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Abstract 

Enabling high throughput sequencing data analysis with MOSAIK 

Michael Peter Strömberg 

Dissertation advisor: Gabor T. Marth 

 

During the last few years, numerous new sequencing technologies have emerged 

that require tools that can process large amounts of read data quickly and accurately. 

Regardless of the downstream methods used, reference-guided aligners are at the 

heart of all next-generation analysis studies. I have developed a general reference-

guided aligner, MOSAIK, to support all current sequencing technologies (Roche 454, 

Illumina, Applied Biosystems SOLiD, Helicos, and Sanger capillary). The calibrated 

alignment qualities calculated by MOSAIK allow the user to fine-tune the alignment 

accuracy for a given study. MOSAIK is a highly configurable and easy-to-use suite of 

alignment tools that is used in hundreds of labs worldwide. 

 MOSAIK is an integral part of our genetic variant discovery pipeline. From 

SNP and short-INDEL discovery to structural variation discovery, alignment 

accuracy is an essential requirement and enables our downstream analyses to 

provide accurate calls. In this thesis, I present three major studies that were formative 

during the development of MOSAIK and our analysis pipeline. In addition, I present 

a novel algorithm that identifies mobile element insertions (non-LTR 

retrotransposons) in the human genome using split-read alignments in MOSAIK. 
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This algorithm has a low false discovery rate (4.4 %) and enabled our group to be the 

first to determine the number of mobile elements that differentially occur between 

any two individuals. 
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1. Introduction 

1.1. Background to DNA research 

1.1.1. DNA: The primary source of genetic information 

In the early 20th century, genes were believed to be substance-less entities and 

proteins were suspected of being able to pass on genetic information1. In 1910, 

Thomas H. Morgan’s fruit fly (D. melanogaster) research at Columbia University 

revealed that genes were carried on specific chromosomes2. A few decades later, a 

team of medical scientists led by Oswald T. Avery were the first to show that isolated 

deoxyribonucleic acid (DNA) was responsible for transforming non-encapsulated 

variants of pneumococcus into encapsulated cells3 and therefore demonstrated that 

DNA was the primary source of genetic information. 

 In April 1953, three papers suggested a strong hypothesis for the alpha-helical 

structure of DNA4-6. Rosalind Franklin obtained x-ray crystallographic photos of the 

DNA molecule and was the first to conclude that DNA consisted of two chains of 

nucleotides. Five years later, Francis Crick presented the central dogma of molecular 

biology7 (Figure 1.1). Shortly after this formulation, the degenerative, non-

overlapping nature of how DNA triplets translate into amino acids was elucidated8,9. 

 

Figure 1.1. The central dogma in molecular biology states that DNA can be transcribed into RNA 

which in turn can be translated into a protein. Finally, DNA can be replicated with a protein called 

DNA polymerase and few other accessory proteins. 
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 With these early events in nucleic acid research; development of discoveries in 

cloning vectors10, polymerase chain reaction (PCR)11,12, and sequencing methods13,14 

have largely enabled the modern field of genomics. 

1.1.2. The genomics era 

The Human Genome Project was an ambitious undertaking where the human 

genome and genomes of five other model organisms (Escherichia coli, Saccharomyces 

cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) were 

sequenced and assembled into reference sequences15. Besides improving the 

resources available to molecular biologists, sequencing model organisms served as a 

methods development study that would determine the methods used when 

decoding the full human genome. In an effort that included more than 20 sequencing 

centers in six countries, a draft of the human genome was already publicly available 

in 200016 and the complete genome was made available in 200317,18. More than 20,000 

bacterial artificial chromosome (BAC) clones of approximately 160 kb were produced 

from segments of DNA inserted from the human genome19. The BAC clones were 

amplified in bacterial culture, isolated in large quantities, and then sheared into 2 – 3 

kb fragments. The fragments were then subcloned into plasmid vectors and 

amplified once again in a bacterial culture. The DNA was extracted and sequenced 

using gel-based Sanger dideoxy sequencing14,20. The sequences were then assembled 

in silico into contiguous consensus sequences. A finishing process was used to fill in 

the gaps between the consensus sequences. 
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 The genomics field has grown substantially since the Human Genome Project. 

As of September 2009, the Genomes Online Database21 (GOLD) indicates that 1,095 

genomes have been completely sequenced and 4,543 genomes are currently being 

sequenced. With the goal of rapidly releasing sequence assemblies and sequencing 

data to the public, the data available to the research community is growing 

exponentially every year15. With the increasing amount of sequencing data available 

and the relatively low utility of raw genome sequence22, the focus of genome 

sequencing has shifted from reconstructing the reference sequence toward 

downstream analysis projects. This shift in focus has led to the development of 

emerging fields such as comparative genomics, personal genomics, metagenomics, 

and epigenomics. 

1.2. Current DNA sequencing technologies 

By the end of the Human Genome Project, Sanger capillary dideoxy sequencing15 was 

the best sequencing technology available. Since then, two new generations of 

sequencing technologies have emerged that are cheaper and faster, thereby allowing 

studies and methodologies that were not feasible with the throughput attainable 

from Sanger sequencing23. The increase in throughput in turn increases the demand 

for faster reference-guided alignment and de novo assembly tools. 
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1.2.1. First-generation sequencing technologies 

Sanger capillary 

Sanger dideoxy sequencing14,20 was used throughout the Human Genome Project. 

While the first automated Sanger sequencing machine was released by Applied 

Biosystems back in 1987, the most recent iteration of machines (Sanger capillary) 

became available in 1999 and produce 96 reads with an average read length of 700 bp 

(1.6 Mb per run). The estimated price for 1x coverage of the human genome is 

around $1.4M (Table 1.1)24. Roughly 7x coverage is required to successfully create a 

de novo assembly of the human genome using Sanger capillary sequences16. 

 In Sanger dye-terminator sequencing, a single-stranded DNA template 

(primer) is used to guide the DNA polymerase. The polymerase incorporates the 

appropriate deoxynucleotides (dATP, dCTP, dGTP, dTTP) until a fluorescently 

labeled chain-terminating dideoxynucleoside triphosphate is incorporated. The DNA 

fragments are then denatured and separated based on length by capillary 

electrophoresis. During electrophoresis the emission wavelengths of the fluorescent 

labels are detected. 

1.2.2. Second-generation sequencing technologies 

The second generation of sequencing technologies became available in 2005, when 

the Roche 454 pyrosequencer became available. Instead of amplifying DNA by time-

consuming bacterial cloning, PCR amplification is used in this generation of 
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sequencing technologies: Applied Biosystems SOLiD, Complete Genomics, Illumina, 

and Roche 454. 

Roche 454 

The GS FLX Titanium series represents the third iteration of the Roche 454 

pyrosequencing platform25 which was originally released in 2005. Of the currently 

available second and third generation sequencing technologies, the Roche 454 

platform offers the longest read lengths, averaging 400 bp. Each run takes roughly 10 

hours and produces between 400 – 600 Mb of read data. The estimated price for 1x 

coverage of the human genome is around $143k (Table 1.1)24. 

 

Figure 1.2. Emulsion PCR. Fragments with adaptors (gold and turquoise) are multi-template PCR 

amplified within a water-in-oil emulsion. The 5' primer is tethered to the surface of a bead. Beads with 

attached PCR amplicons can be selectively enriched. Reprinted from [26]. 

 DNA fragments are ligated with 454-specific adapter sequences and mixed 

with agarose beads that contain surface oligos that are complementary to the adapter 

sequence. Emulsion PCR is used to attain one million fragments on each agarose 

bead (Figure 1.2). The agarose beads are added to wells in the picotiter plate (PTP). 

Each well is physically dimensioned to accommodate only one bead. Enzyme-

containing beads are added to the PTP and centrifuged to surround and lock in the 

agarose beads. Pure nucleotide solutions are stepwise introduced to the PTP in a 
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predefined incorporation order (TACG). Incorporation of the nucleotide by the DNA 

polymerase releases pyrophosphatase (PPi). ATP sulfurylase converts the PPi into 

ATP, which activates the luciferase-based light output. The amount of light produced 

is proportional to the number incorporated nucleotides; however homopolymer runs 

longer than 6 bp cannot be detected accurately (Figure 1.3). The Roche 454 platform 

exhibits a low error rate (Figure 1.4) that is dominated by insertion and deletion 

errors (Figure 1.5) caused by the difficulty in determining the number of 

incorporated bases. 

 

Figure 1.3. A distribution of nucleotide incorporation signals is shown for known homopolymers of 

lengths between 0 bp and 5 bp. The variance of each distribution grows larger as the homopolymer 

length increases. Due the large variance, it is difficult to determine the correct homopolymer length 

accurately based on the nucleotide incorporation signal. Reprinted from unpublished research by 

Aaron Quinlan (Boston College). 
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Figure 1.4. Mismatched bases were quantified in a 

Roche 454 data set. Some mismatched bases may 

reflect genetic variants, but most represent 

sequencing errors. Adapted from unpublished 

research by Derek Barnett (Boston College). 

 

Figure 1.5. Sequencing error breakdown. Of the 

mismatched bases in Figure 1.4, 72 % represent 

insertion errors and 24 % represent deletion 

errors. Only 4 % of the mismatched bases reflect 

substitution errors. Adapted from unpublished 

research by Derek Barnett (Boston College). 

Illumina 

Illumina27 recently released their third iteration (HiSeq 2000) of their sequencing by 

synthesis platform which was originally released in 2005. A HiSeq 2000 run produces 

up to 200 Gb of high quality reads in approximately eight days. Read lengths vary 

from about 35 bp to 100 bp. The estimated price for 1x coverage of the human 

genome is around $8k (Table 1.1). 

 DNA samples are fragmented and ligated with Illumina-specific adaptors. 

Using the cluster station, these fragments bind with the oligonucleotide surface of a 

flow cell and undergo bridge amplification (Figure 1.6) by DNA polymerase to 

produce clusters. Approximately one million copies of each fragment are required to 

achieve the necessary signal intensity during sequencing. All four nucleotides are 

added simultaneously to the flow cell. The DNA polymerase incorporates a 

fluorescently labeled nucleotide and a 3’-OH group is chemically blocked to prevent 
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homopolymer incorporation. After incorporation, imaging is performed in three 100-

tile segments where each tile contains approximately 30,000 clusters. The 3’-OH 

blocking group is removed and another sequencing cycle begins. 

 

Figure 1.6. Bridge amplification. DNA fragments are flanked by adaptors and bound to a surface 

coated with two types of primers, corresponding to the adaptors. Amplification occurs iteratively with 

one end of each bridge tethered to the surface. Reprinted from [26]. 

 After each incorporation cycle, there is a probability that some DNA 

fragments will be out of phase with the rest of the cluster. Some fragments will lag 

behind (phasing) and some will be ahead (pre-phasing) of the current incorporation 

cycle. Due to the effects of phasing and pre-phasing, sequencing errors tend to 

accumulate at the end of the reads. The Illumina platform exhibits a low error rate 

(Figure 1.7) that is dominated by substitution errors (Figure 1.8), which are most 

likely due to the aforementioned pre-phasing and phasing artifacts. 
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Figure 1.7. Mismatched bases were quantified in 

an Illumina 36 bp data set. Some mismatched 

bases may reflect genetic variants, but most 

represent sequencing errors. Adapted from 

unpublished research by Derek Barnett (Boston 

College). 

 

Figure 1.8. Sequencing error breakdown. Of the 

mismatched bases in Figure 1.7, 95 % represent 

substitution errors. Only 3 % of the mismatched 

bases reflect deletion errors and 1 % reflect 

insertion errors. Adapted from unpublished 

research by Derek Barnett (Boston College). 

Applied Biosystems SOLiD 

The Applied Biosystems SOLiD sequencing platform uses sequencing by ligation and 

exhibits the unusual characteristic of sequencing base to base transitions instead of 

the actual bases28. The current iteration of the SOLiD platform (SOLiD 4) allows up to 

two flow cells per run with up to eight individual samples in each flow cell. Up to 

100 Gb of aligned sequence data can be produced with standard 50 bp mate-pair 

runs. The estimated price for 1x coverage of the human genome is around $8k (Table 

1.1). 
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Figure 1.9. Basespace to color space finite state automaton. Despite the term color space, the dibase 

transitions are usually encoded as numbers. For example, transitions from a base to itself are encoded 

as 0 and a transition from A to T would be encoded as 3. 

The sample preparation for the SOLiD platform involves amplifying an adapter-

ligated fragment library with emulsion PCR on 1 μm magnetic beads. Subsequently, 

primers are annealed to shared adapter sequences on each fragment. DNA ligase is 

used to anneal semi-degenerate 8-mer oligonucleotides to the universal sequence 

primer where the first five bases complement the template sequence and the first two 

bases are labeled with a fluorescent dye. Four different fluorescent dyes encode the 

sixteen possible two base combinations (Figure 1.9). The dye is then detected by an 

imaging stage, the unextended strands are capped with phosphatase, and the last 

three bases are cleaved off29. This process is repeated for five more extension rounds 

while varying the position of the universal sequence primer (Figure 1.10).  
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Figure 1.10. Five primer rounds are used interrogate each internal read position twice. Each primer 

round interrogates two consecutive bases in the read. Reprinted from [29]. 

Complete Genomics 

In contrast to the other sequencing technologies, Complete Genomics24 has chosen a 

service-oriented model rather than selling machines to customers. Due to the service-

oriented model, it is still unclear if read data will be available to customers who wish 

to use alternative aligners. Complete Genomics is mentioned in the interest of 

completeness, but remains beyond the scope of the aligner development and analysis 

studies mentioned later in this thesis. Since most molecular biology labs send 

samples out for Sanger sequencing, it seems plausible that labs will want to do the 

same with more modern sequencing technologies. At the moment, they have 

delivered 50 genomes to customers, an additional 500 have been ordered, and they 

hope to ramp up to sequencing 500 genomes per month by the end of 2010. By 

improving the sequencing yield, building 20 data centers around the world, and 

adding more sequencing machines at each data center; their aim is to sequence one 

million genomes within the next five years. 

 Each run currently takes about 11 days and produces around 18 genomes per 

run (2 Tb). The read lengths are adequate at 35 bp, but a bit short when compared 
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with improvements in the Illumina and AB SOLiD platforms. A server farm 

consisting of 1.5 PB of storage and 6500 processor cores handles the downstream 

bioinformatics such as read alignment and genetic variant calling. They estimate 

their false discovery rate for genetic variant calling to be around 0.2 %. The estimated 

price for 1x coverage of the human genome is around $110 (Table 1.1)24. 

 The sample preparation for the Complete Genomic platform involves 

fragmenting the DNA and recursively cutting the fragments with type IIs restriction 

enzymes. A directional adapter is inserted and the resulting circles are replicated 

with Phi29 polymerase. DNA nanoballs (DNBs) are formed from hundreds of copies 

of sequencing substrate in palindrome-promoted coils of singled-strand DNA 

(ssDNA) and are bound to the surface silicon substrate. Combinatorial probe anchor 

ligation (cPAL) sequencing chemistry is used to independently read up to 10 bp 

adjacent to each of the eight anchor sites28,30,31. A degenerate oligonucleotide probe 

with a fluorescent dye confirms the base at a given interrogation position and favors 

ligation if the probe is complementary (Figure 1.11). Four different fluorophores 

indicate the base at a given interrogation position. 

 

Figure 1.11. Degenerate oligonucleotides are used to interrogate bases at eight different anchor 

positions. Two anchor positions are shown in this figure, with a set of probes that interrogate the 5th 

base. Reprinted from [24]. 
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Due to the unchained sequencing chemistry, the bases are sequenced in a 

stochastic and independent manner. Therefore sequencing errors are not propagated 

as the read length increases, as is common with other technologies that use 

sequencing by ligation or sequencing by synthesis. 

1.2.3. Third-generation sequencing technologies 

The general trait common to the third generation of sequencing technologies is single 

molecule sequencing. This eliminates the need to amplify DNA during sample 

preparation. Helicos is the only third generation sequencing technology currently 

available, but single molecule sequencing platforms are currently being developed 

by Applied Biosystems, Illumina, and Pacific BioSciences. 

Helicos 

The PCR amplification used in most current sequencing technologies is problematic 

since amplification efficiency varies as a function of template properties, introduces 

errors, and introduces uncontrolled bias in template representation. Since Helicos32 is 

a single molecule sequencing platform, the problems associated with PCR 

amplification can be avoided. It takes the machine eight days to process two flow 

cells simultaneously (6 days to process one flow cell) producing around 21 – 28 Gb of 

sequence per run. The read lengths vary from 25 bp to 55 bp with an average read 

length hovering around 30 bp to 35 bp32. Roughly 0.2 % of the bases are substitution 

sequencing errors while insertion and deletion sequencing errors occur more 
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frequently (1.5 % and 3.0 % respectively). The estimated price for 1x coverage of the 

human genome is around $2k (Table 1.1)24. 

 Helicos uses a DNA polymerase to sequence by synthesis. Poly(dT) 

oligonucleotides are covalently anchored to glass cover slips. These oligos capture 

single stranded, poly(dA)-tailed templates and act as a primer for the template-

directed primer extension. Up to 224 sequencing cycles are performed and during 

each cycle, polymerase and labeled nucleotides are added, the excess is rinsed away, 

imaging is performed, and finally the dye labels are cleaved away. To reduce the 

error rate, the sequenced template can be melted off using hot water and then the 

templates can be primed again for another sequencing pass. 

1.2.4. Price per 1x coverage of the human genome 

Table 1.1. Sequencing cost. Even though these prices reflect the cost for 1x coverage of the human 

genome, it is important to note that sequencing technologies that use shorter read lengths normally 

require deeper coverage for de novo assembly and genetic variant calling than sequencing technologies 

with long read lengths24. This is also discussed in the Pichia stipitis mutational profiling study (Section 

3.2). 

 Cost per 1x 

Sanger capillary $1.4M 

Roche 454 $143k 

Illumina $8k 

Applied Biosystems SOLiD $8k 

Complete Genomics $110 

Helicos Heliscope $2k 

1.2.5. Using large sequence fragments with short-read technologies 

In general, long reads can be aligned to a larger portion of the genome than short 

reads (discussed in Section 1.3.3). Since many of the newer sequencing technologies 
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have short read lengths, two methods (paired-end and mate-pair sequencing) can be 

used to sequence both ends of a larger fragment. Paired-end sequencing involves 

repairing the ends after fragmentation, adding an adenine nucleotide to the 3’ end, 

and ligating vendor-specific paired-end adaptors (Figure 1.12). Mate-pair sequencing 

involves repairing the ends after fragmentation, labeling the ends with biotin and 

circularizing the fragment, and fragmenting the circularized fragment. The fragments 

containing biotin are pulled using streptavidin beads, the ends are repaired, and 

vendor-specific mate-pair adaptors are ligated to the ends (Figure 1.13). 

 

Figure 1.12. Paired-end library sequencing 

preparation. 

 

Figure 1.13. Mate-pair library sequencing 

preparation. 

 

The ends of the library fragments (mates) are separated by a known distance 

that is determined by gel size selection and results in a fragment length distribution. 

The mates on each end of the fragment usually have opposite orientations in paired-
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end sequencing and usually have the same orientation in mate-pair sequencing 

(Figure 1.14). Read-pair sequences can be aligned back to the genome almost as 

accurately as longer sequences using these restrictions, while benefiting from the 

high throughput of short-read technologies.  

 

Figure 1.14. All possible combinations of mate order and orientation. Illumina paired-end reads 

typically conform to models 2 and 6. AB SOLiD and Roche 454 mate-pair reads typically conform to 

models 4 and 5. 

1.3. Alignment algorithms 

Alignment algorithms fall into two categories: de novo assembly and reference-

guided alignment algorithms. De novo assemblers use reads to reproduce a reference 
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sequence, whereas reference-guided algorithms align the reads to an existing 

reference sequence. 

1.3.1. De novo assembly 

A healthy rivalry existed between the public Human Genome Project and the private 

effort led by Craig Venter at Celera Genomics33. It concerned which team could be 

the first to assemble and publish the human genome reference sequence. The Human 

Genome Project employed a hierarchical shotgun sequencing strategy, which meant 

that contigs were generated from BAC clones. Shotgun sequencing was in turn used 

on these contigs, generating several million reads. Jim Kent’s GigAssembler34 openly 

competed with the Celera Assembler35. GigAssembler was the first to produce an 

assembled human genome reference sequence although both programs finished 

within three days of each other. 

Like most de novo assembly programs at the time36-39, both of these assemblers 

implemented an overlap-layout consensus algorithm. In computational complexity 

theory, this algorithm can be reduced to a Hamiltonian path problem that is solved in 

nondeterministic polynomial time, but can be verified in polynomial time (NP-

complete)40. These assemblers compute the overlaps between reads, and unique 

overlaps are identified and assembled into contigs. From these contigs, a multiple 

sequence alignment is constructed and used to create a consensus sequence. The 

assemblers differ mainly in how they handle potential sources of assembly artifacts. 
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Poor end regions in Sanger reads, chimeric and repetitive regions in the genome, and 

false overlaps are some common sources of assembly artifacts. 

 Instead of using the overlap-layout consensus algorithm, newer assemblers 

use graph or tree data structures to solve the de novo assembly problem40-45. These 

algorithms belong to a much simpler complexity class and can often be performed 

within O(n log n) time41. This class of de novo assembly algorithms is therefore 

especially attractive when working with newer sequencing technologies that offer 

orders of magnitude more reads than previous Sanger capillary technology. These 

assemblers divide the reads up into small hashes and assign these hashes to nodes in 

the graph. These graphs are then simplified and curated to remove the effects of 

sequencing errors. These assemblers typically differ on the underlying data structure 

used (e.g. de Bruijn graph, Eulerian graph, or prefix tree) and how they handle 

potential sources of assembly artifacts. 

1.3.2. Reference-guided alignment 

Reference-guided alignment involves aligning a set of reads to one or more reference 

sequences. Most aligners divide the reads up into one or more hashes, use those 

hashes to find associated reference sequence locations, use the sequence locations to 

determine where potential alignment may occur, and perform pairwise alignment 

between the read and that region of the reference genome46-48. Occasionally it is 

convenient with respect to memory usage to swap the role of the reference sequences 

and the reads in the above method49. Some of the newest aligners use the Burrows-
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Wheeler transform to produce a compressed suffix array that can be quickly 

traversed with each read to find the associated reference sequence locations50-53. 

1.3.3. Challenges when aligning short reads 

Unique hashes in the genome 

Many de novo assemblers and aligners split reads into small k-mers (hashes) to 

correctly align reads that contain sequencing errors and genetic variants. At a hash 

size of 15, only 32.4 % of the hashes are unique in the human genome (Table 1.2). The 

unique 15 bp hashes, however, only address 6.2 % of the genome (Figure 1.15). When 

the hash size is increased to 32 bp, 97.4 % of the hashes are unique and address 86.6 

% of the human genome. This gives an optimistic estimate with respect to how much 

of the genome can be covered by short 32 – 35 bp reads. When factoring in the 

number of sequencing errors and the role of microrepeats (discussed in Section 3.1.2), 

the expected percentage of the covered genome decreases. 

Table 1.2. Unique human genome coverage using exact matches (hashes) 

 11 bp 15 bp 17 bp 19 bp 32 bp 

# of locations per hash (mean) 684 5.25 1.71 1.31 1.12 

% unique hashes 0.1 % 32.4 % 76.9 % 93.0 % 97.4 % 

% unique genome coverage 0.0 % 6.2 % 45.1 % 70.7 % 86.6 % 
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Figure 1.15. Unique genome coverage with respect to increasing hash size. Four model organisms are 

shown: humans (red), zebrafish (blue), roundworm (black), and yeast (orange). In general, organisms 

with smaller genomes reach a higher percentage of unique genome coverage at lower hash sizes. 

However, high repeat content (zebrafish) has a detrimental effect on the percentage of unique genome 

coverage. 

BLAT and BLAST are poorly suited for short read alignment 

Two of the most popular reference-guided aligners, BLAT46 and BLAST54, were 

designed with longer, Sanger reads in mind. Due to this design decision, they used 

non-overlapping hashes to seed alignments. Even when these programs are forced to 

use smaller, overlapping hashes to seed short read alignments, the alignment 

performance is prohibitively slow. With these sensitive settings, only the significant 

hash matches are used when seeding an alignment rather than using all the hash 

matches. As a result, BLAT and BLAST are poorly suited for aligning short reads. 
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Seed-and-extend alignment algorithms 

 Alignment speed is critical when trying to process millions of short reads in a timely 

manner. To improve alignment speed, most aligners resort to faster, ungapped 

alignment algorithms that use seed-and-extend alignment algorithms. In these cases, 

an alignment is seeded by hash and then the alignment is extended in both directions 

while sequence identity remains high over a predefined threshold. The resulting 

ungapped alignments lead to artifacts when biological insertions and deletions 

(INDELs) occur. To fix these artifacts, utilities have been created to locally reassemble 

the regions where INDELs are believed to occur55. 

Optimal alignment algorithms 

Only a couple of short read aligners use dynamic programming algorithms such as 

the Smith-Waterman56 or Needleman-Wunsch57 algorithms that are guaranteed to 

return the optimal alignment given the current scoring scheme. The Smith-Waterman 

algorithm provides a gapped local pairwise alignment while the Needleman-Wunsch 

algorithm provides a gapped global pairwise alignment. Global alignments are 

aligned across the entire read. Local alignments are aligned across the best matching 

region in the read. Gapped algorithms are much better than ungapped algorithms at 

discovering short-INDELs (discussed later in Section 3.3.4: The Wellcome Trust 

Sanger Institute (WTSI) used an ungapped alignment algorithm49, I used a gapped 

alignment algorithm). 

Illumina and AB SOLiD reads tend to accumulate sequencing errors at the 

ends of the reads. For these technologies, it is often beneficial to use a local alignment 
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algorithm to align the 5’ region in the read where the probability of sequencing errors 

is lower. If a global alignment algorithm is used, the entire read will be aligned. In 

this case, sequencing errors included in the 3’ region may complicate downstream 

genetic variant calling. 

1.3.4. Output formats 

A common problem in bioinformatics is that the output format produced by one 

program is often not in the input format required by the next program in the analysis 

pipeline. To cope with this problem, bioinformaticians are required to write 

programs that convert between the two formats. When Sanger capillary reads 

represented the latest sequencing technology, the ace file format produced by phrap39 

was the de facto assembly file format and was supported by many SNP discovery and 

visualization tools. When the field transitioned to using the newer technologies and 

reference-guided aligners, a de facto file format did not exist for several years. 

Fortunately, a standard alignment format (SAM/BAM) was defined and published in 

early 200958. The SAM format is the text representation of the alignment format and 

the BAM format is the binary representation of the alignment format. With increased 

adoption of the SAM/BAM format, it will be easier for users to specify exactly which 

aligner and downstream analysis tools they wish to use in their pipelines. 
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1.4. Genetic variant discovery by DNA sequencing 

1.4.1. Single nucleotide and short insertion-deletion polymorphisms 

During the past several years, single nucleotide polymorphism (SNP) discovery tools 

have transitioned from using filter-based heuristics59 to using more sensitive 

probabilistic or machine learning approaches49,60-64. Most of the probabilistic solutions 

use the alleles and associated base qualities at a given reference position to calculate 

the consensus genotype and the posterior probability the consensus genotype is 

correct. The individual genotypes are then used to calculate a posterior probability, 

P(SNP), that the reference position is polymorphic with respect to the sample 

population. A SNP candidate is called if P(SNP) is greater than a user-specified 

threshold. The machine learning approaches generally use features such as P(SNP), 

sequence depth, major and minor allele frequency, maximum and average qualities 

for the major and minor alleles, and alignment quality to decide if a locus is 

polymorphic62,65. 

 An abundance of SNP discovery tools exist, but only two of the tools currently 

available attempt to find short-insertion and deletion (INDEL) polymorphisms49,60. 

PolyBayes60 treats the gaps in the reads and reference sequence as a fifth nucleotide 

where the base quality represents the minimum of the two flanking non-gapped 

bases. It is unclear how the SNP calling algorithm implemented in MAQ49 treats 

INDELs. 
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 Filters are frequently applied to the resulting SNP candidates. Thresholds for 

P(SNP), aligned read coverage, SNP-to-SNP distance, and the Hardy-Weinberg test 

statistic have been used to screen potential false positives. To effectively establish 

these thresholds, a baseline is created using the subset of SNP candidates that 

overlap with confirmed variants (such as the HapMap3 genotypes66). Applying the 

same filter to the remaining SNP candidates can be used to help determine the 

appropriate minimum and maximum filter values. 

Previous studies have indicated that a 2:1 transition to transversion (ti:tv) ratio 

is typical of human SNPs67,68 and in mammalian evolution69. By calculating the ti:tv 

ratio when calling SNP candidates in humans, SNP calling and filtering parameters 

can be fine-tuned until the ti:tv ratio converges to 2.0. 

1.4.2. Structural variation detection 

 

Figure 1.16. Classification of structural 

variants with respect to the reference 

sequence. Adapted from [71]. 

 

Figure 1.17. Read coverage algorithm. Reads (black) are 

aligned to the reference sequence (red). The reference 

sequence has relatively equal read coverage everywhere 

except for the deleted region.  

Structural variations are considered to be genomic alterations that are longer 

than 1 kb and are commonly classified into the following types: insertions, deletions, 
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inversions, duplications, and translocations70,71 (Figure 1.16). Structural variation 

discovery tools often use read coverage, read-pair fragment length distributions, and 

split-read analysis to identify structural variation candidates. Read coverage (Figure 

1.17) and read-pair algorithms (Figure 1.18) detect deviations in the read coverage 

and fragment lengths of paired-end reads respectively to determine structural 

variants. Split-read algorithms (Figure 1.19) detect structural variations by partially 

aligning the read to two disparate locations. Programs such as BreakDancer72 and 

Spanner73 use two algorithms, read coverage and read-pair, to increase specificity. 

The remaining structural variation tools that are currently available use the read-pair 

algorithm74-76. 

 

Figure 1.18. Read-pair algorithm. Concordant 

paired-end reads (blue) have a smaller fragment 

length than the discordant paired-end reads 

(black) that span the deletion in the reference. 

None of the individual mate sequences in the 

paired-end reads align to the deleted region. 

 

Figure 1.19. Split-read algorithm. One read is 

aligned to the reference sequence (red). The 5’ 

end of the read (black) aligns to one part of the 

reference and the 3’ end of the read (green) aligns 

to another part of the reference. The split-read 

spans a deletion in the reference.  

1.5. Research focus 

The core focus of the Marth Lab at Boston College is genetic variant discovery. 

During the last few years numerous new sequencing technologies have emerged that 

require tools that can process large amounts of read data quickly and accurately. 

After analyzing the initial batch of second-generation sequencing data sets in 2006, a 
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decision was made to create a highly configurable reference-guided aligner rather 

than using the two aligners available from the respective sequencing companies.  

This thesis has been divided into four main sections. This first section focuses 

primarily on the design and development of our aligner, MOSAIK. After each round 

of iterative development, MOSAIK has been applied to several genetic variant 

analysis projects – each successively larger than the previous one. The second section 

focuses on four of the genetic variant analysis projects that affected MOSAIK 

development the most. One of the true tests of an aligner is the capability to apply it 

to an unexpected scenario without needing to modify the underlying codebase. This 

was the case in the third section in which MOSAIK was used to discover mobile 

element insertions in the human genome using split-read alignments. The final 

section of thesis discusses future avenues of development and how the sequencing 

landscape may change in the next few years. 
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2. MOSAIK 

2.1. Introduction 

The widespread availability of second-generation sequencing platforms has enabled 

cheaper resequencing efforts24 with ultra-high throughput. Sequencing technologies 

such as Illumina, Roche 454, Complete Genomics, and Applied Biosystems SOLiD 

have been driving the current market, whereas Pacific Biosciences SMRT77 and the 

Helicos Heliscope are leading the development of third-generation of sequencing 

instruments. The flexibility and throughput of these technologies are enabling 

research in genetic variant discovery, epigenomic variation discovery, RNA-Seq, and 

ChIP-Seq23. As the sequencing throughput improves, alignment and analysis 

pipelines will also need to keep pace. 

Each of these sequencing technologies has a different error model, base quality 

assignment algorithm, and range of read lengths. Besides presenting data in 

basespace, some instruments present the data in different representations such as the 

dibase encoding (color space) used in SOLiD reads. Single-molecule sequencing 

technologies sometimes exhibit bases that have not been registered by the instrument 

(dark bases)32. It is a challenge to create a reference-guided aligner that not only 

handles several sequencing technologies, but also deals with the caveats associated 

with each technology. 

 In addition to speed and accuracy, there are many traits that are desired in 

aligners. Aligners that produce gapped-alignments produce fewer alignment 
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artifacts than ungapped aligners and enable short-INDEL discovery. Finding all the 

possible alignment locations for a given read is essential in applications such as copy 

number and structural variation discovery. Aligners that support many different 

sequencing technologies and store output in standard formats such as SAM and 

BAM58 are more likely to be used in production pipelines. Highly configurable 

aligners enable users to experiment with new application areas. Finally, an aligner 

should provide a probability that a particular alignment is misaligned so the user can 

weight the data accordingly in downstream applications. 

 We have designed and implemented a reference-guided aligner, MOSAIK, 

that addresses these desired traits while offering outstanding alignment accuracy 

and competitive alignment speeds. In addition to read alignment, MOSAIK offers a 

suite of modular tools that address duplicate removal, post-alignment filtering, 

coverage visualization, multiple sequence alignment creation, and import/export 

functionality. 

2.2. Methods 

2.2.1.  Processing reference sequences 

MOSAIK can handle a practically unlimited amount of reference sequences (4 billion 

reference sequences); however the maximum aggregate reference length is 4 Gb. 

Alignments to the human transcriptome using more than 95,000 reference sequences 

are handled easily. 
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Our aligner supports the full set of IUPAC ambiguous nucleotide characters during 

pairwise alignment (Table 2.1 and Figure 2.1). This allows users to use reference 

sequences that have been masked using confirmed dbSNP78 calls. The ambiguity 

codes minimize the alignment bias that might be caused when aligning to the 

reference reads containing SNPs. The ambiguity codes N and X are always 

interpreted as mismatches by the scoring algorithm and can be used to hard mask 

reference sequences. 

Table 2.1. MOSAIK has full IUPAC ambiguity code support. 

IUPAC Code Meaning 

A A 

C C 

G G 

T T 

M A/C 

R A/G 

W A/T 

S C/G 

Y C/T 

K G/T 

V A/C/G 

H A/C/T 

D A/G/T 

B C/G /T 

N A/C/G/T 

X (none) 

 

The reference sequences are split up into overlapping contiguous k-mers 

(hashes) and the positions of each is stored in a hash map data structure. The hash 

map works well for genomes that are smaller than 1 Gb. For mammalian-sized 

genomes, the hashes are stored in a sparse, direct-access data structure that contains 

the offset for the associated reference sequence positions in another tightly packed 
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data structure. Since the hashes are stored in 2-bit notation (allowing for a maximum 

of four different nucleotides at each position), the most probable nucleotide (A, C, G, 

or T) is selected when an IUPAC ambiguity code is encountered. The probability for 

each nucleotide is based on the nucleotide frequencies present in the human genome. 

This data structure, called the ‚jump database‛, features guaranteed O(1) lookups 

and can be partly or entirely used from disk (explained in detail in Supplementary 

Figure 1).  

 

Figure 2.1. Bias against known SNPs can be reduced by using a reference sequence masked with 

IUPAC ambiguity codes. In the example, the alignment would result in one mismatch (the Y matches 

the C base, but M doesn’t match the T base). 

2.2.2. Read alignment 

MOSAIK supports various read formats (SRF, FASTA, FASTQ, Bustard, Gerald). 

Metadata is tracked throughout the alignment pipeline. Attributes such as median 

fragment length and sequencing technology directly affect alignment behavior, whereas 

other attributes, such as library name, sample name, and the run identifier, describe the 

data set. 



Enabling high-throughput sequencing data analysis with MOSAIK 31 

 
Michael P. Strömberg 

2010-03-16 

 

 

Figure 2.2. MOSAIK alignment algorithm. (1) MOSAIK divides a read into overlapping hashes and 

then (2) aligns those hashes to the reference sequence. (3) Each cluster of hash alignments (alignment 

candidate region) is then evaluated with the Smith-Waterman pairwise alignment algorithm. Despite 

the presence of a SNP in the read (bold cytosine nucleotide), the read is able to be aligned to the 

proper reference sequence location. 

Each read is split into overlapping hashes and the positions for each hash are 

queried from either the reference sequence hash map or jump database (Figure 2.2). 

A modified AVL tree79 is used to cluster nearby hash positions together. The 

clustering routine is read position dependent and uses a rule set that considers 

sequencing errors, SNPs, and single-base INDELs. For example, given a hash size of 

15 bp and a read of 35 bp, there are 22 overlapping lookups for reference sequence 

locations. If the read uniquely aligns perfectly to the reference (no sequencing errors, 

SNPs, or INDELs), all 22 hashes will succeed in finding the proper reference location 

and the AVL tree will consolidate those hits into one alignment candidate region. 
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However, if only one hash succeeds in finding the proper reference location because 

of sequencing errors, an alignment candidate region is still present in the AVL tree. 

Each alignment candidate region is pairwise aligned using a banded Smith-

Waterman-Gotoh alignment algorithm56,80. When aligning Roche 454 reads, a 

modified Smith-Waterman scoring matrix is used to assign a lower gap open penalty 

when a gap occurs in a homopolymer region. If the alignment was performed in 

color space (AB SOLiD), it is converted back into base space. Alignments are 

discarded if the user-defined thresholds, such as the maximum number of 

mismatches or the minimum alignment length, are not met. 

Our read alignment algorithm is heavily multithreaded. Multithreading 

allows MOSAIK to align reads in parallel using multiple processors, while allowing 

it to use the same memory footprint as if only one processor was used. One of the 

difficulties in creating multithreaded programs is that all file and memory operations 

need to be synchronized. Data corruption may result when one alignment thread 

writes to a file while another thread is reading from the same file. Scalability is 

another challenge faced in parallel programming. If a program uses eight processors, 

one would expect eight times the performance. However, the overhead from 

synchronizing threads during file operations as well as raw disk and memory 

throughput can degrade performance if too many processors are being used. Since 

MOSAIK was designed with scalability in mind, the performance degrades only 17 % 

when using 24 processors on the same machine (Figure 2.3).  
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Figure 2.3. Performance improvement as more processor cores are used for one MOSAIK instance. 

Many multithreaded programs scale well initially, but reach a performance plateau when using many 

threads. When using 24 cores, MOSAIK still maintains an outstanding parallel efficiency of 83 %. 

2.2.3. Mate-pair and paired-end rescue 

Each mate sequence in a mate-pair or paired-end read is aligned individually. 

Inefficiencies in the clustering algorithm, the repeat structure of the genome, and 

parameters optimizing alignment speed can sometimes prevent a complementary 

mate sequence from being aligned. To remedy this situation, a local alignment search 

algorithm has been implemented which performs a Smith-Waterman alignment in 

the region proximal to a uniquely aligned mate (Figure 2.4). An alignment is 

considered to be rescued if it conforms to the user-specified thresholds and exhibits 

the expected order, orientation, and fragment length. Even if an aligned read already 
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has two uniquely aligned mates, the local alignment search will be performed on 

both mates. 

 

Figure 2.4. When aligning paired-end or mate-pair reads, MOSAIK has the ability to locally search for 

a missing mate within a user-specified search radius. 

 The local alignment search works well with paired-end and mate-pair reads 

that have small fragment lengths (< 500 bp). During normal read alignment, the 

aligner has information about where candidate regions are located before performing 

a Smith-Waterman pairwise alignment. In the local alignment search, the candidate 

regions within the search radius are unknown and therefore the banded Smith-

Waterman algorithm cannot be used. Read pairs that have small fragment lengths 

tend to have tighter search radii, making a full Smith-Waterman approach feasible. 

With 2.5 kb fragment lengths typical of Roche 454 mate-pairs, the search radius 

might be 1 kb, which takes much longer to align than a typical Illumina search radius 

of 150 bp. To remedy this, a virtual dot plot algorithm is in the works that will 

identify the subregion that enables the banded algorithm to work. 

 The number of mate sequences that are rescued during local alignment search 

depends largely on the read length and the alignment parameters chosen for the 

initial match. As read length increases or more sensitive alignment parameters are 
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chosen, the aligner is less likely to miss a potential alignment and therefore fewer 

alignments are rescued (Table 2.2). 

Table 2.2. Local alignment search results for Illumina paired-end runs. As the read length increases, 

the number of rescued mate sequences decrease. 

 36 bp 54 bp 76 bp 

maximum 5.2 % 4.6 % 0.0 % 

average 2.8 % ± 1.1σ 0.9 % ± 1.5σ 0.0 % ± 0σ 

2.2.4. Handling Applied Biosystems SOLiD reads 

Most downstream applications support base space rather than the color space used 

by SOLiD reads. Assigning an appropriate value for the maximum number of 

mismatches is difficult when working with color space aligners. The number of 

mismatches in color space differs if a SNP has been found or if a sequencing error has 

occurred (Figure 2.5). A read containing two SNPs and a sequencing error will 

contain 5 color space bases that differ from the reference sequence.  Our approach is 

to align the reads to a reference that has been converted into color space. However, 

alignments are converted back to base space immediately after being pairwise 

aligned. The dibase quality conversion algorithm uses the minimum of the two 

qualities that overlap a nucleotide in base space. This approach allows the user to 

specify parameters, such as the maximum number of mismatches, in a manner users 

expect. Additionally, it enables users to merge aligned SOLiD data sets with data sets 

from other sequencing technologies. 
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2.2.5. Simulating diploid genomes and short reads 

A read simulator was created to evaluate alignment qualities (Figure 2.6). A diploid 

genome was constructed by adding SNPs and short INDELs to the human reference 

sequence (NCBI36 / hg18)16. Illumina and Roche 454 reads were simulated to study 

how the differing error models affect alignment sensitivity. 

 

Figure 2.6. Empirical read simulator used to create Roche 454 and Illumina reads. The resulting reads 

were used to evaluate alignment accuracy and train the single-end alignment qualities. 

Empirical base quality, base frequency, and fragment length distributions 

were collected from 10 Roche 454 FLX runs, 10 Roche 454 Titanium runs, 10 Illumina 

GA1 runs, and 20 Illumina GA2 runs available in the 1000 Genomes Project. The base 

quality distributions were used to assign base qualities and to induce substitution, 

insertion, and deletion errors. The fraction of substitution, insertion, and deletion 

032212222031222010131211223212223011130 
||||||||||||||||  ||||||||||| 
22220312220101310312232122230 

 
AATCTGAGAGGCAGAGGTTGCAGTGAGCTGAGATTGTGCC 

||||||||||||||||| |||||||||||| 
GAGAGGCAGAGGTTGCAATGAGCTGAGATT 

Figure 2.5. The top alignment depicts a color space alignment (blue) 

that is equivalent to the base space alignment (green) on the bottom. 

Both alignments contain a SNP (red), but the dibase encoding results 

two color space substitutions rather than one base space substitution. 
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errors for each technology was derived from earlier unpublished research by Derek 

Barnett (Boston College). To study the effects of read length on alignment accuracy, 

reads were simulated with static read lengths. Various read lengths were simulated 

for the Illumina platform (36 bp, 51 bp, 76 bp) and the Roche 454 platform (36 bp, 51 

bp, 76 bp, 135 bp, 194 bp, 253 bp, 368 bp, 500 bp). For each read length, ten simulated 

runs were created based on the sampled runs mentioned above. Three million reads 

were simulated for each Roche 454 run and 10 million reads were simulated for each 

Illumina run. 

2.2.6. Single end alignment quality assessment 

Defining the alignment quality model 

Quality scores are calculated for each alignment. Similar to base qualities, alignment 

qualities give the probability that a read has been misaligned. Two alignment quality 

models were created using the simulated data set: the insertion/deletion model 

(Roche 454) and the substitution model (Illumina). The Roche 454 model exhibited 

predominantly insertion and deletion errors, whereas the Illumina model exhibited 

mostly substitution errors. Initial analysis showed that read length, read complexity, 

number of mismatched bases, and genome size were strong predictors of alignment 

accuracy. Read complexity was binned according to 0.1 bit increments of information 

content (Shannon’s entropy81). Twenty-one read complexity bins were created 

ranging from 0.0 to 2.0 bits of information.  
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One of the problems with using a binning strategy is the goal of filling as 

many bins as possible to provide a large variation of measured alignment qualities. A 

linear binning strategy is used with information content. This works well because 

there is a large natural variation in the alignment information content. This is not the 

case with mismatch ratios. The mismatch ratio (mmr) is defined as the ratio of the 

sum of mismatched base qualities to the sum of all base qualities in an alignment. 

Short Illumina reads tend to occupy bins representing a mismatch ratio between 1 % 

and 10 %. Longer 454 reads tend to occupy bins representing a mismatch ratio 

between 0 % and 2 %. To solve this problem, an exponential distribution was created 

that specified twenty-one bins corresponding to mismatch ratios between 0 % and 

100 % (Equation 1). The last mismatch ratio bin contains all reads that have a 

mismatch ratio between 10 % and 100 %. 

 

For each pattern (a unique 4-tuple of predictors), a phred-like82 alignment 

quality is calculated using the fraction of misaligned reads. Alignment quality 

stability was checked by changing the number of misaligned reads by one. If the 

alignment quality changed considerably (> 1), the pattern was discarded. Empty or 

discarded patterns were assigned alignment qualities interpolated from the stable 

𝑏𝑖𝑛 =  0…20 

𝑚𝑚𝑟 =
 𝐵𝑄mismatch

 𝐵𝑄

𝑚𝑚𝑟lower 𝑏𝑖𝑛 = 7.87 × 10−6 ∙  
21∙𝑏𝑖𝑛

19
 

3.06

𝑚𝑚𝑟upper 𝑏𝑖𝑛 =  7.87 × 10−6 ∙  
21∙ 𝑏𝑖𝑛 +1 

19
 

3.06

1.0 if 𝑏𝑖𝑛 = 20

 

   (1) 
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patterns. The resulting set of patterns formed smooth multidimensional surfaces 

indicating that each of the four features correlated well with alignment quality 

(Figure 2.7).  

Training the neural network 

A feed forward backpropagation neural network83 with 30 hidden neurons was 

trained to perform a logistic regression of the patterns and the calculated alignment 

qualities (Figure 2.8 and Figure 2.9). The patterns were randomly partitioned into the 

training, validation, and test data sets which contained 70 %, 20 %, and 10 % of the 

patterns, respectively. 

 

Figure 2.7. The alignment quality landscape for a 36 bp Illumina read being aligned against the full 

genome. A maximum quality score of 57 occurs when the read has 0 mismatches and 1.8 bits of 
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information content. The alignment quality increases when the information content bin increases and 

weighted mismatch bin decreases. 

 

Figure 2.8. These graphs show the correlation coefficient between the measured alignment qualities 

(target) and the alignment qualities predicted by the neural network (output). Each pattern (black 

circles) represents a bin with a predefined mismatch ratio, information content, read length, and 

reference length. For each bin, the number of misaligned alignments and the total number of reads are 

used to calculate a measured alignment quality. Ideally, the predicted neural network alignment 

quality (output) should match the measured alignment quality (target) exactly. This would place the 

patterns on the diagonal. The high correlation coefficients (> 0.99) in all neural network data sets 

indicate the neural network is working accurately.  
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Figure 2.9. Alignment quality sweep for an Illumina read with 0 mismatches being aligned against the 

full genome. The read length was varied from 30 to 100 bp and checked with various levels of 

information content (0.4 bits to 2.0 bits) to determine how the machine learning algorithm handled 

data points not represented in the patterns. The sweep revealed that the learned alignment qualities 

behaved within expectations when read length and information content was varied. It was interesting 

to note that increasing the read length had the most impact on alignments with high information 

content (> 1.6 bits). 

Addressing multiply aligned reads 

Initially the alignment quality scores were weighted by how many alignment 

locations were found in the genome. While popular in the field, this method had 

some unexpected consequences. Any time a read aligned to more than two locations, 

the alignment quality was effectively reduced to zero. In practice, this meant that 

non-zero alignment qualities were unique alignments. Our alignment quality 

definition is ‚given a pairwise alignment, what is the probability that it was 

misaligned‛.  Weighting all the alignments using the method described above 
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muddles the definition by defining ‚given an aligned read, what is the probability 

that alignment #2 is misaligned‛. 

 The alignment data that is used in our SNP and short-INDEL pipeline is 

filtered by MosaikSort (discussed in the next section). In practice, multiply aligned 

reads are removed from single-end alignment archives. With paired-end alignment 

archives, MosaikSort removes discordant read-pairs. However with concordant read 

pairs, MosaikSort uses the individual alignment qualities to calculate the paired-end 

alignment quality (discussed in Section 2.2.8). If the one of the mate sequences in a 

read-pair aligned to multiple locations, the alignment quality would essentially be 

reduced to zero if weighting occurred. This restricts our ability to calculate a proper 

paired-end alignment quality.  

Due to these caveats, a choice was made to calculate an alignment quality for 

each alignment in an aligned read. This method has worked well in both our SNP 

discovery and structural variation discovery pipelines. The aligner already provides 

information declaring how many alignments were found for each aligned read. 

Additionally, features such as reference length and information content are loosely 

correlated with the likelihood that an alignment has been correctly aligned. For 

example, a read consisting of 35 adenine bases is more likely to have multiple 

alignments in the genome than a read consisting of equal numbers of adenine, 

cytosine, guanine, and thymine bases. Similarly, a read is more likely to align to 

multiple locations in the genome as the reference length increases. Having used the 
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human genome when measuring alignment qualities, these issue of weighting for 

multiply aligned reads has been handled, albeit indirectly. 

A weighting method is applied when the user selects parameters that decrease 

the sensitivity of the aligner (the act and mhp parameters are discussed in Section 

2.3.2). It was mentioned in Section 2.2.2 that a 35 bp read has 22 overlapping 15 bp 

hashes. To increase the alignment speed, the user may choose to only evaluate 

alignments which have at least three hashes (17 bp) in the alignment candidate 

cluster and that a maximum of 100 locations will be returned when looking up where 

each hash occurs in the genome. In this case, the weighting method uses a 17 bp 

sliding window to calculate the highest ratio of evaluated hash positions to total hash 

positions. If only 50 % of the hash positions were evaluated in the best interval, the 

probability that the alignment is correctly aligned is reduced by 50 %.  

2.2.7. Filtering aligner output 

Downstream applications such as consensus generation and SNP discovery are more 

sensitive than others to reads that have been misaligned. Single end reads that align 

to multiple reference locations are filtered to prevent pileups in repetitive regions 

that often confound SNP callers. The user can override this behavior and allow all 

single end alignments to pass through. 

In a mate-pair or paired-end data set, the first million reads with properly 

oriented unique mates on each end (uu reads) are sampled to build the fragment 

length distribution. Fragments shorter than 10 kb are placed into the fragment length 
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distribution. The minimum and maximum fragment length is derived from the 

distribution’s empirical 99.73 % confidence interval. Based on our tests, the empirical 

confidence interval is more resilient to outliers than using standard deviations or the 

median absolute deviation. 

 

Figure 2.10. Paired-end resolution strategy. The concordant fragment length interval is derived from 

the 99.73 % confidence interval in the empirical unique vs unique fragment length distribution. 

When one mate aligns uniquely to the reference and the other mate fails to 

align, we consider them unique orphans (uo reads) and allow them to pass through 

(Figure 2.10). For all reads where both mates align (uu, um, and mm reads), only 

those mates that have the proper order and orientation are considered. These reads 

are passed through only if there is a singular combination of mates that occur within 

the minimum and maximum fragment length. Reads that do not conform to these 

criteria are discarded. The probability of finding the correct alignment for a read with 
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multiply aligned mates on both ends (mm reads) is quite low. Normally, this class of 

reads is skipped, but that behavior can be overridden by the user. 

2.2.8. Paired-end alignment quality assessment 

Simulated paired-end data sets of varying read lengths were used to assess how the 

paired-end criteria affect the probability that a read was misaligned. For each paired-

end read class (uo, uu, um, and mm), the fraction of misaligned reads for each read 

length and single end alignment quality were collected and used to calculate the 

actual paired-end alignment quality (Figure 2.11). 

 

Figure 2.11. For each paired-end read class (uo, uu, um, and mm), the single-end alignment quality (X-

axis) was plotted against the actual paired-end alignment quality (Y-axis). Each colored line represents 

the results for each tested read length between 37 bp to 108 bp. 
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The paired-end alignment quality equations for each paired-end read class were 

derived by using multinomial least squares regression (Figure 2.12). Using the read 

length (l) and the single-end alignment quality score (AQSE), the regression yielded 

the following correction equations (Equation 2): 

 

 

Figure 2.12. Using multinomial least squares regression, second-degree polynomial equations that 

convert single-end alignment qualities (X-axis) to paired-end alignment qualities (Y-axis) were 

derived for each paired-end read class. Each colored line represents the results for each tested read 

length between 37 bp to 108 bp. 

  

𝐴𝑄PE =

 
 
 

 
 0.36𝑙 − 0.002𝑙2 + 1.06𝐴𝑄𝑆𝐸 − 0.007𝐴𝑄𝑆𝐸

2 − 11.94 if uo

0.56𝑙 − 0.003𝑙2 + 0.53𝐴𝑄𝑆𝐸 − 0.003𝐴𝑄𝑆𝐸
2 + 13.38 if uu

0.28𝑙 − 0.002𝑙2 − 0.04𝐴𝑄𝑆𝐸 + 0.006𝐴𝑄𝑆𝐸
2 + 18.27 if um

0.25𝑙 − 0.002𝑙2 + 0.08𝐴𝑄𝑆𝐸 + 0.004𝐴𝑄𝑆𝐸
2 + 3.84 if mm

    (2) 
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The resulting equations are used by MOSAIK to convert single-end alignment 

qualities to paired-end alignment qualities depending on the paired-end read class. 

2.2.9. Sequencing library-aware duplicate filtering 

Sequencing library redundancy presents a problem when downstream analyses rely 

on allele counting. Many nascent duplicate removal tools58,84 remove duplicate 

sequence fragments with respect to an entire alignment file. Our duplicate removal 

tool analyzes a set of alignment files to remove duplicates with respect to the 

annotated sequencing library. When a set of duplicate alignments are discovered, the 

alignment identifier with the highest alignment quality is stored in a database. This 

database is used when filtering the aligner output to discard all duplicate alignments 

with a lower alignment quality. Paired-end reads are considered duplicates when 

they share one endpoint but the other endpoint differs by up to 2 bp. Single-end 

reads are considered duplicates when they share the same start and end coordinates. 

2.2.10. Multiple sequence alignment creation 

After filtering the aligner output, a multiple sequence alignment can be produced 

from one or more alignment archives regardless of the sequencing technology. The 

multiple sequence alignment is created by observing the insertions and deletions in 

each pairwise alignment. Gaps are then introduced in the reads in order to 

synchronize the reads with the reference sequence. This algorithm is linear with the 

number of reads in the multiple sequence alignment. 
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Figure 2.13. Artifacts around heterozygous insertions. In this example, ten reads have a heterozygous 

insertion of a cytosine nucleotide. However when the insertion occurs close to the end of six reads, 

they are aligned as substitutions rather than insertions.  

 Alignment artifacts may result when insertions occur near the ends of reads 

(Figure 2.13). These artifacts become evident when viewing multiple sequence 

alignments and might have otherwise been missed when viewing individual 

pairwise alignments. Using the default scoring scheme, the penalty for opening a gap 

is higher than the penalty for a substitution. In the example above, the insertion was 

correctly aligned when it occurred after the fourth base in the read. To reduce the 

number of INDEL artifacts,  an ‚INDEL cleaner‛ can be used to adjust the 

underlying alignments55. Currently, the MOSAIK suite does not contain an ‚INDEL 

cleaner‛, but development is expected in the near future. 

The multiple sequence alignments can be saved in either the CONSED ace85 or 

GigaBayes gig86 file formats. 
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2.3. Results 

2.3.1. Implementation 

MOSAIK is implemented in C++ as a modular suite of programs that are available 

under an open-source license (GNU General Public License87) from our Google Code 

web site: http://code.google.com/p/mosaik-aligner/. Internally, our programs make heavy 

use of indexed, binary file formats that have been compressed with a real-time 

compression library, FastLZ88 (Figure 2.14). Our tools are designed to accept multiple 

read formats and produce file formats (ace, gig, and SAM/BAM) that are understood 

by downstream applications (Figure 2.15). 

 

Figure 2.14. Internal organization of the MOSAIK alignment format. For a more detailed view, see 

Supplementary figures 2 and 3. 
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Figure 2.15. Schematic showing major processes within each of the MOSAIK programs and how the 

key MOSAIK tools relate to one another. 

2.3.2. Improving alignment speed 

In general, using a larger hash size equates to a faster alignment speed. However, 

this is often at the expense of sensitivity. For example, using a hash size of 30 on 35 

bp reads will align quickly, but reads containing internal sequencing errors or SNPs 

will not be seeded. In contrast, a hash size of 11 would guarantee that all reads with 

up to two mismatches are seeded, but performance would suffer. When aligning 

mammalian reads, a hash size of 15 provides a good compromise between speed and 

sensitivity. 
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Figure 2.16. Before performing a pairwise alignment, MOSAIK hashes up each read and retrieves the 

hash positions for each seed in the reference sequence. 

In this figure the hash positions are depicted as the horizontal blue lines. When clustering these hash 

positions, three clusters are formed (orange boxes). Each cluster represents an alignment candidate 

that will be pairwise aligned. 

Perhaps the middle cluster represents a spurious hit due to the repetitive nature of the reference 

sequence. To prevent spurious hits from unnecessarily using up processing cycles, each cluster can be 

forced to have a minimum length (the alignment candidate threshold) before being pairwise aligned. 

 

A feature that dramatically improves alignment speed with little impact on 

accuracy is the alignment candidate threshold (-act) (Figure 2.16 and Figure 2.17). 

Normally all clusters are submitted for Smith-Waterman alignment. Initially we 

imposed a double-hit criterion (-dh) that two consecutive hashes had to be clustered 

before being aligned. This double-hit mechanism ensured that fewer spurious hash 

hits in the reference sequence would cause a full alignment to be performed. 

The alignment candidate threshold extends the thought behind the double-hit 

parameter. An alignment candidate is simply the set of all seeds that form a cluster. 

The alignment candidate size is the length from the first base in the cluster to the last 

base in the cluster. For example, if a hash size of 11 is used and two hashes form 

clusters separated by a SNP, the alignment candidate size is 23. If the act parameter 

had been set to -act 20, this read would be submitted for Smith-Waterman alignment. 
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Figure 2.17. Early results showing the effect of the alignment candidate threshold (act) parameter on 

alignment accuracy. As the act parameter increases, the percentage of misaligned reads (left y-axis) 

containing SNPs (red bars) increases dramatically. The black line indicates the alignment speed (right 

y-axis) relative to setting the act parameter equal to the hash size (15 bp). Setting act to 19, results in a 

6.8-fold increase in alignment speed. 

While scaling up to handle alignments to mammalian genomes, we added a 

feature (-mhp) that places a maximum number of hash positions per seed. Alignment 

representation bias is minimized by selecting a random subset of the hash positions. 

When using a hash size of 15, each seed has an average of 5.25 hash positions in the 

human genome (Table 1.2). Limiting the number of hash positions to 100 increases 

alignment speed significantly, while having little impact on alignment accuracy 

(Figure 2.18). 
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Figure 2.18. Early results showing the effect of the maximum number of hash positions (mhp) 

parameter on alignment accuracy. As the mhp parameter decreases, the percentage of misaligned 

reads (left y-axis) increases slightly. The black line indicates the alignment speed (right y-axis) relative 

to setting the mhp parameter equal to the infinity. Setting mhp to 100, results in a 5.7-fold increase in 

alignment speed. 

2.3.3. Alignment accuracy 

Using simulated Illumina data sets generated by James Long at the Translational 

Genetics Research Institute (TGEN), we evaluated the sensitivity of our alignment 

algorithms with respect to single-end and paired-end reads spanning from 37 bp to 

108 bp (Table 2.3). The number of mismatches was chosen based on previous 

experience with Illumina data sets of a given read length. More mismatches are 

typically allowed with longer reads to match the error profile typically seen from 

Illumina GAII data sets. 
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Table 2.3. Alignment accuracy on simulated Illumina reads of various lengths. The expected behavior 

is that both single-end and paired-end accuracy increases as the read length increases. The accuracy of 

the 76 bp and 108 bp decreases due to the larger number of mismatches allowed. 

 37 bp 54 bp 76 bp 108 bp 

# of mismatches 4 bp (11 %) 6 bp (11 %) 12 bp (16 %) 15 bp (14 %) 

Single-end accuracy 98.67 % 99.37 % 98.46 % 99.24 % 

Paired-end accuracy 99.95 % 99.98 % 99.85 % 99.90 % 

 

In the simulated Illumina data sets, MOSAIK had a mean single-end 

alignment accuracy of 98.94 % ± 0.44σ and a mean paired-end alignment accuracy of 

99.92 % ± 0.06σ. If the alignment qualities are properly calibrated, the user can choose 

a subset of alignments that have higher accuracy (Figure 2.19 and Figure 2.20). 

 

Figure 2.19. Comparing assigned paired-end alignment qualities to actual paired-end alignment 

qualities. If the assigned paired-end alignment qualities are calibrated well, they will occur close to the 

diagonal line. The coefficient of determination (R2) is 0.97 spanning six logarithms of measurement. 
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Figure 2.20. The receiver operating characteristic (ROC) curve improved dramatically when the 

alignment qualities were adjusted for each read-pair class (red curve). Before the calibration, single-

end alignment qualities were used for paired-end alignments (blue curve). ROC curves closer to the 

bottom-right corner indicate that a higher number of reads align with fewer misalignments.  

2.3.4. Comparison to other Illumina aligners 

As an independent test of how MOSAIK compares with other Illumina aligners, the 

results of a recent Illumina aligner comparison by Sendu Bala at the Wellcome Trust 

Sanger Institute are presented. Using the simulated data sets generated by James 

Long, the accuracy and speed of MOSAIK and the following aligners were 

compared: Novoalign89, BFAST47, srprism (unpublished), Illumina ELAND290, 

BWA50, SOAP251, Bowtie52, and KARMA91. MOSAIK was in the middle of the pack 

with regards to alignment speed, but was within a factor of two of the fastest aligner, 

KARMA (Figure 2.21). Of the faster aligners, BWA was the only other aligner that 

provided gapped alignments in the comparison. 
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Figure 2.21. Illumina alignment speed. MOSAIK was the second fastest gapped aligner in the 

comparison study. 

Alignment accuracy was evaluated on data sets that mimicked typical data 

sets used during SNP and short-INDEL discovery. Sendu Bala defined alignment 

accuracy as the fraction of reads that aligned correctly to the total number reads. 

Most reads were identical with the reference, but reads with up to five SNPs and 

reads with INDELs up to 30 bp long were also included. MOSAIK exhibited the 

highest accuracy of the aligners used in the comparison (Figure 2.22). 

 

Figure 2.22. Illumina alignment accuracy on the SNP and short-INDEL data set. MOSAIK exhibited 

the highest alignment accuracy in the comparison study. 
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In addition to the SNP and short-INDEL data set, a structural variation data 

set was created. This data set contains reads that are identical with the reference, 

reads with INDELs up to 30 bp, reads with 200 bp INDELs, and reads with large 20 

kb inserts. Unfortunately, the test was run with our post-alignment filtering program 

that removes discordant read-pairs from a data set. Despite the flawed methodology, 

MOSAIK was in the middle of the pack by aligning 75 % of the alignments correctly. 

At the time of the comparison, MOSAIK was not been optimized for aligning reads 

that are interrupted by 200 bp INDELs. However since the comparison, the local 

alignment search routines have been adjusted to successfully detect most of the 200 

bp deletions in the data set. 

2.4. Summary 

Since MOSAIK was released as an open source project last fall, a healthy user 

community has been steadily growing. In the first 24 hours, MOSAIK binaries were 

downloaded 207 times and the full source code was downloaded 35 times from 

http://code.google.com/p/mosaik-aligner/. Users indicate that MOSAIK is easy to use, 

highly configurable, and contains handy utilities that give support to their analysis 

projects. The users show their interest by requesting new features and a select few 

even proactively provide patches to fix bugs that have been reported by other users. 

There are several aspects of MOSAIK that need improvement. MOSAIK 

currently uses approximately 20 GB of RAM when aligning reads to the human 

genome. To reduce the memory footprint, alternative data structures and algorithms 
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are being explored. By simply aligning reads to one chromosome at a time, the 

memory footprint can be reduced to around 4 – 5 GB of RAM. The use of compressed 

suffix arrays by the Burrows-Wheeler transform92, as well as Burkhard-Keller trees93, 

are being considered as well. MOSAIK has robust support for both Illumina and 

Roche 454 sequencing technologies. Currently, MOSAIK development is also 

bringing Applied Biosystems SOLiD and Helicos support up to the same level. 

The comparison study highlights an aspect that has undergone heavy 

development during the last couple of years - accuracy. The primary focus of our lab, 

genetic variant discovery, demands that all upstream tools produce the most 

accurate results possible. Within the 1000 Genomes Project (discussed in Section 3.3), 

our lab has produced the best SNP, INDEL, and structural variation calls at various 

stages. One can speculate that a small part of that success is because of the 

underlying aligner. 
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3. Re-sequencing applications enabled by MOSAIK 

3.1. Whole-genome sequencing and variant discovery in C. elegans 

3.1.1. Introduction 

In 1998 the decoding of the first animal genome sequence, that of C. elegans, was 

published94. C. elegans was first suggested as a model organism in the 1960s by 

Sydney Brenner, and subsequent work produced a physical map of its genome95. As 

a result, the C. elegans genome sequencing project formed the cornerstone of efforts 

ultimately aimed at decoding the human genome16,17. The entire C. elegans 

community has benefited enormously from the availability of the genome sequence 

and the ever-improving genome annotation96, and from the comparative power of 

the availability of sequenced genomes for C. elegans relatives, such as C. briggsae97. 

The emerging availability of massively parallel sequencing instrumentation 

provides the capability to resequence genomes in a fraction of the time, effort and 

expense required for the initial assembly. We sequenced an isolate of the C. elegans 

N2 Bristol strain using the Illumina sequencing platform. Our analyses of these 

sequences included an evaluation of sequence differences between the two isolates. 

We revealed possible sequencing errors in the C. elegans reference genome, and 

putative variants that had occurred in our passaged N2 Bristol strain. 

Massively parallel sequencing can be applied to strain-to-reference 

comparisons that reveal genome-wide sequence differences; either for evolutionary 

studies or for discovering genetic variants that may explain phenotypic variation. 



Enabling high-throughput sequencing data analysis with MOSAIK 60 

 
Michael P. Strömberg 

2010-03-16 

 

Implementing this application requires a new approach that assesses the fraction of a 

genome to which short read sequences can be uniquely mapped, because they are 

more susceptible to multiple placements than are longer capillary instrument–

derived sequences. Computational identification and markup of these ‘microrepeats’ 

is therefore an important precursor to accurate short-read analysis, and must allow 

for mismatches resulting from sequencing errors or polymorphisms. We aligned 

Illumina reads from the C. elegans strain CB4858 (originally isolated in Pasadena, 

California, USA)98 to the microrepeat-masked N2 Bristol reference sequence, and 

identified SNPs and small INDELs with a modified version of PolyBayes60. 

3.1.2. Impact on MOSAIK development 

Handling the four Illumina runs present in the C. elegans data set and aligning those 

runs against the full genome represented a challenge to the MOSAIK alignment 

pipeline. Previously, MOSAIK had been tested on several smaller data sets: the 

Sanger capillary reads belonging to the ENCODE project99, the Illumina BAC (human 

chromosome 11) data set, and the CAPON gene Illumina data set from the 

Chakravarti lab. The largest reference sequence used in these test data sets were the 

500 kb references used in the ENCODE project. To handle the increase in read data 

and the longer reference sequence, it was clear that MOSAIK needed optimization. 

Implementing binary formats 

One of the many goals in software development projects involves using data formats 

that are not only human readable, but that can also be parsed quickly by software 
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tools. To achieve this goal, XML (Extensible Markup Language) was created by the 

World Wide Web Consortium (WC3). XML is responsible for enabling AJAX type 

web applications such as Gmail and Google Maps and is also used in productivity 

tools such as Microsoft Office, OpenOffice, and Apple iWork. Within bioinformatics, 

XML is available in many annotation, gene expression, protein, and analysis tools100.  

During my master’s thesis, I developed a high performance SNP discovery 

tool, Forage65, to identify SNPs in the EST sequences from several species of poplar 

trees. The output from our de novo EST assembler, Paracel TranscriptAssembler, was 

stored in compressed XML files as opposed to the ace files produced by Phil Green’s 

phrap assembler39. The compact nature of the XML files used by Forage was one of 

the many reasons it was more than 100 times faster than other SNP callers. As a 

result, the initial versions of MOSAIK used a compact XML schema to store the 

alignment data. 

 While parsing XML data files was faster than parsing other text-based flat 

files, a binary read and alignment format was implemented to improve the speed 

even more. The binary formats required more low-level code to parse the files, but 

they helped increase the alignment speed on our CAPON Illumina test data set from 

8,000 reads/s to 15,500 reads/s. The resulting speed was much faster than the speed of 

the only competing Illumina reference-guided aligner (ELAND90) at the time. 
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Partitioning the output 

The C. elegans data set was comprised of two 32 bp Illumina runs for the N2 (Bristol) 

isolate, one 32 bp Illumina run for the Pasadena isolate, and one 30 bp Illumina 

titration run where half of the lanes were used for the N2 isolate and half for the 

Pasadena isolate. In total, I aligned roughly 99 million reads to the entire C. elegans 

genome. When MOSAIK produced the final multiple sequence alignments in the ace 

format used by PolyBayes, the files proved too large for our SNP caller to handle. At 

that time, the only read alignment visualization tool able to handle large ace files was 

CONSED85, but the long loading times for large ace files was impractical. As a quick 

fix to the problems encountered with PolyBayes and CONSED, a partitioning feature 

was added to MosaikAssembler. Breaking up the C. elegans multiple sequence 

alignment output into partially overlapping 1 Mb regions enabled both PolyBayes 

and CONSED to perform well. 

Consolidating hash positions with an AVL tree 

Before performing pairwise alignment, MOSAIK hashes up the read into overlapping 

hashes and then queries a data structure about the genomic locations of these hashes. 

Initially a naïve algorithm was used to cluster the hash locations with those that were 

found earlier in the read. To speed up the clustering process, a data structure known 

as an AVL tree was modified to quickly aggregate new hashes into known clusters of 

hashes. With the naïve algorithm it took 36.25 seconds in our test data set to 

aggregate 99,000 hashes into alignment candidates. In contrast, it took only 0.031 
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seconds to aggregate the 99,000 hashes using the modified AVL tree. This is more 

than three orders of magnitude faster than the naïve algorithm. 

Microrepeat discovery 

The algorithms used to produce genomic assemblies perform poorly in regions 

where genome-wide repeats are prevalent. Even though the human genome was 

declared complete in 2003, there are problematic portions that scientists still have not 

been able to sequence. As of the latest build of the human genome (hg19), only 

chromosome 14 has been assembled as one contiguous sequence17. 

To reduce the number of alignment artifacts caused by genome-wide repeats, 

tools such as RepeatMasker have been developed to mask out problematic regions 

before alignment101. RepeatMasker uses the Smith-Waterman56 pairwise sequence 

alignment algorithm to align a library of known repeats from well-studied model 

organisms to supplied input sequences. All significant pairwise hits are then masked 

out before read alignment. In addition, RepeatMasker also masks known vector and 

E. coli sequences. 

Besides screening for known repeats, RepeatMasker also masks out low-

complexity regions using the dust algorithm102. Low-complexity regions complicate 

the clustering of similar sequences in sequence assembly algorithms. 

For organisms where genome-wide repeats are poorly understood, 

RepeatMasker offers less intrinsic value. Several algorithms have been developed 

that try to bridge this gap and provide autonomous repeat identification. RBR1103 
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takes a library of EST sequences and splits them up into overlapping hashes. After a 

baseline for the expected number of hashes is determined, all hashes that occur 

significantly more frequently than the baseline are marked as repeats. None of the 

nascent autonomous repeat identification tools, however, attempt to discover 

microrepeats that are within a certain number of mismatches from the original 

reference (edit distance). 

 

Figure 3.1. Microrepeat discovery in C. elegans. BLAT (green), RepeatMasker (black), and MOSAIK-RA 

(red and orange) were compared when determining repetitive regions in the first 5 kb of the genome. 

Regions where sequences can be aligned uniquely to the genome are shown at the 1.0 line in the 

graph. An arbitrary number of alignments (3000) was used to show where RepeatMasker annotations 

occur. MOSAIK-RA is more sensitive than BLAT at discovering microrepeats. Fewer regions are 

repetitive to 100 bp reads (allowing seven mismatches) than to 32 bp reads (allowing 2 mismatches).  
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An experimental version of MOSAIK, MOSAIK-RA, was created to identify 

microrepeats in the C. elegans genome (Figure 3.1). All the overlapping 32 bp 

sequences were extracted from the genome and aligned back to the genome with an 

allowance of up to two mismatches. The resulting sequence coverage was 

normalized by the read length (32 bp). Regions where the normalized coverage was 

greater than 1.0 were considered microrepeats. These microrepeat regions were then 

used as a post-alignment filter to screen SNP candidates that may have been called 

due to alignment artifacts in repetitive regions. 

3.1.3. Results 

Four full Illumina runs were used in this study: two 32 bp runs for the N2 isolate, one 

32 bp run for the Pasadena isolate, and one 30-bp titration run where half of the lanes 

had the N2 isolate and the other half had the Pasadena isolate. The runs contained 99 

million reads, amounting to roughly 24x sequence coverage. 

 Using the microrepeat detection strategy described above, we noted that 

roughly 19.8 % of the C. elegans genome was considered a microrepeat with respect to 

32 bp Illumina reads. This differs from the RepeatMasker results where 14.5 % of the 

C. elegans was considered repetitive (Figure 3.2). 
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Figure 3.2. The percentage of the C. elegans genome that was marked repetitive with respect to 

microrepeats using MOSAIK vs RepeatMasker repeat annotations. 

We ran MOSAIK with a hash size of 16 and allowed up to two mismatches. It 

took 95 minutes to align the reads (17837 reads/s) and 79 million (79 % of the reads) 

aligned to either the C. elegans or the E. coli genomes (Figure 3.3A). Aligning to both 

genomes allowed us to screen for E. coli contamination occurring during sample 

preparation and from the roundworm gut. It took an additional 100 minutes to create 

a multiple sequence alignment, partition it into 1 Mb regions, and store it in the ace 

format (Figure 3.3B). 
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Figure 3.3. C. elegans SNP discovery pipeline. (a) MOSAIK was used to align 99 million Illumina reads 

from the Bristol and Pasadena strains. (b) The resulting 79 million Illumina reads were arranged into 

multiple sequence alignments and saved as overlapping ace assembly files that represented a 

megabase region of the genome. (c) PolyBayes was used to call SNPs and short INDELs (d) Using 

detected microrepeats, a masked C. elegans reference sequence was created. (e) SNPs and short INDEL 

candidates occurring in annotated microrepeats were discarded. 

SNPs and short INDELs candidates were identified with PolyBayes by Aaron 

Quinlan (Boston College) (Figure 3.3C). SNP and INDEL calls with a posterior 

P(SNP) probability greater than 0.7 were screened using our microrepeat annotations 

(Figure 3.3E). Roughly 1000 SNPs and INDELs were validated by PCR amplification 

and Sanger capillary sequencing. The SNP validation rate was 96.3 % and the INDEL 

validation rate was 93.8 %. Using PolyPhred104 on the Sanger validation traces, we 

determined our false negative rate to be about 3.75 %. Validated SNPS and INDELs 

were assigned WormBase96 accession numbers pas1 – pas50906. 

Our colleagues at the Washington University School of Medicine identified 

235 INDELs that occurred in regions where no other Illumina reads could be placed. 

This suggests an INDEL error rate in the N2 reference genome of about one INDEL 

in 427 kb. Likewise 544 substitution polymorphisms were identified where more 
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than one read exhibited the minor allele. This suggests a substitution error rate of 

about one SNP in 184 kb. 

3.1.4. Summary 

The C. elegans study helped prepare the MOSAIK alignment pipeline for whole 

genome alignments. The implementation of the binary formats and the AVL tree 

clustering algorithms improved MOSAIK’s alignment speed.  

 The observation of how microrepeats affect the resequenceability of the 

reference genome led to ideas on how alignments can be made more accurate despite 

repetitive regions in the genome. 

 During this study, an option to partition the multiple sequence alignment 

output in MosaikAssembler was added. The option relieved downstream 

applications of the problems of scaling up to large data sets. This mindset of 

tweaking MOSAIK to benefit downstream analysis has continued throughout the 

development process and represents one of the many reasons users decide to use our 

aligner. 
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3.2. Rapid whole-genome mutational profiling using next-generation 

sequencing technologies 

3.2.1. Introduction 

Pichia stipitis is a haploid yeast related to endosymbionts of beetles that degrade 

rotting wood105. It is an important organism for bioenergy production from 

lignocellulosic materials because of its high capacity to ferment xylose and cellobiose 

to ethanol106. The reference strain was sequenced previously resulting in a completely 

characterized genome of eight chromosomes totaling 15.4 Mb of sequence107. This 

strain has been subjected to chemical mutagenesis, phenotypic selection, genetic 

engineering, and adaptive evolution in order to develop strains improved for ethanol 

production. Chemical mutagenesis and selection resulted in small improvements in 

ethanol production attributable in part to carbon catabolite derepression. Disruption 

of CYC1 (cyctochrome c, isoform 1) to create strain Shi21 increased the specific 

ethanol production rate by 50% and the ethanol yield by 10%; however, the 

additional mutational events leading to this phenotype were uncharacterized. 

Traditional methods for identifying mutations are labor and time-intensive, so 

we tested the ability of next-generation sequencing technologies to determine the 

differences in this improved strain’s entire genome, relative to the reference strain. 

We generated high-coverage, whole-genome data sets using single fragment end 

reads from three next-generation sequencing platforms: Roche 454, Illumina, and 

Applied Biosystems SOLiD. We assessed these data to determine the effect of 



Enabling high-throughput sequencing data analysis with MOSAIK 70 

 
Michael P. Strömberg 

2010-03-16 

 

sequence coverage on the accuracy of mutation detection, and to compare the 

efficiency of the three sequencing platforms for this application. 

3.2.2. Results 

Three different second-generation sequencing technologies were used to discover 

SNPs mediated by chemical mutagenesis. Using these data sets, our collaborators at 

the Department of Energy (DOE) Joint Genome Institute (JGI), found 17 mutations 

between the parent and mutant strain, where three mutations were caused by errors 

in the reference sequence. The remaining 14 mutations were validated by Sanger 

capillary sequencing. 

 The role of our lab in this study focused on using the read alignment and SNP 

discovery pipeline to discover the polymorphisms in the Roche 454 and Illumina 

data sets. The primary focus of this study was to determine the minimum amount of 

read coverage needed to produce the minimal amount of false positive and false 

negative SNP calls. The results could then be used by labs considering 

polymorphism discovery assays using second-generation sequencing technologies to 

calculate the most economical sequencing strategy. 

 Two Roche 454 FLX runs and one Illumina 32 bp run were sequenced and 

analyzed by our alignment and SNP discovery pipeline. Using both runs (11x aligned 

read coverage), the Roche 454 FLX results had one false positive and zero false 

negative SNP calls. The false positive in this data set is believed to be caused by an 

emulsion PCR artifact during library preparation. Subsampling the dataset to use 1.5 
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runs increased the number of false positives. Using all seven lanes, the 32 bp Illumina 

run (44x aligned read coverage) exhibited zero false positive and zero false negative 

SNP calls.  Using only three lanes (19x aligned read coverage) yielded the same result 

with false positives finally occurring when only two lanes were used. 

 Applied Biosystems performed similar analyses on the SOLiD sequencing 

platform. Using the Corona Lite data analysis package108 to map reads and perform 

SNP discovery, they determined that subsampling their data to 10x coverage yielded 

zero false positive and zero false negative SNP calls. 

3.2.3. Impact on MOSAIK development 

Masking nuclear mitochondrial DNA 

Numts (nuclear mitochondrial DNA) are copies of mitochondrial DNA that have 

been transposed into the nuclear DNA109. Numts have been detected in many diverse 

eukaryotic organisms and often manifest as tandem repeats110,111. Our collaborators 

suggested that we mask out all numts in the P. stipitis genome to prevent alignment 

artifacts in those regions. 

 Using both BLAT and BLAST (with an expectation value of 1E-3), six partial 

numt regions were identified. A simple tool was created to mask out regions of 

reference sequences based on annotated locations and was used to mask the numts in 

the P. stipitis genome. 
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Microrepeat discovery 

An experimental version of MOSAIK, MOSAIK-RA, was used to detect microrepeats 

in the P. stipitis genome with respect to each technology and each read length (Table 

3.1). The mean read length was used for variable read length technologies (Roche 454 

GS20 and FLX) when determining the resequenceability of the genome.  

Table 3.1. Percentage of the P. stipitis that was masked due to microrepeats. 

Sequencing technology Roche 454 GS20 Roche 454 FLX Illumina 

Evaluated read length 103 bp 224 bp 27 bp 32 bp 

% of genome masked 5.5 % 5.3 % 7.9 % 6.8 % 

 

Read alignment 

In addition to the data mentioned in the results section, three additional 26 bp 

Illumina runs, 533 Sanger capillary validation sequences, and 10 Roche 454 GS20 

runs were aligned using MOSAIK. The read alignment parameters were fine-tuned 

for each sequencing technology (Table 3.2). To aid visualization at the 14 mutant SNP 

locations, a co-assembly was created in MOSAIK featuring reads from all four of the 

aforementioned sequencing technologies (Figure 3.4).  

Table 3.2. MOSAIK alignment parameters for each sequencing technology. The best hit in the genome 

was selected for the Sanger validation reads, regardless of the number of mismatches*. 

Sequencing 

technology 

Roche 454 

GS20 

Roche 454 

FLX 
Illumina Sanger* 

Allowed mismatches 5 % 5 % 2 - 

Minimum aligned 

read length 
95 % 95 % 95 % - 

Hash size 21 22 8 10 
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Figure 3.4. MOSAIK Co-assembly. This screen capture of CONSED shows four different sequence 

technologies represented in the same multiple sequence alignment. Sanger capillary validation 

sequences are shown in orange, 454 GS20 reads are shown in red, 454 FLX reads are shown in light 

blue, and Illumina reads are shown in white. 

High performance computing 

In the period leading up to the P. stipitis study, several performance improvements in 

the MOSAIK code base were being investigated. An experimental version of the 

aligner was implemented using the Message Passing Interface (MPI)112. MPI is a 

language-independent communications protocol that is used to coordinate parallel 

computing tasks across many computing nodes. Using MPI, MOSAIK was able to 

use the entire computing cluster in the Marth lab to coordinate alignment tasks. In an 

automated fashion, binary read files were distributed and aligned by each worker 

node. When all the worker nodes were finished, the master node would collect all the 

alignment statistics, as well as the binary alignment files from each node.  
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The MPI-enabled MOSAIK worked well for this study but was later 

abandoned due to many incompatible MPI implementations in the market. If 

MOSAIK had been released with MPI support, it would have worked on only a few 

computational clusters because of the incompatible implementations. As a 

replacement, a platform-independent multithreading class (a programming construct 

used in object-oriented programming) was implemented that would accomplish the 

same goal yet worked on all modern operating systems. 

Berkeley DB 

The main data structure that MOSAIK uses to store the hashes and the associated 

reference locations is a hash map. Hash maps offer fast lookup performance at the 

expense of using large amounts of memory. During this study, an alternative data 

structure with a smaller memory footprint, the Berkeley DB113, was being explored. 

Berkeley DB is a disk-based key-value data store that can be organized as a linear 

hash map, a queue, or a sorted, balanced tree. One of the beneficial aspects of the 

Berkeley DB is that it provides a cache of the recently used key-value pairs. With 

MOSAIK this means the most commonly used hashes and associated reference 

locations are likely to remain in cache memory. By specifying the amount of cache 

memory used, the user can fine-tune the trade-off between memory usage and 

alignment speed. Eventually, Berkeley DB support was dropped in favor of the jump 

database (introduced in Section 2.2.1 and explained in detail in Supplementary figure 

1). 
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3.2.4. Summary 

The P. stipitis study was our first opportunity to evaluate several different 

sequencing technologies on the same underlying reference genome. Previously, we 

had examined the error profiles in the Illumina and Roche 454 sequencing 

technologies. In this study, however, the effects of the underlying error profiles were 

finally seen in the context of the minimum coverage needed to detect the mutant 

SNPs. In general, sequencing technologies that exhibited higher error rates required 

deeper coverage when detecting mutant SNPs. 

 This project marked a transition period in the development of MOSAIK. 

During this study, the reference sequence was carefully masked according to 

microrepeat structure found at different read lengths. This encouraged the 

development of more sophisticated alignment algorithms and data structures that 

would allow MOSAIK to handle repetitive regions without microrepeat masking. 
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3.3. Genetic variant discovery in a deeply sequenced European trio 

3.3.1. Introduction 

The 1000 Genomes Project is an international consortium whose primary aim is to 

construct a deep catalog of human genetic variant at minor allele frequencies of 1 % 

or higher114. Several strategies are being tested during the pilot phase of the project. 

These include evaluating many samples at low coverage, evaluating two sets of trios 

at high coverage, and evaluating targeted sequencing of exons and other functional 

elements. Our study involves read alignment and genetic variant discovery in the 

high coverage trio from a Utah family having European ancestry (1000 Genomes 

Project pilot 2)114. 

3.3.2. Pre-analysis development 

Read name nomenclature 

For GigaBayes to decode the origin of each read and the relationships among all 

individuals in the trio, a prefix was prepended to each read before alignment. The 

following colon-delimited format was used: ‚NA12878:1463:NA12892:NA12891:F_‛. 

NA12878 indicates the Coriell Institute for Medical Research identifier115 for the 

current sample with the family identifier 1463. NA12892 is the sample’s mother and 

NA12891 is the sample’s father. The final field denotes that the gender of the sample 

is female. 
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Paired-end support 

The 1000 Genomes Project was the first opportunity our lab had at aligning large 

data sets and handling paired-end read data. Initially MOSAIK was designed to align 

the fastq files for each paired-end mate separately. Two separate alignment files were 

produced that had to be sorted and combined before searching for concordant read-

pairs. This strategy did not scale well with larger data sets.  

The solution was to update the binary file formats used throughout the 

MOSAIK pipeline to store read-pair information in the same read record. 

MosaikBuild (Figure 2.15) was modified to parse up to two read files simultaneously 

and MosaikAligner (Figure 2.15) was updated to store the alignments from the two 

read-pairs in the same read record. This obviated the need for preprocessing before 

evaluating read-pair concordance and it reduced the processing overhead for the 

structural variation analyses being performed in the lab. 

Post-alignment filtering and sorting 

MosaikSort was created to filter and sort the alignments according to the reference 

position. For single-end reads, non-unique alignments are filtered.  For paired-end 

reads, discordant read-pairs are filtered. These filters reduce the probability that 

misalignments will complicate variant calling. The sorting enables MosaikAssembler 

(Figure 2.15) to produce a multiple sequence alignment several orders of magnitude 

faster than previous versions. 
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Native support for GigaBayes 

Instead of using the ace file format that CONSED uses for visualizing multiple 

sequence alignments, GigaBayes uses a native, binary file format (.gig files). 

Normally ace files are created in MosaikAssembler and GigaBayes converts them to 

gig files in GigaBuild. The entire process was painfully slow. To speed up the 

variation calling pipeline, an optimized gig file writer was added to 

MosaikAssembler. 

SNP evaluation program 

GigaBayes produces a detailed output file, but does not include any utilities to assist 

in filtering and analyzing the data. To remedy this, a SNP evaluation program was 

created that filtered GigaBayes results according to inter-SNP distance and P(SNP). 

Also, it computed the overlaps between our called variants and HapMap3 genotypes, 

confirmed SNPs from dbSNP, and confirmed variant calls from other labs 

(Supplementary Figure 4). 

3.3.3. Initial alignment and SNP calling 

From November to December 2008, the first iteration of alignments and variant 

calling was performed. This gave us the opportunity to streamline and fix bugs in 

our pipeline.  

Duplicate filtering 

In previous projects, the sequencing libraries produced by collaborators exhibited 

high complexity. A sequencing library is said to have low complexity when the same 
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fragment is sequenced several times. Some of our 1000 Genomes Project read data, 

mainly Roche 454 read data obtained from the Baylor College of Medicine, were 

highly redundant (Figure 3.5). To prevent the duplicate fragments from skewing our 

SNP discovery, MosaikDupSnoop (Figure 2.15) was created to filter the duplicate 

paired-end reads. In an early batch of Roche 454 runs, an average of 36 % of the 

resolved paired-end reads were duplicates (Figure 3.6). In subsequent runs, 

modifications of sequencing library preparation reduced the average percentage of 

duplicates to 16 %. In the single-end runs, 5 % of the fragments were marked as 

duplicates (Figure 3.7). The difference between the improved paired-end and single-

end duplicate fractions is most likely caused by inefficiencies during the mate-pair 

circularization and capture (discussed in Section 1.2.4). The single-end duplicate 

removal algorithm only removes reads that share the same endpoints, whereas a 

small tolerance of 2 bp in the endpoints is accepted when removing duplicates in 

paired-end reads. The tolerance allows for tiny differences in fragment length due to 

454 reads starting or ending with homopolymers or due to local alignments skipping 

sequencing errors. 
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Figure 3.5. Duplicate Roche 454 reads. This figure shows one distinct fragment in the forward 

orientation and two (possibly three) fragments in the reverse orientation despite having ten reads. 

 

Figure 3.6. Duplicate removal in paired-end 454 runs. The percentage of concordant read-pairs that 

remain after duplicate removal (green). 
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Figure 3.7. Duplicate removal in single-end 454 runs. The percentage of unique single-end reads after 

duplicate removal (green). 

Read alignment  

MOSAIK was used to align paired-end reads from both the Roche 454 and Illumina 

data sets. Up to four mismatches were allowed when aligning the Illumina reads and 

up to 5 % of the bases in a Roche 454 read were allowed to have a mismatch. The 

maximum number of reference sequence locations evaluated for each hash (mhp) 

was set to 100. This setting provides a performance boost at the cost of missing some 

alignments with highly repetitive hashes.  

When resolving paired-end reads, we filtered out reads where both mates 

aligned non-uniquely.  Reads where both mates are non-unique tend to occur in 
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mates is represented in the discovered alignments. Including this class of reads tends 

to increase the overall alignment rate. However by excluding this class, the overall 

misalignment rate is reduced to 0.05 %. 

After paired-end resolution, each run was screened for duplicates and merged 

into one alignment archive file. This file contained nearly 35x of overall genome 

coverage from the three trio family members. MosaikAssembler was used to create a 

multiple sequence alignment from the alignment archive and to export the results 

into the GigaBayes gig file format. 

SNP discovery 

GigaBayes was used to perform SNP and short-INDEL discovery using the gig files. 

This was the first time GigaBayes had been tested using a new trio-aware SNP 

discovery algorithm that takes advantage of the additional information about how 

samples are related to one another. The following filters were used with either 

GigaBayes or the SNP evaluation program: 

1. Sites where P(SNP) (the posterior probability that a site is polymorphic) was 

less than 0.999 were discarded 

2. Bases that had a quality score less than 10 were ignored 

3. Sites where there were fewer than two reads for each allele were discarded 

4. Sites where the minor allele was not observed on both strands were discarded 

5. Sites that were within 12 bp of another SNP candidate were discarded. 
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SNP candidates that occurred within 12 bp of each other were less likely to overlap 

with SNPs in either dbSNP or WTSI SNP data sets (Figure 3.8). Visual inspection of 

the alignments revealed that clusters of nearby SNPs were often caused by 

systematic misalignments. Most of the misalignments had a minor allele that was 

present only on one of the strands. The mhp parameter was configured to use a 

maximum of 100 positions per hash. If the mhp parameter is set too low, the risk is 

that the positions needed to properly align a read will not be present. The alignments 

that had a minor allele only on one strand probably aligned better to other parts of 

the genome, but the aligner lacked the necessary information to find those locations. 

 

Figure 3.8. SNP candidates that occur close to each other tend to be associated with calls made only by 

GigaBayes. 
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A total of 3,396,969 SNP candidates were identified in our data set giving a 

mutation rate of one SNP per 907 bp between members of the trio. In comparison, the 

Wellcome Trust Sanger Institute (WTSI) data set features 4,496,207 SNP candidates 

which translates to a mutation rate of one SNP per 685 bp. Using only the released 

454 and Illumina paired-end data, our aligned read coverage was roughly one half of 

the coverage featured in the WTSI data set. Besides differences in the alignment and 

SNP discovery algorithms used by each group, the difference in aligned read 

coverage seems to explain the observed decreased detection efficiency. 

 Two hundred SNPs were randomly chosen from the SNPs that were unique to 

our GigaBayes calls. These SNPs did not overlap with dbSNP (129), HapMap3, or the 

WTSI SNP calls. This strategy was chosen since the overlapping calls should have a 

high rate of validation, and we were curious how well the unique calls would 

validate. Correspondence with Richard Durbin revealed that his SNP caller 

considered 195 of those sites to be homozygous reference calls and the remaining five 

sites were filtered out for various reasons. 

 Our SNP calls were validated with a Sequenom SNP genotyping assay at the 

Broad Institute. The Sequenom assay is based on multiplex PCR followed by a single 

base primer extension reaction116. The extension products are then analyzed using 

MALDI TOF mass spectroscopy. Of the submitted 200 SNP candidates, 193 were 

successfully assayed. 33 SNP candidates validated giving us a 17.1 % validation rate 

in the SNP calls that were unique to GigaBayes. If all the overlapping SNP candidates 
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were to validate successfully, the upper bound of our validation rate would be at 

87.5 %. Since we assume that a few of the SNPs that exclusively overlap with the 

WTSI data will fail to validate, the actual validation rate is probably slightly lower. 

3.3.4. Re-alignment and INDEL calling 

Bug fixes 

Due to the high false positive rate observed in the SNP validation results, both the 

alignment and the SNP calling algorithms were scrutinized. During this evaluation, 

bugs were identified in both MOSAIK and GigaBayes. To make homopolymer 

INDELs line up properly in the multiple sequence alignment file, MOSAIK has a 

homopolymer correction algorithm that moves bases in a large insertion to the 5’ end 

and moves all the gaps to the 3’ end. Under some circumstances, this algorithm 

would fail and produce strange results that might induce false positive SNP 

candidates from GigaBayes. In addition, it was observed that false positives tend to 

occur in highly repetitive regions. To counteract this, the number of reference 

sequence locations evaluated per hash (mhp) was increased five-fold to 500. This 

improved MOSAIK’s ability to determine if a read could be aligned uniquely or non-

uniquely. 

 When visually analyzing the false positive SNP calls in the multiple sequence 

alignment, a pattern began to emerge. Usually, a SNP was observed on one strand 

but not the other strand. This behavior resulted from alignment artifacts. An option 

was added to GigaBayes in the previous SNP calling iteration to filter these events, 
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but it was implemented incorrectly. That version included an option where the read 

coverage for the minor allele on both strands was required to be greater than a user-

specified threshold. After the bug fix, the new version checked that a minimum 

number of minor alleles were found on each strand. By forcing all SNP calls to have 

two minor alleles on each strand, 150 of the 160 false positive SNP calls that were 

assayed using Sequenom disappeared. The updated option effectively increased the 

minimum coverage from 4x to 8x, however the increase in required coverage was 

unlikely to be the mitigating factor since the median coverage for the CEU trio was 

24x per individual. 

Read alignment 

MOSAIK was used to align all the reads in the pilot 2 Roche 454 and Illumina data 

sets. Using our nine node computational cluster, it took almost 9.4 days for the entire 

alignment and variant calling pipeline to process 6.1 billion reads (393 Gb or 128x 

total read coverage) (Figure 3.9). The overall alignment speed was a bit slower 

because of the large number of reference sequence locations evaluated per hash (mhp 

500). No other modifications were made to the read alignment protocol. 
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Figure 3.9.  Read alignment and variant calling pipeline time. The figure shows the duration of time 

spent with each program in the pipeline. MosaikAligner, MosaikSort, and GigaBayes were executed in 

parallel on the cluster. The remaining programs were executed serially. 

Short-INDEL discovery 

Shortly after validating the previous iteration of SNP calls, the 1000 Genomes Project 

was interested in investigating how well the different pipelines perform when calling 

short-INDELs. To avoid the homopolymer artifacts that complicate Roche 454 

alignments, a decision was made to only use the Illumina data set for short-INDEL 

discovery. The following filters were used with either GigaBayes or the SNP 

evaluation program: 

1. Sites where P(SNP) (the posterior probability that a site is polymorphic) was 

less than 0.999 were discarded 

2. Bases that had a quality score less than 10 were ignored 

3. Sites where there were fewer than two minor alleles on each strand were 

discarded 

4. Sites that were within 6 bp of another SNP candidate were discarded. 
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 SNP candidates that occurred within 6 bp of each other were less likely to overlap 

with SNPs in either dbSNP or WTSI SNP data sets (Figure 3.10). 

 

Figure 3.10. SNP candidates that occur close to each other tend to be associated with calls made only 

by GigaBayes. 
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kb. In comparison, the WTSI data set features 4,496,207 SNP candidates, which 
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 Gerton Lunter from the Department of Physiology, Anatomy and Genetics at 
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University of Oxford performed the best compared with the algorithms used at the 

National Human Genetics Research Institute (NHGRI), the Wellcome Trust Sanger 

Institute (WTSI), and Yale University. The University of Oxford performed slightly 

better when detecting 1 bp insertions and deletions, and we performed slightly better 

when detecting insertions and deletions in homopolymer regions (Figure 3.11). 

 

Figure 3.11. Short-INDEL validation results for 1 bp INDELs, as well as INDELs occurring in 

homopolymer runs. 
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remedied. These improvements have contributed to the successful results produced 

by the Marth Lab in subsequent 1000 Genomes Project analysis studies. 
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4. Mobile element insertion discovery 

4.1. Introduction 

Mobile elements (ME) are endogenous genomic sequences that transpose or 

retrotranspose into locations across the host genomes117. Most annotated MEs found 

in the human genome are no longer active; only a few types of mobile elements are 

responsible for most of the ME polymorphism among Homo sapiens. These include 

various subclasses of the 300 bp ALU elements, the 6 kb L1 elements, and the 1.5 kb 

SVA elements118. Mobile element insertions (MEI) are known to cause significant 

structural variation within Homo sapiens119,120. Furthermore, they are contributors to 

disease121, are used in population studies, and have diverse functional impact119,120,122. 

MEI events are observed either as deletions or insertions when one genome 

sequence is compared with another. Mechanistically, both types of observations are 

due to insertions since precise excisions of MEs are rare117 . The availability of two 

fully assembled human genomes16,18 enabled the first genome-wide comparisons of 

mobile element polymorphisms to date123,124, and the identification of novel loci 

containing mobile elements. Recently published genomes90,125-128 based on reference-

guided alignments on massively parallel sequenced short-read data have largely 

omitted the detection of mobile element insertions. 

We introduce two methods that identify novel mobile element insertions. The 

first method uses a tool developed in our lab, Spanner73, to perform MEI discovery in 

Illumina paired-end data sets (Figure 4.1A). The second method uses MOSAIK to 
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perform split-read alignments on Roche 454 data sets (Figure 4.1B). These methods 

were applied to the data sets from the low coverage and deeply sequenced trio 

studies in the 1000 Genomes Project. This chapter will focus on my work developing 

the split-read method. The Illumina read pair method will be described briefly, but 

will otherwise remain beyond the scope of this thesis. However, the results from 

both methods will be discussed with respect to validation rates and detection 

efficiency. 

 

Figure 4.1. Mobile element insertion discovery methods with respect to the sample genome. (a) Roche 

454 reads are aligned to a collection of transposable element consensus sequences and then the 

unaligned portion of the read is aligned back to the human genome. Each split-read alignment 

traverses at least one of the breakpoints in the mobile element insertion. (b) Illumina paired-end reads 

are aligned to both the human genome and the collection of transposable element consensus 

sequences. Our structural variation tool, SPANNER, uses these alignments to detect potential mobile 

element insertions. SPANNER detects discordant paired-end reads where one mate aligns uniquely to 

the genome and the other aligns to one of the transposable elements. 

4.2. Data 

4.2.1. 1000 Genomes Project data sets 

Previously, SNP and INDEL calling was performed in the 1000 Genomes Project 

using the high coverage European trio dataset (Section 3.3). For this study, all the 

Roche 454 and Illumina reads from the low coverage (pilot 1) and high coverage 
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(pilot 2) studies were used. Pilots 1 and 2 represent different strategies for 

discovering genetic variants.  

In Pilot 1, roughly 180 individuals have been sequenced at low coverage. It is 

problematic to detect a genetic variant in a single individual using a low coverage 

data set; however, the chance of detecting that genetic variant increases as more 

individuals are sampled. Twenty-two individuals were sequenced using the Roche 

454 platform generating an average of 2.2x aligned read coverage for each individual. 

In contrast, 138 individuals were sequenced with the Illumina platform generating an 

average of 3.2x aligned read coverage for each individual. 

In pilot 2, a European and a Yoruban family (trios) were sequenced to high 

coverage. Using deeply sequenced trios, the probability of finding most of the genetic 

variants in individuals is much higher than in pilot 1. On the other hand, it is less 

powerful than pilot 1 at elucidating genetic variants that persist in a given 

population. All six individuals for pilot 2 were sequenced on the Illumina platform 

generating an average of 24x aligned read coverage for each individual. In contrast, 

only the two children in each family were sequenced using the Roche 454 platform, 

generating an average of 8.7x aligned read coverage for each child. 

4.2.2. James Watson data set 

In addition to the 1000 Genomes Project data sets, the reads belonging to James 

Watson’s genome128 were downloaded from the Short Read Archive129. The main 

study originally had 7.4x read coverage, but only 19.2 Gb of reads (6.2x) were 
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available for download. Dr. Watson requested that all data surrounding or sharing 

haplotype structure with the ApoE gene (associated with late onset Alzheimer’s 

disease) be redacted, but that would not account for nearly 1.2x coverage of missing 

sequence data. 

4.2.3. Mobile element annotations 

The consensus sequences for many subfamilies of Alu, SVA, and L1 mobile elements 

were extracted from RepBase130 annotations. The locations where these mobile 

elements occur in the human genome (NCBI36 / hg18)16 were extracted from the 

RepeatMasker101 annotations.  A mobile element reference sequence was created 

using the mobile element subfamilies found in RepBase. A total of 23 AluY, 6 AluS, 1 

SVA, and 22 LINE1 mobile element consensus sequences were used in the mobile 

element reference sequence (Supplementary Figure 5). 

4.3. Roche 454 split-read method 

4.3.1. Aligning the data sets to the human genome 

MOSAIK was used to align all the Roche 454 and Illumina reads from the 1000 

Genomes Project pilots 1 and 2. The reads were aligned to a composite reference 

sequence consisting of both the human genome and the mobile elements consensus 

sequences. The jump database, used by MOSAIK to store hash locations in the 

reference sequence, was modified to prioritize alignments to the mobile element 

references. This guarantees that we will always know if a read aligns to one of the 
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mobile element subfamilies even if the reads were aligned with less sensitive 

alignment parameters. Similarly, the local alignment search option was used to 

rescue alignments in the Illumina paired-end data sets that might otherwise be 

missed by less sensitive alignment parameters. Also, MOSAIK was configured to 

store all reads that did not align to either the genome or the mobile element 

consensus sequences in a fastq file. These unaligned reads represent the subset of 

reads that are most likely to align to regions not represented in the reference genome. 

4.3.2. Aligning the data set to the mobile elements 

MOSAIK was used to align all the unaligned Roche 454 reads to the mobile element 

consensus sequences. We seeded the alignments with a 15 bp hash, allowed up to 

5 % of the bases to have a mismatch with respect to the reference, and added the 

constraint that at least 40 bp of the read must align to the mobile element references. 

Approximately 0.5 % of the mate-pair reads and 0.9 % of the single-end reads aligned 

to the mobile element consensus sequences (Figure 4.2A). 
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Figure 4.2. Overview of the Roche 454 split-read method. Starting with more than 100 million 

unaligned reads, roughly 4000 mobile element insertion candidates are found after split-read 

alignment and filtering. 

4.3.3. Read trimming and aligning the data set to the genome 

A program was created, MoblistTrimmer, which scans the alignments for each 

aligned read and records the target region where the read aligned to a mobile 

element. If multiple overlapping alignments are found, the target region is expanded 

to cover the overlapping alignments. More than 99.9 % of the aligned reads will have 

only one target region. In these cases, the unaligned sections before and after the 

target region are compared. The longer unaligned section is kept, while the 

remainder of the read is trimmed. If multiple non-overlapping target regions are 

found, the read is discarded. If less than 40 bp remained after trimming, the read was 

discarded. Twenty-five percent of the mate-pair reads and 44 % of the single-end 

reads from the previous step remained after trimming (Figure 4.2B). 

The trimmed reads were aligned to the human genome using the sample 

alignment parameters that were used previously. Forty-six percent of the mate-pair 
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and 54 % of the trimmed singled-end reads aligned back to the human genome 

(Figure 4.2C).  

4.3.4. Joining the split-read alignments 

Another program was created, DetectNovelSplitReadEvents, which combines the 

results from both alignment runs and stores them in an MEI candidate file format. 

DetectNovelSplitReadEvents discards all reads that align to multiple locations in the 

human genome. The remaining reads are realigned to the human genome using 

sensitive alignment parameters: up to 9 % of the bases are allowed to have a 

mismatch with respect to the reference and the alignment must be at least 90 % of the 

original read length. The realignment helps identify reads that were initially 

unaligned because less-sensitive alignment parameters were used and therefore 

reduces the number of false positives. The aligned read names are then fed back into 

DetectNovelSplitReadEvents, which produces a filtered MEI candidate file. 

4.3.5. Producing the MEI candidates for the Watson genome 

The Roche 454 split-read method was also applied to the Watson genome. The 

protocol was modified to fit time constraints. Instead of first aligning the reads to the 

human genome and collecting the unaligned reads, the Watson reads were aligned 

directly to the mobile element consensus sequences. The realignment that takes place 

after the first pass of DetectNovelSplitReadEvents removes the split-reads that 

already occur in the human reference sequence (Figure 4.3A). 
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Figure 4.3. Applying the modified Roche 454 split-read method to the Watson data set. Starting with 

more than 76 million reads, roughly 5000 mobile element insertion candidates are found after split-

read alignment and filtering. 

4.3.6. Additional filtering and split-read clustering 

In each aligned read, there can be up to three unaligned regions: a gap occurring 

before the genomic hit (genome gap), a gap occurring after the mobile element hit 

(mobile element gap), and a gap occurring between the genomic and mobile element 

hits (mid gap) (Figure 4.4).  

 

Figure 4.4. Split-read alignment. Additional filtering was performed on the MEI candidates based on 

irregularities in the alignment and proximity to annotated mobile elements. 

 Deniz Kural (Boston College) led the effort to reduce the number of false 

positives in the MEI candidates and to cluster them into MEI events. All split-reads 

where the mid gap was larger than 6 bp were filtered. Reads were also filtered when 

the genome or mobile element gaps were larger than 6 bp, except when the read was 
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long enough to contain the entire mobile element. These filters helped remove false 

positives at the risk of removing some split-reads that might have transduced DNA 

(DNA that has been moved from one region of the genome to another region of the 

genome) proximal to the MEI. Split-reads with an alignment quality less than 40 

(greater than 0.01 % chance that the read was misaligned) and mobile element hits 

less than 60 bp were filtered. All split-reads that occurred within 100 bp of annotated 

Alus, L1s, and SVAs were also filtered. After filtering, only 2.8 % of the original MEI 

candidates remained from pilots 1 and 2 (Figure 4.2D), and 1.5 % of the original MEI 

candidates remained from the Watson data set (Figure 4.3B). 

 

Figure 4.5. Split-read clusters. Gray boxes indicate the target site duplication (TSD) occurring at each 

breakpoint. Yellow boxes indicate on which side of the genomic alignment, the mobile element 

alignment can be found. Figure (a) shows the event in the reference genome and (b) shows the same 

event in the sample genome. 
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 The split-reads were clustered together into MEI events. The minimum 

number of supporting reads was one, but most events had multiple supporting 

fragments with split-reads spanning both breakpoints (Figure 4.5). 

4.4. Illumina paired-end method 

Chip Stewart (Boston College) used his structural variation tool, Spanner73, to 

identify MEIs in 1000 Genomes Project pilots 1 and 2 using Illumina paired-end 

reads. Spanner filtered out concordant read-pairs. MEI candidates were chosen from 

paired-end reads where one mate sequence aligned uniquely to the genome with an 

alignment quality greater than 40, and the other mate sequence aligned to the mobile 

element consensus sequences. After clustering the candidates, an MEI event was 

called if supported by two paired-end reads. MEI events occurring within 400 bp of 

annotated mobile elements were discarded. 

4.5. Validation 

4.5.1. Candidate events 

A total of 9589 MEI events were detected individually from the Illumina paired-end 

and the Roche 454 split-read pipelines in the 1000 Genomes Project pilots 1 and 2. 

After consolidating the events from both methods, 5364 distinct MEI events were 

detected each being supported by candidates from an average of 16 individuals 

(Figure 4.6). Of the 5364 distinct MEI events, 633 overlap with loci found in previous 

studies124,131,132, leaving 4731 novel loci (Figure 4.7). A total of 974 MEI events were 

detected in the Watson genome by Roche 454 split-read pipeline. 



Enabling high-throughput sequencing data analysis with MOSAIK 101 

 
Michael P. Strömberg 

2010-03-16 

 

 

Figure 4.6. The empirical allele frequency spectrum for our MEIs in 156 individuals from both pilots 1 

and 2. Since most of our data has low coverage (2 – 3x), genotyping heterozygous MEIs is near 

impossible. Rather than representing allele counts in a diploid organism, the empirical allele 

frequency spectrum shows the percentage of all individuals that have a specified number of MEIs. 

 

Figure 4.7. MEI event overlaps with the Xing et al study124 and the MEIs contained in the online dbRIP* 

database131. 
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4.5.2. Validation results 

A random subset of 746 MEI events was chosen from the 5364 distinct MEI events for 

PCR validation to estimate false discovery rates (FDR) for our detection algorithms. 

The FDR for the Roche 454 split-read method was 3.3 % in pilot 1 and 5.4 % in pilot 2 

with an average FDR of 4.4 %. Similarly, the FDR for the Illumina paired-end method 

was 4.5 % in pilot 1 and 2.2 % in pilot 2 with an average FDR of 3.7 %. The FDR of 

both methods were within the Poisson error fluctuations of each other (Figure 4.8 

and Figure 4.9). In pilot 2, the paired-end method had a lower false discovery rate, 

which is probably due to the high coverage (~24x per individual) found in that data 

set.  

 

Figure 4.8. The false discovery rates of both 

methods in the pilot 1 study (low coverage with 

many individuals). 

 

Figure 4.9. The false discovery rates of both 

methods in the pilot 2 study (high coverage in 

two trios). 
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When combining the validation results between the two methods, Alus have 

an FDR of 2.2 %, L1s have an FDR of 18.1 %, and SVAs have an FDR of 27.0 %. The 

overall combined false positive rate was 4.5 %. 

In addition to the random subset of MEI events, other events were selected for 

validation experiments to confirm SVA insertions, unique MEI events in the CEU 

trio, and exon-interrupting events. A total of 850 MEI events were validated with 

PCR by our colleagues at Louisiana State University, Yale University, and the 

European Molecular Biology Laboratory (EMBL) in Heidelberg. The MEI events that 

were unique to the Watson genome were not validated since a public Watson DNA 

sample or cell line is not available. 

4.6. Analysis 

4.6.1. Detection efficiency in the trio children 

Chip Stewart (Boston College) analyzed the detection efficiency of each detection 

method, as well as the combined detection efficiency. The number of events detected 

(Ndet) are a composite of the true positives (Ndet|t) and the false positives (Ndet*FDR) 

(1). The detection efficiency (ε) is therefore the ratio of true positives to true events 

(2). The number of MEI events called in an individual can be expressed in terms of 

the FDR, detection efficiency, and number of true events for each method (3). NRP is 

the number of MEI events called using the Illumina paired-end method and NSR is 

the number of MEI events called using the Roche 454 split-read method. 
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Solving for the read-pair and split-read detection efficiencies would not help at this 

point since we do not know how many true events exist. Using equation (3) as a 

template, the number of MEI events called by the combined methods can be 

calculated (4). Using equation (4), we can solve for the read-pair and split-read 

detection efficiencies (5). The false discovery rate events that are called by both 

methods is essentially 0, therefore we can safely neglect the FDRSR*RP term. 
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Using these equations, the detection efficiencies for each method can be calculated 

with respect to the mobile element class (Table 4.1). The detection efficiency for the 

combined methods (εRP*SR) in the trio children is 90 % for Alus, 60 % for L1s, and 50 % 

for SVAs. 
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Table 4.1. The detection efficiencies of the Illumina paired-end method and the Roche 454 split read 

method for each mobile element class. NA12878 is the child in the European trio and NA19240 is the 

child in the Yoruban trio. 

 Individual NRP NSR NRP+SR RP SR 

Alu 
NA12878 733 817 570 71%   4 79%   5 

NA19240 932 675 473 71%   4 51%   3 

LINE1 
NA12878 80 109 31 29%  13 40%   9 

NA19240 92 80 30 40%  20 33%   7 

SVA 
NA12878 11 6 2 70%  40 40%  30 

NA19240 27 1 0 - - 

4.6.2. Classifying MEI events 

Of the 5364 MEI events, 5362 unambiguously belong to one of the three major mobile 

element classes (Alu, L1, SVA) based on the supporting MEI candidates. Of the 4496 

Alu MEI events, more than 95 % belong to the AluY subclass. Of the 789 L1 MEI 

events, more than 90 % belong to the L1HS subclass.  

4.6.3. Quantifying the number of ME events between two individuals 

Based on a previous study, it has been estimated that 11k mobile element (ME) 

events occur between the human reference genome and the chimpanzee reference 

genome133. Carlos Bustamante (Department of Genetics at Stanford University School 

of Medicine) recently presented results indicating that Yoruban and European 

populations diverged more than 700 Kya. Based on molecular data, the divergence 

between humans and chimpanzees has been estimated to occur roughly 6 - 7 Mya134. 

Using a constant molecular clock, we would expect roughly 1150 ME events between 

a Yoruban and European child. 
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Using the detected ME event counts, the false discovery rates, and the 

detection efficiencies, Chip Stewart calculated the number ME events (NAΔB) that 

occur between two individuals (A and B) (6). We have determined that 3255 ± 311 

ME events occur between the Yoruban and European child (Table 4.2). Our results 

are therefore within a factor of two of the constant molecular clock estimation above. 
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  (6) 
Table 4.2. The number of mobile elements estimated between two individuals with respect to mobile 

element class. * deletions were estimated using Spanner in the Illumina paired-end method. 

 ME insertions* ME deletions* Total 

 NA12878 NA19240 Relative NA12878 NA19240 Relative  

Alu 980 1134 1840±210 801 942 1010±200 2850±300 

LINE1 158 143 270±70 78 92 100±30 370±80 

SVA 15 28 30±25 19 24 25±10 55±30 

 

4.6.4. Investigating the overlap of MEI events in the European trio 

Using the MEI events detected with the Illumina paired-end method, the Alu and L1 

overlaps among the European trio family members were investigated. Most of the 

MEI events identified in the child (NA12878) were also identified in the parents 

(NA12891 and NA12892) (Figure 4.10 and Figure 4.11) 
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Figure 4.10. Alu MEI overlaps between the European trio family members. 

 

Figure 4.11. L1 MEI overlaps between the European trio family members. 

The 10 Alu MEI events that were private to the child were submitted for 

validation using PCR. The validation determined that all 10 events existed in the 

child and that at least one of the parents also shared those events. Those events were 

a result of a failure to detect the event in the parents rather than evidence of a de novo 

MEI event. 
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4.6.5. MEI event overlaps with gene annotations 

Many studies have shown that MEIs that occur in or proximal to genes have been 

associated with human disease135-137 and some disease-causing MEIs have been 

known to inactivate genes138,139. We used GENCODE annotations140 (v3b) to 

determine how many of our MEI events overlap with gene annotations ( 

Table 4.3). 
 

Table 4.3. MEI event overlap with GENCODE annotations. 

ME class Gene Exon 

Alu 1950 66 

L1 356 19 

SVA 41 1 

Total 2347 86 

 

The large number of MEI events that overlap the gene annotations, but not the 

exon annotations, suggests that many MEI events may be intronic. This is especially 

interesting considering that intron size has been associated with alternatively spliced 

genes and constitutively active genes141. MEI events that do not overlap with gene 

annotations suggest that many also occur in intergenic regions. 

4.6.6. Investigating the MEI population clusters 

To investigate how the MEI events cluster with respect to individuals, we created 

feature vectors out of the 375 PCR validated MEI events that occurred in the 25 

assayed individuals from pilot 1. Principle component analysis was then performed 

on these feature vectors and the first two principle components were used as XY-

coordinates (Figure 4.12). 
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Figure 4.12. Principle component analysis was used to elucidate clustering of 375 MEI events for 25 

individuals (circles). After clustering, circles were color coded according to population: Europeans 

(blue), Yorubans (red), Chinese (green), and Japanese (purple).  

 

The results from the principle component analysis feature three well-segregated 

clusters that correspond to the three major HapMap66 populations (European (CEU), 

Yoruban (YRI), and Chinese/Japanese (CHB/JPT)). Genetic markers such as SNPs 

have been shown to segregate similarly in the HapMap populations66. This suggests 

that MEI events behave similarly to other genetic markers when analyzing human 

populations. 

4.7. Summary 

Perhaps the most significant outcome of this study is that our group was able to infer 

that two individuals of distant ancestry differ by approximately 3255 ME events. This 

represents the first time a group has been able to make such a qualified estimate and 
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provide a breakdown of how many Alus, L1s, and SVAs are expected between two 

individuals. With 5364 detected MEI events, our study represents the largest catalog 

of such events to date124,131. The low false discovery rates measured in the Roche 454 

split-read and Illumina paired-end methods are promising and indicate that most 

detected MEI events are probably true. 

 We are investigating ways of improving the sensitivity of our methods. The 

detection efficiency of our methods on Alu MEI events was high, yet the detection 

efficiencies on L1 and SVA MEI events were a bit lower. Alus almost never have 

transduced DNA associated with their insertions, but L1s and SVAs often have 

transduced DNA that follows them upon insertion. As a result, improved methods 

are being evaluated that improve the detection efficiency for MEIs that have 

transduced DNA. For example, the poly-A sequence on the 3’ ends of novel 

insertions may be different from the consensus sequences found in RepBase. The 

difficulty of base calling long homopolymers in 454 sequencing might also affect the 

length of the 3’ poly-A sequence. Both of these situations indicate that the strategy of 

filtering according to genome gap, mid gap, and mobile element gap should be 

updated to improve detection of MEIs with transduced DNA. 

 Like many scientific endeavors, this study raises more questions than answers. 

Our group is looking into the possibility of running RNA-Seq experiments to find 

mobile elements actively undergoing transcription. We are also experimenting with 

different techniques of dating the various MEI events using data sets with interesting 
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divergence times compared with modern human populations142,143. Finally, we are 

interested in using transduced DNA sequences to look for patterns where MEIs 

originate and where MEIs accumulate in the human genome. 
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5. Concluding Remarks 

The sequencing technologies that have emerged on the market are already changing 

the landscape of computational biology. In the past several years, next generation 

sequencing platforms have enabled methods such as ChIP-Seq, RNA-Seq, target-

capture sequencing, whole genome methylation studies, and structural variation 

discovery23. These methods have in turn enabled labs to perform experiments that 

were either too costly or impractical just a few years ago. The challenge is to identify 

key trends in sequencing technology and predict how these trends will enable or 

affect the research conducted in the Marth Lab. 

5.1. Upcoming sequencing technologies 

At the Advances in Genome Biology and Technology (AGBT) meeting this year, 

attendees were excited about all the new sequencing technologies that were being 

announced. Applied Biosystems released their SOLiD 4 platform and Illumina 

released their HiSeq 2000 platform. Both were essentially iterative updates that 

announced improvements in sequencing throughput and slightly lower error 

profiles. Most of the excitement, however, revolved around sequencing technologies 

offering longer reads and sequencing technologies offering low cost runs. 

5.1.1. Ion Torrent 

The original founder of 454 Life Sciences, Jonathan Rothberg presented the Ion 

Torrent sequencer. The technology builds on the observation that whenever a 
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nucleotide is incorporated by a DNA polymerase, a H+ ion is released. Similar to the 

Roche 454 platform, nucleotides are introduced one at a time to an ION 

semiconductor chip that has been prepared much like a picotiter plate. Every time 

one or more nucleotides are incorporated, the pH level varies accordingly. Early 

results show the system has no problem distinguishing between homopolymers up 

to 6 bp long. The price point is what made the system appealing. The machine will 

cost less than $50k and each run will cost less than $500. 

5.1.2. Life Technologies single-molecule sequencing platform 

Life Technologies acquired VisiGen Biotechnologies back in 2008. Since then they 

have been working on a single-molecule sequencing platform that tethers 10 nm 

quantum dots to a DNA polymerase. The quantum dots are comprised of a CdSe 

core and a ZnS outer shell and when illuminated by a TIRF laser, provide the DNA 

polymerase with ATP for the next incorporation. They refer to the quantum dot-

DNA polymerase constructs as sequencers. It was mentioned that after a while, the 

laser contributes to the degradation of the DNA polymerase which occurs after a 

fundamental read length of 1.0 – 1.5 kb has been reached. The interesting bit is that 

sequencers can be washed away and replaced with a new batch that will continue 

where the previous sequencers left off. It was unclear how much sequence data can 

be produced per run or how many times the sequencers can be exchanged. The 

sequencing technology is expected to be evaluated by early access customers at the 

end of the 2010. 
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5.1.3. Pacific Biosciences SMRT 

The Pacific Biosciences platform uses a plate filled with zero-mode waveguides 

containing a DNA polymerase at the bottom of each waveguide. Fluorescently 

labeled nucleotides are detected during incorporation by the DNA polymerase. 

Approximately 80k reads are produced per run and they conform to an exponential 

read length distribution. It was mentioned that the tail end of the distribution 

sometimes show 10 - 20 kb reads. Similar to Helicos, dark bases result when the 

duration of the fluorophore emission is less than the detection interval. The SMRT 

machines are being delivered to early access customers during the summer of 2010. 

5.2. High performance computing 

As sequencing technologies generate more data, the analysis pipeline will become a 

larger bottleneck. Many labs are investigating alternatives to purchasing large 

computational clusters. In this regard, general purpose computation on graphics 

processing units (GPGPU)144 and cloud computing145 have recently been used in a 

few computational biology labs. 

 Back in 2007, NVIDIA created a parallel computing architecture called CUDA 

(compute unified device architecture). CUDA allows programmers to use the 

processing power available from modern high-performance graphics cards to speed 

up computationally expensive tasks. When a well-known reference-guided aligner, 

MUMmer, was modified to use a $130 graphics card, it achieved a 10x speedup when 

compared with the serial CPU version146. NVIDIA has also created the Tesla desktop 



Enabling high-throughput sequencing data analysis with MOSAIK 115 

 
Michael P. Strömberg 

2010-03-16 

 

supercomputer which offers the 250 times the performance of standard PC for a hefty 

$10k. It would be an interesting experiment to move the pairwise alignment code in 

MOSAIK to the graphics processing units and see what sorts of gains can be made. 

 The Amazon Elastic Compute Cloud (EC2)147 is currently the most popular 

commercial cloud computing service. Amazon charges an hourly fee based on what 

sorts of nodes are needed. For high-memory instances equipped with 34.2 GB of 

RAM and four processor cores, the hourly fee is currently $1.20 per hour. If 

MOSAIK’s memory footprint can be reduced to under 7.5 GB RAM, an instance with 

two processor cores will cost $0.34 per hour. If additional persistent storage is 

needed, the Amazon Simple Storage Service (S3)148 offers disk storage for $153 per TB 

per month. Finally the network bandwidth between the cloud and the outside world 

costs $0.15 per GB transferred. While this price structure might not be ideal for huge 

genome centers, it allows smaller labs to significantly increase their computational 

power at a moment’s notice. 

 Besides public cloud facilities such as Amazon EC2, cloud computing can be 

implemented in a department using the open source Hadoop149 software. Hadoop 

offers the MapReduce150 software framework which allows applications to effectively 

apply the divide and conquer computational technique. Some bioinformatics tools 

and languages, such as CloudBurst151, the Genome Analysis Toolkit55, and 

BioPython152, already incorporate the MapReduce algorithm. 
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With respect to MOSAIK, MapReduce could be implemented by dividing the 

genome equally between computational nodes, performing pairwise alignments on 

those nodes, and using the reduce operation to collect the results from each node. 

GigaBayes/BamBayes could map a set of reference locations to a set of computational 

nodes and use the reduce operation to collect the set of SNP and short-INDEL calls.  

The Hadoop file system153 (HDFS) is a distributed file system that can make 

these sorts of analyses more practical. HDFS is a fault-tolerant file system that 

ensures that data exists on at least three nodes. By using parity blocks, HDFS reduces 

the overhead of this replication from 3x to about 2x. The advantage of HDFS is that it 

scales better than the Network File System (NFS) protocol used in most UNIX 

environments. When 30 computational nodes need to access the same data, it may be 

more efficient to use a distributed file system. 

5.3. Challenges to MOSAIK development 

The newer sequencing technologies are offering in some cases much higher 

throughput than before and in other cases offering very long reads. The challenge is 

to modify MOSAIK to handle both extremes. MOSAIK currently pairwise aligns 

reads using the Smith-Waterman algorithm. The computational complexity of the 

Smith-Waterman algorithm makes long read alignment prohibitively slow. 

Alternatives such as implementing a BLAT- or BLAST-like algorithm should be 

considered. The current version of the Pacific Biosciences read aligner uses a suffix-

tree approach that is similar to the MUMMER algorithm to quickly align long reads. 
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 One of the caveats with single-molecule sequencing technologies such as the 

Pacific Biosciences SMRT or Helicos Heliscope platform is that bases are sometimes 

not registered and therefore show up as missing or dark bases. The current 

generation of gapped aligners uses gap penalties that are based on biological 

approximations on how often an insertion or deletion is expected. To be effective, 

two parallel gap scoring mechanisms will be needed. One that handles dark and 

missing bases and another that handles biologically relevant insertions and deletions. 

 Further emphasis on making MOSAIK a user-friendly platform will also be 

required. One idea is to use an automatic data set analysis tool to explore a data set 

of reads to determine the optimal alignment parameters. By examining the base 

quality distribution, the read length, and the known error profile for that sequencing 

technology, the analysis tool would be able to suggest a certain number of 

mismatches be used when aligning the data. This functionality can be extended to 

automatically detect the presence of sequencing adaptors that should be trimmed 

away from the reads. 

 Cloud computing and GPGPU programming was discussed in Section 5.2. 

However, pairwise alignments can be made much faster using normal processors by 

techniques such as single instruction, multiple data (SIMD)154,155 processing. With 

some extra effort, programs can exploit the parallel nature of the processor 

instruction pipelines using SIMD instructions (called intrinsics) in C++ code. Some 

Smith-Waterman implementations have already seen up to 18x improvements in 
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alignment speed by using these SIMD intrinsics156,157. Even a 10-fold improvement in 

alignment speed would be remarkable in MOSAIK. The caveat is that these 

implementations only provide the forward Smith-Waterman algorithm (enough to 

produce a score), but do not feature the backtrace functionality required to reproduce 

the pairwise alignment. 

 The current alignment quality models were based on Roche 454 and Illumina 

reads. Roche 454 reads have more insertion and deletion errors than substitution 

errors. Illumina reads have more substitution errors than insertion and deletion 

errors. These models are then applied to other sequencing technologies that exhibit 

similar error profiles. Ideally, customized models should be generated for each 

sequencing technology. 

5.4. Conclusion 

MOSAIK has been used extensively in our lab to provide alignments for our genetic 

variant discovery studies. In our work with the 1000 Genomes Project Consortium, 

we have produced some of the best SNP, short-INDEL, and structural variation 

results, despite competing with groups with more resources. Many of the 

improvements made in MOSAIK have been the result of working in demanding 

analysis projects such as the C. elegans study, the P. stipitis study, and the 1000 

Genomes Project pilot 2 study. With each development cycle, MOSAIK becomes 

more robust, which leads to more research labs adopting it for their experiments. I 

want to stress that leading analysis sessions during sequencing workshops has been 
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just as important for the development of MOSAIK as our own internal analysis 

studies. At these workshops I learn how other groups are trying to analyze their 

data. Often some minor changes in my code can make a huge difference for an entire 

research group. 
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Supplementary Figures 

 
 

Figure S1. Jump database data structure. In this example, the reference sequence is 

divided into overlapping 4 bp hashes. The key structure is a sparse matrix where 

each slot in the key structure contains a 5 byte file offset for the position structure. 

The key database uses 5 * 4hash_size bytes of memory. To find the correct offset in the 

key structure we use the following equation: 

 
𝑘𝑒𝑦offset = 5 ∙ ℎ𝑎𝑠ℎ2-bit 

 

For example, the hash AAAG in two-bit notation equals the number 3 when 

converted to a number. Jumping to byte 15 (5 * 3) in the key structure reveals that we 

can find the appropriate reference sequence locations at byte 20 in the position 

structure. 

 

The hash AATT in two-bit notation equals the number 16 when converted to a 

number. Jumping to byte 80 (5 * 16) in the key structure reveals that we can find the 

appropriate reference sequence locations at byte 8 in the position structure. 

 

The position structure is tightly packed and uses 4 * (nhashes + npositions) bytes of 

memory. The first unsigned integer reveals the number of positions that are 

associated with that hash. The positions (unsigned integers) are given in the 

aggregate coordinate system where positions on chromosome 2 will have coordinates 

larger than the positions on chromosome 1. 

 

The metadata structure contains an unsigned byte indicating the hash size used 

when creating the jump database. The aligner checks that the hash size specified by 

the user is the same as the hash size that was used when creating the jump database. 



Enabling high-throughput sequencing data analysis with MOSAIK 121 

 
Michael P. Strömberg 

2010-03-16 

 

 

Figure S2. MOSAIK Alignment Archive Header. Statistics (total number of reads and bases) are kept 

in the header to facilitate quick retrieval. Status flags and sequencing technology enable downstream 

MOSAIK tools to remember how a data set was aligned. Read group records contain metadata related 

to the underlying sequences. Reference sequence records contain information related to how many 

reads aligned to a particular reference sequence in addition to reference name, species name, genome 

assembly ID, and the uniform resource identifier (URI). 

 

When an insertion is noted in an alignment, the location and length of the insertion is noted. 

Recording these reference gaps help speed up the multiple sequence alignment creation in 

MosaikAssembler. 

 

Tags are supported throughout the alignment archive in an attempt at making the alignment archive 

format resilient to additional fields that may be added in the future. 
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Figure S3. MOSAIK Alignment Archive Data. Each partition contains up to 20,000 aligned reads. 

When a partition fills up, the partition is compressed using the FastLZ algorithm. Each aligned read 

can contain any number of mate1 and mate2 alignments.  

 

The packed pairwise alignment in the alignment data record converts the reference and query 

alignment into 4-bit notation. The reference alignment is then packed into the upper word of the query 

alignment. A 35 bp pairwise alignment will therefore only use 35 bytes instead of 70 bytes. 

 

The read index is stored at the end of the alignment archive. In sorted files, it stores the last reference 

sequence index and last alignment start coordinate for each compressed partition. The index 

guarantees that the jump function will always find the closest point (within 20,000 alignments) before 

the desired alignment. Typical search times are on the order of half a second. 
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------------------------------------------------------------------------------ 
AnalyzeSNPs                                                         2010-02-10 
Michael Stromberg                 Marth Lab, Boston College Biology Department 
------------------------------------------------------------------------------ 
 
Initialization 
- loading reference sequence... finished. 
- loading Sanger SNPs...         338747 positions loaded. 
- loading dbSNP SNPs...         1129748 positions loaded. 
- loading Sanger INDELs...        24723 positions loaded. 
- loading HapMap3 SNPs...         56071 positions loaded. 
- loading GigaBayes variants... 409625 positions loaded. 
 
Filtering 
- merging consecutive SNPs... finished. 
- merging consecutive INDELs... finished. 
- calculating inter-SNP distance... finished. 
- applying distance threshold to SNPs... finished. 
- applying distance threshold to INDELs... finished. 
 
Comparison 
- comparing GigaBayes SNPs with dbSNP, Sanger, and HapMap3... finished. 
- comparing GigaBayes INDELs with Sanger... finished. 
 
Statistics 
GigaBayes (unfiltered) 
================================================= 
# SNPs:                          361619 
# INDELs:                         48006 
# unknown:                            0 
 
GigaBayes SNPs 
================================================= 
# Sanger SNPs in GigaBayes:      226505 ( 66.9 %) 
# Sanger SNPs not in GigaBayes:  112242 ( 33.1 %) 
 
# GigaBayes SNPs in dbSNP:       206373 ( 80.5 %) 
# GigaBayes SNPs not in dbSNP:    49962 ( 19.5 %) 
 
# dbSNP SNPs found:              206372 ( 18.3 %) 
# dbSNP SNPs missed:             923376 ( 81.7 %) 
 
# GigaBayes SNPs in HapMap:       53612 ( 20.9 %) 
# GigaBayes SNPs not in HapMap:  202723 ( 79.1 %) 
 
# HapMap SNPs found:              53612 ( 95.6 %) 
# HapMap SNPs missed:              2459 (  4.4 %) 
 
Sanger SNPs 
================================================= 
# GigaBayes SNPs in Sanger:      226505 ( 88.4 %) 
# GigaBayes SNPs not in Sanger:   29830 ( 11.6 %) 
 
# Sanger SNPs in dbSNP:          297074 ( 87.7 %) 
# Sanger SNPs not in dbSNP:       41673 ( 12.3 %) 
 
# dbSNP SNPs found by Sanger:    297074 ( 26.3 %) 
# dbSNP SNPs missed by Sanger:   832674 ( 73.7 %) 
 
# Sanger SNPs in HapMap:          55264 ( 16.3 %) 
# Sanger SNPs not in HapMap:     283483 ( 83.7 %) 
 
# HapMap SNPs found by Sanger:    55264 ( 98.6 %) 
# HapMap SNPs missed by Sanger:     807 (  1.4 %) 
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Sanger INDELs 
=================================================== 
# GigaBayes INDELs in Sanger:       19362 ( 58.2 %) 
# GigaBayes INDELs not in Sanger:   13895 ( 41.8 %) 
# Sanger INDELs not in GigaBayes:    5361 ( 21.7 %) 
 
Miscellaneous 
==================================================================== 
VENN: # SNPs in GigaBayes:                    23875 (  9.3 %) 
VENN: # SNPs in Sanger:                       15586 
VENN: # SNPs in dbSNP:                       826720 
VENN: # SNPs in GigaBayes & Sanger:           26087 ( 10.2 %) 
VENN: # SNPs in GigaBayes & dbSNP:             5955 (  2.3 %) 
VENN: # SNPs in Sanger & dbSNP:               96656 
VENN: # SNPs in GigaBayes & Sanger & dbSNP:  200418 ( 78.2 %) 
 
VENN: # INDELs in GigaBayes:                  13895 ( 41.8 %) 
VENN: # INDELs in Sanger:                      5361 
VENN: # INDELs in GigaBayes & Sanger:         19362 ( 58.2 %) 
 
# GigaBayes SNPs:                                  256335 
# Sanger SNPs:                                     338747 
 
# GigaBayes INDELs:                                 33257 
# Sanger INDELs:                                    24723 
 
# GigaBayes transitions:                           162296 
# GigaBayes transversions:                          91528 
GigaBayes transition:transversion ratio:              1.8 
 
GigaBayes SNP rate: 1 SNP per 877.8 bp 
Sanger SNP rate:    1 SNP per 664.2 bp 
 
 
AnalyzeSNPs wall time: 610.752 s 

 
Figure S4. SNP analysis output for chromosome 1. 
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ALU.ALUSC 
ALU.ALUSG 
ALU.ALUSP 
ALU.ALUSQ 
ALU.ALUSX 
ALU.ALUSZ 
ALU.ALUY 
ALU.ALUYA1 
ALU.ALUYA4 
ALU.ALUYA5 
ALU.ALUYA8 
ALU.ALUYB3A1 
ALU.ALUYB3A2 
ALU.ALUYB8 
ALU.ALUYB9 
ALU.ALUYBC3A 
ALU.ALUYC1 
ALU.ALUYC2 
ALU.ALUYD2 
ALU.ALUYD3 
ALU.ALUYD3A1 
ALU.ALUYD8 
ALU.ALUYE2 
ALU.ALUYE5 
ALU.ALUYF1 
ALU.ALUYF2 
 

ALU.ALUYG6 
ALU.ALUYH9 
ALU.ALUYI6 
L1.L1 
L1.L1HS 
L1.L1PA10 
L1.L1PA11 
L1.L1PA12 
L1.L1PA12_5 
L1.L1PA13 
L1.L1PA13_5 
L1.L1PA14 
L1.L1PA14_5 
L1.L1PA15 
L1.L1PA16 
L1.L1PA16_5 
L1.L1PA17_5 
L1.L1PA2 
L1.L1PA3 
L1.L1PA4 
L1.L1PA5 
L1.L1PA6 
L1.L1PA7 
L1.L1PA7_5 
L1.L1PA8 
SVA.SVA 

Figure S5. The transposable element subclasses that were used for mobile element insertion discovery. 
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