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ABSTRACT  

GM1 gangliosidosis is a glycosphingolipid lysosomal storage disease caused by 

a genetic deficiency of acid β-galactosidase (β-gal), the enzyme that catabolyzes 

GM1 within lysosomes. Accumulation of GM1 and its asialo form (GA1) occurs 

primarily in the brain, leading to progressive neurodegeneration and brain 

dysfunction.  Less information is available on the neurochemical pathology in 

optic nerve and sciatic nerve of GM1- gangliosidosis.  Here we analyzed the lipid 

content and myelin structure in optic and sciatic nerve in 7 and 10 month old 

normal β-gal (+/?) and GM1-gangliosidosis β-gal (–/–) mice. Optic nerve weight 

was lower in the β-gal –/– mice than in unaffected β-gal +/? mice, but no 

difference was seen between the normal and the β-gal –/– mice for sciatic nerve 

weight.  The concentrations of GM1 and GA1 were significantly higher in optic 

nerve and sciatic nerve in the β-gal –/– mice than in β-gal +/? mice.  The content 

and composition of myelin-enriched cerebrosides, sulfatides, plasmalogen 

ethanolamines were significantly lower in optic nerve of β-gal –/– mice than in β-

gal +/? mice, however cholesteryl esters were enriched in the β-gal –/– mice. No 

significant abnormalities in these myelin enriched lipids were detected in sciatic 

nerve of the β-gal –/– mice.  The abnormalities in GM1 and myelin lipids in optic 

nerve of β-gal –/– mice were also associated with abnormalities in the X-ray 



diffraction pattern including myelin content in fresh nerves [M/(M +B)] and 

periodicity (d).  With the exception of a slight reduction in myelin content, no 

abnormalities in the X-ray diffraction pattern were observed in sciatic nerve of β-

gal –/– mice.  The results indicate that neurochemical pathology is greater in 

optic nerve than in sciatic nerve of β-gal –/– mice. 

 

 



 i 

DEDICATION 

 

To My Family: Michael, Marianna, and Evelyn Heinecke 

My Parents: Dennis Berbach and Janet Berbach-Koehler 

My Siblings: Mark, Denise, and Vincent Berbach 

My Grandmother: Anna Siepiela



 ii 

ACKNOWLEDGEMENTS 

 

I express deep gratitude to Dr. Thomas N. Seyfried for acceptance into his 

laboratory and support throughout my graduate school career.  

I thank Dr. Rena Baek and Dr. Christine Ann Denny for teaching me 

almost everything I know about lipid analysis in the Seyfried lab.  

I am grateful to Dr. Daniel Kirschner for his allowing me to collaborate with 

his lab for X-ray diffraction on the mouse nerves. I thank Adrienne Loma for 

teaching me how to properly prepare nerves for XRD. I thank Adrienne and 

Michelle Crowther for assistance with collecting the diffraction data. 

I thank Hannah Rockwell, Alexandra Gonzalez and Michaela Annunziato 

for assistance with nerve collection for lipid analysis.  

I thank past and present members of the Seyfried lab for technical 

assistance and support, especially: Linh Ta, Dr. Purna Mukherjee, Dr. Julian 

Aurthur, Zeynep Akgoc, Dr. John Mantis, Dr. Michael Kiebish, and Dr. Leanne 

Huysentruyt. 

For funding, I thank the National Tay-Sachs and Allied Disease 

Association, Inc., the National Institutes of Health Grant NS- 055195, Boston 

College Research Expense Fund, and the Boston College Graduate School of 

Arts and Sciences, and the American Society for Neurochemistry for providing 

funds to present my work at the American Society for Neurochemisty annual 

meeting. 



 iii 

TABLE OF CONTENTS        Page 
 
DEDICATION          i 
 
ACKNOWLEDGEMENTS        ii 
 
TABEL OF CONTENTS         iii 
 
LIST OF TABLES         v 
 
LIST OF FIGURES         vi 
 
ABBREVIATIONS         vii 
 
 
 
CHAPTER ONE 
 
INTRODUCTION          
 Glycosphingolipids        1 

 Glycosphingolipids Synthesis and Degradation    3 

 Ganglioside Storage Disease      4 

 Mouse Model of GM1 Gangliosidosis     6 

 Myelin          8 

  

 
CHAPTER TWO 
 
MATERIALS AND METHODS 
 Animals         31 

 Mouse Genotyping        31 

 Tissue Processing        32 

Isolation and Purification of Lipids      33 

 High-performance thin-layer chromatography (HPTLC)  36 

 Densitometry         37 

 X-Ray Diffraction Analysis        37 

 Statistical Analysis        38 

 
 



 iv 

           Page  
CHAPTER THREE 
 
RESULTS 
 Lipid Analysis 

Optic Nerve        41 

  Sciatic Nerve        42 

 X-ray Diffraction        43 

 
CHAPTER FOUR 
 
DISCUSSION         60 
 
 
 
APPENDIX           68 
 
 
 
REFERENCES         69 
 
 

 



 v 

LIST OF TABLES         Page  

I. Glycosphingolipid content in optic and sciatic nerves of β-gal mice 45 

II. Ganglioside distribution in the nerves of β-gal mice   48 

III. Lipid distribution in the optic and sciatic nerves of β-gal mice  51 

IV. Upper and lower band content in cerebrosides and sulfatides  54 

V. X-ray diffraction analysis of β-gal mice     55 

 

 



 vi 

LIST OF FIGURES         Page 

1. De novo synthesis of glycosphingolipids     13 

2. Ganglioside structure and orientation in the plasma membrane  15 

3. Organelle localization during lipid biosynthesis    17 

4. Ganglioside/glycosphingolipid metabolic turnover   19 

5. Ganglioside biosynthetic pathway      20 

6. GM1 ganglioside        23 

7. Model for the Lysosomal Degradation of Membrane-Bound GM1 25  

8. The structure of myelinated axons     27 

9. The structure of the myelin sheath     29 

10. Illustration of X-ray Diffraction      40 

11. HPTLC of neutral lipids in optic and sciatic nerves   46 

12. HPTLC of gangliosides in optic and sciatic nerves    49 

13. HPTLC of acidic lipids in optic and sciatic nerves   52 

14. X-ray diffraction from optic and sciatic nerves of β-gal mice  56 

15. X-ray diffraction analysis of myelin content and periodicity   58 

 



 vii 

ABBREVIATIONS 

Å  Angstrom 

B  Background intensity 

β-gal  β-galactosidase 

BMP  bis(monoacylglycero)phosphate 

C  Cholesterol 

CE  Cholesteryl ester 

CBL   Cerebroside – Lower band 

CBU  Cerebroside – Upper band 

CL   Cardiolipin 

CH3OH Methanol 

CHCl3  Cloroform 

Cer or CM Ceramide 

CGT  Ceramide galactosyltransferase 

cm  Centimeters 

CNS  Central nervous system 

CST  Cerebroside sulfotansferase 

d  the periodicity of the peaks 

DNA  Deoxyribonucleic acid 

ER   Endoplasmic reticulm 

GA1   asialo-GM1 

Gal  Galactose 

GalCer Galactosylceramide or Cerebroside 

GalNAc N-acetylgalactosamine 

Gal-T1 Galactosyltransferase 

Glc  Glucose 

GlcCer Glucosylceramide 

Glc-T  Glucosyltransferase 

GM2AP GM2 activator protein 

GSD  Ganglioside storage disease 

GSL   Glycosphingolipid 



 viii 

hFA  Hydroxy fatty acid 

HPTLC High performance thin-layer chromatogram 

Jxp  Juxtaparanode  

LacCer Lactosylceramide 

LPC  lysophosphatidylcholine 

LSD  Lysosomal storage disease 

L/U  Ratio of the lower band to the upper band 

IS   Internal standard (oleoly alcohol) 

M  Myelin intesity above background 

M+B  Total intesity of diffraction pattern from myelin and background 

M/M+B Relative amount of myelin 

MBP  Myelin basic protein 

mg  milligrams 

µg  micrograms 

ml  milliliters 

µl   microliters 

N2  Nitrogen gas 

NANA  N-acetylneuraminic acid 

NGNA  N-glycolylneuramic acid 

Neo  Neomycin-resistant (gene product) 

PA  Phosphatidic acid 

PC   Phosphatidylcholine 

PCR  Polymerase chain reaction 

PE   Phosphatidylethanolamine 

PI   Phosphatidylinositol 

PLP  Proteolipid protein 

PNS  Peripheral nervous system 

PS   Phosphatidylserine 

SA  Sialic acid 

SAP-B Saponisin b 

SD  Standard Deviation  



 ix 

SE  Standard Error 

SF   Solvent Front 

SM  Sphingomyelin 

Sulf  Sulfatide – Total  

SFL  Sulfatide – Lower band 

SFU  Sulfatide – Upper band 

Solvent A Chloroform:methanol:water, 30:60:8 by volume 

Solvent B Chloroform:methanol:0.8M sodium acetate, 30:60:8 by volume 

Sph  Sphingosine 

SpJ  Septate-like junction 

Std   Standard 

TG  Triglyceride 

UDP  Uridine diphosphate 

XRD  X-ray diffraction 
 
 



 1 

CHAPTER ONE 
 
INTRODUCTION 
  
 
Glycosphingolipids 

 Lipids are important components of cellular membranes, responsible for 

separating the inside of the cell from the outside, selectively allowing molecules 

into and out of the cell, and communicating with neighboring cells (van Meer et 

al. 2008, Nature 2013, Bisel et al. 2014). Glycosphingolipids (GSL) are 

amphiphilic, and consist of an oligosaccharide head group attached to the 

lipophilic ceramide (D'Angelo et al. , Hakomori 1990, Lingwood 2011, Ledeen 

1983) (Figure 1). Ceramide is comprised of a sphingosine base and a long-chain 

fatty acid. The addition of carbohydrates and other modifications to ceramide 

generate gangliosides, cerebrosides and sulfatides (D'Angelo et al. , Lingwood 

2011, Kolter 2012, Kolter et al. 2002).  

Lipids can provide important information about the integrity of the brain 

and nervous tissue.  Gangliosides are sialic acid (SA) containing GSL residing in 

cell membranes, primarily in the nervous system (Yu et al. 2012, Schnaar RL et 

al. 2009, Ledeen 1983) (Figure 2). The oligosaccharide chain consists of different 

combinations of glucose, galactose, N-acetylgalactosamine, and N-

acetylglucosamine (Ledeen 1983). SA residues are 9-carbon sugars, which are 

expressed in two forms, N-acetylneuraminic acid (NANA) or N-glycolylneuraminic 

acid (NGNA) and are attached to the galactose subunits of the oligosaccharide 

chain (Kawano et al. 1995, Davies et al.).  The combination of the two different 

SA species, the number of SA species, the length of the oligosaccharide chain, 
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and the variation in the fatty acid chain length of the ceramide moiety contribute 

to the structural diversity of gangliosides (Yu et al. 2012, Ando et al. 1984, 

Ledeen et al. 1982, Sonnino et al. 2006). The ceramide portion of the GSL is 

anchored into the outer leaflet of the lipid bilayer and its oligosaccharide head 

group is projected into the extracellular environment (Figure 2).  

The individual ganglioside species are differentially distributed in the 

different cell types of the brain (Wiegandt 1995, Vajn et al. 2013, Seyfried et al. 

1984b, Seyfried et al. 1983). Ganglioside GT1a/LD1 is enriched in Purkinje cells, 

GD1a is enriched in granule cell neurons, and GT1b and GQ1b are enriched in 

both types of cerebellar nerve cells (Vajn et al. 2013, Seyfried et al. 1984a, 

Seyfried et al. 1983, Furuya et al. 1994, Chou et al. 1990, Seyfried et al. 1990).  

Ganglioside GM1, cerebrosides, and sulfatides are enriched in myelin 

membranes (Cuzner et al. 1968, Menkes et al. 1966, Suzuki et al. 1968a, O'Brien 

et al. 1965b, Vajn et al. 2013, Zalc et al. 1981, Muse et al. 2001, Coetzee et al. 

1996, Yu et al. 1975). Cerebrosides and sulfatides are essential for proper 

myelination of axons (Marcus et al. 2006, Jackman et al. 2009, Hayashi et al. 

2013).  

 Gangliosides have been shown to influence several important biological 

processes, such as cell adhesion, cell growth, angiogenesis, and signal 

transduction (Yu et al. 2012, Hakomori 1990, Bisel et al. 2014). Studies have 

also shown that gangliosides may interact with toxins, viruses, bacteria, as well 

as modulating membrane receptors (Singh et al. 2000, Sandhoff et al. 1994, 

Bisel et al. 2014).   
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GSL Synthesis and Degradation 
 

Ceramide is converted into galactosylceramide (GalCer or cerebroside) or 

glucosylceramide (GlcCer) in the lumen of the endoplasmic reticulum (ER) 

(Kolter 2012, Kolter et al. 2002) (Figure 3). The cerebroside can then be sulfated 

on the luminal side of the Golgi apparatus to generate sulfatide, and GlcCer goes 

to the cytoplasmic side of the Golgi to begin biosynthesis of gangliosides 

(Lingwood 2011, Kolter 2012, Kolter et al. 2002). Completed lipids go to the cell 

membranes to provide their individual functions. During times of recycling, the 

membrane forms an endocytic vesicle, which becomes a lysosomal compartment 

used for molecular recycling (Figure 4). 

 Ganglioside synthesis occurs through the control of a complex of multi-

glycosyltransferases and sialyltransferases (Figure 5) (Yu et al. 2012, Kolter et 

al. 2006).  This process involves the synthesis of each ganglioside species on it 

own microsomal assembly where each metabolic intermediate becomes the 

substrate for the next biosynthetic reaction (Yu et al. 2012, Kolter et al. 2006).  

Following synthesis, gangliosides are packaged into vesicles, which bud off from 

the Golgi compartments, and travel to the cell surface, where they fuse with the 

plasma membrane (Yu et al. 2012, Kolter et al. 2006). 

 Ganglioside biosynthesis can be classified into four metabolic pathways, 

the “o”, “a”, “b”, and “c” pathways (Figure 5). Gangliosides synthesized through 

the “a”, “b”, and “c” pathways have one, two, and three sialic acids, respectively 

(Yu et al. 2012).  In mammalian brain, the gangliosides in the “a” and “b” pathway 
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constitute the predominant species of gangliosides (Sandhoff et al. 2013, Yu et 

al. 2012).   The “o” series of gangliosides begin without any sialic acid residues, 

also known as asialo-gangliosides, are prominent when the other pathways of 

ganglioside biosynthesis      are disrupted (Yamashita et al. 2005, Yu et al. 2012). 

GM1, GD1a, GD1b, and GT1b are the major brain gangliosides in mature 

mammalian brains (Sturgill et al. 2012). 

Ganglioside degradation also occurs in a stepwise fashion but in the 

reverse order of biosynthesis. Gangliosides are endocytosed from the plasma 

membrane and transported to the lysosome through various endosomal 

compartments (Wilkening et al. 2000, Yu et al. 2012, Kolter et al. 2006, Sandhoff 

et al. 2013).  In the lysosomes, gangliosides are completely or partially degraded 

by the sequential removal of individual sugar residues by substrate-specific 

acidic hydrolytic enzymes and activator proteins (Yu et al. 2012, Kolter et al. 

2006, Sandhoff et al. 2013). The by-products of degradation, sugars (glucose, 

galactose, hexosamine), lipids (ceramide, sphingosine, and fatty acid), and sialic 

acid residues are recycled to the Golgi for lipid biosynthesis and re-glycosylation 

(Yu et al. 2012, Kolter et al. 2006, Sandhoff et al. 2013).   

 

 
Ganglioside Storage Disease 
 

Lysosomal storage diseases (LSD) are characterized by the accumulation 

of macromolecules in the lysosomal compartment due to defects in catabolic 

enzymes or their activator proteins (Kolter et al. 1998). Over 40 different types of 

LSD have been described to date, and all together, they affect 1 in 7,000 live-
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born infants per year (Meikle et al. 1999). Most inherited diseases of GSL 

metabolism in humans affect the hydrolytic pathways, instead of the synthetic 

pathways (Kolter et al. 2006, Kolter et al. 1998, Xu et al. 2010).  However, in the 

past decade multiple disruptions to different synthase activities have been 

shown, though their occurrence in nature is still very rare (Boukhris et al. 2013, 

Yu et al. 2012, Yao et al. 2014, Yamashita et al. 2005, Xu et al. 2010, Staretz-

Chacham et al. 2009, Schnaar 2010, Jennemann et al. 2005, Harlalka et al. 

2013, Freeze et al. 2011).  

  
GM1-gangliosidosis is a type of LSD, or ganglioside storage diseases 

(GSD), caused by an autosomal recessive deficiency of lysosomal acid β-

galactosidase (β-gal) (Figure 6). Deficiency of the lysosomal enzyme leads to 

accumulation of GM1 ganglioside, and its asialo-derivative, in neuronal and non-

neuronal tissue, followed by progressive neurodegeneration (Hahn et al. 1997, 

Saunders et al. 1988, Matsuda et al. 1997a, Landing et al. 1964, Lyon GL et al. 

1996, O'Brien et al. 1965c, NINDS 2011, Suzuki et al. 2001, Baek et al. 2010). 

The most severe form of this disease (Infantile or Type I) has a very early onset, 

and is characterized by rapid neurological deterioration with death usually 

occurring before 3 years of age, in humans (NINDS 2011). There is currently no 

effective treatment for GM1- gangliosidosis. In addition to humans, the diseases 

can be found in other animals, including dog, cat, and American black bear 

(Muthupalani et al. 2014, Suzuki et al. 1968b, Read et al. 1976, Baker et al. 

1974, Karbe 1973, Baker et al. 1976).  
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GM1 catabolism occurs through the concerted actions of β-galactosidase 

(β-gal or GLB1) and an activator protein, either saponisin b or GM2 activator 

protein (GM2AP) (Figure 7) (Wilkening et al. 2000). GM1 gangliosidosis results 

from inherited defects in the β-gal gene and is estimated to occur in every 

100,000-200,000 live human births (Sinigerska et al. 2006). Generalized 

gangliosidosis or GM1 gangliosidosis was first described in the late 1950’s – 

early 1960’s (Norman et al. 1959, Craig et al. 1959, Landing et al. 1964).  It 

wasn’t until 1968 that the biochemical deficiency in GM1 gangliosidosis was 

explained (Okada et al. 1968). The onset of disease ranges from infancy to 

adulthood, which correlates with relative β-gal activity.  In the infantile form, 

presentation of the disease is associated with rapid motor deterioration, macular 

cherry red spot, and skeletal dysplasia (Folkerth et al. 2000).  Pathogenesis in 

GM1 gangliosidosis is marked with neuronal damage or death, inflammation, and 

progressive neurological deterioration (van der Voorn et al. 2004, Folkerth et al. 

2000). Ocular abnormalities involving membranous cytoplasmic bodies, ganglion 

cell loss and optic nerve atrophy have been characterized in patients with GM1 

gangliosidosis (Denny et al. 2007, Cairns et al. 1984). In addition, myelin 

abnormalities in the human patients are also seen in the cat, dog, and mouse 

disease models (Kroll et al. 1995, Folkerth et al. 2000, van der Voorn et al. 2004, 

Kaye et al. 1992).   

 
 
 
Mouse Model of GM1 Gangliosidosis 
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The available knockout mouse models replicate many features of GM1-

gangliosidisis, infantile, in humans; including, biochemical deficiency, the 

neurochemical accumulation, and the pathological consequence loss of gross 

motor skills, blindness, and alterations in brain lipids (Matsuda et al. 1997a, 

Suzuki et al. 2001, Baek et al. 2010, Hahn et al. 1997, Matsuda et al. 1997b, 

Tessitore et al. 2004).  Mice lacking β-gal activity was generated using 

homologous recombination and embryonic stem cell technology (Matsuda et al. 

1997b, Hahn et al. 1997).  The β-gal -/- mice express residual β-gal activity and 

elevation of GM1 and GA1, mimicking the infantile form of GM1 gangliosidosis. 

GA1 accumulation is greater in the mouse model than in patients with GM1 

gangliosidosis most likely because of a more active sialidase specific to this 

substrate (Hahn et al. 1997). Despite CNS GM1 accumulation from as early as 

postnatal day 5, the β-gal -/- mice do not show behavioral abnormalities until 

adult ages (Kasperzyk et al. 2004, Matsuda et al. 1997a). In contrast to infantile 

onset patients, where ganglioside accumulation leads to behavioral and 

developmental abnormalities within the first few years of life, β-gal-deficient mice 

are phenotypically indistinguishable from normal mice until adult ages (Hahn et 

al. 1997). The β-gal -/- mice display ataxia, hind limb paralysis, and difficulty in 

walking and can be used to study GM1 gangliosidosis (Baek et al. 2010, Hahn et 

al. 1997). Previous studies have shown major alterations to brain gangliosides, 

cerebrosides and sulfatides in β-gal -/- mice, which recapitulate lipid levels in 

humans with GM1-gangliosidosis (Hahn et al. 1997, Suzuki et al. 2001, O'Brien 

et al. 1965b, Baek et al. 2010, Matsuda et al. 1997b). 
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Myelin 
  

Myelin is a specialized membrane of nervous tissue, which differs from 

other membranes in the CNS (i.e. grey matter or white matter), due to a higher 

amount of lipids, compared to other membrane components (O'Brien et al. 

1965b). Oligodendrocytes and Schwann cells share a common function of 

insulating axons with myelin, however one resides in the CNS and the other in 

the PNS, respectively (Kettenmann et al. 2011). The myelin membrane is 

generated by an extension of the oligodendrocyte or Schwann cell plasma 

membrane that tightly wraps around a portion (~0.4-1.4mm) of the axon (Asbury 

1975, Kettenmann et al. 2011) (Figures 8 & 9). Oligodendrocytes are able to 

myelinate up to 40 different axons, while Schwann cells are able to myelinate 

one axon at a time. Myelin insulates the axonal segments to enable high velocity 

nerve conduction. In humans, myelination begins in utero at the spinal cord with 

peak activity the first year after birth, and continues until approximately 20 years 

of age (Kettenmann et al. 2011). In rodents, myelination begins at birth and is 

primarily completed at approximately 2 months after birth (Kettenmann et al. 

2011). Primary myelination is completed early in development, however the 

amount of myelin in humans and rodents continue to increase with age in the 

CNS, but has been observed to decrease in age in human peripheral nerves 

(Cuzner et al. 1968, Spritz et al. 1973, Menkes et al. 1966, Yu et al. 1975, 

Horrocks 1973, Kettenmann et al. 2011). Even with an increase or decrease in 

myelin content, the myelin composition tends to remains stable (Clausen et al. 
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1970, Nussbaum et al. 1971, O'Brien et al. 1965a, Spritz et al. 1973, Horrocks 

1973). Oligodendrocyte progenitor cells are present in the mature brain and are a 

source for re-myelination in brains with myelin damage (Gumpel et al. 1989, 

Watzlawik et al. 2010). 

 

Myelin degeneration and neurological deficits are observed in mice lacking 

complex gangliosides (GM1, GD1a, GD1b, GT1a, GT1b, and GQ1b) (Sheikh et 

al. 1999, Vyas et al. 2001, Chiavegatto et al. 2000, Jackman et al. 2009). In 

myelinated nerves of the CNS and PNS, gangliosides GD1a and GT1b reside in 

the plasma membrane of axons and associate with protein in the myelin 

membrane to provide stability and inhibit neuronal growth (Vyas et al. 2002, 

Jackman et al. 2009). Ganglioside GM1 is enriched in myelin at the axolemma 

and nodes of Ranvier and has been used to indicate myelin content in previous 

studies (Ganser et al. 1984, Seyfried et al. 1984b, Seyfried et al. 1984a, Seyfried 

et al. 1980, Muse et al. 2001, Suzuki et al. 2001, MacBrinn et al. 1969). The 

brains of animals and humans with GM1 gangliosidosis have shown myelinating 

defects (Nada et al. 2011, van der Voorn et al. 2005, Muller et al. 2001, Brunetti-

Pierri et al. 2008, van der Voorn et al. 2004, Gururaj et al. 2005, Di Rocco et al. 

2005, Shen et al. 1998, Kasama et al. 1986, Kaye et al. 1992, Folkerth et al. 

2000). Animals with GM1-gangliosidosis show a reduction in lipids enriched in 

myelin, myelin degradation and neuronal degradation.  
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X-ray diffraction (XRD) is a useful technique in determining the periodicity 

of myelin, the relative amounts of myelin, and myelin membrane packing defects 

in freshly dissected nerves (Yin et al. 2006, Schmitt et al. 1935, Kirschner et al. 

2010, Avila et al. 2005). XRD was useful in identifying myelin membrane packing 

abnormalities in the nerves of animals with myelinating disorders (Avila et al. 

2010, Kirschner et al. 2010, Kirschner et al. 1976, Appeldoorn et al. 1975, 

Ruocco et al. 1984, Mateu et al. 1991, Inouye et al. 1985, Chia et al. 1984, 

Brown et al. 1985, Blaurock et al. 1991, Karthigasan et al. 1996, Kirschner et al. 

1996, Vargas et al. 1997, Vonasek et al. 2001, Avila et al. 2005, Yin et al. 2006, 

McNally et al. 2007). Using XRD, McNally et al., found a reduction in the amount 

of myelin in optic nerves of Sandhoff mice, but no abnormalities in sciatic nerves 

(McNally et al. 2007). While many LSD display PNS accumulation, McNally et al. 

was the first to assess myelin based on XRD. This is the first assessment of the 

myelin in GM1 gangliosidosis mice based on XRD. Histological and imaging 

studies on GM1 gangliosidosis in humans suggest various neuropathies in the 

PNS, but it is unclear the amount of PNS involvement associated in the 

phenotype of mice with GM1-gangliosidosis (Iwamasa et al. 1987, NINDS 2011, 

Read et al. 1976, Yamano et al. 1983, Shapiro et al. 2008, Jain et al. 2010, 

Mondelli et al. 1989). 

 

Ganglioside GM1, cerebrosides and sulfatides have long been used as 

markers for myelin content and composition (O'Brien et al. 1965b, Zalc et al. 

1981, Coetzee et al. 1996, Yu et al. 1975, Muse et al. 2001). Previous lipid 
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analyses in the brains of GM1-gangliosidosis mice have shown alterations to 

these myelin-enriched lipids (Baek et al. 2010, Yu et al. 1975, Hauser et al. 2004, 

Kasperzyk et al. 2004, Kasperzyk et al. 2005, Broekman et al. 2007). In addition, 

cholesteryl esters and plasmalogen ethanolamines, in humans, have also been 

altered, while other LSD animals with myelin defects (e.g. adrenoleukodystrophy 

and Niemann-Pick disease) are known to have abnormalities in these myelin 

lipids and cholesterol (Paintlia et al. 2003, Anchisi et al. 2013, Farooqui et al. 

2001, Kasama et al. 1986, Suzuki et al. 1968b). Animals with GM1-

gangliosidosis are known to have myelin defects (Nada et al. 2011, van der 

Voorn et al. 2005, Kasama et al. 1986, Kaye et al. 1992, Folkerth et al. 2000). 

Electron microscopy and histopathology on GM1-gangliosidosis brains have 

shown reduction in the amount of nerves present in different brain regions (van 

der Voorn et al. 2005, Tessitore et al. 2004). It has been shown that storage 

material in the nerves of GM1-gangliosidosis mice lead to endoplasmic reticulum 

(ER) distress, and apoptosis in neurons of the CNS and PNS (Tessitore et al. 

2004, Lupachyk et al. , Platt et al. 2012). Increases in both cholesteryl esters and 

lysoplasmalogen ethanolamines (from the hydrolysis of plasmalogen 

ethanolamines) are also known to lead to ER distress and apoptosis (Farooqui et 

al. 2006, Farooqui et al. 2001). While abnormalities in lipid metabolism have a 

role in increased inflammation in the brain, inflammation has been shown to play 

a role in disease progression in GM1-gangliosidosis mice (Chrast et al. 2011, 

Jeyakumar et al. 2003).  
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The goal of this study was to determine if the content and composition of 

lipids and myelin structure were altered in optic and sciatic nerves in β-gal -/- 

mice. The results presented here indicate that previously observed changes in 

the CNS lipids enriched in myelin are expressed, in a qualitative and quantitative 

manner, in the optic and sciatic nerves of mice with GM1-gangliosidosis. Both 

optic and sciatic nerves of β-gal -/- mice had a reduction in the amount of myelin, 

an increase in ganglioside GM1, and the presence of the asialo form of GM1 

(GA1). The optic nerves of β-gal -/- mice had additional lipid and myelin 

abnormalities. These data suggest that deficiency of GM1 β-galactosidase has a 

larger effect primarily on myelin in optic nerves then in sciatic nerves. The 

combination of lipid analysis and XRD provide a greater understanding of the 

neurochemical pathologies in GM1-gangliosidosis on the nerves of the CNS and 

PNS, especially in its relation to the ocular phenotype (blindness, discoloration of 

the fovea, and optic neuropathy) of the disease. 
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Figure 1. De novo synthesis of glycosphingolipids: sphingosine combines with 

fatty-CoA or hydroxyl fatty acid (hFA) to form ceramide, Glucose transfers to the 

ceramide to generate glucosylceramide (GlcCer), Galactose transfers to the 

GlcCer to generate lactosylceramide (LacCer) additional carbohydrates and sialic 

acids are added in a step wise fashion as the lipid travels through the Golgi on its 

way to the plasma membrane (5). Alternatively, galactose is transferred to the 

terminal hydroxyl residue of ceramide to generate galactosylceramide (GalCer), 

and a sulfhydryl group is added to the galactose residue to generate Sulfatide. 

The hFA is labeled in blue to designate that it is an optional addition. While 

hydroxylation is not common in most lipids, hydroxylated cerebrosides and 

sulfatide are enriched in myelin membranes. Abbreviations: PAPS, 3’-

phospoadenosine-5’-phosphosulfate; CGT, Ceramide galactosyltransferase; 

CST, Cerebroside sulfotransferase; UDP, Uridine diphosphate; GalCer, 

Galactosylceramide; GlcCer, Glucosylceramide; LacCer, Lactosylceramide; Glc-

T, Glucosyltransferase; Gal-T1, Galactosyltransferase; hFA, hydroxyl fatty acid.  

(Created by Karie A. Heinecke) 



 14 

 

 
 
 
 
 



 15 

Figure 2. Ganglioside structure and orientation in the plasma membrane.  The 

ceramide (Cer) portion inserts into the plasma membrane while the 

oligosaccharide head group extends into the extracellular environment. The 

roman numerals represent individual sugar residues that make up the GSL 

oligosaccharide chain: I = glucose, II = galactose, III = N-acetylgalactosamine, 

and IV = galactose.  The letters A, B, and C represent sialic acid residues.  

Modified from (Ledeen et al. 1982) 
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Figure 3. Organelle localization during lipid biosynthesis. De novo synthesis of 

glycosphingolipids: on the cytosolic side of the endoplasmic reticulum (ER) 

sphingosine combines with a fatty-CoA to form ceramide (1), ceramide moves 

from the ER to the cytosolic side of the Golgi (2), Glucose transfers to the 

ceramide to generate glucosylceramide (GlcCer) (3), a flippase moves the 

GlcCer to the Golgi lumen (4), where additional carbohydrates and sialic acids 

are added in a step wise fashion as the lipid travels through the Golgi on its way 

to the plasma membrane (5). Alternatively, ceramide (1) can be transported to 

the ER lumen (6) where a galactose is transferred to its terminal hydroxyl residue 

to generate galactosylceramide (GalCer) (7), GalCer moves to the Golgi lumen 

(8) where a sulfhydryl group is added to the galactose residue to generate 

Sulfatide (9). The cerebroside and sulfatide can be transported to the plasma 

membrane (10,11). Abbreviations: Sph, sphingosine; GSL, glycosphingolipids; 

Cer, Ceramide; GlcCer, glucosylceramide; GalCer, galactosylceramide; Sulf, 

sulfatide.  

(Created by Karie A. Heinecke) 
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Figure 4. Ganglioside/glycosphingolipid metabolic turnover: (a) chemical 

modifications (glycosylations / de-glycosylations) at the plasma membrane, (b) 

exogenous uptake of gangliosides, (c) direct recycling to the plasma membrane 

from endosomes, (d) sorting to the Golgi for direct glycosylation, (e) lysosomal 

degradation, (f) salvage processes at the ER and Golgi, (g) complete 

degradation of lipid products, (h) de novo biosynthesis from the ER and Golgi.  

(Created by Karie A. Heinecke) 

 



 20 

 

 
 

 



 21 

Figure 5. Ganglioside Biosynthetic Pathway.   

GSL biosynthesis begins with the addition of glucose residues to ceramide to 

form glucosylceramide (GlcCer). Ganglioside biosynthesis proceeds by the 

action of multiple glycosyltransferases (black arrows) and sialyltransferases (red 

arrows), where the product of one enzymatic reaction is the substrate for the next 

biosynthetic reaction. Ganglioside synthesis is divided into three major metabolic 

pathways, the “a”, “b”, and “c” pathways.  In addition, the “o” pathway consists of 

neutral GSL and gangliosides.  Abbreviations: Glc, glucose; Gal, galactose; 

GalNAc, N-acetylgalactosamine; SA, sialic acid.  

Modified from (Bieberich et al. 1999) 
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Figure 6. GM1 ganglioside.  

Gangliosides are sialic acid (SA) containing GSL residing in cell membranes, 

primarily in the nervous system. The oligosaccharide chain consists of different 

combinations of glucose, galactose, N-acetylgalactosamine, N-

acetylglucosamine, and sialic acid attached to a ceramide backbone. 

β-galactosidase hydrolyzes the terminal galactose from ganglioside GM1. 

Modified from (Salmond et al. 2002) 
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Figure 7. Model for the Lysosomal Degradation of Membrane-Bound GM1.   

GM1 β-galactosidase binds to the negatively charged surface of intralysosomal 

vesicles at an acidic pH.  The sphingolipid activator protein (SAP), either GM2AP 

(GM2 activator protein) or sap-b, associates with the bis(monoacylglycero) 

phosphate (BMP) in the intralysosomal membrane to remove GM1 from the 

membrane and present it to β-galactosidase. 

Modified from (Wilkening et al. 2000) 
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Figure 8. The Structure of Myelinated Axons. a. Myelinating glial cells form the 

myelin sheath by wrapping several times around the axon. Oligodendrocytes can 

myelinate many different axons in the CNS, while Schwann cells can myelinate 

one internode of a single axon in the PNS. b. Schematic longitudinal cut of a 

myelinated fiber  near the node of Ranvier. The internode, juxtaparanode (JXP), 

paranode, and node are labeled. The node interacts with astrocytes in the CNS 

and Schwann cell microvilli in the PNS. The paranodal loops form septate-like 

junctions (SpJ) with the axon.  

Modified from (Poliak et al. 2003) 
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Figure 9. The Structure of the Myelin Sheath. A. The axon contains multiple 

nodes and internodes of myelinated and unmyelinated sections, respectively. B. 

The myelinated internode is an extension of the oligodendrocyte (CNS) or 

Schwann cell (PNS) membrane, which wraps around the axon. C. Each bilayer is 

separated by cytoplasmic and extracellular gaps where myelin specific proteins 

hold the layers in a compact formation (MBP, myelin basic protein; PLP, 

proteolipid protein). D. The myelin membrane is composed of many different 

lipids, including: phospholipids, glycosphingolipids, and cholesterol.   

Modified from (Min et al. 2009) 
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CHAPTER TWO 
 
Materials and Methods 

 

Animals  

B6/129Sv mice heterozygous for the β-galactosidase gene (β-gal +/-) were 

obtained from Saint Jude Children’s Research Hospital, Nashville, TN, USA (Dr. 

A. d’Azzo). These mice were generated independently by homologous 

recombination and embryonic stem cell technology, as previously described 

(Hahn et al. 1997). Sibling matings of mice heterozygous for the β-gal knockout 

allele (+/-) were used to produce β-gal -/- mice. Male and female wild type mice 

(+/+) and heterozygous mice (+/-) were used as controls (+/?). The mice were 

maintained through brother-sister inbreeding and kept in the Animal Care Facility 

of Boston College with all procedures in strict adherence with the NIH guide for 

the care and use of laboratory animals and approved by the Institutional Animal 

Care and Use Committee. The mice were housed in plastic cages with Sani-chip 

bedding (P.J. Murphy Forest Products Corp., Montville, N.J.) and kept on a 12-hr 

light/dark cycle at approximately 22°C.  All cages and water bottles were 

changed once per week.   

 

 

Mouse Genotyping  

DNA was isolated from ~2 mm of mouse tail using the Wizard Genomic 

DNA purification Kit (Promega, Madison, WI) tail tissue protocol. PCR 
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amplification was performed using 1 µL of DNA (~50 - 100 ng). The PCR 

amplification of the β-gal gene was set up as follows:  5 µL of 5x GoTaq Buffer, 

0.3 µL dNTPs (10 mM mix), 10 µM β-gal gene forward primer (5'-

ACACACAGGTTGAGAATGAGTACGG-3'), 10 µM β-gal reverse primer (5'-

ACACACACCGACCTGTTCCAAAATC-3), 10 µM neomycin-resistant (Neo) gene 

forward primer (5'-GTCACGACGAGATCCTCGCCGTC-3'), 10 µM Neo gene 

reverse primer (5'-GTCCGGTGCCCTGAATGAACTGC-3), 0.25 µL GoTaq DNA 

Polymerase (Promega), and brought up to 25 µL with water. The β-gal forward 

and reverse primers amplified a 200 bp fragment from the wild-type allele, 

whereas the Neo forward and reverse primer amplified a 500 bp fragment from 

the disrupted allele. The DNA was amplified using the following protocol: Initial 

denaturation 95˚C for 2 min, followed by 35 cycles of denaturation at 94˚C for 1 

minute; annealing 63˚C for 1 min; extension at 72˚C for 1 min; and a final 

extension at 72˚C for 10 min following the last cycle.   

 

Tissue Processing 

All mice were sacrificed by cervical dislocation. For neurochemical 

analysis: optic and sciatic nerves were isolated from each mouse and were 

immediately frozen on dry ice, then stored at -80oC until ready to use.  Nerves 

were pooled from 11 - 20 mice (22 - 40 nerves) for each sample. Three sets of 

pooled samples were analyzed for each genotype [wild type (+/+), heterozygous 

(+/-), knockout (-/-)] and age (7 and 10 months). For XRD analysis:  optic and 

sciatic nerves were bathed with physiological saline (pH 7.4) during dissection, 
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tied off with surgical silk, and immediately placed in fresh saline, as previously 

described (Avila et al. 2005, Agrawal et al. 2009).  The nerves were inserted into 

0.5 mm and 0.7 mm quartz capillaries (Charles Supper Co., Natick, MA), for optic 

and sciatic nerves respectfully, which were filled with saline and sealed at both 

ends with paraffin wax. XRD analysis was performed immediately after 

dissection, as described below.  

 

Isolation and Purification of Lipids 

Complete lipid isolation, purification, and quantitation have been 

previously described and are as follows (Heinecke et al. 2011, Hauser et al. 

2004, Kasperzyk et al. 2004, Seyfried et al. 1978). 

  

Total lipid extraction 

Lipids were extracted from lyophilized nerve tissue resuspended in 0.5 ml 

water, with 5 ml chloroform (CHCl3):methanol (CH3OH) (1:1 by volume). Shaking 

with a magnetic stirring bar at room temperature overnight dispersed the tissue. 

The solution was centrifuged and the supernatant was saved. The pellet was 

washed with 2 ml CHCl3:CH3OH (1:1 by volume) and the combined supernatants 

were converted to CHCl3:CH3OH:dH2O (30:60:8 by volume). 

 

Column Chromatography/Neutral Lipid Purification 

Neutral lipids and acidic lipids were separated using DEAE-Sephadex (A-

25, Pharmacia Biotech, Upsala, Sweden) column chromatography, with a 1.2 ml 
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bed volume (Macala et al. 1983, Heinecke et al. 2011). The total lipid extract, 

suspended in solvent A (CHCl3:CH3OH:water, 30:60:8 by volume), was applied 

to a DEAE-Sephadex column that had been equilibrated with solvent A. The 

column was washed twice with solvent A and the entire neutral lipid fraction, 

consisting of the initial eluent plus washes, was collected.  This fraction 

contained cholesterol, ceramide, phosphatidylcholine, phosphatidylethanolamine 

and plasmologens, sphingomyelin, cerebrosides and asialo-gangliosides (GA1).  

Neutral lipids were dried using the EZ-2 evaporator (Genevac, Gardiner, NY) and 

resuspended in CHCl3:CH3OH (1:1 by volume). Acidic lipids were eluted from the 

column with solvent B (CHCl3:CH3OH:0.8M sodium acetate, 30:60:8 by volume).  

 

Folch Partioning of Acidic Lipids and Gangliosides  

The acidic lipids, eluted from the DEAE-Sephadex, were dried by rotary 

evaporation and resuspended in 7 ml CHCl3: CH3OH (1:1 by volume). 

Chloroform (3.5 ml) and water  (2.6 ml) were added to the sample to partition 

gangliosides into the upper phase and acidic phospholipids into the lower phase 

(Seyfried et al. 1978, Folch et al. 1957). The upper aqueous phase was removed 

and the lower organic phase was washed once with 4.5 ml Folch ‘pure solvent 

upper phase’ solution (CHCl3:CH3OH:dH20, 3:48:47 by volume). The second 

ganglioside fraction was combined with the first fraction. The acidic phospholipid 

fraction was evaporated under a stream of nitrogen gas (N2) and resuspended in 

CHCl3:CH3OH (1:1 by volume).  This acidic fraction contained cardiolipin, 

phosphatidylserine, phosphatidylinositol, and sulfatides. 



 35 

 

Resorcinol Assay 

The amount of sialic acid in the ganglioside fraction was determined by a 

modified resorcinol assay before and after base treatment and desalting 

(Svennerholm 1957). NANA (Sigma, St. Louis, MO) was used as a standard 

curve for total ganglioside analysis. An aliquot of the ganglioside fraction or 

ganglioside standard was dissolved in 1 ml resorcinol reagent: water (1:1 by 

volume), boiled for 15 minutes, and cooled in an ice bath. Butyl acetate:1-butanol 

(1.5 ml) (85:15 by volume) was added and the samples were vortexed and 

centrifuged for 2 minutes. The supernatant was analyzed in the Shimadzu UV-

1601 ultraviolet-visible spectrophotometer (Shimadzu, Kyoto, Japan).  

 

Base Treatment and Desalting 

After Folch partitioning, the ganglioside fraction was further purified with 

base treatment and desalting (Heinecke et al. 2011, Hauser et al. 2004, 

Kasperzyk et al. 2004). The samples were dried under N2 and by vacuum 

lyophilization, then treated with 1ml of 0.15 M sodium hydroxide in a shaking 

water bath at 37oC for 1.5 hours. Samples were then applied to an equilibrated 

C18 reverse-phase Bond Elute column (Varian, Harbor City, CA) and washed 

with water to remove the salts. Gangliosides were eluted from the column with 

CH3OH and CHCl3:CH3OH, evaporated under N2, and resuspended in 

CHCl3:CH3OH (1:1 by volume).  
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High-performance thin-layer chromatography (HPTLC) 

All lipids were analyzed qualitatively by high-performance thin-layer 

chromatography (HPTLC) (Ando et al. 1978, Kasperzyk et al. 2004, Macala et al. 

1983, Seyfried et al. 1978). Lipids were spotted on 10 x 20 cm, for gangliosides, 

or 20 x 20 cm, for neutral and acidic lipids, Silica gel 60 HPTLC plates (E. 

Meerck, Darmstadt, Germany): 1.5 µg sialic acid for gangliosides, 80 µg nerve 

dry weight for neutral lipids, and 200 µg nerve dry weight for acidic lipids. To 

enhance precision, an internal standard (oleyl alcohol) was added to each 

sample and standard for neutral and acidic lipids, as previously described 

(Macala et al. 1983). Purified lipid standards (Matreya, Inc, Pleasant Gap, PA 

and Sigma, St. Louis, MO) were spotted on plates at 2, 4 and 8 µg, where the 

concentration is equivalent to the amount of each lipid per standard lane; except 

for the GA1 standard, which was spotted at 1, 2 and 4 µg.  

 

For gangliosides, the HPTLC plates were developed with CHCl3: CH3OH: 

0.02% calcium chloride (55:45:10 by volume) and the bands were visualized with 

resorcinol spray and burning at 100oC for 10 minutes (Kasperzyk et al. 2004, 

Hauser et al. 2004). For neutral and acidic phospholipids, the plates were 

developed with CHCl3: CH3OH: acetic acid: formic acid: water (35:15:6:2:1 by 

volume) to a height of either 10 cm or 12 cm, respectively, and then both were 

developed to the top with hexanes: diisopropyl ether: acetic acid (65:35:2 by 

volume) (Seyfried et al. 1984a, Macala et al. 1983). The neutral and acidic lipids 
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were visualized with 3% copper acetate: 8% phosphoric acid spray and heating 

at 160oC for 7 minutes.  

 

Densitometry 

Individual lipid bands were analyzed by scanning the plates using a Camag TLC 

scanner 4 (Wilmington, NC), which is controlled by winCATS, Planer Chromatograpy 

Manager software (Muttenz, Switzerland). The HPTLC plates were placed face up on the 

scanner sample tray. Deuterium and tungsten-halogen lamps were used to visual bands 

in the 190-450 nm range and the 350-900 nm range, respectively. Gangliosides were 

scanned at 580 nm wavelength and neutral and acid lipids were scanned at 328 nm 

wavelength. Single level calibration mode measured absorption for the evaluation of 

peak height and area. The total lipid distribution per lane of each plate was normalized to 

100% and the percentage distribution values were determined. The percent distribution 

of total gangliosides was used to calculate sialic acid concentration of individual 

gangliosides (Seyfried et al. 1982, Macala et al. 1983). Neutral and acidic lipids were 

calculated from the standard curve (Macala et al. 1983). 

 

X-Ray Diffraction 

XRD experiments and analysis were conducted using standard lab 

protocols, and is illustrated in Figure 10 (Avila et al. 2005, Agrawal et al. 2009). 

All diffraction experiments were carried out using nickel-filtered, single-mirror 

focused Cu Ka radiation from a fine-line source on a 3.0 kW Rigaku x-ray 

generator (Rigaku/MSC Inc., The Woodlands.TX) operated at 40 kV by 14 to 22 
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mA.  The x-ray diffraction patterns were recorded for 1 hour using a linear, 

position-sensitive detector (Molecular Metrology, Inc., Northampton, MA), and 

analyzed using PeakFit (Jandel Scientific, San Rafael, CA). For calculation 

purposes, the specimen-to-film distance (approximately 200 mm) is expressed as 

channel number. The integral width of the direct beam in Gaussian form was 7.4 

channels (or 8.2 X 10-4 Å-1).   

 

The positions of the intensity maximizing the diffraction patterns were 

used to calculate the myelin period (d). Background intensity (B), approximated 

as a polynomial curve, was subtracted from the total intensity (M+B), and the 

total integral area of the Bragg peaks coming from the myelin (M), was obtained. 

The relative amount of myelin is calculated when the total intensity coming from 

the multilamellar myelin (M, or the peak intensities above background) is divided 

by the total intensity coming form the volume of nerve subtended by the X-ray 

beam (M+B), or [M/(M+B)] (Avila et al. 2005).  

 

Statistical Analysis 

All XRD values for the β-gal +/? and β-gal -/- mice were presented as 

mean ± SD and all neurochemical values for β-gal +/? and β-gal -/- mice were 

presented as mean ± SE. All data was analyzed for significance using the two-

tailed Student’s t-Test. 
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Figure 10. Illustration of X-ray Diffraction. Whole nerves are examined and the x-

ray scatter can be recorded on film or an electronic detector. From the x-ray 

pattern, the myelin period can be measured from the intensity of the Bragg 

orders. After background subtraction, integrated intensities are used to calculate 

structure amplitudes and determine the relative amount of myelin, as described 

in Materials and Methods. Modified from (Avila et al. 2005) 
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CHAPTER Three 

 

RESULTS 

The objective of this study was to determine if the content and 

composition of lipids and myelin structure were altered in optic and sciatic nerves 

in mice with GM1-gangliosidosis. Lipid analysis and XRD were used to analyze 

the optic and sciatic nerves in mice with GM1-gangliosidosis. 

 

Lipid Analysis 

Optic Nerves 

The average weight per optic nerve was significantly lower in the β-gal -/- 

mice than in the β-gal +/? mice at 7 and 10 month (Table I). The content of total 

gangliosides and GA1 was significantly greater in optic nerves of the β-gal -/- 

mice than in the β-gal +/? mice (Table I and Figure 11). The qualitative and 

quantitative distributions of the individual ganglioside species in the optic nerves 

from 7 and 10 month old mice are shown in Table II and Figure 12. Ganglioside 

GM1 increased in the optic nerves of 7 and 10 month old β-gal -/- mice by 50% 

compared to the β-gal +/? mice. There was a corresponding decrease in the 

more complex gangliosides GT1b and GQ1b in the optic nerves of β-gal -/- mice, 

compared to β-gal +/? mice. The gangliosides decreased by 47%  (GT1b) and 

41% (GQ1b) in 7 month old mice, and by 52% (GT1b) and 54% (GQ1b) in 10 

month old mice. Ganglioside GD1a increased 11% in 10 month old β-gal -/- 

compared to the β-gal +/? mice.  
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The qualitative and quantitative distribution of neutral (Figure 11) and 

acidic (Figure 13) lipids in the optic nerves from 7 and 10 month old mice are 

shown in Table III. Total cerebrosides were decreased in the optic nerves of β-

gal -/- mice compared to β-gal +/? mice, by 32% at 7 months and 48% at 10 

months. Cholesteryl esters increased significantly, whereas there were no 

significant differences in cholesterol of 7 and 10 month β-gal -/- mice compared 

to β-gal +/? mice. Phosphatidylethanolamines were also reduced in β-gal -/- mice 

compared to β-gal +/? mice at 10 months. Sulfatides decreased in the optic 

nerves of β-gal -/- mice compared to β-gal +/? mice, by 24% at 7 months and 

32% at 10 months. Additional acidic lipids, phosphatidic acid, phosphatidylserine, 

and phosphatidylinositol, increased with some variability between samples but 

showed no overall differences between the optic nerves of β-gal -/- and β-gal +/? 

mice (data not shown). Cardolipin was not detected in optic nerves. The band 

intensity between the lower and upper bands of cerebrosides and sulfatides were 

analyzed (Table IV).  The doublets observed in cerebroside and sulfatide are due 

to the presence or absence of hydroxylation at the C1 position (Figure 1), as well 

as differential FA composition of the fatty acyl chain.  No differences were found 

in the band ratio for cerebrosides or sulfatides in optic nerve. 

 

Sciatic Nerve 
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There were no significant differences in the weight or lipid content of 

sciatic nerves between 7 and 10 months of age, so these two groups were 

combined. No differences were observed in the sciatic nerves of β-gal -/- mice in 

the average weight per nerve, or the content of sialic acid, neutral, or acidic lipids 

(Figures 11, and 13, and Tables I, III, IV, and data not shown). GA1 was present 

in the sciatic nerves of β-gal -/- mice (Figure 11 and Table I). The qualitative and 

quantitative distribution of the individual ganglioside species in the sciatic nerves 

from 7 and 10 month old mice are shown in Figure 12 and Table II. There was a 

64% increase in ganglioside GM1 in the sciatic nerves of 7 and 10 month old β-

gal -/- compared to the β-gal +/? mice. The sciatic nerves of β-gal -/- mice 

showed no other differences in ganglioside content.  

 

X-ray Diffraction  

Fresh optic and sciatic nerves were dissected from β-gal +/? and β-gal -/- 

mice and evaluated by XRD analysis. Membrane packing refers to compaction of 

the individual opposing surfaces (extracellular / intracellular) of the myelin 

membrane. Based on the relative strengths of the diffraction patterns, as seen in 

Figure 14, the relative amounts of myelin were approximately 50% and 10% 

lower in the optic and sciatic nerves, respectively, of β-gal -/- mice, in comparison 

to β-gal +/? mice (Figure 15 and Table V). Myelin periodicity refers to the repeat 

distance from the pair of membranes, which constitutes the structural unit in the 

multilamellar sheath. A slight, but significant, reduction was also seen in myelin 
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periodicity in the optic nerve of β-gal -/- mice, compared to β-gal +/? mice. XRD 

analysis revealed no differences in the myelin period in sciatic nerves.  
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Figure 11. High-performance thin-layer chromatogram of neutral lipids in the 

optic and sciatic nerves of β-gal -/- and +/? mice.  Representative samples for 

each age group and/or tissue type presented. The amount of total lipids spotted 

per lane was equivalent to approximately 80 µg nerve dry weight. The plate was 

developed and the lipid bands visualized as described in the methods section. 

Std indicates 4 mg of neutral lipid standards and 2 mg of GA1 standard. CE, 

cholesteryl ester; TG, triglyceride; IS, internal standard (oleoyl alcohol); C, 

cholesterol; CM, ceramide; CBU, cerebroside upper band; CBL, cerebroside 

lower band; PE, phosphatidylethanolamine; PC, phosphatidylcholine; SM, 

sphingomyelin; LPC, lysophosphatidylcholine. SF, indicates the solvent front. 

The arrows indicate the presence of GA1 in the specific samples. Optic nerve 

contained no visible TG and sciatic nerves contained no visible CE. 
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Figure 12. High-performance thin-layer chromatogram of gangliosides in the optic 

and sciatic nerves of β-gal -/- and +/? mice.  Approximately 1.5 µg ganglioside 

sialic acid were spotted per lane. Std indicates the ganglioside standards for the 

labeled gangliosides, gangliosides GM2 and GD3 were not visualized in the 

nerve lipids. The plate was developed and the lipid bands visualized as 

described in the methods section. 
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Figure 13. High-performance thin-layer chromatogram of acidic lipids in the optic 

and sciatic nerves of β-gal -/- and +/? mice. Representative samples for each age 

group and/or tissue type presented. The amount of total lipids spotted per lane 

was equivalent to approximately 200 µg nerve dry weight for the acidic lipids.  

The plate was developed and the lipid bands visualized as described in the 

methods section. Std indicates 4 mg acidic lipid standards. IS, internal standard 

(oleoyl alcohol); CL, cardiolipin; PA, phosphatidic acid; SFU, sulfatide upper 

band; SFL, sulfatide lower band; PS, phosphatidylserine; PI, phosphatidylinositol. 

SF, indicates the solvent front. 
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Figure 14. X-ray diffraction from optic and sciatic nerves of β-gal mice. 

Representative examples of data for optic (left) and sciatic (right) nerves from β-

gal +/? and β-gal -/- are shown. Myelin scatter was significantly weaker in optic 

nerves (p < 0.001) and in sciatic nerves (p < 0.03) of β-gal -/- mice than in β-gal 

+/? mice. The Bragg orders for the x-ray peaks are indicated 2-5. 
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Figure 15. XRD analysis of myelin content and myelin periodicity of β-gal -/- and 

β-gal +/? mice. The fractional amount of scatter by compact myelin (M) compared 

to the relative amount of total x-ray scatter (M+B) is plotted against the myelin 

period, in Angstroms (Å). The mean value and standard deviations are indicated 

for each group of data (N = 12 nerves per group for β-gal +/?, and 6 nerves per 

group for β-gal -/-). The relative amount of myelin was significantly lower in the 

optic and sciatic nerves of β-gal -/- (circles) mice compared to β-gal +/? 

(diamonds) mice. Myelin periodicity was significantly less in the optic nerves of β-

gal -/- (circles) mice than in β-gal +/? (diamonds) mice. The sciatic nerves of β-

gal -/- (circles) and β-gal +/? (diamonds) mice showed no significant differences 

in periodicity. Asterisks indicate statistical significance of p < 0.003, based on 

Student’s two-tailed unpaired t-test. 
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CHAPTER FOUR 

 

DISCUSSION 

 

In whole brain analysis, mice with GM1-gangliosidosis have reduced brain 

weights, and an increase in total ganglioside content, GM1, and GA1 (Vajn et al. 

2013, Yu et al. 1975, Baek et al. 2010, Hahn et al. 1997, Matsuda et al. 1997b, 

Broekman et al. 2007, Kasperzyk et al. 2005). The optic nerves also had a 

significant reduction in weight per nerve and a reduction in the amount of myelin 

per nerve. This reduction per nerve, in addition to reduction in the amount of 

nerves in GM1-ganliosidosis brains, could affect the total brain weight reduction 

previously seen in diseased brain (Tessitore et al. 2004, van der Voorn et al. 

2005). Ganglioside content has been shown to increase in myelin with age, and 

the same trend was observed in the optic nerves of β-gal +/? mice between 7 

and 10 months of age (Suzuki et al. 1967, Yu et al. 1975). The increase in 

ganglioside content was even greater among β-gal -/- mice compared to controls, 

due to the increase in GM1 content, as previously seen in whole brains 

(Broekman et al. 2007, Kasperzyk et al. 2005, Baek et al. 2010).  

 

Enrichment of ganglioside GM1 and GA1 was observed in the optic and 

sciatic nerves of β-gal -/- mice. Control nerves exhibit the ganglioside pattern that 

is normally observed in adult and aging brains (Seyfried et al. 2009, Heinecke et 

al. 2011, Broekman et al. 2007, Baek et al. 2010, Yu et al. 1975). These data 
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suggest that GM1 and GA1 accumulation in the brains of β-gal -/- mice are also 

observed in the optic and sciatic nerves. Nevertheless, the optic nerves of β-gal -

/- mice had additional ganglioside abnormalities not previously observed in the 

whole brain; specifically, reduction of GT1b and GQ1b and an increase in GD1a. 

However, while not consistent in all brain regions (cortex, cerebellum, brainstem, 

and spinal cord) or statistically significant, Baek et al. 2010 did observe reduction 

in GT1b and GQ1b and an increase in GD1a of β-gal -/- mice compared to 

controls. Since GT1b and GD1a are known to reside in the plasma membrane of 

axons and contribute to axonal-myelin stability, these lipids might be expected to 

either increase or decrease concurrently (Vyas et al. 2002, Jackman et al. 2009). 

However, the reduction of GT1b and increase of GD1a suggests that their 

interaction with the axonal plasma membrane occurs independent of each other. 

The increase in GD1a may occur to compensate for the decrease in GT1b, in an 

attempt to maintain axonal-myelin integrity. The N-metyl-D-aspartate (NMDA) 

receptor is the primary pathway for calcium influx into the myelin of optic nerve 

and is associated with neurotoxicity when activated (Sucher et al. 1991, Shin et 

al. 2014, Micu et al. 2006). NMDA receptor has also been associated with 

neurotoxicity in retinal ganglion cell cultures (Sucher et al. 1991). GQ1b has been 

shown to regulate expression of the NMDA receptor protein, and reduction in 

GQ1b may reduce calcium influx and thus reduce potential neuronal damage 

(Shin et al. 2014, Micu et al. 2006). 
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In addition to ganglioside and weight abnormalities in whole brain of β-gal 

-/- mice, cerebroside and sulfatide content were less in β-gal -/- mice then in β-

gal +/? mice (Matsuda et al. 1997a, Baek et al. 2010, Hahn et al. 1997, Matsuda 

et al. 1997b, Broekman et al. 2007, Kasperzyk et al. 2005). Cerebrosides and 

sulfatides are neutral and acidic lipids, respectively, that are enriched in myelin 

membranes. The cerebroside and sulfatide content was reduced in the optic 

nerves of β-gal -/- mice, corresponding to previously observed reduction in the 

lipids of whole brain β-gal -/- mice. In addition, there was reduction of 

phosphatidylethanolamine, at 10 months, and an increase in cholesteryl ester at 

7 and 10 months in the optic nerves of β-gal -/- mice, corresponding to lipid 

changes seen in humans (Kasama et al. 1986, Suzuki et al. 1968b). An increase 

in cholesteryl esters correlates to an increase in inflammation and myelin 

breakdown in nervous tissue (Yu et al. 1982, Mutka et al. 2010, Paintlia et al. 

2003). The majority of phosphatidylethanolamine in myelin is in the form of 

plasmalogen ethanolamines (Farooqui et al. 2001). All ethanolamine lipids are 

resolved together with TLC analysis, so it was deduced that the reduction in the 

phosphatidylethanolamine band was a result of a primary reduction in 

plasmalogen ethanolamines. Reduction in cerebroside, sulfatide, and 

plasmalogen ethanolamines are known to affect stability in the paranodal junction 

and the interaction of the paranodal myelin with the axon (Farooqui et al. 2001, 

Chrast et al. 2011, Hayashi et al. 2013, Marcus et al. 2006, Coetzee et al. 1996, 

Viader et al. , Ishibashi et al. 2002, Jackman et al. 2009). This affect at the 

paranodal junction leads to a reduction in conduction velocity in nerves (Hayashi 
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et al. 2013, Coetzee et al. 1996). These data suggest that the optic nerve lipids 

were altered in ways that reduce myelin integrity. A reduction in myelin stability 

and conduction velocity could explain one aspect of the neuronal and visual 

abnormalities observed in GM1-gangliosidosis mice (Baek et al. 2010, Denny et 

al. 2007, Murray et al. 1977, Bieber et al. 1986).  

 

Cerebrosides and sulfatides appear as double bands on HPTLC plates. 

The double bands separate based on the amount of hFA and, to a lesser extent, 

their fatty acyl carbon chain length; where non-hydroxylated molecules run faster, 

indicated as upper bands, than hydroxylated molecules, indicated as lower bands 

(Das et al. 1978, Karthigasan et al. 1996, Ganser et al. 1988, Clausen et al. 

1970, Inouye et al. 1985, Blass 1970). The FA content of cerebrosides and 

sulfatides are mostly hydroxylated, saturated, and longer chain lengths (C22-24), 

while most phospholipids and gangliosides are non-hydroxylated and shorter 

chain lengths (C18) (Bosio et al. 1998, O'Brien et al. 1967, Blass 1970, Menkes 

et al. 1966, Hama). The amounts of upper and lower band lipids in cerebrosides 

and sulfatides agrees with previous assessment of the FA content of 

cerebrosides and sulfatides in human white matter and do not appear to be 

altered in β-gal -/- mice nerves (Svennerholm et al. 1968, Menkes et al. 1966, 

Horrocks 1973).  

 

The nerves of the PNS are known to be sites of accumulation in some 

LSD (e.g. GM2-gangliosidosis) (Shapiro et al. 2008, Jain et al. 2010, Tatematsu 
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et al. 1981). However, this accumulation of material has not been shown in the 

peripheral nerves in GM1-gangliosidosis mice, and lipid analysis has not been 

performed on any peripheral nerves in animals with GM1-gangliosidosis. 

Yamano et al., showed accumulation of storage material in a human fetus with 

GM1-gangliosidosis beginning in the PNS, before accumulating in the spinal cord 

and brain (Yamano et al. 1983). The increase of GM1 and GA1 in the sciatic 

nerves corresponds to the increase of GM1 and GA1 in the optic nerves. 

However, the additional lipid abnormalities in the optic nerves, compared to 

whole brain, were not observed in the sciatic nerves. These data suggest that the 

previously observed accumulation of GM1 and GA1 in the periphery of humans is 

also observed in the sciatic nerves of β-gal -/- mice (Iwamasa et al. 1987, 

Folkerth et al. 2000, Nada et al. 2011, Suzuki et al. 1968b, NINDS 2011).  

 

XRD has been a useful technique in assessing the quantity and 

compaction of myelin about the nerve (Mateu et al. 1991, Kirschner et al. 1976, 

Avila et al. 2010, Yin et al. 2006, Inouye et al. 1985, Karthigasan et al. 1996, 

Kirschner et al. 2010, Chia et al. 1984, Avila et al. 2005, Agrawal et al. 2009). 

The present analysis of β-gal +/? nerves are in agreement with previously 

published data on XRD of other mouse nerves: specifically the amount of myelin 

and the periodicity of the peaks, in both optic and sciatic nerves (Avila et al. 

2010, Mateu et al. 1991, Agrawal et al. 2009). This is the first time XRD analysis 

has been performed on the nerves in GM1-gangliosidosis animals.  These results 
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correlate with the lipid data, by demonstrating abnormalities to a greater extent in 

the optic nerve and to a lesser extent in the sciatic nerve. 

 

Humans, mice and other animals with GM1-gangliosidosis, present with 

retinal and visual abnormalities (Read et al. 1976, Suzuki et al. 2001, NINDS 

2011, Denny et al. 2007, Baek et al. 2010, Sheahan et al. 1978, Murray et al. 

1977). These abnormalities are characterized by ganglioside accumulation in the 

retinal ganglion cells and altered myelination of the optic nerve (Muller et al. 

2001, Brunetti-Pierri et al. 2008, Gururaj et al. 2005, Di Rocco et al. 2005, Shen 

et al. 1998, Kaye et al. 1992, Folkerth et al. 2000, Sheahan et al. 1978). In 

humans with GM1-gangliosidosis, the retinal ganglion cells have been observed 

as one of the primary locations for ganglioside accumulation (Weiss et al. 1973, 

Emery et al. 1971, Cogan et al. 1984, Bieber et al. 1986). These abnormalities 

contribute to blindness as one of the pathological features of GM1-gangliosidosis 

(Baker et al. 1974, Matsuda et al. 1997a, Suzuki et al. 2001, Baek et al. 2010, 

Hahn et al. 1997, Matsuda et al. 1997b, Tessitore et al. 2004). Baek et al., used 

AAV (adeno-associated virus) vector thalamic gene delivery to correct storage in 

GM1-gangliosidosis mice (Baek et al. 2010). They observed a significant 

reduction of GM1 and GA1 accumulation in most CNS structures and an 

increase in survival, but motor abnormalities and blindness were not completely 

corrected (Baek et al. 2010). It has been determined that gangliosides do not 

move from the retina to the optic nerve (Holm et al. 1974, Holm 1972). These 

data, along with previous studies on the ocular pathway, suggest that alterations 
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to the retina and optic nerve work in conjunction with the brain to produce visual 

abnormalities observed in GM1-gangliosidosis. 

 

The structural integrity of the myelin membrane and its interaction with the 

axon is dependent on the balance of proteins and lipids (FA chain length, 

saturation, and the lipids present) (Viader et al. 2013, Marcus et al. 2006, Vyas et 

al. 2002, Jackman et al. 2009, Ishibashi et al. 2002, Hama 2010).  Many lipids 

act as messengers to stimulate calcium influx, inflammation, apoptosis, etc 

(Farooqui et al. 2001, Kolesnick et al. 1999, Platt et al. 2012). Changes in lipid 

content or composition could disrupt the stability and integrity of the myelin 

membrane. GM1, cholesterol, cerebroside, sulfatide, and plasmalogen 

ethanolamine are all known to affect stability at the paranodal junction (Farooqui 

et al. 2001, Chrast et al. 2011, Hayashi et al. 2013, Marcus et al. 2006, Coetzee 

et al. 1996, Viader et al. , Ishibashi et al. 2002, Jackman et al. 2009, Susuki et al. 

2007). Alterations to any of these lipids would compromise the myelin integrity. 

We observed significant changes in cerebroside, sulfatide, and 

phosphatidylethanolamine in the optic nerve, and the lipid abnormalities could 

lead to ER distress, apoptosis, and  compromised myelin structure. 

 

To our knowledge this is the first study demonstrating a reduction in the 

quantity and quality of myelin in the optic and sciatic nerves of mice with GM1-

gangliosidosis. Through the combined results of lipid analysis and XRD we were 

able to correlate our results on control nerves to previous results on white matter 
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and CNS and PNS nerves. Both analytical techniques have been utilized in the 

study of myelin stability. The neurochemical pathology was altered in the optic 

and sciatic nerves of mice with GM1-gangliosidosis.  Nerve weight, total 

gangliosides, GM1, GA1, cerebrosides and sulfatides were altered not just in the 

brains, but also in the individual nerves of the CNS. Combined with alterations in 

GD1a, GT1b, GQ1b, cholesteryl ester and plasmalogen ethanolamine 

(represented by phosphatidylethanolamine) content, these lipid differences 

resulted in a reduction in the amount of myelin and myelin periodicity in the optic 

nerves. While PNS involvement was not as drastic as in the CNS, the sciatic 

nerves did accumulate GM1 and GA1, and they had a reduction in myelin 

content. Future therapeutic research should analyze optic and sciatic nerves as 

part of a comprehensive corrective therapeutic regimen.  
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