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This dissertation contains three chapters in theoretical Macroeconometrics and
applied Macroeconometrics.

This first chapter addresses the issues related to the estimation, testing and
computation of ordered structural breaks in multivariate linear regressions. Unlike
common breaks, ordered structural breaks are those breaks that are related across
equations but not necessarily occurring at the same dates. A likelihood ratio test assuming
normal errors is proposed in this chapter in order to detect the ordered structural breaks in
multivariate linear regressions. The estimation of ordered structural breaks uses
quasi-maximum likelihood and adopts the efficient algorithm of Bai and Perron (2003). I

also provide results about the consistency and rate of convergence when searching for



ordered structural breaks. Finally, these methods are applied to one empirical example:
the mean growth rate of output in three European countries and United States.

This second chapter focuses on the parameter stability of dynamic stochastic general
equilibrium (DSGE) models. To this end, I solve and estimate a representative New
Keynesian model using both linear and nonlinear methods. I first examine how
nonlinearities affect the parameter stability of the New Keynesian model. The results
show that parameter instabilities still exist even using nonlinear solutions, and also
highlight differences between two nonlinear solution methods: perturbation method and
projection method. In addition, I propose a sequential procedure for searching for
multiple structural breaks in nonlinear models, and apply it to the New Keynesian model.
Two common structural breaks among these estimated parameters are identified for all
the five solutions considered in this chapter. One structural break is in the early 1970s,
while another one locates around the middle 1990s.

In the third chapter, we investigate changes in long run productivity growth in the
United States. In particular, we approach productivity growth from a sectoral perspective,
and decompose the whole economy into two broad sectors: investment goods-producing
sector and consumption goods-producing sector. Although the evidence of changes in the
aggregate productivity growth is far from obvious at conventional test size, we find
evidence of structural breaks in the sectoral productivity growth using both growth
accounting and DSGE model based measures. There are two structural breaks in

investment goods-producing sector using growth accounting measures, which indicates



that the era of investment and productivity boom in the middle 1990s may have ended
before the Great Recession. In addition, our results show there is one structural break in
consumption goods-producing sector around the 1970s and attribute the aggregate
productivity slowdown at that time to consumption goods-producing sector. These results
are broadly consistent with Ireland and Schuh (2008). Our results offer up with a
modestly pessimistic outlook on future productivity growth and, therefore, potential

output.
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Chapter 1

Estimating and Testing Ordered
Structural Breaks in Multivariate

Linear Regressions

1.1 Introduction

In the last two decades, there are considerable theoretical and empirical studies
on testing and estimation of changes in economic and financial time series. In the
theoretical econometric literature, Bai (1997) considers the least squares estimation
of a single change point in multiple regression models allowing for both stationary and
trending regressors. Consistency, rate of convergence, and asymptotic distributions
are also provided in his paper. Bai and Perron (1998) then consider the testing and
estimation of multiple structural breaks in the linear regression models estimated by
least squares as well. And Bai and Perron (2003) provide an efficient dynamic pro-
gramming algorithm to obtain the break date estimates. For multivariate systems,
research related to structural breaks is comparatively scarce. Bai et al. (1998) first

consider issues related a single common break across these equations. They show



that the accuracy of break date estimates can be improved under a system of equa-
tions with common breaks. Hansen (2003) considers multiple structural changes in
a co-integrated system, though his study focuses on the case of known break dates.
Recently, Qu and Perron (2007) extend the testing and estimation of changes in a
system of equations allowing multiple structural breaks.

The empirical motivation for this paper is based on our observations of GDP
growth slowdown in the United States and Europe around the 1970s and during
the current 2007 financial crisis. The common practice in modeling the breaks in
GDP growth is to assume these breaks of each country occur contemporaneous. It
might be due to the fact that many common factors, such as international capital
flows, are driving these series. The often “unnoticed” underlying assumption in this
manner is that these breaks across the equation are at the same date. However,
several studies in the empirical literature show the GDP growth rate for the four
industrialized countries including France, Germany, [taly and United States did not
appear to slow down exactly at the same date.! This suggests that gains in precision
might be achieved by relaxing this assumption of common breaks. In other words, the
growth rates of output are modeled as changing at different dates across equations.
Now these breaks are not exactly at the same dates, to some extent they seem to
occur following a sort of order. Therefore, we call this sort of structural breaks in
a system of equations as “ordered structural breaks”. To our knowledge, few works
have been proposed to address this issue.?

This paper, therefore, develops techniques for testing and estimation on ordered
structural breaks in a system of equations. Our framework builds on Bai et al. (1998),
in which they considered a single common break in a system of equations. We re-

lax the underlying assumption on common break and put our attention on ordered

!For example, see Banerjee et al. (1992), and Stock and Watson (2002).
20ne exception is Qu and Perron (2007), in which they consider the locally ordered breaks. As
we will show later, this is a special case under our framework.



structural breaks. However, we only consider these systems of equations including
stationary regressors. The integrated regressors and deterministically trending re-
gressors are excluded in the current analysis because they need special treatment and
add additional layer of difficulty into our framework. The null hypothesis is that no
structural break occurs in a multivariate system. Under the alternative hypothesis,
there is one single break at each equation of this system, but these break dates might
not be the same. These breaks across equations may be either close to each other
or be separated by a positive fraction of sample size. The statistic considered in
this paper is the quasi-likelihood ratio test assuming normal errors, though as usual
the limiting distribution of this test has non-standard probability distribution. The
computation of estimates under our framework is not a trivial issue. In principle,
a gird search can be employed but it becomes rapidly impractical since it involves
the computation of maximum likelihood estimates of order O(T™). Our solution is
to extend the work of Hawkins (1976), Bai and Perron (2003) and Qu and Perron
(2007) and consider a dynamic programming algorithm.

Similar as many studies related to structural breaks, such as Bai et al. (1998) and
Perron (1989) among others, our empirical motivation concerns breaks in the mean
growth rate of output, for which the parameter describing dependent in the stochastic
part of the process (the auto-regressive parameters in our case) are treated as nuisance
parameters. Therefore we first present a Monte Carlo study to show the efficiency gain
we could obtain if we allow for ordered structural breaks in a system of equations. We
then turn to an empirical example of dating the output growth slowdown in postwar
European and United States considered in Banerjee et al. (1992) and Bai et al. (1998)
and advocate the evidence of order structural breaks.

The paper is organized as follows. Section 2 presents the model and the assump-
tions used in this paper. And it also provides an example to illustrate our framework.

Section 3 considers the issues related to estimation. In particular, we provide the



results on the consistency and rate of convergence of these estimates and describe the
dynamic programming estimation algorithm. Section 4 contains the quasi likelihood
ratio type statistic for unknown ordered structural breaks. A Monte Carlo study of
the statistic and estimation for a two-equation model are provided in Section 5. Sec-
tion 6 applies the test and estimation method to an empirical example: the growth

slowdown in postwar European and United States output.

1.2 Model and Assumptions

1.2.1 Model and Assumptions

We first define the notation used throughout the present paper. Our framework
and assumptions are similar to those in Bai et al. (1998). We have n equations
and T observations excluding the initial conditions if the lagged dependent variables

are used as regressors. Fach equation may have one structural break denoted as 7;,

i =1,...n. These break dates are denoted by a vector 7 = (7y,...,7,). A subscript ¢
indexes a temporal observation (¢t =1, ..., T') and a subscript i indexes the equation
(=1, ..., n) to which a scalar dependent variable y;; is associated.

The system of equations considered is

P p
yie =i+ > Ay + BXe + L[t > 7] (/\z' +> Bi(i)ye s + %th) +ea (1.2.1)
j=1 j=1
where y;, p1;, A; and €;; are scalar variables; y,—; = (Y11—j, - ., Ynt—;) is n X1 vector;
X is kx 1 vector including stationary explanatory variables; 3; and ; are kx 1 vectors
including the corresponding vectors of coefficients; A;(i) and B;(i) represents the i-th

row of A; and B;, respectively; and 1[-] is the indicator function. It is important to



note that, first we assume that the regressors are the same across the equations in
the current framework. As we show later, this assumption can be easily relaxed to
consider the case in which each equation has different set of regressors. Second, the
roots of {I — A(L)L} and {I — B(L)L} are outside the unit circle in which L is lag
operator. Thirdly, when one break happens, say in equation ¢ for example, we replace
the i-th row of A;s with the corresponding i-th row of B;s and denote as Cjs. After
all the breaks occur, Cjs become Bjs. We assume that the roots of the sequence of
{I — C(L)L} are outside the unit circle as well.

It is convenient to write the system of equations (1.2.1) in its matrix form

Yy = (V@ DO+ D(7)(V/ @ )0 + & (1.2.2)

where V/ = (1, y,_4,. .. y;_p, X,), 0 =vec(u, A1, ..., Ay, B), 8 =vec(\, By, ..., By,7),
and D(7) = diag(1[t > 7], ... 1[t > 7,]) is n X n matrix. Note model (1.2.2) is that of
a full structural change in which it allows all the coefficients to change. If it is known
that only a subset of coefficients such as the intercept has a possible break, a partial
break structural break model is more appropriate. This leads to the consideration of

a general partial structural break model
ye=(V/ @D+ D(1)(V/ @ 1)S'S6 + & (1.2.3)

where S is a selection matrix, containing Os and 1s and having full row rank. Note
that S’S is idempotent with non zero elements only on the diagonal. The rank of S is
equal the number of coefficients that are allowed to change. For S = I, model (1.2.2)

is obtained. For S = s ® [ with s = (1,0,...0), we have

v = (V/ @10+ D(T)\ + & (1.2.4)



which has a break in the intercept only. The system (1.2.3) can be rewritten more
compactly as

’

Y= Z,(1T)58 + & (1.2.5)

where Z, (1) = (V/ @ I), D(7)(V/ ® I)S") and 8 = (#', (S6)')".

As a matter of notation, we let “2” denotes converge in probabilities; « % denotes
converge in distribution; “ 2% denotes almost sure converge; and “=" denotes weak
convergence. Our analysis is carried under the following set of assumptions:

Assumption 1: Let g, be a martingale difference sequence with respect to F;_1 =
o-field(Zy, €11, Zi_1, €1—a . ..) satisfying, for some a > 0, max;sup, E(e;™) < oo
and E(ets;_j|}"t_1) =X for 7 =0 and 0 otherwise.

Assumption 2: Suppose that B X, = p, for all t, max;sup, B(X™®) < oo,
TS (X = 1) (X — ) B M(0), TS0 Xyt B EX; = M, (3),
j=—p,...,p and xp(-) = T~/? EZZ] (X: — pz), ,|x| represents the integer part of

x, and B,(+) is a Brownian motion with covariance matriz M,,(0).

1.2.2 An Example-Two Equations Case

To illustrate the notation and the framework in the previous subsection, it is useful

to consider a much simpler two equations system as follows:

X1t
u ; ; Y1t—j
Y = pa+t Z(a{p ays) + (Birs - Buk) : +
J=1 Yot—j
Xt
X1
i i i Y1t—j .
1t > n] (A + Z(b]m bis) + (115 5 V1k) P fen
Jj=1 Yot—j
Xkt



p
; ; Y1t—j
Yar = 2 +Z(a§1, ) T+ (Bas o Bar) +
Jj=1 Yot—j
Xt
Xt
P i i Yit—j
1t > 7] (Aa + Y (V1 by) + (21, -+ Y2k)
Jj=1 Yot—j
Xt

)+e

2t

Packing the two equations above together, we have the following equivalent ex-

pression in terms of matrix:

Y1t 241 P ajl ajl Y1t—j B Bik
= w20
Yot M2 J=1 aj21 aég Yat—j Ba1 Bk
. 1t > 7] 0 At N LN
X1t
Y11 Y1k €1t
+ +
V21 Y2k €t
Xt

Next we define V;, 6, and § in the similar way as the n equations case:

!
‘/t = (17 Yit—15 Y2t—15 - - -5 Y1t—py Y2t—p, Xty oo, th)(1+2p+k)><1
. 1 1 1 1 P P p P
0 = (1, po, a1y, Q1g, Qg Aoy, ... GY1, AYy, Aoy Aoy,
ﬂlh R /81167 5217 cey 62k)(2+4p+2k)><1
) ()\)\bl b, bl bl bY. . b¥.. bb. bh
- 1, A2, V115 Y125 V21 Y225 --- V115 Y125 V21 VY22,

Yty -y Viks V215 - - 72k)(2+4p+2k)x1



0 1[t>7’2]
2x2

Therefore we can write equation (1.2.6) in form of (1.2.2):

Yr(2x1) = (Vt1(1+2p+k)x 1®1552)0 (24 ap+2k) x1+D(T)2x2 (‘/;,(1+2p+k) ><1)®]2><2)5(2+4p+2k) x1TEt2x1)

Note that this is a pure structural change model. Suppose we want to study the
partial structural change model, for instance, only changes on intercept in the first
equation and changes on lagged dependent variables in second equation are allowed.

Now we have (1 + 2 * p) coefficients are allowed to change. We define

Aioa apy ay ayp afy afy a3 ay ... oay ah B
M: 1 0 0O O O O O O O ... 0 0
a0 0 0 1 0 O O O O ... 0 0 0
as, 0 0 0 O 1 0 0 0 0 0 0 0
S=1a 0 0 0 0 0 0 0 1 0 0 0 0
a2, 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0
ad, 0 0 O O O O O O O ... 1 0 0
% 0 0 0 0 0 0 0 0 0 ... 0 1 0] o2t

The rank of S is equal to number of coefficients that are allowed to change(1+42xp),

and S'S is idempotent with non zero elements only on the diagonal.



1.3 Estimation

1.3.1 Estimation Method

The first raised question is how one can estimate the model with unknown break
dates. This problem has been well considered by various authors, using a variety of
approaches. For instance, Picard (1985) provided a Gaussian maximum likelihood
estimation of the break dates in the case that a univariate process follows a finite
order autoregression. Recently, Qu and Perron (2007) considered the quasi-maximum
likelihood estimation that assumes serially uncorrected Gaussian errors under the
multivariate regressions. Our method of estimation is similar as those in Bai et al.
(1998) with three notable features. First, the covariance matrix ¥ of error terms
is explicitly treated as unknown and estimated. Second, we only assume the error
terms from a sequence of martingale differences with some moment conditions, and use
quasi-Gaussian maximum likelihood estimation. Thirdly, we allow some of regression
parameters to be estimated with the full sample to gain efficiency.

The method of estimation we considered here is quasi-Gaussian maximum likeli-
hood estimation. Suppose that ||Sd|| # 0, then there indeed exists a set of ordered
structural breaks. For a given combination of the break dates 7 = (7y...7,), the

Gaussian quasi likelihood function is
T
Lr(r, 8,%) = [ [ Fwl Zi(7); 7, 8, %) (1.3.1)

t=1

where

/ / /

f=wlZ(1);71,6,%) = Wexp{—%[% — Z,(1)B Sy, — Z,(7)B]}

The straightforward method on estimation is based on grid search over all the combi-

nation of breaks dates. Here we impose the following assumption on the set of feasible



break date.
Assumption 3: The maximization of Ly (7, [B3,%) is taken over all the combina-

tions of break dates T = (11 ...7,) in the following set
A€ = {(7’1, N TR ,Tn) = (ir/\l7 ce 7T)\i7 ce ,T/\n), mln{)\Z} Z €, max{)\i} S 1-— 6}

where € 1s a trimming value.

€ represents that an initial and ending fraction of sample are trimmed. This is often
taken to either 0.15 or 0.1. Therefore, we proceed the estimation as follows. First
for each combination 7(%) = (Tl(i), e ,Ty(f)), the associated estimates of 3 and X are
obtained by maximizing the quasi likelihood function. Let (), and £(7®) denote
the resulting estimates. Substituting them in the objective function and denoting the

resulting quasi likelihood functions as Ly (7®, B(r®), £(7®)), the estimated break

points 7 are such that
7 =arg max Lp(r, (1), (7)), (1.3.2)

where the maximization is taken over all the combinations of {7®}.3 It is worth
mentioning that the computation of maximum likelihood estimates of order O(T™).
The estimated break dates 7 are therefore global maximum of the objective function.
Finally, the estimated regression parameter are associated quasi maximum likelihood

~ ~

estimates at the estimated combination of break points 7, i.e. = 5(7), & = 5(7) .

1.3.2 Efficient Algorithm for Estimation

As we show in the previous subsection, the computation of estimates in the general

framework considered in this paper is not a trivial issue. In principle, we can use

3For the two equations and single break problem we have (1 —2¢)27? combinations if we premise
these breaks fall into (e7', (1 — €)T). € is the trimming value.

10



a grid search, but this approach becomes rapidly impractical since it involves the
computation of maximum likelihood estimates of order O(T™). We now consider
an algorithm based on the principle of dynamic programming. Our approach is an
natural extension of works by Hawkins (1976), Bai and Perron (2003) and Qu and
Perron (2007). The basic idea is as follows. With any possible combination of ordered
breaks, it is the case the that the overall value of the log likelihood function is the
sum of the values associated with a particular combination of at most n+ 1 segments.
Hence, if we have the information about the log likelihood values for all possible
segments, of which there are at most T X (T + 1)/2, then all that is needed is a
method to assess which particular combination of n+ 1 segments leads to the highest
value of the likelihood function. This is achieved using a dynamic programming

algorithm. More thorough details can be found in Bai and Perron (2003).

1.3.3 Statistical Properties

We now consider the statistical properties of the estimates. In order to derive the
asymptotic properties of these estimates, we follow Picard (1985), Bai and Perron
(1998, 2003) and Bai et al. (1998) among others, and make the following assumption
on the magnitude of the shifts:

Assumption 4: Let B° = (0, (Sor)"), in which dr is a sequence such that
or = 6%vp. v, > 0 is a scalar satisfying vy — 0 and \/Tvt/(log T) — oc.

This assumption implies a shrinking shifts asymptotic framework, in which the
magnitudes of these shifts converges to zero as the sample size increases. One obvious
reason for considering small is that, if we show that a break with a small magnitude
of shift can be consistently estimated, it must be the case that we can consistently
estimate a break with larger magnitude of shift, for the larger the magnitude of shifts,
the easier to identify a break.

The joint behavior of (%,B(f'), i](%)), particularly, consistency and their rates of

11



convergence are examined in this subsection. First, the likelihood function, such as
L(t, O+ T7123, X0+ T-1/2%), are reparameterized. These ordered break dates 7 =
(71,...,7,) are reparameterized such that 7; = 7;(v) = 70 + [vv;?], for v € R. When
v varies, 7; can take on all possible integer values. We define the likelihood function
to be zero for 7; greater than 7. Tt is worth mentioning that maximizing the original
likelihood function is equivalent to maximizing the reparameterized likelihood. We let
(79, 8°,3°) denote the true values of these parameter in this data generating process,

and construct the quasi-likelihood ratio as follows

L(r, 8° 4+ 1723, X0 + T-1/%%)
L(79, 30, %0)
[Ties f (el Zi(r)s7, B0+ T71°3, 0 + T711°%)
[Ty f(el Zi(7); 70, 50, 50)
= 2 T {4 A (1) a)
£

Sl 72 exp { ~1 S0, £i% ey |

LRy

where ,(7;) =y, — Z,(7)'(Bo + T~1/2).

Theorem 1: Under the assumptions A1-A/, for the break dates estimates T =

and

VI(B =5 = 0,(1)

VIE -39 = 0,(1)

This theorem gives the rate of convergence of the estimates. The results are the same
as in most of other cases consider in the literature, see appendix A for the proof.

The basic idea is as follows: First it is clear that maximizing the original likelihood

12



function is equivalent to maximizing the likelihood ratio. Suppose that v*, 5*, and

>* maximize the likelihood ratio, then v* = v2(7; — 70), B* = VT(5 — °), and
»* = V/T(Z — X9). Thus to show v2(7 — 70), VT(3 — °), and VT(2 — £°) are all
stochastically bounded, it is sufficient to show that v*,3*, and ¥* are stochastically

bounded. This, in turn is equivalent to showing that the likelihood ratio cannot

achieve its maximum when any of parameters, v, 5, and X, is too large.
1.4 Test Statistics

We now consider testing for ordered structural breaks. It is important to note we
focus on the changes in the coefficients of the conditional mean. Also, as we mentioned
above, we can allow only a subset of coefficients to change across regimes, hence partial
structural breaks are permitted. The test we proposed here is a likelihood ratio test
for the null hypothesis of no change in any of the coefficients versus an alternative
hypothesis with ordered structural breaks.

In order to derive the limiting distribution of the test under the null hypothesis
of no structural change, we impose the following additional assumptions on the data
generating.

Assumption 5: 10 = [NT)] for some 0 < \) < 1, and [] is the greatest integer
function. This assumes that the shift point is bounded away from the end points,

which s used for asymptotic purpose.

1.4.1 The specification of the alternative hypothesis

Under the alternative hypothesis, we consider the case that the whole coefficients

to change across break dates. For instance, the break dates 7;, can be constructed as
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a group of n different break dates. For a given i equation, we have

pi + Z§:1 Aj(@)ye—j + BiXi + €t t <
Yit =

pi+ 25y A (D)ye—j + B Xe + ()\i + 2251 Biliye—; + %Xt) tew t>7
Hence, following the notation in the previous section, n, 4+ n, + 1 coefficients are
allowed to change. Note that this framework is such that any coefficients which is

allowed to change does so simultaneously. Stacking the system equation by equation,

we have

ye = (V/ @ 10+ D(1)(V} @ 1)S' S5 + &,

where the notations are exactly the same as in Section 2.
Under the null hypothesis of no structural change, the estimates are the values B

and 2 that jointly solve the following system of equations

T

~ 1 N A
N = Z <yt - Z;ﬁ) (?/t - Zéﬁ)
=1
Ztilz;> <Z ZtilYt’>
t=1

T
t
T
- (3
t=1
with the resulting value of the log-likelihood function being

T T .
log Ly = —§(log27r +1)— §log |2

For a given ordered structural break 7 = (71, ..., 7,), the class of models described
above can be estimated by quasi maximum likelihood. Denote the log-likelihood value
by log ﬁ(ﬁ, ..., Tn). The proposed test is the maximal value of the likelihood ratio

test over all admissible partitions in the set A. defined by Assumption A4, i.e.,
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sup LRy = sup 2 |log ET(T, B,%) — log Lt

(T1,...,Tn)€/\5
= 2[1ngzT(7ﬁ1,,7ﬁn) _1ngT] (141)
where the estimates 7 = (71,...,7,) are the QMLE obtained considering only those

partitions in A..* The parameter ¢ acts as a truncation which imposes a minimal
length for each segment and will affect the limiting distribution of the test. It is also
useful to describe the exact form of the log likelihood value and the estimates of the

coefficients for some leading cases.

1.4.2 The limiting distribution of the test.

We now consider the limiting distribution of the sup LRy test under the null
hypothesis in the context of the class of models described in the previous subsection.
Theorem 2 Under the assumptions A1-A5, with the sup LRy test constructed for
an alternative hypothesis in the class of models described in previous subsection, we

have, as T — oo,

" AW (Niga) — >\i+1Wn(>\i)H2

(AsreshiseAn)EAS 5 (At = Ai) Aidita

(1.4.2)

where W, () are n dimensional vectors of independent Wiener processes, and |||
represents the Euclidean norm.

Note that the limiting distribution of the sup L Ry not just depends on the number
of coefficients are allowed to change, but also depends on the trimming values e. This

form of this limiting distribution is similar as the expression in Theorem 1 of Bai

1 See Andrews (1993); Andrews and Fair (1988) for more details on how to construct hypothesis

testing for parameter instability.
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et al. (1998). More details can found in the appendix B, in which we utilize the proof
in Bai et al. (1998) and Qu and Perron (2007).

1.5 Monte Carlo Study

In this section, we provide Monte Carlo study related to estimation method. The
framework used in Monte Carlo is similar as the system (4.1) in Bai et al. (1998). For
a change in the intercept in an autoregressive system, the data generating process is

the system with a single break in each equation as following:

v = (An) di(Too) + (BL)yi—1 + & (1.5.1)

g Z’LdN(O, 25)

where ¢, is an n—vector of 1’s and ¢; is n x 1. In particular, we consider the following

bivariate system with a single break in each equation:

yie = pa+ M1t > 7]+ Buyu—1 + Brayar1 + e

Yoo = pi2 + Ml[t > o] + Boryr1 + Baoyor—1 +En

where (ey4, €9¢)' ~ 4.4.d. N(0, I3). As we can see, only the intercept is allowed to
change at some date 7; for the ith equation. First, the value of p;s is set to one.
Second, we consider three values of the magnitudes of mean shift ;. \;s can be one
of values (0.25, 0.50, 1.00). Thirdly, the autoregressive parameters are chosen from

the following three sets

g = (0.10, 0.10, 0.10, 0.10)
B® = (0.50, 0.50, 0.50, 0.50)

BB = (0.90, 0.90, 0.90, 0.90)
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We set the number of observations 1" equals to 100, which is a reasonable choice
given the computational cost of simulation. The last thing about the data generating
process is to choose break dates. Without of loss generality, the break date in the
first equation is kept fixed at 7, = 30. The break date 75 in the second equation then
takes values either 30, or 50, or 70. In the Monte Carlo study, we run 500 replications.

Figure 1 to 3 show the results on estimate breaks.
1.6 Application

It is widely well known that there is a slowdown in the growth rate of output in
European economies and United States during the postwar, particularly in the 1970s.
Several statistical techniques have been proposed to identify the date of slowdown,
such as structural breaks model, regime switch model among other time varying coef-
ficient models. Obviously, our main focus is put on the task of dating this slowdown
using structural break techniques. The starting point for this type of investigation
is the observation by Banerjee et al. (1992). They found that output growth rate
in France, Germany, and Italy each appeared to be difference stationary, but that
there appeared to be a break in the mean growth rate for each country during the
sample. Their analysis was based on hypothesis testing under the framework of strict
univariate. As Bai et al. (1998) show that there can be substantial gains from using
multivariate inference about the break dates. However, as we show in the previous
section that we can also have substantial efficiency gains if we relax the assumption
on common structural breaks.

For comparability to their studies, we first employ data set used in Banerjee
et al. (1992) and Bai et al. (1998) data. In particular, the three European series are
the logarithms of quarterly GDP for France and Italy and GNP for Germany. The
logarithm of quarterly GDP for the U.S. are also included in the study. Since the data

are available over different periods, the system results consider the joint behavior of
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output over only a short common period, 1962 : Q1 to 1982 : Y4. For mode details
on the the data and data sources, refer to the descriptions in Banerjee et al. (1992).

First, we follow the common practice in the empirical literature, such as Banerjee
et al. (1992) and Perron (1989) among others. We tested the null hypothesis that
each of these series had a unit root, against the alternative that the series was sta-
tionary around a linear time trend, possibly with a break in the time trend at an
unknown date. For all these series, it is no surprise that we find the univariate analy-
sis of these European countries and United States output data provided no evidence
against the unit root null hypothesis. Thus, under our assumption each series is /(1)
process, possibly with a change in drift. Differencing each of these series leads the the
univariate stationary autoregressive representation. For univariate analysis, now v,
is the growth rate of output in each country. Since there is no exogenous variables,
X, is dropped out. In this case, the break term corresponds to a shift in the mean
growth rate of output. While the series are modeled as jointly having the stationary
autoregressive representation, where g, is interpreted as the vector of growth rates of
output of the various countries and X, is omitted as well. It is still important to note
that, in contrast to Bai et al. (1998) we do not impose the common break restriction
on this model.

Table 2 and Table 3 present the structural breaks statistics results for three Eu-
ropean countries and United States. As shown in Table 2 Section A, for France and
Germany, treated as univariate series, both of the test statistics rejects at the 1%
level; for Italy, both reject at the 5% level. The point estimates of the break date are
in 1974 for France and Italy, although for Ttaly the estimate is imprecise. In contrast,
for U.S. output the hypothesis of a constant mean growth rate cannot be rejected at
the 10% level using any of the tests.

Section B in Table 2 shows the results common breaks statistics used in Bai

et al. (1998). Several things need to be highlighted here. First, we take a look at the

18



France-Italy system, for which the univariate evidence is most consistent with a single
common break date. It is not surprising that the test statistics reject the hypothesis
of no break in the mean growth rate against the alternative of a break in the mean
at a common break date. Second, the other bivariate systems also reject the null
of no break against the common-date alternative. Bai et al. (1998) interpret these
results as support for proceeding to construct interval estimates for a common break
date including Germany and United States in the system. Thirdly, this multivariate
analysis points to a slowdown in European and United States output. The slowdown
occurred approximately simultaneously in France and Italy and, arguably, in Germany
and United States as well. Of course, this dating coincides with conventional wisdom;
the contribution of Bai et al. (1998) is that this date can now be associated with the
formal measure of uncertainty provided by a tight confidence interval spanning slightly
more than three years.

However, as the univariate evidence shows that it is clear that Germany and
United States have breaks at the different time as the other countries, which motive
us to apply ordered structural breaks to this example. Table 3 shows the results
of ordered structural breaks. First, all the multivariate systems reject the null of
no break against a set of ordered structural breaks. Second, it is worth mentioning
that now we can identify one break in the systems including United States, for which
the univariate analysis show no evidence of structural breaks. Finally, as we also
mentioned earlier, our dating of changes in output growth is against the conventional
wisdom. We argue that imposing common breaks is strong restriction, and often lead

us imprecise estimates.
1.7 Conclusion

This paper provides techniques for testing, estimation, and computation of ordered

structural breaks across equations in multivariate linear regressions. Our framework
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relaxes the often unnoticed underlying assumption of common breaks. A likelihood
ratio test assuming normal errors is proposed in this paper in order to detect the
ordered structural breaks in multivariate linear regressions. We take the advantage
of our framework based on dynamic programming and adopt the efficient algorithm
of Bai and Perron (2003). We also provide results about the consistency and rate
of convergence when searching for ordered structural breaks. We finally presents the
Monte Carlo study and an empirical example. It is worth mentioning two limitations
in this paper. First, we only consider stationary variables as regressors. Therefore,
we can not deal with cases including integrated or trending regressors. Second, we

have shown how to construct confidence interval for these estimates.

1.8 Chapter 1: Appendix

1.8.1 Proof of Theorem 1

The proof proceeds similar as those in Bai et al. (1998) and Qu and Perron (2007).
We first present a set of properties of the quasi-likelihood ratios. We then show that
Theorem 1 can be derived as a consequence of these properties.

To begin with, we consider the model without any breaks as follows;

yr = (V@ )0 + & (1.8.1)

where V/ = (1, y,_4, ... y;p, X,), 0o = vec(u, Ay, ..., Ay, B), and &, are martingale
differences with variances Yy. We let (6y, ¥g) denote the true parameters. Consider

the quasi-likelihood ratio based on the first 7; observations

[T, (yt’yt—la ooy Oo+ T2 50 + T*Wz)
[Ti2) f Welye—1, - - -5 60, 2o)
. Ti _ —1
|EO + T_1/220|_7_z/2 exp {_% Zt:l Et(Tz’) (EO +T 1/22> gtﬁTi)Q}‘_))
\ jo)

!
[0/ exp { ~4 Ly ()5 eulm) }

;C(]_,TZ,H,E) =
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where

e(m) =y — (VD0 +T7V20) =, — T V2V @ 1)0

Denote by (r;) and 3(7;) as the values of 6 and X such that £(1, 7;; 0, ©) achieves its
maximum. Then we have the following properties:

Property 1: For each § € [0,1]

sup c( (7, i@) = 0,(1) (1.8.3)
T5<m;<T
s (110 + [(r)ll) = 0T (1.84)
T6<7m;<T

This property corresponds to property 1 of Bai et al. (1998) and Qu and Perron
(2007). It says that the likelihood ratios and the maximum likelihood estimates are
bounded in probability. The uniformity of the bound is important since we need
to search over all admissible combinations to find these break dates. Since we take
similar assumptions on €, as Bai et al. (1998), this result is a naturally consequence of
the functional central limit theorem for martingale differences. The proof is omitted
here. For details, see Bai et al. (1998) and Qu and Perron (2007).

Property 2: For each € > 0, there exists a B > 0 such that for large T’
Pr ( sup T75L <1,Ti;é(7',~), i)(n)) > 1) <e (1.8.5)
1< <T

This property says that the log-valued quasi-likelihood ratio has its maximum value
bounded by O,(logT'), which provides a bound for the sequential quasi-likelihood
function in small samples.

Proof of Property 2:
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The likelihood ratio evaluated at 6(7;) and £(7;) can be rewritten as

A ~ . T; * ) - 1 < Iy—1 .
log £ (1,7:;0(r), £(r:) ) = — (log =" ()| — log |Zo) + (Etl:gtzo & —Tin
(1.8.6)

where

. . —1 .

i} 1 1 & 1 & L

ST S S (— zetv;) (— 5 w;) (— 5 v)
t=1 t=1 t=1

thus by adding and subtracting an identity matrix, we obtain

1
I+;Z(mn£ —1I)

i =1
- - -1 -
1 & 1 & ) 1 &

where 7, = 251/2 g, with En, = 0 and Var(n,) = I. Applying a Taylor series

T; « T
— 7 (log |5 (r)] — log[Sl) = ——1log

expansion, we have

(S 0) e s

t=1

+%tr (liwtné—f)—l) +0,(1) (1.8.8)

T T,
1 t=1 K2

where O,(1) is uniformly in 7;. Therefore we have the following expression of (A.6)°

Ti

2
~ ~ 1 T; 1 ’ 1
log £ (1,72-; 0(r), Z(Ti)) = Str(0n) + Ttr (F S oty — T) — f)

T
K3 t=1 (2

1 1

>The first term of (A.7) is canceled out with the last term of (A.8).
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Now we need to show that

and

Then it suffices to show that the above is O,(logT") uniformly in 7.
By the strong law of large numbers, %Z;l ViV converges to a positive definite

matrix as 7; — 00, this implies

for some fixed 7; > 0.
Next,
max log £ (1,7;0(r), £(r)) = 0,(1)

1<t<m;

without loss of generality, we may assume t > 7;,. By the law of iterated logarithms

for martingale differences,

1 /
= Z(Uﬂh - 1y)

Lt

uniformly in 7; € (1,7). Thus

|k]| = Op(log T)

uniformly in 7; € (1,7).
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In addition, from

1<
. ZTHVt = Op(1)
bt=1

uniformly in 7;, we have

7 @7 = Op(log(T))

uniformly in 7; € (1,7T). This proves Property 2. B
Property 3: Let Sy = {(0,%)}; ||0|| > logT or ||0]| > logT. For any 6 > (0,1),

D >0, € > 0, the following holds when T is large

Pr|sup sup TPL(1,7;0,%)>1] <¢ (1.8.9)
T6<r; (0,5)eSr

This property indicates that the value of the quasi-likelihood ratio, when the param-
eter are away from 0, is arbitrarily small for large 7T'.

Proof of Property 3:

Following Bai et al. (1998) and Qu and Perron (2007), the sequential log-likelihood

ratio can be decomposed as
lOg,C (1, Tis é(Ti), i(TJ) = ﬁlt + £2t
where

Ti 7|1 S - Ly
L = —§log [+ Vr| — = [;Z"ﬂs([t + W)l — p ;Ugﬁt]

2
[ (A

and

Lo = TP+ 7))L (V@)

17 1 & .

T
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with n, = X5 /%, and Uy = T-/2(5,22517).

Let ST = SlT U SQT with
Sir ={(0,%);||X|| > logT, 6 arbitary}
and
Sor = {(0,2); [|Z[| = log T, [|0]| < logT'}

we then need to show that

Pr (sup sup TPL(1,7;60,%) > 1) <e

T6<7; (8,£)€S1T

and

Pr <sup sup TPL(1,7;60,%) > 1) <e

T6<T; (07E)€SQT
The proof of the above two expression proceeds similarly Bai et al. (1998) and Qu
and Perron (2007). The details are omitted here. B

Property 4: For any € > 0, there exists a M > 0 such

Pr (Sup sup L (1,7;;0,%) > 6) <e (1.8.10)

TJSTZ SM

where s/ is defined as
s = {(6,2);[|0]| = Mor||Z|] > M}

This property shows that the value of quasi-likelihood ratios is small when it is eval-
uated outside a bounded set. The next property is similar to Property 4, therefore

the proof is shown in next property.
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Property 5: Let hy and dr be positive sequences such that A7 is non-decreasing,
dy — +oo and hd?/T — h > 0, where h < oco. Let S; = {0,3}; ||0|] > d; or

||X|| > d;. Then for any € > 0, there exists an A > 0,such that when T is large

Pr < sup  sup L(1,7;60,%) > 8) <e (1.8.11)

Ahr<t; (B,E)EST

This property studies the value of quasi-likelihood ratio when no positive fraction of
the observations is involved. It is slightly different from that of Bai et al. (1998), in
the sense that the maximum is taken over all the combinations.

Proof of Property 5:

We first define b, = T~'/2d,. Then by assumption, by = O,(1) if hy stays bounded
and by — 0 if hy — oo. Furthermore, hrb2 — h. As in the proof of Property 3, we
decompose St into two subsets S and Sor, where Sy and Syr are defined as in the
earlier proof of Property 3 with log T replaced by dr. The reminder proof is similar

as in Bai et al. (1998), which means we need to show

Ahr<t; (,2)€S1T

Pr ( sup  sup L(1,7;;0,%) > 5) <e€

and

Pr ( sup  sup L(1,7;0,%) > 5) <e

Ahp<ri (0,5)ESar

On Sy, all arguments in Property 3 go through if inequalities (A.9) and (A.11) in
Bai et al. (1998) still hold true when 7; > T is replaced with 7; > Ahy and for the
newly defined br.

Since the following inequality,

i

> (e = 1)

t=1

> C 20
> abr

1
P — < <
" ( A,Sl;lgpn T; Ahra?bi ~ Aa2h
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for C' > 0, we can apply the theorems in Héajek and Rényi (1955). The expression
above is small if A is large.

Similarly, applying the inequality in Hajek and Rényi (1955). to 1/7; > [, (V®n,)
together with H_' = O,(1) uniformly in large 7;, we have, for any ¢ > 0 and ~ > 0,

there exists an A > 0 such that

Pr ( sup

Ahp<T;

T2 (1 @ 1) i)

> ”)/bT> <€

Using the last two inequalities and the same arguments as in Property 3, we obtain,

with probability at least 1 — 2¢,
L(1,7:0,%) < —1;b%C?/8
for all k > Ahr and all (6,%) € Sip, which is further bounded by
—Ahrb2.C? /8 < —AC?h/16 < log e

if A is large.
The proof on Sor is almost the same as in Property 3 with only minor changes,
therefore is omitted here. l

Property 6: Under the same hypothesis as Property 5, we have for any A > 0

sup  sup L(1,7;0,X) = O,(1) (1.8.12)
Ahp<7i (0,5)€SE
where S$ is the complement of Sy with Sp given in Property 5.
The last property states that the quasi-likelihood ratio is simply bounded when
evaluated not far away from zero and the number of observations increasing not too

fast.
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Proof of Property 6:

It suffices to prove the log-valued likelihood ratio is bounded in probability. The
log-likelihood ratio consists of two expressions L1, and Ly given in Property 3. First
consider L. It is enough to prove the first term of Lo, is bounded because the second

term of Lo is negative. The norm of the first term is bounded by

Ti

T (ar /Al sup (-4 %) | swp 3 (o)
T

T <Ahp —1

Note that ||(I + W)~ is uniformly bounded on S because || U7 || = O(T~2dy) <
1.

The second supreme is bounded by the functional central limit theorem for mar-
tingale differences. Combined with the boundedness of T~'/2(drv/Ahr) (because its
squared value is bounded by assumption), we see that the above expression is O,(1).

Next consider £;. Because
(I+Up) =T —Up+ U2 (1 +Tp)!
L1; can be written as

i 1
Ly = —% log |[I + Yp| —tr(Vr) + §tr

Wy (e — T)] = (L + Ur)

t=1 t=1

The last term is non-positive, so it is enough to consider the first two terms on the

right. The first term is equal to

T; -
Y Z(log(l +Ai) = Ai)
i=1
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where again the \s are the eigenvalues of W7. Applying Taylor expansion, it yields

Ti e, 1
_Z Z)\2 22

IN

7nmax \?

IN

7nC max || Up|?

2
< (]Ath?T for all k£ < Ahr

which is bounded by our assumption. We have utilized the relationship between a

symmetric matrix and its eigenvalues. Next, consider the second term

IA

Wy > (e — 1)
t=1

1 O
1Wr| v/ Ahrsup || —=== ) (mn, — 1)
\/_AhT; '
— C(T‘l/QdT\/AhT) 0,(1)

which is bounded in probability. B

Now we can use these properties to prove Theorem 1. Here, we only consider the
case in which v <0, ie. 7 < 7'1»0. The case for v > 0 is similar. The likelihood ratio
LRy is based on the whole sample [1,7T]. The likelihood ratio can be rewritten as the
product of likelihood ratios for three subsamples, [1, 7], [ +1,77], and [7) +1,T]. In
this way, the likelihood ratio will have V; ® I rather than Z;(7) as regressors. Recall
that 8 = (0, (S9)")". Let U = 4 5'S5, which is the combination coefficients of V;® I
for the second regime.

The likelihood ratio LRt can be rewritten as

L(r, 0+ T71/28, X0 + T71/2%)
L(70, 30, 50)
= L(1,7:0,%) x L(T+1,7°VTS'S67 +1,%) x L(1°+1,T;,1)8.13)

LRy

Only the middle term of (last expression) needs some explanation. For ¢t € [r; +

29



5t(7'z‘) = Yt — Zt(Ti)/(BO + T_I/QB)
= & — (V/®@1)S'Ss — T V*(V/ @ 1)(0 + S'S9)

= & —T7V2(V] @ I)(VTS'S61 +1b). (1.8.14)

By the definition of £, the segment [r;+1, 7] involves the parameter value v/T'S"Sép+
.

Let 7;(v) = 70 + [v1v7°]. For some ey > 0 and g < 79, define

B = {(tr 8,9 6l < VTIS'Sorl, Tey < 7<)} (1815)
{(rB Dl < VIISSal 0 < T} (18.16)

(73, B, 2)); [1¢1] < VT|S'S6rll, Teo < 73 < n(vl)} (1.8.17)

On Bir, both £(1,7;6,%) and L(7° + 1,T;1, %) are O,(1) from Property 1, since
both use positive fraction of observations.
Next consider £(7 4 1,7% /TS’ S + 1, %) which involves 7o — 7 = —vvg? obser-

vations. Since

IVTS'Sbr + || > |IVTS'Sor|| — |||

1
> S[19'Sor|]
2
we apply property 5 with

0 = VTS S6r+1
1
d, = 5\/THS’SCSTH

-2
ht =
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to conclude that £(7 + 1, 7% v/T'S"Sé7 + 1, %) can be arbitrarily small in probability
if —vy is large.
We now assume that

IVTS'Sé7|| > log T

Then on By r, £(1,7;6,%) is less than 7% for some B > 0 with probability at least

1 — ¢ from property 2 and L(7 + 1, 7% V/TS"Sér + 1, %) is O,(1) from property 1.
However, by property 3 ,with 6 = T.S'Sop + b, L(7 +1,7% VT S'Sor + 1), %) is less
than T-P for any D > 0 with probability at least 1 — ¢ when T is large. Thus the
product of these three terms can be no larger than € with probability at least 1 — 2¢
when 7' is large.

Next on Bs p, Property 2 is applicable to both £(1,7;6, %) and £(7+1, 7% v/T'S'Sor+

¥, %) and property 3 is applicable to £(741, 7% v/TS’Sép+1,%). Thus their product
can be arbitrarily small.

Then it is easy to show that

Pr (sup sup LR > 5) <e (1.8.18)

‘U‘Z’Ul (sz)esT
and

Pr ( sup sup LRy > 5) <e (1.8.19)

[v|<vs [18]]>M or ||S]|>M
These two results directly give the consistency, rate of convergence of these esti-

mates in our model.

1.8.2 Proof of Theorem 2

For a given ordered structural breaks of the sample, we have
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LRT(Tl, e

7Tn) =

Tlog|S| — Tlog |3

where 3 and 3 denote the covariance matrix of the errors estimated under the null

and alternative hypotheses, respectively. Taking a second Taylor expansion,

LRT<7'1, e

77_n> =

First we consider the third term log

()@ - =

tr (ngl(i - 2)) +

T
—tr

ORRS

([ -=))

—g” ([(20)1(2 — 20)] 2) + 0, (T7)

where the last equality follows since 8° — = O, (T~1/?).

Similarly, we can show that

()& -] = [<z°>-1<T‘1 >

t=1

Hence the likelihood ratio can be simplified as

LRT<7'1, e

7Tn> -

tr (ngl(i - 2)) +

T
—tr

+O,(T73/7)

(- 28) (- 23) =)

([ -=))



The reminder proof proceeds similar as Qu and Perron (2007).

1.9 Chapter 1: Tables and Figures

Table 1.1: Empirical Results: Output Growth in European and United States

Country Sample sup W ExpW Break Dates
A: Breaks in Univariate
France 64:Q2-89:(Q2 23.68 9.15 74:Q2
(0.00) (0.00) (72:Q4, 75:Q4)
Germany 51:Q4-89:Q2 21.68 8.28 61:Q2
(0.00) (0.00) (59:Q1, 63:Q3)
Italy 53:Q2-82:Q4 10.30 2.83 74:Q3
(0.03) (0.03) (70:Q2, 78:Q4)
U.S. 64:Q2-89:Q2 1.42 0.25 68:Q4
(0.91) (0.71) (73:Q3, 76:Q3)
B: Common Breaks in VAR Systems
F, G 64:Q4-89:(Q2 26.00 10.14 75:Q1
(0.00) (0.00) (73:Q3, 76:Q3)
F, I 64:Q4-82:Q4 17.97 6.24 73:Q4
(0.00) (0.00) (72:Q1, 75:Q3)
F,U 64:Q4-89:Q2 7.43 1.28 70:Q3
(0.07) (0.13) (63:Q1, 80:Q4)
G, 1 53:Q4-82:Q4 14.98 5.32 74:Q1
(0.02) (0.01) (71:Q1, 77:Q2)
G, U 51:Q4-89:QQ2 3.21 1.09 65:Q1
(0.35) (0.43) (55:Q1, 78:Q1)
LU 53:Q4-82:Q4 4.60 0.54 69:Q3
(0.18) (0.51) (63:Q1, 75:Q2)
F, G, 1 64:Q4-82:Q4 19.43 6.98 73:Q4
(0.01) (0.00) (72:Q2, 75:Q2)
F,G 1,U 64:Q4-82:Q4 11.47 1.49 72:Q1
(0.06) (0.08) (69:Q3, 76:Q1)

Note: We employ the statistics-sup W and ExpW- in Bai and Perron (1998, 2003)
and Bai et al. (1998). There limiting distributions and critical values are shown in
these papers. The p—values are given in parentheses. The sample period denotes the
period over which the testing were run; as convention in the literature, the trimming
value € is set to 0.15.
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Table 1.2: Empirical Results: Output Growth in European and United States

Country Sample sup LR Break Dates
C: Ordered Breaks in VAR Systems

F, G 64:Q4-89:QQ2 16.70 Eq 1: 75:Q2
(0.01) Eq 2: 64:Q3
F, 1 64:Q4-82:Q4 28.13 Eq 1: 73:Q2
(0.00) Eq 2: 74:Q4
F, U 64:Q4-89:QQ2 13.52 Eq 1: 75:Q1
(0.05) Eq 2: 70:Q3
G, 1 53:Q4-82:Q4 18.28 Eq 1: 63:Q3
(0.00) Eq 2: 71:Q2
G,U 51:Q4-89:Q2 9.36 Eq 1: 65:Q4
(0.09) Eq 2: 66:Q4
LU 53:Q4-82:Q4 13.15 Eq 1: 74:Q1
(0.05) Eq 2: 69:Q3

F,G,1 64:Q4-82:Q4 16.32 Eq 1: 75:Q4, Eq 2: 64:Q3
(0.01) Eq 3: 72:Q3

F,G LU 64:Q4-82:Q4 12.99 Eq 1: 75:Q4, Eq 2: 64:Q3

(0.06) Eq 3: 72:Q3, Eq 4: 70:Q1

Note: The p—values are given in parentheses, and are computed using the asymptotic
distributions of the test statistic sup LR in Section 4. The sample period denotes the
period over which the testing were run; as convention in the literature, the trimming
value € is set to 0.15.
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Chapter 2

Nonlinear Solutions to Dynamic
Stochastic General Equilibrium

Models and Parameter Stability

2.1 Introduction

This paper studies the parameter stability of dynamic stochastic general equilib-
rium (DSGE) models. This problem is important because DSGE models are now at
the center of modern macroeconomics. Among the most powerful tools, such as VAR
and structural VAR, DSGE models have been developed to match economic theory
with real economic data, to help design and evaluate economic policy, and more re-
cently to perform forecasting. They promise to be a laboratory not just for academia,
but also for an increasing number of policy making institutions.! Furthermore, the
parameters in DSGE models are defined to describe agents’ preferences and tech-

nologies of the economy. As a response to Lucas (1976) critique, these parameters

! As we have witnessed, an increasing number of policy making institutions, such as the Federal
Reserve Board, the European Central Bank and the Bank of England, the Bank of Canada, the
Bank of Sweden, the Bank of Spain, and the Bank of Japan among others already employ DSGE
models for policy analysis and forecasting.
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have a solid micro-foundation from the perspective of economic theory, and ought
to remain invariant to policy interventions. Given these reasons, one can naturally
raise the question of whether these DSGE models live up to their promise of being
truly “structural”. In other words, how stable are these so-called deep “structural”
parameters of DSGE models over time?

In the existing literature, a body of evidence has been brought to document the
parameter instability of estimated DSGE models, which all suggest the evolving eco-
nomic environment of the U.S. has changed in fundamental ways over the last few
decades.? For instance, Ireland (2001) estimates a DSGE model with sticky prices by
maximum likelihood estimation and uses standard stability tests for a single known
break date. These formal hypothesis test results show instability in the estimated
parameters, particularly in estimates of the representative household’s discount fac-
tor. Boivin and Giannoni (2006) also investigate the structural parameters of a New
Keynesian model using minimum-distance estimation, and interpret changes in these
parameter estimates from two sub-periods as evidence of the effectiveness of mone-
tary policy in the post-1980 period. Fernandez-Villaverde and Rubio-Ramirez (2008)
contribute the literature by estimating a medium-scale DSGE model directly allow-
ing parameter drifting. They document that there is strong evidence that parameters
change within their sample as well. More recently, Inoue and Rossi (2011) use a
novel approach to directly investigate the source of instability and seek to find which
structural parameters are truly “structural”.

However, there are three limitations in the existing empirical findings. First of
all, these studies aforementioned, except Fernandez-Villaverde and Rubio-Ramirez
(2008), rely on the linear solution methods for the DSGE models since the lineariza-

tion or log-linearization approach is appealing from both the econometric perspec-

2Tn the discussion of Great Moderation, a number of empirical studies use VAR models with time-
varying parameters. Example includes Uhlig (1997), Stock and Watson (2002), Primiceri (2005),
Cogley and Sargent (2005), and Sims and Zha (2006).
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tive and the computational perspective. Over the last two decades, a number of
nonlinear solution methods for DSGE models have been proposed as alternatives to
more traditional linear solution methods. These new methods have promised supe-
rior performance on the long experience of mathematics and in a growing economic
literature that emphasizes the role of nonlinearities in dynamic equilibrium economies.
Fernandez-Villaverde and Rubio-Ramirez (2005) and Fernandez-Villaverde et al. (2006)
point out that estimating DSGE models based on their linear solutions will generally
lead to biases, which will not consequently generate correct inference—stability tests
in this case. Second, the common practice in the existing literature is to divide the
sample into two subsamples and to construct classical structural break tests typically
attributed to Chow (1960) and the recent treatment of Andrews and Fair (1988). The
limitation of the Chow test, however, is the break date must be known as a priori.
In the literature, one has to either pick an arbitrary candidate break date—usually
around 1979, or pick a break date based on some known feature of data—for instance,
the sharp decline in the volatility of output documented by Stock and Watson (2002)
among others. The Chow test may be uninformative in the first case, since the true
break date might be missed. In the second case, the Chow test might be misleading,
as the candidate break date is endogenous—it is correlated with the data. Therefore,
different studies can easily reach quite distinct conclusions, since the results can be
highly sensitive to these arbitrary choices. Third, most of the literature has focused
on a single structural break in these parameters, whereas allowing multiple structural
breaks might be more suitable given the substantial changes of economic structure,
technological innovations, and historical events over the last few decades.

This paper addresses these limitations and completes the literature in the follow-
ing ways. First, this paper solves and estimates a small-scale DSGE model—a rep-
resentative New Keynesian model in this case—using two main numerical methods:

perturbation and projection methods. Within perturbation, I consider first, second,
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and third order approximations. Note the first order perturbation is equivalent to
the traditional log-linearized solution since variables in the model are transformed
in logarithm. Within projection, I use second and third order Chebyshev polyno-
mials approximations. These parameter estimates and stability tests from nonlinear
solutions offer a comparison to results from log-linearized solution, and can be used
to investigate the effect of nonlinearities on parameter stability. Second, this paper
explicitly treats the break date(s) as unknown. Although the statistics of testing un-
known structural break(s) have been set up by Quandt (1960) and their asymptotic
properties have been derived in Andrews (1993) and Andrews and Ploberger (1994)
among others, they have been surprisingly rarely incorporated into empirical stud-
ies under a more structural framework, like DSGE models.®> Therefore, this paper
tries to fill part of this gap by treating the break date(s) as unknown. Third, this
paper considers the possibility of multiple structural breaks in DSGE models. Here
I propose a sequential procedure for multiple structural breaks in nonlinear models.
The procedure was originally developed by Bai (1997) for testing multiple breaks in
linear regressions. The advantage of this sequential procedure is to avoid the com-
putation complexity when estimating multiple structural breaks simultaneously, and
also to circumvent the challenge of unavailable asymptotic properties on statistics for
multiple structural breaks in nonlinear models.

The main finding of this paper is that there is strong evidence of parameter in-
stabilities of DSGE models — a representative New Keynesian model using U.S. data
in this case. In particular, the results first show that the presence of parameter in-
stability does not result from linearization or log-linearization to the DSGE model.
Neither linear nor nonlinear solutions could support null hypothesis of parameter sta-
bility, which indicates some more fundamental changes of economy structure. Also,

this paper documents the two common structural breaks among these parameters of

30ne exception is Estrella and Fuhrer (2003), in which they examine the stability of a forward-
looking monetary policy model.
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this DSGE model. These breaks occur in the early 1970s, and the middle 1990s, corre-
sponding to when fundamental changes in U.S. are widely believed to have occurred.
Finally, the empirical results in this paper suggest that parameter instabilities are not
only due to changes in monetary policy reactions, but also to changes in agents’ pref-
erences and technology as well as changes in shocks volatility. It is broadly consistent
with findings of Ireland (2001), Fernandez-Villaverde and Rubio-Ramirez (2008), and
Inoue and Rossi (2011).

These results shown in this paper are important for the following reasons. First,
the evidence of parameter instabilities convey the message, in the sense of Lucas
(1976) critique, that structural parameters in DSGE models ought to be policy in-
variant, but not necessarily time invariant. And they also highlight the importance
of applying stability tests to so-called “structural” macroeconomic models, like DSGE
models. Second, the identification of timing of structural breaks is very informative
regarding understanding the instability of macroeconomic fluctuation. More impor-
tantly, one should incorporate the information of break dates when considering to
use DSGE models to perform policy analysis and forecasting. Third, the comparison
between linear solution to non-linear solution emphasizes that exploiting nonlinear-
ities allows for more accurate estimation and inference. Nonlinear models can offer
better explanation of economic dynamics, for instance, zero lower bound constraint
confronted by the central banks of U.S. and Europe. Finally, this paper makes a
methodological contribution by introducing sequential procedure for multiple breaks
into DSGE models. Based on the Monte Carlo simulation, such a procedure can be
directly applied to other non-linear models, and it will deliver consistent results.

The rest of the paper is organized as follows. Section 2 describes the representative
DSGE model and its equilibrium conditions. Section 3 outlines the solutions to
the DSGE model. Section 4 describes the estimations of these linear and nonlinear

solutions, and proposes two structural break tests and a sequential procedure for
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multiple breaks. Section 5 contains data, computational implication, and results.

Finally, section 6 concludes.

2.2 The DSGE Model

The DSGE model in this paper consists of a representative household, a represen-
tative final goods-producing firm, a continuum of intermediate goods-producing firms
and a central bank. This model is a small-scale version of the New Keynesian model,
which has been developed by Ireland (2001, 2004, 2007) and Woodford (2003) among
others for the analysis of monetary and fiscal policy. More elaborate versions can be

found in Christiano et al. (2005) and Smets and Wouters (2003, 2007).

2.2.1 The Household

At the beginning of each period t = 0, 1,2, ..., the representative household enters
with M;_; units of money, B;_; units of bonds and K; units of capital. Meanwhile,
the household receives a lump-sum nominal transfer 7; from the central bank. In
addition, the household’s bonds mature, providing B, ; additional unites of money.
During period ¢, the household supplies H, (i) units of labor and K;(¢) to the various
intermediate goods-producing firms, taking the nominal factor prices W; and @); as
given, where i € [0, 1] indicates each intermediate goods-producing firm. Here the
model denotes H; = fol Hy(i)di as the total amount of labor supplied and K; =
fol Ky (i)di as the total amount of capital supplied. Thus, the household receives total
nominal factor payments W, H;+ QK. At last, the household receives nominal profits
D, = fol Dy(i)di from the intermediate goods-producing firms.

The household expenditures are characterized as the following. First, the house-
hold purchases the final goods from the representative final goods-producing firm at

the nominal price P;. This purchase is divided into C} units of consumption and I,
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units of investment. In order to transform final goods to productive investment, the

household must pay an adjustment cost. It is measured in terms of the final goods

o K 2
— -1 K
2 \ K, !

and given by

where ¢ > 0 measures the magnitude of the capital adjustment cost, and the capital

accumulation follows

Kt+1 - (1 - 5)Kt + It

where the depreciate rate is 0 € (0, 1). Also, The household uses some of its funds to
purchase B; new bonds at price of 1/R;, where R; denotes the gross nominal interest
rate between t and ¢t + 1. The household then carries B; units of bonds, and K,
units of capital, and M, units of remaining money into period ¢t + 1. Therefore the

budget constraint for the household is

Bi/R; + M, < M,y + B+ T, + W H, + Qi Ky + Dy
P, o P,

o ( Kipa
Ci+L+—=
¢+ 1+ %,

2
1) K
2 ) e+

The household aims to maximize its expected utility, given by

maXEZBt <0t7 _7 t)

where the discount factor is 5 € (0, 1) . Assume that the instantaneous utility

function takes the form as

M, cl -1 M, Hf —1
U (Cn —t, Ht> = attffy + Xm log (—t> — XhtlT

where v is the inverse of the elasticity of substitution between current and future
consumption, and v is the inverse of the Frisch labor supply elasticity. x,, and x; are

weights associated with utility from real money balances and disutility from worked
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hours. The preference shock a; follows the stationary autoregressive process
In(a;) = po In(a;—1) + €ar

with p, € (0, 1), where the serially uncorrected innovation €,; has the normal distri-

bution with zero mean and standard deviation o,.

2.2.2 The Final Goods-Producing Firm

During each period ¢, the representative final goods-producing firm purchase Y;(7)
units of each intermediate good i € [0, 1] at the nominal price P,(i) to produce Y;

units of the final goods according to constant-return-to-scale technology described by

1 0/(6-1)
i [ o]
0

where 6 > 1 measures the constant elasticity of demand for each intermediate good.
Thus, the final goods-producing firm seeks to choose Y; and Y;(i) for all i € [0,1] to
maximize its profits given the nominal price P, of final goods and the nominal price
P,(7) of intermediate goods. Perfect competition in the final goods market drives the

firm’s profits in equilibrium to zero. This zero profit condition leads to determine the

1 1/(1-9)
Pt - |:/ Pt(l')l_edl.]
0

Also, the demand for each intermediate good i turns out to be

equilibrium price F; as

Yi(i) = [PT(”] Ty
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2.2.3 The Intermediate Goods-Producing Firms

The representative intermediate goods-producing firm hires H;(7) units of labor
and rents /(;(7) units of capital from the household to produce Y;(¢) units of interme-
diate good i during period t. The constant returns to scale production technology is
described by

Yi(i) = Ko(i)* [z He(i)] 0

where a € (0, 1) is capital’s share in production function. Here the aggregate tech-

nology shock z; follows a first order autoregressive process

In(z) = (1 — p.) In(z) + p. In(z-1) + €4

with z > 0 and p, € (0, 1), where the serially uncorrelated innovation e,; has the
normal distribution with mean zero and standard deviation o,.
Since the representative intermediate goods-producing firm can sell its output in

a monopolistically competitive market; during period ¢, the firm sets the nominal
price P,(i) for its output, subject to the requirement that it satisfy the final goods-
producing firm’s demand at that price. In addition, following Rotemberg (1982), the
intermediate goods-producing firm faces a quadratic cost of adjusting its nominal
price between periods, measured in terms of the final goods and given by

dp [_P(0) i

2 [wpt_l(z') B 1] Y
where ¢, > 0 gives the magnitude of the price adjustment cost, and 7 > 1 measures

the gross steady-state rate of inflation.

The intermediate goods-producing firm must choose Hy(i), Ky(i), Y;(i), and P;(4)
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to maximize its total expected real market value, given by

S Dy(1)
E A | —F
max Z BN\ { 2 ]
t=0
where 'A; measures the marginal utility value to the representative household of an

additional unit of real profits received in the form of dividends during the period ¢

and where

Dy(1) _ P()Y: (1)  WiH (i) + Qi K(1) ¢y [ Py (1)

2
— 1| Y
= P, Py 2 [7mP_1() } '

measures the firm’s real profits during the same period .

2.2.4 The Central Bank

The central bank conducts monetary policy by adjusting short term nominal R;

according to the following conventional rule:

R R s Y,
In (ﬁ) :pRln( ;21) + prIn (ﬁ) + pyIn (?) + €Re

where R, 7w, and Y denote the target values of the respective variables. R; follows a

version of Taylor (1993) rule that depends on the lagged interest rate, the deviation of
inflation with respect to its target, and the output gap. The central bank can choose
the level of one of these target variables, as well as the parameters pg, py, and p;.

The term eg; denotes monetary policy shock with mean zero and standard deviation

OR.
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2.2.5 The Equilibrium Conditions

In a symmetric equilibrium, all intermediate goods-producing firms make identical
decisions, so that Y;(i) =Y, H;(i) = Hy, Di(i) = Dy, K (i) = Ky, and P,(i) = P,
for all ¢ € [0,1]. In addition, the market clearing conditions M; = M, ; + T; and
By, = Byy = 0 must hold. Letting ¢, = Cy, ky = K;, hy = Hy, my = M,;/P,,
wy = Wy/P,, and ¢ = Qy/P, and my = P,/P,_1, the equilibrium conditions can be

summarized as the following.*

Xyt —are, (1= RN = 0 (2.2.1)

Xnhi —ac; "wy = 0 (2.2.2)

— —
ayCy At4+1Cp 47
— pE,——— = 0 (2.2.3
R, Y T ( )

_atc;'y {1 + Op ( t+1 1):| LE, {atJrlctJrl [<Qt+1 +1—
2

o 9)
Pk (k ) (kt+2 kt+2
S T 1 = 0 (2.24
ko P\ ko ktﬂ (2:24)
Yt — Ztht e — 0 (225)
atwtht - (1 - Oé)qtkt =0 (227)

agc; [1—9+0wt—ht—¢p<ﬂ—l) E]
Y

(1 — )y T T
—y [ Tt+1 Tt4+1 Y41
+B¢pEy {atﬂctﬁl - 1) t; ;—:} = 0 (228)
k

kt+1 - (1 - (S)kt - it - 0 (2210)

1n(%>—{p31n<Rgl)+pﬁ1 ( )—l—pyln(y)—i—em} — 0 (2.2.11)

In(a;) — poIn(as—1) —ea = 0 (2.2.12)

“In appendix A, I provide a complete derivation of these equilibrium conditions and steady
states.
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In(z) — [(1 — p)In(2) + p.In(ze-1) +e4) = 0 (2.2.13)

It is worth noting that the first four equations above describe the representative
household’s optimization decisions: equation (1) gives the household’s demand for
real balance; equation (2) equates the marginal rate of substitution between labor
and consumption to the real wage; equation (3) describes the household’s indifference
between consumption and bond holdings; equation (4) states that, in equilibrium,
the marginal utility cost of one unit of additional investment at time ¢ equals the
discounted expected marginal utility value of its return in period ¢t + 1. Moreover,
equations (5) through (10) come from the production side of the DSGE model: (5)
gives the aggregate production function; (6) characterizes the intermediate firm’s
budget constraint; (7) computes the marginal products of labor and capital to their
respective factor prices; and (8) describes the price-setting behavior of firms; equation
(9) denotes the aggregate resource constraint in the economy; equation (10) defines
investment. Finally, equation (11) describes the monetary policy rule, and equation

(12) and (13) characterize the evolution of the exogenous state variables.

2.3 Solutions to the DSGE Model

The set of equilibrium conditions (1) — (13) derived in the previous section forms

a nonlinear rational expectation system, which can be written as

Eef (Ye41, Yo, Xe41, X, €641, ©)=0 (2.3.1)

where E; denotes the conditional expectation given all the information available at
time ¢;

Xy = (kta R, ay, %, ER,t)
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includes all the state (predetermined) variables;

Yyt = (Cta Y, K1, Wiy by ey dy, o, mt)

consists of all the control (non-predetermined) variables;®

Et+1 = (Ea,t+1, Ezt+1, 5R,t+1)

collects the exogenous innovations; and finally, ® includes all the structural parame-

ters in the model.

O = (/87 7 Vs Xms Xh?& 9,06, stv ¢p7 T, Zy Pas Oas Pz Oz, PRy OR, Py, pﬂ')

This nonlinear rational expectation system has to be solved before the DSGE
model can be estimated. Like most DSGE models, this model does not have a “paper
and pencil” solution. Hence, numerical methods are employed to solve the equilibrium
dynamics of the model. Two numerical solution methods are considered here: pertur-
bation methods, which find solutions locally using Taylor expansions of equilibrium
conditions; and projection methods, which approximate solutions on a per-specified
domain using function basis. As shown in Aruoba et al. (2006) among others, these
two methods have their relative advantages and drawbacks. More specifically, pertur-
bation methods are easily put in practice for large-scale models, but the range of their
accuracy is uncertain; on the other hand, projection methods are accurate and fast
when applied to models with few state variables, however, their computation costs
often increase rapidly when the number of state variables increase. The rest of this

section briefly describes how I apply each of these solution methods to the model.

"Here I combine equation (9) and (10), then replace i; by k1.
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2.3.1 The Perturbation Method

In principle, perturbation methods approximate the equilibrium conditions around
the non-stochastic steady states using Taylor expansion. Specifically, adding a per-

turbation parameter o into Equation (14) yields

Eef (Ye+1, Yoo Xe+1, X¢, 0€¢41, ©)=0 (2.3.2)

Here the known parameter ¢ > 0 determines the distance from the non-stochastic
steady states. When o is equal to zero, the model corresponds to the non-stochastic
steady states. As observed by Schmitt-Grohé and Uribe (2004), the exact solution to

this system is given by

yvi= g(Xt, 0) (2.3.3)

Xer1=h(x¢, 0) + onegi1 (2.3.4)

where nonlinear policy function g(-) maps R® x RT into R?, and nonlinear function
h(-) describes transitions of the 5 state variables in the model. As convention, I am
interested in the percentage deviation of a variable z; from its steady state z; thus all
the variables in this model are taken natural logarithm. Let 2, = In(z:/2), the first
order perturbation solution is equivalent to the log-linearized solution. A number
of solution methods have been proposed in the literature to obtain the first order
approximation to g(-) and h(-), including Blanchard and Kahn (1980), Uhlig (1999),
Klein (2000) and Sims (2002). Here, I use the algorithm provided by Klein (2000).

The solution is taken in the following form

Y= 8xXt

Xip1= hyXg + oneg
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where gy and hy are the first derivatives of g(-) and h(-) with respect to x; at the
steady state. All the elements in matrices g, and hy are functions of structural
parameters ©.

Since one of the main goals in this paper is to explore nonlinearities embedding
in DSGE models, higher order approximations are also considered here. Indeed, it
is very straightforward to extend Taylor expansion to their higher order approxima-
tions. Several algorithms for computing such solutions have been developed by Judd
(1998), Schmitt-Grohé and Uribe (2004), Kim et al. (2005), and Andreasen (2011).
For the present analysis, I use the second-order approximation method derived by
Schmitt-Grohé and Uribe (2004), and rely on Andreasen (2011) to find the third-
order approximation solution. Following the representation as Gomme and Klein

(2010), the resulting second-order approximate solution takes the form as follows:

A 1 N 1 N .
yi~ Egoaaz + gxX¢ + 2 (Io @ X¢) SuxXt

. 1 ~ 1 N R
X417~ Ehaoo—z + h,X¢ + 2 (Is ® X¢) huxXe + 0negs1

where g,, and h,, are the second derivatives of g(-) and h(-), with respect to o,
respectively; and gyx and hy, are the second derivatives of g and h with respect to
X, respectively; and all the elements in matrices gy« and hy, are functions of these
structural parameters ®. The third order approximation is following the similar form
with additional terms of the third derivatives of g(-) and h(-).

Finally, it is worth mentioning that there are three possible results depending on
parametrization of this DSGE model: no stable rational expectations solution exists;
the stable solution is unique (determinacy); or there are multiple stable solutions
(indeterminacy). In this paper, I focus on the case of the determinacy and restrict

the parameter space accordingly.
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2.3.2 The Projection Method

As described in Judd (1992, 1998), projection methods solve the DSGE model by
proceeding the following steps. In the first step, the policy functions derived from
DSGE model’s optimization decisions are approximated by polynomial functions with
unknown coefficients. Then, when equilibrium conditions involve the conditional ex-
pectations, often seen in the model’s inter-temporal equilibrium conditions, numerical
integration method is employed. Third, a set of grid points in the state space is cho-
sen and approximation error (residual) from the model’s equilibrium conditions is
calculated at each grid point. Finally, these unknown coefficients associated with
the approximating polynomial functions are determined by minimizing the residuals
subject to some loss criterion.

Since different policy rules usually show various degrees of nonlinearities, it is
sensitive to choose the set of policy functions when applying projection method. After
some experimentation, I choose to approximate the policy functions for ¢;, ki1, and

m; , and denote them as functions of the 5 state variables x; in the present analysis:

¢ = f(xy) (2.3.5)
kior = fF(x¢) (2.3.6)
T = fT(x¢) (2.3.7)

where f'(-) : R® — R for ¢ € {c, k, 7}. As shown in the beginning of this section,
the 5 state variables are the capital stock k;, the lagged short term interest rate R; 1,
the preference shocks a;, the productivity shocks 2, and the monetary shocks ep;.
Note that only the first two variables are endogenous state variables, and the other 3
variables are exogenous state variables.

Since the function forms of f* are unknown, they need to be approximated before

fitting into estimation procedure. Here, I choose Chebyshev polynomial functions as
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basis functions and consider the second and third degree approximation to f*: R®> —

R for i € {c, k, 7}. Tt yields

Ct =~ fC(xt, B)
ki =~ fk(xtv Bk)

T & f’r(xm B™)

where fi() : R® — R for i € {c, k, 7} are Chebyshev polynomials, and B! for
i € {c, k, 7} are unknown coefficients associated with these polynomials. Univari-
ate Chebyshev polynomials are a family of orthogonal polynomials on the interval
[—1, 1], and multivariate Chebyshev polynomials can easily be constructed as the
products of these univariated polynomials.® However, it is extremely computation-
ally expensive to apply conventional projection method using the tensor product,
even for medium-dimensional models like this current one. Therefore, I follow a more
convenient approach — using complete polynomial basis — suggested by Judd (1992)
and Gaspar and Judd (1997).7

In order to avoid the curse of dimensionality, I apply a monomial rule Galerkin
method proposed by Pichler (2011) to this model. The key feature of this Galerkin
method is to use non-product monomial cubature rules for computing conditional
expectations and weighted residuals. The basic structure is as follows. In order to

compute these unknown coefficients in f’l()7 i € {c, k, 7}, I first define a hypercube

6Chebyshev polynomials are defined over [—1, 1] by the formula T},(z) = cos(n arccos(x)). They
are generated by the recursion scheme

Thi1(x) = 22T, (z) — Thor ()

, which is initialized by Ty(z) = 1 and T} (z) = «.
"The complete set of polynomials of total degree k is defined by

V= {ﬁ%(%)li <k, 0<i1,...7¢n1}
j=1

j=1
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for the state variables and rely on non-product monomial rules to obtain grid points
within the hypercube.® Then I use the basis functions of fl(), i € {c, k, 7} — Cheby-
shev polynomials — as weighting functions w;(x¢) to compute the weighted residuals.
Finally, I search for the values for these unknown coefficients by equating all weighted
residuals to zero. For more details see the technical appendix.

Once these policy functions fi(-), i € {c, k, 7} are obtained, the expressions
for the remaining endogenous variables can be easily found using the equilibrium

conditions. In particular, take output y; as an example,

-1

r 2
Y = —%@—1)] kt+1+%(k;€—:1—1> k= (1= 0)k,
r Aﬂ_ - —1 R A K 2
~ 1_%<“X+B)_1> fk(xt,Bk)+%(mx;€—’tB)—1) b — (1— 6)k,
= fy(xtv By)

2.4 Estimation and Stability Tests

This section first describes the estimation of the structural parameters by max-
imum likelihood method, then illustrates how to construct structural break tests to
investigate parameter stability. Equipped with the solutions in previous section, the
state space representation is completed by specifying the measurement equations. It

yields

X¢+1— H(Xt, E¢+1, @) (241)

Vi= G(x¢, ug, O) (2.4.2)

8 Another possible solution is the Smolyak’s algorithm presented by Malin et al. (2011). However,
the Smolyak algorithm suffers from its lack of universal applicability.
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where equation (21) called transition equation provides the law of motion for 5 state
variables, and equation (22) is the measurement equation, in which ) is the sub-
set of imperfectly observable variables of y;. Particularly, I assume only output,
inflation, and nominal interest rates are observables; measurement errors u; are also

added into equation (22) and are assumed normally distributed and uncorrelated, i.e.

g ~ ]N(O7 Eu)

2.4.1 Evaluation of the Likelihood Function

In order to evaluate the likelihood function, I take advantage of the hidden Markov
structure of the state space representation. In principle, the likelihood function can

be written as

T
L®[Y") = p([©e) [[pHY" ", ©) (24.3)
t=2

where YT = {)),...,Yr}. For the first-order perturbation (log-linearized) approx-
imation of the model, the transition and measurement equation are linear and the
shocks are normally distributed. So the Kalman filter (see Hamilton (1994)) is ap-
plied to construct the likelihood function. Unfortunately, linearity and Gaussian
assumptions are no longer satisfied for these nonlinear solutions to DSGE models.
The Kalman filter can not be used to compute the likelihood function.

Clearly, conditional distributions of state variables do not belong to, in general,
any known distribution family. The evaluation of the likelihood function is forced to
resort to some type of simulation: a particular example of sequential Monte Carlo
methods, also known as the particle filter. The main idea is extremely simple.
Now the conditional distribution {p(x¢|V'~!,©)}L, is approximated by an empir-
ical distribution of N draws {{Xi|t_1}f\[=1};sr=1(a swarm of particles) from the sequence

{p(x¢|Y*~1,©)}L | generated by simulation. Then from the law of the large numbers,
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the likelihood function is obtained

T N
1 1
L(OY") ~ N Z yl‘X0|07 H ZP yt|xt\t 1,0)
=1 t=2 " i=1

A brief description of the procedure can be found in the appendix. For more details
on these methods see Doucet et al. (2001) and Arulampalam et al. (2002). In the
literature on estimation of DSGE models, An and Schorfheide (2007) and Fernandez-
Villaverde and Rubio-Ramirez (2007) have shown that the particle filter deliver better

estimation of DSGE models.

2.4.2 Maximum Likelihood Estimation

In contrast to Bayesian estimation, I perform likelihood-based estimation from
a classical perspective. In other words, parameters are interpreted as fixed but un-
known, and the data are interpreted as the realization of a random drawing of data
generating process, the present DSGE model. Therefore, once the likelihood function
is constructed from either Kalman filter or Particle filter, parameter estimates O are

chosen from parameter space to maximize the likelihood function:
A T
O = arg max L(®|y") (2.4.4)

However, maximum likelihood estimation (MLE) of DSGE models, even small-
scale ones as this model, is very challenging. The main source of challenges arises
from the fact the likelihood L(©|YT) is parametrized in terms of state-space model
(21) and (22), and these state-space models are complex and highly nonlinear func-
tion of ©. Consequently, an ill-behaved likelihood surface may exist. Three classes of
problems are usually seen in practice. First, the likelihood surface contains disconti-

nuities, so that a small change in parameter value leads a jump in the value of the
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likelihood function. At such a point the likelihood function is not differentiable, so
it makes derivative-based optimization methods not feasible. Second, the likelihood
function usually has many local maxima so that estimates ) may not be a global
maximum. This is not unusual for likelihood-based estimations, and it obviously
makes the maximization task difficult. Finally, as documented by Canova and Sala
(2009), lack of identification exists in estimation of DSGE models. Again, this model
is no exception. The problem arises when the likelihood function is almost flat along
some parameters space. One may raise the question of whether nonlinear solutions,
like higher order perturbation methods, help with identification. That question is
beyond the current range, and should be explored in the future work.

To address these problems aforementioned, I use the following strategies in this
paper. First, to help with identification, I calibrate several parameters in line with the
literature rather than estimate them via MLE. In particular, these are the parameters
associated with investment, leisure, and real balances, which are hard to pin down
without data on the respective variables. Second, I follow Fernandez-Villaverde and
Rubio-Ramirez (2007) and use a simulated annealing approach instead of gradient-
based methods for maximizing the likelihood function. It allows us to deal with a
discontinuous likelihood function. Finally, I choose various sets of initial parameter

values to deal with the presence of local maxima.

2.4.3 Parameter Stability Tests

One great strength of DSGE models is that they are supposed to be structural:
these models have solid microfundations and include rational expectations, which
imply that parameters of these models describing private agent’s tastes and tech-
nologies ought to remain constant, even across periods when monetary and fiscal
policy regimes change. In order to study the parameter stability, I take two different

treatments on break dates. The first one is to estimate this model over two disjoint
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sub-samples. The break date is chosen at 1979 in line with the literature, which cor-
responds to a date around when there are major changes in US monetary and fiscal
policies. Another one is to treat the break dates as unknown, and to search for the

break dates.

2.4.3.1 Structural Break Test with Known Break Date

Let the vector ©! and ©? denote the estimated parameters from two disjoint
subsamples: pre-1979 and post-1979. The null hypothesis can be specified as Hj :
©! = ©2% This classical structural break test goes back to Chow (1960), and is
extended by Andrews and Fair (1988). Therefore, I follow the treatment in Andrews

and Fair (1988) and construct the likelihood ratio statistic as

LR =2[ln L(®'|Y'") + In L(@*Y*") — In L(B|Y7)] (2.4.5)

where L(©' V') and L(©?|Y*") are the maximized log-likelihood functions for the
first subsample and the second subsample, respectively. Andrews and Fair (1988) has
shown that this LR statistic is asymptotically distributed as y? random variable with
q degrees of freedom under the null hypothesis, where ¢ is the number of estimated

parameters allowed to change.

2.4.3.2 Structural Break Test with a Single Unknown Break Date

One of the main assumptions of the Chow type LR test above is that one can
“arbitrarily” choose the break date. However, this information on the break date is
often unknown, or unobservable. As Hansen (2001) points out that the Chow type test
will be either uninformative or misleading, this paper, therefore, first consider a single
structural break with unknown date. The idea was originally proposed by Quandt

(1960), and recently Andrews (1993) and Andrews and Ploberger (1994) generalized
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the structural break tests with unknown change point in nonlinear parametric models.
Their proposed statistics are designed for one-time change in the value of a parameter
vector. Tests are considered for both the case of pure structural change and the case
of partial structural change.

Now the null hypothesis of interest here is one of parameter stability: Hy: ©, = ©
for all . The alternative hypothesis of interest is a one-time structural change with
break date \. € (e,1 — €), where € is a trimming parameter. The one time change

alternative hypothesis with break date [A.T] is given by

0, fort=1,.. AT
Hl()\e) : @t =

Oy fort=AT+1,....T

The basic idea is to use the maximum of the likelihood ratio test over all possible
break dates. In this case of a single unknown break, this translates into the following

statistic

sup LR:(\) (2.4.6)

Ae€(e,1—¢€)
where the likelihood ratio test LR; is constructed the same as the previous subsection.
One can rejects Hy for large values of supycy LR:(\c). The limiting distribution is

given by Andrews (1993)

sup LRi(A\) = sup G,(A\) (2.4.7)
Ae€(e,1—¢€) Ae€(e,1—¢)
A [Wy(1) = WoAd)] [W(1) = Wy(Ao)]

where Gy(\.) =

Ac(1 =)

where W, ().) is a vector of independent Wiener processes of dimension ¢ , the number

of coefficients that are allowed to change. Note the limiting distribution depends on
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q but it also depends on A..°

2.4.3.3 Structural Breaks Test with Multiple Unknown Break Dates

While the sup LR test is primarily designed to test for a single structural break,
multiple structural breaks may exist. However, the literature on tests for multiple
structural breaks is relatively scarce, except of Bai and Perron (1998) and Qu and
Perron (2007) for linear regressions. To this date, little has been known for mul-
tiple breaks in nonlinear models. In this paper, I propose a sequential procedure
originally developed by Bai (1997) for testing multiple breaks in linear regressions.
The advantage of this sequential procedure is to avoid the computation complexity
when estimating multiple structural breaks simultaneously, and also to circumvent the
challenge of nonexistence of asymptotic properties on statistics for multiple structural
breaks in nonlinear models.

The basic structure is as follows. First, I test for a structural break using the
sup LR () statistic for the full sample of data. If there is significant evidence of a
structural break over the full sample according to the sup LR;(A.), I then calculate
the sup LR; () for each of the two subsamples defined by the full-sample break date.
If T fail to find evidence of a structural break using the sup LR;()\.) statistic for
each of the two subsamples, I can conclude that there is a single break. If there is
significant evidence of a structural break in either of the two subsamples, I compute
the sup LR;(\.) statistic for each of the new subsamples defined by the new break date.
I proceed in this manner until all of the subsamples defined by any significant break
date have insignificant sup LR;(\.) or the number of breaks reaches the maximum of

allowed number of breaks, in this case, I choose at most 3 structural breaks.

9Tt is worth noting that the search for a maximum value be restricted is not simply a technical
requirement. It affects the properties of the test. As Andrews (1993) shows, if ¢ = 0 so that no
restrictions are imposed, the sup LR test diverges to infinity under the null hypothesis, which means
the power of the test decreases as € get smaller. Hence, the trimming value should be large enough
for the test to retain descent power, yet small enough to include break dates that are potential
candidates. In the single break case, a popular choice is e = 0.15.
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One may naturally wonder at the consistency of these estimated breaks from
sequential procedure. In other words, are these estimated break dates consistent with
those unknown true break dates? Since this paper does not provide any asymptotic
properties, which is beyond the range of the paper and will be explored in my future
research. However, T can still investigate finite-sample properties of the proposed
sequential procedure by conducting a small Monte carol analysis. As shown in the
appendix, I use a small non-linear state space model, which still keeps most ingredients
from these more complicated DSGE models. The Monte Carlo experiment shows that
this sequential procedure method seems to work well, which implies that the sequential

procedure can deliver the “true” breaks.

2.5 Results

2.5.1 Data

This paper uses quarterly macroeconomic data for the United States to study
parameter stability of different solutions to the DSGE model. In the data, output
is measured by real gross domestic product (GDP), where I remove a linear trend
from the logged GDP series. Inflation is based on changes in GDP deflator, and the
nominal interest rate is measured by the rate on three-month Treasury bills. All these
series are extracted from FRED2 database maintained by the Federal Reserve Bank of
St. Louis. Except for the interest rate, all are seasonally adjusted. Also, the series for
output is expressed in per-capita terms by dividing by the civilian, non-institutional
population, age 16 and above. I focus on the sample from 1959:Q1 to 2007:Q4 for
two reasons. First, the results here can be compared directly with those in Ireland

(2001) and Inoue and Rossi (2011); the other reason is to avoid the constraint of zero
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lower bound for interest rates.!°

2.5.2 Implication Issues

The first step in constructing stability tests for the DSGE model is to estimate
the structural parameters together with the measurement error variances >,. This
is done by using maximum likelihood methods as outlined in Section 4. However,
for reasons that were also discussed in this section, I calibrate some parameters prior
to estimation. As in Ireland (2001), I find it is difficult to estimate a, J, and ¢
without data on the capital stock or investment. I thus set these parameters to
a = 0.36, 6 = 0.025, and ¢ = 10. For similar reasons, I calibrate the mark-up
parameter to § = 6. Furthermore, I choose x; such that the household spends
30% of its time working in the steady state, and y,, to match the steady state ratio
between real balances and quarterly output. Finally, as in An and Schorfheide (2007),
the measurement error variances are calibrated rather than estimated. I set these
variances equal to 10% of the variance of the respective data series. The remaining
14 parameters are estimated via maximum likelihood, either using the linear model
together with the Kalman filter, or by using the nonlinear model together with the

particle filter. In the latter case, I use 100,000 particles for estimation.

2.5.3 Stability Tests Results
2.5.3.1 Known Break Date

The LR test results for the five different solutions to the DSGE model are reported
in Table 1. Here the data are splited into two subsamples, in which the first subsample
covers the periods ending in 1979:QQ2 and the second subsample starts in 1979:Q3.

This break date corresponds to the beginning of Paul Volker’s chairmanship at the

1°Tn the appendix, I discuss how to deal with zero lower bound using projection method. That
will be extension of the current paper.
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Federal Reserve System, when a major and fundamental change in monetary policy of
the U.S. has occurred. This break date is also broadly in line with the literature, such
as Clarida et al. (2000) and Ireland (2001). The test procedure has been described
in section 4 and the corresponding LR test is asymptotically distributed as a y?
random variables with ¢ degrees of freedom. It is important to mention this paper
use asymptotic y? distribution. Although a limited study found that finite sample
distributions of LR tests for these solutions generally shows a shift to the right relative
to the asymptotic x? distribution, the use of asymptotic distribution can still lead to
same conclusions as the empirical distribution.

Column 2 in Table 1 presents the LR test results for a pure structural break, in
which all the 14 estimated structural parameters are allowed to change. Thus the
corresponding LR test is asymptotically distributed as a y? random variable with 14
degrees of freedom. The 1% and 5% critical values for y? with 14 degrees of freedom
are 29.1 and 23.7, respectively. Two observations can be drawn from column 2 in
Table 1. On one hand, the null hypothesis that estimated parameters are stable are
rejected by LR test results for all these five solutions. This finding supports the
previous studies based on log-linearized solutions to DSGE models, and would not be
considered as surprising. One the other hand, the strengths of the rejection of stability
for these solutions are different, which is more interesting than the previous finding.
Two points are worth pointing out. First, the null hypothesis of stability is rejected
at 1% significant level for all the three perturbation solutions, while it is rejected at
5% significant level for the two solutions using projection method. Second, a closer
examination of the LR test results reveals that the strength of rejection of stability
for first-order perturbation (log-linearized) solutions is stronger than the other two
nonlinear perturbation solutions. One possible interpretation of different strengths
of rejection indicates the effect of misspecification. Since these misspecication can

also manifest themselves in the form of time-varying parameters, log-linearization
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solutions to DSGE models would be more likely rejected by classical stability tests.
The slight difference of rejection of stability between perturbation and projection
methods might also highlight the fact that the solutions from projection methods are
more accurate than those from perturbation methods.

However, it is important to note that the parameter instability detected by al-
lowing all these parameters to change may reflect instability in policy rather than
instability in the parameter describing tastes and technologies of the economy. In
order to diagnose the possible source of instability, two additional LR tests are con-
sidered in this paper by allowing only subsets of these parameters to change. The 14
estimated structural parameters are divided into two groups: the first group consists
of pr, or, py, and pr, which represent policy reaction function; the second group
includes that the 10 estimated parameters describe household preferences and firm
behaviors, such as 5, and v among others.

Column 3 in Table 1 reports the LR test results for the null hypothesis of stability
of monetary policy reaction function. In this test I do not assume the other 10
parameters are stable across subsamples, which help to avoid the traditional problem
of standard stability tests mentioned by Inoue and Rossi (2011). Similar as the pure
structural break tests, the null hypotheses of stability are strongly rejected for all five
solutions. This is broadly consistent with empirical studies focus on just monetary
policy rules, such as Clarida et al. (2000), Estrella and Fuhrer (2003) and Boivin and
Giannoni (2006). However, this result is different from the findings of Ireland (2001),
in which he considers the stability tests for each of these policy parameters and fail
to reject the null hypotheses. Column 4 in Table 1 shows the LR test results for the
null hypothesis of the parameters in the second group has remained stable. The LR
tests reject the null hypothesis for all these perturbation solutions, but fail to reject

them for the two solutions using projection method.
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2.5.3.2 A Single Unknown Break

The sup LR tests for a single unknown break are constructed as one described in
section 4 for all these five different solutions. Here the constrained model holds all
parameters fixed across the entire sample, whereas the unconstrained model allows
all parameters to vary across a certain candidate break date. The trimming value € is
set as 0.15, which means the length of any regimes should be greater than [0.15 * 7]
periods. T is the sample size of 196 in this case. Table 2 provides all sup LR test
results and associated estimated break dates.

This paper uses the asymptotic values of sup LR test provided by Andrews (1993).
The 1% critical values for this asymptotic distribution with 14 degrees of freedom and
trimming value of 0.15 is 39.2. As column 2 in Table 2 shows, the null hypothesis
of stability is overwhelmingly rejected for all 5 solutions. First, the largest value
of the sup LR test for log-linearization solution is recorded in 1984:QQ1. This break
date is in line with Estrella and Fuhrer (2003) in which they employ forward looking
monetary policy models. It is also broadly consistent with Stock and Watson (2002),
in which they apply sup Wald test in Bai et al. (1998) to VAR models. Secondly, for
second and third order perturbation solutions, the largest values of sup LR tests shift
backward in the late 1970s or the very early 1980s. These break dates are roughly
similar as those break dates picked in the literature and the finding of Moreno (2004)
using VAR models. Third, the estimated break dates for projection solutions are
quite different from those for perturbation methods. The sup LR tests for the second
and third projection solutions take their maxima in the early 1970s. This break
date is surprisingly consistent with Zhu (2012), in which I apply latest structural
break tests of Qu and Perron (2007) to both backward-looking and forward-looking
monetary models. Overall, Table 2 shows that, once again, there is strong evidence of
parameter instability in this DSGE model. In particular, the results from nonlinear

solutions play the role of robustness analysis, and complement the existing findings
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of Ireland (2001) and Boivin and Giannoni (2006) among others.

The most important finding from Table 2 is that the estimated break dates differ
from perturbation and projection solutions. There are several possible explanations
for the difference. The first explanation may be related with the difference between
perturbation method and projection method. The first one approximates locally the
policy functions while the latter builds approximated functions globally. However, lit-
tle has been known about the estimation and inference from different solution methods
to this date. This paper is among very few attempts to estimate DSGE models solved
by projection methods.!’ Further investigation needs to do in the future work. An-
other possible way to explain the difference is that there might be multiple breaks in
this DSGE model. Given the substantial changes of economic structure over the last
few decades, it is natural to allow the possibility of multiple structural breaks. Fig-
ure 2 plots the sequence of LR tests as a function of all these candidate break dates
for three solutions: the log-linearized solution, the second order perturbation solu-
tion and the second order projection solution. The candidate break dates are along
the z-axis; the values of the LR tests on the y-axis. Figure 2 shows that there are
considerable variations of the LR test sequences across candidate break dates. Most
importantly, it presents that there are few local maxima in these LR test sequences,

which implies the possibility of multiple structural breaks.

2.5.3.3 Multiple Structural Breaks

Figure 2 has already shown the possibility of multiple structural breaks in this
DSGE model, thus this section presents the results of searching for multiple breaks
in the model using sequential procedure. The sup LR tests are constructed as similar
as those for a single unknown break and the trimming value € is still set as 0.15.

The only modification is to redefine subsample ranges if a second round of searching

HFernandez-Villaverde and Rubio-Ramirez (2005) compare estimates of a neoclassical growth
model solved by both linear and nonlinear solution methods.
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needed. One can also recycle these LR test sequences in the previous subsection,
which help to reduce computation burden.

Table 3 reports the results from sequential procedure for all the five solutions.
First, the sequential procedure shows that there are three structural breaks for per-
turbation solutions to this DSGE model. The first breaks come from the first round
of searching, and they are the same as estimated break dates shown in Table 2, which
occur in the late 1970s and the early 1980s. Two additional breaks are found in the
second round of searching. One is in the early 1970s, and another one locates roughly
in the middle 1990s. Second, there are only two breaks detected for projection so-
lutions. The sequential procedure could not identify a third break around the late
1970s and the early 1980s. Figure 3 visualizes these breaks in Table 3. Evidently,
although all these break dates are not exactly the same with one another, one can still
identify two break dates are shared by all these five solutions: one in the early 1970s,
another in the middle 1990s. To this date, this paper appears to the first investiga-
tion on multiple breaks in DSGE models. Unlike these breaks found using VAR and
Structural VAR models, these common break dates in this paper are informative for
calibration and estimation of DSGE models. Furthermore, one may also relate these
breaks to economic theory or history events. For instance, the first break of the early
1970s may correspond to either starting of oil price shocks or changes in aggregate
productivity. To identify the source of these instabilities, one must choose accurate
break dates, otherwise, the conclusions might be misguided.

Once again, the puzzling thing is that the different results from perturbation so-
lutions and projection solutions. The projection solutions fail to identify the breaks
around in the late 1970s and the early 1980s. It is also in contrast with these exist-
ing findings in the literature, and even more surprising considering that Paul Volker
started his Chairmanship at the Federal Reserve System in 1979, subsequently the

U.S. were confronted some fundamental changes in monetary and fiscal policies. One
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possible explanation might be that projection methods approximate these policy func-
tions globally, and the solutions would be less mis-specificed than those locally ap-

proximation methods, such as perturbation methods.

2.5.3.4 Discussion

Having documented the strong evidence of parameter instability of the DSGE
model, I proceed to discuss few implications of this exercise. First, one might argue
that the strong evidence of parameter instabilities of DSGE models, regardless of
what solution methods used, as the evidence that those models, like current one, just
don’t fit the data well and fail to response to Lucas (1976) critique. And therefore
one might attempt to formulate that DSGE models are misguided. However, as Inoue
and Rossi (2011) also point out, the structural parameters are just policy-invariant,
not necessarily time-invariant. As the economic structures change, these structural
parameters may vary as well. The Lucas (1976) critique plays like a warning sign
which highlights the importance of applying stability tests to macroeconomic models,
even on the so-called structural DSGE models. Second, since the timing of structural
breaks from linear and nonlinear solutions is quite similar, one might conclude that the
nonlinearities have no effect on parameter stability of DSGE models. I must caution
that the current New Keynesian model is not a fundamental one. In a model with
stochastic volatility (see Justiniano and Primiceri (2008) among others), nonlinear
policy rules (see Eggertsson and Woodford (2003) among others), or Epstein-Zin
preference (see van Binsbergen et al. (2012) among others), nonlinearities may lead
to different conclusions. For instance, uncertainty shocks can not enter into solutions
if one only considers linearization or log-linearization solutions. As the literature has
documented, uncertainty shocks are important to interpreting the macroeconomic
fluctuations (see Basu and Bundick (2012) among others). Third, the searching for

multiple structural breaks has connections with the literature which deals with DSGE
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models with a Markov-switching process in different aspects of the environment, such
as monetary or fiscal policy (see Sims and Zha (2006), Liu et al. (2011) among others).
The proposed sequential procedure offers an alternative way to help us understand

the dynamics of economies.

2.6 Conclusion

In this paper, I employ a representative New Keynesian model to study the param-
eter stability of DSGE models. The New Keynesian model is solved and estimated by
both linear and nonlinear solution methods, particularly perturbation methods and
projection methods. The hypothesis test results show that there is strong evidence
of parameter instability in this New Keynesian model. The comparison among these
different solutions first supports the findings using log-linearization solutions in the
existing literature. It indicates that these parameter instabilities documented in the
existing literature are not all due to linearization. Also, the comparison highlights
the different effects of perturbation methods and projection methods on parameter
stability. Furthermore, this paper documents two common structural breaks among
these parameters for all these five solutions. The timing of structural breaks are
informative, and should be considered to incorporate into any DSGE modeling.

The purpose of this paper, however, is not to argue that DSGE models are mis-
guided. I would emphasize that, these results shown in this paper, once again, high-
light the message conveyed by Lucas (1976). The so-called structural parameters in
macroeconomic models are just policy invariant, but not necessarily time invariant.
Therefore, one should be encouraged to apply stability tests to these macroeconomic
models. In light of these results and methods, this paper raises a number of questions
to be explored for future research. Perhaps the most pressing one is that this paper

has not identified specific source of parameter instability in the detail. Recently Inoue
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and Rossi (2011) has proposed a procedure to search for set of stable parameters. This
new econometric technique allows to address the stability properties of each single
parameter in DSGE models. It can be extended to these nonlinear solutions in this
paper. Another area of future research will be the introduction stochastic volatility
in the representative New Keynesian model in this paper, as the literature has shown
stochastic volatility may account for large part of macroeconomic fluctuations, and
instabilities in the parameter estimates. Finally, the sequential procedure proposed
in this paper needs more rigorous econometric treatments, which will complete the
econometric literature on estimation and testing of structural breaks in nonlinear

models.

2.7 Chapter 2: Appendix

2.7.1 Derivation of Equilibrium Conditions

This section documents how to derive the symmetric equilibrium conditions of the

New Keynesian model and calculate the steady state values.

2.7.1.1 Household

P
Py

DeﬂOteCt:Ct, k‘t:Ktth%t, bt:%,th%,th%aHdﬂt:
I first compute the first order conditions from the household’s optimization problem

by constructing the following Lagrangian:

N C | At —1
Ly = E T S
! ;6 {at Tyt xmloslm) =T
mMy—1 + by
+At {% + wtht + tht —|— dt + Tt — Ct — kt-ﬁ-l + (1 — 6)]’6}
t
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where A, is the multiplier associated with the household’s budget constraint. In order

to calculate the first-order conditions, the Lagrangian is differentiated with respect

to the choice variables ¢;, my, hy, by, kiyq, and Ay:
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— —BE

R, ! Te41

A\ [1 + o (% - 1)] + BE A1 (1 +1—9)
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The multiplier A; can be eliminated using (A.1), then
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2
—% <@ - 1> =2, = 0 (2.7.11)

Note that the first four equations stated above correspond to equilibrium condi-
tions (1) — (4) in section 2. As symmetric equilibrium is considered in this model,
market clears such that b, = b,_y = 0 and 7, = my; — my_/m; for equation (A.11),

which will yield the equilibrium condition (9).

2.7.1.2 The Intermediate Goods-producing firms

Denote y; = Y;, I then consider the optimization problem confronted the inter-
mediate goods-producing firm 4, ¢ € [0, 1] which is also described by the following

Lagrangian:

+Z4(4) [Kt(i)a[tht(i)]l_“ - (PtT(:)) N Yt

where Z;(7) denotes the multiple associated with the firm’s production constraint. As
well, L, is differentiated with respect to Hy(i), K;(i), Pi(i), and multiplier, Z;(4).

The first order conditions are represented as follows:

Aw; — Z(i)(1 — o) K ()27 Hy (i)™ = 0 (2.7.12)
Mgy — Z(D)a K (i) 2 H () = 0 (2.7.13)
(1—0)A (Pt%:)) %t +602,() (%@) %t

(L) A

B ) 7P
+B0, By {Am (% - 1) (%)} = 0 (2.7.14)
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A\ \1l—a Pt (Z) -

Kt(Z) [Zth(Z)] — T Yy = 0 (2715)
t

As well as the previous subsection, a symmetric equilibrium is considered in this

model, which implies that the intermediate goods-producing firms make identical

choices such that hy = H, = Hy(1), ky = Ky = K (i), P, = P(i), and Z; = Z;(7).

Atwtht — Et(l — (l)yt = 0 (2716)
Atqtkt — Etayt = 0 (2717)
(1—0)A, + 0=, — Ao, (ﬂ . 1) e
T T
+B¢, By {At+1 (7”“ _ 1) diaz] yt“} — 0 (2.7.18)
m T Yt
kX [zehe(D)] ™ —y = 0 (2.7.19)

Here Z; is eliminated and A; is replaced using (A.1). Finally, it is worth noting that
the central bank’s short term interest rate rule must be satisfied and all the exogenous
variables must follow their respective laws of motion. In a symmetric equilibrium,

adding these equations complete the equilibrium conditions for the model.

2.7.1.3 The Steady State

Without any disturbances in the model, the economy will converge to a non-
stochastic steady state in which all of the variables remain constant over time. First,
the steady state value of the preference shock a; is equals 1, and the steady state
value of the technology shock z; correspond to the parameter z. Also, the steady
state value of the inflation rate m; corresponds to the parameter 7. The remaining 9

steady state values of y, ¢, m, h, w, ¢, k, d, and R are then uniquely determined as
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c= (m — ) zh (q—é’) (2.7.25)
qt
y = mk (2.7.26)
— Xm
m= i (2.7.27)
d=y—wh—qk (2.7.28)

2.7.2 Solution to the Model using Projection Method

This section describes how to solve the model using projection method. In partic-
ular, T apply the monomial-rule Galerkin method proposed by Pichler (2011) to the
model in order to reduce the computation burden.

As described in section 3.2, the first step before applying any projection methods is
to choose a set of policy functions. Here I seek to approximate the policy functions for
consumption ¢, capital stock of next period k;, 1, and inflation rate ;. These policy
functions are functions of the 5 state variables x; which consists of the capital stock

k:, the lagged short term interest rate R;_1, the preference shocks a;, the productivity
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shocks z and the monetary shocks ep ;.

¢ = fO(xy) (2.7.29)
kior = fF(x¢) (2.7.30)
= fT(x¢) (2.7.31)

Since the function forms of f* are unknown, they need to be approximated using
function basis. Here I use Chebyshev polynomials and consider both second and third
order approximations, in which the order refers to the degree of polynomial function.
Taking second order approximation as an example, if tensor product were used, the
number of coefficients associated with these policy functions for this 5 dimensional
state space is equal to 3° = 243. This exponential growth of the number of coefficients
becomes a computational burden. Thus, I follow Judd (1992) and Gaspar and Judd
(1997) to use complete polynomials instead. In this case, the number of coefficients
only amounts to 21 for second order approximation. Thus, the next period’s capital

stocks, for instance, is approximated by the following form
an
ke & f(xe, BY) = Bjo;((x))
j=1

where B; is a coefficient vector of size ngr, and £(x') maps the state space R into

the unit hypercube [—1, 1]°. Here the standard linear transformation is given by

() =22 = 1 (2.7.32)
Xp — X

where x' and X' are the lower and upper bound for each state variable, respectively.
Following suggestions in Pichler (2011), I choose a symmetric interval around £10%
of steady states for k; and R; i, and for these three endogenous state variables, I

choose the interval of £3 standard deviation around steady state values.

76



After all these preparations, the remaining steps are similar as the conventional
Galerkin method except that T use more efficient multi-dimentional integration tech-
niques, i.e. no-product monomial cubature rules: First, (Initial) values are assigned to
structural parameters. Note, during the estimation process, these parameters should
also satisfy their theoretical constraints. For example, the discount factor § should
always lie between 0 and 1. Second, I can calculate the model’s steady state, and
build the associated state space according to the rules aforementioned. The Galerkin
method determines the coefficients B! of the approximating polynomial by construct-
ing a system of weighted sums over residuals and equating these sums to zero. Thus,
the third step is to select the grid-points and construct their associated weights. For
second-order approximation, I use a non-product monomial rule of degree 5 — Rule
[C,d5] as described in Pichler (2011). For third-order projection method, I use a non-
product monomial rule of degree 7 — Rule [C,d7] as described in Pichler (2011) since
Rule [C,d5] only allows for first and second order approximations. The advantage
of non-product monomial rule is that it uses less grid points than Gauss-Chevbyshev
approach. For example, only 51 grid points need to be used by Rule [C,d5] compared
to 243 grid points by the Gauss-Chevbyshev approach. Fourth, the nodes and weights
used to compute conditional expectations are selected. Again, I use a non-product
monomial rule of degree 3 — Rule [E" d3] as described in Pichler (2011). Finally, The
model is solved by equating weighted residuals to zero. Here I use the coefficients
from the first-order perturbation solution as an initial guess.

Once the solution for the three policy functions are obtained, the remaining vari-
ables can be derived from equilibrium conditions. One example for output y; is shown

in section 3.
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2.7.3 Dealing with Zero Lower Bound Constraint

When zero lower bound constraint is imposed on nominal interest rates, the central

bank adjusts the short term nominal interest rate according to
R, = max[R,, 1] (2.7.33)

where the first term R, still follows the same conventional Taylor rule as (11), and
the second term means that the gross nominal interest rate can not be lower than 1.
Since this constraint brings a kink into the model, it prevents us from using pertur-
bation methods. Fortunately, projection methods can handle this zero lower bound
constraint without modifying the procedure stated above.!? In application, once these
three policy functions f’ are still solved as usual, then one can just substitute them

into interest rate rules with zero lower bound. It yields

_ ¢ Yt
Rt — max [eprR In Ri—1+(1—pRr) In R+px 1n< L )ery ln( Y )Jrth : 1:|

. ﬂ . y
pRlnRt,1+(1—pR)lnR+pﬂln(fc(x';r’B )>+pyln<w>+€mﬁ
/A~ max |exp ' , 1

= fAR(xt, BR)

As Fernandez-Villaverde. et. al. (2012) points out, this approach deals the kink of
R; at 1 in the Taylor rule without any approximation conditional on ¢;, k;y1, and 7.

Here R; comes from application of Taylor rules directly.

2.7.4 Particle Filter Algorithm

As pointed out in Section 4, the Kalman filter can not be used to compute the

likelihood function for nonlinear models, I employ the particle filter for these nonlinear

12Recent works such as Judd et al. (2010) and Fernandez-Villaverde et. al (2012) take similar
strategy.
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solutions to the DSGE model. The algorithm can be described as follows:

1. Initialization: Draw N particles {xq'}, ¢ = 1,...,N by using the initial
distribution of p(xe|©). In period ¢, I start with the particles {x¢_1t-1'},
1=1,..., N , which are randomly sampled from the discrete approximation of

the true filtering density p (x¢_1|Y'"', ©).

2. Prediction: Draw one-step ahead forecasted particles {x¢¢—1'}, ¢ = 1,..., N

from p (x¢| Y"1, ©) for each i. Note that

p (Xt|yt_1> @) = | p(X¢|X¢-1, O) p (Xt—1|yt_1; @) dx¢_1

1 N
NZ Xt|t— 1>

—

Thus, one can draw N particles from p (x¢|]V'™!, ©)by generating one particle

from (x¢[x¢_1', ©) for each i.

3. Updating: From Bayes theorem,

(yt|Xta ) (Xt|yt717 @)
p(VelYt, ©)

x p(Velxe, O)p (Xt’yt71> @)

p (i, ©) =

since {x¢t-1'},7 = 1,..., N are generated from the approximated p (x¢| V™!, ©),
the approximation of the filtering density reduces to adjusting to probability

weights assigned to {xg¢—1'},i = 1,..., N according to {Wi} = p (Q4[%i, ©). I

normalized {Wi}, i =1,... N as follows:
W= v
> W
and note that the resulting sampler {x¢¢—1',wi}, i = 1,..., N approximates
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the true filtering density p (x¢|)*, ©).

4. Resampling: The above samplers are undesirable because after a few iterations,
most particles will have negligible weights and the accuracy of Monet Carlo ap-
proximation of the integral in step 2 and step 3 would deteriorate. To overcome

this problem, I generate a new swarm of particles xt‘ti such that
PT{Xth;i = Xt|t—1i} = W'ic
the resulting sample is indeed a random sample from the discrete approximation

of the filtering density p (x¢|)*, ©), and hence is equally weighted.

5. Likelihood Evaluation. The log-likelihood can be approximated by using the

average of unnormalized weights

N T N

1 ; 1 ;
nLO) ~ > piixho, ©) [[ 1 D piixt 1, ©)
=1 t=2 =1
T 1 N
t=1 =1

In my implementation of the above algorithm, several remarks are necessary to con-
sider. First, since the state variables include pre-determined endogenous variables
as well as structural shocks which follow linear processes, it is not obvious to get
initial values for them. As in An and Schorfheide (2007), I draw the initial structural
shocks from their unconditional distributions and generate the initial values of pre-
determined endogenous state variables from putting the previous period’s values to
their steady state values. Second, I choose the number of particles based on the eval-
uation of the log-likelihood across 40 different random seeds. The standard deviation
of the likelihood values changes only by a small amount after 100, 000 particles. That

motivates our choice of 100,000 particles.
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2.7.5 Sequential Procedure for Multiple Breaks: A Small Monte

Carlo Analysis

Since this paper does not provide the asymptotic properties on sequential pro-
cedure for multiple breaks, I conduct a small Monte Carlo simulation to investi-
gate finite-sample properties of the proposed sequential procedure. First, the data-
generating process is borrowed from Fernandez-Villaverde and Rubio-Ramirez’s short

note on sequential Monte Carlo filter. The nonlinear state space is given by

Tg—1

=t P e
t—1

+w, (2.7.34)

Yr = 0y + vy

where w; ~ N(0, 0,) and v; ~ N(0,0,). «, 3, 9, 0, and o, are unknown parameter
and need to be estimated. Assume there are two breaks in some elements of the
coefficients in this model. Here I focus on estimates of o, 3, and o, , and their true

values are given by

(

a=05 =03, 0,=1, t<][0.37T]

a=10,8=06,0,=2 [03T]<t<][0.7T] (2.7.35)

a=05 =03 0,=1, t>][0.77]
\

and I fixed 6 = 1 and o, = 1. The sample size T is taken with 100, and the “true” break
points are at 30 and 70. In order to keep the features of DSGE models, I assume that
only y; is observable. Thus particle filter is employed to construct likelihood function.
The estimation procedure and sequential procedure for multiple breaks are described
in the Section 4. All simulation reports are based on 500 replications.

Figure 3 displays the estimated break points for this nonlinear state space model.
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This Monte Carlo simulation shows that the sequential procedure can identify the
number of breaks, and also indicates that these breaks are consistently estimated.
The asymmetry shown in the distribution of the estimated break points may be due
to numerical error. Overall, the sequential procedure can deliver consistent estimates

of break points in nonlinear models.

2.8 Chapter 2: Tables and Figures

Table 2.1: Andrews and Fair (1988) LR test results for known break date (1979:Q2)

Solutions Full Set Monetary Private
Policy Sectors
Log 62.13*** 18.71*** 24.68***
Linearized
Second Order 50.01*** 14.62%** 17.83*
Perturbation
Third Order 45.65*** 15.00*** 18.21**
Perturbation
Second Order 24.83** 14.42%** 14.84
Projection
Third Order 23.74** 15.38*** 15.05
Projection

Note: LR denotes the likelihood ratio statistic for testing the null hypothesis of pa-
rameter stability with known break date at 1979:QQ2. This statistic is asymptotically
distributed as X3 with ¢ degrees of freedom, where ¢ is the number of parameters which
are allowed to change. * x , %%, and * represent significant level at 1%, 5%, and 10%,
respectively. For the full set case in column 2, all the 14 estimated parameters are
allowed to change. In column 3 and column 4, only 4 and 10 parameters are allowed
to change for the monetary policy case and the private sectors case, respectively.
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Table 2.2: Andrews (1993) sup LR test results for a single unknown break

Solutions sup LR Break Dates
Log 82.50"** 1984 : Q1
Linearized
Second Order 64.15%** 1978 : Q3
Perturbation
Third Order 47.48*** 1980 : Q2
Perturbation
Second Order 61.82%** 1974 : Q2
Projection
Third Order 45.46%** 1971 : Q1
Projection

Note: sup LR denotes the statistic for testing the null hypothesis of parameter sta-
bility with a single unknown break. This statistic is asymptotically distributed as

sup
Ae€(e,1—¢)

A (W, (1) = W, (A)] W, (1) — W,(A)]

Ac(1—=A)

where ¢ is the number of parameters which are allowed to change. The asymptotic
critical values for the sup LR test are shown in Andrews (1993)(P.840). %, x*, and
* represent significant level at 1%, 5%, and 10%, respectively. As convention in the
literature, the trimming value € is set to 0.15.
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Table 2.3: Results on multiple structural breaks using sequential procedure

Solution Sample Range sup LR Break Dates
1959 : Q1—2007 : Q4 82.50"* 1984 : Q1
Log-Linearized 1959 : Q1—1984 : Q1 30.83* 1970 : Q4
1984 : Q2—2007 : Q4 40.32%% 1998 : Q2
1959 : Q12007 : Q4 64.15%* 1978 : Q3
S d Ord
Pfﬁﬁrbaéoﬁr 1959 : Q1—1978 : Q3 38.41%* 1972 : Q4
1978 : Q4—2007 : Q4 41,07 1995 : Q2
. 1959 : Q1—2007 : Q4 4748 1980 : Q2
Third Ord
Pe;iurbarti:l 1959 : Q1—1980 : Q2 33.40* 1970 : Q3
1980 : Q3—2007 : Q4 37.59** 1994 : Q1
1959 : Q1—2007 : Q4 61.82%% 1974 - Q2
ii?:iigzder 1959 : Q1—1974 : Q2 - -
. 1974 : Q3—2007 : Q4 46,69 1994 : Q4
. 1959 : Q1—2007 : Q4 45.46" 1971 : Q1
gf;?gcggier 1959 : Q1—1971 : Q4 - -
. 1971 : Q1-2007 : Q4 49,72+ 1996 : Q3

Note: The sequential procedure is described in section 4. Here sup LR denotes the
statistic for testing the null hypothesis of parameter stability with a single unknown
break in the (sub)sample. This statistic is asymptotically distributed as

w2 IW(1) = WO [W(1) = W)
Ac€(e,1—¢€) >\6(1 - )\6)
where ¢ is the number of parameters which are allowed to change. The asymptotic
critical values for the sup LR test are shown in Andrews (1993)(P.840). %, %, and

* represent significant level at 1%, 5%, and 10%, respectively. As convention in the
literature, the trimming value € is set to 0.15. — denotes that no break is detected.
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Figure 2.1: GDP growth, inflation, and short term interest rate (1959:Q1-2007:Q4)
in percentage

Annualized GDP Growth
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Note: Figure 1 shows the series for output growth, inflation and three month U.S.
treasury bill rate for the period 1959 :Q1-2007:Q4. The data are extracted from
FRED2 database maintained by the Federal Reserve Bank of St. Louis. The shaded
areas represent the NBER recessions.
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Figure 2.2: LR test sequences from three solution methods

920

—— Log-linearized
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== Second order projection
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Note: Figure 2 plots the series of LR test for three different solution methods: log-
linearization (blue solid line), second order perturbation (red dashed line), and second
order projection (black dash-dot line). Here all 14 estimated parameters are allowed
to change.
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Figure 2.3: Multiple breaks using sequential procedure for five solutions
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Note: Figure 3 visualizes the results shown in Table 3. Here the dashed lines represent
the time horizon line. Blue spots represent the first structural breaks detected using
sequential procedure, while diamonds represent the second break (green) or third
break (red) found in each subsample.

87



Figure 2.4: Histograms of the estimated break points from Monte Carlo simulation

45

40t E

35— —

30—

25—

20—

Note: Figure 4 displays Monte Carlo simulation using sequential procedure for the
nonlinear state space model (D.1), which captures most features of nonlinear solutions
to DSGE models. The sample size T' is taken with 100. The true break points are at
30 and 70. The number of replications is 500.
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Chapter 3

Is the Productivity Boom Over?

3.1 Introduction

Under the backdrop of the Great Recession, it appears to be extremely important
to to identify changes of long-run trend in productivity growth, since it provides a
useful guide on resource allocations for policy makers. The existing empirical litera-
ture has put focus on assessing dynamics of aggregate productivity growth, such as
labor productivity and total factor productivity (TFP). In terms of structural breaks
in productivity growth in the U.S.; these results depend closely on the data source
and sample scope.! Hence, researchers have proposed differing interpretations for the
aggregate productivity slowdown in the 1970s and productivity rebound in the middle
1990s.

In this paper we approach the changes in long run productivity from a sectoral
perspective. In particular, we decompose the whole economy into two broad sectors:
investment goods-producing sector and consumption goods-producing sectors, and

investigate structural breaks using sectoral productivity growth measures. To some

'For instance, while Benati (2007) failed to identify any structural break for labor productivity
growth using data from Bureau of Labor Statistics (BLS) over 1947:Q1-2005:Q4, Fernald (2007)
found two breaks, with a slowdown after 1973:Q1 and a speedup after 1997:Q2, for private business
sector labor productivity growth over 1950:Q2-2004:Q2.
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extent, our exercise plays the empirical role corresponding to those theoretical studies
on investment-specific technology initiated by Greenwood et al. (1997). Figure 1 com-
pares the evolutions of TFP in investment goods-producing sector and consumption
goods-producing sector with the aggregate labor productivity.? Clearly, this figure
highlights the fact that the TFP growth in investment goods-producing sector has out-
paced TFP growth in consumption goods-producing sector, which Greenwood et al.
(1997) interpret as the evidence for investment-specific or capital-emobided techno-
logical shocks. Also, it shows that labor productivity growth appears to slow down
since the 1970s, and TFP growth in consumption goods-producing sector seems to be
the principle source of the aggregate productivity slowdown. All these observations
provide us the very first impression of sectoral analysis on productivity growth.

Furthermore, another goal of our exercise is to answer whether the era of pro-
ductivity boom accompanied with “new-economy” since the middle 1990s is over. As
shown in Figure 2, the labor productivity plays as a perfect illustration. Here we
consider the mean of labor productivity in splited samples since 1948. As a vast of
literature have documented, productivity growth slowed down since the early 1970s,
and revived since the middle 1990s. The productivity resurgence, average 2.7 percent
at annually, is attributed to information and communication technology. However,
the productivity growth appear to decelerate to 1.7 percent. Through sectoral analy-
sis on productivity growth, we could identify whether the productivity growth return
back its conventional path.

Related to works as Hansen (2001), Fernald (2007) and Benati (2007), we con-
tribute two new elements into the literature. First, it extends data time coverage
including data in the current Great Recession. Second, in contrast to a vast of other
studies focusing on the drifts and breaks in aggregate productivity growth, we ex-

tend our scope to sectoral productivity growth. Our results are able to shed some

2The two TFP measures are provided and updated by the Federal Reserve Bank of San Francisco,
which are utilization adjusted follows ?.
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light on the questions raised above. Although the evidence of structural break in
the aggregate productivity growth is far from obvious at conventional test size, we
find the evidence of structural breaks in the sectoral productivity growth. There are
two structural breaks in investment goods-producing sector, which indicates that the
investment boom accompanied with new economy in the middel 1990s has already
ended. We also find there is one structural break in consumption goods-producing
sector around the 1970s. Our results support the findings of Ireland and Schuh (2008)
and Ireland (2011), in which they estimated a two-sector real business cycles model.

The paper is organized as follows. The next section first briefly describes econo-
metric methodology of Bai and Perron (1998, 2003) and the data. In Section 3 we

discuss the empirical results and implications. Section 4 concludes.

3.2 Econometric Methodology and Data Source

3.2.1 Econometric Methodology

We first consider the simplest dynamic model, the first order autoregressive model,

for Ay, with m breaks (m + 1 regimes):

Ay = o +pjAyq e, t=Tj1+1,... T}

Er N(O, 0'32)

for j = 1,...,m + 1, where Ay, represents productivity growth measures in period
t, and o and p; are the corresponding coefficients of the first order atuoregressive
model. The m—partition, (T3, ...,T,,), indicates the unknown break dates (Here we
use the convention of Ty = 0 and T},,;1 = T'). The dynamic properties of productivity
growth would vary whenever any of the three parameters, «;, p;, and 0]2- changes.

Since the key issue concerns the changes in long-run productivity growth, we focus
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on permanent shifts in the constant term o; or the autoregressive parameter p;.

We employ Bai and Perron (1998, 2003) methodology as our econometric ap-
proach, in which they use least squares method to estimate multiple unknown struc-
tural breaks. While we do not reproduce their global minimization algorithm for the
break dates estimation, it is necessary to introduce the various test hypotheses and
statistics. First, to identify the number of structural breaks (m), Bai and Perron
(1998, 2003) begin with specifying a type of maximum F—statistic for testing the
null hypothesis of no structural breaks against the alternative that there are m = b
breaks.

~ ~

sup Frr(b) = sup Fr(Ar, ..., Ay)

where \; = [%], i=1,..., b are the break fractions and minimize the global sum of
squared residuals. This statistic is a generalized version of the sup F' test proposed
by Andrews (1993). Bai and Perron (1998, 2003) then consider two double maximum
statistics, for testing null hypothesis of no structural breaks against the alternative
hypothesis of an unknown number of breaks given an upper bound, M. The first

double maximum statistic is given by

UDmax(ay,..., ay) = max ay sup Frp(m)
1<m<M
where {ay,..., ay} are some fixed weights and set equal to unity. The second maxi-

mum statistic, W D max, applies different weights to the individual sup Frp(m) statis-
tics so that the marginal p—values are equal across values of m. Finally, Bai and
Perron (1998, 2003) consider a test of the null hypothesis of [ breaks against the al-
ternative hypothesis of [+1 breaks. The sup Fr(l+1]|l) statistic is used to test whether
the additional break leads a significant reduction in the sum of squared residuals.

In our application below, we follow the practical recommendations of Bai and

Perron (2003), which have been shown to be adequate in an extensive simulation
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analysis in Bai and Perron (2004). We start with looking at U D max and/or WD max
to determine if at least one structural break is present. If the double maximum
statistics indicate the presence of structural breaks, i.e. being significant at the 10%
level, we go on to decide the number of breaks by sequentially examining the sup F'(I+
1|1) test statistics, starting from the sup F'(1]0). Finally, we set the maximum allowed
number of structural breaks m equals to 4 and choose a trimming value, the minimal

length of possible regimes, as 0.10.

3.2.2 The Data

The sample on the various productivity measures used in our application are from
1948:Q1 to 2012:Q1. As for aggregate productivity growth, we first consider labor
productivity growth rate, ALP, measured by the quarterly growth rate of GDP per
hour worked provided by Bureau of Labor Statistics. Also, we employ a real-time,
quarterly series on total factor productivity (TFP) for the U.S. business sector from
the Federal Reserve Bank of San Francisco.> The series also include TFP measures
adjusted for variations in factor utilization labor effort and capital’s workweek fol-
lows Basu et al. (2006) (thereafter BFK TFP measures). Therefore, we have two
aggregate TFP measures: ATFP and ATF P For our sectoral analysis, the first
group of measures also obtain from the BFK TFP series. By using relative prices and
input-output, BFK series are decomposed into separate measures of TFP for equip-
ment investment good-producing sector (including consumer durables) , AT F P;, and
consumption goods-producing sector (defined as business output less equipment and
consumer durables), ATFP.. We also consider the utilization adjusted TFP mea-
sures ATEF P! and ATFP“* Since BFK series are based on the conventional

growth accounting exercise, they correspond to several theoretical model based mea-

3Data source: http://www.frbsf.org/csip/tfp.php
4For more details, see Fernald (2012a).
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sures developed by Greenwood et al. (1997), Marquis and Trehan (2008), and Ireland
and Schuh (2008) among others. For comparison, we re-estimated the two sector real
business model in Ireland and Schuh (2008) using extending sample period data, and
constructed corresponding growth rates of TFP in the investment goods producing

sector AZ; and consumption goods producing AZ. (thereafter IS TFP measures).

3.3 Results and Implications

3.3.1 Structural Break Hypothesis Tests

Table 2 presents Bai and Perron (1998, 2003) statistics results for tests of struc-
tural breaks of the nine productivity measures in our sample. For the aggregate
productivity measures, we first find that both double maximum statistics are signif-
icant at conventional significant levels only for labor productivity. In contrast, only
W D max statistics are significant at 10% level for BFK TFP and utilization adjusted
BFK TFP, while U D max statistics are insignificant. Although the labor productivity
growth has shown evidence of structural breaks, sup F'(1|0) is still not significant at
any convention levels. These results are likely partly due to potentially low power
of the sup F’ statistics, and indicate once again that we need to analyze productivity
growth from a sectoral perspective.

The remaining six rows in Table 2 report structural breaks results on sectoral
productivity measures. We find that both double maximum statistics are significant
at conventional significant levels for all these six sectoral productivity measures. In
particular, we first find that utilization adjustment does not affect our test results for
BFK TFP measures. The sup F'(2|1) statistic is significant at the 10% level or higher,
while sup F'(3]2) is insignificant for TFP measures in investment goods-producing
sector. It suggests two structural breaks (three regimes) for these two measures

in investment goods-producing sector. The sup F(1|0) is significant at 10% level
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or higher for BFK TFP and utilization adjusted BFK TFP in consumption goods-
producing sector, while the sup F'(2|1) is insignificant. This indicates one structural
break (two regimes) for these consumption goods-producing sector measures. The
test results from IS TFP measures are quite different from those from BFK TFP
measures. We only find that sup F/(1]0) is significant at 5% for both investment
goods-producing sector and consumption goods-producing sector, while sup F'(2]1) is
insignificant. However, we find that sup F'(3]2) is significant at 10% for consumption
sector, which may indicate there are three structural breaks in this measure. It is
worth to note that the difference from BFK measure and IS measure is most likely due
to that BFK TFP investment measures only consider the equipment investment and

durable goods while IS TFP investment measure also include residential investment.

3.3.2 Structural Break Test Results

Table 3 reports the break dates and their 90% confidence intervals for each of the
nine productivity measures, in addition to regression coefficients and the mean growth
rate for each regime. We observe that the three aggregate productivity measures have
structural breaks occurring between the late 1960s to the early 1970s. The finding
is line with widely accepted productivity slowdown in the 1970s in the literature.
For instance, recent works as Benati (2007) and Fernald (2007) find one structural
break for labor productivity growth in 1973. However, we could not identify the
second structural break around the middle 1990s in aggregate productivity using the
extended sample. This might imply that the acceleration in aggregate productivity
growth during the late 1990s would be transitory.

For BFK TFP in investment goods-producing sector, the first break is around the
middle 1990s and the second break is in the first half year of 2005. We observe a
inverted U-shaped evolution of mean productivity growth in investment sector, first

accelerating from 2% to 5% then falling back to almost 3%. These break dates are in
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line with dates found by other researchers using different methods and productivity
measures. Our finding of the first break date is similar to Jorgenson (2001) and
Oliner and Sichel (2000)’s finding of a growth resurgence in the U.S. beginning in
1995, which they link to information technology in general. However, our results show
no evidence of a structural break in investment-goods producing sector in the 1970s.
Unlike Marquis and Trehan (2008) found the capital sector productivity growth rate
actually slowed down over this period and Greenwood et al. (1997) and Greenwood
and Yorukoglu (1997) concluded that capital-specific productivity accelerated in the
early 1970s at about the same time that aggregate productivity slowed down. In
addition, we found a second break around 2005 using the expanded sample including
the recent recession. This finding is also consistent with many observations about the
investment boom. For TFP in consumption-goods producing sector, there is evidence
for one break in our sample period for both utilization adjusted and unadjusted series,
which are located in the late 1960s. Although our results suggest the productivity
slowdown might be earlier than we thought, the associated interval stretches from the
early 1960s to the early 1970s, which is roughly in line with other studies.

The last two rows in Table 3 present the results for the structural breaks for
IS TFP measures. We only find only one structural break in 2005 in investment
goods-producing sector sector. The productivity growth in investment sector slows
down since the middle 2000s. The timing is close to the second break we found using
BFK TFP measures. In addition, we find two more structural breaks in consumption
sector. One is in the early 1980s and another is in early this 2000s. Even the differ-
ence between these two measures, the results from two group of measures, broadly
speaking, leads to two similiar findings. The first is that the main contribution to
the productivity growth slowdown is consumption goods-producing sector. The other
one is that there appears to exist deceleration in investment goods-producing sector

during the middle 2000s.
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3.3.3 Implications

Even though our approach to testing for trend breaks in present paper is strictly
statistical, we can still draw several key implications. First of all, broadly consis-
tent with the results derived by Basu et al. (2006), Ireland and Schuh (2008) , and
Marquis and Trehan (2008), our results show, once again, attribute most of the pro-
ductivity slowdown of the 1970s to the consumption goods-producing sector. Here, in
particular, the BEFK TFP growth in the consumption goods-producing sector remains
essentially unchanged since the late 1960s, only at 0.28 percent annual rate. Whereas
Basu et al. (2006) estimates suggest that productivity slowdown occurred contempo-
raneously across both two sectors in the 1970s, here we could not find a break in the
1970s, and we attribute the more recent productivity revival that accompanied the
long economic expansion of 1990s in the US rapid investment-specific technological
change. Overall, our empirical results echoed with the observations in Ireland (2011)
obtained from an estimated two sector real business cycles model.

Second, our results provide answer to the question raised in the introduction:
Is the era of rapid productivity growth over? Most likely, Yes. Our results show
the more recent episode of robust investment and investment-specific technological
change during the 1990s largely as they fall back to their unexceptional longer-run
averages, about at 2.9 percent annually. As also documented by Fernald (2012b), the
slowdown preceded the current recession and is consistent with an apparent reducing
in intangible organizational investment associated with information and communica-
tions technology. He argues that ICT has had a broad-based and pervasive effect
on measured TFP through its role as a general purpose technology that fostered
complementary innovations, including business reorganization.

Thirdly, our results, therefore offer up a pessimistic view of the future. The not-
so-good news is that the results show the more recent episode of robust growth in

investment and investment-specific productivity as largely representing a catch-up in
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levels after the previous productivity slowdown—hence, the results predict that this
recent episode of unusual strength is unlikely to persist or to be repeated anytime
soon. Thus, we would expect the potential output will be lower than our conventional
projections.

Finally, our results highlight the importance of sectoral analysis on productivity.
As these tables have shown, the statistic results on aggregate productivity measures
are far from clear to identify structural break. Benati (2007) accounted for this
“puzzling” results partly is that the change in labor productivity growth may have
simple been too gradual to be detected via a crude structural break tests. Our
sectoral analysis supports, in some sense, this explanation since the effects from these
two sectors are mixed up when we consider aggregate productivity, which reinforce

our motivation on sectoral analysis.

3.4 Conclusion

In this paper, we apply Bai and Perron (1998, 2003) methodology to examine
structural breaks in productivity growth in U.S. over the postwar era from the per-
spective of sectoral analysis. We decompose the economy into two broad sectors:
investment goods-producing sector and consumption goods-producing sector. Al-
though the evidence of structural break in the aggregate productivity growth is far
from obvious at conventional test sizes, we found the evidence of structural breaks
in the sectoral productivity growth. Our results are closely consistent with Ireland
and Schuh (2008) and Ireland (2011), in which they study two different technology
shocks: investment goods-producing technology and consumption goods-producing
technology. Our structural breaks results echo with their implication of the consump-
tion goods-producing sector as the principal source of the productivity slowdown of

the 1970s. And we also show evidence of a productivity slowdown in the investment
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goods-producing sector in the middle 2000s, which we conclude that the era of produc-
tivity growth due to new economy is over. Viewed against this broader backdrop, we
confirms Ireland and Schuh (2008)’s projection that the accelerated growth in invest-
ment and investment specific technological change appears largely as a snap-back in
levels to a long-run deterministic trend rather than a persistent shift in growth rates.
Therefore, our results offer up a pessimistic outlook for the future. The productivity
slowdown of the 1970s has not ended. It also suggests the future productivity growth
rates in investment sectors that will match their healthy but unexceptional longer-
run averages before the latest resurgence. In turn. our results suggest the potential
output growth will be likely to be lower than the conventional projections, and we

will see a longer and slower recovery from the current recession.

3.5 Chapter 3: Tables and Figures
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Figure 3.1: Logs of Sectoral Productivity Level in the U.S. (Basu-Fernald-Kimball
TFP Measurements)
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Source: Federal Reserve Bank of San Francisco, Authors’ calculation.
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Figure 3.2: Logs of Sectoral Productivity Level in the U.S. (Ireland-Schuh TFP Mea-
surements)
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Source: Ireland and Schuh (2008), Authors’ calculation.
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Figure 3.3: Logs of Aggreagte Productivity Level in the U.S.
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calculation.
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Figure 3.4: Labor Productivity Growth in the U.S. Business Sector

-4 —— 4-Quarter Change
‘ ‘ = = = Subsample Mean

-6 i i i i
1948 1956 1964 1972 1980 1988 1996 2004 2012

Source: Bureau of Labor Statistics, Authors’ calculation.

106



Bibliography

An, S. and Schortheide, F. (2007). Bayesian Analysis of DSGE Models. Econometric
Reviews, 26(2-4):113-172.

Andreasen, M. (2011). How non-gaussian shocks affect risk premia in non-linear dsge

models. Bank of England Working Paper, No. 47.

Andrews, D. W. K. (1993). Tests for Parameter Instability and Structural Change

with Unknown Change Point. Econometrica, 61(4):821-856.

Andrews, D. W. K. and Fair, R. C. (1988). Inference in Nonlinear Econometric
Models with Structural Change. Review of Economic Studies, 55(4):615-639.

Andrews, D. W. K. and Ploberger, W. (1994). Optimal Tests when a Nuisance

Parameter is Present Only Under the Alternative. Econometrica, 62(6):1383-1414.

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE

Transactions on Signal Processing, 50(2):173-188.

Aruoba, S. B., Fernandez-Villaverde, J., and Rubio-Ramirez, J. F. (2006). Compar-
ing Solution Methods for Dynamic Equilibrium Economies. Journal of Economic

Dynamics and Control, 30:2477-2508.

Bai, J. (1997). Estimating Multiple Breaks One at a Time. FEconometric Theory,

13(3):315-352.

107



Bai, J., Lumsdaine, R. L., and Stock, J. H. (1998). Testing for and Dating Common

Breaks in Multivariate Time Series. Review of Economic Studies, 65:395-432.

Bai, J. and Perron, P. (1998). Estimating and Testing Linear Models with Multiple

Structural Changes. Econometrica, 66(1):47-78.

Bai, J. and Perron, P. (2003). Computation and Analysis of Multiple Structural

Change Models. Journal of Applied Econometrics, 18(1):1-22.

Bai, J. and Perron, P. (2004). Multiple Structural Change Models: A Simulation

Analysis, pages 212-238. Cambridge University Press.

Banerjee, A., Lumsdaine, R. L., and Stock, J. H. (1992). Recursive and Sequential
Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International

Evidence. Journal of Business and Economic Statistics, 10(3):271-287.

Basu, S. and Bundick, B. (2012). Uncertainy Shocks in a Model of Effective Demand.

Manuscript.

Basu, S., Fernald, J. G., and Kimball, M. S. (2006). Are Technology Improvements

Contractionary? American Economic Review, 96(5):1418-1448.

Benati, L. (2007). Drift and Breaks in Labor Productivity. Journal of Economic

Dynamics and Control, 31(8):2847-2877.

Blanchard, O. J. and Kahn, C. M. (1980). The Solution of Linear Difference Models

under Rational Expectations. Econometrica, 48(5):1305-1311.

Boivin, J. and Giannoni, M. P. (2006). Has Monetary Policy Become More Effective?

Review of Economics and Statistics, 88(3):445-462.

Canova, F. and Sala, L. (2009). Back to Square One: Identification Issues in DSGE

Models. Journal of Monetary Economics, 56(4):431-449.

108



Chow, G. C. (1960). Tests of Equality Between Sets of Coefficients in Two Linear

Regressions. Fconometrica, 28(3):591-605.

Christiano, L. J., Eichenbaum, M., and Evans, C. L. (2005). Nominal Rigidities and
the Dynamic Effects of a Shock to Monetary Policy. Journal of Political Economy,
113(1):1-45.

Clarida, R., Gali, J., and Gertler, M. (2000). Monetary Policy Rules and Macroeco-
nomic Stability: Evidence and Some Theory. The Quarterly Journal of Economics,

115(1):147-180.

Cogley, T. and Sargent, T. J. (2005). Drift and Volatilities: Monetary Policies and
Outcomes in the Post WWII U.S. Rewview of Economic Dynamics, 8:262-302.

Doucet, A., de Freitas, N., and Gordon, N. (2001). Sequential Monte Carlo Methods

in Practice. Springer.

Eggertsson, G. B. and Woodford, M. (2003). The Zero Bound on Interest Rates and

Optimal Monetary Policy. Brookings Papers on Economic Activity, 34(1):139-235.

Estrella, A. and Fuhrer, J. C. (2003). Monetary Policy Shifts and the Stability of

Monetary Policy Models. Review of Economics and Statistics, 85(1):94-104.

Fernald, J. (2007). Trend Breaks, Long-run Restrictions, and Contractionary Tech-

nology Improvements. Journal of Monetary Economics, 54(8):2467—-2485.

Fernald, J. (2012a). A Quarterly, Utilization-Adjusted Series on Total Factor Pro-

ductivity. Manuscript.

Fernald, J. (2012b). Productivity and Potential Output before, during, and after the

Great Recession. Manuscript.

109



Fernandez-Villaverde, J. and Rubio-Ramirez, J. F. (2005). Estimating Dynamic Equi-
librium Economies: Linear versus Nonlinear Likelihood. Journal of Applied Econo-

metrics, 20:891-910.

Fernandez-Villaverde, J. and Rubio-Ramirez, J. F. (2007). Estimating Macroeco-
nomic Models: A Likelihood Approach. Review of Economic Studies, 74(4):1059—
1087.

Fernandez-Villaverde, J. and Rubio-Ramirez, J. F. (2008). How Structural are Struc-

tural Parameters? NBER Macroeconomics Annual, pages 83-137.

Fernandez-Villaverde, J., Rubio-Ramirez, J. F., and Santos, M. S. (2006). Conver-
gence Properties of the Likelihood of Computed Dynamic Models. Econometrica,

74(1):93-119.

Gaspar, J. and Judd, K. L. (1997). Solving Large-Scale Rational-Expectations Mod-

els. Macroeconomic Dynamics, 1(1):45-75.

Gomme, P. and Klein, P. (2010). Second-order Approximation of Dynamic Models

without the Use of Tensors. Manuscript.

Greenwood, J., Hercowitz, Z., and Krusell, P. (1997). Long-run Implications of Invest-

ment Specific Technological Change. American Economic Review, 87(3):342-362.

Greenwood, J. and Yorukoglu, M. (1997). 1974. Carnegie-Rochester Conference Series

on Public Policy, 46(1):49-95.

Héajek, J. and Rényi, A. (1955). Generalization of an Inequality of Kolmogorov. Acta

Mathematica Academiae Scientiarum Hungarica, 6:281-283.
Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.

Hansen, B. E. (2001). The New Econometrics of Structural Change: Dating Breaks

in U.S. Labour Productivity. Journal of Economic Perspectives, 15(4):117-128.

110



Hansen, P. R. (2003). Structural Changes in the Cointegrated Vector Autoregressive

Model. Journal of Econometrics, 114:261-295.

Hawkins, D. M. (1976). Point Estimation of the Parameters of Piecewise Regression

Models. Applied Statistics, 25:51-57.

Inoue, A. and Rossi, B. (2011). Identifying the Sources of Instabilities in Macroeco-

nomic Fluctuations. Review of Economics and Statistics, 93(4):1186-1204.

Ireland, P. N. (2001). Sticky-price Models of the Business Cycle: Specification and

Stability. Journal of Monetary Economics, 47:3-18.

Ireland, P. N. (2004). Technology Shocks in the New Keynesian Model. Review of

FEconomics and Statistics, 86(4):923-936.

Ireland, P. N. (2007). Changes in the Federal Reserve’s Inflation Target: Causes and
Consequences. Journal of Money, Credit and Banking, 39(8):1851-1882.

Ireland, P. N. (2011). Stochastic Growth in the United States and Euro Area.

Manuscript.

Ireland, P. N. and Schuh, S. (2008). Productivity and U.S. Macroeconomic Perfor-
mance: Interpreting the Past and Predicting the Future with a Two-Sector Real

Business Cycle Model. Review of Economic Dynamics, 11(3):473-492.

Jorgenson, D. W. (2001). Information Technology and the U.S. Economy. American

Economic Review, 91(1):1-32.

Judd, K. L. (1992). Projection Methods for Solving Aggregate Growth Models. Jour-
nal of Economic Theory, 58(2):410-452.

Judd, K. L. (1998). Numerical Methods in Economics. MIT Press.

111



Judd, K. L., Maliar, L., and Maliar, S. (2010). A Cluster-Grid Projection Method:
Solving Problems with High Dimensionality. NBER Working Paper, No. 15965.

Justiniano, A. and Primiceri, G. E. (2008). The Time-Varying Volatility of Macroe-

conomic Fluctuations. American Economic Review, 98(3):604-641.

Kim, J., Kim, S., Schaumburg, E., and Sims, C. (2005). Calculating and Using
Second-order Accurate Solutions of Discrete Time Dynamic Equilibrium Models.

Manuscript.

Klein, P. (2000). Using the Generalized Schur Form to Solve a Multivariate Lin-
ear Rational Expectations Model. Journal of Economic Dynamics and Control,

24(10):1405-1423.

Liu, Z., Waggoner, D. F., and Zha, T. (2011). Sources of Macroeconomic Fluctuations:

A Regime-Switching DSGE Approach. Quantitative Economics, 2(2):251-301.

Lucas, R. E. (1976). Econometric Policy Evaluation: A Critique. Carnegie-Rochester

Conference Series on Public Policy, 1:19-46.

Malin, B. A.; Krueger, D., and Kubler, F. (2011). Solving the Multi-country Real
Business Cycle Model Using a Smolyak-collocation Method. Journal of Economic

Dynamics and Control, 35:229-239.

Marquis, M. H. and Trehan, B. (2008). On Using Relative Prices to Measure Capital-

specific Technological Progress. Journal of Macroeconomics, 30(4):1390-1406.

Moreno, A. (2004). Reaching Inflation Stability. Journal of Money, Credit and
Banking, 36(4):801-825.

Oliner, S. D. and Sichel, D. E. (2000). The Resurgence of Growth in the late 1990s: Ts

information technology the story? Journal of Economic Perspectives, 14(4):3-22.

112



Perron, P. (1989). The Great Crash, the Oil Price Shock, and the Unit Root Hypoth-

esis. Fconometrica, 57(6):1361-1401.

Picard, D. (1985). Testing and Estimating Change-Points in Time Series. Advance
in Applied Probability, 176:841-867.

Pichler, P. (2011). Solving the Multi-country Real Business Cycle Model Using a
Monomial Rule Galerkin Method. Journal of Economic Dynamics and Control,

35(2):240-251.

Primiceri, G. E. (2005). Time Varying Structural Vector Autoregressions and Mone-

tary Policy. Review of Economic Studies, 72(3):821-852.

Qu, Z. and Perron, P. (2007). Estimating and Testing Structural Changes in Multi-

variate Regressions. Econometrica, 75(2):459-502.

Quandt, R. E. (1960). Tests of the Hypothesis that a Linear Regression Obeys Two

Separate Regimes. Journal of the American Statistical Association, 55:324-330.

Rotemberg, J. J. (1982). Sticky Prices in the United States. Journal of Political
Economy, 90(6):1187-1211.

Schmitt-Grohé, S. and Uribe, M. (2004). Solving Dynamic General Equilibrium Mod-
els Using a Second-order Approximation to the Policy Function. Journal of Eco-

nomic Dynamics and Control, 28:755-775.

Sims, C. (2002). Solving Linear Rational Expectations Models. Computational Eco-

nomics, 20(1-2):1-20.

Sims, C. A. and Zha, T. (2006). Were There Regime Switches in U.S. Monetary

Policy? American Economic Review, 96(1):54-81.

113



Smets, F. and Wouters, R. (2003). An Estimated Dynamic Stochastic General Equi-
librium Model of the Euro Area. Journal of the Furopean Economic Association,

1(5):1123-1175.

Smets, F. and Wouters, R. (2007). Shocks and Frictions in US Business Cycles: A
Bayesian DSGE Approach. American Economic Review, 97(3):586-606.

Stock, J. H. and Watson, M. W. (2002). Has the Business Cycle Changed and Why?

NBER Macroeconomics Annual.

Taylor, J. B. (1993). Discretion versus Policy Rules in Practice. Carnegie-Rochester

Conference Series on Public Policy, 1:195-214.

Uhlig, H. (1997). Bayesian Vector Autoregressions with Stochastic Volatility. Fcono-

metrica, 65:59-73.

Uhlig, H. (1999). A Toolkit for Analysing Nonlinear Dynamic Stochastic Models

Easily. Oxford University Press.

van Binsbergen, J., Fernandez-Villaverde, J., Koijen, R. S., and Rubio-Ramirez, J. F.
(2012). The Term Structure of Interest Rates in a DSGE Model with Recursive

Preferences. Journal of Monetary Economics, page forthcoming.

Woodford, M. (2003). Interest and Prices: Foundations of a Theory of Monetary

Policy. Princeton University Press.

Zhu, C. (2012). Monetary Policy Shifts and the Stability of Monetary Policy Models:

An International Comparison. Manuscript.

114



	Dissertation front pages_Chuanqi Zhu.pdf
	Dissertation_May04.pdf

