accepted by both choice functions. Therefore,

�(O(j; C 0(Y )I)) = �(O(j; CUSMA(Y )I)), for j � q(1 � �). For the rest of the slots

there are three cases possible:

Case 1: If all cadets in top q(1 � �) have contracts with t0 in Y , then both

choice functions choose the same set of cadets, i.e. C 0(Y ) = CUSMA(Y ).

If there is at least one cadet in top q(1 � �) who has no contract with t0 in

Y , then let Y 0 be the set of contracts of the remaining cadets and Y 0
+ be the set of
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contracts in Y 0 with t+. If jY 0
+j � q� then CUSMA terminates the procedure in the

second phase and C 0 terminates the procedure in the �rst phase.

Case 2.1: If jY 0
+j � q� and the constraint for the alternative choice function

never binds, then CUSMA chooses top q� cadets who has a contract with t+ in Y 0,

i.e. O(q(1� �) + j; CUSMA(Y )I) = O(j; Y 0
+I) for j = 1; : : : ; q� and for the alternative

choice functionO(q(1��)+j; C 0(Y )I) = O(j; Y 0
I ) for j = 1; : : : ; q�. Since there is a set

inclusion between Y 0 and Y 0
+, i.e. Y

0
+ � Y 0, for the remaining slots alternative choice

function chooses better cadets. Therefore, �(O(j; CUSMA(Y )I)) � �(O(j; C 0(Y )I))

for j = 1; : : : ; q.

Case 2.2: If jY 0
+j � q� and the constraint for the alternative choice function

binds in phase 1 when q(1� �) + j� seats �lled, then let Y 00
+ be the set of remaining

contracts with t+. So we have O(q(1 � �) + j; C 0(Y )I) = O(j; Y 0
I ) for j = 1; : : : ; j

�

and O(q(1��)+j; C 0(Y )I) = O(j; Y 00
+I) for j = j�+1; : : : ; q�. Since we have Y 0

+ � Y 0

and any high cost contract of cadets in the set
q�S

j=j�+1
O(j; Y 0

+I) is available in Y
00
+ ,

alternative choice function chooses at least as high ranked cadets as CUSMA for the

remaining seats. Therefore, �(O(j; CUSMA(Y )I)) � �(O(j; C 0(Y )I)) for j = 1; : : : ; q.

Case 3.1: If jY 0
+j < q� and the constraint for the alternative choice function

never binds, then the alternative choice function chooses top q� cadets in the set

Y 0
I , i.e. O(q(1 � �) + j; C 0(Y )I) = O(j; Y 0

I ) for j = 1; : : : ; q�. On the other hand,

CUSMA has a further constraint of choosing all the cadets in set Y 0
+I . Therefore,

�(O(j; CUSMA(Y )I)) � �(O(j; C 0(Y )I)) for j = 1; : : : ; q.

Case 3.2: If jY 0
+j < q�, the constraint for the alternative choice function binds

in phase 1 when q(1��)+j� seats �lled and the alternative choice function terminates
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the procedure in the �rst phase, then we have O(q(1� �) + j; C 0(Y )I) = O(j; Y 0
I ) for

j = 1; : : : ; j� and O(q(1��)+ j; C 0(Y )I) = O(j; Y 00
+I) for j = j�+1; : : : ; q�. Since set

of contracts Y � = C 0(Y ) \ Y 00
+ is chosen under both choice functions and C

0 chooses

top q � jY �j cadets among the remaining cadets we have �(O(j; CUSMA(Y )I)) �

�(O(j; C 0(Y )I)) for j = 1; : : : ; q.

Case 3.3: If jY 0
+j < q�, the constraint for the alternative choice function binds

in phase 1 when q(1��)+j� seats �lled and the alternative choice function terminates

the procedure in the third phase, set of contracts Y 00
+ is chosen under both choice

functions and C 0 chooses top q�jY 00
+ j cadets among the remaining cadets. Therefore,

�(O(j; CUSMA(Y )I)) � �(O(j; C 0(Y )I)) for j = 1; : : : ; q.

Proof of Proposition 4. Let x = (i; b; t) 2 Y � X be the only contract

in Y that involves cadet i and suppose x =2 Cb(Y ). Consider another contract z =2 Y

such that zI =2 YI . Let Y 0 = fx 2 X : xI =2
S

��(1��)qb
fO(�; YI)gg. We have two cases

to consider:

Case 1: t = t0. Since (i; b; t) =2 Cb(Y ), either we have

i =2
S
��qb

fO(�; YI)g

therefore (Y [ fzg) � Y implies

i =2
S
��qb

fO(�; YI [ fzIg)g

or we have

i =2
S

��(1��)qb
fO(�; fj 2 I : (j; b; t0) 2 Y g)g and

jfj 2 I : (j; b; t0) 2 Y and �(j) < �(i)g [ fj 2 I : (j; b; t+) 2 Y gj � qb

therefore (Y [ fzg) � Y implies
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i =2
S

��(1��)qb
fO(�; fj 2 I : (j; b; t0) 2 (Y [ fzgg)g and

jfj 2 I : (j; b; t0) 2 (Y [ fzg) and �(j) < �(i)g [ fj 2 I : (j; b; t+) 2 (Y [ fzg)gj � qb

as well. Hence x =2 Cb(Y [ fzg).

Case 2: t = t+. Since (i; b; t) =2 Cb(Y ), either we have

i =2
S
��qb

fO(�; YI)g and

S
��(1��)qb

fO(�; fj 2 I : (j; b; t0) 2 Y g)g *
S
��qb

fO(�; YI)g

or we have

i =2
S
��qb

fO(�; YI)g,

S
��(1��)qb

fO(�; fj 2 I : (j; b; t0) 2 Y g)g �
S
��qb

fO(�; YI)g and

jfj 2 In
S

��(1��)qb
fO(�; fj 2 I : (j; b; t0) 2 Y g)g : (j; b; t+) 2 Y gj � �qb

therefore (Y [ fzg) � Y implies either

i =2
S
��qb

fO(�; YI [ fzIg)g and

S
��(1��)qb

fO(�; fj 2 I : (j; b; t0) 2 Y [ fzgg)g *
S
��qb

fO(�; YI [ fzIg)g

or

i =2
S
��qb

fO(�; YI [ fzIg)g,

S
��(1��)qb

fO(�; fj 2 I : (j; b; t0) 2 Y [ fzgg)g �
S
��qb

fO(�; YI [ fzIg)g and

jfj 2 In
S

��(1��)qb
fO(�; fj 2 I : (j; b; t0) 2 Y [ fzgg)g : (j; b; t+) 2 Y [ fzggj � �qb

as well. Hence x =2 Cb(Y [ fzg) for this case as well, completing the proof.

Proof of Proposition 5. For any sets of contracts Y � Y 0 � X, let

C 0(Y 0) � Y � Y 0. Take a contract x 2 Y 0 such that x =2 C 0(Y 0). If owner of contract

x has no chosen contract, then removing x is not going to change chosen set since

contracts of higher ranked cadets are still available. If owner of contract x has a

chosen contract, say y, then since removing x has no e¤ect on choosing y and choice
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function never returns rejected contracts again removing x does not a¤ect chosen set.

Therefore, removing a rejected contract does not a¤ect chosen set.

Since, removing x does not change chosen set, removing rejected contracts one

at a time untill we reach set Y does not change chosen set which completes the proof.

Proof of Proposition 6. By the propositions 2 and 3 choice functions

of branches satisfy bilateral substitutes and IRC conditions. By Theorem 1 of Ay-

gun and Sonmez (2012b) cadet proposing cumulative o¤er algorithm produces stable

allocation.

Proof of Lemma 4. First, think about Cb1. For any hx; si = h(i; b0; t); si,

if b0 6= b or s = 2, then hx; si is not going to be chosen in ~Y or ~Y 0. Let hx; 1i =

h(i; b; t); si 2 ~Y � ~Y 0 � ~X be a contract in ~Y and suppose x =2 Cb1( ~Y ). We have two

cases to consider:

Case 1: t = t0 or t = t+ and @ h(i; b; t0); 1i 2 ~Y . Since hx; 1i =2 Cb1( ~Y ), we have

i =2
[
��qb1

fO(�; ~YI)g

therefore ~Y 0 � ~Y implies

i =2
[
��qb1

fO(�; ~Y 0
I )g

Hence hx; 1i =2 Cb1( ~Y 0).

Case 2: t = t+ and 9 h(i; b; t0); 1i 2 ~Y . Since b1 always gives priority to low cost

contracts, h(i; b; t0); 1i 2 ~Y implies hx; 1i =2 Cb1( ~Y ). Therefore, h(i; b; t0); 1i 2 ~Y 0 � ~Y

implies hx; 1i =2 Cb1( ~Y 0).

Hence hx; 1i =2 Cb1( ~Y 0) for this case as well, completing the proof.
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Now, consider Cb2 . For any hx; si = h(i; b0; t); si, if b0 6= b or s = 1, then hx; si

is not going to be chosen in ~Y or ~Y 0. Let hx; 2i = h(i; b; t); 2i 2 ~Y � ~Y 0 � ~X be a

contract in ~Y and suppose x =2 Cb2( ~Y ). We have two cases to consider:

Case 1: t = t+. Since hx; 2i =2 Cb2( ~Y ), we have

i =2
[
��qb2

fO(�; fj 2 I : h(j; b; t+); 2i 2 ~YIg)g

therefore ~Y 0 � ~Y implies

i =2
[
��qb2

fO(�; fj 2 I : h(j; b; t+); 2i 2 ~Y 0
Ig)g

Hence hx; 2i =2 Cb2( ~Y 0).

Case 2.1: t = t0 and 9 h(i; b; t+); 2i 2 ~Y . Since b2 always gives priority to high

cost contracts, h(i; b; t+); 2i 2 ~Y implies hx; 2i =2 Cb2( ~Y ). Therefore, h(i; b; t+); 2i 2

~Y � ~Y 0 implies hx; 2i =2 Cb2( ~Y 0).

Case 2.2: t = t0 and @ h(i; b; t+); 2i 2 ~Y . Since hx; 2i =2 Cb2( ~Y ), either we have

i =2
[
��qb2

fO(�; ~YI)g

therefore ~Y 0 � ~Y implies

i =2
[
��qb2

fO(�; ~Y 0
I )g

or

jfj 2 I : h(j; b; t+); 2i 2 ~Y gj � qb2

therefore ~Y 0 � ~Y implies

jfj 2 I : h(j; b; t+); 2i 2 ~Y 0gj � qb2

as well. Hence hx; 2i =2 Cb2( ~Y 0) for this case as well, completing the proof.
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Proof of Lemma 5. Both Cb1 and Cb2 are in the class of lexicographic

choice functions described in Kominers and Sonmez (2012). Therefore, Lemma 6 is

corollary of Lemma D.1 of Kominers and Sonmez (2012).

Proof of Lemma 6. For any set of contracts ~Y , if the number of cadets

who has at least one contract in ~Y is greater than or equal to branch�s quota, both

choice functions �ll all the seats. Therefore, adding more contract never decreases the

number of chosen contracts, since number of cadets never decreases. If the number of

cadets with at least one contract in ~Y is less than branch�s quota, both choice functions

chooses one contract of each cadet. So, jCbj( ~Y )j = j ~YI j for j = 1; 2. Therefore, for any

~Y 0 � ~Y and j = 1; 2, jCbj( ~Y )j < jCbj( ~Y 0)j if ~YI � ~Y 0
I , jCbj( ~Y )j = jCbj( ~Y 0)j otherwise.

Hence, the number of chosen contracts never decreases if the set of available contracts

gets larger.

Proof of Proposition 7. First of all, for any cadet sub-branch matching

problem with (P �i )i2I induced by (Pi)i2I , let the outcome of cadet proposing cumu-

lative o¤er algorithm be ~X 0. By theorem 1 in Aygun Sonmez (2013) and by theorem

3 and 4 in Hat�eld and Milgrom (2005) ~X 0 is a stable allocation which is weakly

preferred to any other stable allocation by all cadets.

We denote the outcome of the cumulative o¤er algorithm of original cadet-
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branch problem by X 0, and for any cadet i 2 X 0
I , let

~xi =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

h(i; b; t0); 1i if (i; b; t0) 2 X 0 and i 2
S

��(1��)qb
fO(�; fj 2 I : (j; b; t0) 2 X 0g)g

h(i; b; t0); 2i if (i; b; t0) 2 X 0 and i =2
S

��(1��)qb
fO(�; fj 2 I : (j; b; t0) 2 X 0g)g

h(i; b; t+); 1i if (i; b; t+) 2 X 0 and i =2
S

���qb
fO(�; fj 2 I : (j; b; t+) 2 X 0g)g

h(i; b; t+); 2i if (i; b; t+) 2 X 0 and i 2
S

���qb
fO(�; fj 2 I : (j; b; t+) 2 X 0g)g

and let

~Y 0 =
[
i2X0

I

f~xig.

By construction, we have $( ~Y 0) = X 0.

Now, �rst we are going to show that ~Y 0 is a stable allocation in the cadet

sub-branch matching problem. Since X 0 is a stable allocation, ~xiP �i ; for all cadets

and for any sub-branch, number of contracts does not exceed its quota. Therefore, ~Y 0

is individually rational and satis�es �rst condition of stable allocations. Now assume

that there is a sub-branch bs and a set of contracts ~Y 00 6= Cbs( ~Y
0) such that

~Y 00 = Cbs( ~Y
0 [ ~Y 00) � CI( ~Y

0 [ ~Y 00).

Therefore, there exist a contract hx; si = h(i; b; t); si 2 ~Y 00nCbs( ~Y 0) such that

hx; siP �i ~Y 0
i . If there exist a contract ~x

i = h(i; b00 ; t0); s0i and b0 6= b or there is no

contract of cadet i in ~Y 0, then by the fact that X 0 is the outcome of cumulative o¤er

algorithm, we know that x is proposed in some step of cumulative o¤er algorithm and

is rejected by branch b in the �nal step. So, we have four possible cases:

Case 1: If s = 1 and t = t0, then either we have

i =2
[
��qb

fO(�; fj 2 I : X 0(j) 2 X 0(b)g [ fig)g
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or we have

i =2
[

��(1��)qb

fO(�; fj 2 I : (j; b; t0) 2 X 0(b)g [ fig)g and

jfj 2 I : (j; b; t0) 2 X 0 and �(j) < �(i)g [ fj 2 I : (j; b; t+) 2 X 0gj � qb

by stability of X 0, which implies

jfj 2 I : fh(j; b; t0); 1i h(j; b; t+); 1ig \ ~Y 0 6= ; and �(j) < �(i)gj � (1� �)qb = qb1

by construction of ~Y 0. Therefore, hx; si =2 Cb1( ~Y
0 [ ~Y 00) by substitutes property of

Cb1. A contradiction.

Case 2: If s = 2 and t = t0, then either we have

i =2
[
��qb

fO(�; fj 2 I : X 0(j) 2 X 0(b)g [ fig)g

or we have

i =2
[

��(1��)qb

fO(�; fj 2 I : (j; b; t0) 2 X 0(b)g [ fig)g and

jfj 2 I : (j; b; t0) 2 X 0 and �(j) < �(i)g [ fj 2 I : (j; b; t+) 2 X 0gj � qb

by stability of X 0, which implies

jfj 2 I : fh(j; b; t0); 2i h(j; b; t+); 2ig \ ~Y 0 6= ; and �(j) < �(i)gj � �qb = qb2

or

jfj 2 I : h(j; b; t+); 2i 2 ~Y 0gj � �qb = qb2

by construction of ~Y 0. Therefore, hx; si =2 Cb2( ~Y
0 [ ~Y 00) by substitutes property of

Cb2. A contradiction.

Case 3: If s = 1 and t = t+, then we have
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i =2
S
��qb

fO(�; fj 2 I : X 0(j) 2 X 0(b)g [ fig)g and

jX 0(b) \ fj 2 I : (j; b; t0) 2 X 0gj � (1� �)qb

by stability of X 0, which implies

jfj 2 I : fh(j; b; t0); 1i h(j; b; t+); 1ig \ ~Y 0 6= ; and �(j) < �(i)gj � (1� �)qb = qb1

by construction of ~Y 0. Therefore, hx; si =2 Cb1( ~Y 0[ ~Y 00) by substitutes property

of Cb1. A contradiction.

Case 4: If s = 2 and t = t+, then we have

i =2
S
��qb

fO(�; fj 2 I : X 0(j) 2 X 0(b)g [ fig)g and

jX 0(b) \ fj 2 I : (j; b; t0) 2 X 0gj � (1� �)qb

by stability of X 0, which implies

jfj 2 I : fh(j; b; t+); 2ig 2 ~Y 0 and �(j) < �(i)gj � �qb = qb2

by construction of ~Y 0. Therefore, hx; si =2 Cb2( ~Y
0 [ ~Y 00) by substitutes property

of Cb2. A contradiction. Hence if X 0
i = ; or b0 6= b, then there is no contract

hx; si = h(i; b; t); si 2 ~Y 00nCbs( ~Y 0) such that hx; si 2 Cbs( ~Y 0 [ ~Y 00).

Now consider the case where b0 = b, s0 = s and t0 6= t. Since X 0 is the outcome

of cumulative o¤er algorithm, contract x is proposed in some step and rejected in the

�nal step. Therefore, we have four cases to consider:

Case 1: If s = 1 and t = t0, then we have x =2 Cb(X 0 [ (x)) by IRC condition

and by stability of X 0. Therefore, we have

i =2
[

��(1��)qb

fO(�; fj 2 I : (j; b; t0) 2 X 0g [ fig)g,
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which implies

i 2
[
���qb

fO(�; fj 2 I : (j; b; t+) 2 X 0g)g =) ~xi = h(i; b; t+); 2i

by construction of ~Y 0. Therefore, h(i; b; t+); 1i =2 ~Y 0. A contradiction.

Case 2: If s = 1 and t = t+, then hx; si can not be chosen by b1, since b1 always

gives priority to low cost contracts among the contracts of same cadet. Therefore,

hx; si =2 Cb1( ~Y 0 [ ~Y 00) by substitutes property of Cb1 . A contradiction.

Case 3: If s = 2 and t = t0, then hx; si can not be chosen by b2, since b2 always

gives priority to high cost contracts among the contracts of same cadet. Therefore,

hx; si =2 Cb2( ~Y 0 [ ~Y 00) by substitutes property of Cb2. A contradiction.

Case 4: If s = 2 and t = t+, then we have x =2 Cb(X 0 [ (x)) by IRC condition

and by stability of X 0. Therefore, we have

i 2
[

��(1��)qb

fO(�; fj 2 I : (j; b; t0) 2 X 0g)g,

which implies

~xi = h(i; b; t+); 1i

by construction of ~Y 0. Therefore, h(i; b; t0); 2i =2 ~Y 0. A contradiction. Hence if b0 = b

and s0 = s, then there is no contract hx; si = h(i; b; t); si 2 ~Y 00nCbs( ~Y 0) such that

hx; si 2 Cbs( ~Y 0 [ ~Y 00).

Now consider the case where b0 = b, t0 = t and s0 6= s. We have four cases to

consider:

Case 1: s = 1 and t = t0. We have

i =2
[

��(1��)qb

fO(�; fj 2 I : (j; b; t0) 2 X 0g)g
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by construction of ~Y 0, which implies

jfj 2 I : (j; b; t0) 2 X 0 and �(j) < �(i)ggj � (1� �)qb = qb1

=) jfj 2 I : fh(j; b; t0); 1i h(j; b; t+); 1ig \ ~Y 0 6= ; and �(j) < �(i)gj � (1� �)qb = qb1

by construction of ~Y 0. So, hx; si =2 Cb1( ~Y
0 [ fhx; sig). Therefore, hx; si =2

Cb1( ~Y
0 [ ~Y 00) by substitutes property of Cb1. A contradiction.

Case 2: s = 1 and t = t+. By Individual rationality of X 0, we have

(i; b; t+)Pi; =) h(i; b; t+); 2iP �i h(i; b; t+); 1i

by construction of P �i . Therefore, hx; 2iP �i hx; 1i. A contradiction.

Case 3: s = 2 and t = t0. By Individual rationality of X 0, we have

(i; b; t0)Pi; =) h(i; b; t0); 1iP �i h(i; b; t0); 2i

by construction of P �i . Therefore, hx; 1iP �i hx; 2i. A contradiction.

Case 4: s = 2 and t = t+. We have

i =2
[
���qb

fO(�; fj 2 I : (j; b; t+) 2 X 0g)g

by construction of ~Y 0, which implies

jfj 2 I : (j; b; t+) 2 X 0 and �(j) < �(i)gj � �qb = qb2

=) jfj 2 I : fh(j; b; t+); 2ig \ ~Y 0 6= ; and

�(j) < �(i)gj � �qb = qb2

So, hx; si =2 Cb2( ~Y 0 [ fhx; sig). Therefore, hx; si =2 Cb2( ~Y 0 [ ~Y 00) by substitutes

property of Cb2. A contradiction. Hence, ~Y
0 is a stable allocation in the cadet sub-

branch problem.

It su¢ ces to show that no contract z = (i; b; t) 2 $( ~X 0) is ever rejected during

the cumulative o¤er process. To see this, we suppose the contrary, and consider the
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�rst step k at which some contract z 2 $( ~X 0) is rejected. We let s 2 f1; 2g be

the sub-branch such that hz; si 2 ~X 0, and let x 2 Cb(A(k)) be one of the contracts

assigned to b in step k. Now, as z is the �rst contract in $( ~X 0) to be rejected, we

know that for all x 2 Cb(A(k)), xRxI ($( ~X 0))(xI) and jCb(A(k))j = qb.

First, assume that 9z0 2 Cb(A(k)) such that z0I = zI . By IRC property of Cb,

we know that �(k) 6= zI . So, we have z 2 Cb(A(k � 1)). Next, since z; z0 2 A(k)

and z 2 Cb(A(k � 1)), we must have z0T = t+. Otherwise, we have jfy 2 A(k � 1) :

yT = t0 and �(yI) < �(zI)gj � (1 � �)qb, which implies jfy 2 A(k) : yT = t0 and

�(yI) < �(zI)gj � (1 � �)qb and z0 =2 Cb(A(k)). Let k0 < k � 1 be the step which

z0 is rejected for the �rst time. So, we have z0I =2
S
��qb

fO(�; (A(k0))I)g, which implies

zI =2
S
��qb

fO(�; (A(k � 1))I)g and z =2 Cb(A(k � 1)), a contradiction. Therefore, there

is no z0 2 Cb(A(k)) such that z0I = zI .

Now, assume that @z0 2 Cb(A(k)) such that z0I = zI . Therefore , as z =2

Cb(A(k)), for all x 2 Cb(A(k)) we have on of the four cases

Case 1 xT = t0; zT = t0 then �(xI) < �(zI)

Case 2 xT = t+; zT = t+ then �(xI) < �(zI)

Case 3 xT = t+; zT = t0 then either �(xI) < �(zI) or jfy 2 Cb(A(k)) : yT = t+gj � �qb

Case 4 xT = t0; zT = t+ then �(xI) < �(zI) and jfy 2 Cb(A(k)) : yT = t+gj � �qb.

If for any x 2 Cb(A(k)), we have x 6= ($( ~X 0))(xI), then we must have

xPxI ($(
~X 0))(xI). In addition to this, if we have case 1 or case 2 then (fhx; sig [

~X 0)nf ~X 0(xI)g blocks ~X 0. If we have case 3, then we must have jfy 2 Cb(A(k)) : yT = t0

and �(yI) < �(zI)gj � (1 � �)qb. In that case, if x 6= ($( ~X 0))(xI) and hz; si 2 ~X 0,

then we have either s = 1 and there exists a contract y 2 Cb(A(k)) such that

67



yT = t0, �(yI) < �(zI) and hy; 1i =2 ~X 0, or s = 2. If the former happens then

(fhy; 1ig [ ~X 0)nf ~X 0(yI)g blocks ~X 0 since b1 gives priority to higher ranked cadets

and hy; 1iP �yI hy; 2iP
�
yI
~X 0(yI). If the latter happens then (fhx; 2ig [ ~X 0)nf ~X 0(xI)g

blocks ~X 0 since b2 gives priority to high cost contracts. If we have case 4, then we

must have jfy 2 Cb(A(k)) : yT = t+ and �(yI) < �(zI)gj � �qb. In that case, if

x 6= ($( ~X 0))(xI) and hz; si 2 ~X 0, then we have either s = 2 and there exists a con-

tract y 2 Cb(A(k)) such that yT = t+, �(yI) < �(zI) and hy; 2i =2 ~X 0, or s = 1. If

the former happens then (fhy; 2ig [ ~X 0)nf ~X 0(yI)g blocks ~X 0 since b2 gives priority to

higher ranked cadets among high cost contracts and hy; 2iP �yI hy; 1iP
�
yI
~X 0(yI). If the

latter happens then (fhx; 1ig[ ~X 0)nf ~X 0(xI)g blocks ~Z since b1 gives priority to higher

ranked cadets. Therefore, x = ($( ~Z))(xI) for all cases. Finally, since jCb(A(k))j = qb

and qb1 + qb2 = qb, we must have z =2 ~X 0, a contradiction, which means no contract

z 2 $( ~X 0) is ever rejected during the cumulative o¤er process. Therefore, for all

cadets ~Y 0R�i ~X
0. Hence, ~X 0 = ~Y 0 and $( ~X 0) = X 0.

Proof of Theorem 5. The two choice functions de�ned for b1 and b2 are in

the class of lexicographic choice functions described in Kominers and Sonmez (2012).

Therefore, for any cadet sub-branch matching problem, cadet proposing cumulative

o¤er algorithm is strategy-proof. Also, for any cadet and any given strategy pro�le

chosen by the others in our original cadet branch matching problem, all the possible

outcomes by choosing alternative strategies are achievable in the cadet sub-branch

matching problem. Since for the cadet sub-branch matching problem, cadet proposing

cumulative o¤er algorithm is strategy-proof, it would be weakly dominant strategy to

submit actual preferences. Therefore no alternative strategy in the original problem
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makes cadet strictly better o¤. Hence, COSM induced by alternative choice function

C 0() is strategy-proof.
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CHAPTER 3.

COLLEGE ADMISSION WITH MULTIDIMENSIONAL

PRIVILEGES: THE BRAZILIAN AFFIRMATIVE

ACTION CASE

3.1 Introduction

A¢ rmative action policies in societies with heterogeneous populations are in-

creasingly popular and are often considered necessary for equalizing opportunities for

certain demographic groups. The United States and Brazil are examples of countries

with greatly heterogeneous populations in terms of wealth and racial backgrounds.

One way to mitigate the problem of inequality between individuals who belong to

di¤erent racial or gender groups or come from families with di¤erent income levels is

through a¢ rmative action. A¢ rmative action is a method of positive discrimination

in favor of a certain groups of people to close socioeconomic gaps that exist between

di¤erent groups as a result of historic discriminatory practices. This paper studies

a¢ rmative action in college admission in Brazil where the goal is to give underrepre-

sented groups increased chances of attending better universities.

The Brazilian federal higher education system comprises of 59 universities and

38 institutes of education, science and technology, with an annual in�ow of about

one million students to its undergraduate programs. Following an increasing role for

a¢ rmative action for students of African descent and of low-income families in terms

of access to public universities1, the Brazilian congress enacted in August 2012 a law

1For detailed information about history of a¢ rmative action in Brazil, check Moehlecke (2003).
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establishing the implementation of a series of a¢ rmative action policies throughout

said system.

The law established that 50% of the seats in each program o¤ered in those

institutions2 should be used for the a¢ rmative action policies. In order to claim

the privilege of having higher priority in the access to those seats, a student must

complete the three years of high-school in a public institution (being it local, state or

federal). When assigning students to at least 50% of those seats, the university must

also give higher priority to students who claim the privilege associated with being low-

income (and give documentation proving such status as de�ned in law.) Additionally,

when assigning a number of seats in the same proportion of the aggregate number

of blacks, browns and indians (here referred to as �minorities�) in the state in which

the institution is, the university should give higher priority to students who claim

the privilege associated with being a minority. We will throughout this chapter talk

in terms of seats giving higher priority to students who claim some privileges, and

denote those as �public HS privilege�, �low-income privilege�and �minority

privilege�.

In a state where minorities constitute 25% of the population, for example, a

program with capacity of 80 will have 40 seats giving higher priority for students

claiming public HS privilege. At least 20 of those should give higher priority for those

claiming low-income privilege, and 10 for those claiming minority privilege.

In October of the same year, Brazil�s Ministry of Education published an

2In Brazil, like in the Turkish system studied in Balinski and Sonmez (1999), students apply
directly to a speci�c program in the university, di¤erently from other countries like the US where
students simply apply to the university and once there chooses majors or programs to pursuit.
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ordinance specifying some details on the implementation of the a¢ rmative action law

as well as a suggested mechanism for choosing students while satisfying those policies.

Starting in the student selection processes of 2013, based on our observations, those

recommendations were widely adopted as the new selection criteria.

The key distinctive issue presented by the privileges proposed in the law is

the fact that they are multidimensional. That is, students may belong to one or

more of the groups speci�ed. For instance, a low-income white student from public

high school quali�es for the low-income privilege but not for the minority privilege.

Although the literature for a¢ rmative action from a mechanism design perspective

has seen many important contributions, as in Abdulkadiroglu and Sönmez (2003),

Westkamp (2013) and Hafalir et al. (2013), to the best of our knowledge none of

them are able to respond to the challenge introduced by these types of privileges.

Another unique aspect of this case is that students are not obligated to apply

to the universities using any of the privileges for a¢ rmative action to groups to

which they belong. This is due to the fact that being selected through the a¢ rmative

action policies is an �opt-in�procedure, that is, those students who are object of those

privileges may choose not to be selected through that special criterion. Therefore,

some students may choose to �hide�whether they belong to some of the three groups

mentioned above, depending on the mechanism used for the assignments.

Starting in 2010, a new centralized system3 was put in place to match students

to federal universities. Although the study of the characteristics of that system is

outside of the scope of this paper, the problems identi�ed here are still present in

3The Uni�ed System of Selection, denoted SISU.
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it, and moreover it shows that there is a tendency for centralization of that process.

Methods that could improve upon the current system in a centralized way (as the one

that we present in this chapter,) may therefore have a direct application and impact.

The problem of allocating indivisible goods in the absence of money is studied

in many papers, starting from the seminal paper by Gale and Shapley (1962). They

study a college admissions market where students have preferences over colleges and

colleges have preferences over sets of students to be admitted. The market clearing

condition that they de�ned, stability, is still in use (sometimes with variations) and

considered as one of the most important goals that mechanism designers consider for

matching problems. They also introduce the celebrated student-proposing deferred

acceptance algorithm (DA) to �nd a stable allocation. The DA mechanism is also

utilized in many applied and theoretical papers in the matching literature. The

centralized algorithm we suggest in this paper, the cumulative o¤er algorithm, is also

a variation of the DA algorithm.

The school choice with a¢ rmative action problem consists of two parts. The

�rst part is the schools� criteria for choosing students, which we denote a choice

function. A choice function provides a set of students that are selected for any possible

set of students that apply for a given school. The second part is the algorithm that

the central authority uses to allocate school seats to students using the schools�choice

functions.

The �rst approach to this problem from a mechanism design perspective is

the work of Abdulkadiroglu and Sönmez (2003). They analyze the system in Boston

(denoted Boston Mechanism), which gave students higher priorities in schools in their
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neighborhoods or in schools in which students have a sibling already attending. By

giving these priorities, the Boston Mechanism positively discriminates some students

for certain schools. Abdulkadiroglu and Sönmez (2003) propose two algorithms, DA

and top trading cycles (TTC), as alternatives for the Boston school choice algorithm,

while keeping priorities of the schools as given. They show that the DA yield out-

comes that are stable and e¢ cient from the students�perspective. Also, DA is not

manipulable, i.e. no student can manipulate their preferences and obtain a better

school assignment. Subsequently, Abdulkadiroglu (2005) considers the college admis-

sion problem with a¢ rmative action policy, and shows su¢ cient conditions on the

schools�preferences to recover the properties of the DA algorithm.

In a recent paper, Westkamp (2013) studies the German university admission

system in which reserved seats are transferred to di¤erent subpopulations in case of

lack of applications. In this matching with complex constraints problem, the author

speci�es a method for schools to choose sets of students in any given case and designs

a mechanism that gives a stable allocation under these circumstances. In another

recent paper, Kamada and Kojima (2012) study the Japanese Residency Matching

Program, where there are quotas for regions in order to help rural regions attract

more residents. In the mechanism they study, the government sets a target capacity

for each hospital to implement these quotas. They show that using target capacities

may result in ine¢ ciencies and that violating these targets may improve over the

ine¢ ciencies.

In 2012, Kojima showed that in a¢ rmative action problems with two groups

(majorities and minorities), using maximum quotas (that is, a maximum number of
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students for some types) for even one side may be ine¢ cient and hurt all members

of the minority group �the group which the policy intends to help. In a subsequent

paper, Hafalir et al. (2013) study the school choice problems with a¢ rmative action

for minorities. They show the de�ciencies of utilizing maximum quotas for school

choice problems with a¢ rmative action: welfare losses and wasted seats. Switching

the system to DA with minority reserves instead solves the problem of wasted seats

and signi¢ cantly improves students�welfare.

Our model is built upon the matching with contracts model described by Hat-

�eld and Milgrom (2005). Hat�eld and Milgrom (2005) connect the matching problem

of indivisible goods and the labor market model. They show that the foundations

of a labor market model where workers can be hired by many alternative contracts

(Kelso and Crawford, 1982) are also achievable in matching markets. This paper

is very important because it not only subsumes and uni�es these two problems but

also relates the DA algorithm with �xed point techniques in lattice theory. In our

problem, students do not have to declare their true demographic status through the

privileges that they claim, i.e. a minority student can be admitted as a non-minority

student. Hence, as in a matching with contracts problem, students can be admitted

in di¤erent ways to schools.

The remaning of this chapter is structured as follows. In section 2 we present

the mechanism suggested by the Ministry of Education and currently used by the

universities surveyed. In section 3, we introduce the matching with contracts model

that we apply to the school choice problem with a¢ rmative action. In section 4,

we introduce the Multidimensional Brazil Privileges Choice Function and we build
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upon the choice function de�ned to describe a mechanism �Student Optimal Stable

Mechanism �that matches students to colleges in a centralized way, satis�es stabil-

ity, is strategy-proof and fair. In section 5, we show that even for a single college,

the currently used Brazil Reserves Choice Function induces a game with multiple

Nash Equilibria in which strategically sophisticated students may obtain advantage

by strategizing over the privileges that they claim. We also show that the current

mechanism is not fair and cannot guarantee the satisfaction of the a¢ rmative action

objectives when they are feasible. In section 6, we conclude. All the proofs are given

in the Appendix section.

3.2 Brazilian Reserves Choice Function

For the most part, until 2010, college admissions in Brazil worked essentially

in a decentralized way. Students applied for a single program in each university that

they desire to (Ex: History at University of Brasilia or Biology at Federal University

of Minas Gerais). By using some combination of scores in a national exam and

sometimes exams particular to those programs, the universities ranked them and

accepted the top applicants to each program up to the programs�capacities, putting

the remaining ones in waiting lists.

Among those accepted, typically some would not enroll because they were also

accepted by other universities and courses of their preference. The universities would

then proceed to a second round, accepting students from the waitlist following their

ranking. Depending on the university this might be followed by third and fourth

rounds.
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The introduction of the reserves law has not changed the decentralized nature

of the system yet. But the centralized online system used for some universities gives

a strong signal that o¢ cials in charge of college admissions in Brazil are open to

utilize a centralized method, which is shown in many papers to improve e¢ ciency

and reduce wasted seats in colleges. On the other hand, the a¢ rmative action law

changed the choice rules of universities in each step in an attempt to satisfy the

a¢ rmative action objectives. The rules used by the universities surveyed in this work

are, essentially, strict implementations (or small variations) of the one suggested by

Brazil�s Ministry of Education. This rule tells the set of students to be chosen from

any set of applicants and will be denoted as the class of Brazil Reserves Choice

Function (BRCF). It suggests that the seats for each program should be split into

�ve subsets. For any program with capacity Q, the �ve distinct subsets are:

� A set Qmi with dQ4 r
me seats which give priority to students who claim public

HS, minority and low-income privileges,

� A set QMi with dQ4 (1 � rm)e seats which give priority to students who claim

public HS and low-income privileges only,

� A set QmI with dQ4 r
me seats which give priority to students who claim public

HS and minority privileges only,

� A set QMI with dQ4 (1 � rm)e seats which give priority to students who claim

public HS privilege only,

� A set Q� with the remaining seats.
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where rm is the ratio of minorities in the state where that program (college)

is located.

Given the students who apply for each of those, the ones better ranked on

the entrance exam are accepted up to the capacity of the set. If there are enough

applicants for each of those sets, the a¢ rmative action objectives, as described by the

law, are satis�ed. In case the number of students who apply for some of those sets

is smaller than their capacity, those seats are �lled following the priority structure

below:

� If there are seats available in Qmi, those are made available:

� to students claiming low-income and public HS privileges only, then

� to students claiming minority and public HS privileges only, then

� to students claiming public HS privileges only, then

� to any student

� If there are seats available in QMi, those are made available:

� to students claiming low-income, minority and public HS privileges, then

� to students claiming minority and public HS privileges only, then

� to students claiming HS privilege only, then

� to any student

� If there are seats available in QmI , those are made available:

78



� to students claiming public HS privilege only, then

� to students claiming low-income, minority and public HS privileges, then

� to students claiming low-income and public HS privileges only, then

� to any student

� If there are seats available in QMI , those are made available:

� to students claiming minority and public HS privileges only, then

� to students claiming low-income, minority and public HS privileges, then

� to students claiming low-income and public HS privileges only, then

� to any student

It is not speci�ed, however, in which order those seats are �lled following those

priorities4.

3.3 The Model

We are dealing with a student-program matching problem where programs

have complex privileges structures and students have more than one way to attend

a program. Due to those characteristics of the problem we will use the matching

with contracts model. There are �nite sets S = fs1; : : : ; sng and P = fp1; : : : ; pmg

of students and programs. The set SP � S contains all students in S from public

high-schools, Sm � SP contains the racial minority students from public schools and

4In section 5 we present two actual implementations being used by universities surveyed, clarifying
the order in which those seats are �lled.
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Si � SP contains the low-income students from public schools. Each program p has

its own capacity level Qp and minority reserve ratio rmp . Each student s has a vector of

exam scores z(s) = (zp1(s); : : : ; zpm(s)) such that zp(s) indicates the score of student

s for program p. For any two students s and s0, zp(s) and zp(s0) are assumed to be

di¤erent, that is, 8s; s0 2 S and p 2 P , zp(s) = zp(s
0) () s = s0. Each student

s has a vector of available privileges she can claim, ts = (tPs ; t
m
s ; t

i
s) where t

P
s ; t

m
s ; t

i
s

represents public HS, minority and low-income privileges, respectively. Each element

of ts is binary and 1 means student is eligibile for the privilege and 0 means she is not

eligible. For example, if a student is a low-income non-minority student from public

high school, then ts = (1; 0; 1). In the Brazilian system, if a student claims public

HS, minority or low-income privileges she is required to prove those classi�cations.

Therefore, some students may opt not to claim a privilege associated to a group she

belongs to, but students who don�t belong to a group (and therefore can�t prove

belonging to it) are unable to claim that privilege.

Throughout this section we will make use of the matching with contracts no-

tation. A contract x, in this context, is a tuple (s; p; t), where s 2 S, p 2 P and

t = (tP ; tm; ti) � ts. Vector t represents the set of privileges student claims and

tP ; tm; ti are binary and represents public HS, minority and low-income privileges she

claims, respectively. For a contract x; xS, xP and xT represent student, program and

set of privileges s claims in contract x respectively. Let X be the set of all contracts.

For ease of notation, for a set of contracts Y , Yi is the subset of Y that contains

only the contracts that include i 2 S [P . Let s(Y ), moreover, be the set of students

with contracts in Y , that is, s(Y ) = fs 2 S : 9(s; p; t) 2 Y g. An allocation is a
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set of contracts X 0 � X, such that for every s 2 S and every p 2 P , jX 0
sj � 1 and

jX 0
pj � Qp. Let � be the set of all possible allocations.

The null contract, meaning that the student has no contract, is denoted by

;. Students have complete preferences, �, over her contracts and the null contract,

Xs [ ;. These preferences are derived from students� strict preferences, ��, over

programs and being unmatched, in addition to the fact that they consider irrelevant

how they are accepted to a program:

8s 2 S;8p; p0 2 P and t; t0 � ts : (s; p; t) �s (s; p0; t0) () p ��s p0

Next, the choice function of program p, Cp : 2X ! 2X is a function that

chooses, that is, for Y � X, Cp(Y ) � Yp , Cp(Y ) has cardinality at most Qp and has

at most one contract for each student. The assumption about student preferences we

mentioned above is one of the main di¤erences of our paper with the current matching

with contracts literature, since our model allows indi¤erences among contracts, in

contrast with the usual assumption of strict preferences found in the literature so

far. Due to indi¤erences students have between some contracts, we cannot derive

choice functions of students as de�ned in the many to one matching with contracts

models. As a result, instead of choice functions for students, we are going to use

student preferences. Therefore, primitives of our model are student preferences over

contracts and programs�choice functions.

A mechanism is a strategy space �s for each student s along with an outcome

function  :
Y
s2S
�s ! � that selects an allocation for each strategy vector

Y
s2S

�s 2Y
s2S
�s. Given a student s and a strategy pro�le �s 2 �s, let ��s denote the strategy
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of all students except student s.

3.4 Student Optimal Stable Mechanism

The Multidimensional Brazil Privileges Choice Function One of our objectives is to

�nd a choice function that satis�es the a¢ rmative action objectives for each program,

removes incentives for students to strategize over the privileges that they claim and

guarantees the existence of a stable allocation. We also aim to design a mechanism

that carries out our choice function�s properties and �nds a stable allocation.

We are proposing a new choice function, Multidimensional Brazil Privileges

Choice Function (or MCF), in order to allocate students to seats in programs. Unlike

the BRCF, our choice function CMCF obtains the desired incentive characteristics

by giving priority in a seat to any student who can claim the privileges associated

with that seat. Also, by doing this, the choice function satis�es another important

criterion: fairness.

Let qp be the number of seats associated with students who claim low-income,

minority and public HS in the BRCF, for program p. For any given set of contracts

X, the algorithm which implements the choice function CMCF is the following:

Phase 0: Program p rejects each contract that does not include itself (xP 6=

p =) x =2 Cp(X)).

Phase 1: Program p considers only contracts with xT = (1; 1; 1). Program

p accepts contracts including students with the highest scores zp one at a time and

continues until either all contracts are considered or qp contracts are chosen. In any
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case, program proceeds with Phase 2. Let � be qp�jfcontracts accepted in Phase1gj.

Phase 2: Program p considers remaining contracts with xT > (1; 0; 0). Pro-

gram p accepts contracts including students with highest scores zp one at a time.

During the process, if constraint (1) or (2) below binds, program p tentatively rejects

all the remaining contracts with the relevant vector of privileges. Then, the program

continues accepting contracts one by one following the order of student scores. Phase

2 ends if all contracts are considered or rmp
Qp
2
+ Qp

4
� qp contracts are accepted. Then,

the program proceeds with Phase 3.

Possible constraints to bind Rel. vectors of priv.

jfContracts accepted with xT = (1; 0; 1)gj � Qp
4
+ � � qp t = (1; 0; 1) (1)

jfContracts accepted with xT = (1; 1; 0)gj � rmp
Qp
2
+ � � qp t = (1; 1; 0) (2)

Phase 3: In this phase, the program considers all tentatively rejected contracts

and all the remaining contracts with xT � (1; 0; 0). Program p accepts contracts

including students with highest scores zp, one at a time. The program continues until

either all contracts are considered or Qp
2
students are chosen. In any case, it proceeds

to Phase 4.

Phase 4: In this phase, the program considers all the remaining contracts.

Program p accepts contracts including students with highest scores zp, one at a time.

It continues until either all contracts are considered or QP students are chosen. Then

program terminates the procedure and rejects all the remaining contracts, if there are

any.
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Stability As in Gale and Shapley (1962) and most of the matching literature, we

are interested in stable allocations. Intuitively, an allocation is stable if students or

programs cannot improve upon the chosen allocation by either walking away from it

or by bilaterally making arrangements outside of the allocation.

De�nition 16 An allocation X 0 is stable if

i: for all s 2 S and for all p 2 P , X 0
s �s ; , Cp(X 0) = X 0

p; and

ii: @(p; s) 2 P � S, and contract x 2 X nX 0, such that

x 2 Cp((X 0 nX 0
s) [ fxg); x �s X 0

s.

One can see that if students have strict preferences over contracts then our

stability de�nition and the one used in the current literature would be equivalent. In

order to show the existence of a stable allocation, we use the substitutes and law of

aggregate demand properties de�ned in Hat�eld and Milgrom (2005) and irrelevance

of rejected contracts de�ned in Aygün and Sönmez (2013).

Substitutes, IRC, Law of Aggregate Demand and the Student Optimal Stable Mechanism

In this section, we de�ne the properties which are su¢ cient for existence of a stable

allocation in our college admission problem and show that CMCF () has these proper-

ties.

De�nition 17 Elements of X are substitutes for program p if for all Y 0 � Y 00 � X

we have x 2 Y 0 n Cp(Y 0) =) x 2 Y 00 n Cp(Y 00).
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The substitutes condition simply states that if a contract x is rejected, not

chosen, in a set of contracts Y 0 then adding any other contract to Y 0 cannot make x

desirable or x should remain rejected in bigger sets that contain Y 0.

Lemma 7 Elements of X are substitutes for each program p under the choice func-

tion CMCF .

De�nition 18 A choice function C satis�es the Law of Aggregate Demand if

for all Y 0 � Y 00 � X we have jC(Y 0)j � jC(Y 00)j.

Under the law of aggregate demand, when more contracts are added to a set

of contracts, the size of the chosen set never shrinks. Since, in any phase of the

choice function un�lled seats are transferred to the next phases, and any student is

acceptable to programs, we can state the following lemma.

Lemma 8 The choice function CMCF satis�es the Law of Aggregate Demand, as

de�ned for each program p.

For many to one matching problems that use choice functions of programs as

a primitive, Aygün and Sönmez (2013) show that the substitutes condition is not

su¢ cient to guarantee existence of stable allocations. Therefore, since our primitive

of the model for programs is choice functions rather than preferences, we use the

Irrelevance of Rejected Contracts5 condition de�ned by Aygün and Sönmez (2013)

along with the substitutes condition.

5The Irrelevance of Rejected Contracts condition was previously de�ned as �Consistency� in
Alkan and Gale (2001).
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De�nition 19 Given a set of contracts X, a choice function C satis�es the Irrel-

evance of Rejected Contracts (IRC) condition if

8Y � X;8x 2 X n Y x =2 C(Y [ fxg) =) C(Y ) = C(Y [ fxg).

The IRC condition simply states that an outcome of the choice function should

not be a¤ected by the removal of rejected contracts. With the help of this condition,

Aygün and Sönmez (2013) show that we can guarantee the existence of stable allo-

cation without the need for strict preferences of programs over sets of contracts.

Lemma 9 The choice function CMCF satis�es Irrelevance of Rejected Contracts for

each program p.

Finally, with the help of the conditions above, we can guarantee the existence

of a stable allocation for our student-program matching problem.

Proposition 8 If all programs use CMCF , the set of stable allocations for student-

program matching problem is not empty.

The choice function de�ned above de�nes only how a single school should

behave for a given set of students. Now, with the help of that choice function, we are

ready to introduce the Student Optimal Stable Mechanism,  SOSM . First, students

submit a vector of privileges they want to claim and preferences �. We then use

the student proposing cumulative o¤er algorithm with submitted vector of privileges

(ts)s2S, preferences � and CMCF for each program. The cumulative o¤er algorithm

description we use here was previously introduced by Hat�eld and Kojima (2010).
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Step 1: One randomly selected student s1 o¤ers her �rst choice contract x1

with the vector of privileges (ts1), according to her preferences �s1. The program

that receives the o¤er, p1 = x1P , holds the contract. Let Ap1(1) = x1, and Ap(1) = ;

for all p 6= p1.

In general,

Step k � 2: One of the students for whom no contract is currently held by

a program, say sk, o¤ers the most preferred contract with the vector of privileges

(tsk), according to her preferences �sk , that has not been rejected in previous steps.

Call the new o¤ered contract, xk. Let pk = xkP hold Cpk(Apk(k � 1) [ fxkg) and

reject all other contracts in Apk(k � 1) [ fxkg . Let Apk(k) = Apk(k � 1) [ fxkg, and

Ap(k) = Ap(k � 1) for all p 6= pk.

The algorithm terminates when either every student is matched to a program or

every unmatched student has no contract left with the vector of privileges they submit

to o¤er. The algorithm terminates in some �nite number K of steps due to a �nite

number of contracts. At that point, the algorithm produces X 0 =
[
p2P

Cp(Ap(K)), i.e.,

the set of contracts that are held by some program at the terminal step K.

We have already shown that the set of stable allocations is not empty if the

choice functions satisfy the substitutes condition. Our result below shows that the

student optimal stable mechanism gives us a stable allocation which is one of the

main desired properties of a mechanism in the matching literature.

Proposition 9 The Student Optimal Stable Mechanism,  SOSM , produces a stable

allocation for any given problem.
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Privilege Monotonicity, Fairness and A¢ rmative Action Objectives An ideal choice

function should also satisfy Privilege Monotonicity and fairness. Privilege Monotonic-

ity suggests that when a student applies to a program, claiming an additional privilege

should not decrease her chance to be chosen. With this property, we can state that

for any school, students do not have to gather information and strategize their ap-

plication processes with respect to those privileges. Hence, we can level the playing

�eld for students.

De�nition 20 Given a set of contracts X, a choice function C : 2X ! 2X is Priv-

ilege Monotonic if for any given set of contracts Y � X, and any student s with

no contract in Y ,

(s; p; ts) =2 Cp(Y [ f(s; p; ts)g) =) (s; p; t0) =2 Cp(Y [ f(s; p; t0)g);8t0 � ts.

Proposition 10 The choice function CMCF is Privilege Monotonic.

Unlike the BRCF, the choice function we design gives students no incentive to

leave a privilege, associate to a group she belongs to, unclaimed. This property will

have an important role in the strategic properties of the mechanism we suggest.

De�nition 21 Given a set of contracts X, a choice function C : 2X ! 2X is fair

if for any given subset Y � X, any program p and x 2 Yp,

x =2 Cp(Y ) =) 8y 2 C(Y ); either zp(yS) > zp(xS) or xT � yT � (1; 0; 0).

Fairness of the choice function as we use here indicates that, if a contract is

not chosen this means that chosen contracts either include students with higher test

scores or they are chosen due to the a¢ rmative action policy.
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Proposition 11 The choice function CMCF is fair.

The new law issued in Brazil requires some structure on the sets chosen by

programs, with respect to the groups to which the students belong to. In other

words, the ratios associated with public HS, low-income and minorities should be,

when possible, satis�ed by the students chosen for each program. We formalize this

in the de�nition below.

De�nition 22 A choice function Cp : 2X ! 2X satis�es the a¢ rmative action

objectives at program p if 8Y � X:

jfx 2 Cp(Y ) : xT � (1; 0; 0)gj � minf
Qp
2
; jfx 2 Y : xT � (1; 0; 0)gjg;

jfx 2 Cp(Y ) : xT � (1; 0; 1)gj � minf
Qp
4
; jfx 2 Y : xT � (1; 0; 1)gjg;

and jfx 2 Cp(Y ) : xT � (1; 1; 0)gj � minf
rmp Qp

2
; jfx 2 Y : xT � (1; 1; 0)gjg.

The de�nition above states that a choice function must choose a su¢ cient

number of students from all groups of students that are subject to a¢ rmative action,

whenever it is possible. One can check that when qp = 0 our choice function satis�es

the a¢ rmative action objectives. However, when qp = 0 and rmp =
1
2
, all the seats that

give priority for those who claim public HS privilege will be reserved only for those

who also claim low-income and/or minority privileges. In this case, those who claim

only public HS privilege will in practice not have any privilege unless there are not

enough applications from those claiming the other combinations of privileges. Also,

students claiming all privileges may not enjoy this advantage unless their scores are

high enough compared to those claiming only two. The current guidelines set by the
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Brazilian government give priority to students claiming only public HS privilege for

some seats. Due to this fact, one can argue that there is an implicit objective that

programs should give priority to all combination of privileges which include public HS

for some seats. Since giving priority to each group may cause incentive problems, our

choice function, as a second best, prioritizes seats to students who claim each such

combination of privileges along with all students who claim some subset of them. For

a given program p, let qp be the number of seats associated with students who claim

low-income, minority and public HS in the BRCF. Therefore, if a program p, receives

at least qp contracts with the vector of privileges (1; 1; 1), the program should accept

at least qp contracts with the vector of privileges (1; 1; 1). Otherwise, the program

should accept all contracts available with the vector of privileges (1; 1; 1).

De�nition 23 A choice function Cp : 2X ! 2X satis�es the a¢ rmative action

objectives conditional on qp at program p if 8Y � X:

jfx 2 Y : xT = (1; 1; 1)gj � qp implies

jfx 2 Cp(Y ) : xT � (1; 0; 0)gj � minf
Qp
2
; jfx 2 Y : xT � (1; 0; 0)gjg;

jfx 2 Cp(Y ) : xT � (1; 0; 1)gj � minf
Qp
4
; jfx 2 Y : xT � (1; 0; 1)gjg;

and jfx 2 Cp(Y ) : xT � (1; 1; 0)gj � minf
rmp Qp

2
; jfx 2 Y : xT � (1; 1; 0)gjg.

This second version includes a condition on the number of contracts claiming all

privileges. This conditional satisfaction of the a¢ rmative action objectives requires

satisfying them only in situations where we have enough applications claiming all

three privileges, as well as requiring that the satisfaction of all a¢ rmative action

objectives is possible.
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Proposition 12 The choice function CMCF satis�es the a¢ rmative action objec-

tives conditional on qp at any program p.

Although depending on the set of contracts available CMCF may not choose a

set of contracts that satis�es the a¢ rmative action objectives, qp can be determined

di¤erently for di¤erent programs. While programs that set low qp minimize the num-

ber of cases that fail to give enough seats to students claiming certain combinations of

privileges, programs that set a higher value for qp give more opportunity to students

who claim only the public HS privilege. One possible way for setting qp is to construct

an expected number of applications claiming all three privileges based on past years�

applications.

Incentives and Fairness of the Student Optimal Stable Mechanism Although we have

shown that the choice function that we proposed satis�es the desired fairness and

incentives properties, we are also interested in knowing whether corresponding prop-

erties are satis�ed by the overall allocation when the SOSM mechanism is used to

match students to programs. The �rst such property that we introduce is that of

fairness.

De�nition 24 An allocation X 0 is fair if for any given pair of contracts x; y 2 X 0

yP ��xS xP =) either zyP (yS) > zyP (xS) or xT � yT � (1; 0; 0).

A mechanism is fair if for any given problem it chooses a fair allocation.
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In the previous school choice and student placement literature, like for example

in Balinski and Sönmez (1999), it is shown that stability is su¢ cient for the allocation

to satisfy a fairness condition based on the priorities that students have at the schools.

This idea comes from the fairness of the responsive preferences of schools. As opposed

to the previous school choice and student placement literature, programs in our model

do not have responsive preferences. The non existence of responsive preferences may

result in allocations that are not fair as in Balinski and Sönmez (1999). Therefore,

in our problem, the stability of the mechanism is not su¢ cient for fairness. That is

the reason why the fairness satis�ed by our mechanism comes from the fairness of the

choice function.

Proposition 13 The Student Optimal Stable Mechanism,  SOSM , is fair.

The next property that we discuss here is the incentive compatibility of the

mechanism, which is a desired characteristic in mechanism design. Incentive compat-

ibility in this context can be described as a property that guarantees that students

cannot be better-o¤ by strategizing over manipulations of the preferences being sub-

mitted or privileges being claimed. In our problem, students�strategy spaces do not

consist only of preferences over schools but also the privileges claimed. Although it

is tempting to conclude that the incentive compatibility of the SOSM immediately

follows as a corollary of the well-known incentive properties of the SOSM mechanism,

due to the wider strategy space for students the result must be obtained explicitly.
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De�nition 25 A mechanism is incentive compatible if

@s 2 S; ��s 2
Y

j2Snfsg

�j; (ts;�s); �0 2 �s; such that  (�
0; ��s) �s  ((ts;�s); ��s).

In other words, for any student that we consider, no matter what her true

preferences are or which groups she belongs to, it will be in her best interest to reveal

her true preferences and claim all privileges that she�s eligible to. This is valid for

any allocation problem and any strategies other students report.

Proposition 14 The Student Optimal Stable Mechanism,  SOSM , is incentive com-

patible.

3.5 Current Mechanism Revisited

So far, we introduced some desired properties that a choice function and a

mechanism should satisfy. In this section, �rst we formally describe two of the choice

functions which are implementations of the guidelines published by the Ministry of

Education and currently used by two of the largest federal universities in Brazil. Next,

we show some de�ciencies of those choice functions and any stable mechanism that

uses these choice functions.

Two Examples of the BRCF Since the speci�cation given by the guideline allows for

di¤erent choice procedures, we can �nd variation on the universities�implementation
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of it. We will describe two instances: the choice function used by the Federal Uni-

versity of Minas Gerais (UFMG) and by the Federal University of Rio Grande do Sul

(UFRGS) .

The implementations by UFMG and UFRGS are in the class of choice functions

described in Westkamp (2013) and Kominers and Sonmez (2012). This relationship

is helpful to analyze our properties.

As we mentioned in section 2, for any program, seats are partitioned into �ve:

Qmi, QMi, QmI , QMI and Q�. For any given program, numbers of seats and priority

structure of Qmi, QMi, QmI and QMI are determined by the current guideline and

are as we discussed in section 2. Since it is not possible to know actual demographic

backgrounds of students for the priority structure, both implementations we discussed

here takes claims of privileges as demographic backgrounds of students. For any given

set of contracts, the choice function used by UFMG, CUFMG(), works as the following:

Choice function �lls seats in the following order: Qmi, QMi, QmI , QMI and

Q�. For the priorities of the �rst four group of seats choice function uses priorities

described by the current guideline and for the last group, Q�, it gives priority to

contracts with privilege vector (0; 0; 0). If there are seats available in Q� choice

function gives priority

� to contracts with privilege vector (1; 1; 1), then

� to contracts with privilege vector (1; 0; 1), then

� to contracts with privilege vector (1; 1; 0), then

� to contracts with privilege vector (1; 0; 0)
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During this procedure, choice function either accepts all the contracts or �lls

all the seats. In any case, choice function stops the procedure and rejects all the

remaining contracts, if there is any.

On the other hand, the choice function used by UFRGS, CUFRGS(), works as

the following:

Choice function �lls seats in the following order: Q�, QMI , QmI , QMi and

Qmi. For the priorities of the last four group of seats choice function uses priorities

described by the current guideline and for the �rst group, Q�, it accepts contracts one

at a time based on student scores starting with the contract of student with highest

score. During this procedure, choice function either accepts all the contracts or �lls

all the seats. In any case, choice function stops the procedure and rejects all the

remaining contracts, if there is any.

Once we de�ne these two implementations of the BRCF guidelines, the bilat-

eral substitutes property of contracts directly comes from the second proposition of

Kominers and Sönmez (2012). Also, since there is only one possible contract for each

student to o¤er to a given program, the choice over contracts satis�es the substitutes

condition. Moreover, since each contract is acceptable to all slots, with a bigger con-

tract sets the set of contract chosen never shrinks. Therefore, CUFMG and CUFGRS

satisfy the Law of Aggregate Demand. Hence, if all programs use one of the imple-

mentations above, the existence of a stable allocation is guaranteed by Proposition 1

of Aygün and Sönmez (2013).
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Two Examples of the BRCF The two implementations of the guidelines designed by

the Brazilian government are instances of choice functions described in Westkamp

(2013) and Kominers and Sönmez (2012). Since these choice functions are designed

for a single contract for each student, like CMCF , contracts are not only bilateral

substitutes, a weak version of substitutes condition, as shown in Kominers and Sönmez

(2012) but also substitutes for each program. But these choice functions, unlike

CMCF , fail to satisfy the fairness and privilege monotonicity properties. They also

don�t satisfy the a¢ rmative action objectives conditional on qp. We show, using

examples, how these choice functions violate these three conditions. We start with

privilege monotonicity.

Example 5 [Privilege Monotonicity] For a given program p let Qp = 8 , rmp =
1
2
and

let the set of contracts be Y = fx1; : : : ; x8g such that x1T = x2T = x3T = x4T = (0; 0; 0),

x5T = (1; 0; 0), x6T = (1; 1; 1), x7T = (1; 1; 0) and x8T = (1; 0; 1). Also let zp(xiS) >

zp(x
j
S) () i < j. Consider a low-income minority student from public high school

s =2 s(Y ) with score zp(s) > z(x8S). If she applies with a contract that includes all of

her privileges, i.e. (s; p; (1; 1; 1)), no matter which example of the BCRF program p

uses, she will be rejected:

(s; p; (1; 1; 1)) =2 Cp(Y [ f(s; p; (1; 1; 1))g) = fx1; x2; x3; x4; x5; x6; x7; x8g

However, if she claims only low-income and public HS privileges, i.e. (s; p; (1; 0; 1)),

no matter which implementation of BRCF program p uses, her contract will be ac-

cepted:

(s; p; (1; 0; 1)) 2 Cp(Y [ f(s; p; (1; 0; 1))g) = fx1; x2; x3; x4; x5; x6; x7; (s; p; (1; 0; 1))g
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Therefore, the two examples of the BRCF are not privilege monotonic.

The example above shows that since the choice function gives priority to stu-

dents who claim low-income and public HS only, the choice function gives student s

incentive not to claim her minority privilege. This problem can be solved by using

CMCF instead. CMCF gives students equal or higher chances to be chosen when their

contracts compete with others that has a subset of the privileges that she claims.

Hence students have no incentive not to claim privileges. The second example we

give regards the fairness property of choice functions.

Example 6 [Fairness] For a given program p let Qp = 8, rmp = 1
2
and let the set

of contracts be Y = fx1; : : : ; x9g such that x1T = x2T = x3T = x4T = (0; 0; 0), x5T =

x6T = (1; 1; 1), x7T = (1; 0; 1), x8T = (1; 1; 0) and x9T = (1; 0; 0). Also let zp(xiS) >

zp(x
j
S) () i < j. In this case, no matter which example of the BCRF program p

uses, the chosen set will be:

Cp(Y ) = fx1; x2; x3; x4; x5; x7; x8; x9g

Let x6S = j. Since student j can o¤er x6, we can say that tj = (1; 1; 1) and (1; 0; 0) <

tj. Also, by assumption, she has higher score than owner of contract x9. Therefore,

rejecting x6 while accepting x9, violates fairness of the choice function.

In this second example, the program p chooses x9, although student j has

higher score and claims more privileges than privileges claimed in x9. This example

tells us that the guideline provided by the government implicitly tries to provide

diversity in the chosen students even when the law does not require it. On the
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other hand, CMCF only gives priority to students to which the a¢ rmative action is

addressed to. Therefore, CMCF prevents any fairness problems. The next example is

about the relationship between choice functions and the a¢ rmative action objectives.

Example 7 [A¢ rmative Action conditional on qp] For a given program p let Qp = 8,

rmp =
1
2
and let the set of contracts be Y = fx1; : : : ; x9g such that x1T = x2T = x3T =

x4T = (0; 0; 0), x5T = x6T = (1; 0; 0), x7T = x8T = (1; 1; 1) and x9T = (1; 0; 1). Also let

zp(x
i
S) > zp(x

j
S) () i < j. In both implementations of the BRCF guidelines, the

number of seats with priority for students who claim all the 3 privileges is 1 and one

seat accepts a contract with privilege vector (1; 0; 0) since there is no contract claiming

minority and public HS privileges only. If the set of contracts is Y , no matter which

example of the BRCF program p uses, the chosen set will be:

Cp(Y ) = fx1; x2; x3; x4; x5; x6; x7; x9g

Therefore, the choice function chooses only one student claiming minority and public

HS privileges, although it is possible to choose two, which is the number of seats with

priority for students claiming those privileges.

Another problem with the BRCF is that it considers students claiming public

HS privilege only as the �rst order substitutes for students claiming minority and

public HS privileges only. Therefore, when there is an absence of applications from

contracts with privilege vector (1; 1; 0), the choice function turns to contracts with

privilege vector (1; 0; 0) and ignores the priority for minorities. In the example above,

one of the students claiming only public HS privilege receives the seat with priority
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for those claiming minority and public HS privileges. Hence, implementations of the

BRCF fail to satisfy the a¢ rmative action objectives conditional on qp.

Now, we will show that if programs adopt one of the implementations of BRCF

above, no matter what algorithm one chooses in order to create a stable mechanism,

the mechanism violates the properties we de�ned above. Previous papers have shown

us that some of the de�ciencies of choice functions can be corrected by choosing the

right algorithm. One example of this is the choice function used by the U.S. Mili-

tary Academy (USMA). Sönmez and Switzer (2013) have shown us that the USMA

priorities may fail to satisfy fairness, but than when they use the cumulative o¤er

algorithm the outcome of the mechanism is always fair. However, the following two

examples show that violations of incentive compatibility and fairness are carried by

any stable mechanism.

Example 8 [Incentive Compatibility] There is one program p with capacity of eight

seats and nine students S = fs1; : : : ; s9g. Let rmp = 1
2
and p be preferred to the null

contract by every student. The score order of students is given by zp(si) > zp(sj) ()

i < j. Also, vectors of privileges available to students are given by

ts1 = ts2 = ts3 = ts4 = (0; 0; 0)

ts5 = ts6 = (1; 1; 1)

ts7 = (1; 0; 0)

ts8 = (1; 1; 0)

ts9 = (1; 0; 1)
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For this problem, if every student claims all of the privileges that she is eligible to,

there is only one stable allocation, X 0, that we can achieve if program p uses one of the

implementations of the current BRCF. The set of students assigned is the following:

s(X 0) = fs1; s2; s3; s4; s5; s7; s8; s9g

Now, assuming that the other students use the same strategy as before, if s6 claims

only public HS privilege and submits (s6; p; (1; 0; 0)), there is again only one stable al-

location, say X 00, that we can achieve if the program p uses one of the implementations

of the current BRCF and the set of students assigned is the following:

s(X 00) = fs1; s2; s3; s4; s5; s6; s8; s9g

Therefore, any stable mechanism with these two examples of the BRCF are not in-

centive compatible.

The example above shows that since these choice functions give priority to

students who claim a subset of the privileges that s6 is eligible to for some of the

seats available, they may give student s6 an incentive not to claim all of her privileges.

This not only puts a burden on students to gather more information about their peers

and strategize their behavior in order to get better assignments, but also gives some

students an unfair advantage in their college applications. Also, violation of incentive

compatibility causes an allocation to be chosen which is actually (with respect to

the groups to which the students belong to) unstable. It also makes it harder to

observe the e¤ect of this a¢ rmative action policy for future decisions over it. The

last example we give relates to the fairness property of mechanisms.
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Example 9 [Fairness] There are one program p with capacity of eight seats and nine

students S = fs1; : : : ; s9g. Let rmp = 1
2
and p be preferred to the null contract for each

student. The score order of students is given as zp(si) > zp(sj) () i < j. Also, the

vectors of privileges available to students are given by

ts1 = ts2 = ts3 = ts4 = (0; 0; 0)

ts5 = ts6 = (1; 1; 1)

ts7 = (1; 0; 0)

ts8 = (1; 1; 0)

ts9 = (1; 0; 1)

For this problem, if every student claims all the privileges that they are eligible to,

there is only one stable allocation, say X 0, that we can achieve if the program p uses

one of the implementations of the current BRCF and the set of students assigned is

the following:

s(X 0) = fs1; s2; s3; s4; s5; s7; s8; s9g

Since student s6 is eligible to claim all privileges and she has higher score than s7,s8

and s9, rejecting (s6; p; (1; 1; 1)) while accepting (s7; p; (1; 0; 0)), violates fairness. This

result holds no matter what kind of algorithm we use that gives stable allocation with

these two implementations of the BRCF.

3.6 Concluding Remarks

In this paper, we presented a new market design application of university

program-student matching that emerged as result of the a¢ rmative action policy that
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was designed by the Brazilian government to aid minority and low-income students

from public high schools. This problem is particularly interesting in the sense that

the freedom of not claiming all of the privileges that a student is eligible to during the

application process combines the matching and the adverse selection problems. Due

to this fact, we de�ned the property of privilege monotonicity for choice functions for

the �rst time in this literature.

This paper shows that the current guidelines for designing choice functions for

programs have avoidable de�ciencies, such as generating unfair allocations and giving

sophisticated students an advantage over others by manipulating the system.

We proposed a new choice function, denoted the multidimensional Brazil priv-

ileges choice function, that can also be used together with the student optimal sta-

ble mechanism to generate student assignments. The choice function is privilege

monotonic and fair unlike the current choice functions which are implementations of

the guidelines designed by the Brazilian government. Moreover, the mechanism we

suggest is incentive compatible, fair and yields a stable allocation for any problem.

With a complex privileges structure like we have in this problem, it is hard to

satisfy the a¢ rmative action objectives in all cases. We showed that the current choice

functions used by programs in Brazil not only fails to satisfy the a¢ rmative action

objectives when they are possible but also fails to satisfy a weaker condition that

imposes some restrictions over the population of students applying to a program. On

the other hand, the choice function we suggest always satis�es that weaker condition

and if the parameters for the choice function is selected correctly, the diversity targets

in the programs are reached by our procedure.
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3.8 Appendix

Proof. [Proof of Lemma 7] For any set of contracts Y and any phase i, let Yk

be set of contracts that is considered in phase k. Think about the procedure:

Phase 1. First observe that Y 0
1 � Y 00

1 . If a contract x is not accepted in the

�rst phase then either x =2 Y 0
1 or we have

jfy 2 Y 0
1 : zp(yS) > zp(xS)gj � qp:
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Therefore, either x =2 Y 00
1 , or Y

0 � Y 00 implies

jfy 2 Y 00
1 : zp(yS) > zp(xS)gj � qp:

Hence contract x can not be accepted from Y 00 in the �rst phase as well. So, we have

Y 0
2 � Y 00

2 .

Phase 2. Let �0 and �00 be number of unused seats in Phase 1 when we use Y 0

and Y 00, respectively. As Y 0
1 � Y 00

1 , we have �
0 � �00. If a contract x is not accepted in

the second phase then either x =2 Y 0
2 which means x =2 Y 00

2 , or we have three cases

Case 1: If xT = (1; 1; 1), we have

minfjfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �0 � qpg+

minfjfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj;

Qp
4
+ �0 � qpg+

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �0 � 2qp

Therefore, Y 0
2 � Y 00

2 implies

minfjfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �00 � qpg+

minfjfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj;

Qp
4
+ �00 � qpg+

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �00 � 2qp

as well. Hence, contract x can not be accepted from Y 00 in the second phase as well.

Case 2: If xT = (1; 1; 0), we have either

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj � rmp

Qp
2
+ �0 � qp; or

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj+

minfjfy 2 Y 0
2 : zp(yS) > zp(xS) s.t. yT = (1; 0; 1)gj;

qc
4
+ �0 � qg+

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �0 � 2qp.
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Therefore, Y 0
2 � Y 00

2 implies

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj � rmp

Qp
2
+ �00 � qp; or

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj+

minfjfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj;

qc
4
+ �00 � qg+

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �00 � 2qp

as well. Hence, contract x can not be accepted from Y 00 in the second phase as well.

Case 3: If xT = (1; 0; 1), we have either

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj �

qc
4
+ �0 � q; or

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj+

minfjfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �0 � qpg+

jfy 2 Y 0
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �0 � 2qp.

Therefore, Y 0
2 � Y 00

2 implies

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj �

qc
4
+ �00 � q; or

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 0; 1)gj+

minfjfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �00 � qpg+

jfy 2 Y 00
2 : zp(yS) > zp(xS) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �00 � 2qp

as well. Hence, contract x can not be accepted from Y 00 in the second phase as well.

So any contract x that is not accepted from Y 0 in Phase 2, is not accepted from Y 00

in Phase 2. Moreover, that guarantees Y 0
3 � Y 00

3 .

106



Phase 3. Let �01 and �
00
1 be the number of unused seats in Phase 2 when we use

Y 0 and Y 00, respectively. As Y 0
2 � Y 00

2 , we have �
0
1 � �001. If a contract x is not accepted

in the third phase then either x =2 Y 0
3 which means x =2 Y 00

3 , or we have

jfy 2 Y 0
3 : zp(yS) > zp(xS)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �01.

Therefore, Y 0
3 � Y 00

3 implies

jfy 2 Y 00
3 : zp(yS) > zp(xS)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �001

as well. Hence, contract x can not be accepted from Y 00 in the third phase as well.

So any contract x that is not accepted from Y 0 in Phase 3, is not accepted from Y 00

in Phase 3. Moreover, that guarantees Y 0
4 � Y 00

4 .

Phase 4. Let �02 and �
00
2 be number of unused seats in Phase 3 when we use Y

0

and Y 00, respectively. As Y 0
3 � Y 00

3 , we have �
0
2 � �002. If a contract x is not accepted

in the fourht phase then we have

jfy 2 Y 0
4 : zp(yS) > zp(xS)gj �

Qp
2
+ �02.

Therefore, Y 0
4 � Y 00

4 implies

jfy 2 Y 00
4 : zp(yS) > zp(xS)gj �

Qp
2
+ �002

as well. Hence, contract x can not be accepted from Y 00 in the last phase as well. So,

any contract x that is not accepted from Y 0 in Phase 4 is not accepted from Y 00 in

Phase 4.

A contract x is rejected in set Y 0 means that x must not be accepted in any

phase of the procedure. Above, we showed that for any phase if a contract is not
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accepted from Y 0, it can not be accepted from Y 00. Therefore, if a contract is rejected

from set Y 0 it must be rejected from set Y 00. Hence, contracts are substitutes for any

program.

Proof. [Proof of Lemma 8] By construction of the choice function CMCF (),

all contracts of a given student can be rejected from a set only when school reaches

full capacity. Hence, the size of the chosen set can never shrink as the set of available

contracts grows.

Proof. [Proof of Lemma 9] The choice function for any program p satis�es

the substitutes condition by Lemma 1 and satis�es the Law of Aggregate Demand

by Lemma 2. Hence, Lemma 3 is a corollary of Proposition 1 in Aygun and Sonmez

(2013)

Proof. [Proof of Proposition 8] To proof this proposition we use a parallel

problem where each student s has preference, �tss , over contracts with ts and all other

contracts are unacceptable for s. The choice function for any program p satis�es the

substitutes condition by Lemma 1 and satis�es Irrelevance of Rejected Contracts by

Lemma 3. Therefore, as a corollary of Theorem 1 in Aygun and Sonmez (2013), there

is a stable allocation for a problem consists of (�tss )s2S and (CMCF
p ())p2P . Let one of

possible stable allocations for the parallel problem be X 0. We next show that X 0 is a

stable allocation for our original problem consists of (�s)s2S and (CMCF
p ())p2P .

Assume this is not true. Then there exists a student-program pair (s; p) and
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a contract x such that

x 2 X nX 0; xS = s and xP = p

x 2 Cp((X
0 nX 0

s) [ fxg) and x �s X 0
s.

Due to privilege monotonicity property of CMCF
p , we can �nd a contract y such that

y 2 X nX 0; yS = s; yP = p and yT = ts

y 2 Cp((X
0 nX 0

s) [ fyg) and y �s X 0
s

which contradicts with the stability of X 0 for the parallel problem. Hence, X 0 is a

stable allocation for original matching problem consists of (�s)s2S and (CMCF
p ())p2P .

Proof. [Proof of Proposition 9] Think about �ve cases:

Case 1: Let ts = (1; 1; 1). Assume that her contract, x0, such that x0T = ts,

is rejected. Now, we are going to show that another contract of her, x, such that

xT < ts, must be rejected. For a given program p, let x0 = (s; p; ts) and x = (s; p; t0)

where t0 < ts and let Y 0 = Y [ fx0g and Y 00 = Y [ fxg. First, observe that if her

contract x0 is rejected from set Y 0, then her contract is not chosen in any phase.

Therefore, �0, �01 and �
0
2 are all zero since she is considered in all phases. Assume that

she o¤ers contract x instead of x0.

Phase 1: If t0 < (1; 1; 1) then x is not considered in the �rst phase. Moreover,

since her contract x0 is rejected from set Y 0, there are at least qs contracts in Y with

the privilege vector (1,1,1). Therefore, �0 = �00 = 0 and = (Y 0
2 n fx0g) � Y 00

2 .
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Phase 2: Observe that if x is rejected from set Y 0, then we have

minfjfy 2 Y 0
2 : zp(yS) > zp(s) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �0 � qpg+

minfjfy 2 Y 0
2 : zp(yS) > zp(s) and yT = (1; 0; 1)gj;

Qp
4
+ �0 � qpg+

jfy 2 Y 0
2 : zp(yS) > zp(s) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
� 2qp

If t0 = (1; 1; 0), in the second phase we have either

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 1; 0)gj � rmp

Qp
2
+ �00 � qp or

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 1; 0)gj+

minfjfy 2 Y 00
2 : zp(yS) > zp(j) and yT = (1; 0; 1)gj;

Qp
4
+ �00 � qpg+

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
� 2qp

Therefore, x can not be accepted in the second phase. If t0 = (1; 0; 1), in the

second phase we have either

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 0; 1)gj �

Qp
4
+ �00 � qp or

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 0; 1)gj+

minfjfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 1; 0)gj; rmp

Qp
2
+ �00 � qpg+

jfy 2 Y 00
2 : zp(yS) > zp(s) and yT = (1; 1; 1)gj � rmp

Qp
2
+
Qp
4
+ �00 � 2qp

Therefore, x can not be accepted in the second phase. If t0 � (1; 1; 0) or t0 � (1; 0; 1),

x will not be considered in the second phase, therefore it cannot be accepted in this

phase. Hence, no other available contract of student s can be chosen in this phase.

Also, �01 = �001 = 0 and (Y
0
3 n fx0g) � Y 00

3 .
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Phase 3: Observe that if x is rejected from set Y 0, then we have

jfy 2 Y 0
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp

If (1; 0; 0) � t0 < (1; 1; 1), in the third phase we have

jfy 2 Y 00
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp

Therefore, x can not be accepted in the third phase. If t0 � (1; 0; 0), x will not be

considered in the third phase, therefore it cannot be accepted in this phase. Hence,

no other available contract of student s can be chosen in this phase. Also �02 = �002 = 0

and (Y 0
4 n fx0g) � Y 00

4 .

Phase 4: First, observe that if x is rejected from set Y 0, then we have

jfy 2 Y 0
4 : zp(yS) > zp(s)gj �

Qp
2

If t0 < (1; 1; 1), in the fourth phase we have

jfy 2 Y 00
4 : zp(yS) > zp(s)gj �

Qp
2

Therefore, x can not be accepted in the fourth phase. Hence, no other available

contract of student s can be chosen.

Case 2: If ts = (1; 1; 0) and her contract x0 is rejected we can show that x is

not chosen in any phase.

Phase 1 and 2: If t0 < (1; 1; 0), then x is not considered in the �rst two phases.

So, it can not be accepted in the these phases. Also �01 = �001 and (Y
0
3 n fx0g) � Y 00

3 .

Phase 3: As contract x0 is rejected from set Y 0, we have

jfy 2 Y 0
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �01
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If t0 � (1; 0; 0), then x is not considered in this phase, so it can not be accepted

in phase 3. If t0 = (1; 0; 0), then in the third phase we have

jfy 2 Y 00
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �001

Therefore, x can not be accepted in the third phase. Hence, no other available contract

of student s is chosen. Also �02 = �002 and (Y
0
4 n fx0g) � Y 00

4 .

Phase 4: As contract x is rejected from set Y 0, then we have

jfy 2 Y 0
4 : zp(yS) > zp(s)gj �

Qp
2
+ �02

If t0 < (1; 1; 0), in the fourth phase we have

jfy 2 Y 00
4 : zp(yS) > zp(s)gj �

Qp
2
+ �002

Therefore, x can not be accepted in the fourth phase. Hence, no other available

contract of student s is chosen.

Case 3: If ts = (1; 0; 1) and her contract x0 is rejected we can show that x is

not chosen in any phase.

Phase 1 and 2: If t0 < (1; 0; 1), then x is not considered in the �rst two phases.

So, it can not be accepted in the these phases. Also �01 = �001 and (Y
0
3 n fx0g) � Y 00

3 .

Phase 3: As contract x0 is rejected from set Y 0, we have

jfy 2 Y 0
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �01

If t0 � (1; 0; 0), then x is not considered in this phase, so it can not be accepted

in phase 3. If t0 = (1; 0; 0), then in the third phase we have

jfy 2 Y 00
3 : zp(yS) > zp(s)gj � (1� rmp )

Qp
2
� Qp
4
+ qp + �001
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Therefore, x can not be accepted in the third phase. Hence, no other available contract

of student s is chosen. Also �02 = �002 and (Y
0
4 n fx0g) � Y 00

4 .

Phase 4: As contract x is rejected from set Y 0, then we have

jfy 2 Y 0
4 : zp(yS) > zp(s)gj �

Qp
2
+ �02

If t0 < (1; 0; 1), in the fourth phase we have

jfy 2 Y 00
4 : zp(yS) > zp(s)gj �

Qp
2
+ �002

Therefore, x can not be accepted in the fourth phase. Hence, no other available

contract of student s is chosen.

Case 4: If ts = (1; 0; 0) and her contract x0 is rejected we can show that x is

not chosen in any phase.

Phase 1,2 and 3: If t0 < (1; 0; 0), then x is not considered in the �rst three

phases. So, it can not be accepted in the these phases. Also �02 = �002 and (Y
0
4 nfx0g) �

Y 00
4 .

Phase 4: As contract x is rejected from set Y 0, then we have

jfy 2 Y 0
4 : zp(yS) > zp(s)gj �

Qp
2
+ �02

If t0 < (1; 0; 1), in the fourth phase we have

jfy 2 Y 00
4 : zp(yS) > zp(s)gj �

Qp
2
+ �002

Therefore, x can not be accepted in the fourth phase. Hence, no other available

contract of student s is chosen.
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Case 5: If ts � (1; 0; 0), then x, like x0, is only considered in the last phase

and can not be chosen since the set of other contracts considered in this phase are

identical for Y 0 and Y 00.

Therefore, (s; p; ts) =2 Y 0 guarantees (s; p; t0) =2 Y 00, for any t0 < ts. Hence,

Choice function is privilege monotonic.

Proof. [Proof of Proposition 10] For any arbitrary set of contracts Y , owner

of any rejected contract x such that xT = (1; 1; 1), has lower score than owners of

chosen contracts. So, x =2 CMCF
p (Y ) and xT = (1; 1; 1) =) 8y 2 CMCF

p (Y ); zp(yS) >

zp(xS).

For any rejected contract x such that xT = (1; 0; 1), the only possible two types

of contracts that is chosen and with lower score than x are contracts with privilege

vector (1; 1; 1) or (1; 1; 0). But, since xT � (1; 1; 1), xT � (1; 1; 0) and owners of other

chosen contracts have higher scores than owner of x, we have x =2 CMCF
p (Y ) and

xT = (1; 0; 1) =) 8y 2 CMCF
p (Y ); zp(yS) > zp(xS) or xT � yT � (1; 0; 0).

For any rejected contract x such that xT = (1; 1; 0), the only possible two types

of contracts that is chosen and with lower score than x are contracts with privilege

vector (1; 1; 1) or (1; 0; 1). But, since xT � (1; 1; 1), xT � (1; 0; 1) and owners of

other chosen contracts have higher score than owner of x, we have x =2 CMCF
p (Y ) and

xT = (1; 1; 0) =) 8y 2 CMCF
p (Y ); zp(yS) > zp(xS) or xT � yT � (1; 0; 0).

For any rejected contract x such that xT = (1; 0; 0), the only possible types

of contracts that is chosen and with lower score than x are contracts with privilege

vector (1; 1; 1); (1; 1; 0) or (1; 0; 1). But, since xT � (1; 1; 1), xT � (1; 1; 0), xT �

(1; 0; 1) and owners of other chosen contracts have higher score than owner of x, we
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have x =2 CMCF
p (Y ) and xT = (1; 0; 0) =) 8y 2 CMCF

p (Y ); zp(yS) > zp(xS) or

xT � yT � (1; 0; 0).

For any rejected contract such that xT � (1; 0; 0), owners of chosen contracts

with privilege vector greater than or equal to (1; 0; 0) may have lower score than

owner of x. Also, owners of other chosen contracts have higher score than owner of x.

Therefore, we have x =2 CMCF
p (Y ) and xT =� (1; 0; 0) =) 8y 2 CMCF

p (Y ); zp(yS) >

zp(xS) or xT � yT � (1; 0; 0). Hence for any type of contract, x =2 CMCF
p (Y ) =)

8y 2 CMCF
p (Y ); zp(yS) > zp(xS) or xT � yT � (1; 0; 0).

Proof. [Proof of Proposition 11] For a given program p and given set of

contracts Y , let

jfx 2 Y : xT = (1; 1; 1)gj � qp:

In the �rst phase qp contracts with privilege vector xT = (1; 1; 1) will be

accepted. In the second phase, a contract will be accepted whenever it is in top

rmp Qp

2
� qp among contracts claiming minority and public HS privilege, i.e. xT �

(1; 1; 0), in Y2. Therefore, in the second phase at least
rmp Qp

2
� qp and in total at

least
rmp Qp

2
contracts with xT � (1; 1; 0) will be accepted, otherwise all contracts with

xT � (1; 1; 0) will be accepted. Hence,

jfx 2 Cp(Y ) : xT � (1; 1; 0)gj � minf
rmp Qp

2
; jfx 2 Y : xT � (1; 1; 0)gjg.

will be satis�ed.

Next, consider contracts with xT � (1; 0; 1). In the �rst phase qp contracts

with privilege vector xT = (1; 1; 1) will be accepted. In the second phase, a contract
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will be accepted whenever it is in top Qp
4
� qp among contracts claiming low-income

and public HS privilege, i.e. xT � (1; 0; 1), in Y2. Therefore, in the second phase at

least Qp
4
� qp and in total at least

Qp
4
contracts with xT � (1; 0; 1) will be accepted,

otherwise all contracts with xT � (1; 0; 1) will be accepted. Hence,

jfx 2 Cp(Y ) : xT � (1; 0; 1)gj � minf
Qp
4
; jfx 2 Y : xT � (1; 0; 1)gjg:

will be satis�ed.

Finally, consider contracts with xT � (1; 0; 0). In the �rst two phases
rmp Qp

2
+

Qp
4
� qp � �01 contracts with with privilege vector xT > (1; 0; 0), will be accepted. In

the third phase, all the contracts with xT = (1; 0; 0) and all the tentatively rejected

contracts in phase 2 are considered. In this phase, a contract will be accepted when-

ever it is in top Qp
4
� rmp Qp

2
+ qp among contracts with xT � (1; 0; 0) in Y3. Therefore,

in the third phase at least Qp
4
� rmp Qp

2
+ qp and in total at least

Qp
2
contracts with

xT � (1; 0; 0) will be accepted, otherwise all contracts with xT � (1; 0; 0) will be

accepted. Hence,

jfx 2 Cp(Y ) : xT � (1; 0; 0)gj � minf
Qp
2
; jfx 2 Y : xT � (1; 0; 0)gjg:

will be satis�ed.

Proof. [Proof of Proposition 12] The contracts are substitutes for any program

p by Lemma 1 and choice functions satisfy IRC condition by Lemma 3. Therefore, as

a corollary of Theorem 3 in Hat�eld and Milgrom (2005) and Theorem 1 in Aygun

and Sonmez (2013), SOSM produces a stable allocation for student preferences for a

problem consists of (�tss )s2S and (CMCF
p ())p2P . Moreover, as we showed in the proof

of Proposition 1, the stable allocation SOSM produces is also stable for the original
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problem consists of (�tss )s2S and (CMCF
p ())p2P . Hence, for any problem, the outcome

of SOSM is stable.

Proof. [Proof of Proposition 13] Assume that is not true. So, we can �nd

x; y 2 X 0 such that yP ��xS xP , zyP (yS) < zyP (xS) and xT > yT . Since we have

yP ��xS xP , there exist a contract x
0 such that x0 = (xS; yP ; txS) and x

0 ��xS x. By

the design of cumulative o¤er algorithm, x0 must be o¤ered by xS and be rejected

before the �nal step K. Therefore, at step K, we have y; x0 2 AyP (K) and X
0
yP
=

CMCF
yP

(AyP (K)). Since contracts are substitutes for each program and x0 is rejected

before the �nal step K, x0 =2 CMCF
yP

(AyP (K)) must be true. By fairness condition of

choice function

x0 =2 CMCF
yP

(AyP (K)) =) zyP (yS) > zyP (x
0
S) or xT � yT

a contradiction. Hence  SOSM , is fair.

Proof. [Proof of Proposition 14] For an arbitrary student s, assume that

�0 = (t0;�0s) 6= (ts;�s). Let her assigned program from  SOSM(�0; ��s) be p�. Also,

let �00 be a strategy with privilege vector t0 and preference with only contract (s; p�; t0)

is acceptable. Since choice functions satis�es substitutes condition by Lemma 1

and Law of Aggregate Demand by Lemma 2, student s gets same assignment from

 SOSM(�00; ��s). This part is a corollary of Theorem 10 in Hat�eld and Milgrom

(2005).

Now, let �000 be a strategy with privilege vector ts and preference with only

(s; p�; ts) is acceptable. Due to privilege monotonicity of choice functions, her assign-

ment from  SOSM(�000; ��s) must be (s; p�; ts).
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Finally, since for any given type pro�le choice function satis�es substitutes

condition by Lemma 1 and Law of Aggregate Demand by Lemma 2, we know that

students can not manipulate student optimal stable mechanism by submitting dif-

ferent preferences, i.e.  SOSM((ts;�s); ��s) �s  SOSM(�000; ��s), by Theorem 11 in

Hat�eld and Milgrom (2005). So we have;

 SOSM((ts;�s); ��s) �s  SOSM(�000; ��s) �s  SOSM(�00; ��s) �s  SOSM(�0; ��s)

Therefore for any �0,

 SOSM(�0; ��s) �s  SOSM((ts;�s); ��s)

Hence  SOSM is incentive compatible.
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