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ESSAYS ON MACROECONOMETRICS 

ABSTRCT 

by 

CHUANQI ZHU 

 

Dissertation Committee:  

Zhijie Xiao (Chair) 

Peter Ireland 

Georg Strasser 

 

This dissertation contains three chapters in theoretical Macroeconometrics and 

applied Macroeconometrics.   

This first chapter addresses the issues related to the estimation, testing and 

computation of ordered structural breaks in multivariate linear regressions. Unlike 

common breaks, ordered structural breaks are those breaks that are related across 

equations but not necessarily occurring at the same dates. A likelihood ratio test assuming 

normal errors is proposed in this chapter in order to detect the ordered structural breaks in 

multivariate linear regressions. The estimation of ordered structural breaks uses 

quasi-maximum likelihood and adopts the efficient algorithm of Bai and Perron (2003). I 

also provide results about the consistency and rate of convergence when searching for 



ordered structural breaks. Finally, these methods are applied to one empirical example: 

the mean growth rate of output in three European countries and United States. 

This second chapter focuses on the parameter stability of dynamic stochastic general 

equilibrium (DSGE) models. To this end, I solve and estimate a representative New 

Keynesian model using both linear and nonlinear methods. I first examine how 

nonlinearities affect the parameter stability of the New Keynesian model. The results 

show that parameter instabilities still exist even using nonlinear solutions, and also 

highlight differences between two nonlinear solution methods: perturbation method and 

projection method. In addition, I propose a sequential procedure for searching for 

multiple structural breaks in nonlinear models, and apply it to the New Keynesian model. 

Two common structural breaks among these estimated parameters are identified for all 

the five solutions considered in this chapter. One structural break is in the early 1970s, 

while another one locates around the middle 1990s. 

In the third chapter, we investigate changes in long run productivity growth in the 

United States. In particular, we approach productivity growth from a sectoral perspective, 

and decompose the whole economy into two broad sectors: investment goods-producing 

sector and consumption goods-producing sector. Although the evidence of changes in the 

aggregate productivity growth is far from obvious at conventional test size, we find 

evidence of structural breaks in the sectoral productivity growth using both growth 

accounting and DSGE model based measures. There are two structural breaks in 

investment goods-producing sector using growth accounting measures, which indicates 



that the era of investment and productivity boom in the middle 1990s may have ended 

before the Great Recession. In addition, our results show there is one structural break in 

consumption goods-producing sector around the 1970s and attribute the aggregate 

productivity slowdown at that time to consumption goods-producing sector. These results 

are broadly consistent with Ireland and Schuh (2008). Our results offer up with a 

modestly pessimistic outlook on future productivity growth and, therefore, potential 

output.  
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Chapter 1

Estimating and Testing Ordered

Structural Breaks in Multivariate

Linear Regressions

1.1 Introduction

In the last two decades, there are considerable theoretical and empirical studies

on testing and estimation of changes in economic and �nancial time series. In the

theoretical econometric literature, Bai (1997) considers the least squares estimation

of a single change point in multiple regression models allowing for both stationary and

trending regressors. Consistency, rate of convergence, and asymptotic distributions

are also provided in his paper. Bai and Perron (1998) then consider the testing and

estimation of multiple structural breaks in the linear regression models estimated by

least squares as well. And Bai and Perron (2003) provide an e�cient dynamic pro-

gramming algorithm to obtain the break date estimates. For multivariate systems,

research related to structural breaks is comparatively scarce. Bai et al. (1998) �rst

consider issues related a single common break across these equations. They show
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that the accuracy of break date estimates can be improved under a system of equa-

tions with common breaks. Hansen (2003) considers multiple structural changes in

a co-integrated system, though his study focuses on the case of known break dates.

Recently, Qu and Perron (2007) extend the testing and estimation of changes in a

system of equations allowing multiple structural breaks.

The empirical motivation for this paper is based on our observations of GDP

growth slowdown in the United States and Europe around the 1970s and during

the current 2007 �nancial crisis. The common practice in modeling the breaks in

GDP growth is to assume these breaks of each country occur contemporaneous. It

might be due to the fact that many common factors, such as international capital

�ows, are driving these series. The often �unnoticed � underlying assumption in this

manner is that these breaks across the equation are at the same date. However,

several studies in the empirical literature show the GDP growth rate for the four

industrialized countries including France, Germany, Italy and United States did not

appear to slow down exactly at the same date.1 This suggests that gains in precision

might be achieved by relaxing this assumption of common breaks. In other words, the

growth rates of output are modeled as changing at di�erent dates across equations.

Now these breaks are not exactly at the same dates, to some extent they seem to

occur following a sort of order. Therefore, we call this sort of structural breaks in

a system of equations as �ordered structural breaks�. To our knowledge, few works

have been proposed to address this issue.2

This paper, therefore, develops techniques for testing and estimation on ordered

structural breaks in a system of equations. Our framework builds on Bai et al. (1998),

in which they considered a single common break in a system of equations. We re-

lax the underlying assumption on common break and put our attention on ordered

1For example, see Banerjee et al. (1992), and Stock and Watson (2002).
2One exception is Qu and Perron (2007), in which they consider the locally ordered breaks. As

we will show later, this is a special case under our framework.

2



structural breaks. However, we only consider these systems of equations including

stationary regressors. The integrated regressors and deterministically trending re-

gressors are excluded in the current analysis because they need special treatment and

add additional layer of di�culty into our framework. The null hypothesis is that no

structural break occurs in a multivariate system. Under the alternative hypothesis,

there is one single break at each equation of this system, but these break dates might

not be the same. These breaks across equations may be either close to each other

or be separated by a positive fraction of sample size. The statistic considered in

this paper is the quasi-likelihood ratio test assuming normal errors, though as usual

the limiting distribution of this test has non-standard probability distribution. The

computation of estimates under our framework is not a trivial issue. In principle,

a gird search can be employed but it becomes rapidly impractical since it involves

the computation of maximum likelihood estimates of order O(T n). Our solution is

to extend the work of Hawkins (1976), Bai and Perron (2003) and Qu and Perron

(2007) and consider a dynamic programming algorithm.

Similar as many studies related to structural breaks, such as Bai et al. (1998) and

Perron (1989) among others, our empirical motivation concerns breaks in the mean

growth rate of output, for which the parameter describing dependent in the stochastic

part of the process (the auto-regressive parameters in our case) are treated as nuisance

parameters. Therefore we �rst present a Monte Carlo study to show the e�ciency gain

we could obtain if we allow for ordered structural breaks in a system of equations. We

then turn to an empirical example of dating the output growth slowdown in postwar

European and United States considered in Banerjee et al. (1992) and Bai et al. (1998)

and advocate the evidence of order structural breaks.

The paper is organized as follows. Section 2 presents the model and the assump-

tions used in this paper. And it also provides an example to illustrate our framework.

Section 3 considers the issues related to estimation. In particular, we provide the

3



results on the consistency and rate of convergence of these estimates and describe the

dynamic programming estimation algorithm. Section 4 contains the quasi likelihood

ratio type statistic for unknown ordered structural breaks. A Monte Carlo study of

the statistic and estimation for a two-equation model are provided in Section 5. Sec-

tion 6 applies the test and estimation method to an empirical example: the growth

slowdown in postwar European and United States output.

1.2 Model and Assumptions

1.2.1 Model and Assumptions

We �rst de�ne the notation used throughout the present paper. Our framework

and assumptions are similar to those in Bai et al. (1998). We have n equations

and T observations excluding the initial conditions if the lagged dependent variables

are used as regressors. Each equation may have one structural break denoted as τi,

i = 1, . . . n. These break dates are denoted by a vector τ = (τ1, . . . , τn). A subscript t

indexes a temporal observation (t = 1, . . . , T ) and a subscript i indexes the equation

(i = 1, . . . , n) to which a scalar dependent variable yit is associated.

The system of equations considered is

yit = µi +

p∑
j=1

Aj(i)yt−j + β′iXt + 1[t > τi]

(
λi +

p∑
j=1

Bj(i)yt−j + γ′iXt

)
+ εit (1.2.1)

where yit, µi, λi and εit are scalar variables; yt−j = (y1t−j, . . . , ynt−j) is n×1 vector;

Xt is k×1 vector including stationary explanatory variables; βi and γi are k×1 vectors

including the corresponding vectors of coe�cients; Aj(i) and Bj(i) represents the i-th

row of Aj and Bj, respectively; and 1[·] is the indicator function. It is important to
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note that, �rst we assume that the regressors are the same across the equations in

the current framework. As we show later, this assumption can be easily relaxed to

consider the case in which each equation has di�erent set of regressors. Second, the

roots of {I − A(L)L} and {I − B(L)L} are outside the unit circle in which L is lag

operator. Thirdly, when one break happens, say in equation i for example, we replace

the i-th row of Ajs with the corresponding i-th row of Bjs and denote as Cjs. After

all the breaks occur, Cjs become Bjs. We assume that the roots of the sequence of

{I − C(L)L} are outside the unit circle as well.

It is convenient to write the system of equations (1.2.1) in its matrix form

yt = (V ′t ⊗ I)θ +D(τ)(V ′t ⊗ I)δ + εt (1.2.2)

where V ′t = (1, y
′
t−1, . . . y

′
t−p, X

′
t), θ = vec(µ, A1, . . . , Ap, β), δ = vec(λ, B1, . . . , Bp, γ),

and D(τ) = diag(1[t > τ1], . . . 1[t > τn]) is n×n matrix. Note model (1.2.2) is that of

a full structural change in which it allows all the coe�cients to change. If it is known

that only a subset of coe�cients such as the intercept has a possible break, a partial

break structural break model is more appropriate. This leads to the consideration of

a general partial structural break model

yt = (V ′t ⊗ I)θ +D(τ)(V ′t ⊗ I)S ′Sδ + εt (1.2.3)

where S is a selection matrix, containing 0s and 1s and having full row rank. Note

that S ′S is idempotent with non zero elements only on the diagonal. The rank of S is

equal the number of coe�cients that are allowed to change. For S = I, model (1.2.2)

is obtained. For S = s⊗ I with s = (1, 0, . . . 0), we have

yt = (V ′t ⊗ I)θ +D(τ)λ+ εt (1.2.4)
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which has a break in the intercept only. The system (1.2.3) can be rewritten more

compactly as

yt = Z
′

t(τ)β + εt (1.2.5)

where Z
′
t(τ) = ((V ′t ⊗ I), D(τ)(V ′t ⊗ I)S ′) and β = (θ

′
, (Sδ)

′
)
′
.

As a matter of notation, we let �
p−→� denotes converge in probabilities; �

d−→� denotes

converge in distribution; �
a.s.−−→� denotes almost sure converge; and �⇒� denotes weak

convergence. Our analysis is carried under the following set of assumptions:

Assumption 1: Let εt be a martingale di�erence sequence with respect to Ft−1 =

σ-�eld(Zt, εt−1, Zt−1, εt−2 . . . ) satisfying, for some α > 0, maxi suptE(ε4+α
it ) < ∞

and E(εtε
′
t−j|Ft−1) = Σ for j = 0 and 0 otherwise.

Assumption 2: Suppose that EtXt = µx for all t, maxi suptE(X4+α
it ) < ∞,

T−1
∑T

t=1(Xt − µx)(Xt − µx)
′ p−→ Mxx(0), T−1

∑T
t=1Xty

′
t−j

p−→ EXty
′
t−j = Mxy(j),

j = −p, . . . , p and χT (·) = T−1/2
∑[Tτi]

t=1 (Xt − µx), ,[x] represents the integer part of

x, and Bx(·) is a Brownian motion with covariance matrix Mxx(0).

1.2.2 An Example-Two Equations Case

To illustrate the notation and the framework in the previous subsection, it is useful

to consider a much simpler two equations system as follows:

y1t = µ1 +

p∑
j=1

(aj11, a
j
12)

 y1t−j

y2t−j

+ (β11, . . . , β1k)


X1t

...

Xkt

+

1[t > τ1](λ1 +

p∑
j=1

(bj11, b
j
12)

 y1t−j

y2t−j

+ (γ11, . . . , γ1k)


X1t

...

Xkt

) + ε1t
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y2t = µ2 +

p∑
j=1

(aj21, a
j
22)

 y1t−j

y2t−j

+ (β21, . . . , β2k)


X1t

...

Xkt

+

1[t > τ2](λ2 +

p∑
j=1

(bj21, b
j
22)

 y1t−j

y2t−j

+ (γ21, . . . , γ2k)


X1t

...

Xkt

) + ε2t

Packing the two equations above together, we have the following equivalent ex-

pression in terms of matrix:

 y1t

y2t

 =

 µ1

µ2

+

p∑
j=1

 aj11 aj12

aj21 aj22


 y1t−j

y2t−j

+

 β11 . . . β1k

β21 . . . β2k




X1t

...

Xkt


+

 1[t > τ1] 0

0 1[t > τ2]



 λ1

λ2

+

p∑
j=1

 bj11 bj12

bj21 bj22


 y1t−j

y2t−j

(1.2.6)

+

 γ11 . . . γ1k

γ21 . . . γ2k




X1t

...

Xkt


+

 ε1t

ε2t

 (1.2.7)

Next we de�ne Vt, θ, and δ in the similar way as the n equations case:

V
′

t = (1, y1t−1, y2t−1, . . . , y1t−p, y2t−p, X1t, . . . , Xkt)(1+2p+k)×1

θ = (µ1, µ2, a
1
11, a

1
12, a

1
21 a

1
22, . . . a

p
11, a

p
12, a

p
21 a

p
22,

β11, . . . , β1k, β21, . . . , β2k)(2+4p+2k)×1

δ = (λ1, λ2, b
1
11, b

1
12, b

1
21 b

1
22, . . . b

p
11, b

p
12, b

p
21 b

p
22,

γ11, . . . , γ1k, γ21, . . . , γ2k)(2+4p+2k)×1

7



D(τ) =

 1[t > τ1] 0

0 1[t > τ2]


2×2

Therefore we can write equation (1.2.6) in form of (1.2.2):

yt(2×1) = (V
′

t(1+2p+k)×1⊗I2×2)θ(2+4p+2k)×1+D(τ)2×2(V
′

t(1+2p+k)×1)⊗I2×2)δ(2+4p+2k)×1+εt(2×1)

Note that this is a pure structural change model. Suppose we want to study the

partial structural change model, for instance, only changes on intercept in the �rst

equation and changes on lagged dependent variables in second equation are allowed.

Now we have (1 + 2 ∗ p) coe�cients are allowed to change. We de�ne

S =



λ1 a1
11 a1

12 a1
21 a1

22 a2
11 a2

12 a2
21 a2

22 . . . ap21 ap22 β

λ1 : 1 0 0 0 0 0 0 0 0 . . . 0 0 0

a1
21 : 0 0 0 1 0 0 0 0 0 . . . 0 0 0

a1
22 0 0 0 0 1 0 0 0 0 . . . 0 0 0

a2
21 0 0 0 0 0 0 0 1 0 . . . 0 0 0

a2
22 0 0 0 0 0 0 0 0 1 . . . 0 0 0

...
...

...
...

...
...

...
...

...
... . . . 0 0 0

ap21 0 0 0 0 0 0 0 0 0 . . . 1 0 0

ap22 0 0 0 0 0 0 0 0 0 . . . 0 1 0


(1+2p)×(2+4p+2k)

The rank of S is equal to number of coe�cients that are allowed to change(1+2∗p),

and S
′
S is idempotent with non zero elements only on the diagonal.
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1.3 Estimation

1.3.1 Estimation Method

The �rst raised question is how one can estimate the model with unknown break

dates. This problem has been well considered by various authors, using a variety of

approaches. For instance, Picard (1985) provided a Gaussian maximum likelihood

estimation of the break dates in the case that a univariate process follows a �nite

order autoregression. Recently, Qu and Perron (2007) considered the quasi-maximum

likelihood estimation that assumes serially uncorrected Gaussian errors under the

multivariate regressions. Our method of estimation is similar as those in Bai et al.

(1998) with three notable features. First, the covariance matrix Σ of error terms

is explicitly treated as unknown and estimated. Second, we only assume the error

terms from a sequence of martingale di�erences with some moment conditions, and use

quasi-Gaussian maximum likelihood estimation. Thirdly, we allow some of regression

parameters to be estimated with the full sample to gain e�ciency.

The method of estimation we considered here is quasi-Gaussian maximum likeli-

hood estimation. Suppose that ||Sδ|| 6= 0, then there indeed exists a set of ordered

structural breaks. For a given combination of the break dates τ = (τ1 . . . τn), the

Gaussian quasi likelihood function is

LT (τ, β,Σ) =
T∏
t=1

f(yt|Zt(τ); τ, β,Σ) (1.3.1)

where

f = (yt|Zt(τ); τ, β,Σ) =
1

(2π)n/2|Σ|1/2
exp{−1

2
[yt − Z

′

t(τ)β]
′
Σ−1[yt − Z

′

t(τ)β]}

The straightforward method on estimation is based on grid search over all the combi-

nation of breaks dates. Here we impose the following assumption on the set of feasible
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break date.

Assumption 3 : The maximization of LT (τ, β,Σ) is taken over all the combina-

tions of break dates τ = (τ1 . . . τn) in the following set

Λε = {(τ1, . . . , τi, . . . , τn) = (Tλ1, . . . , Tλi, . . . , Tλn); min{λi} ≥ ε, max{λi} ≤ 1− ε}

where ε is a trimming value.

ε represents that an initial and ending fraction of sample are trimmed. This is often

taken to either 0.15 or 0.1. Therefore, we proceed the estimation as follows. First

for each combination τ (i) = (τ
(i)
1 , . . . , τ

(i)
n ), the associated estimates of β and Σ are

obtained by maximizing the quasi likelihood function. Let β̂(τ (i)), and Σ̂(τ (i)) denote

the resulting estimates. Substituting them in the objective function and denoting the

resulting quasi likelihood functions as LT (τ (i), β̂(τ (i)), Σ̂(τ (i))), the estimated break

points τ̂ are such that

τ̂ = arg max
{τ i}∈Λε

LT (τ i, β̂(τ i), Σ̂(τ i)), (1.3.2)

where the maximization is taken over all the combinations of {τ (i)}.3 It is worth

mentioning that the computation of maximum likelihood estimates of order O(T n).

The estimated break dates τ̂ are therefore global maximum of the objective function.

Finally, the estimated regression parameter are associated quasi maximum likelihood

estimates at the estimated combination of break points τ̂ , i.e. β̂ = β̂(τ̂), Σ̂ = Σ̂(τ̂) .

1.3.2 E�cient Algorithm for Estimation

As we show in the previous subsection, the computation of estimates in the general

framework considered in this paper is not a trivial issue. In principle, we can use

3For the two equations and single break problem we have (1−2ε)2T 2 combinations if we premise
these breaks fall into (εT, (1− ε)T ). ε is the trimming value.
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a grid search, but this approach becomes rapidly impractical since it involves the

computation of maximum likelihood estimates of order O(T n). We now consider

an algorithm based on the principle of dynamic programming. Our approach is an

natural extension of works by Hawkins (1976), Bai and Perron (2003) and Qu and

Perron (2007). The basic idea is as follows. With any possible combination of ordered

breaks, it is the case the that the overall value of the log likelihood function is the

sum of the values associated with a particular combination of at most n+1 segments.

Hence, if we have the information about the log likelihood values for all possible

segments, of which there are at most T × (T + 1)/2, then all that is needed is a

method to assess which particular combination of n+ 1 segments leads to the highest

value of the likelihood function. This is achieved using a dynamic programming

algorithm. More thorough details can be found in Bai and Perron (2003).

1.3.3 Statistical Properties

We now consider the statistical properties of the estimates. In order to derive the

asymptotic properties of these estimates, we follow Picard (1985), Bai and Perron

(1998, 2003) and Bai et al. (1998) among others, and make the following assumption

on the magnitude of the shifts:

Assumption 4: Let β0 = (θ0′ , (SδT )
′
)
′
, in which δT is a sequence such that

δT = δ0vT . vt > 0 is a scalar satisfying vT → 0 and
√
Tvt/(log T )→∞.

This assumption implies a shrinking shifts asymptotic framework, in which the

magnitudes of these shifts converges to zero as the sample size increases. One obvious

reason for considering small is that, if we show that a break with a small magnitude

of shift can be consistently estimated, it must be the case that we can consistently

estimate a break with larger magnitude of shift, for the larger the magnitude of shifts,

the easier to identify a break.

The joint behavior of (τ̂ , β̂(τ̂), Σ̂(τ̂)), particularly, consistency and their rates of
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convergence are examined in this subsection. First, the likelihood function, such as

L(τ, β0 +T−1/2β, Σ0 +T−1/2Σ), are reparameterized. These ordered break dates τ =

(τ1, . . . , τn) are reparameterized such that τi = τi(v) = τ 0
i + [vv−2

T ], for v ∈ R. When

v varies, τi can take on all possible integer values. We de�ne the likelihood function

to be zero for τi greater than T . It is worth mentioning that maximizing the original

likelihood function is equivalent to maximizing the reparameterized likelihood. We let

(τ 0, β0,Σ0) denote the true values of these parameter in this data generating process,

and construct the quasi-likelihood ratio as follows

LRT =
L(τ, β0 + T−1/2β, Σ0 + T−1/2Σ)

L(τ 0, β0,Σ0)

=

∏T
t=1 f(yt|Zt(τ); τ, β0 + T−1/2β, Σ0 + T−1/2Σ)∏T

t=1 f(yt|Zt(τ); τ 0, β0,Σ0)

=
|Σ0 + T−1/2Σ0|−T/2 exp

{
−1

2

∑T
t=1 εt(τi)

(
Σ0 + T−1/2Σ

)−1
εt(τi)

}
|Σ0|−T/2 exp

{
−1

2

∑T
t=1 ε

′
tΣ
−1
0 εt

} (1.3.3)

where εt(τi) = yt − Zt(τ)′(β0 + T−1/2β).

Theorem 1: Under the assumptions A1-A4, for the break dates estimates τ̂ =

(τ̂1, . . . , τ̂n)

υ2
T (τ̂i − τ 0

i ) = Op(1)

and

√
T (β̂ − β0) = Op(1)

√
T (Σ̂− Σ0) = Op(1)

This theorem gives the rate of convergence of the estimates. The results are the same

as in most of other cases consider in the literature, see appendix A for the proof.

The basic idea is as follows: First it is clear that maximizing the original likelihood
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function is equivalent to maximizing the likelihood ratio. Suppose that v∗, β∗, and

Σ∗ maximize the likelihood ratio, then v∗ = υ2
T (τ̂i − τ 0

i ), β∗ =
√
T (β̂ − β0), and

Σ∗ =
√
T (Σ̂− Σ0). Thus to show υ2

T (τ̂i − τ 0
i ),
√
T (β̂ − β0), and

√
T (Σ̂− Σ0) are all

stochastically bounded, it is su�cient to show that v∗,β∗, and Σ∗ are stochastically

bounded. This, in turn is equivalent to showing that the likelihood ratio cannot

achieve its maximum when any of parameters, v, β, and Σ, is too large.

1.4 Test Statistics

We now consider testing for ordered structural breaks. It is important to note we

focus on the changes in the coe�cients of the conditional mean. Also, as we mentioned

above, we can allow only a subset of coe�cients to change across regimes, hence partial

structural breaks are permitted. The test we proposed here is a likelihood ratio test

for the null hypothesis of no change in any of the coe�cients versus an alternative

hypothesis with ordered structural breaks.

In order to derive the limiting distribution of the test under the null hypothesis

of no structural change, we impose the following additional assumptions on the data

generating.

Assumption 5: τ 0
i = [λ0

iT ] for some 0 < λ0
i < 1, and [·] is the greatest integer

function. This assumes that the shift point is bounded away from the end points,

which is used for asymptotic purpose.

1.4.1 The speci�cation of the alternative hypothesis

Under the alternative hypothesis, we consider the case that the whole coe�cients

to change across break dates. For instance, the break dates τi, can be constructed as
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a group of n di�erent break dates. For a given ith equation, we have

yit =


µi +

∑p
j=1Aj(i)yt−j + β′iXt + εit t < τi

µi +
∑p

j=1Aj(i)yt−j + β′iXt +
(
λi +

∑p
j=1Bj(i)yt−j + γ′iXt

)
+ εit t ≥ τi

Hence, following the notation in the previous section, ny + nx + 1 coe�cients are

allowed to change. Note that this framework is such that any coe�cients which is

allowed to change does so simultaneously. Stacking the system equation by equation,

we have

yt = (V ′t ⊗ I)θ +D(τ)(V ′t ⊗ I)S ′Sδ + εt

where the notations are exactly the same as in Section 2.

Under the null hypothesis of no structural change, the estimates are the values β̂

and Σ̂ that jointly solve the following system of equations

Σ̂ =
1

T

T∑
t=1

(
yt − Z ′tβ̂

)(
yt − Z ′tβ̂

)′

β̂ =

(
T∑
t=1

ZtΣ̂
−1Z ′t

)−1( T∑
t=1

ZtΣ̂
−1Y ′t

)

with the resulting value of the log-likelihood function being

logLT = −T
2

(log 2π + 1)− T

2
log |Σ̂|

For a given ordered structural break τ = (τ1, . . . , τn), the class of models described

above can be estimated by quasi maximum likelihood. Denote the log-likelihood value

by log L̂(τ1, . . . , τn). The proposed test is the maximal value of the likelihood ratio

test over all admissible partitions in the set Λε de�ned by Assumption A.4, i.e.,
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supLRT = sup
(τ1,...,τn)∈Λε

2
[
log L̂T (τ, β,Σ)− log L̂T

]
= 2[log L̂T (τ̂1, . . . , τ̂n)− log L̂T ] (1.4.1)

where the estimates τ̂ = (τ̂1, . . . , τ̂n) are the QMLE obtained considering only those

partitions in Λε.
4 The parameter ε acts as a truncation which imposes a minimal

length for each segment and will a�ect the limiting distribution of the test. It is also

useful to describe the exact form of the log likelihood value and the estimates of the

coe�cients for some leading cases.

1.4.2 The limiting distribution of the test.

We now consider the limiting distribution of the supLRT test under the null

hypothesis in the context of the class of models described in the previous subsection.

Theorem 2 Under the assumptions A1-A5, with the supLRT test constructed for

an alternative hypothesis in the class of models described in previous subsection, we

have, as T →∞,

supLRT ⇒ sup
(λ1,...,λi,...,λn)∈Λε

n∑
i=1

‖λiWn(λi+1)− λi+1Wn(λi)‖2

(λi+1 − λi)λiλi+1

(1.4.2)

where Wn(·) are n dimensional vectors of independent Wiener processes, and ‖·‖

represents the Euclidean norm.

Note that the limiting distribution of the supLRT not just depends on the number

of coe�cients are allowed to change, but also depends on the trimming values ε. This

form of this limiting distribution is similar as the expression in Theorem 1 of Bai

4 See Andrews (1993); Andrews and Fair (1988) for more details on how to construct hypothesis

testing for parameter instability.
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et al. (1998). More details can found in the appendix B, in which we utilize the proof

in Bai et al. (1998) and Qu and Perron (2007).

1.5 Monte Carlo Study

In this section, we provide Monte Carlo study related to estimation method. The

framework used in Monte Carlo is similar as the system (4.1) in Bai et al. (1998). For

a change in the intercept in an autoregressive system, the data generating process is

the system with a single break in each equation as following:

yt = (λιn) dt(Tδ0) + (βIn)yt−1 + εt (1.5.1)

εt ∼ i.i.d.N(0,Σε)

where ιn is an n−vector of 1's and εt is n×1. In particular, we consider the following

bivariate system with a single break in each equation:

y1t = µ1 + λ11[t > τ1] + β11y1t−1 + β12y2t−1 + ε1t

y2t = µ2 + λ21[t > τ2] + β21y1t−1 + β22y2t−1 + ε2t

where (ε1t, ε2t)
′ ∼ i.i.d.N(0, I2). As we can see, only the intercept is allowed to

change at some date τi for the ith equation. First, the value of µis is set to one.

Second, we consider three values of the magnitudes of mean shift λi. λis can be one

of values (0.25, 0.50, 1.00). Thirdly, the autoregressive parameters are chosen from

the following three sets

β(1) = (0.10, 0.10, 0.10, 0.10)

β(2) = (0.50, 0.50, 0.50, 0.50)

β(3) = (0.90, 0.90, 0.90, 0.90)
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We set the number of observations T equals to 100, which is a reasonable choice

given the computational cost of simulation. The last thing about the data generating

process is to choose break dates. Without of loss generality, the break date in the

�rst equation is kept �xed at τ1 = 30. The break date τ2 in the second equation then

takes values either 30, or 50, or 70. In the Monte Carlo study, we run 500 replications.

Figure 1 to 3 show the results on estimate breaks.

1.6 Application

It is widely well known that there is a slowdown in the growth rate of output in

European economies and United States during the postwar, particularly in the 1970s.

Several statistical techniques have been proposed to identify the date of slowdown,

such as structural breaks model, regime switch model among other time varying coef-

�cient models. Obviously, our main focus is put on the task of dating this slowdown

using structural break techniques. The starting point for this type of investigation

is the observation by Banerjee et al. (1992). They found that output growth rate

in France, Germany, and Italy each appeared to be di�erence stationary, but that

there appeared to be a break in the mean growth rate for each country during the

sample. Their analysis was based on hypothesis testing under the framework of strict

univariate. As Bai et al. (1998) show that there can be substantial gains from using

multivariate inference about the break dates. However, as we show in the previous

section that we can also have substantial e�ciency gains if we relax the assumption

on common structural breaks.

For comparability to their studies, we �rst employ data set used in Banerjee

et al. (1992) and Bai et al. (1998) data. In particular, the three European series are

the logarithms of quarterly GDP for France and Italy and GNP for Germany. The

logarithm of quarterly GDP for the U.S. are also included in the study. Since the data

are available over di�erent periods, the system results consider the joint behavior of
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output over only a short common period, 1962 : Q1 to 1982 : Q4. For mode details

on the the data and data sources, refer to the descriptions in Banerjee et al. (1992).

First, we follow the common practice in the empirical literature, such as Banerjee

et al. (1992) and Perron (1989) among others. We tested the null hypothesis that

each of these series had a unit root, against the alternative that the series was sta-

tionary around a linear time trend, possibly with a break in the time trend at an

unknown date. For all these series, it is no surprise that we �nd the univariate analy-

sis of these European countries and United States output data provided no evidence

against the unit root null hypothesis. Thus, under our assumption each series is I(1)

process, possibly with a change in drift. Di�erencing each of these series leads the the

univariate stationary autoregressive representation. For univariate analysis, now yt,

is the growth rate of output in each country. Since there is no exogenous variables,

Xt, is dropped out. In this case, the break term corresponds to a shift in the mean

growth rate of output. While the series are modeled as jointly having the stationary

autoregressive representation, where yt is interpreted as the vector of growth rates of

output of the various countries and Xt is omitted as well. It is still important to note

that, in contrast to Bai et al. (1998) we do not impose the common break restriction

on this model.

Table 2 and Table 3 present the structural breaks statistics results for three Eu-

ropean countries and United States. As shown in Table 2 Section A, for France and

Germany, treated as univariate series, both of the test statistics rejects at the 1%

level; for Italy, both reject at the 5% level. The point estimates of the break date are

in 1974 for France and Italy, although for Italy the estimate is imprecise. In contrast,

for U.S. output the hypothesis of a constant mean growth rate cannot be rejected at

the 10% level using any of the tests.

Section B in Table 2 shows the results common breaks statistics used in Bai

et al. (1998). Several things need to be highlighted here. First, we take a look at the
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France-Italy system, for which the univariate evidence is most consistent with a single

common break date. It is not surprising that the test statistics reject the hypothesis

of no break in the mean growth rate against the alternative of a break in the mean

at a common break date. Second, the other bivariate systems also reject the null

of no break against the common-date alternative. Bai et al. (1998) interpret these

results as support for proceeding to construct interval estimates for a common break

date including Germany and United States in the system. Thirdly, this multivariate

analysis points to a slowdown in European and United States output. The slowdown

occurred approximately simultaneously in France and Italy and, arguably, in Germany

and United States as well. Of course, this dating coincides with conventional wisdom;

the contribution of Bai et al. (1998) is that this date can now be associated with the

formal measure of uncertainty provided by a tight con�dence interval spanning slightly

more than three years.

However, as the univariate evidence shows that it is clear that Germany and

United States have breaks at the di�erent time as the other countries, which motive

us to apply ordered structural breaks to this example. Table 3 shows the results

of ordered structural breaks. First, all the multivariate systems reject the null of

no break against a set of ordered structural breaks. Second, it is worth mentioning

that now we can identify one break in the systems including United States, for which

the univariate analysis show no evidence of structural breaks. Finally, as we also

mentioned earlier, our dating of changes in output growth is against the conventional

wisdom. We argue that imposing common breaks is strong restriction, and often lead

us imprecise estimates.

1.7 Conclusion

This paper provides techniques for testing, estimation, and computation of ordered

structural breaks across equations in multivariate linear regressions. Our framework
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relaxes the often unnoticed underlying assumption of common breaks. A likelihood

ratio test assuming normal errors is proposed in this paper in order to detect the

ordered structural breaks in multivariate linear regressions. We take the advantage

of our framework based on dynamic programming and adopt the e�cient algorithm

of Bai and Perron (2003). We also provide results about the consistency and rate

of convergence when searching for ordered structural breaks. We �nally presents the

Monte Carlo study and an empirical example. It is worth mentioning two limitations

in this paper. First, we only consider stationary variables as regressors. Therefore,

we can not deal with cases including integrated or trending regressors. Second, we

have shown how to construct con�dence interval for these estimates.

1.8 Chapter 1: Appendix

1.8.1 Proof of Theorem 1

The proof proceeds similar as those in Bai et al. (1998) and Qu and Perron (2007).

We �rst present a set of properties of the quasi-likelihood ratios. We then show that

Theorem 1 can be derived as a consequence of these properties.

To begin with, we consider the model without any breaks as follows;

yt = (V ′t ⊗ I)θ + εt (1.8.1)

where V ′t = (1, y
′
t−1, . . . y

′
t−p, X

′
t), θ0 = vec(µ, A1, . . . , Ap, β), and εt are martingale

di�erences with variances Σ0. We let (θ0,Σ0) denote the true parameters. Consider

the quasi-likelihood ratio based on the �rst τi observations

L(1, τi; θ,Σ) =

∏τi
t=1 f

(
yt|yt−1, . . . , θ0 + T−1/2,Σ0 + T−1/2Σ

)∏τi
t=1 f (yt|yt−1, . . . , θ0,Σ0)

=
|Σ0 + T−1/2Σ0|−τi/2 exp

{
−1

2

∑τi
t=1 εt(τi)

(
Σ0 + T−1/2Σ

)−1
εt(τi)

}
|Σ0|−τi/2 exp

{
−1

2

∑T
t=1 εt(τi)Σ

−1
0 εt(τi)

} (1.8.2)
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where

εt(τi) = yt − (V ′t ⊗ I)(θ0 + T−1/2θ) = εt − T−1/2(V ′t ⊗ I)θ

Denote by θ̂(τi) and Σ̂(τi) as the values of θ and Σ such that L(1, τi; θ,Σ) achieves its

maximum. Then we have the following properties:

Property 1: For each δ ∈ [0, 1]

sup
Tδ≤τi≤T

L
(

1, τi; θ̂(τi), Σ̂(τi)
)

= Op(1) (1.8.3)

sup
Tδ≤τi≤T

(
||θ̂(τi)||+ ||Σ̂(τi)||

)
= Op(T

−1/2) (1.8.4)

This property corresponds to property 1 of Bai et al. (1998) and Qu and Perron

(2007). It says that the likelihood ratios and the maximum likelihood estimates are

bounded in probability. The uniformity of the bound is important since we need

to search over all admissible combinations to �nd these break dates. Since we take

similar assumptions on εt as Bai et al. (1998), this result is a naturally consequence of

the functional central limit theorem for martingale di�erences. The proof is omitted

here. For details, see Bai et al. (1998) and Qu and Perron (2007).

Property 2: For each ε > 0, there exists a B > 0 such that for large T

Pr

(
sup

1≤τi≤T
T−BL

(
1, τi; θ̂(τi), Σ̂(τi)

)
> 1

)
< ε (1.8.5)

This property says that the log-valued quasi-likelihood ratio has its maximum value

bounded by Op(log T ), which provides a bound for the sequential quasi-likelihood

function in small samples.

Proof of Property 2:
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The likelihood ratio evaluated at θ̂(τi) and Σ̂(τi) can be rewritten as

logL
(

1, τi; θ̂(τi), Σ̂(τi)
)

= −τi
2

(log |Σ∗(τi)| − log |Σ0|) +
1

2

(
τi∑
t=1

ε′tΣ
−1
0 εt − τin

)
(1.8.6)

where

Σ∗(τi) =
1

τi

τi∑
t=1

εtε
′
t −

(
1

τi

τi∑
t=1

εtV
′
t

)(
1

τi

τi∑
t=1

VtV
′
t

)−1(
1

τi

τi∑
t=1

Vtεt

)

thus by adding and subtracting an identity matrix, we obtain

−τi
2

(log |Σ∗(τi)| − log |Σ0|) = −τi
2

log

∣∣∣∣∣I +
1

τi

τi∑
t=1

(ηtη
′
t − I)

−

(
1

τi

τi∑
t=1

ηtV
′
t

)(
1

τi

τi∑
t=1

VtV
′
t

)−1(
1

τi

τi∑
t=1

Vtηt

)∣∣∣∣∣∣
where ηt =

∑−1/2
0 εt with Eηt = 0 and V ar(ηt) = I. Applying a Taylor series

expansion, we have

−1

2
tr

(
τi∑
t=1

(ηtη
′
t − I)

)
+

1

2
tr(Φτi) (1.8.7)

+
τi
4
tr


(

1

τi

τi∑
t=1

(ηtη
′
t − I)− 1

τi

)2
+Op(1) (1.8.8)

where Op(1) is uniformly in τi. Therefore we have the following expression of (A.6)5

logL
(

1, τi; θ̂(τi), Σ̂(τi)
)

=
1

2
tr(Φτi) +

τi
4
tr


(

1

τi

τi∑
t=1

(ηtη
′
t − I)− 1

τi

)2


−1

4
tr

(
1

τi
Φ2
τi

)
+Op(1)

5The �rst term of (A.7) is canceled out with the last term of (A.8).
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Now we need to show that

1

2
tr(Φτi) +

τi
4
tr


(

1

τi

τi∑
t=1

(ηtη
′
t − I)− 1

τi

)2
 = Op(log T )

and

1

4
tr

(
1

τi
Φ2
τi

)
= Op(log T )

Then it su�ces to show that the above is Op(log T ) uniformly in τi.

By the strong law of large numbers, 1
τi

∑τi
t=1 VtV

′
t converges to a positive de�nite

matrix as τi →∞, this implies

sup
t≥τi

∥∥∥∥∥∥
(

1

τi

τi∑
t=1

VtVt

)−1
∥∥∥∥∥∥ = Op(1)

for some �xed τi > 0.

Next,

max
1≤t≤τi

logL
(

1, τi; θ̂(τi), Σ̂(τi)
)

= Op(1)

without loss of generality, we may assume t ≥ τi. By the law of iterated logarithms

for martingale di�erences,

∥∥∥∥∥ 1

τi

τi∑
t=1

ηtVt

∥∥∥∥∥ = Op((log T )−1/2)

∥∥∥∥∥ 1

τi

τi∑
t=1

(ηtη
′
t − It)

∥∥∥∥∥ = Op((log T )−1/2)

uniformly in τi ∈ (1, T ). Thus

‖Φk‖ = Op(log T )

uniformly in τi ∈ (1, T ).
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In addition, from

1

τi

τi∑
t=1

ηtVt = Op(1)

uniformly in τi, we have

τ−1
i Φ2

τi
= Op(log(T ))

uniformly in τi ∈ (1, T ). This proves Property 2. �

Property 3: Let ST = {(θ,Σ)}; ||θ|| ≥ log T or ||θ|| ≥ log T . For any δ > (0, 1),

D > 0, ε > 0, the following holds when T is large

Pr

(
sup
Tδ≤τi

sup
(θ,Σ)∈ST

TDL (1, τi; θ,Σ) > 1

)
< ε (1.8.9)

This property indicates that the value of the quasi-likelihood ratio, when the param-

eter are away from 0, is arbitrarily small for large T .

Proof of Property 3:

Following Bai et al. (1998) and Qu and Perron (2007), the sequential log-likelihood

ratio can be decomposed as

logL
(

1, τi; θ̂(τi), Σ̂(τi)
)

= L1t + L2t

where

L1t = −τi
2

log |I + ΨT | −
τi
2

[
1

τi

τi∑
t=1

η′t(It + ΨT )−1ηt −
1

τi

τi∑
t=1

η′tηt

]

and

L2t = T−1/2θ′(I ⊗ (I + ΨT )−1)Στi
t=1(Vt ⊗ ηt)

−1

2

τi
T
θ′

(
1

τi

τi∑
t=1

VtV
′
t ⊗ (I + ΨT )−1

)
θ
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with ηt = Σ
−1/2
0 εt and ΨT = T−1/2(Σ

−1/2
0 ΣΣ

−1/2
0 ).

Let ST = S1T ∪ S2T with

S1T = {(θ,Σ); ||Σ|| ≥ log T, θ arbitary}

and

S2T = {(θ,Σ); ||Σ|| ≥ log T, ||θ|| ≤ log T}

we then need to show that

Pr

(
sup
Tδ≤τi

sup
(θ,Σ)∈S1T

TDL (1, τi; θ,Σ) > 1

)
< ε

and

Pr

(
sup
Tδ≤τi

sup
(θ,Σ)∈S2T

TDL (1, τi; θ,Σ) > 1

)
< ε

The proof of the above two expression proceeds similarly Bai et al. (1998) and Qu

and Perron (2007). The details are omitted here. �

Property 4: For any ε > 0, there exists a M > 0 such

Pr

(
sup
Tδ≤τi

sup
sM

L (1, τi; θ,Σ) > ε

)
< ε (1.8.10)

where sM is de�ned as

sM = {(θ,Σ); ||θ|| ≥M or ||Σ|| ≥M}

This property shows that the value of quasi-likelihood ratios is small when it is eval-

uated outside a bounded set. The next property is similar to Property 4, therefore

the proof is shown in next property.
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Property 5: Let hT and dT be positive sequences such that hT is non-decreasing,

dT → +∞ and htd
2
t/T → h > 0, where h < ∞. Let St = {θ,Σ}; ||θ|| ≥ dt or

||Σ|| ≥ dt. Then for any ε > 0, there exists an A > 0,such that when T is large

Pr

(
sup

AhT≤τi
sup

(θ,Σ)∈ST
L (1, τi; θ,Σ) > ε

)
< ε (1.8.11)

This property studies the value of quasi-likelihood ratio when no positive fraction of

the observations is involved. It is slightly di�erent from that of Bai et al. (1998), in

the sense that the maximum is taken over all the combinations.

Proof of Property 5:

We �rst de�ne bt = T−1/2dt. Then by assumption, bT = Op(1) if hT stays bounded

and bT → 0 if hT → ∞. Furthermore, hT b
2
T → h. As in the proof of Property 3, we

decompose ST into two subsets S1T and S2T , where S1T and S2T are de�ned as in the

earlier proof of Property 3 with log T replaced by dT . The reminder proof is similar

as in Bai et al. (1998), which means we need to show

Pr

(
sup

AhT≤τi
sup

(θ,Σ)∈S1T

L (1, τi; θ,Σ) > ε

)
< ε

and

Pr

(
sup

AhT≤τi
sup

(θ,Σ)∈S2T

L (1, τi; θ,Σ) > ε

)
< ε

On S1, all arguments in Property 3 go through if inequalities (A.9) and (A.11) in

Bai et al. (1998) still hold true when τi ≥ Tδ is replaced with τi ≥ AhT and for the

newly de�ned bT .

Since the following inequality,

Pr

(
sup

AhT≤τi

1

τi

∥∥∥∥∥
τi∑
t=1

(ηtη
′
t − I)

∥∥∥∥∥ > αbT

)
<

C

AhTα2b2
T

<
2C

Aα2h
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for C > 0, we can apply the theorems in Hájek and Rényi (1955). The expression

above is small if A is large.

Similarly, applying the inequality in Hájek and Rényi (1955). to 1/τi
∑τi

t=1(V ⊗ηt)

together with H−1
τi

= Op(1) uniformly in large τi, we have, for any ε > 0 and γ > 0,

there exists an A > 0 such that

Pr

(
sup

AhT≤τi

∥∥∥T−1/2
(
H
−1/2
k ⊗ I

)
θ̂(τi)

∥∥∥ > γbT

)
< ε

Using the last two inequalities and the same arguments as in Property 3, we obtain,

with probability at least 1− 2ε,

L (1, τi; θ,Σ) ≤ −τib2
TC

2/8

for all k ≥ AhT and all (θ,Σ) ∈ S1T , which is further bounded by

−AhT b2
TC

2/8 < −AC2h/16 < log ε

if A is large.

The proof on S2T is almost the same as in Property 3 with only minor changes,

therefore is omitted here. �

Property 6: Under the same hypothesis as Property 5, we have for any A > 0

sup
AhT≤τi

sup
(θ,Σ)∈SCT

L (1, τi; θ,Σ) = Op(1) (1.8.12)

where SCT is the complement of ST with ST given in Property 5.

The last property states that the quasi-likelihood ratio is simply bounded when

evaluated not far away from zero and the number of observations increasing not too

fast.
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Proof of Property 6:

It su�ces to prove the log-valued likelihood ratio is bounded in probability. The

log-likelihood ratio consists of two expressions L1t and L2t given in Property 3. First

consider L2t. It is enough to prove the �rst term of L2t is bounded because the second

term of L2t is negative. The norm of the �rst term is bounded by

T−1/2
(
dT
√
AhT

)
sup
ScT

∥∥(I + ΨT )−1
∥∥ sup
τi≤AhT

τi∑
t=1

(Vt ⊗ ηt)

Note that ‖(I + ΨT )−1‖ is uniformly bounded on ScT because ‖ΨT
−1‖ = O(T−1/2dT ) <

1.

The second supreme is bounded by the functional central limit theorem for mar-

tingale di�erences. Combined with the boundedness of T−1/2(dT
√
AhT ) (because its

squared value is bounded by assumption), we see that the above expression is Op(1).

Next consider L1t. Because

(I + ΨT )−1 = I −ΨT + Ψ2
T (I + ΨT )−1

L1t can be written as

L1t = −τi
2

log |I + ΨT | − tr(ΨT ) +
1

2
tr

[
ΨT

τi∑
t=1

(ηtη
′
t − I)

]
−

τi∑
t=1

η′tΨ
2
T (It + ΨT )−1ηt

The last term is non-positive, so it is enough to consider the �rst two terms on the

right. The �rst term is equal to

−τi
2

n∑
i=1

(log(1 + λi)− λi)
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where again the λ′is are the eigenvalues of ΨT . Applying Taylor expansion, it yields

τi
2

n∑
i=1

(
1

2
λ2
i + o(λ2

i )) ≤ τinmaxλ2
i

≤ τinC max ‖ΨT‖2

≤ CAhT
d2
T

T
for all k ≤ AhT

which is bounded by our assumption. We have utilized the relationship between a

symmetric matrix and its eigenvalues. Next, consider the second term

∥∥∥∥∥ΨT

τi∑
t=1

(ηtη
′
t − I)

∥∥∥∥∥ ≤ ‖ΨT‖
√
AhT sup

∥∥∥∥∥ 1√
AhT

τi∑
t=1

(ηtη
′
t − I)

∥∥∥∥∥
= C

(
T−1/2dT

√
AhT

)
Op(1)

which is bounded in probability. �

Now we can use these properties to prove Theorem 1. Here, we only consider the

case in which v ≤ 0, i.e. τi ≤ τ 0
i . The case for v > 0 is similar. The likelihood ratio

LRT is based on the whole sample [1, T ]. The likelihood ratio can be rewritten as the

product of likelihood ratios for three subsamples, [1, τi], [τi+1, τ 0
i ], and [τ 0

i +1, T ]. In

this way, the likelihood ratio will have Vt ⊗ I rather than Zt(τ) as regressors. Recall

that β = (θ
′
, (Sδ)

′
)
′
. Let Ψ = θ+S ′Sδ, which is the combination coe�cients of Vt⊗I

for the second regime.

The likelihood ratio LRT can be rewritten as

LRT =
L(τ, β0 + T−1/2β, Σ0 + T−1/2Σ)

L(τ 0, β0,Σ0)

= L(1, τ ; θ,Σ)× L(τ + 1, τ 0;
√
TS ′SδT + ψ,Σ)× L(τ 0 + 1, T ;ψ,Σ)(1.8.13)

Only the middle term of (last expression) needs some explanation. For t ∈ [τi +
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1, τ 0
i ],

εt(τi) = yt − Zt(τi)′(β0 + T−1/2β)

= εt − (V ′t ⊗ I)S ′Sδ − T−1/2(V ′t ⊗ I)(θ + S ′Sδ)

= εt − T−1/2(V ′t ⊗ I)(
√
TS ′SδT + ψ). (1.8.14)

By the de�nition of L, the segment [τi+1, τ 0
i ] involves the parameter value

√
TS ′SδT+

ψ.

Let τi(v) = τ 0
i + [v1v

−2
T ]. For some e0 > 0 and ε0 < τ0, de�ne

B1,T =
{

((τi, β,Σ)); ||ψ|| ≤
√
T ||S ′SδT ||, T ε0 ≤ τi ≤ τt(v1)

}
(1.8.15)

B2,T =
{

((τi, β,Σ)); ||ψ|| ≤
√
T ||S ′SδT ||, 0 ≤ τi ≤ Tε0

}
(1.8.16)

B3,T =
{

((τi, β,Σ)); ||ψ|| ≤
√
T ||S ′SδT ||, T ε0 ≤ τi ≤ τt(v1)

}
(1.8.17)

On B1,T , both L(1, τ ; θ,Σ) and L(τ 0 + 1, T ;ψ,Σ) are Op(1) from Property 1, since

both use positive fraction of observations.

Next consider L(τ + 1, τ 0;
√
TS ′SδT +ψ,Σ) which involves τ0− τ = −vv−2

T obser-

vations. Since

||
√
TS ′SδT + ψ|| ≥ ||

√
TS ′SδT || − ||ψ||

≥ 1

2
||S ′SδT ||

we apply property 5 with

θ =
√
TS ′SδT + ψ

dt =
1

2

√
T ||S ′SδT ||

ht = v−2
t
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A = −v1

to conclude that L(τ + 1, τ 0;
√
TS ′SδT +ψ,Σ) can be arbitrarily small in probability

if −v1 is large.

We now assume that

||
√
TS ′SδT || > log T

Then on B2,T , L(1, τ ; θ,Σ) is less than TB for some B > 0 with probability at least

1 − ε from property 2 and L(τ + 1, τ 0;
√
TS ′SδT + ψ,Σ) is Op(1) from property 1.

However, by property 3 ,with θ =
√
TS ′SδT +ψ, L(τ + 1, τ 0;

√
TS ′SδT +ψ,Σ) is less

than T−D for any D > 0 with probability at least 1 − ε when T is large. Thus the

product of these three terms can be no larger than ε with probability at least 1− 2ε

when T is large.

Next onB3,T , Property 2 is applicable to both L(1, τ ; θ,Σ) and L(τ+1, τ 0;
√
TS ′SδT+

ψ,Σ) and property 3 is applicable to L(τ+1, τ 0;
√
TS ′SδT +ψ,Σ). Thus their product

can be arbitrarily small.

Then it is easy to show that

Pr

(
sup
|v|≥v1

sup
(β,Σ)∈ST

LRT > ε

)
< ε (1.8.18)

and

Pr

(
sup
|v|≤v1

sup
||β||>M or ||Σ||>M

LRT > ε

)
< ε (1.8.19)

These two results directly give the consistency, rate of convergence of these esti-

mates in our model.

1.8.2 Proof of Theorem 2

For a given ordered structural breaks of the sample, we have

31



LRT (τ1, . . . , τn) = T log |Σ̃| − T log |Σ̂|

where Σ̂ and Σ̃ denote the covariance matrix of the errors estimated under the null

and alternative hypotheses, respectively. Taking a second Taylor expansion,

LRT (τ1, . . . , τn) = tr
(
TΣ−1

0 (Σ̃− Σ̂)
)

+
T

2
tr

([
(Σ0)−1(Σ̂− Σ0)

]2
)

−T
2
tr

([
(Σ0)−1(Σ̃− Σ0)

]2
)

+ op(T
−1)

First we consider the third term log

[
(Σ0)−1(Σ̃− Σ0)

]2

=

[
(Σ0)−1(T−1

T∑
t=1

(
yt − Z ′tβ̂

)(
yt − Z ′tβ̂

)′
− Σ0)

]2

=

[
(Σ0)−1(T−1

T∑
t=1

(
yt − Z ′tβ̂

)(
yt − Z ′tβ̂

)′
− Σ0)

]2

=

[
(Σ0)−1(T−1

T∑
t=1

(
yt − Z ′tβ̂

)(
yt − Z ′tβ̂

)′
− Σ0)

]2

+Op(T
−3/2)

where the last equality follows since β0 − β̃ = Op(T
−1/2).

Similarly, we can show that

[
(Σ0)−1(Σ̃− Σ0)

]2

=

[
(Σ0)−1(T−1

T∑
t=1

(
yt − Z ′tβ̂

)(
yt − Z ′tβ̂

)′
− Σ0)

]2

Hence the likelihood ratio can be simpli�ed as

LRT (τ1, . . . , τn) = tr
(
TΣ−1

0 (Σ̃− Σ̂)
)

+
T

2
tr

([
(Σ0)−1(Σ̂− Σ0)

]2
)

−T
2
tr

([
(Σ0)−1(Σ̃− Σ0)

]2
)

+ op(T
−1)
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The reminder proof proceeds similar as Qu and Perron (2007).

1.9 Chapter 1: Tables and Figures

Table 1.1: Empirical Results: Output Growth in European and United States
Country Sample supW ExpW Break Dates

A: Breaks in Univariate

France 64:Q2-89:Q2 23.68 9.15 74:Q2

(0.00) (0.00) (72:Q4, 75:Q4)

Germany 51:Q4-89:Q2 21.68 8.28 61:Q2

(0.00) (0.00) (59:Q1, 63:Q3)

Italy 53:Q2-82:Q4 10.30 2.83 74:Q3

(0.03) (0.03) (70:Q2, 78:Q4)

U.S. 64:Q2-89:Q2 1.42 0.25 68:Q4

(0.91) (0.71) (73:Q3, 76:Q3)

B: Common Breaks in VAR Systems

F, G 64:Q4-89:Q2 26.00 10.14 75:Q1

(0.00) (0.00) (73:Q3, 76:Q3)

F, I 64:Q4-82:Q4 17.97 6.24 73:Q4

(0.00) (0.00) (72:Q1, 75:Q3)

F, U 64:Q4-89:Q2 7.43 1.28 70:Q3

(0.07) (0.13) (63:Q1, 80:Q4)

G, I 53:Q4-82:Q4 14.98 5.32 74:Q1

(0.02) (0.01) (71:Q1, 77:Q2)

G, U 51:Q4-89:Q2 3.21 1.09 65:Q1

(0.35) (0.43) (55:Q1, 78:Q1)

I, U 53:Q4-82:Q4 4.60 0.54 69:Q3

(0.18) (0.51) (63:Q1, 75:Q2)

F, G, I 64:Q4-82:Q4 19.43 6.98 73:Q4

(0.01) (0.00) (72:Q2, 75:Q2)

F, G, I, U 64:Q4-82:Q4 11.47 1.49 72:Q1

(0.06) (0.08) (69:Q3, 76:Q1)

Note: We employ the statistics-supW and ExpW - in Bai and Perron (1998, 2003)
and Bai et al. (1998). There limiting distributions and critical values are shown in
these papers. The p−values are given in parentheses. The sample period denotes the
period over which the testing were run; as convention in the literature, the trimming
value ε is set to 0.15.
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Table 1.2: Empirical Results: Output Growth in European and United States
Country Sample supLR Break Dates

C: Ordered Breaks in VAR Systems

F, G 64:Q4-89:Q2 16.70 Eq 1: 75:Q2

(0.01) Eq 2: 64:Q3

F, I 64:Q4-82:Q4 28.13 Eq 1: 73:Q2

(0.00) Eq 2: 74:Q4

F, U 64:Q4-89:Q2 13.52 Eq 1: 75:Q1

(0.05) Eq 2: 70:Q3

G, I 53:Q4-82:Q4 18.28 Eq 1: 63:Q3

(0.00) Eq 2: 71:Q2

G, U 51:Q4-89:Q2 9.36 Eq 1: 65:Q4

(0.09) Eq 2: 66:Q4

I, U 53:Q4-82:Q4 13.15 Eq 1: 74:Q1

(0.05) Eq 2: 69:Q3

F, G, I 64:Q4-82:Q4 16.32 Eq 1: 75:Q4, Eq 2: 64:Q3

(0.01) Eq 3: 72:Q3

F, G, I, U 64:Q4-82:Q4 12.99 Eq 1: 75:Q4, Eq 2: 64:Q3

(0.06) Eq 3: 72:Q3, Eq 4: 70:Q1

Note: The p−values are given in parentheses, and are computed using the asymptotic
distributions of the test statistic supLR in Section 4. The sample period denotes the
period over which the testing were run; as convention in the literature, the trimming
value ε is set to 0.15.
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Chapter 2

Nonlinear Solutions to Dynamic

Stochastic General Equilibrium

Models and Parameter Stability

2.1 Introduction

This paper studies the parameter stability of dynamic stochastic general equilib-

rium (DSGE) models. This problem is important because DSGE models are now at

the center of modern macroeconomics. Among the most powerful tools, such as VAR

and structural VAR, DSGE models have been developed to match economic theory

with real economic data, to help design and evaluate economic policy, and more re-

cently to perform forecasting. They promise to be a laboratory not just for academia,

but also for an increasing number of policy making institutions.1 Furthermore, the

parameters in DSGE models are de�ned to describe agents' preferences and tech-

nologies of the economy. As a response to Lucas (1976) critique, these parameters

1As we have witnessed, an increasing number of policy making institutions, such as the Federal
Reserve Board, the European Central Bank and the Bank of England, the Bank of Canada, the
Bank of Sweden, the Bank of Spain, and the Bank of Japan among others already employ DSGE
models for policy analysis and forecasting.
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have a solid micro-foundation from the perspective of economic theory, and ought

to remain invariant to policy interventions. Given these reasons, one can naturally

raise the question of whether these DSGE models live up to their promise of being

truly �structural�. In other words, how stable are these so-called deep �structural�

parameters of DSGE models over time?

In the existing literature, a body of evidence has been brought to document the

parameter instability of estimated DSGE models, which all suggest the evolving eco-

nomic environment of the U.S. has changed in fundamental ways over the last few

decades.2 For instance, Ireland (2001) estimates a DSGE model with sticky prices by

maximum likelihood estimation and uses standard stability tests for a single known

break date. These formal hypothesis test results show instability in the estimated

parameters, particularly in estimates of the representative household's discount fac-

tor. Boivin and Giannoni (2006) also investigate the structural parameters of a New

Keynesian model using minimum-distance estimation, and interpret changes in these

parameter estimates from two sub-periods as evidence of the e�ectiveness of mone-

tary policy in the post-1980 period. Fernandez-Villaverde and Rubio-Ramírez (2008)

contribute the literature by estimating a medium-scale DSGE model directly allow-

ing parameter drifting. They document that there is strong evidence that parameters

change within their sample as well. More recently, Inoue and Rossi (2011) use a

novel approach to directly investigate the source of instability and seek to �nd which

structural parameters are truly �structural�.

However, there are three limitations in the existing empirical �ndings. First of

all, these studies aforementioned, except Fernandez-Villaverde and Rubio-Ramírez

(2008), rely on the linear solution methods for the DSGE models since the lineariza-

tion or log-linearization approach is appealing from both the econometric perspec-

2In the discussion of Great Moderation, a number of empirical studies use VAR models with time-
varying parameters. Example includes Uhlig (1997), Stock and Watson (2002), Primiceri (2005),
Cogley and Sargent (2005), and Sims and Zha (2006).
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tive and the computational perspective. Over the last two decades, a number of

nonlinear solution methods for DSGE models have been proposed as alternatives to

more traditional linear solution methods. These new methods have promised supe-

rior performance on the long experience of mathematics and in a growing economic

literature that emphasizes the role of nonlinearities in dynamic equilibrium economies.

Fernandez-Villaverde and Rubio-Ramírez (2005) and Fernandez-Villaverde et al. (2006)

point out that estimating DSGE models based on their linear solutions will generally

lead to biases, which will not consequently generate correct inference�stability tests

in this case. Second, the common practice in the existing literature is to divide the

sample into two subsamples and to construct classical structural break tests typically

attributed to Chow (1960) and the recent treatment of Andrews and Fair (1988). The

limitation of the Chow test, however, is the break date must be known as a priori.

In the literature, one has to either pick an arbitrary candidate break date�usually

around 1979, or pick a break date based on some known feature of data�for instance,

the sharp decline in the volatility of output documented by Stock and Watson (2002)

among others. The Chow test may be uninformative in the �rst case, since the true

break date might be missed. In the second case, the Chow test might be misleading,

as the candidate break date is endogenous�it is correlated with the data. Therefore,

di�erent studies can easily reach quite distinct conclusions, since the results can be

highly sensitive to these arbitrary choices. Third, most of the literature has focused

on a single structural break in these parameters, whereas allowing multiple structural

breaks might be more suitable given the substantial changes of economic structure,

technological innovations, and historical events over the last few decades.

This paper addresses these limitations and completes the literature in the follow-

ing ways. First, this paper solves and estimates a small-scale DSGE model�a rep-

resentative New Keynesian model in this case�using two main numerical methods:

perturbation and projection methods. Within perturbation, I consider �rst, second,
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and third order approximations. Note the �rst order perturbation is equivalent to

the traditional log-linearized solution since variables in the model are transformed

in logarithm. Within projection, I use second and third order Chebyshev polyno-

mials approximations. These parameter estimates and stability tests from nonlinear

solutions o�er a comparison to results from log-linearized solution, and can be used

to investigate the e�ect of nonlinearities on parameter stability. Second, this paper

explicitly treats the break date(s) as unknown. Although the statistics of testing un-

known structural break(s) have been set up by Quandt (1960) and their asymptotic

properties have been derived in Andrews (1993) and Andrews and Ploberger (1994)

among others, they have been surprisingly rarely incorporated into empirical stud-

ies under a more structural framework, like DSGE models.3 Therefore, this paper

tries to �ll part of this gap by treating the break date(s) as unknown. Third, this

paper considers the possibility of multiple structural breaks in DSGE models. Here

I propose a sequential procedure for multiple structural breaks in nonlinear models.

The procedure was originally developed by Bai (1997) for testing multiple breaks in

linear regressions. The advantage of this sequential procedure is to avoid the com-

putation complexity when estimating multiple structural breaks simultaneously, and

also to circumvent the challenge of unavailable asymptotic properties on statistics for

multiple structural breaks in nonlinear models.

The main �nding of this paper is that there is strong evidence of parameter in-

stabilities of DSGE models � a representative New Keynesian model using U.S. data

in this case. In particular, the results �rst show that the presence of parameter in-

stability does not result from linearization or log-linearization to the DSGE model.

Neither linear nor nonlinear solutions could support null hypothesis of parameter sta-

bility, which indicates some more fundamental changes of economy structure. Also,

this paper documents the two common structural breaks among these parameters of

3One exception is Estrella and Fuhrer (2003), in which they examine the stability of a forward-
looking monetary policy model.
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this DSGE model. These breaks occur in the early 1970s, and the middle 1990s, corre-

sponding to when fundamental changes in U.S. are widely believed to have occurred.

Finally, the empirical results in this paper suggest that parameter instabilities are not

only due to changes in monetary policy reactions, but also to changes in agents' pref-

erences and technology as well as changes in shocks volatility. It is broadly consistent

with �ndings of Ireland (2001), Fernandez-Villaverde and Rubio-Ramírez (2008), and

Inoue and Rossi (2011).

These results shown in this paper are important for the following reasons. First,

the evidence of parameter instabilities convey the message, in the sense of Lucas

(1976) critique, that structural parameters in DSGE models ought to be policy in-

variant, but not necessarily time invariant. And they also highlight the importance

of applying stability tests to so-called �structural� macroeconomic models, like DSGE

models. Second, the identi�cation of timing of structural breaks is very informative

regarding understanding the instability of macroeconomic �uctuation. More impor-

tantly, one should incorporate the information of break dates when considering to

use DSGE models to perform policy analysis and forecasting. Third, the comparison

between linear solution to non-linear solution emphasizes that exploiting nonlinear-

ities allows for more accurate estimation and inference. Nonlinear models can o�er

better explanation of economic dynamics, for instance, zero lower bound constraint

confronted by the central banks of U.S. and Europe. Finally, this paper makes a

methodological contribution by introducing sequential procedure for multiple breaks

into DSGE models. Based on the Monte Carlo simulation, such a procedure can be

directly applied to other non-linear models, and it will deliver consistent results.

The rest of the paper is organized as follows. Section 2 describes the representative

DSGE model and its equilibrium conditions. Section 3 outlines the solutions to

the DSGE model. Section 4 describes the estimations of these linear and nonlinear

solutions, and proposes two structural break tests and a sequential procedure for
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multiple breaks. Section 5 contains data, computational implication, and results.

Finally, section 6 concludes.

2.2 The DSGE Model

The DSGE model in this paper consists of a representative household, a represen-

tative �nal goods-producing �rm, a continuum of intermediate goods-producing �rms

and a central bank. This model is a small-scale version of the New Keynesian model,

which has been developed by Ireland (2001, 2004, 2007) and Woodford (2003) among

others for the analysis of monetary and �scal policy. More elaborate versions can be

found in Christiano et al. (2005) and Smets and Wouters (2003, 2007).

2.2.1 The Household

At the beginning of each period t = 0, 1, 2, . . . , the representative household enters

with Mt−1 units of money, Bt−1 units of bonds and Kt units of capital. Meanwhile,

the household receives a lump-sum nominal transfer Tt from the central bank. In

addition, the household's bonds mature, providing Bt−1 additional unites of money.

During period t, the household supplies Ht(i) units of labor and Kt(i) to the various

intermediate goods-producing �rms, taking the nominal factor prices Wt and Qt as

given, where i ∈ [0, 1] indicates each intermediate goods-producing �rm. Here the

model denotes Ht =
´ 1

0
Ht(i)di as the total amount of labor supplied and Kt =

´ 1

0
Kt(i)di as the total amount of capital supplied. Thus, the household receives total

nominal factor paymentsWtHt+QtKt. At last, the household receives nominal pro�ts

Dt =
´ 1

0
Dt(i)di from the intermediate goods-producing �rms.

The household expenditures are characterized as the following. First, the house-

hold purchases the �nal goods from the representative �nal goods-producing �rm at

the nominal price Pt. This purchase is divided into Ct units of consumption and It
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units of investment. In order to transform �nal goods to productive investment, the

household must pay an adjustment cost. It is measured in terms of the �nal goods

and given by

φk
2

(
Kt+1

Kt

− 1

)2

Kt

where φk > 0 measures the magnitude of the capital adjustment cost, and the capital

accumulation follows

Kt+1 = (1− δ)Kt + It

where the depreciate rate is δ ∈ (0, 1). Also, The household uses some of its funds to

purchase Bt new bonds at price of 1/Rt, where Rt denotes the gross nominal interest

rate between t and t + 1. The household then carries Bt units of bonds, and Kt+1

units of capital, and Mt units of remaining money into period t + 1. Therefore the

budget constraint for the household is

Ct+It+
φk
2

(
Kt+1

Kt

− 1

)2

Kt+
Bt/Rt +Mt

Pt
≤ Mt−1 +Bt−1 + Tt +WtHt +QtKt +Dt

Pt

The household aims to maximize its expected utility, given by

maxE
∞∑
t=0

βtu

(
Ct,

Mt

Pt
, Ht

)

where the discount factor is β ∈ (0, 1) . Assume that the instantaneous utility

function takes the form as

u

(
Ct,

Mt

Pt
, Ht

)
= at

C1−γ
t − 1

1− γ
+ χm log

(
Mt

Pt

)
− χh

H1+ν
t − 1

1 + ν

where γ is the inverse of the elasticity of substitution between current and future

consumption, and ν is the inverse of the Frisch labor supply elasticity. χm and χh are

weights associated with utility from real money balances and disutility from worked
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hours. The preference shock at follows the stationary autoregressive process

ln(at) = ρa ln(at−1) + εat

with ρa ∈ (0, 1), where the serially uncorrected innovation εat has the normal distri-

bution with zero mean and standard deviation σa.

2.2.2 The Final Goods-Producing Firm

During each period t, the representative �nal goods-producing �rm purchase Yt(i)

units of each intermediate good i ∈ [0, 1] at the nominal price Pt(i) to produce Yt

units of the �nal goods according to constant-return-to-scale technology described by

Yt =

[ˆ 1

0

Yt(i)
(θ−1)/θdi

]θ/(θ−1)

where θ > 1 measures the constant elasticity of demand for each intermediate good.

Thus, the �nal goods-producing �rm seeks to choose Yt and Yt(i) for all i ∈ [0, 1] to

maximize its pro�ts given the nominal price Pt of �nal goods and the nominal price

Pt(i) of intermediate goods. Perfect competition in the �nal goods market drives the

�rm's pro�ts in equilibrium to zero. This zero pro�t condition leads to determine the

equilibrium price Pt as

Pt =

[ˆ 1

0

Pt(i)
1−θdi

]1/(1−θ)

Also, the demand for each intermediate good i turns out to be

Yt(i) =

[
Pt(i)

Pt

]−θ
Yt
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2.2.3 The Intermediate Goods-Producing Firms

The representative intermediate goods-producing �rm hires Ht(i) units of labor

and rents Kt(i) units of capital from the household to produce Yt(i) units of interme-

diate good i during period t. The constant returns to scale production technology is

described by

Yt(i) = Kt(i)
α[ztHt(i)]

1−α

where α ∈ (0, 1) is capital's share in production function. Here the aggregate tech-

nology shock zt follows a �rst order autoregressive process

ln(zt) = (1− ρz) ln(z) + ρz ln(zt−1) + εzt

with z > 0 and ρz ∈ (0, 1), where the serially uncorrelated innovation εzt has the

normal distribution with mean zero and standard deviation σz.

Since the representative intermediate goods-producing �rm can sell its output in

a monopolistically competitive market; during period t, the �rm sets the nominal

price Pt(i) for its output, subject to the requirement that it satisfy the �nal goods-

producing �rm's demand at that price. In addition, following Rotemberg (1982), the

intermediate goods-producing �rm faces a quadratic cost of adjusting its nominal

price between periods, measured in terms of the �nal goods and given by

φp
2

[
Pt(i)

πPt−1(i)
− 1

]2

Yt

where φp ≥ 0 gives the magnitude of the price adjustment cost, and π ≥ 1 measures

the gross steady-state rate of in�ation.

The intermediate goods-producing �rm must choose Ht(i), Kt(i), Yt(i), and Pt(i)
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to maximize its total expected real market value, given by

maxE
∞∑
t=0

βtΛt

[
Dt(i)

Pt

]

where βtΛt measures the marginal utility value to the representative household of an

additional unit of real pro�ts received in the form of dividends during the period t

and where

Dt(i)

Pt
=
Pt(i)Yt(i)

Pt
− WtHt(i) +QtKt(i)

Pt
− φp

2

[
Pt(i)

πPt−1(i)
− 1

]2

Yt

measures the �rm's real pro�ts during the same period t.

2.2.4 The Central Bank

The central bank conducts monetary policy by adjusting short term nominal Rt

according to the following conventional rule:

ln

(
Rt

R

)
= ρR ln

(
Rt−1

R

)
+ ρπ ln

(πt
π

)
+ ρy ln

(
Yt
Y

)
+ εRt

where R, π, and Y denote the target values of the respective variables. Rt follows a

version of Taylor (1993) rule that depends on the lagged interest rate, the deviation of

in�ation with respect to its target, and the output gap. The central bank can choose

the level of one of these target variables, as well as the parameters ρR, ρy, and ρπ.

The term εRt denotes monetary policy shock with mean zero and standard deviation

σR.
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2.2.5 The Equilibrium Conditions

In a symmetric equilibrium, all intermediate goods-producing �rms make identical

decisions, so that Yt(i) = Yt, Ht(i) = Ht, Dt(i) = Dt, Kt(i) = Kt, and Pt(i) = Pt

for all i ∈ [0, 1]. In addition, the market clearing conditions Mt = Mt−1 + Tt and

Bt = Bt−1 = 0 must hold. Letting ct = Ct, kt = Kt, ht = Ht, mt = Mt/Pt,

wt = Wt/Pt, and qt = Qt/Pt and πt = Pt/Pt−1, the equilibrium conditions can be

summarized as the following.4

χmm
−1
t − atc

−γ
t (1−R−1

t ) = 0 (2.2.1)

χhh
ν
t − atc

−γ
t wt = 0 (2.2.2)

atc
−γ
t

Rt

− βEt
at+1c

−γ
t+1

πt+1

= 0 (2.2.3)

−atc−γt
[
1 + φk

(
kt+1

kt
− 1

)]
+ βEt

{
at+1c

−γ
t+1 [(qt+1 + 1− δ)

−φk
2

(
kt+1

kt
− 1

)2

+ φk

(
kt+2

kt+1

− 1

)(
kt+2

kt+1

)]}
= 0 (2.2.4)

yt − kαt [ztht]
1−α = 0 (2.2.5)

yt − wtht − qtkt −
φp
2

(πt
π
− 1
)2

yt − dt = 0 (2.2.6)

atwtht − (1− α)qtkt = 0 (2.2.7)

atc
−γ
t

[
1− θ + θ

wtht
(1− α)yt

− φp
(πt
π
− 1
) πt
π

]
+βφpEt

{
at+1c

−γ
t+1

(πt+1

π
− 1
) πt+1

π

yt+1

yt

}
= 0 (2.2.8)

ct + it +
φk
2

(
kt+1

kt
− 1

)2

kt +
φp
2

(πt
π
− 1
)2

yt − yt = 0 (2.2.9)

kt+1 − (1− δ)kt − it = 0 (2.2.10)

ln

(
Rt

R

)
−
[
ρR ln

(
Rt−1

R

)
+ ρπ ln

(πt
π

)
+ ρy ln

(
yt
y

)
+ εRt

]
= 0 (2.2.11)

ln(at)− ρa ln(at−1)− εat = 0 (2.2.12)

4In appendix A, I provide a complete derivation of these equilibrium conditions and steady
states.
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ln(zt)− [(1− ρz) ln(z) + ρz ln(zt−1) + εzt] = 0 (2.2.13)

It is worth noting that the �rst four equations above describe the representative

household's optimization decisions: equation (1) gives the household's demand for

real balance; equation (2) equates the marginal rate of substitution between labor

and consumption to the real wage; equation (3) describes the household's indi�erence

between consumption and bond holdings; equation (4) states that, in equilibrium,

the marginal utility cost of one unit of additional investment at time t equals the

discounted expected marginal utility value of its return in period t + 1. Moreover,

equations (5) through (10) come from the production side of the DSGE model: (5)

gives the aggregate production function; (6) characterizes the intermediate �rm's

budget constraint; (7) computes the marginal products of labor and capital to their

respective factor prices; and (8) describes the price-setting behavior of �rms; equation

(9) denotes the aggregate resource constraint in the economy; equation (10) de�nes

investment. Finally, equation (11) describes the monetary policy rule, and equation

(12) and (13) characterize the evolution of the exogenous state variables.

2.3 Solutions to the DSGE Model

The set of equilibrium conditions (1)− (13) derived in the previous section forms

a nonlinear rational expectation system, which can be written as

Etf (yt+1, yt, xt+1, xt, εt+1, Θ)= 0 (2.3.1)

where Et denotes the conditional expectation given all the information available at

time t;

xt = (kt, Rt−1, at, zt, εR,t)
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includes all the state (predetermined) variables;

yt = (ct, yt, kt+1, wt, ht, qt, dt, πt, mt)

consists of all the control (non-predetermined) variables;5

εt+1 = (εa,t+1, εz,t+1, εR,t+1)

collects the exogenous innovations; and �nally, Θ includes all the structural parame-

ters in the model.

Θ = (β, γ, ν, χm, χh, δ, θ, α, φk, φp, π, z, ρa, σa, ρz, σz, ρR, σR, ρy, ρπ)

This nonlinear rational expectation system has to be solved before the DSGE

model can be estimated. Like most DSGE models, this model does not have a �paper

and pencil� solution. Hence, numerical methods are employed to solve the equilibrium

dynamics of the model. Two numerical solution methods are considered here: pertur-

bation methods, which �nd solutions locally using Taylor expansions of equilibrium

conditions; and projection methods, which approximate solutions on a per-speci�ed

domain using function basis. As shown in Aruoba et al. (2006) among others, these

two methods have their relative advantages and drawbacks. More speci�cally, pertur-

bation methods are easily put in practice for large-scale models, but the range of their

accuracy is uncertain; on the other hand, projection methods are accurate and fast

when applied to models with few state variables, however, their computation costs

often increase rapidly when the number of state variables increase. The rest of this

section brie�y describes how I apply each of these solution methods to the model.

5Here I combine equation (9) and (10), then replace it by kt+1.

50



2.3.1 The Perturbation Method

In principle, perturbation methods approximate the equilibrium conditions around

the non-stochastic steady states using Taylor expansion. Speci�cally, adding a per-

turbation parameter σ into Equation (14) yields

Etf (yt+1, yt, xt+1, xt, σεt+1, Θ)= 0 (2.3.2)

Here the known parameter σ ≥ 0 determines the distance from the non-stochastic

steady states. When σ is equal to zero, the model corresponds to the non-stochastic

steady states. As observed by Schmitt-Grohé and Uribe (2004), the exact solution to

this system is given by

yt= g(xt, σ) (2.3.3)

xt+1=h(xt, σ) + σηεt+1 (2.3.4)

where nonlinear policy function g(·) maps R5 × R+ into R9, and nonlinear function

h(·) describes transitions of the 5 state variables in the model. As convention, I am

interested in the percentage deviation of a variable zt from its steady state z; thus all

the variables in this model are taken natural logarithm. Let ẑt = ln(zt/z), the �rst

order perturbation solution is equivalent to the log-linearized solution. A number

of solution methods have been proposed in the literature to obtain the �rst order

approximation to g(·) and h(·), including Blanchard and Kahn (1980), Uhlig (1999),

Klein (2000) and Sims (2002). Here, I use the algorithm provided by Klein (2000).

The solution is taken in the following form

ŷt= gxx̂t

x̂t+1= hxx̂t + σηεt+1
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where gx and hx are the �rst derivatives of g(·) and h(·) with respect to xt at the

steady state. All the elements in matrices gx and hx are functions of structural

parameters Θ.

Since one of the main goals in this paper is to explore nonlinearities embedding

in DSGE models, higher order approximations are also considered here. Indeed, it

is very straightforward to extend Taylor expansion to their higher order approxima-

tions. Several algorithms for computing such solutions have been developed by Judd

(1998), Schmitt-Grohé and Uribe (2004), Kim et al. (2005), and Andreasen (2011).

For the present analysis, I use the second-order approximation method derived by

Schmitt-Grohé and Uribe (2004), and rely on Andreasen (2011) to �nd the third-

order approximation solution. Following the representation as Gomme and Klein

(2010), the resulting second-order approximate solution takes the form as follows:

ŷt≈
1

2
gσσσ

2 + gxx̂t +
1

2
(I9 ⊗ x̂t)

′
gxxx̂t

x̂t+1≈
1

2
hσσσ

2 + hxx̂t +
1

2
(I5 ⊗ x̂t)

′
hxxx̂t + σηεt+1

where gσσ and hσσ are the second derivatives of g(·) and h(·), with respect to σ,

respectively; and gxx and hxx are the second derivatives of g and h with respect to

xt, respectively; and all the elements in matrices gxx and hxx are functions of these

structural parameters Θ. The third order approximation is following the similar form

with additional terms of the third derivatives of g(·) and h(·).

Finally, it is worth mentioning that there are three possible results depending on

parametrization of this DSGE model: no stable rational expectations solution exists;

the stable solution is unique (determinacy); or there are multiple stable solutions

(indeterminacy). In this paper, I focus on the case of the determinacy and restrict

the parameter space accordingly.

52



2.3.2 The Projection Method

As described in Judd (1992, 1998), projection methods solve the DSGE model by

proceeding the following steps. In the �rst step, the policy functions derived from

DSGE model's optimization decisions are approximated by polynomial functions with

unknown coe�cients. Then, when equilibrium conditions involve the conditional ex-

pectations, often seen in the model's inter-temporal equilibrium conditions, numerical

integration method is employed. Third, a set of grid points in the state space is cho-

sen and approximation error (residual) from the model's equilibrium conditions is

calculated at each grid point. Finally, these unknown coe�cients associated with

the approximating polynomial functions are determined by minimizing the residuals

subject to some loss criterion.

Since di�erent policy rules usually show various degrees of nonlinearities, it is

sensitive to choose the set of policy functions when applying projection method. After

some experimentation, I choose to approximate the policy functions for ct, kt+1, and

πt , and denote them as functions of the 5 state variables xt in the present analysis:

ct = f c(xt) (2.3.5)

kt+1 = fk(xt) (2.3.6)

πt = fπ(xt) (2.3.7)

where f i(·) : R5 → R for i ∈ {c, k, π}. As shown in the beginning of this section,

the 5 state variables are the capital stock kt, the lagged short term interest rate Rt−1,

the preference shocks at, the productivity shocks zt and the monetary shocks εR,t.

Note that only the �rst two variables are endogenous state variables, and the other 3

variables are exogenous state variables.

Since the function forms of f i are unknown, they need to be approximated before

�tting into estimation procedure. Here, I choose Chebyshev polynomial functions as
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basis functions and consider the second and third degree approximation to f i : R5 →

R for i ∈ {c, k, π}. It yields

ct ≈ f̂ c(xt, Bc)

kt+1 ≈ f̂k(xt, Bk)

πt ≈ f̂π(xt, Bπ)

where f̂ i(·) : R5 → R for i ∈ {c, k, π} are Chebyshev polynomials, and Bi for

i ∈ {c, k, π} are unknown coe�cients associated with these polynomials. Univari-

ate Chebyshev polynomials are a family of orthogonal polynomials on the interval

[−1, 1], and multivariate Chebyshev polynomials can easily be constructed as the

products of these univariated polynomials.6 However, it is extremely computation-

ally expensive to apply conventional projection method using the tensor product,

even for medium-dimensional models like this current one. Therefore, I follow a more

convenient approach � using complete polynomial basis � suggested by Judd (1992)

and Gaspar and Judd (1997).7

In order to avoid the curse of dimensionality, I apply a monomial rule Galerkin

method proposed by Pichler (2011) to this model. The key feature of this Galerkin

method is to use non-product monomial cubature rules for computing conditional

expectations and weighted residuals. The basic structure is as follows. In order to

compute these unknown coe�cients in f̂ i(·), i ∈ {c, k, π}, I �rst de�ne a hypercube

6Chebyshev polynomials are de�ned over [−1, 1] by the formula Tn(x) ≡ cos(n arccos(x)). They
are generated by the recursion scheme

Tn+1(x) = 2xTn(x)− Tn−1(x)

, which is initialized by T0(x) = 1 and T1(x) = x.
7The complete set of polynomials of total degree k is de�ned by

Ψ =


nx∏
j=1

Tij (xj)|
nx∑
j=1

≤ k, 0 ≤ i1, . . . , inx


.
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for the state variables and rely on non-product monomial rules to obtain grid points

within the hypercube.8 Then I use the basis functions of f̂ i(·), i ∈ {c, k, π} � Cheby-

shev polynomials � as weighting functions ωi(xt) to compute the weighted residuals.

Finally, I search for the values for these unknown coe�cients by equating all weighted

residuals to zero. For more details see the technical appendix.

Once these policy functions f̂ i(·), i ∈ {c, k, π} are obtained, the expressions

for the remaining endogenous variables can be easily found using the equilibrium

conditions. In particular, take output yt as an example,

yt =

[
1− φp

2

(πt
π
− 1
)]−1

[
kt+1 +

φk
2

(
kt+1

kt
− 1

)2

kt − (1− δ)kt

]

≈

[
1− φp

2

(
f̂π(xt, Bπ)

π
− 1

)]−1
f̂k(xt, Bk) +

φk
2

(
f̂k(xt, Bk)

kt
− 1

)2

kt − (1− δ)kt


≡ f̂ y(xt, By)

2.4 Estimation and Stability Tests

This section �rst describes the estimation of the structural parameters by max-

imum likelihood method, then illustrates how to construct structural break tests to

investigate parameter stability. Equipped with the solutions in previous section, the

state space representation is completed by specifying the measurement equations. It

yields

xt+1= H(xt, εt+1, Θ) (2.4.1)

Yt= G(xt, ut, Θ) (2.4.2)

8Another possible solution is the Smolyak's algorithm presented by Malin et al. (2011). However,
the Smolyak algorithm su�ers from its lack of universal applicability.
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where equation (21) called transition equation provides the law of motion for 5 state

variables, and equation (22) is the measurement equation, in which Yt is the sub-

set of imperfectly observable variables of yt. Particularly, I assume only output,

in�ation, and nominal interest rates are observables; measurement errors ut are also

added into equation (22) and are assumed normally distributed and uncorrelated, i.e.

ut ∼ N(0,Σu).

2.4.1 Evaluation of the Likelihood Function

In order to evaluate the likelihood function, I take advantage of the hidden Markov

structure of the state space representation. In principle, the likelihood function can

be written as

L(Θ|YT ) = p(Y1|Θ)
T∏
t=2

p(Yt|YT−1,Θ) (2.4.3)

where YT = {Y1, . . . ,YT}. For the �rst-order perturbation (log-linearized) approx-

imation of the model, the transition and measurement equation are linear and the

shocks are normally distributed. So the Kalman �lter (see Hamilton (1994)) is ap-

plied to construct the likelihood function. Unfortunately, linearity and Gaussian

assumptions are no longer satis�ed for these nonlinear solutions to DSGE models.

The Kalman �lter can not be used to compute the likelihood function.

Clearly, conditional distributions of state variables do not belong to, in general,

any known distribution family. The evaluation of the likelihood function is forced to

resort to some type of simulation: a particular example of sequential Monte Carlo

methods, also known as the particle �lter. The main idea is extremely simple.

Now the conditional distribution {p(xt|Y t−1,Θ)}Tt=1 is approximated by an empir-

ical distribution of N draws {{xi
t|t−1}Ni=1}Tt=1(a swarm of particles) from the sequence

{p(xt|YT−1,Θ)}Tt=1 generated by simulation. Then from the law of the large numbers,
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the likelihood function is obtained

L(Θ|YT ) ≈ 1

N

N∑
i=1

p(Y1|xi
0|0,Θ)

T∏
t=2

1

N

N∑
i=1

p(Yt|xi
t|t−1,Θ)

A brief description of the procedure can be found in the appendix. For more details

on these methods see Doucet et al. (2001) and Arulampalam et al. (2002). In the

literature on estimation of DSGE models, An and Schorfheide (2007) and Fernandez-

Villaverde and Rubio-Ramírez (2007) have shown that the particle �lter deliver better

estimation of DSGE models.

2.4.2 Maximum Likelihood Estimation

In contrast to Bayesian estimation, I perform likelihood-based estimation from

a classical perspective. In other words, parameters are interpreted as �xed but un-

known, and the data are interpreted as the realization of a random drawing of data

generating process, the present DSGE model. Therefore, once the likelihood function

is constructed from either Kalman �lter or Particle �lter, parameter estimates Θ̂ are

chosen from parameter space to maximize the likelihood function:

Θ̂ = arg max
Θ∈Θ

L(Θ|YT ) (2.4.4)

However, maximum likelihood estimation (MLE) of DSGE models, even small-

scale ones as this model, is very challenging. The main source of challenges arises

from the fact the likelihood L(Θ|YT ) is parametrized in terms of state-space model

(21) and (22), and these state-space models are complex and highly nonlinear func-

tion of Θ. Consequently, an ill-behaved likelihood surface may exist. Three classes of

problems are usually seen in practice. First, the likelihood surface contains disconti-

nuities, so that a small change in parameter value leads a jump in the value of the
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likelihood function. At such a point the likelihood function is not di�erentiable, so

it makes derivative-based optimization methods not feasible. Second, the likelihood

function usually has many local maxima so that estimates Θ̂ may not be a global

maximum. This is not unusual for likelihood-based estimations, and it obviously

makes the maximization task di�cult. Finally, as documented by Canova and Sala

(2009), lack of identi�cation exists in estimation of DSGE models. Again, this model

is no exception. The problem arises when the likelihood function is almost �at along

some parameters space. One may raise the question of whether nonlinear solutions,

like higher order perturbation methods, help with identi�cation. That question is

beyond the current range, and should be explored in the future work.

To address these problems aforementioned, I use the following strategies in this

paper. First, to help with identi�cation, I calibrate several parameters in line with the

literature rather than estimate them via MLE. In particular, these are the parameters

associated with investment, leisure, and real balances, which are hard to pin down

without data on the respective variables. Second, I follow Fernandez-Villaverde and

Rubio-Ramírez (2007) and use a simulated annealing approach instead of gradient-

based methods for maximizing the likelihood function. It allows us to deal with a

discontinuous likelihood function. Finally, I choose various sets of initial parameter

values to deal with the presence of local maxima.

2.4.3 Parameter Stability Tests

One great strength of DSGE models is that they are supposed to be structural:

these models have solid microfundations and include rational expectations, which

imply that parameters of these models describing private agent's tastes and tech-

nologies ought to remain constant, even across periods when monetary and �scal

policy regimes change. In order to study the parameter stability, I take two di�erent

treatments on break dates. The �rst one is to estimate this model over two disjoint
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sub-samples. The break date is chosen at 1979 in line with the literature, which cor-

responds to a date around when there are major changes in US monetary and �scal

policies. Another one is to treat the break dates as unknown, and to search for the

break dates.

2.4.3.1 Structural Break Test with Known Break Date

Let the vector Θ1 and Θ2 denote the estimated parameters from two disjoint

subsamples: pre-1979 and post-1979. The null hypothesis can be speci�ed as H0 :

Θ1 = Θ2. This classical structural break test goes back to Chow (1960), and is

extended by Andrews and Fair (1988). Therefore, I follow the treatment in Andrews

and Fair (1988) and construct the likelihood ratio statistic as

LR = 2[lnL(Θ1|Y1T ) + lnL(Θ2|Y2T )− lnL(Θ|YT )] (2.4.5)

where L(Θ1|Y1T ) and L(Θ2|Y2T ) are the maximized log-likelihood functions for the

�rst subsample and the second subsample, respectively. Andrews and Fair (1988) has

shown that this LR statistic is asymptotically distributed as χ2 random variable with

q degrees of freedom under the null hypothesis, where q is the number of estimated

parameters allowed to change.

2.4.3.2 Structural Break Test with a Single Unknown Break Date

One of the main assumptions of the Chow type LR test above is that one can

�arbitrarily� choose the break date. However, this information on the break date is

often unknown, or unobservable. As Hansen (2001) points out that the Chow type test

will be either uninformative or misleading, this paper, therefore, �rst consider a single

structural break with unknown date. The idea was originally proposed by Quandt

(1960), and recently Andrews (1993) and Andrews and Ploberger (1994) generalized
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the structural break tests with unknown change point in nonlinear parametric models.

Their proposed statistics are designed for one-time change in the value of a parameter

vector. Tests are considered for both the case of pure structural change and the case

of partial structural change.

Now the null hypothesis of interest here is one of parameter stability: H0 : Θt = Θ

for all t. The alternative hypothesis of interest is a one-time structural change with

break date λε ∈ (ε, 1 − ε), where ε is a trimming parameter. The one time change

alternative hypothesis with break date [λεT ] is given by

H1(λε) : Θt =


Θ1 for t = 1, . . . , λεT

Θ2 for t = λεT + 1, . . . , T

The basic idea is to use the maximum of the likelihood ratio test over all possible

break dates. In this case of a single unknown break, this translates into the following

statistic

sup
λε∈(ε,1−ε)

LRt(λε) (2.4.6)

where the likelihood ratio test LRt is constructed the same as the previous subsection.

One can rejects H0 for large values of supλ∈Λ LRt(λε). The limiting distribution is

given by Andrews (1993)

sup
λε∈(ε,1−ε)

LRt(λε)⇒ sup
λε∈(ε,1−ε)

Gq(λε) (2.4.7)

where Gq(λε) =
λε [Wq(1)−Wq(λε)]

′
[Wq(1)−Wq(λε)]

λε(1− λε)

whereWq(λε) is a vector of independent Wiener processes of dimension q , the number

of coe�cients that are allowed to change. Note the limiting distribution depends on
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q but it also depends on Λε.
9

2.4.3.3 Structural Breaks Test with Multiple Unknown Break Dates

While the supLR test is primarily designed to test for a single structural break,

multiple structural breaks may exist. However, the literature on tests for multiple

structural breaks is relatively scarce, except of Bai and Perron (1998) and Qu and

Perron (2007) for linear regressions. To this date, little has been known for mul-

tiple breaks in nonlinear models. In this paper, I propose a sequential procedure

originally developed by Bai (1997) for testing multiple breaks in linear regressions.

The advantage of this sequential procedure is to avoid the computation complexity

when estimating multiple structural breaks simultaneously, and also to circumvent the

challenge of nonexistence of asymptotic properties on statistics for multiple structural

breaks in nonlinear models.

The basic structure is as follows. First, I test for a structural break using the

supLRt(λε) statistic for the full sample of data. If there is signi�cant evidence of a

structural break over the full sample according to the supLRt(λε), I then calculate

the supLRt(λε) for each of the two subsamples de�ned by the full-sample break date.

If I fail to �nd evidence of a structural break using the supLRt(λε) statistic for

each of the two subsamples, I can conclude that there is a single break. If there is

signi�cant evidence of a structural break in either of the two subsamples, I compute

the supLRt(λε) statistic for each of the new subsamples de�ned by the new break date.

I proceed in this manner until all of the subsamples de�ned by any signi�cant break

date have insigni�cant supLRt(λε) or the number of breaks reaches the maximum of

allowed number of breaks, in this case, I choose at most 3 structural breaks.

9It is worth noting that the search for a maximum value be restricted is not simply a technical
requirement. It a�ects the properties of the test. As Andrews (1993) shows, if ε = 0 so that no
restrictions are imposed, the supLR test diverges to in�nity under the null hypothesis, which means
the power of the test decreases as ε get smaller. Hence, the trimming value should be large enough
for the test to retain descent power, yet small enough to include break dates that are potential
candidates. In the single break case, a popular choice is ε = 0.15.
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One may naturally wonder at the consistency of these estimated breaks from

sequential procedure. In other words, are these estimated break dates consistent with

those unknown true break dates? Since this paper does not provide any asymptotic

properties, which is beyond the range of the paper and will be explored in my future

research. However, I can still investigate �nite-sample properties of the proposed

sequential procedure by conducting a small Monte carol analysis. As shown in the

appendix, I use a small non-linear state space model, which still keeps most ingredients

from these more complicated DSGE models. The Monte Carlo experiment shows that

this sequential procedure method seems to work well, which implies that the sequential

procedure can deliver the �true� breaks.

2.5 Results

2.5.1 Data

This paper uses quarterly macroeconomic data for the United States to study

parameter stability of di�erent solutions to the DSGE model. In the data, output

is measured by real gross domestic product (GDP), where I remove a linear trend

from the logged GDP series. In�ation is based on changes in GDP de�ator, and the

nominal interest rate is measured by the rate on three-month Treasury bills. All these

series are extracted from FRED2 database maintained by the Federal Reserve Bank of

St. Louis. Except for the interest rate, all are seasonally adjusted. Also, the series for

output is expressed in per-capita terms by dividing by the civilian, non-institutional

population, age 16 and above. I focus on the sample from 1959:Q1 to 2007:Q4 for

two reasons. First, the results here can be compared directly with those in Ireland

(2001) and Inoue and Rossi (2011); the other reason is to avoid the constraint of zero
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lower bound for interest rates.10

2.5.2 Implication Issues

The �rst step in constructing stability tests for the DSGE model is to estimate

the structural parameters together with the measurement error variances Σu. This

is done by using maximum likelihood methods as outlined in Section 4. However,

for reasons that were also discussed in this section, I calibrate some parameters prior

to estimation. As in Ireland (2001), I �nd it is di�cult to estimate α, δ, and φk

without data on the capital stock or investment. I thus set these parameters to

α = 0.36, δ = 0.025, and φk = 10. For similar reasons, I calibrate the mark-up

parameter to θ = 6. Furthermore, I choose χh such that the household spends

30% of its time working in the steady state, and χm to match the steady state ratio

between real balances and quarterly output. Finally, as in An and Schorfheide (2007),

the measurement error variances are calibrated rather than estimated. I set these

variances equal to 10% of the variance of the respective data series. The remaining

14 parameters are estimated via maximum likelihood, either using the linear model

together with the Kalman �lter, or by using the nonlinear model together with the

particle �lter. In the latter case, I use 100, 000 particles for estimation.

2.5.3 Stability Tests Results

2.5.3.1 Known Break Date

The LR test results for the �ve di�erent solutions to the DSGE model are reported

in Table 1. Here the data are splited into two subsamples, in which the �rst subsample

covers the periods ending in 1979:Q2 and the second subsample starts in 1979:Q3.

This break date corresponds to the beginning of Paul Volker's chairmanship at the

10In the appendix, I discuss how to deal with zero lower bound using projection method. That
will be extension of the current paper.
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Federal Reserve System, when a major and fundamental change in monetary policy of

the U.S. has occurred. This break date is also broadly in line with the literature, such

as Clarida et al. (2000) and Ireland (2001). The test procedure has been described

in section 4 and the corresponding LR test is asymptotically distributed as a χ2

random variables with q degrees of freedom. It is important to mention this paper

use asymptotic χ2 distribution. Although a limited study found that �nite sample

distributions of LR tests for these solutions generally shows a shift to the right relative

to the asymptotic χ2 distribution, the use of asymptotic distribution can still lead to

same conclusions as the empirical distribution.

Column 2 in Table 1 presents the LR test results for a pure structural break, in

which all the 14 estimated structural parameters are allowed to change. Thus the

corresponding LR test is asymptotically distributed as a χ2 random variable with 14

degrees of freedom. The 1% and 5% critical values for χ2 with 14 degrees of freedom

are 29.1 and 23.7, respectively. Two observations can be drawn from column 2 in

Table 1. On one hand, the null hypothesis that estimated parameters are stable are

rejected by LR test results for all these �ve solutions. This �nding supports the

previous studies based on log-linearized solutions to DSGE models, and would not be

considered as surprising. One the other hand, the strengths of the rejection of stability

for these solutions are di�erent, which is more interesting than the previous �nding.

Two points are worth pointing out. First, the null hypothesis of stability is rejected

at 1% signi�cant level for all the three perturbation solutions, while it is rejected at

5% signi�cant level for the two solutions using projection method. Second, a closer

examination of the LR test results reveals that the strength of rejection of stability

for �rst-order perturbation (log-linearized) solutions is stronger than the other two

nonlinear perturbation solutions. One possible interpretation of di�erent strengths

of rejection indicates the e�ect of misspeci�cation. Since these misspecication can

also manifest themselves in the form of time-varying parameters, log-linearization

64



solutions to DSGE models would be more likely rejected by classical stability tests.

The slight di�erence of rejection of stability between perturbation and projection

methods might also highlight the fact that the solutions from projection methods are

more accurate than those from perturbation methods.

However, it is important to note that the parameter instability detected by al-

lowing all these parameters to change may re�ect instability in policy rather than

instability in the parameter describing tastes and technologies of the economy. In

order to diagnose the possible source of instability, two additional LR tests are con-

sidered in this paper by allowing only subsets of these parameters to change. The 14

estimated structural parameters are divided into two groups: the �rst group consists

of ρR, σR, ρy, and ρπ, which represent policy reaction function; the second group

includes that the 10 estimated parameters describe household preferences and �rm

behaviors, such as β, and γ among others.

Column 3 in Table 1 reports the LR test results for the null hypothesis of stability

of monetary policy reaction function. In this test I do not assume the other 10

parameters are stable across subsamples, which help to avoid the traditional problem

of standard stability tests mentioned by Inoue and Rossi (2011). Similar as the pure

structural break tests, the null hypotheses of stability are strongly rejected for all �ve

solutions. This is broadly consistent with empirical studies focus on just monetary

policy rules, such as Clarida et al. (2000), Estrella and Fuhrer (2003) and Boivin and

Giannoni (2006). However, this result is di�erent from the �ndings of Ireland (2001),

in which he considers the stability tests for each of these policy parameters and fail

to reject the null hypotheses. Column 4 in Table 1 shows the LR test results for the

null hypothesis of the parameters in the second group has remained stable. The LR

tests reject the null hypothesis for all these perturbation solutions, but fail to reject

them for the two solutions using projection method.
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2.5.3.2 A Single Unknown Break

The supLR tests for a single unknown break are constructed as one described in

section 4 for all these �ve di�erent solutions. Here the constrained model holds all

parameters �xed across the entire sample, whereas the unconstrained model allows

all parameters to vary across a certain candidate break date. The trimming value ε is

set as 0.15, which means the length of any regimes should be greater than [0.15 ∗ T ]

periods. T is the sample size of 196 in this case. Table 2 provides all supLR test

results and associated estimated break dates.

This paper uses the asymptotic values of supLR test provided by Andrews (1993).

The 1% critical values for this asymptotic distribution with 14 degrees of freedom and

trimming value of 0.15 is 39.2. As column 2 in Table 2 shows, the null hypothesis

of stability is overwhelmingly rejected for all 5 solutions. First, the largest value

of the supLR test for log-linearization solution is recorded in 1984:Q1. This break

date is in line with Estrella and Fuhrer (2003) in which they employ forward looking

monetary policy models. It is also broadly consistent with Stock and Watson (2002),

in which they apply supWald test in Bai et al. (1998) to VAR models. Secondly, for

second and third order perturbation solutions, the largest values of supLR tests shift

backward in the late 1970s or the very early 1980s. These break dates are roughly

similar as those break dates picked in the literature and the �nding of Moreno (2004)

using VAR models. Third, the estimated break dates for projection solutions are

quite di�erent from those for perturbation methods. The supLR tests for the second

and third projection solutions take their maxima in the early 1970s. This break

date is surprisingly consistent with Zhu (2012), in which I apply latest structural

break tests of Qu and Perron (2007) to both backward-looking and forward-looking

monetary models. Overall, Table 2 shows that, once again, there is strong evidence of

parameter instability in this DSGE model. In particular, the results from nonlinear

solutions play the role of robustness analysis, and complement the existing �ndings
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of Ireland (2001) and Boivin and Giannoni (2006) among others.

The most important �nding from Table 2 is that the estimated break dates di�er

from perturbation and projection solutions. There are several possible explanations

for the di�erence. The �rst explanation may be related with the di�erence between

perturbation method and projection method. The �rst one approximates locally the

policy functions while the latter builds approximated functions globally. However, lit-

tle has been known about the estimation and inference from di�erent solution methods

to this date. This paper is among very few attempts to estimate DSGE models solved

by projection methods.11 Further investigation needs to do in the future work. An-

other possible way to explain the di�erence is that there might be multiple breaks in

this DSGE model. Given the substantial changes of economic structure over the last

few decades, it is natural to allow the possibility of multiple structural breaks. Fig-

ure 2 plots the sequence of LR tests as a function of all these candidate break dates

for three solutions: the log-linearized solution, the second order perturbation solu-

tion and the second order projection solution. The candidate break dates are along

the x-axis; the values of the LR tests on the y-axis. Figure 2 shows that there are

considerable variations of the LR test sequences across candidate break dates. Most

importantly, it presents that there are few local maxima in these LR test sequences,

which implies the possibility of multiple structural breaks.

2.5.3.3 Multiple Structural Breaks

Figure 2 has already shown the possibility of multiple structural breaks in this

DSGE model, thus this section presents the results of searching for multiple breaks

in the model using sequential procedure. The supLR tests are constructed as similar

as those for a single unknown break and the trimming value ε is still set as 0.15.

The only modi�cation is to rede�ne subsample ranges if a second round of searching

11Fernandez-Villaverde and Rubio-Ramírez (2005) compare estimates of a neoclassical growth
model solved by both linear and nonlinear solution methods.
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needed. One can also recycle these LR test sequences in the previous subsection,

which help to reduce computation burden.

Table 3 reports the results from sequential procedure for all the �ve solutions.

First, the sequential procedure shows that there are three structural breaks for per-

turbation solutions to this DSGE model. The �rst breaks come from the �rst round

of searching, and they are the same as estimated break dates shown in Table 2, which

occur in the late 1970s and the early 1980s. Two additional breaks are found in the

second round of searching. One is in the early 1970s, and another one locates roughly

in the middle 1990s. Second, there are only two breaks detected for projection so-

lutions. The sequential procedure could not identify a third break around the late

1970s and the early 1980s. Figure 3 visualizes these breaks in Table 3. Evidently,

although all these break dates are not exactly the same with one another, one can still

identify two break dates are shared by all these �ve solutions: one in the early 1970s,

another in the middle 1990s. To this date, this paper appears to the �rst investiga-

tion on multiple breaks in DSGE models. Unlike these breaks found using VAR and

Structural VAR models, these common break dates in this paper are informative for

calibration and estimation of DSGE models. Furthermore, one may also relate these

breaks to economic theory or history events. For instance, the �rst break of the early

1970s may correspond to either starting of oil price shocks or changes in aggregate

productivity. To identify the source of these instabilities, one must choose accurate

break dates, otherwise, the conclusions might be misguided.

Once again, the puzzling thing is that the di�erent results from perturbation so-

lutions and projection solutions. The projection solutions fail to identify the breaks

around in the late 1970s and the early 1980s. It is also in contrast with these exist-

ing �ndings in the literature, and even more surprising considering that Paul Volker

started his Chairmanship at the Federal Reserve System in 1979, subsequently the

U.S. were confronted some fundamental changes in monetary and �scal policies. One
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possible explanation might be that projection methods approximate these policy func-

tions globally, and the solutions would be less mis-speci�ced than those locally ap-

proximation methods, such as perturbation methods.

2.5.3.4 Discussion

Having documented the strong evidence of parameter instability of the DSGE

model, I proceed to discuss few implications of this exercise. First, one might argue

that the strong evidence of parameter instabilities of DSGE models, regardless of

what solution methods used, as the evidence that those models, like current one, just

don't �t the data well and fail to response to Lucas (1976) critique. And therefore

one might attempt to formulate that DSGE models are misguided. However, as Inoue

and Rossi (2011) also point out, the structural parameters are just policy-invariant,

not necessarily time-invariant. As the economic structures change, these structural

parameters may vary as well. The Lucas (1976) critique plays like a warning sign

which highlights the importance of applying stability tests to macroeconomic models,

even on the so-called structural DSGE models. Second, since the timing of structural

breaks from linear and nonlinear solutions is quite similar, one might conclude that the

nonlinearities have no e�ect on parameter stability of DSGE models. I must caution

that the current New Keynesian model is not a fundamental one. In a model with

stochastic volatility (see Justiniano and Primiceri (2008) among others), nonlinear

policy rules (see Eggertsson and Woodford (2003) among others), or Epstein-Zin

preference (see van Binsbergen et al. (2012) among others), nonlinearities may lead

to di�erent conclusions. For instance, uncertainty shocks can not enter into solutions

if one only considers linearization or log-linearization solutions. As the literature has

documented, uncertainty shocks are important to interpreting the macroeconomic

�uctuations (see Basu and Bundick (2012) among others). Third, the searching for

multiple structural breaks has connections with the literature which deals with DSGE
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models with a Markov-switching process in di�erent aspects of the environment, such

as monetary or �scal policy (see Sims and Zha (2006), Liu et al. (2011) among others).

The proposed sequential procedure o�ers an alternative way to help us understand

the dynamics of economies.

2.6 Conclusion

In this paper, I employ a representative New Keynesian model to study the param-

eter stability of DSGE models. The New Keynesian model is solved and estimated by

both linear and nonlinear solution methods, particularly perturbation methods and

projection methods. The hypothesis test results show that there is strong evidence

of parameter instability in this New Keynesian model. The comparison among these

di�erent solutions �rst supports the �ndings using log-linearization solutions in the

existing literature. It indicates that these parameter instabilities documented in the

existing literature are not all due to linearization. Also, the comparison highlights

the di�erent e�ects of perturbation methods and projection methods on parameter

stability. Furthermore, this paper documents two common structural breaks among

these parameters for all these �ve solutions. The timing of structural breaks are

informative, and should be considered to incorporate into any DSGE modeling.

The purpose of this paper, however, is not to argue that DSGE models are mis-

guided. I would emphasize that, these results shown in this paper, once again, high-

light the message conveyed by Lucas (1976). The so-called structural parameters in

macroeconomic models are just policy invariant, but not necessarily time invariant.

Therefore, one should be encouraged to apply stability tests to these macroeconomic

models. In light of these results and methods, this paper raises a number of questions

to be explored for future research. Perhaps the most pressing one is that this paper

has not identi�ed speci�c source of parameter instability in the detail. Recently Inoue
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and Rossi (2011) has proposed a procedure to search for set of stable parameters. This

new econometric technique allows to address the stability properties of each single

parameter in DSGE models. It can be extended to these nonlinear solutions in this

paper. Another area of future research will be the introduction stochastic volatility

in the representative New Keynesian model in this paper, as the literature has shown

stochastic volatility may account for large part of macroeconomic �uctuations, and

instabilities in the parameter estimates. Finally, the sequential procedure proposed

in this paper needs more rigorous econometric treatments, which will complete the

econometric literature on estimation and testing of structural breaks in nonlinear

models.

2.7 Chapter 2: Appendix

2.7.1 Derivation of Equilibrium Conditions

This section documents how to derive the symmetric equilibrium conditions of the

New Keynesian model and calculate the steady state values.

2.7.1.1 Household

Denote ct = Ct, kt = Kt mt = Mt

Pt
, bt = Bt

Pt
, wt = Wt

Pt
, qt = Qt

Pt
and πt = Pt

Pt−1
,

I �rst compute the �rst order conditions from the household's optimization problem

by constructing the following Lagrangian:

LH = E
∞∑
t=0

βt
{
at
c1−γ
t − 1

1− γ
+ χm log(mt)− χh

h1+ν
t − 1

1 + ν

+Λt

[
mt−1 + bt−1

πt
+ wtht + qtkt + dt + τt − ct − kt+1 + (1− δ)kt

71



−φk
2

(
kt+1

kt
− 1

)2

kt −
bt
Rt

−mt

]}

where Λt is the multiplier associated with the household's budget constraint. In order

to calculate the �rst-order conditions, the Lagrangian is di�erentiated with respect

to the choice variables ct, mt, ht, bt, kt+1, and Λt:

atc
−γ
t − Λt = 0 (2.7.1)

χmm
−1
t − Λt + βE

Λt+1

πt+1

= 0 (2.7.2)

χhh
ν
t − Λtwt = 0 (2.7.3)

Λt

Rt

− βEt
Λt+1

πt+1

= 0 (2.7.4)

−Λt

[
1 + φk

(
kt+1

kt
− 1

)]
+ βEtΛt+1 [(qt+1 + 1− δ)

−φk
2

(
kt+1

kt
− 1

)2

+ φk

(
kt+2

kt+1

− 1

)(
kt+2

kt+1

)
= 0 (2.7.5)

mt−1 + bt−1

πt
+ wtht + qtkt + dt + τt − ct − kt+1 + (1− δ)kt

−φk
2

(
kt+1

kt
− 1

)2

kt −
bt
Rt

−mt = 0 (2.7.6)

The multiplier Λt can be eliminated using (A.1), then

χmm
−1
t − atc

−γ
t + βE

at+1c
−γ
t+1

πt+1

= 0 (2.7.7)

χhh
ν
t − atc

−γ
t wt = 0 (2.7.8)

atc
−γ
t

Rt

− βEt
at+1c

−γ
t+1

πt+1

= 0 (2.7.9)

−atc−γt
[
1 + φk

(
kt+1

kt
− 1

)]
+ βEt

{
at+1c

−γ
t+1 [(qt+1 + 1− δ)

−φk
2

(
kt+1

kt
− 1

)2

+ φk

(
kt+2

kt+1

− 1

)(
kt+2

kt+1

)]}
= 0 (2.7.10)

mt−1 + bt−1

πt
+ wtht + qtkt + dt + τt − ct − kt+1 + (1− δ)kt
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−φk
2

(
kt+1

kt
− 1

)2

kt −
bt
Rt

−mt = 0 (2.7.11)

Note that the �rst four equations stated above correspond to equilibrium condi-

tions (1) − (4) in section 2. As symmetric equilibrium is considered in this model,

market clears such that bt = bt−1 = 0 and τt = mt − mt−1/πt for equation (A.11),

which will yield the equilibrium condition (9).

2.7.1.2 The Intermediate Goods-producing �rms

Denote yt = Yt, I then consider the optimization problem confronted the inter-

mediate goods-producing �rm i, i ∈ [0, 1] which is also described by the following

Lagrangian:

LiM = E
∞∑
t=0

βt

{
Λt

[
wtHt(i) + qtKt(i) +

φp
2

[
Pt(i)

πPt−1(i)
− 1

]2

yt −
(
Pt(i)

Pt

)1−θ

yt

]

+Ξt(i)

[
Kt(i)

α[ztHt(i)]
1−α −

(
Pt(i)

Pt

)−θ
yt

]

where Ξt(i) denotes the multiple associated with the �rm's production constraint. As

well, LiM is di�erentiated with respect to Ht(i), Kt(i), Pt(i), and multiplier, Ξt(i).

The �rst order conditions are represented as follows:

Λtwt − Ξt(i)(1− α)Kt(i)
αz1−α

t Ht(i)
−α = 0 (2.7.12)

Λtqt − Ξt(i)αKt(i)
α−1z1−α

t Ht(i)
1−α = 0 (2.7.13)

(1− θ)Λt

(
Pt(i)

Pt

)−θ
yt
Pt

+ θΞt(i)

(
Pt(i)

Pt

)−θ−1
yt
Pt

−
(

Pt(i)

πPt−1(i)
− 1

)
Λtφpyt
πPt−1(i)

+βφpEt

{
Λt+1

(
Pt(i)

πPt−1(i)
− 1

)(
Pt+1(i)yt+1

πPt(i)2

)}
= 0 (2.7.14)
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Kt(i)
α[ztHt(i)]

1−α −
(
Pt(i)

Pt

)−θ
yt = 0 (2.7.15)

As well as the previous subsection, a symmetric equilibrium is considered in this

model, which implies that the intermediate goods-producing �rms make identical

choices such that ht = Ht = Ht(i), kt = Kt = Kt(i), Pt = Pt(i), and Ξt = Ξt(i).

Λtwtht − Ξt(1− α)yt = 0 (2.7.16)

Λtqtkt − Ξtαyt = 0 (2.7.17)

(1− θ)Λt + θΞt − Λtφp

(πt
π
− 1
) πt
π

+βφpEt

{
Λt+1

(πt+1

π
− 1
) πt+1

π

yt+1

yt

}
= 0 (2.7.18)

kαt [ztht(i)]
1−α − yt = 0 (2.7.19)

Here Ξt is eliminated and Λt is replaced using (A.1). Finally, it is worth noting that

the central bank's short term interest rate rule must be satis�ed and all the exogenous

variables must follow their respective laws of motion. In a symmetric equilibrium,

adding these equations complete the equilibrium conditions for the model.

2.7.1.3 The Steady State

Without any disturbances in the model, the economy will converge to a non-

stochastic steady state in which all of the variables remain constant over time. First,

the steady state value of the preference shock at is equals 1, and the steady state

value of the technology shock zt correspond to the parameter z. Also, the steady

state value of the in�ation rate πt corresponds to the parameter π. The remaining 9

steady state values of y, c, m, h, w, q, k, d, and R are then uniquely determined as
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R =
π

β
(2.7.20)

q =
1

β
− 1 + δ (2.7.21)

w =
(1− α)

α
qz

(
α(θ − 1)

qθ

)1/(1−α)

(2.7.22)

h =

{
1

χh

[(
qθ

θ − 1
− δ
)
z

(
α(θ − 1)

qθ

)1/(1−α)
]−γ

w

} 1
ν+γ

(2.7.23)

k = zh

(
α(θ − 1)

qθ

)1/(1−α)

(2.7.24)

c =

(
qθ

θ − 1
− δ
)
zh

(
α(θ − 1)

qθ

)1/(1−α)

(2.7.25)

y =
qθ

α(θ − 1)
k (2.7.26)

m = cγ
χm

(1− β/π)
(2.7.27)

d = y − wh− qk (2.7.28)

2.7.2 Solution to the Model using Projection Method

This section describes how to solve the model using projection method. In partic-

ular, I apply the monomial-rule Galerkin method proposed by Pichler (2011) to the

model in order to reduce the computation burden.

As described in section 3.2, the �rst step before applying any projection methods is

to choose a set of policy functions. Here I seek to approximate the policy functions for

consumption ct, capital stock of next period kt+1, and in�ation rate πt. These policy

functions are functions of the 5 state variables xt which consists of the capital stock

kt, the lagged short term interest rate Rt−1, the preference shocks at, the productivity
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shocks zt and the monetary shocks εR,t.

ct = f c(xt) (2.7.29)

kt+1 = fk(xt) (2.7.30)

πt = fπ(xt) (2.7.31)

Since the function forms of f i are unknown, they need to be approximated using

function basis. Here I use Chebyshev polynomials and consider both second and third

order approximations, in which the order refers to the degree of polynomial function.

Taking second order approximation as an example, if tensor product were used, the

number of coe�cients associated with these policy functions for this 5 dimensional

state space is equal to 35 = 243. This exponential growth of the number of coe�cients

becomes a computational burden. Thus, I follow Judd (1992) and Gaspar and Judd

(1997) to use complete polynomials instead. In this case, the number of coe�cients

only amounts to 21 for second order approximation. Thus, the next period's capital

stocks, for instance, is approximated by the following form

kt+1 ≈ f̂k(xt, Bk) =

n
Bk∑
j=1

Bjφj(ξ(x
i))

where Bj is a coe�cient vector of size nBk , and ξ(x
i) maps the state space R5 into

the unit hypercube [−1, 1]5. Here the standard linear transformation is given by

ξ(xi) = 2
xi

t − xi

xi
t − xi

− 1 (2.7.32)

where xi and xi are the lower and upper bound for each state variable, respectively.

Following suggestions in Pichler (2011), I choose a symmetric interval around ±10%

of steady states for kt and Rt−1, and for these three endogenous state variables, I

choose the interval of ±3 standard deviation around steady state values.
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After all these preparations, the remaining steps are similar as the conventional

Galerkin method except that I use more e�cient multi-dimentional integration tech-

niques, i.e. no-product monomial cubature rules: First, (Initial) values are assigned to

structural parameters. Note, during the estimation process, these parameters should

also satisfy their theoretical constraints. For example, the discount factor β should

always lie between 0 and 1. Second, I can calculate the model's steady state, and

build the associated state space according to the rules aforementioned. The Galerkin

method determines the coe�cients Bi of the approximating polynomial by construct-

ing a system of weighted sums over residuals and equating these sums to zero. Thus,

the third step is to select the grid-points and construct their associated weights. For

second-order approximation, I use a non-product monomial rule of degree 5 � Rule

[Cnd5] as described in Pichler (2011). For third-order projection method, I use a non-

product monomial rule of degree 7 � Rule [Cnd7] as described in Pichler (2011) since

Rule [Cnd5] only allows for �rst and second order approximations. The advantage

of non-product monomial rule is that it uses less grid points than Gauss-Chevbyshev

approach. For example, only 51 grid points need to be used by Rule [Cnd5] compared

to 243 grid points by the Gauss-Chevbyshev approach. Fourth, the nodes and weights

used to compute conditional expectations are selected. Again, I use a non-product

monomial rule of degree 3 � Rule [Er2

n d3] as described in Pichler (2011). Finally, The

model is solved by equating weighted residuals to zero. Here I use the coe�cients

from the �rst-order perturbation solution as an initial guess.

Once the solution for the three policy functions are obtained, the remaining vari-

ables can be derived from equilibrium conditions. One example for output yt is shown

in section 3.
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2.7.3 Dealing with Zero Lower Bound Constraint

When zero lower bound constraint is imposed on nominal interest rates, the central

bank adjusts the short term nominal interest rate according to

Rt = max[R̃t, 1] (2.7.33)

where the �rst term R̃t still follows the same conventional Taylor rule as (11), and

the second term means that the gross nominal interest rate can not be lower than 1.

Since this constraint brings a kink into the model, it prevents us from using pertur-

bation methods. Fortunately, projection methods can handle this zero lower bound

constraint without modifying the procedure stated above.12 In application, once these

three policy functions f̂ i are still solved as usual, then one can just substitute them

into interest rate rules with zero lower bound. It yields

Rt = max
[
expρR lnRt−1+(1−ρR) lnR+ρπ ln(πtπ )+ρy ln( yty )+εRt , 1

]
≈ max

[
exp

ρR lnRt−1+(1−ρR) lnR+ρπ ln

(
f̂c(xt,B

π)
π

)
+ρy ln

(
f̂y(xt,B

y)
y

)
+εRt

, 1

]
≡ f̂R(xt, BR)

As Fernandez-Villaverde. et. al. (2012) points out, this approach deals the kink of

Rt at 1 in the Taylor rule without any approximation conditional on ct, kt+1, and πt.

Here Rt comes from application of Taylor rules directly.

2.7.4 Particle Filter Algorithm

As pointed out in Section 4, the Kalman �lter can not be used to compute the

likelihood function for nonlinear models, I employ the particle �lter for these nonlinear

12Recent works such as Judd et al. (2010) and Fernandez-Villaverde et. al (2012) take similar
strategy.
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solutions to the DSGE model. The algorithm can be described as follows:

1. Initialization: Draw N particles {x0|0
i}, i = 1, . . . , N by using the initial

distribution of p (x0|Θ). In period t, I start with the particles {xt−1|t−1
i},

i = 1, . . . , N , which are randomly sampled from the discrete approximation of

the true �ltering density p (xt−1|Y t−1, Θ).

2. Prediction: Draw one-step ahead forecasted particles {xt|t−1
i}, i = 1, . . . , N

from p (xt|Y t−1, Θ) for each i. Note that

p
(
xt|Y t−1, Θ

)
=

ˆ
p (xt|xt−1, Θ) p

(
xt−1|Y t−1, Θ

)
dxt−1

≈ 1

N

N∑
i=1

p
(
xt|t−1

i, Θ
)

Thus, one can draw N particles from p (xt|Y t−1, Θ)by generating one particle

from
(
xt|xt−1

i, Θ
)
for each i.

3. Updating: From Bayes theorem,

p
(
xt|Y t, Θ

)
=
p (Yt|xt, Θ) p (xt|Y t−1, Θ)

p (Yt|Y t−1, Θ)

∝ p (Yt|xt, Θ) p
(
xt|Y t−1, Θ

)
since {xt|t−1

i}, i = 1, . . . , N are generated from the approximated p (xt|Y t−1, Θ),

the approximation of the �ltering density reduces to adjusting to probability

weights assigned to {xt|t−1
i},i = 1, . . . , N according to {ŵi

t} = p
(
Yt|x̂i

t, Θ
)
. I

normalized {ŵi
t}, i = 1, . . . , N as follows:

wi
t =

ŵi
t∑N

j=1 ŵj
t

and note that the resulting sampler {xt|t−1
i,wi

t}, i = 1, . . . , N approximates
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the true �ltering density p (xt|Y t, Θ).

4. Resampling: The above samplers are undesirable because after a few iterations,

most particles will have negligible weights and the accuracy of Monet Carlo ap-

proximation of the integral in step 2 and step 3 would deteriorate. To overcome

this problem, I generate a new swarm of particles xt|t
i such that

Pr{xt|t
i = xt|t−1

i} = wi
t

the resulting sample is indeed a random sample from the discrete approximation

of the �ltering density p (xt|Y t, Θ), and hence is equally weighted.

5. Likelihood Evaluation. The log-likelihood can be approximated by using the

average of unnormalized weights

lnL(Θ|YT ) ≈ 1

N

N∑
i=1

p(Y1|xi
0|0,Θ)

T∏
t=2

1

N

N∑
i=1

p(Yt|xi
t|t−1,Θ)

=
T∑
t=1

(
1

N

N∑
i=1

ŵi
t

)

In my implementation of the above algorithm, several remarks are necessary to con-

sider. First, since the state variables include pre-determined endogenous variables

as well as structural shocks which follow linear processes, it is not obvious to get

initial values for them. As in An and Schorfheide (2007), I draw the initial structural

shocks from their unconditional distributions and generate the initial values of pre-

determined endogenous state variables from putting the previous period's values to

their steady state values. Second, I choose the number of particles based on the eval-

uation of the log-likelihood across 40 di�erent random seeds. The standard deviation

of the likelihood values changes only by a small amount after 100, 000 particles. That

motivates our choice of 100, 000 particles.
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2.7.5 Sequential Procedure for Multiple Breaks: A Small Monte

Carlo Analysis

Since this paper does not provide the asymptotic properties on sequential pro-

cedure for multiple breaks, I conduct a small Monte Carlo simulation to investi-

gate �nite-sample properties of the proposed sequential procedure. First, the data-

generating process is borrowed from Fernández-Villaverde and Rubio-Ramírez's short

note on sequential Monte Carlo �lter. The nonlinear state space is given by

xt = α + β
xt−1

1 + x2
t−1

+ wt (2.7.34)

yt = δxt + vt

where wt ∼ N(0, σw) and vt ∼ N(0, σv). α, β, δ, σw and σv are unknown parameter

and need to be estimated. Assume there are two breaks in some elements of the

coe�cients in this model. Here I focus on estimates of α, β, and σv , and their true

values are given by


α = 0.5, β = 0.3, σw = 1, t ≤ [0.3T ]

α = 1.0, β = 0.6, σw = 2, [0.3T ] < t ≤ [0.7T ]

α = 0.5, β = 0.3, σw = 1, t > [0.7T ]

(2.7.35)

and I �xed δ = 1 and σv = 1. The sample size T is taken with 100, and the �true� break

points are at 30 and 70. In order to keep the features of DSGE models, I assume that

only yt is observable. Thus particle �lter is employed to construct likelihood function.

The estimation procedure and sequential procedure for multiple breaks are described

in the Section 4. All simulation reports are based on 500 replications.

Figure 3 displays the estimated break points for this nonlinear state space model.

81



This Monte Carlo simulation shows that the sequential procedure can identify the

number of breaks, and also indicates that these breaks are consistently estimated.

The asymmetry shown in the distribution of the estimated break points may be due

to numerical error. Overall, the sequential procedure can deliver consistent estimates

of break points in nonlinear models.

2.8 Chapter 2: Tables and Figures

Table 2.1: Andrews and Fair (1988) LR test results for known break date (1979:Q2)
Solutions Full Set Monetary

Policy

Private

Sectors

Log
Linearized

62.13∗∗∗ 18.71∗∗∗ 24.68∗∗∗

Second Order
Perturbation

50.01∗∗∗ 14.62∗∗∗ 17.83∗

Third Order
Perturbation

45.65∗∗∗ 15.00∗∗∗ 18.21∗∗

Second Order
Projection

24.83∗∗ 14.42∗∗∗ 14.84

Third Order
Projection

23.74∗∗ 15.38∗∗∗ 15.05

Note: LR denotes the likelihood ratio statistic for testing the null hypothesis of pa-
rameter stability with known break date at 1979:Q2. This statistic is asymptotically
distributed as χ2

q with q degrees of freedom, where q is the number of parameters which
are allowed to change. ∗∗∗, ∗∗, and ∗ represent signi�cant level at 1%, 5%, and 10%,
respectively. For the full set case in column 2, all the 14 estimated parameters are
allowed to change. In column 3 and column 4, only 4 and 10 parameters are allowed
to change for the monetary policy case and the private sectors case, respectively.
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Table 2.2: Andrews (1993) supLR test results for a single unknown break
Solutions supLR Break Dates

Log
Linearized

82.50∗∗∗ 1984 : Q1

Second Order
Perturbation

64.15∗∗∗ 1978 : Q3

Third Order
Perturbation

47.48∗∗∗ 1980 : Q2

Second Order
Projection

61.82∗∗∗ 1974 : Q2

Third Order
Projection

45.46∗∗∗ 1971 : Q1

Note: supLR denotes the statistic for testing the null hypothesis of parameter sta-
bility with a single unknown break. This statistic is asymptotically distributed as

sup
λε∈(ε,1−ε)

λε [Wq(1)−Wq(λε)]
′
[Wq(1)−Wq(λε)]

λε(1− λε)

where q is the number of parameters which are allowed to change. The asymptotic
critical values for the supLR test are shown in Andrews (1993)(P.840). ∗∗∗, ∗∗, and
∗ represent signi�cant level at 1%, 5%, and 10%, respectively. As convention in the
literature, the trimming value ε is set to 0.15.
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Table 2.3: Results on multiple structural breaks using sequential procedure
Solution Sample Range supLR Break Dates

Log-Linearized
1959 : Q1−2007 : Q4 82.50∗∗∗ 1984 : Q1

1959 : Q1−1984 : Q1 30.83∗ 1970 : Q4

1984 : Q2−2007 : Q4 40.32∗∗∗ 1998 : Q2

Second Order
Perturbation

1959 : Q1−2007 : Q4 64.15∗∗∗ 1978 : Q3

1959 : Q1−1978 : Q3 38.41∗∗ 1972 : Q4

1978 : Q4−2007 : Q4 41.07∗∗∗ 1995 : Q2

Third Order
Perturbation

1959 : Q1−2007 : Q4 47.48∗∗∗ 1980 : Q2

1959 : Q1−1980 : Q2 33.40∗ 1970 : Q3

1980 : Q3−2007 : Q4 37.59∗∗ 1994 : Q1

Second Order
Projection

1959 : Q1−2007 : Q4 61.82∗∗∗ 1974 : Q2

1959 : Q1−1974 : Q2 − −
1974 : Q3−2007 : Q4 46.69∗∗∗ 1994 : Q4

Third Order
Projection

1959 : Q1−2007 : Q4 45.46∗∗∗ 1971 : Q1

1959 : Q1−1971 : Q4 − −
1971 : Q1−2007 : Q4 49.72∗∗∗ 1996 : Q3

Note: The sequential procedure is described in section 4. Here supLR denotes the
statistic for testing the null hypothesis of parameter stability with a single unknown
break in the (sub)sample. This statistic is asymptotically distributed as

sup
λε∈(ε,1−ε)

λε [Wq(1)−Wq(λε)]
′
[Wq(1)−Wq(λε)]

λε(1− λε)

where q is the number of parameters which are allowed to change. The asymptotic
critical values for the supLR test are shown in Andrews (1993)(P.840). ∗∗∗, ∗∗, and
∗ represent signi�cant level at 1%, 5%, and 10%, respectively. As convention in the
literature, the trimming value ε is set to 0.15. − denotes that no break is detected.
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Figure 2.1: GDP growth, in�ation, and short term interest rate (1959:Q1-2007:Q4)
in percentage
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Note: Figure 1 shows the series for output growth, in�ation and three month U.S.
treasury bill rate for the period 1959 :Q1-2007:Q4. The data are extracted from
FRED2 database maintained by the Federal Reserve Bank of St. Louis. The shaded
areas represent the NBER recessions.
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Figure 2.2: LR test sequences from three solution methods
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Note: Figure 2 plots the series of LR test for three di�erent solution methods: log-
linearization (blue solid line), second order perturbation (red dashed line), and second
order projection (black dash-dot line). Here all 14 estimated parameters are allowed
to change.
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Figure 2.3: Multiple breaks using sequential procedure for �ve solutions

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Log−Linearized Log−Linearized 

Second order perturbationSecond order perturbation

Third order perturbationThird order perturbation

Second order projectionSecond order projection

Third order projectionThird order projection

Note: Figure 3 visualizes the results shown in Table 3. Here the dashed lines represent
the time horizon line. Blue spots represent the �rst structural breaks detected using
sequential procedure, while diamonds represent the second break (green) or third
break (red) found in each subsample.
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Figure 2.4: Histograms of the estimated break points from Monte Carlo simulation
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Note: Figure 4 displays Monte Carlo simulation using sequential procedure for the
nonlinear state space model (D.1), which captures most features of nonlinear solutions
to DSGE models. The sample size T is taken with 100. The true break points are at
30 and 70. The number of replications is 500.
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Chapter 3

Is the Productivity Boom Over?

3.1 Introduction

Under the backdrop of the Great Recession, it appears to be extremely important

to to identify changes of long-run trend in productivity growth, since it provides a

useful guide on resource allocations for policy makers. The existing empirical litera-

ture has put focus on assessing dynamics of aggregate productivity growth, such as

labor productivity and total factor productivity (TFP). In terms of structural breaks

in productivity growth in the U.S., these results depend closely on the data source

and sample scope.1 Hence, researchers have proposed di�ering interpretations for the

aggregate productivity slowdown in the 1970s and productivity rebound in the middle

1990s.

In this paper we approach the changes in long run productivity from a sectoral

perspective. In particular, we decompose the whole economy into two broad sectors:

investment goods-producing sector and consumption goods-producing sectors, and

investigate structural breaks using sectoral productivity growth measures. To some

1For instance, while Benati (2007) failed to identify any structural break for labor productivity
growth using data from Bureau of Labor Statistics (BLS) over 1947:Q1-2005:Q4, Fernald (2007)
found two breaks, with a slowdown after 1973:Q1 and a speedup after 1997:Q2, for private business
sector labor productivity growth over 1950:Q2-2004:Q2.
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extent, our exercise plays the empirical role corresponding to those theoretical studies

on investment-speci�c technology initiated by Greenwood et al. (1997). Figure 1 com-

pares the evolutions of TFP in investment goods-producing sector and consumption

goods-producing sector with the aggregate labor productivity.2 Clearly, this �gure

highlights the fact that the TFP growth in investment goods-producing sector has out-

paced TFP growth in consumption goods-producing sector, which Greenwood et al.

(1997) interpret as the evidence for investment-speci�c or capital-emobided techno-

logical shocks. Also, it shows that labor productivity growth appears to slow down

since the 1970s, and TFP growth in consumption goods-producing sector seems to be

the principle source of the aggregate productivity slowdown. All these observations

provide us the very �rst impression of sectoral analysis on productivity growth.

Furthermore, another goal of our exercise is to answer whether the era of pro-

ductivity boom accompanied with �new-economy� since the middle 1990s is over. As

shown in Figure 2, the labor productivity plays as a perfect illustration. Here we

consider the mean of labor productivity in splited samples since 1948. As a vast of

literature have documented, productivity growth slowed down since the early 1970s,

and revived since the middle 1990s. The productivity resurgence, average 2.7 percent

at annually, is attributed to information and communication technology. However,

the productivity growth appear to decelerate to 1.7 percent. Through sectoral analy-

sis on productivity growth, we could identify whether the productivity growth return

back its conventional path.

Related to works as Hansen (2001), Fernald (2007) and Benati (2007), we con-

tribute two new elements into the literature. First, it extends data time coverage

including data in the current Great Recession. Second, in contrast to a vast of other

studies focusing on the drifts and breaks in aggregate productivity growth, we ex-

tend our scope to sectoral productivity growth. Our results are able to shed some

2The two TFP measures are provided and updated by the Federal Reserve Bank of San Francisco,
which are utilization adjusted follows ?.
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light on the questions raised above. Although the evidence of structural break in

the aggregate productivity growth is far from obvious at conventional test size, we

�nd the evidence of structural breaks in the sectoral productivity growth. There are

two structural breaks in investment goods-producing sector, which indicates that the

investment boom accompanied with new economy in the middel 1990s has already

ended. We also �nd there is one structural break in consumption goods-producing

sector around the 1970s. Our results support the �ndings of Ireland and Schuh (2008)

and Ireland (2011), in which they estimated a two-sector real business cycles model.

The paper is organized as follows. The next section �rst brie�y describes econo-

metric methodology of Bai and Perron (1998, 2003) and the data. In Section 3 we

discuss the empirical results and implications. Section 4 concludes.

3.2 Econometric Methodology and Data Source

3.2.1 Econometric Methodology

We �rst consider the simplest dynamic model, the �rst order autoregressive model,

for ∆yt with m breaks (m+ 1 regimes):

∆yt = αj + ρj∆yt−1 + εt, t = Tj−1 + 1, . . . Tj

εt ∼ N(0, σ2
j )

for j = 1, . . . ,m + 1, where ∆yt represents productivity growth measures in period

t, and αj and ρj are the corresponding coe�cients of the �rst order atuoregressive

model. The m−partition, (T1, . . . , Tm), indicates the unknown break dates (Here we

use the convention of T0 = 0 and Tm+1 = T ). The dynamic properties of productivity

growth would vary whenever any of the three parameters, αj, ρj, and σ2
j changes.

Since the key issue concerns the changes in long-run productivity growth, we focus
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on permanent shifts in the constant term αj or the autoregressive parameter ρj.

We employ Bai and Perron (1998, 2003) methodology as our econometric ap-

proach, in which they use least squares method to estimate multiple unknown struc-

tural breaks. While we do not reproduce their global minimization algorithm for the

break dates estimation, it is necessary to introduce the various test hypotheses and

statistics. First, to identify the number of structural breaks (m), Bai and Perron

(1998, 2003) begin with specifying a type of maximum F−statistic for testing the

null hypothesis of no structural breaks against the alternative that there are m = b

breaks.

supFT (b) = supFT (λ̂1 , . . . , λ̂b)

where λ̂i = [ T̂i
T

], i = 1, . . . , b are the break fractions and minimize the global sum of

squared residuals. This statistic is a generalized version of the supF test proposed

by Andrews (1993). Bai and Perron (1998, 2003) then consider two double maximum

statistics, for testing null hypothesis of no structural breaks against the alternative

hypothesis of an unknown number of breaks given an upper bound, M . The �rst

double maximum statistic is given by

UDmax(a1, . . . , aM) = max
1≤m≤M

aM supFT (m)

where {a1, . . . , aM} are some �xed weights and set equal to unity. The second maxi-

mum statistic, WDmax, applies di�erent weights to the individual supFT (m) statis-

tics so that the marginal p−values are equal across values of m. Finally, Bai and

Perron (1998, 2003) consider a test of the null hypothesis of l breaks against the al-

ternative hypothesis of l+1 breaks. The supFT (l+1|l) statistic is used to test whether

the additional break leads a signi�cant reduction in the sum of squared residuals.

In our application below, we follow the practical recommendations of Bai and

Perron (2003), which have been shown to be adequate in an extensive simulation
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analysis in Bai and Perron (2004). We start with looking at UDmax and/orWDmax

to determine if at least one structural break is present. If the double maximum

statistics indicate the presence of structural breaks, i.e. being signi�cant at the 10%

level, we go on to decide the number of breaks by sequentially examining the supF (l+

1|l) test statistics, starting from the supF (1|0). Finally, we set the maximum allowed

number of structural breaks m equals to 4 and choose a trimming value, the minimal

length of possible regimes, as 0.10.

3.2.2 The Data

The sample on the various productivity measures used in our application are from

1948:Q1 to 2012:Q1. As for aggregate productivity growth, we �rst consider labor

productivity growth rate, ∆LP , measured by the quarterly growth rate of GDP per

hour worked provided by Bureau of Labor Statistics. Also, we employ a real-time,

quarterly series on total factor productivity (TFP) for the U.S. business sector from

the Federal Reserve Bank of San Francisco.3 The series also include TFP measures

adjusted for variations in factor utilization labor e�ort and capital's workweek fol-

lows Basu et al. (2006) (thereafter BFK TFP measures). Therefore, we have two

aggregate TFP measures: ∆TFP and ∆TFP util. For our sectoral analysis, the �rst

group of measures also obtain from the BFK TFP series. By using relative prices and

input-output, BFK series are decomposed into separate measures of TFP for equip-

ment investment good-producing sector (including consumer durables) , ∆TFPI , and

consumption goods-producing sector (de�ned as business output less equipment and

consumer durables), ∆TFPc. We also consider the utilization adjusted TFP mea-

sures ∆TFP util
I and ∆TFP util

c .4 Since BFK series are based on the conventional

growth accounting exercise, they correspond to several theoretical model based mea-

3Data source: http://www.frbsf.org/csip/tfp.php
4For more details, see Fernald (2012a).
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sures developed by Greenwood et al. (1997), Marquis and Trehan (2008), and Ireland

and Schuh (2008) among others. For comparison, we re-estimated the two sector real

business model in Ireland and Schuh (2008) using extending sample period data, and

constructed corresponding growth rates of TFP in the investment goods producing

sector ∆Zi and consumption goods producing ∆Zc (thereafter IS TFP measures).

3.3 Results and Implications

3.3.1 Structural Break Hypothesis Tests

Table 2 presents Bai and Perron (1998, 2003) statistics results for tests of struc-

tural breaks of the nine productivity measures in our sample. For the aggregate

productivity measures, we �rst �nd that both double maximum statistics are signif-

icant at conventional signi�cant levels only for labor productivity. In contrast, only

WDmax statistics are signi�cant at 10% level for BFK TFP and utilization adjusted

BFK TFP, while UDmax statistics are insigni�cant. Although the labor productivity

growth has shown evidence of structural breaks, supF (1|0) is still not signi�cant at

any convention levels. These results are likely partly due to potentially low power

of the supF statistics, and indicate once again that we need to analyze productivity

growth from a sectoral perspective.

The remaining six rows in Table 2 report structural breaks results on sectoral

productivity measures. We �nd that both double maximum statistics are signi�cant

at conventional signi�cant levels for all these six sectoral productivity measures. In

particular, we �rst �nd that utilization adjustment does not a�ect our test results for

BFK TFP measures. The supF (2|1) statistic is signi�cant at the 10% level or higher,

while supF (3|2) is insigni�cant for TFP measures in investment goods-producing

sector. It suggests two structural breaks (three regimes) for these two measures

in investment goods-producing sector. The supF (1|0) is signi�cant at 10% level
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or higher for BFK TFP and utilization adjusted BFK TFP in consumption goods-

producing sector, while the supF (2|1) is insigni�cant. This indicates one structural

break (two regimes) for these consumption goods-producing sector measures. The

test results from IS TFP measures are quite di�erent from those from BFK TFP

measures. We only �nd that supF (1|0) is signi�cant at 5% for both investment

goods-producing sector and consumption goods-producing sector, while supF (2|1) is

insigni�cant. However, we �nd that supF (3|2) is signi�cant at 10% for consumption

sector, which may indicate there are three structural breaks in this measure. It is

worth to note that the di�erence from BFK measure and IS measure is most likely due

to that BFK TFP investment measures only consider the equipment investment and

durable goods while IS TFP investment measure also include residential investment.

3.3.2 Structural Break Test Results

Table 3 reports the break dates and their 90% con�dence intervals for each of the

nine productivity measures, in addition to regression coe�cients and the mean growth

rate for each regime. We observe that the three aggregate productivity measures have

structural breaks occurring between the late 1960s to the early 1970s. The �nding

is line with widely accepted productivity slowdown in the 1970s in the literature.

For instance, recent works as Benati (2007) and Fernald (2007) �nd one structural

break for labor productivity growth in 1973. However, we could not identify the

second structural break around the middle 1990s in aggregate productivity using the

extended sample. This might imply that the acceleration in aggregate productivity

growth during the late 1990s would be transitory.

For BFK TFP in investment goods-producing sector, the �rst break is around the

middle 1990s and the second break is in the �rst half year of 2005. We observe a

inverted U-shaped evolution of mean productivity growth in investment sector, �rst

accelerating from 2% to 5% then falling back to almost 3%. These break dates are in
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line with dates found by other researchers using di�erent methods and productivity

measures. Our �nding of the �rst break date is similar to Jorgenson (2001) and

Oliner and Sichel (2000)'s �nding of a growth resurgence in the U.S. beginning in

1995, which they link to information technology in general. However, our results show

no evidence of a structural break in investment-goods producing sector in the 1970s.

Unlike Marquis and Trehan (2008) found the capital sector productivity growth rate

actually slowed down over this period and Greenwood et al. (1997) and Greenwood

and Yorukoglu (1997) concluded that capital-speci�c productivity accelerated in the

early 1970s at about the same time that aggregate productivity slowed down. In

addition, we found a second break around 2005 using the expanded sample including

the recent recession. This �nding is also consistent with many observations about the

investment boom. For TFP in consumption-goods producing sector, there is evidence

for one break in our sample period for both utilization adjusted and unadjusted series,

which are located in the late 1960s. Although our results suggest the productivity

slowdown might be earlier than we thought, the associated interval stretches from the

early 1960s to the early 1970s, which is roughly in line with other studies.

The last two rows in Table 3 present the results for the structural breaks for

IS TFP measures. We only �nd only one structural break in 2005 in investment

goods-producing sector sector. The productivity growth in investment sector slows

down since the middle 2000s. The timing is close to the second break we found using

BFK TFP measures. In addition, we �nd two more structural breaks in consumption

sector. One is in the early 1980s and another is in early this 2000s. Even the di�er-

ence between these two measures, the results from two group of measures, broadly

speaking, leads to two similiar �ndings. The �rst is that the main contribution to

the productivity growth slowdown is consumption goods-producing sector. The other

one is that there appears to exist deceleration in investment goods-producing sector

during the middle 2000s.

96



3.3.3 Implications

Even though our approach to testing for trend breaks in present paper is strictly

statistical, we can still draw several key implications. First of all, broadly consis-

tent with the results derived by Basu et al. (2006), Ireland and Schuh (2008) , and

Marquis and Trehan (2008), our results show, once again, attribute most of the pro-

ductivity slowdown of the 1970s to the consumption goods-producing sector. Here, in

particular, the BFK TFP growth in the consumption goods-producing sector remains

essentially unchanged since the late 1960s, only at 0.28 percent annual rate. Whereas

Basu et al. (2006) estimates suggest that productivity slowdown occurred contempo-

raneously across both two sectors in the 1970s, here we could not �nd a break in the

1970s, and we attribute the more recent productivity revival that accompanied the

long economic expansion of 1990s in the US rapid investment-speci�c technological

change. Overall, our empirical results echoed with the observations in Ireland (2011)

obtained from an estimated two sector real business cycles model.

Second, our results provide answer to the question raised in the introduction:

Is the era of rapid productivity growth over? Most likely, Yes. Our results show

the more recent episode of robust investment and investment-speci�c technological

change during the 1990s largely as they fall back to their unexceptional longer-run

averages, about at 2.9 percent annually. As also documented by Fernald (2012b), the

slowdown preceded the current recession and is consistent with an apparent reducing

in intangible organizational investment associated with information and communica-

tions technology. He argues that ICT has had a broad-based and pervasive e�ect

on measured TFP through its role as a general purpose technology that fostered

complementary innovations, including business reorganization.

Thirdly, our results, therefore o�er up a pessimistic view of the future. The not-

so-good news is that the results show the more recent episode of robust growth in

investment and investment-speci�c productivity as largely representing a catch-up in
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levels after the previous productivity slowdown�hence, the results predict that this

recent episode of unusual strength is unlikely to persist or to be repeated anytime

soon. Thus, we would expect the potential output will be lower than our conventional

projections.

Finally, our results highlight the importance of sectoral analysis on productivity.

As these tables have shown, the statistic results on aggregate productivity measures

are far from clear to identify structural break. Benati (2007) accounted for this

�puzzling� results partly is that the change in labor productivity growth may have

simple been too gradual to be detected via a crude structural break tests. Our

sectoral analysis supports, in some sense, this explanation since the e�ects from these

two sectors are mixed up when we consider aggregate productivity, which reinforce

our motivation on sectoral analysis.

3.4 Conclusion

In this paper, we apply Bai and Perron (1998, 2003) methodology to examine

structural breaks in productivity growth in U.S. over the postwar era from the per-

spective of sectoral analysis. We decompose the economy into two broad sectors:

investment goods-producing sector and consumption goods-producing sector. Al-

though the evidence of structural break in the aggregate productivity growth is far

from obvious at conventional test sizes, we found the evidence of structural breaks

in the sectoral productivity growth. Our results are closely consistent with Ireland

and Schuh (2008) and Ireland (2011), in which they study two di�erent technology

shocks: investment goods-producing technology and consumption goods-producing

technology. Our structural breaks results echo with their implication of the consump-

tion goods-producing sector as the principal source of the productivity slowdown of

the 1970s. And we also show evidence of a productivity slowdown in the investment
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goods-producing sector in the middle 2000s, which we conclude that the era of produc-

tivity growth due to new economy is over. Viewed against this broader backdrop, we

con�rms Ireland and Schuh (2008)'s projection that the accelerated growth in invest-

ment and investment speci�c technological change appears largely as a snap-back in

levels to a long-run deterministic trend rather than a persistent shift in growth rates.

Therefore, our results o�er up a pessimistic outlook for the future. The productivity

slowdown of the 1970s has not ended. It also suggests the future productivity growth

rates in investment sectors that will match their healthy but unexceptional longer-

run averages before the latest resurgence. In turn. our results suggest the potential

output growth will be likely to be lower than the conventional projections, and we

will see a longer and slower recovery from the current recession.

3.5 Chapter 3: Tables and Figures
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Figure 3.1: Logs of Sectoral Productivity Level in the U.S. (Basu-Fernald-Kimball
TFP Measurements)
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Source: Federal Reserve Bank of San Francisco, Authors' calculation.
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Figure 3.2: Logs of Sectoral Productivity Level in the U.S. (Ireland-Schuh TFP Mea-
surements)
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Source: Ireland and Schuh (2008), Authors' calculation.
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Figure 3.3: Logs of Aggreagte Productivity Level in the U.S.
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Source: Bureau of Labor Statistics, Federal Reserve Bank of San Francisco, Authors'
calculation.
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Figure 3.4: Labor Productivity Growth in the U.S. Business Sector

1948 1956 1964 1972 1980 1988 1996 2004 2012
−6

−4

−2

0

2

4

6

8

10

12

14

 

 

4−Quarter Change
Subsample Mean

Source: Bureau of Labor Statistics, Authors' calculation.

106



Bibliography

An, S. and Schorfheide, F. (2007). Bayesian Analysis of DSGE Models. Econometric

Reviews, 26(2-4):113�172.

Andreasen, M. (2011). How non-gaussian shocks a�ect risk premia in non-linear dsge

models. Bank of England Working Paper, No. 47.

Andrews, D. W. K. (1993). Tests for Parameter Instability and Structural Change

with Unknown Change Point. Econometrica, 61(4):821�856.

Andrews, D. W. K. and Fair, R. C. (1988). Inference in Nonlinear Econometric

Models with Structural Change. Review of Economic Studies, 55(4):615�639.

Andrews, D. W. K. and Ploberger, W. (1994). Optimal Tests when a Nuisance

Parameter is Present Only Under the Alternative. Econometrica, 62(6):1383�1414.

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A Tutorial

on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE

Transactions on Signal Processing, 50(2):173�188.

Aruoba, S. B., Fernández-Villaverde, J., and Rubio-Ramírez, J. F. (2006). Compar-

ing Solution Methods for Dynamic Equilibrium Economies. Journal of Economic

Dynamics and Control, 30:2477�2508.

Bai, J. (1997). Estimating Multiple Breaks One at a Time. Econometric Theory,

13(3):315�352.

107



Bai, J., Lumsdaine, R. L., and Stock, J. H. (1998). Testing for and Dating Common

Breaks in Multivariate Time Series. Review of Economic Studies, 65:395�432.

Bai, J. and Perron, P. (1998). Estimating and Testing Linear Models with Multiple

Structural Changes. Econometrica, 66(1):47�78.

Bai, J. and Perron, P. (2003). Computation and Analysis of Multiple Structural

Change Models. Journal of Applied Econometrics, 18(1):1�22.

Bai, J. and Perron, P. (2004). Multiple Structural Change Models: A Simulation

Analysis, pages 212�238. Cambridge University Press.

Banerjee, A., Lumsdaine, R. L., and Stock, J. H. (1992). Recursive and Sequential

Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International

Evidence. Journal of Business and Economic Statistics, 10(3):271�287.

Basu, S. and Bundick, B. (2012). Uncertainy Shocks in a Model of E�ective Demand.

Manuscript.

Basu, S., Fernald, J. G., and Kimball, M. S. (2006). Are Technology Improvements

Contractionary? American Economic Review, 96(5):1418�1448.

Benati, L. (2007). Drift and Breaks in Labor Productivity. Journal of Economic

Dynamics and Control, 31(8):2847�2877.

Blanchard, O. J. and Kahn, C. M. (1980). The Solution of Linear Di�erence Models

under Rational Expectations. Econometrica, 48(5):1305�1311.

Boivin, J. and Giannoni, M. P. (2006). Has Monetary Policy Become More E�ective?

Review of Economics and Statistics, 88(3):445�462.

Canova, F. and Sala, L. (2009). Back to Square One: Identi�cation Issues in DSGE

Models. Journal of Monetary Economics, 56(4):431�449.

108



Chow, G. C. (1960). Tests of Equality Between Sets of Coe�cients in Two Linear

Regressions. Econometrica, 28(3):591�605.

Christiano, L. J., Eichenbaum, M., and Evans, C. L. (2005). Nominal Rigidities and

the Dynamic E�ects of a Shock to Monetary Policy. Journal of Political Economy,

113(1):1�45.

Clarida, R., Galí, J., and Gertler, M. (2000). Monetary Policy Rules and Macroeco-

nomic Stability: Evidence and Some Theory. The Quarterly Journal of Economics,

115(1):147�180.

Cogley, T. and Sargent, T. J. (2005). Drift and Volatilities: Monetary Policies and

Outcomes in the Post WWII U.S. Review of Economic Dynamics, 8:262�302.

Doucet, A., de Freitas, N., and Gordon, N. (2001). Sequential Monte Carlo Methods

in Practice. Springer.

Eggertsson, G. B. and Woodford, M. (2003). The Zero Bound on Interest Rates and

Optimal Monetary Policy. Brookings Papers on Economic Activity, 34(1):139�235.

Estrella, A. and Fuhrer, J. C. (2003). Monetary Policy Shifts and the Stability of

Monetary Policy Models. Review of Economics and Statistics, 85(1):94�104.

Fernald, J. (2007). Trend Breaks, Long-run Restrictions, and Contractionary Tech-

nology Improvements. Journal of Monetary Economics, 54(8):2467�2485.

Fernald, J. (2012a). A Quarterly, Utilization-Adjusted Series on Total Factor Pro-

ductivity. Manuscript.

Fernald, J. (2012b). Productivity and Potential Output before, during, and after the

Great Recession. Manuscript.

109



Fernandez-Villaverde, J. and Rubio-Ramírez, J. F. (2005). Estimating Dynamic Equi-

librium Economies: Linear versus Nonlinear Likelihood. Journal of Applied Econo-

metrics, 20:891�910.

Fernandez-Villaverde, J. and Rubio-Ramírez, J. F. (2007). Estimating Macroeco-

nomic Models: A Likelihood Approach. Review of Economic Studies, 74(4):1059�

1087.

Fernandez-Villaverde, J. and Rubio-Ramírez, J. F. (2008). How Structural are Struc-

tural Parameters? NBER Macroeconomics Annual, pages 83�137.

Fernandez-Villaverde, J., Rubio-Ramírez, J. F., and Santos, M. S. (2006). Conver-

gence Properties of the Likelihood of Computed Dynamic Models. Econometrica,

74(1):93�119.

Gaspar, J. and Judd, K. L. (1997). Solving Large-Scale Rational-Expectations Mod-

els. Macroeconomic Dynamics, 1(1):45�75.

Gomme, P. and Klein, P. (2010). Second-order Approximation of Dynamic Models

without the Use of Tensors. Manuscript.

Greenwood, J., Hercowitz, Z., and Krusell, P. (1997). Long-run Implications of Invest-

ment Speci�c Technological Change. American Economic Review, 87(3):342�362.

Greenwood, J. and Yorukoglu, M. (1997). 1974. Carnegie-Rochester Conference Series

on Public Policy, 46(1):49�95.

Hájek, J. and Rényi, A. (1955). Generalization of an Inequality of Kolmogorov. Acta

Mathematica Academiae Scientiarum Hungarica, 6:281�283.

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.

Hansen, B. E. (2001). The New Econometrics of Structural Change: Dating Breaks

in U.S. Labour Productivity. Journal of Economic Perspectives, 15(4):117�128.

110



Hansen, P. R. (2003). Structural Changes in the Cointegrated Vector Autoregressive

Model. Journal of Econometrics, 114:261�295.

Hawkins, D. M. (1976). Point Estimation of the Parameters of Piecewise Regression

Models. Applied Statistics, 25:51�57.

Inoue, A. and Rossi, B. (2011). Identifying the Sources of Instabilities in Macroeco-

nomic Fluctuations. Review of Economics and Statistics, 93(4):1186�1204.

Ireland, P. N. (2001). Sticky-price Models of the Business Cycle: Speci�cation and

Stability. Journal of Monetary Economics, 47:3�18.

Ireland, P. N. (2004). Technology Shocks in the New Keynesian Model. Review of

Economics and Statistics, 86(4):923�936.

Ireland, P. N. (2007). Changes in the Federal Reserve's In�ation Target: Causes and

Consequences. Journal of Money, Credit and Banking, 39(8):1851�1882.

Ireland, P. N. (2011). Stochastic Growth in the United States and Euro Area.

Manuscript.

Ireland, P. N. and Schuh, S. (2008). Productivity and U.S. Macroeconomic Perfor-

mance: Interpreting the Past and Predicting the Future with a Two-Sector Real

Business Cycle Model. Review of Economic Dynamics, 11(3):473�492.

Jorgenson, D. W. (2001). Information Technology and the U.S. Economy. American

Economic Review, 91(1):1�32.

Judd, K. L. (1992). Projection Methods for Solving Aggregate Growth Models. Jour-

nal of Economic Theory, 58(2):410�452.

Judd, K. L. (1998). Numerical Methods in Economics. MIT Press.

111



Judd, K. L., Maliar, L., and Maliar, S. (2010). A Cluster-Grid Projection Method:

Solving Problems with High Dimensionality. NBER Working Paper, No. 15965.

Justiniano, A. and Primiceri, G. E. (2008). The Time-Varying Volatility of Macroe-

conomic Fluctuations. American Economic Review, 98(3):604�641.

Kim, J., Kim, S., Schaumburg, E., and Sims, C. (2005). Calculating and Using

Second-order Accurate Solutions of Discrete Time Dynamic Equilibrium Models.

Manuscript.

Klein, P. (2000). Using the Generalized Schur Form to Solve a Multivariate Lin-

ear Rational Expectations Model. Journal of Economic Dynamics and Control,

24(10):1405�1423.

Liu, Z., Waggoner, D. F., and Zha, T. (2011). Sources of Macroeconomic Fluctuations:

A Regime-Switching DSGE Approach. Quantitative Economics, 2(2):251�301.

Lucas, R. E. (1976). Econometric Policy Evaluation: A Critique. Carnegie-Rochester

Conference Series on Public Policy, 1:19�46.

Malin, B. A., Krueger, D., and Kubler, F. (2011). Solving the Multi-country Real

Business Cycle Model Using a Smolyak-collocation Method. Journal of Economic

Dynamics and Control, 35:229�239.

Marquis, M. H. and Trehan, B. (2008). On Using Relative Prices to Measure Capital-

speci�c Technological Progress. Journal of Macroeconomics, 30(4):1390�1406.

Moreno, A. (2004). Reaching In�ation Stability. Journal of Money, Credit and

Banking, 36(4):801�825.

Oliner, S. D. and Sichel, D. E. (2000). The Resurgence of Growth in the late 1990s: Is

information technology the story? Journal of Economic Perspectives, 14(4):3�22.

112



Perron, P. (1989). The Great Crash, the Oil Price Shock, and the Unit Root Hypoth-

esis. Econometrica, 57(6):1361�1401.

Picard, D. (1985). Testing and Estimating Change-Points in Time Series. Advance

in Applied Probability, 176:841�867.

Pichler, P. (2011). Solving the Multi-country Real Business Cycle Model Using a

Monomial Rule Galerkin Method. Journal of Economic Dynamics and Control,

35(2):240�251.

Primiceri, G. E. (2005). Time Varying Structural Vector Autoregressions and Mone-

tary Policy. Review of Economic Studies, 72(3):821�852.

Qu, Z. and Perron, P. (2007). Estimating and Testing Structural Changes in Multi-

variate Regressions. Econometrica, 75(2):459�502.

Quandt, R. E. (1960). Tests of the Hypothesis that a Linear Regression Obeys Two

Separate Regimes. Journal of the American Statistical Association, 55:324�330.

Rotemberg, J. J. (1982). Sticky Prices in the United States. Journal of Political

Economy, 90(6):1187�1211.

Schmitt-Grohé, S. and Uribe, M. (2004). Solving Dynamic General Equilibrium Mod-

els Using a Second-order Approximation to the Policy Function. Journal of Eco-

nomic Dynamics and Control, 28:755�775.

Sims, C. (2002). Solving Linear Rational Expectations Models. Computational Eco-

nomics, 20(1-2):1�20.

Sims, C. A. and Zha, T. (2006). Were There Regime Switches in U.S. Monetary

Policy? American Economic Review, 96(1):54�81.

113



Smets, F. and Wouters, R. (2003). An Estimated Dynamic Stochastic General Equi-

librium Model of the Euro Area. Journal of the European Economic Association,

1(5):1123�1175.

Smets, F. and Wouters, R. (2007). Shocks and Frictions in US Business Cycles: A

Bayesian DSGE Approach. American Economic Review, 97(3):586�606.

Stock, J. H. and Watson, M. W. (2002). Has the Business Cycle Changed and Why?

NBER Macroeconomics Annual.

Taylor, J. B. (1993). Discretion versus Policy Rules in Practice. Carnegie-Rochester

Conference Series on Public Policy, 1:195�214.

Uhlig, H. (1997). Bayesian Vector Autoregressions with Stochastic Volatility. Econo-

metrica, 65:59�73.

Uhlig, H. (1999). A Toolkit for Analysing Nonlinear Dynamic Stochastic Models

Easily. Oxford University Press.

van Binsbergen, J., Fernandez-Villaverde, J., Koijen, R. S., and Rubio-Ramírez, J. F.

(2012). The Term Structure of Interest Rates in a DSGE Model with Recursive

Preferences. Journal of Monetary Economics, page forthcoming.

Woodford, M. (2003). Interest and Prices: Foundations of a Theory of Monetary

Policy. Princeton University Press.

Zhu, C. (2012). Monetary Policy Shifts and the Stability of Monetary Policy Models:

An International Comparison. Manuscript.

114


	Dissertation front pages_Chuanqi Zhu.pdf
	Dissertation_May04.pdf

