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ABSTRACT

This thesis is a theoretical study of the electron transport and response properties of epitaxially-

grown, low-dimensional semiconductor quantum well heterostructures, under steady-state, current-

driven (nonequilibrium) conditions. These structures operate in the Terahertz (THz) frequency and

submillimeter wavelength range, and are the leading candidates for compact, coherent sources of THz

radiation. This work is divided into two parts: Part I consists of an analytical study of the individual

quantum well units, and the tunneling transmission characteristics, for which reasonably accurate

algebraic expressions are obtained. An underlying philosophy of this work is the desire to describe

each of the key components involved, independently, through these simple analytical expressions. In

Part II the numerical study of the transport and radiation response of the quantum well structures

specially designed to generate THz radiation based on the plasma instability concept is presented.

Several models are proposed which describe the overall electron transport and which determine the

underlying nonequilibrium steady state. In particular, the key features of the experimental current-

voltage (IV) curves for such structures are explained, and the corresponding response properties are

determined. The modeling and simulation of these potential optoelectronic devices is a crucial tool

for elucidating the precise mechanisms and interplay of the many microscopic processes which give

rise to the observed behavior. Key features of the radiation response arise from the intersubband

plasma instability which occurs due to the resonant interaction of an emission and an absorption

mode, and these features are compared with the experimental observations.
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Chapter 1

Introduction and Overview

1.1 Semiconductor Quantum Well Heterostructures and Devices

Quantum well (QW) heterostructures are the building blocks of many of the most advanced semi-

conductor devices due to their wide range of applications. There has long been an interest in

the electronic and optical properties of heterostructure QW-based and superlattice-based devices

because they provide a novel environment in which to study particle dynamics in low-dimensional

systems, in contrast to bulk materials. They are essential elements of the highest performance optical

sources and detectors, such as the mid-infrared QW heterostructure lasers [1, 2], high-efficiency QW

heterostructure LEDs [3], and QW solar cells [4]. QW’s are continually employed in high-speed and

high-frequency digital and analog devices [5], and can also be used as part of electronic devices such

as heterojunction-based bipolar transistors [2, 6], modulation-doped field effect transistor (MOD-

FET), resonant tunneling devices, and as an optical component in waveguides, microresonators, and

mirrors [7]. However, reliable and efficient sources operating in the terahertz (THz) region, between
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lower frequency microwaves and the higher frequency far-infrared, are still lacking. In this thesis we

study novel QW structures as possible candidates for sources of THz radiation.

A heterostructure is a semiconductor material with a position-dependent chemical composition. The

layers that make up a heterostructure can be made exceedingly thin, with thicknesses on the order of

a single atomic layer. This is possible because of the advancement of precise growth techniques, such

as Molecular Beam Epitaxy (MBE) [8]. The ability to form such thin layers make heterostructures

one of mans significant engineering conquests. Just as Nature’s atom puts electrons into discrete

energy states, mans quantum-confined heterostructure forces electrons into discrete energy states

as they pass through a heterostructure device. By exploiting this ability, we can influence when,

where, and how electrons interact with their surroundings. The energy levels of a heterostructure

can be tailored so that transitions between levels correspond to photons in a particular region of the

electromagnetic spectrum, for instance, the THz region. Additionally, there is the ability to ‘tune’

the energy levels and their relative placement by applying a voltage bias, creating novel device

scenarios. Depending on the number of heterojunctions formed, complex structures can be built up

from simple QW systems such as the single symmetric and asymmetric QW’s, and the triangular

QW, for example. The success in the growth of QW structures makes a study of introductory

quantum physics realizable in these man-made semiconductor materials. To this end, one of the

main goals of this thesis is to obtain reasonably accurate analytical closed-form algebraic expressions

for the energy levels and wavefunctions of these simple QW units. Although the calculation of

the energies and states of composite structures typically requires involved numerical procedures, the

insight gained from analytical approximations (for the simple constituent units) can be an invaluable

asset in the study of QW-based heterostructures.

In the seminal work that first recognized this possibility of quantum confinement in heterostructures,

Esaki and Tsu in 1970 theorized that a particular heterostructure implementation could result in

negative resistance at certain applied biases [9]. The following year, Kazarinov and Suris proposed

that the man-made energy states of quantum-confined heterostructures could be used for the basic
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optical transition for a new type of laser [10]. An important characteristic of intersubband transi-

tions (transitions within the conduction band), the dipole moment, was first experimentally observed

in 1985 [11, 12] by an absorption measurement. The first intersubband emission was observed by

Helm et al. in the far-infrared (FIR) frequency range in a voltage-biased superlattice structure under

resonant tunneling conditions [13, 14]. Quantum well infrared detection based on intersubband ab-

sorption has also been well developed, resulting in the quantum well infrared photodetector (QWIP)

working at wavelengths of 4 μm and 10 μm [15, 16]. The development of intersubband-based sources

operating in the THz region has been relatively slow however, due to the fact that in thermal equi-

librium, most of the carriers are in the ground state, whereas for emission, a population inversion

between two subbands must be maintained for radiative transitions. This requires an appropriate

device set-up, either with an applied bias, or a pumping scheme which creates occupation of higher

subbands.

Figure 1.1: The electromagnetic spectrum, showing the THz gap between conventional electronics

and photonics.

The desire for compact, coherent and tunable sources of THz radiation has driven many intense

research efforts. The spectral properties and capabilities of electromagnetic waves in the THz fre-

quency and submillimeter wavelength range are important for practical purposes, such as industrial,

medical and defense applications [17, 18]. This is so, because many molecules have their character-

istic vibration and/or rotational frequency within the THz region, and consequently, the radiation

has many potential applications in areas such as genetic research, drug development, environmental
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monitoring, medical imaging, and security screening, etc [19]. Loosely defined, the THz spectral

region lies between 30 and 300 μm wavelength and 1012 to 1013 Hz in frequency. As illustrated in

Figure 1.1, these boundaries mark convenient divisions between the capabilities of two broadly dif-

ferent technologies: conventional electronics and photonics. Referring to Fig. 1.1, from radio waves

to microwaves, up to the THz frequency range, electronics have dominated due to their ease of use

and functionality. The limitation of electronics in covering the Thz range is due to an impedance

limitation, which is based on macro charge oscillations [20]. From the high-frequency end of the

spectrum, while photonics has been successfully implemented in the form of modulators, detectors,

amplifiers, and used in optical communications and data transmission, access to the THz region

is still limited. The push to close the so-called THz gap has resulted in the development of the

quantum cascade lasers (QCL’s) [21], based on significant modifications of the mid-IR QCL’s [22].

1.2 Plasma Instability-based Emission

Quantum well structures specially designed to generate THz radiation based on the plasma insta-

bility (PI) concept are studied in this thesis. In a plasma there exist collective oscillations through

which wave-particle interactions may transfer free energy in the system into a collective mode. An

instability develops if the amplitude of collective oscillations can grow (at the expense of free energy).

The source of free energy in a system can arise in various ways, such as through a change in the

distribution function from its equilibrium state. For example, if the distribution function develops

a (velocity) gap, then by the Penrose criterion an instability can occur [23]. This situation can arise

when a beam of particles (i.e. a current) is injected into a plasma, and this is called a current-driven

plasma instability.
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The phenomena of plasma oscillations and instabilities is well known in the study of gaseous plas-

mas [23-26]. Early attempts in 1961 by Pines and Schrieffer [27] to investigate if such processes

could occur in solid state systems were unsuccessful due to the low mobilities of the carriers. In a

bulk solid state plasma for the transfer of energy from the current into the plasma oscillations to

happen (the threshold for instability), the carrier drift velocities must be very high, on the order of

the Fermi velocity. Accelerating carriers to reach this threshold could induce strong plasma heating,

thus preventing coherent plasma wave generation. Thus such a current-driven plasma instability

(CDPI) could not exist in such low-mobility systems. Several theoretical attempts were made in the

mid-1980’s to investigate the possibility of CDPI in layered solid state plasmas [28-30]. The studies

at this time were simplified “cold beam” approaches which did not account for scattering and carrier

heating effects.

In 1987 at Boston College a systematic investigation was initiated by Bakshi and Kempa for deter-

mining the feasibility of CDPI in solid state systems, resulting in a series of papers. This included

the study of the threshold conditions for an instability in type I and type II semiconductor superlat-

tices [31, 32], superconductors [33], and an investigation of the effect of a velocity gap in the carrier

distribution, with the implications for novel device applications [34]. The possibility of CDPI in

quantum wires and quantum wire superlattices were also studied [35], as well as the spontaneous

generation of plasmons [36] induced by a beam of ballistic electrons in modulation doped hetero-

junctions. The amplification of plasma modes in semiconductor heterostructures [37] were assessed

for their potential use. The growth rates of current-driven plasma waves in layered systems [38] were

studied, providing guidelines for selecting the best systems for possible device applications. In con-

trast to the uniform systems mentioned above, a periodic density modulation in a quantum wire [39]

results in a significantly lower driving electric field required for achieving the onset of instability,

making this system a possible candidate for experimental verification of this phenomena.

A coupling arrangement such as a grating would be required to convert the energy of the growing

plasma waves into radiation [40]. Electromagnetic radiation arises at the frequency of the plasma
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wave when the grating period corresponds to the plasmon wave number. Furthermore, for optimal

efficiency, the plasmon wave number for the most unstable mode must be matched to the grating

period. The grating-coupling efficiency for layered systems was then established [41]. Experimental

evidence of the (radiative) decay of optically excited coherent plasmons in a two-dimensional electron

gas (2DEG) was shown by Vossebuerger et al [42].

Even though the feasibility for CDPI was established for several 2DEG systems [31-41], their ex-

perimental realization required specially designed very high mobility samples. In contrast, bounded

systems could offer many advantages [43] and these were investigated next. In the studies previ-

ously mentioned, the external electric field was applied along the ’unbounded’ dimension with the

resulting growing plasma waves propagating along this direction as well. In a bounded plasma how-

ever, reflection of the waves in the direction of restricted motion can occur, offering several distinct

advantages. Bounded plasmas, which have several eigenmodes [43] make it possible to pump energy

from the current into the plasma under a variety of conditions. The effects of collisions can be

reduced by reducing the size of the active region. Additionally, a coupling mechanism is not nec-

essary, as the plasma oscillations of a bounded plasma couple directly to electromagnetic radiation.

A theoretical study was carried out [44] for a steady-state nonequilibrium 1D finite length plasma

model establishing the feasibility of achieving a strong instability with a growth rate exceeding the

typical dissipative collision rates. These ideas could be extended to other geometries, including

quantum well structures with proper injection and extraction schemes to maintain the appropriate

nonequilibrium steady state.

A basic paper [45] in 1997 established the essential conditions for obtaining an intersubband plasma

instability in quantum well structures: it is the resonant interaction of an emission mode and an

absorption mode. A three level scenario, with upper and lower levels occupied, but the middle

level kept empty by extraction generates such an instability. A collaboration was initiated with

the Technical University of Vienna (TUV) for the design, growth and characterization of several

QW structures intended to generate THz radiation. A summary of subsequent work [46-52] is given
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in Part II. This thesis is a continuation of the ongoing study devoted to plasma instability based

emission from quantum well heterostructures.

1.3 Transport and Response Modeling

The electronic transport properties provide an important diagnostic tool for studying and devel-

oping functional and reliable nanostructures and optoelectronic devices. Diagnostic methods such

as photoreflectance, electroreflectance, electroluminesence, and characteristic IV curves reveal the

underlying physics and the functional bounds of such devices. In particular, the structure’s IV-curve

shows how the structure/device responds under a changing bias, and in general is a very commonly

and widely used diagnostic tool in semiconductor device physics. Accurate transport models are

useful for understanding and predicting the behavior of the devices and reveal the internal processes

responsible for the observed behavior, thereby providing a comprehensive picture of the microscopic

physics.

Central to the transport modeling is establishing the non-equilibrium steady state (NESS) as a

function of the applied bias. There are two conservation conditions: Since there is no source or sink

of carriers in the active region, the outgoing current equals the incoming current, and the system

is in a steady state. Also, the energy conservation demands that the entering energy flux is greater

than or equal to the outgoing energy flux, and the reduction, if any, implies an energy loss process

in the active region. These conditions place bounds on the possible NESS’s a structure will obtain

under a certain bias. Once the NESS is determined, the radiation response can be calculated. We

are particularly interested in the response characteristics when the conditions for plasma instabilities

(Sec. 1.2) are realized.
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An important feature in the study of these structures is the coexistence of a continuum distribution

with the quantized, bound state distribution. When the system is bounded by thin barriers the

outside continuum levels penetrate into the structure. This is especially important at low biases, for

both forward and reverse bias. However as the bias is increased the continuum population depletes,

and the system is primarily characterized by quantized levels.

1.4 Thesis Overview

This thesis is broadly a study of quantum well heterostructures intended for potential use as sources

of THz radiation. After the Introduction (Chapter 1), Chapter 2 consists of the requisite solid-state

physics background.

Part I of the thesis, which consists of Chapters 3-6, focuses on describing, in an analytical fashion,

each of the basic units (quantum wells and barriers) that make up more complicated, real het-

erostructure devices. Chapter 3 details the work done for simple quantum wells (QW): the single

finite symmetric QW, the single finite asymmetric QW, the finite triangular, or wedge well, and

the finite symmetric double QW. Simple analytical expressions are obtained for the energy levels

which are reasonably accurate and globally valid. Chapter 4 introduces the tunneling transmission

probability for the rectangular barrier and the triangular barrier. A mapping is established connect-

ing the two results. Chapter 5 deals with the finite width double barrier, in which a new complex

transcendental equation for the energy eigenvalues is derived. The imaginary parts of the complex

energy roots represent the leakage rates through the barriers. Finally in chapter 6, the situation of

compounding the basic units is addressed. The underlying philosophy to the first part of the thesis

is to obtain analytical descriptions of the energies and wavefunctions of the basic units and of the
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resulting composite system, which can then be used to analytically calculate the response of the

system.

Part II focuses on establishing the transport models that are consistent with the observed current-

voltage (IV) characteristics. In particular, the essential physics behind the notable features in the

IV’s is determined for both forward and reverse bias directions. The NESS is determined at each

bias, and the resulting radiation lineshapes are then studied.
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Chapter 2

Semiconductor Physics

To understand the physics and operational characteristics of semiconductor devices, the fundamental

principles must be first examined. This chapter reviews the fundamental semiconductor and solid

state physics background necessary for understanding the work done in this thesis. While most of the

concepts are quite general, the focus will be on the GaAs/AlxGa1−xAs and In1−xGaxAs material

systems. Due to precision growth techniques, restriction in the motion of charge carriers occurs,

which has a profound effect on the energy level structure and transport. As the relevant processes

responsible for THz-related phenomena originate between subbands within the conduction band,

the complexity of the valence band is ignored. One of the key ideas presented here is that many

common heterostructures and devices in use are composed of simpler units such as quantum wells

and potential barriers. In this chapter the motivation is presented for individually studying some of

these basic building blocks. In later chapters (3-6) the full analytical work is laid out detailing how

the approximate analytical expressions for the energies, wavefunctions, and tunneling transmission

characteristics of these units are determined. Details on the formal topics discussed in this chapter

can be found in Ashcroft and Mermin [1], Davies [2] and Kelly [3], for example, while the topic of

QW’s and associated physics can be found in Morrison [4], Gilmore [5], and Singh [6].
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This chapter is broadly divided between the formal theoretical description of heterostructures and

the description of the basics of quantum well heterostructures. The chapter is organized as follows:

In Subsection 2.1 the atomic properties of the GaAs, AlGaAs and the InGaAs system are reviewed,

including discussion of the lattice constant and the energy gap. Subsection 2.2 discusses the den-

sity of states, followed in subsection 2.3 with the Fermi-Dirac distribution. In Subsection 2.4 the

important Fermi-Dirac integrals Fn are introduced, along with a new reasonably accurate two-part

approximation to the F1/2 integral.

The next half of the chapter involves the description of subband formation, the two-dimensional

electron gas (2DEG), and the Schrodinger-Poisson system which is encountered in the study of

low-dimensional QW heterostructures.
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2.1 Heterostructure Formalism

2.1.1 Bulk III-V Semiconductors

The properties of semiconductor materials in general, are unique in that they permit one to lo-

cally modify the energy-band structure of a given semiconductor compound, thereby controlling the

motion of the charge through the structure. In order to understand how such local modification

of band structure can affect this motion, an understanding of the energy bands of bulk semicon-

ductors [3, 1, 7] is needed. As the heterostructures studied in this thesis are based on the III-V

semiconductors a brief statement will be made concerning their properties. In binary III-V com-

pounds, such as GaAs, InAs, AlAs, AlSb, and the ternary compound AlxGa1−xAs, there are 8 outer

electrons (3 from Ga and 5 from As) which contribute to the electronic properties. The most com-

monly occurring (compound) crystal structure based on these materials is the zinc-blende structure,

shown in Figure 2.1.1. This is a face-centered cubic (fcc) lattice with a basis consisting of one atom

of the third main group, and one of the fifth main group, attached to each lattice point. For instance,

in the binary GaAs, each Ga atom is surrounded by four As atoms, and each As atom is surrounded

by four Ga atoms in a tetrahedral geometry.

An important characteristic in the formation of semiconductor compounds is the lattice constant.

The lattice constant is defined as the distance between the next-neighbor lattice points (not the

actual distance between the atoms), and is in general dependent on pressure and temperature. This

will determine the appropriate material to be grown on a given substrate. For a compound AxB1−x,
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Figure 2.1: The zinc-blende crystal structure for GaAs, which consists of a face-centered structure

with a 2-atom basis in a tetrahedral form. The constituent Ga and As atoms are labeled.

an effective lattice constant can be found from the expression, known as Vegard’s Law [6, 8]

aalloy = xaA + (1 − x)aB (2.1)

The lattice constant for GaAs [12] is a = 5.65325 Å (T=300 K) and for AlAs [9], a = 5.66 Å (T=300

K). For InAs [10] with an Indium concentration of 5% (In0.05Ga0.95As), the following expression can

be used (units in Å)

a = 6.0583− 0.4050x (2.2)

and has the value a = 6.0583 Å (T=298.15 K). Figure 2.2 shows various binary compounds plotted as

a function of the lattice constant a and energy gapEgap. This diagram is useful for determining which

materials will provide high-quality crystal growth. The lattice-matching between AlAs and GaAs is

evident from the nearly vertical line in Fig. 2.2 in the first shaded column, and indicates that the

AlxGa1−xAs alloys would be relatively easy to prepare (evaporating AlAs onto a GaAs substrate)

without strain energy build-up. The formation of hetero-interfaces between semiconductors with

different lattice constants results in the appearance of a built-in strain which can be used as another

controlling parameter for the band engineering. Such is the case of InAs grown on GaAs (resulting in

InGaAs) in which the lattice constant is strongly dependent on the Indium concentration, Eq. (2.2),

and so even appreciable amounts of Indium can result in the formation of large domains or clumps or
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Figure 2.2: The lattice constant a and energy gap of various semiconductors. Full lines indicate

a direct-gap semiconductor and broken lines indicate an indirect-gap semiconductor. The (first)

shaded column indicates by the vertical line that GaAs and AlAs are nearly lattice-matched.

material because of the lattice-mismatch. One rather extreme scenario is the formation of quantum

dots which have atomic-like properties and are active area of research in itself [11]. However, the

structures studied in this work have only a 5% Indium concentration with a minimal resulting

lattice mismatch (7% between GaAs and InAs). Even so, the introduction of 5% Indium into the

GaAs system essentially creates a ’pocket’, or rather deep quantum well relative to the neighboring

GaAs, drastically altering the potential profile and internal electrostatics of the device. The InGaAs

system itself has proven to be an important material for high-frequency device applications due to

high electron mobility and large intervalley separation in the conduction band [12].

The energy gap Egap is defined as the difference between the valence band Ev (the highest occupied

band) and the conduction band Ec (the lowest empty energy band). Figure 2.4 illustrates that the

conduction band edge for GaAs is found at either at the Γ (0,0,0), L (1,1,1)π/a, or X (2,0,0)π/a

point, where a is the lattice constant. However, the smallest energy difference is at the point k = 0,

known as the Γ-point, and also as the Brillouin zone center, and therefore GaAs is characterized as a
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direct-gap material. This property has allowed GaAs to be used extensively in LED’s and laser diodes

for example. In contrast, the compound AlAs is an indirect-gap material, as shown in Figure 2.5,

and therefore requires a momentum transfer for relaxation from the conduction band-edge to the

valence band-edge.

The vertical axis in Fig. 2.2 shows the energy gap Eg indicating that AlAs has a larger band gap

than GaAs, a property crucial to the formation of quantum wells (discussed below), and has a

temperature dependence given as [13]

Eg(eV ) = 1.519− 5.405x10−4 T 2

T + 204
, for GaAs (2.3)

Eg(eV ) = 2.239− 6.04x10−4 T 2

T + 408
, for AlAs (2.4)

The ternary alloy system AlxGa1−xAs, with 0 ≤ x ≤ 1, plays an important role in many state-of-

the-art semiconductor devices. Alternating semiconductor layers of very high quality can be created

easily with varying concentration x, with the most exploited characteristic being the bandstructure.

Figure 2.3 summarizes the most important aspects of the alloy [3] for room temperature. At x = 0,

GaAs has a room temperature bandgap of 1.42 eV. With increasing substitution of Ga with Al,

the bandgap of the alloy rises. At x = 1, AlAs is an indirect-gap semiconductor with a minimum

energy separation at the X point. A crossover occurs from direct to indirect around x = 0.45, as

seen in the figure. For the InGaAs alloy, the bandgap variation is from 0.39 eV to 1.5 eV [14, 10].

Fundamental materials parameters such as the band offset and energy gap for example, can be

conveniently reported in tabular form for binary semiconductors, as in the review by Vurgaftman

et al. [15]. Ternary alloys, however, have a degree of freedom in material composition, making

tabular recording prohibitive. For any ternary material AxB1−xC, composed proportionally of the

two constituent binaries (AC)x and (BC)1−x , a range of values exists over the mole fraction x for

any generic material parameter P .
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Figure 2.3: Energies of the three lowest conduction bands for the ternary compound AlxGa1−xAs,

as a function the mole concentration x. The labels Γ, X and L refer to the points of symmetry. The

vertical dotted line marks the point x = 0.45 at which the compound transitions from direct-gap to

indirect-gap.
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Figure 2.4: The energy band structure of GaAs. Also shown are the symmetry points.

Figure 2.5: The energy band structure of AlAs, illustrating the smallest energy difference lies (indi-

rectly) between the points X1 and Γ15.
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2.1.1.1 Effective Mass

From the view of electrostatics, the crystal is made up of spherically symmetric ionic core potentials

making it a much different and complex scenario than that of the vacuum. Therefore there are forces

on the electrons complicating the motion. However, one can still use elements of the ’free-electron’

gas model [1] to determine the effect on the electron. First, it can be shown that the group velocity

vg of the wavepacket associated with the electron is indeed equivalent to the (classical) velocity

vclassical of the electron, as

vg =
∂ω

∂k
=

1

h̄

∂E

∂k
=
h̄k

m
=

p

m
= vclassical (2.5)

where the result from the free-electron model, E(k) = Ec+(h̄2k2)/2m, has been used. This parabolic

dispersion relation between E and k is an important one, and is explained in more detail below in

the following sections. Now for the moment considering an external force F acting on the electron,

given by

F = m
dvg

dt
= m

1

h̄

∂

∂t

∂E

∂k
= m

1

h̄

∂2E

∂k2
∂k

∂t
(2.6)

and the corresponding increase in momentum given as

F = h̄
∂k

∂t
(2.7)

Equating Eq. (2.6) and (2.7), gives

m
1

h̄

∂2E

∂k2
∂k

∂t
= h̄

∂k

∂t
=⇒ m ≡ m∗ = h̄2

(
∂2E

∂k2

)−1

(2.8)

That is, within the crystal structure the electron behaves as if it has a mass given by the above

formula, and is referred to as the effective mass, denoted m∗. The effective mass does not represent

the real mass of the electron, but takes into account the effect of the background potential due to

the atoms in the crystal and is represented by the curvature of the dispersion (through the second

derivative term). As long as the assumption of a parabolic dispersion E(k) relation is valid, the

effective mass will be a good approximation. In general m∗ depends on the direction of the resulting
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motion as the applied force F and acceleration a do not point in the same direction and is a tensor

quantity. However for the present purposes it is assumed independent of a particular direction.

For the commonly used semiconductor GaAs, the effective mass is relatively small, with a valuem∗ =

0.067me, where me is the free electron mass [16]. For In0.05Ga0.95As, with a 0.05% concentration,

the effective mass is given by m∗ = 0.0648me [14].

2.1.2 The Density of States

The density of states (DOS) is a fundamental concept of condensed matter physics, and its role is

also of importance in understanding the density of particles in a QW heterostructure, the transition

probabilities, dielectric functions, and the absorption and emission characteristics, for example.

Similarly, in a Fermi system, many properties are determined by the number of electrons which lie

within a small energy interval of the Fermi surface. This in turn is determined by the density of

states at the Fermi energy. Low-dimensional systems are thus preferred for use as optoelectronic

devices because their DOS is larger at the bottom of the band [2], i.e., where the states are more

densely packed.

In any realistic system there are an uncountable number of particles, energies, and corresponding

states. It would be impossible to obtain complete information for a given system by solving the

Schrodinger equation for each particle. It is more sensible to ask for any given energy, what the

number of available states are. For this reason the counting of states must be made, so that

the number of available states at each energy can be determined, allowing then the DOS to be

established. This is basically a function that when multiplied by an interval of energy, provides the

total concentration of available states in that energy range. The ’finiteness’ of the density of states

comes from the Pauli principle, which states that only two electrons of opposite spin can occupy one
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Figure 2.6: Volume (shaded) associated

with a given state in k-space: a top view

onto the (kx, ky) plane
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Figure 2.7: Volume (shaded) associated

with a given state in k-space: three-

dimensional side view.

volume element of phase space, which is defined as a six-dimensional space made up of real space

and momentum space, such that the positions and momenta are distinguishable. Accordingly, the

position-momentum uncertainty relation states

ΔxΔyΔzΔpxΔpyΔpz = (2πh̄)3, (2.9)

which upon using the de Broglie relation, p = h̄k, becomes

ΔxΔyΔzΔkxΔkyΔkz = (2π)3 =⇒ ΔkxΔkyΔkz = (2π)3/V (2.10)

where V = ΔxΔyΔz is the volume element in real space. The volume of k-space per allowed value

of k-vector is Δk = (2π)3/V . Equivalently, one can consider the quantized wave vector components

within a cube of side length L (Fig. 2.7),

Δkx =
2π

L
, Δky =

2π

L
, Δkz =

2π

L
. (2.11)

To find the contribution to the number of states per volume, sum over all possible k-states,

1

V

∑
k

=⇒ 2

(2π)3

∫
dk =⇒ 2

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dkxdkydkz , (2.12)
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where the limits Δk → 0 and V → ∞ were taken, and the factor of 2 accounts for spin. For

quasi-two dimensional problems such as QW heterostructures in which motion is restricted in two

dimensions, the integral above is expressed as

2

(2π)2

∫ ∞

0

∫ ∞

0

dkxdky =⇒ 2

(2π)2

∫
disk

dk, (2.13)

which is an integration over the kx- and ky-directions. The integral over a disk in k-space is simply

πk2. Therefore

2

(2π)2

∫
disk

dk =⇒ 2

(2π)2
(πk2) =⇒ m∗E

πh̄2
(2.14)

The energy E is related to k by the expression k2 = 2m∗E/h̄2, and the 2D DOS D2D is expressed

as

D2D =
m∗

πh̄2
(2.15)

Note that this is independent of the energy E, and forms a series of plateaus, or steps, as shown in

Fig. 2.9.

It should be noted that for the above expression D(E) to be valid, the wave number range dk

should be small. However, dk should still be large enough that there enough states in the range dk;

otherwise D(E) cannot be approximated by a simple continuous function. If the spacing dk truly

becomes zero, D(E) turns into a distribution of infinite spikes. The D(E) will determine the total

number of states per unit volume in an energy band between E and E + dE, with the total number

given by
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Figure 2.8: The parabolic energy dispersion, illustrating the density of states D(E), and how more

closely packed the states are at the bottom of the band.

N =

∫ E+dE

E

D(E)dE. (2.16)

For a (1D) parabolic dispersion E = E(kz), the k-space length associated with an energy interval dE

is found from the slope of the curve, or dE/dkz. As we can’t view a purely 3D dispersion relation,

we use surfaces of constant energy in k-space, and the idea of the separation of these surfaces is

directly related to the Δk and ΔE (see Fig. 2.9). Additionally, it is common to derive the DOS for

1D, 2D, and 3D, for the free electron, in which there are spherical constant energy surfaces, but in

reality this is no longer the case, and so these surfaces become ellipsoids. Figure 2.8 shows the D(E)

for different dimensions.

2.1.3 The Fermi-Dirac Distribution
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Figure 2.9: The density of states D(E) as a function of energy for different dimensions.

The DOS gives information regarding the energy levels of a system. The next step is to determine

how the levels are filled. In contrast to classical Boltzmann statistics, the quantum mechanical

characteristics of an electron gas are taken into account in Fermi-Dirac statistics. The quantum

properties which are explicitly taken into account are the wave nature of electrons, and the Pauli

exclusion principle. The statistical mechanics of ideal Fermi-Dirac systems is developed in terms of

special functions defined by integrating the mean occupation number against powers of the single-

particle energy. The average occupation (the probability of occupancy of energy levels) for electron

states is determined by the Fermi-Dirac distribution function fFD(E, μ, T ). Fermions are half-integer

spin particles, which obey the Pauli exclusion principle which postulates that only one fermion can

occupy a single quantum state. As this restricts the number of particles which occupy a state to

be either one or zero, fFD(E, μ, T ) may be interpreted as a probability of the state being occupied.

The mean occupancy for a single-particle state with energy E is

fFD(E, μ, T ) =
1

1 + e−β(μ−E)
, β = 1/kBT, (2.17)

where the chemical potential μ is a function of density and temperature. Note that the above

expression does indeed have the minimum and maximum values of zero and one, respectively: at

T = 0, the argument of the exponential is −∞ when ε < μ or +∞ when ε > μ hence, the occupancy

is unity for all states with ε below μ and is zero for all states with ε above μ. Therefore, at absolute
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zero a Fermi gas is described as completely degenerate and is characterized by a frozen distribution

in which all orbitals with ε < εF are occupied and all orbitals with ε > εF are vacant. In the limit

of zero temperature,

fFD(E, μ, T = 0) = Θ(μ− E), (2.18)

where the Heaviside step-function Θ(x) = 0 if x < 0, and 1 if x > 0. For energies far above μ,

implying (E − μ) >> kBT , the exponential factor is large, and Eq. (2.17) becomes

fFD(E, μ, T ) ≈ exp

(
−E − μ

kBT

)
, (2.19)

which is known as the Boltzmann distribution.

2.1.4 The Fermi-Dirac Integrals Fn

The equilibrium electron density n3D in a three-dimensional semiconductor with a parabolic con-

duction band can be found as follows. Starting with the k-space integration,

N = 2
∑
k

f(Ek) =
2L3

(2π)3

∫
dkf(Ek), (2.20)

where the factor of 2 in front of the summation accounts for spin, and f(Ek) is the Fermi-Dirac

distribution function given by eq. (2.17). The number density is

n3D =
N

L3
=

2L3

(2π)3

∫
dkf(Ek) (2.21)

Changing the variables from k to E, with k2 = 2m∗E/h̄2 and dk =
√

2m∗/h̄2dE/2
√
E. The above

expression for n3D becomes

n3D =
2

(2π)3

∫
4πk2dkf(E),
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=
8π

(2π)3

∫ (
2m

h̄2

)
E

(
2m

h̄2

)1/2
dE

2
√
E
f(E),

or

n3D =
(2m∗)3/2

2π2h̄3

∫ ∞

0

E1/2dE

1 + eβ(E−μ)
(2.22)

Letting x = βE, and ρ = βμ, the above expression can be rewritten in terms of the Fermi-Dirac

integral

F1/2(ρ) =

∫ ∞

0

x1/2dx

1 + e−ρex
(2.23)

as

n3D =
(2m∗kBT )3/2

2π2h̄3
F1/2(ρ) (2.24)

In general, the Fermi-Dirac integral of order n is defined as [17, 18]

Fn(ρ) =

∫ ∞

0

xndx

1 + e−ρex
, 0 ≤ ρ <∞ (2.25)

and these functions appear in the study of Fermi systems, and consequently in semiconductor physics.

The nomenclature was introduced in the 1920’s by Pauli [19] and Sommerfeld [20] in the study of the

degenerate electron gas in a metal, and the most useful orders are F1/2 for the number density, and

F3/2 for the energy density. In general these integrals cannot be analytically expressed in terms of

simpler functions (with the exception of F0 for the 2DEG). The well-known Sommerfeld expansion

was developed to study electrons in metals, in which μ >> kBT [1]. For the present purposes
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evaluation of the n3D for all μ and T is needed, and therefore the Sommerfeld expansion will fail.

For the case of T = 0 however, the expression in Eq. (2.22) becomes, (with fFD = 1 up to E = E0
F

and 0 thereafter)

n3D(T = 0) =
(2m∗)3/2

2π2h̄3

∫ E0
F

0

E1/2dE =
(2m∗)3/2

2π2h̄3
2

3
E3/2

and

n3D(T = 0) =
1

3π2

(
2m∗E0

F

h̄2

)3/2

(2.26)

where μ = E0
F is the Fermi energy at T = 0. In the section below a new analytical approximation is

developed for the integral expression F1/2, Eq. (2.23).

2.1.4.1 Analytical Approximation of the Fermi-Dirac Integral F1/2

The F1/2 integral cannot be simplified any further, and therefore it is desirable to have a reasonably

accurate analytical approximation valid for all μ and kBT . There have been earlier approximations

made for these integrals [17, 21], but the formulas are rather complicated. A simple two-part

approximation is outlined here for the F1/2 integral, Eq. (2.23). Recognizing that for large ρ, the

integral will grow as ρ3/2, since it attains the value (2/3)ρ3/2 given by Eq. (2.26) when ρ → ∞, we

obtain two different approximations for ρ < 1 and ρ > 1. This integral was evaluated numerically

for many values of ρ, and very good numerical fits were found for the domains ρ < 1 (μ < kBT ) and

ρ > 1 (μ > kBT ). For the domain in which kBT dominates, a quadratic fit to F1/2 vs. ρ is given as

Fapprox
1/2 (ρ < 1) = P2(ρ) ≡ [0.67804 + 0.52785ρ+ 0.19031ρ2] (2.27)
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For the domain in which μ is dominant, apart from the energy scaling factor ρ3/2, a cubic fit to F1/2

in the variable 1/ρ is given by

Fapprox
1/2 (ρ > 1) = ρ3/2P3(1/ρ) ≡ ρ3/2[0.66723−0.03322(1/ρ)+1.1034(1/ρ)2−0.34264(1/ρ)3] (2.28)

The 3D density n3D is now written from Eq. (2.24) as

n3D =
(2m∗kBT )3/2

2π2h̄3
Fapprox

1/2 (ρ) (2.29)

where

Fapprox
1/2 (ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρ3/2P3(1/ρ), ρ > 1

P2(ρ), ρ < 1

(2.30)

Plots of P2(ρ) and P3(1/rho) are compared with their exact numerical values obtained from F1/2,

as shown in Figure 2.10 (a) and (b). Fig. 2.11 gives the percentage error for (a) P2(ρ), and (b)

P3(1/rho). The maximum error incurred for P2(ρ) is 0.15%, and the maximum percent error for

P3(1/rho) is about 1.7%. These approximations will be used to calculate the continnum density

population for the structures studied in this thesis.
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Figure 2.10: Comparison of the two-part approximation of F1/2 (solid lines) and its numerical

evaluation (solid circles). (a) In terms of ρ = μ/kT (a) a quadratic fit as a function of ρ for the

kBT -dominated range, ρ < 1 and (b) a cubic fit vs. 1/ρ for the domain in which μ dominates, ρ > 1.

2.1.5 2DEG Charge Density

The charge density n2D for the 2DEG is given by

n2D =
m∗

πh̄2

∫ ∞

Ei

dE

1 + e−β(μ−E)
(2.31)

where Ei is the i-th subband energy. At zero temperature (T = 0K), the Fermi distribution is a

step potential at μ = E0
F , and

n2D =
m∗

πh̄2
(E0

F − Ei)Θ(E0
F − Ei) (2.32)

For non-zero temperature (T 
= 0), the full integration over fFD remains, with fFD(E, μ, T ) given

by Eq. (2.17). That is,

n2D =
m∗

πh̄2

∫ ∞

Ei

dE

1 + e−β(μ−E)
. (2.33)
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Figure 2.11: (a) Plot of the percent error for the quadratic fit to F1/2 for ρ < 1, and (b) the cubic

fit to F1/2 for ρ > 1. Solid lines are exact values, and the points indicate the polynomial fit values.

This integral is evaluated analytically by noting it is of the form

∫
dx

1 + ex
= − ln(1 + e−x) + C, x ≡ −β(μ− E) (2.34)

where C is an integration constant. Upon substitution the integral becomes

n2D =
m∗

πh̄2β

∫ ∞

−β(μ−Ei)

dx

1 + ex

which leads to

n2D =
m∗

πh̄2
kT ln

(
1 + eβ(μ−Ei)

)
. (2.35)

This is the expression for the charge density in the 2DEG for finite T .
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2.2 Quantum Well Heterostructures

The following four subsections group together the description of heterostructure and quantum well

theory, including subband formation, the 2DEG, and the solution of the Schrodinger-Poisson system.

The last section of this chapter outlines the motivation for the analytical study of various 1D quantum

wells commonly occurring in semiconductor heterostructures and devices, and comprises Chapters

3 to 6 (of Part I).

2.2.1 Subbands

Heterostructures are created by growing alternating layers of different band gap semiconductors,

such as GaAs and AlGaAs (the focus of this work), creating a stack-like structure (Fig. 2.13).

Bandstructure modification and tailoring is accomplished through epitaxial techniques, in which

atoms are deposited (in vapor phase) onto a substrate, and metal organic chemical vapor deposition

(MOCVD), for example. The Molecular-Beam-Epitaxial (MBE) technique [13, 2, 22], which was

used to grow the samples studied in this thesis, can produce discontinuities in the potential profile

on the order of a monolayer (∼ 3 Å), allowing for a high level of control in creating barriers and

wells, in which charge carriers will experience confinement. Since the bandgap of GaAs is smaller

than that of AlxGal−xAs, the ensuing band gap profile of the new ternary compound gives rise

to effective potential wells and potential barriers for the charge carriers. There are three main

types of heterostructures that form, depending on the relative location of the band offset for each
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material, and are presented in Figure 2.12. The most widely used type of heterostructures is type

I in which a narrow-gap material (GaAs) is grown between two larger-gap materials (AlGaAs) (see

Figure 2.12(a).

Figure 2.12: The main types of heterostruc-

tures: (a)- type I; (b)- type II; (c)- type

III, for typical semiconductor materials. The

conduction and valence band are given by Ec

and Ev respectively.

Figure 2.13: Schematic illustration of

an AlxGa1−xAs-GaAs-AlxGa1−xAs quantum

well heterostructure, in which a narrow-

band-gap active GaAs layer is sandwiched be-

tween two thick wider-gap AlxGa1−xAs lay-

ers.

It should be noted that for the case of a single heterointerface, confinement may also occur due

to the formation of a wedge-type potential profile, as shown in Fig. 2.14. This is known as the

two-dimensional electron gas (2DEG), and is the basis for many of the early heterostructure device

designs [3, 23]. In the case of two or more interfaces (heterojunctions) the potential profile is

generally referred to as a heterostructure, and roughly speaking, if the middle layer is sufficiently
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thin for quantum properties to be exhibited, then such a band alignment is termed a quantum well

(QW). The potential barrier height of the QW is determined by the Aluminum alloy concentration

x of the surrounding material (in this case AlxGal−xAs). These quantum wells perturb the crystal

periodicity in the growth direction, here taken as the z-direction. Confinement occurs if the de

Broglie wavelength λ = h/p of the electron, or the spatial extent of the wavepacket describing the

electron is on the order of the separation between the two interfaces, say Lz. That is, if the spatial

dimensions are large, Lz << Lx, Ly, then the allowed energies form a continuum (for the x and y

directions) and a discrete distribution for the z-direction.

ΕF

n−AlGaAs GaAs
ΔΕ

2DEG

Figure 2.14: Formation of a 2DEG for a GaAs/AlGaAs heterojunction. The conduction band is

shown on the left, just after the two materials are brought into contact with one another. AlGaAs has

a wider bandgap than GaAs and the conduction band edges are offset by an amount ΔE. Electrons

from the donors in the n-doped AlGaAs move across the junction to lower energy states in GaAs,

leaving charged donor ions behind. The combination of the band edge offset with the potential due

to donor ions produces the band edge shown on the right. A narrow triangular well is formed at the

interface and it is here that the 2DEG is located.

The assumption that Lz << Lx, Ly (for the QW heterostructures presently considered) means that,

to a first approximation the separation Htotal = Hxy + Hz can be made, where Hxy is the single-

particle Hamiltonian for the 2DEG, and Hz is the Hamiltonian for the one-dimensional finite QW.

This separation essentially means that the potential can be written as a sum of independent functions

V = V (x)+V (y)+V (z), where V (x) = V (y) = 0, and the eigenfunction of the system to be written

as a product ψ(x, y, z) = ψx(x)ψy(y)ψz(z). Formally, the electronic structure is represented by the

one-dimensional Schrodinger equation
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− h̄2

2m∗
∂2

∂z2
ψ(z) + V (z)ψ(z) = Eψ(z) (2.36)

where a constant effective mass m∗ is assumed across the heterojunctions. Two important points

must be made. The effective mass approximation is a valid description of bulk materials, and the

heterojunctions between different materials can be described by a material potential derived from

the difference in the bandgaps. Considering the first point, a realistic account of the electronic

properties of heterostructures would be the variation of the effective mass across a heterojunction.

This is achieved with the original Schrodinger equation, Eq. (2.36), applied to each region, with the

boundary conditions for matching solutions at the heterojunctions between the regions of different

effective mass [24]. The following expression then replaces Eq. (2.36) as,

− h̄
2

2

∂

∂z

1

m∗(z)
∂

∂z
ψ(z) + V (z)ψ(z) = Eψ(z) (2.37)

This is the form of the Schrodinger equation which accounts for the effective mass mismatch across

the heterojunctions. The order in which the 1/m∗(z) term appears arises from the order in which the

(Hermitian) kinetic energy operators act upon the eigenvectors [24]. Since the confining potential

V (z) is only in the z-direction, it only appears in one of the equations, with solutions which are

discrete states of energy Ez = En, n labeling the states. For the other two directions, the solutions

are traveling waves of the form exp(ikxx), exp(ikyy), with a continuous range of allowed energies.

The total energy of an electron of mass m∗, with an in-plane momentum kx,y is given by

E(kx, ky, n) = (h̄2k2x,y)/(2m
∗) + En (2.38)

where n indexes a set of subbands. New electron energy states ψ(z) are now located in these quantum

wells, confined in the growth direction z but still free in the plane of the well, with the result that
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Figure 2.15: An arbitrary finite square quantum well, showing the relative placement of the subbands,

and the corresponding parabolic dispersion E(k) curves discussed in Sec. 2.2. The levels above the

quantum well barriers are quasibound states.

the conduction band is quantized into subbands. The subbands are parabolic as the electrons are

not confined in the plane of the well. The particle has one less degree of freedom, as the momentum

is restricted to two dimensions, thus the term 2DEG. The utility of the preceding analysis is that

a rather complex system has been reduced to two relatively simple problems: the 1D finite QW

problem, and that of the band structure (of GaAs for example), for which information is readily

available [13]. With the total energy defined, the next step is to consider particular 1D potentials

V (z). However, before this is done, the important concept of doping and it’s consequence is outlined.
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2.2.2 The Hartree Potential

QW heterostructures rely on the conduction of electrons (and holes), in which to carry a current

and lead to dynamic, device-like behavior. Remote or modulation doping introduces free charges at

a large distance from the “active” QW region(s) of the device in order to fulfill this requirement, but

also to reduce the scattering from impurities. Heterostructures with remote doping have attracted

much attention because of their advantages, such as high electron mobility and electron drift velocity

due to reduced scattering on ionized impurities, intense photoluminescence, low noise, etc. [25]. With

these dopants present, the heterostructure will “equilibrate” itself, redistributing the charge in the

system in order to balance the charges (creating dipolar charge distributions), leading to internal

electric fields. Figure 2.16 illustrates this situation, in which carriers have migrated to another region,

creating a much different potential profile than the undoped heterostructure. The modification of

the band structure is often referred to as ’band bending’ and this feature is often used as a qualitative

explanation for localization of charge. Everything so far has been discussed in terms of single charge

carriers. However, realistically (especially for devices) large numbers of electrons can be present in

the conduction band, and the effect of this additional carrier density must be taken into account.

The electrostatics of the system are then analyzed to determine if there is a significant additional

potential on top of the usual band-edge potential.

2.2.2.1 Self-Consistent Schrodinger-Poisson Solution

Once the band-edge potential profile is known, as well as the particular parameters for a given mate-

rial, the Schrodinger equation can be solved for the energies and wavefunctions. Modulation-doped

heterostructures introduce extra charge into the system, and must be considered in the eigenvalue
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Figure 2.16: (a) The built-in potential of a modulation doped quantum well, (b) the charge den-

sity, and (c) the screened electron potential energy profile. Vbi is the built-in potential, Ec is the

conduction band discontinuity, Lw is the width of the well, and VH is the Hatree potential.

determination. The fixed and free charges (ionized impurities and free electrons, respectively) that

make up a charge distribution ρ add a perturbation to the potential profile. Every electron moves

in an effective potential known as the Hartree potential [26], due to the average electron density

distribution. The total potential is V (z) = VH(z)+Vc(z), where Vc(z) and the Schrodinger equation,

[
− h̄2

2m∗
d2

dz2
+ V (z)

]
ψi(z) = Eiψi(z) (2.39)

where Ei is the energy of the i-th subband, and ψi(z) is the wavefunction. The Hartree potential

satifies the Poisson equation,

d2

dz2
VH = −4πe2

ε
[n(z)−Nd] (2.40)
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where n(z) is the electron charge density and Nd is the ionized donor density. As the electrons inter-

act with the ionized donors, the Schrdinger and Poisson equations have to be solved self-consistently.

In the first step, the Schrdinger equation is solved for an unperturbed potential, then the population

in each state is calculated which enables a calculation of a new potential profile from the Poisson

equation. This new potential is then used in the next iteration continuing until the energy levels

has converged to a steady (predetermined) value. The self-consistent result is achieved by numerical

solution of the Schrodinger-Poisson system of equations [8].
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2.2.3 Quantum Well Variations

Thus far the discussion of quantum well physics has been on the general conditions under which

confinement may occur. One goal of this work is to provide a thorough analytical description of

some of the basic ’units’ that make up real heterostructures and possible devices. Furthermore,

with these analytical expressions, the response of system can be calculated, possibly providing a

comprehensive analytical approach to not only the bound state problem, but to the transport and

response characteristics. In this section the focus is on establishing the fact that most, if not all

heterostructures can be viewed as composites of simpler units, such as the finite symmetric and

asymmetric QW’s, the triangular QW, and the double QW. These examples do not make up an

exhaustive list, but provide the impetus for an analytical study of some of the more common bound

state problems.

2.2.3.1 The H656 Heterostructure

To motivate the analytical work that makes up Part I of this thesis, an example of a QW heterostruc-

ture studied in this thesis is shown in Fig. 2.17. This is a 3D schematic of the H656 structure in

which different colors are assigned to different layers, which represent the distinct regions such as

the drift region, quantum well active region, and the resonant tunneling filter. Figure 2.18 contains

a ’flat-band’ potential profile view (left-hand side), and the self-consistent potential profile (right-

hand side). The self-consistent band profile was addressed in the previous subsection, and serves

the purpose of illustrating how the potetnial of the structure changes due to doping (see Fig. 2.16).

This has a profound effect as there now exists a substantial triangular barrier/well in the structure.

This particular structure is based on the GaAs/AlxGa1−xAs and In1−yGayAs system, where x is the
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Aluminum concentration, and y is the Indium concentration. The barrier heights are determined

by x, and the depth of the well region by y. Note that this structure contains an RTD, a quantum

well, a trinagular barrier, and a triangular potential well. In the chapters 3-6, each of these units is

studied independently.

Figure 2.17: Schematic of the H656 heterostructure. The QW active region is contained in the center

if the stack-like structure (colored orange). The drift regions, barriers, and RTD are also colored.

The dark grey regions bordering the colored center area are the heavily doped contact layers. Note

that the relative size of the different colored regions is not to scale, e.g., the height of the tower.

2.2.3.2 The Triangular Quantum Well

The triangular quantum well problem is commonly encountered in semiconductor physics, arising

from charges that accumulate at the heterojunction between two different semiconductors. The

’wedge’ potential profile was observed early on in the development of the metal-oxide-semiconductor

(MOS) transistors, for example, when the heterojunction was first established. Likewise, as men-

tioned above for the case of the H656 structure, triangular-shaped well-regions can also exist. Fig-

ures 2.19 and 2.18 illustrate some of these scenarios in which the triangular potential well can occur.
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Figure 2.18: The potential profile V (z) of a structure studied in this thesis, showing the ’individual’

components. These include an RTD, a deep QW, a triangular barrier, and a triangular well. Ad-

ditionally, the left-hand side figure shows the initial ’flat-band’ potential profile, and the resulting

self-consistent profile. The self-consistent wavefunctions obtained numerically (for both examples)

are shown also.

ΕF

n−AlGaAs GaAs
ΔΕ

2DEG

Figure 2.19: Example of a two-dimensional electron gas formed at a modulation-doped heterojunc-

tion, which takes on a triangular well shape. The band bending is caused by charge transfer across

the interface when the materials are joined to produce a uniform Fermi level.
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Chapter 3

Quantum Wells

This chapter contains the analysis of four bound state systems: the finite symmetric quantum

well (SQW), the finite asymmetric QW (ASQW), the triangular/wedge well (TQW), and the finite

symmetric double QW (DSQW). First, the infinite square well (ISW) is presented as it is an idealized

exactly solvable model in which to begin the study of QW systems. More importantly however, the

ISW result will be used in the sections that follow, where for the finite symmetric QW, a mapping

to an equivalent, wider corresponding ISW is obtained. This result is then extended to the case

of the finite asymmetric QW. The problem of the triangular well, or wedge well is then studied,

including the infinite triangular well (ITW), and its finite height variations. After the QW systems

are presented, the problem of tunneling transmission and barrier physics is studied in Chapters 4

and 5. Gaining a working knowledge and strategies to deal with the finite well problem is important

as the quantum well can be viewed as a basic unit through which more complex structures can

be “built”. In general, the underlying philosophy here, is in establishing thorough and reasonably

accurate analytic results for many of the so-called building blocks of more complicated quantum well

heterostructures.
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3.1 Infinite Square Well (ISW)

The infinitely deep one-dimensional potential well represents a simple, artificial, yet important sys-

tem in quantum well physics. As shown in Appendix A for Quantum Wells, Section A.1, for a

particle in an infinitely confining potential well (see Fig. 3.1),

V (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if 0 ≤ z ≤ L;

∞, otherwise.

the energies are

En,∞ =
(nπh̄)2

2m∗L2
, n = 1, 2, .. (3.1)

and normalized eigenfunctions are given by

ψn(z) =

√
2

L
sin

(nπz
L

)
n = 1, 2, .. (3.2)

3.2 Finite Symmetric Quantum Well (SQW)
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In contrast to the ISW, finite symmetric quantum well (SQW) represents a more realistic situation,

but is also part of the standard introduction to bound states in elementary quantum mechanics.

Thorough details on the subject of the “particle in the box” are given in many texts [1-5]. An

important, as well as interesting feature of this problem that one can experience is the number

of different approaches and approximations that are employed [6-20]. In this section an exact,

simple closed-form algebraic expression for the bound-state energy levels of the SQW, in terms of

an effective length is provided. The effective length is used to express each finite well energy in

terms of a corresponding wider ISW. Methods to obtain a very good closed-form approximation for

the effective length in terms of the given physical parameters of any finite quantum well are given.

Next, an error analysis is presented, which illustrates the advantage of our approach compared with

previous work. The wave functions are then discussed, and finally a mapping for the semi-infinite

well is shown.
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3.2.1 Energy Quantization

A particle of mass m in a well of width L bounded by a finite potential of height V0, symmetrically

placed about the origin, is given by

V (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, |z| ≤ L/2,

V0, |z| > L/2.

(3.3)

Solving the time-independent Schrödinger equation in each region, and matching boundary condi-

tions, yields the bound-state energies, 0 < En ≤ V0. The energy eigenvalue is expressed through

the wavenumber k =
√
2mE/h̄2, and decay constant κ =

√
2m(V0 − E)/h̄2. More convenient

dimensionless forms for these quantities are given by

α = kL/2 =

√
2mE

h̄2
L

2
β = κL/2 =

√
2m(V0 − E)

h̄2
L

2
=
√
P 2 − α2 (3.4)

where P =
√
2mV0/h̄

2(L/2), is the well-strength parameter. This parameter has been variously

designated as “K” [13], “S” [15], and P [14, 19] in the literature. With the continuity requirement

and the imposed boundary conditions, one arrives at two transcendental equations, for solutions of

even and odd parity, as shown in the appendix,

α tanα = β (even parity),

(3.5)

−α cotα = β (odd parity).

A simpler, single eigenvalue equation incorporating solutions for both parities can be obtained [26,

13, 15, 19] (Appendix A) in the form

αn + sin−1
(αn

P

)
=
nπ

2
, n = 1, 2, ... (3.6)

or

P sin θn + θn =
nπ

2
, n = 1, 2, ... (3.7)

where αn = P sin θn, and the phase angle θn is bounded by 0 and π/2. The ground state is at n = 1.

It is interesting to note that Eq. (3.6) had been derived earlier by Landau [27], directly, without
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distinguishing the parity of the solutions.

The maximum number of states in the well for a given P , can be inferred immediately from the fact

that the left hand side of Equation (3.7) cannot exceed P + π/2, and thus n > 1 + (2P/π) cannot

be a solution. This shows that the marginally bound state (En = V0) occurs for n = nmax = 1+N ,

if N = 2P/π is an integer. When N exceeds an integer, the marginally bound state is lost, and the

total number of bound states is given by nmax = 1+ [N ], where [N ] denotes the integral part of N .

Thus, by expressing the well strength through N rather than P , one can immediately infer the total

number of bound states of that well.

The roots of Eq. (3.7) (through αn = P sin θn) directly determine the energies of the finite well as a

function of the bound-state index n and the well-strength parameter P . We show how the roots of

this equation can also be used to construct an effective length, which provides an alternate path for

obtaining the energies.

The complement of θn, φn = π/2− θn, gives an equivalent, alternate version of Eq. (3.7),

P cosφn − φn = (n− 1)
π

2
, (3.8)

with 0 ≤ φn ≤ π/2. Both Eqs. (3.7) and (3.8) are transcendental equations, and would require a

‘root-finding’ procedure to get exact results, as is the case for the more commonly used transcendental

equations like Eq. (3.5), or other equivalent procedures. We will show that both Eqs. (3.7) and (3.8)

are on the other hand amenable to simple approximations which reduce them to algebraic equations:

a cubic equation for (3.7), and a quadratic for (3.8). The roots can then be expressed in closed-form

in terms of n and P . Employing these explicit approximate roots in the exact formal expression for

the effective length is the essential idea of this section, leading to a global, highly accurate, closed-

form expression for the effective length, and thus the energies. Our approach is a departure from

previous work, in that it is easy to implement, and uniformly covers any combination of (potential)

height and width of the quantum well, for all bound states.
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3.2.2 Effective Length

To introduce the effective length idea, the quantization equation can be put into a more “transparent”

form. Recalling that knL/2 = αn = P sin θn, Eq. (3.7) can be rewritten as

knL

2

(
1 +

θn
P sin θn

)
=
nπ

2
. (3.9)

Now we recognize that

Ln ≡ L

(
1 +

θn
P sin θn

)
(3.10)

represents the effective length for the equivalent infinite well, since Eq. (3.9) reduces to knLn = nπ,

or kn = nπ/Ln. Eq. (3.10) can be written as

Ln ≡ L
(
1 +

an
P

)
, (3.11)

where the function an is given by

an ≡ θn
sin θn

≡ π/2− φn
cosφn

, (3.12)

with 1 ≤ an ≤ π/2, and θn = θn(P ) = θ(n, P ) and φn = φn(P ) = φ(n, P ) are functions of n and

P . Having derived the effective length form, an expression for the bound-state energies of the finite

well in terms of an and P can be given exactly. The effective length for each level of the finite well

is mapped to the corresponding level of a wider infinite well. As the infinite square well energies are

given by

ε∞n =
h̄2

2m

(nπ
L

)2
, (3.13)

an analogous way of expressing the finite well energies is

En =
h̄2

2m

(
nπ

Ln

)2

, (3.14)

where Ln is given by Eq. (3.11). This result shows that the n-th energy of a finite well of length L is

identical to the n-th energy of an infinite well of effective length Ln. This is an exact relation, with

Ln given directly in terms of the (exact) roots of the transcendental equation, Eq. (3.7) or Eq. (3.8).

A salient feature of the infinite well, the basic n2-scaling for the energy levels, is preserved with
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Eq. (3.14). Additionally, this expression shows the level by level departure from this simple scaling

through the (weak) n-dependence of the effective length.

One can also view this result in terms of an infinite well of length L (same as the given finite well),

and consider the effect of reducing the confining potential from infinity to the given well value V0

by expressing En as

En = ε∞n f(n, P ), (3.15)

where

f(n, P ) = (L/Ln)
2 = (1 +

an
P

)−2. (3.16)

The factor f represents the fractional change (reduction) in the energies from those of the infinite

well of the same width L, and it depends primarily on P , and only weakly on n. Note, that as P gets

smaller (smaller V0), f also gets smaller and the energies are monotonically decreasing functions of

the well-strength parameter. The next step in our analysis is to find practical approximations for

the roots θn or φn, leading to approximate Ln, f , and En for the finite symmetric quantum well.

However, one can draw some immediate inferences from the exact structure of an, and the ensuing

characteristics of Ln. The main part of Figure 3.3 shows the monotonic behavior of an for the first

three levels for any quantum well as a function of the well-strength number parameter N = 2P/π.

Note also, that for higher n (which are not shown), this trend of an continues, with the vertical

asymptotes of an → π/2, signifying the weakly-bound states, and occurring at integer values of

N = n − 1. The limiting values of an also give the bounds for the effective length, in terms of the

original well width L. That is, L(1 + 1/P ) ≤ Ln ≤ L(1 + 1/N). The inset in Figure 3.3 shows the

variation of Ln with n, for a fixed N . For large N , and small n (i.e. deeply-bound states), an → 1,

Ln → L(1 + 1/P ), and the n2-scaling is restored, as this scenario corresponds to that of the ISW.

It should be noted that our effective length, and mapping to the ISW, are exact constructs, defined

for all n and N , and clearly differ from earlier usage of various effective lengths[10, 14, 28, 18]. The

precise connections to the earlier literature are discussed at the end of the section.
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3.2.3 Approximations

Two distinct approaches are employed based on Eq. (3.7) or Eq. (3.8), to obtain approximate solu-

tions. Each of these approaches has its own domain in parameter space where it is better than the

other, i.e., small θn will describe the deeply-bound states better, while small φn will be much better

for the weakly-bound states. As will be shown later, the approach based on approximating φn has

the (fortuitous) advantage that it can be applied globally for any level of any quantum well, without

incurring a significant error.

3.2.3.1 φ-approximation

Starting with Eq. (3.8), the simplest approximation in the small φn domain is obtained with cosφn ≈

1 in Eq. (3.8), which has a solution

φ(1)n =
π

2
(N + 1− n), (3.17)

where the superscript refers to the first approximation. This is a good approximation only for the

top most weakly-bound state, where n<∼N +1. This condition makes φ
(1)
n a good approximation for

the fast descending part of the an(N) curves in Fig. 3.3.

The next approximation is obtained by expanding the cosine to two terms, that is, cosφn ≈ 1 −

(φ2n)/2, and rewriting Eq. (3.8) as

φ2n +
4

Nπ
φn − 2

N
(N + 1− n) = 0. (3.18)

Solving this quadratic equation for φn gives

φ(2)n =
2

Nπ

(
−1 +

√
1 +

Nπ2

2
(N + 1− n)

)
, (3.19)

where the positive root has been taken, as φn can’t be negative, and the superscript denotes the

second approximation. The resulting Ln found from Eqs. (3.12) and (3.11), and the corresponding

En, (3.14), are remarkably accurate even for larger φn, thus making this approach globally applicable

(i.e. for all n-levels and all strength parameters N).
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One can generate higher approximations by more terms in the cosine expansion, and treating these

terms as perturbations, or by using an iterative procedure. For example, expanding the cosine to

three terms results in a quartic equation, with no cubic term,

φ4n − 12φ2n − 48

Nπ
φn +

24

N
(N + 1− n) = 0. (3.20)

This is easily approximated by using the known φ
(2)
n in the fourth-order term, to obtain a new

quadratic equation for φn

φ2n +
4

Nπ
φn − 2

N
(N + 1− n)− 1

12
(φ(2)n )4 = 0, (3.21)

which has the explicit solution

φ(3)n =
2

Nπ

(
−1 +

√
1 +Nπ[φ

(1)
n +

Nπ

48
(φ

(2)
n )4]

)
, (3.22)

where φ
(3)
n refers to our third approximation. φ

(2)
n is given by Eq. (3.19), and φ

(1)
n is given by

Eq. (3.17).

Figure 3.4 shows |Δan(N)|, the absolute value of the difference between the exact an, and the second

and third approximations a
(2)
n , and a

(3)
n respectively, obtained by employing Eqs. (3.19) and (3.22)

in Eq. (3.12). The errors Δan(N) are remarkably small for all n and N . Also, using φ
(3)
n instead of

φ
(2)
n reduces the errors by an order of magnitude. As will be shown in the error analysis, both of

these approximations provide effective lengths and energies to a very high degree of accuracy, for all

the states, for all N .

3.2.3.2 θ-approximation

The simplest approximation of Eq. (3.7) is obtained by taking sin θn ≈ θn, and leads to the solution

θ(1)n =
nπ/2

P + 1
=

n

N + 2/π
. (3.23)

This is a good approximation for the large N tail region in Fig. 3.3. For small θn, an(N) ≈

1 + (1/6)(θ
(1)
n )2 is a good representation in this domain. The ratio Ln/L, is then seen to have the
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minimum value L′/L = (1+ 1/P ) when θ
(1)
n is very small and has a parabolic rise with n (for small

n and fixed N) as seen in the inset of Fig. 3.3.

The next approximation for θn is found by including the second term in the sine expansion, resulting

in a “reduced” cubic equation with no quadratic term,

θ3n − 6

(
1 +

2

Nπ

)
θn +

6n

N
= 0, (3.24)

which can be solved by well known methods [29-31]. There are three roots, out of which

θ(2)n = 2

√
2 +

4

Nπ
sin

(
π

6
− 1

3
tan−1 δn

)
, (3.25)

where δn ≡ [
√
(2 + (4/Nπ))3 − (3n/N)2]/(3n/N), is the relevant root in the range 0 to π/2. A

necessary condition for the validity of this solution is that the discriminant (the terms under the

square root) remain positive. Rearranging these terms gives a more transparent relation between n

and N for this to remain so,

n ≤ 2
√
2

3
N

(
1 +

2

Nπ

)3/2

. (3.26)

The roots of Eq. (3.24) are then all real, with Eq. (3.25) being the acceptable solution. Two points

must be made concerning the use of the cubic equation in determining the approximate roots in the

domain of N near n− 1. First, the approximation will become increasingly worse as this is a poor

approximation in this domain. Secondly, aside from the special case of n = 1, there are values of

N and n where the discriminant becomes negative, and the root Eq. (3.25) now becomes complex.

Thus it no longer provides an acceptable solution. However the solution θ
(2)
n can be used for a very

high degree of accuracy for the deeply-bound states of moderate-to-large N wells. This corresponds

to the range of an from 1 (large N) to 1.1 or 1.15 (moderate N) in Figure 3.3.

In summary, while the θ
(1)
n and θ

(2)
n -approximations have their own range of application, the φ

(2)
n -

approximation is both simple and uniformly applicable for all N . As will be shown in the next

section, the error incurred in the approximated energies, upon using the φ
(2)
n -approximation does

not exceed 0.4% for any n and N .
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Figure 3.5: The f (2)(n,N) = E
(2)
n /ε∞n curves for the levels n = 1, 2, 3, 5 and 7. The f (2)(1, N) curve

is the solid line, and each successive, shorter curve is for n = 2, 3, 5 and 7 respectively. E
(2)
n is given

by Eq. (3.14) and is based on the φ
(2)
n -approximation. The inset provides a comparison of the exact

f(n,N) (solid lines) and approximate f (2)(n,N) (dashed lines) for n = 1, 2 and 3, showing that they

are indistinguishable to the eye.
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Figure 3.5 shows f (2)(n,N), the fractional reduction in the energies from the corresponding infinite

well case of the same length L, using the approximate energy obtained from Eqs. (3.19), (3.12)

and (3.14). For each n, the curves start at N = (n − 1), where φ
(2)
n = 0, a

(2)
n = an = π/2 and

f (2) = f = ((n− 1)/n)2. The f (2)(1, N) curve forms an envelope under which the higher n branches

form a succession of shorter curves, each rising up and asymptotically merging with the n = 1 curve

for large enough N . The exact f curves (based on the exact SQW energies) are indistinguishable to

the eye from the approximate f (2) curves, as can be seen from the inset of Figure 3.5.

To give a practical example, consider a (typical) quantum well structure [32], based on the semicon-

ducting materials GaAs, and Al0.3Ga0.7As. The subscripts refer to the relative concentration of the

component materials. The GaAs region represents the potential well, and AlGaAs creates the barri-

ers on both sides of height ≈ 240 meV. The effective mass of an electron in GaAs is m∗ = 0.067me,

where me is the standard electron mass. For simplicity we will assume the same value for the effec-

tive mass in the barriers. Taking the value of the well width to be L = 20 nm, this corresponds to

a well strength of N = 4.10. To obtain a quick calculation of f(n,N) for this value of N , one can

use the approximate form an(N) ≈ 1 + (1/6)(θ
(1)
n )2, where θ

(1)
n = (n)/(N + 2/π), Eq. (3.23). The

f(n,N) based on this approximation results in errors of 0.0037%, 0.063%, 0.37%, 1.52% and 7.5% in

the energy, for levels n = 1 through 5, respectively. On the other hand, the φ
(2)
n -approximation has

the corresponding resulting errors of 0.213%, 0.227%, 0.171%, 0.074% and 0.0006%.

3.2.4 Error Analysis

The error analysis for the φn-approximations is as follows. The corresponding energies are re-

markably accurate for all N as seen in Figure 3.6 which shows the fractional error ΔEn/En ex-

pressed as a percent error, where ΔEn is the difference between the exact and approximate energies,

ΔEn = En −E
(a)
n . The exact energy En is obtained by solving any one of the transcendental equa-

tions, (3.6), (3.7) or (3.8). The approximate energies E
(2)
n are obtained by using φ

(2)
n , Eq. (3.19),
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to determine Ln, Eq. (3.11), which then provides E
(2)
n through Eq. (3.14). The upper curves in

Figure 3.6 represent the percentage errors in energy based on the φ
(2)
n -approximation, for n = 1 to

8. The lower curves are based on φ
(3)
n , Eq. (3.22), and show an order of magnitude reduction in the

percent error. The maximum percent error overall, for the φ
(2)
n -approximation, occurs in the n = 1

state, and occurs near N = 1.4. The largest percent error for any n decreases with increasing n,

and occurs at proportionately higher N values. It is clear that the φ
(2)
n -approximation provides an

explicit practical approach for obtaining energies with an accuracy better than 1 part in 250 for all

n and N , and in fact better than 1 part in 1000 for most cases. The φ
(3)
n -approximation improves

these to 1 in 2000 for all n and N , and 1 in 10, 000 for most n and N .

It is not surprising that the φn-approximations work very well in the domain of small φn, where

the expansion of cosφn to a few terms is quite justified. On the other hand, the remarkable success

of this method for accurate determination of energies for the domain where the cosφn expansion

is not justified is a surprise, and requires an explanation. It turns out that the route taken to find

the energies (and how the error propagates for that method) is crucial to minimizing the error.

Introduction of an approximation in solving an equation like Eq. (3.8) implies that the approximate

value of φ
(a)
n differs from the exact value φn by a non vanishing amount Δφn = φn−φ(a)n . For a given

φ
(a)
n , the corresponding α

(a)
n can be calculated in at least three different ways, and the three results

will be different since the internal consistency of the original exact relations is compromised by the

approximations. (1) The “direct route” to calculating the energies, via αn = P sin θn = P cosφn,

leads to a large error rather quickly because the error in αn is Δαn = −P sinφnΔφn, and the

fractional error ΔEn/En = 2Δαn/αn = −2 tanφnΔφn. It is therefore directly proportional to

the error Δφn, and is amplified by tanφn where φn exceeds π/4, and becomes very large as φn

approaches π/2. (2) Another route is through the relation αn = nπ/2 − θn. Here, the error is

Δαn = −Δθn = Δφn, ΔEn/En = 2Δφn/[(n− 1)π/2 + φn], and the error remains of order Δφn.

(3) Our preferred method, of first calculating the effective length in terms of the quantity an/P ,

produces errors that are quite small since the error in the quantity an is consistently small as shown
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in Figure 3.4. The error in the length is given as ΔLn = (L/P )Δan, and by expressing Δan in terms

of Δφn, it can be shown that the resulting fractional error in the energies is given by

ΔEn

En
= −2

Δφn
(
(π2 − φn) tanφn − 1

)
P cosφn + π

2 − φn
. (3.27)

The error in the energies is still proportional to Δφn, but unlike method (1), is not amplified for

the deeply-bound states as φn → π/2. In fact it is reduced by the factor (π/2− φn), as can be seen

from Eq. (3.27), by taking the appropriate limit. It is further reduced by P in the denominator. If

we use the quadratic approximation, the limiting values of the approximate φ
(2)
n and Δφ

(2)
n for the

φn → π/2 domain (accessed by N → ∞) are φ
(2)
n → √

2 < π/2 and

lim
N→∞

Δφ(2)n =
π

2
−
√
2 ≈ 0.1565. (3.28)

In spite of Δφ
(2)
n not being too small, the above mentioned factors keep the energy error small as

shown in Figure 3.6. For the largerN , the expected 1/N dependence is already realized in Figure 3.6.

3.2.5 Wave Functions

The exact wave functions for the symmetric well are, for odd n

ψn(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[C cos (knL/2) e
κnL/2]eκnz , z ≤ −L/2,

C cos(knz), −L/2 ≤ z ≤ L/2,

[C cos (knL/2) e
κnL/2]e−κnz , z ≥ L/2,

(3.29)

and for even n,

ψn(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−C sin (knL/2) e
κnL/2]eκnz, z ≤ −L/2,

C sin(knz), −L/2 ≤ z ≤ L/2,

[C sin (knL/2) e
κnL/2]e−κnz , z ≥ L/2.

(3.30)

The normalization constant C = C(kn, κn) is given by

C−2 =
L

2
+

1

κn
cos2(knL/2) +

1

2kn
sin(knL). (3.31)
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A further simplification can be made for this expression using Eq. (3.5), to obtain

C−2 =
L

2
+

1

κn
. (3.32)

The wavenumber kn and the decay constant κn can be given in terms of the (exact) effective length

Ln by kn = nπ/Ln, and κn = π
√
(N/L)2 − (n/Ln)2. With these substitutions the wave functions,

Eqs. (3.29)-(3.32), are completely expressed in terms of the single entity Ln, the exact effective

length.

A physical interpretation for the angle θn can be obtained as follows. The eigenvalue condition,

Eq. (3.7), gives the relation between the effective length, the actual well width and the phase angle

θn, as (kn/2)(Ln−L) ≡ θn. If the sinusoidal portion of the wave function inside the well (Eqs. (3.29)

or (3.30)) were to be extended outside the well the distance ln ≡ (Ln/2)−(L/2), it would accumulate

the extra phase knln = θn, making θn the phase to be added to the phase at the boundary (knL/2)

to make it reach knLn/2 = nπ/2, where the wave function vanishes. Another way to view this is to

say that θn is the phase reduction that occurs when the barrier height is brought down from infinity

to the given value V0. Also, using Eq. (3.11) we see that ln ≡ (an/2P )L, and thus an is seen to be

a measure of the length extension on each side of the well. That is, the overall effective length is

given by Ln = ln + L+ ln.

Explicit wave functions are obtained by introducing the approximated effective length Ln in the

expressions for kn and κn in Eqs. (3.29) and (3.30). Note that the two expressions for the normal-

ization constant, Eqs. (3.31) and (3.32), will not be identical when we use the approximated Ln.

The inaccuracy of Eq. (3.32), although quite small, is a result of using (the now inaccurate) Eq. (3.5)

to obtain the simpler form. Figure 3.7 compares the exact ψn (solid lines), with these approximated

ψn (heavy dashed lines), based on the φ
(2)
n -approximations, and they are virtually indistinguishable.

Figure 3.7 is based on the GaAs quantum well example discussed earlier.

A simpler approximate form is obtained if we use the equivalent infinite well mapping for finding the

wave functions as well. This approximation requires the (approximate) ψn to vanish at and beyond
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the boundaries of the equivalent infinite well, ±Ln/2, and so ignores the exponential decay outside

the actual well. The approximate wave functions for odd n are given by

ψn(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 |z| ≥ Ln/2,

√
2
Ln

cos[(nπz)/Ln], |z| ≤ Ln/2,

(3.33)

and for even n, the cosine term is replaced with the sine function, with the same argument. The

approximate ISW ψn for n = 1, 3 and 5 are shown in Fig. 3.7 by thin dashed lines. For the deeply-

bound n = 1 state, this approximation is quite good. For the n = 3 state this is still rather

good, however, for the topmost, nearly marginal state (n = 5), this method now gives an incorrect

amplitude in the interior of the well. This is a quick and easy method of approximation if one

is interested primarily in the deeply-bound states and the interior of the well. The approximate

ISW ψn has been given by Barker et al[14](their Eq. (19)), but their effective length is the lowest

approximation compared to our effective length, and is valid only for large P .

3.2.6 The Semi-Infinite Well

The problem of the semi-infinite well (SIW),

V (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, z ≤ 0,

0, |z| ≤ L,

V0, |z| > L.

(3.34)

This problem is directly related to the SQW of width 2L and potential V0, as shown in Figure 3.8.

Since all the odd wave functions of the SQW (given by even n = 2, 4, ..) vanish at the origin, they

also constitute the correct solutions for the domain z > 0 for the SIW. For the SIW, the wave

functions vanish for all negative z. Thus,

ψSIW
n (z) = ψSQW

2n (z), z > 0. (3.35)

Each level (any n) of the semi-infinite well of width L is therefore mapped onto the odd symmetry
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Figure 3.7: Comparison of the two methods of approximating ψn, for n = 1, 3 and 5. The solid line

is the exact SQW wave function, the first approximate method is the heavy dashed line, and the

second ISW mapping is the thin dashed line. The vertical dashes, which are at ±Ln/2, mark the

boundaries of the wider equivalent infinite well for each level. Due to the weak variation of Ln with

n, the boundaries for n = 1 and 3 are indistinguishable (L3 ≈ L1), while for n = 5, they are visibly

distinct (L5 > L1).
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^

L
z = 0

V
0

V
0

L

8

Figure 3.8: Schematic of the SQW-semi-infinite well mapping. The SQW has width 2L, and height

V0 and is indicated by both the solid and dashed lines. The SIW is represented by the solid lines

only. The wave function of the SIW vanishes at the infinite barrier in the middle, so that only the

odd-parity states of the SQW are “selected.”

states (index 2n) of the SQW of width 2L, with energies

ESIW
n = ESQW

2n . (3.36)

This mapping also implies that the properties of the SIW are represented by the analogous eigenvalue

equation,

P sin θn +
θn
2

=
nπ

2
. (3.37)

which can be formally obtained from Eq. (3.7) by P → 2P and n → 2n, and recognizing that

θSIW
n ≡ θSQW

2n . Eq (3.37) can also be derived as a limiting case of the eigenvalue equation for the

finite asymmetric well.

From this equation, the maximum number of states in the SIW can be found. Since the left hand

side cannot exceed P + π/4, solutions exist only for n < N + 1/2. This shows that the marginally

bound state (En = V0) occurs for n = nmax = N+1/2, when N is half-integral. There are no bound

states for N < 1/2. A marginal bound-state appears at N = 1/2, and the second state appears at

N = 3/2.
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A method has been developed which provides the energy levels and wave functions of a finite sym-

metric quantum well with high accuracy. The approach is global, as it is uniformly applicable to

all levels n for all strength parameters P (or N), and is easy to use. An exact expression has been

given for the effective length in terms of the phase angle θn, through Eqs. (3.11) and (3.12). Explicit

solution is provided for the complementary angle φn through Eqs. (3.19) or (3.22), and the effective

length thus obtained provides energies where the worst error is less than 0.4% and 0.04% respec-

tively. In our approach, the effective length is emphasized to be the fundamental quantity to be

determined, in terms of which the energies as well as wave functions are expressed exactly through

Eqs. (3.14) and (3.29)-(3.32).

Many aspects of the finite single quantum well have been explored in the past in a variety of ways by

many authors. In the vast literature that spans over five decades [6-20], there are only a few papers

that mention an effective length. We find Garrett[10] introduced an effective length heuristically,

defined as the original length plus twice the characteristic decay length of barrier penetration for

each level. This way of defining an effective length is too simplistic, and will always give a result

which is an overestimate compared to the true effective length. Furthermore it becomes very large for

the weakly-bound states, reaching infinity for the marginal states, thus giving completely erroneous

results if applied in this domain. Barker et al[14], in their Eq. (13), also obtained an effective length,

indirectly, which was the same for all levels. In terms of our exact expression for Ln, we see the

Barker et al result as the lowest order approximation in 1/P , obtained by simply setting an = 1

in our Eq. (3.12). Since an ≥ 1, their effective length will always be an underestimate. It also

misses the variation with n (see Figure 3.3), and this omission becomes quite significant for the

weakly-bound states where an approaches π/2. Rokhsar[18], by considering the phase shift at the

wall of a deep well, also derived an effective length, which is the same as Barker et al.

Concerning the issue of accuracy, global applicability, and simplicity of an approximation, our ap-

proach can be compared and contrasted to earlier papers. Aronstein and Stroud [19] provided a

general series solution for the eigenenergies in terms of P , and a height ratio parameter r. Desired
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accuracy can be achieved by retaining more terms in the series. The specific choice of r = n/(N +1)

allows for a global approximation. As regards accuracy, their worst-case error for the second-order

result (> 1.5%) exceeds our worst-case error (0.4%) for the φ
(2)
n -approximation, and similarily, our

φ
(3)
n -approximation has smaller errors (0.04%) than their third-order results (0.11%). In addition,

our closed-form result is easier to evaluate than their series solution. Bonfim and Griffiths [20] gave

simple, closed-form expressions for the energy eigenvalues by replacing the cosine function in their

transcendental equations by various algebraic expressions. We have evaluated the resulting errors in

their energies, for all parameter values, and find that for the ground state (n = 1), their worst-case

error is almost the same as our φ
(2)
n -approximation-based result. For higher n, their errors are an

order of magnitude larger than our φ
(2)
n -approximation results.

The approach put forth in this section is extended to the study of the finite asymmetric quantum

well, with similar results of comparable accuracy. Further extensions (with appropriate modifications

of method) to more complex systems are envisaged, and are examined in the following sections of this

chapter. Examples of such systems are the symmetric and asymmetric double quantum wells [21],

multiple quantum wells, all with or without applied electric fields, and with or without charge carriers

that produce screening effects [22], and other systems representing (more) realistic quantum well

devices.
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3.3 Finite Asymmetric Quantum Well (ASQW)

While the SQW is a standard illustrative bound-state problem in elementary quantum mechanics,

the finite asymmetric quantum well (ASQW) is a rarely encountered one. Due to the unequal

potential barrier heights, the ASQW [27, 33, 34, 26, 3, 4, 35, 36] is inherently more complex, but

also more interesting than the SQW. At a practical level the ASQW is a prominent component in real

quantum well devices such as quantum well sub-millimeter wave detectors [37], resonant tunneling

diodes (RTD’S) [38], and electron waveguides [39, 40]. Based on Section 3.2 on the simpler SQW

system, the question can be asked whether it is possible to extend that approach and approximations

to the study of the ASQW.

In this section a practical and novel method of expressing and approximating the bound-state en-

ergies and eigenfunctions of the ASQW is given, based on the effective length idea presented in the

previous section for the finite SQW. For the SQW, appropriately defined effective lengths were used

to express the SQW energies in terms of corresponding wider infinite square wells. In a similar man-

ner, we obtain appropriate definitions of the effective lengths for the ASQW energies. In addition,

we develop approximations that provide explicit and accurate expressions for the energies and wave

functions, in terms of the given physical parameters of the problem. The eigenvalue condition for the

asymmetric well is derived, and the bound-state condition is studied, along with its consequences.

After the effective length for the ASQW is defined, the method of approximation is given along with

the error analysis.
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3.3.1 Energy quantization condition

A particle of mass m in a well of width L, bounded by finite potentials of heights Vl, and Vr, is given

by

V (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vl, z ≤ 0,

0, 0 ≤ z ≤ L,

Vr, z ≥ L,

(3.38)

where the subscripts l and r refer to left and right, respectively. The time-independent Schrödinger

equation is solved in each region, and bound-state energies, 0 < En < Vr are sought. We choose

without loss of generality, Vl ≥ Vr. The wave functions for the three separate regions are

ψn(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aeκlz, z ≤ 0,

C sin(kz + δ), 0 ≤ z ≤ L,

Be−κrz , z ≥ L,

(3.39)

where κl =
√
2m(Vl − E)/h̄, k =

√
2mE/h̄, and κr =

√
2m(Vr − E)/h̄. Matching logarithmic

derivatives at the barrier edges z = 0 and z = L eliminates the constants A, C, and B, giving the

two following conditions [27, 34]

κl = k cot(δ),

(3.40)

κr = −k cot(kL+ δ).

Since the cotangent is periodic with period π, we can write

δ = sin−1

(
k√

k2 + κ2l

)
+ n1π,

(3.41)

δ + kL = − sin−1

(
k√

k2 + κ2r

)
+ n2π,
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where n1 and n2 are integers and the value of the inverse sine lies between 0 and π/2. Thus,

eliminating δ, we have

kL = nπ − sin−1

(
h̄k√
2mVr

)
− sin−1

(
h̄k√
2mVl

)
, (3.42)

with n = n2−n1 (see Appendix A). Since k > 0, n = 1, 2, 3, .., provide the allowed roots k = kn, and

the eigenenergies of the ASQW are En = (h̄kn)
2/(2m). Equation (3.42) can be recast in terms of the

dimensionless energy parameter α = kL/2, and two well-strength parameters, Pl =
√
2mVl/h̄

2L/2

and Pr =
√
2mVr/h̄

2L/2, as

α+
1

2
sin−1

(
α

Pr

)
+

1

2
sin−1

(
α

Pl

)
=
nπ

2
. (3.43)

An alternate form is obtained by introducing phase angles θl = sin−1(α/Pl) and θr = sin−1(α/Pr),

with 0 ≤ θl ≤ π/2 and 0 ≤ θr ≤ π/2. Since

α = Pl sin θl = Pr sin θr, (3.44)

we can also write the eigenvalue equation as

Pr sin θr +
1

2
θl +

1

2
θr =

nπ

2
, (3.45)

where the two angles are related by “Snell’s Law”, sin θl = (Pr/Pl) sin θr. Using this to eliminate

θl, θr becomes the eigenvalue parameter with solutions θr,n = θr,n(Pl, Pr). Corresponding equations

could also be written in terms of θl, with roots θl,n = θl,n(Pl, Pr). The advantage of choosing to

express the eigenvalue condition in terms of θr will be made clear in the section on approximations.

The connection to the SQW can be seen immediately by setting Pl = Pr = P in Eq. (3.43), which

leads to the Eq. (3) in Section 3.2.

Unlike an SQW which always has at least one bound state even for the smallest strength P , there

can be ASQW’s which have no bound states. An ASQW is defined by two parameters Pr and Pl, or

alternately (with Pl ≥ Pr) by Pr and ξ ≡ Pr/Pl. ξ is the asymmetry parameter. Clearly 0 ≤ ξ ≤ 1,

with ξ = 1 the SQW limit, and ξ = 0 the semi-infinite well limit, which are both discussed in the

SQW section. Consider the case where a SQW (Pr = Pl = P or ξ = 1) has Nr = 2Pr/π only slightly
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greater than an integer m. Then as shown in Sec. 3.2, the top-most bound state has n = m + 1,

and it is just below Vr, (En
<∼Vr). For an ASQW with the same Vr, even a small increase in Vl (i.e.

a small decrease in ξ) will raise that state to En = Vr and any further decrease in ξ pushes that

bound state out of the ASQW. Eq. (3.44) shows that θl < θr and Eq. (3.45) then provides a larger

θr for the same Pr. Thus θr increases as ξ is reduced, and when it reaches π/2, α = Pr, and the

bound state energy is at Vr. The critical value of ξ where this occurs is given by letting θr = π/2 in

Eq. (3.45), leading to

Nr = n− 1

2
− 1

π
sin−1(ξc), (3.46)

or

ξc = sin[(n− (1/2)−Nr)π]. (3.47)

As an illustration, consider a SQW with Nr = 0.1. Then m = 0, and n = 1 is the only bound state.

For an ASQW with the same Nr, if we reduce ξ from 1 to ξc ≈ 0.951, given by Eq. (3.47), the bound

state E1 reaches Vr, and any further decrease in ξ produces ASQW’s with no bound states. Thus all

ASQW’s with Nr = 0.1 and the left barrier Vl exceeding the right barrier Vr by as little as ≈ 11.1%

have no bound states.

It is clear from Eq. (3.47), with n = 1, that this phenomenon will occur for 0 ≤ Nr ≤ 1/2. ξc reaches

0 (i.e. Vl → ∞) when Nr = 1/2. If the original Nr > 1/2, the bound state cannot be pushed out of

the well, even if Vl is made infinite. For any n, the range of strengths 0 ≤ Nr−(n−1) ≤ 1/2 leads to

ASQW’s where increasing the asymmetry pushes out the topmost bound state at the critical ratio

ξc. For Nr = 1.1, the SQW has two bound states and the corresponding ASQW will lose the second

state when ξ = ξc ≈ 0.951.

On the other hand, if 1/2 ≤ Nr − (n − 1) ≤ 1, the number of bound states in an ASQW remains

the same as that for a SQW with the same Nr, even when the strength ratio ξ varies over the full

range from 1 to 0. For this range of Nr, even the topmost state of the SQW is too far below the
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barrier Vr to be pushed up above Vr in the corresponding ASQW by increasing Vl. This is easily

seen from Eqs. (3.44) and (3.45); to reach E = Vr requires θr = π/2 by Eq. (3.44), but Eq. (3.45)

then becomes Eq. (3.46), which cannot be satisfied since the fractional part of the LHS is above 1/2,

and the fractional part of the RHS is below 1/2. Thus θr can never reach π/2 for this case, and

none of the bound states can escape even by taking Vl → ∞.

3.3.2 The Effective Length

The exact effective length Ln for the asymmetric well can be determined by rewriting the eigenvalue

condition, Eq. (3.45), using the relations knL/2 = αn = Pr sin θr, as

knL

2

(
1 +

θl
2Pr sin θr

+
θr

2Pr sin θr

)
=
nπ

2
. (3.48)

Now invoking the relation Pl sin θl = Pr sin θr in the denominator of the second term, the following

identification can be made

Ln ≡ L

(
1 +

θl
2Pl sin θl

+
θr

2Pr sin θr

)
. (3.49)

This is the effective length for the equivalent infinite well, as Eq. (3.48) reduces to knLn = nπ or

kn = nπ/Ln. Ln can be expressed more compactly as

Ln ≡ L

(
1 +

cl,n
2Pl

+
cr,n
2Pr

)
, (3.50)

where

cr,n ≡ θr,n
sin θr,n

≡ π/2− φr,n
cosφr,n

, (3.51)

and the expression for cl,n, is identical to that above with r (right) replaced with l (left). We note

that θl,n, θr,n, φl,n, and φr,n are all functions of both Pl and Pr. Also, from Eq. (3.51) we have

1 ≤ cr,n ≤ π/2, 1 ≤ cl,n ≤ π/2. If Pr = Pl, we have a SQW and cr,n = cl,n = an in the notation of

Sec. 3.2. Now, the energies of the ASQW can be expressed in a form analogous to that of an ISW

as

En =
h̄2k2n
2m

=
h̄2

2m

(
nπ

Ln

)2

. (3.52)
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where the effective length Ln is given exactly by Eq. (3.49) in terms of the (exact) roots of the

transcendental equation, Eq. (3.45). Eq. (3.52) shows that the primary n2-scaling of the infinite well

is preserved, but is slightly modified by the small variation of Ln with n. In terms of an infinite well

of length L, with energies ε∞n = (nπh̄)2/(2mL2), the ASQW energies can be written

En = ε∞n fn, (3.53)

where

fn = (L/Ln)
2 =

(
1 +

cr,n
2Pr

+
cl,n
2Pl

)−2

. (3.54)

The factor fn represents the fractional reduction in the energies from those of the infinite well of

the same width L, and it depends primarily on Pr, Pl and only weakly on n.

In the next subsection it is shown how to obtain practical approximations of the roots of the tran-

scendental equations, leading to approximate Ln and En. Before discussing the approximations, a

few immediate points can be made concerning the exact cn functions and their dependence on Nr

and ξ.

Figure 3.9 shows cr,n and cl,n as functions of Nr for various strength ratios ξ, for the states n = 1 and

n = 2. ξ = 1 represents the SQW limit and the solid circles are the corresponding an. Smaller values

of ξ represent increasing asymmetry, and cr,n and cl,n diverge away from an in opposite directions,

cr,n being the upper curves.

The highest value an = π/2 is reached at Nr = n − 1 for any n. As ξ is decreased, the right

branches cr,n also attain the maximum value π/2, but at an increasingly larger value Nr(ξ) =

n−1+(1/π) cos−1 ξ, a relation analogous to Eq. (3.46). The left branches also begin at this Nr and

have the value at that point, cl,n = (1/ξ) sin−1 ξ. If we eliminate ξ from these two equations, we get

the envelope function of the starting points of cl,n’s, c
envelope
l,n = (n−1/2−Nr)π/ sin[(n−1/2−Nr)π].

This is represented by the dashed lines in Figure 3.9, for n = 1 and n = 2. All these results are

easily derived from Eqs. (3.44) and (3.45) by noting that cr,n = π/2 also implies θr,n = π/2. We

note that for any given ξ < 1, there is a blank range of Nr from Nr = n−1 to Nr = Nr(ξ), for which
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Figure 3.9: The (exact) functions an, cr,n(ξ) and cl,n(ξ) vs. Nr, for the n = 1 and n = 2 states, for

various values of ξ ≡ Pr/Pl. The solid circles are an (ξ = 1). The cr,n and cl,n deviate away from

an in opposite directions with decreasing ξ. Shown here are ξ = 0.925, 0.816, 0.707, 0.316 and 0.1.

The cr,n are the upper curves.
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there are no eigen-solutions, indicating that for a given ξ, there is no bound state with that n in that

range of Nr. In contrast, the corresponding symmetric well always has a bound state in that range.

For any ξ, and any n, as Nr is increased, the cr,n and cl,n decrease monotonically and eventually

asymptotically approach the limiting value 1. These are the main characteristics of the coefficients

cr,n and cl,n which we need to obtain the effective length Ln, Eq. (3.50). The higher n curves, while

not shown exhibit the same ‘fanning’ characteristic. Incidentally, as ξ → 0, the ASQW becomes the

semi-infinite well. In this limit, cl,n → 1, cr,n → a2n(2L), which was made explicit in the section

for the SQW. In the next subsection we develop approximations to obtain explicit representations

of the cn’s and Ln.

3.3.3 Approximations

Based on the remarkable and surprising success of the study of the SQW, a similar procedure is

adopted for approximating the energies of the finite ASQW. It is shown that this can be done

easily for the semi-infinite well (SIW). Next, this will be generalized to include small values of the

asymmetry parameter ξ ≡ Pr/Pl, and finally for all ξ. We begin by noting that the defining equation

for the SIW is given by

Pr sin θr +
1

2
θr =

nπ

2
, (3.55)

which can be seen from Eqs. (3.44) and (3.45) as a result of Pl → ∞. This is also given as Eq. (3.37)

in Section 3.2, obtained through symmetry considerations. Multiplying Eq. (3.55) by 2 converts it

to the SQW eigenvalue equation (Eq.(3.7) in Section 3.2), with strength parameter 2Pr and energy

level index 2n. Therefore θsir,n(Pr) ≡ θSQW
2n (2Pr). To solve this approximately, the above equation

is rewritten in terms of the complement φr = π/2− θr as

Pr cosφr − 1

2
φr = (n− 1/2)

π

2
. (3.56)
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In analogy with our approximations for the SQW, replacing the cosine with the first two terms of

its expansion results in a quadratic equation for φr, with the following solution

φsir,n =
1

Nrπ

(
−1 +

√
1 +Nrπ2(2Nr + 1− 2n)

)
. (3.57)

Using this in Eq. (3.51), the effective length for the SIW Ln = L(1 + cr,n/2Pr), is obtained, and

then using Eq. (3.52) results in the approximate eigenenergies. In the error analysis section we will

show the percentage errors in the energies of the SIW in this approximation, and these are seen to

be even smaller than those for the SQW.

Next we raise the question of how to solve Eq. (3.45) or its equivalent form in terms of the asymmetry

parameter ξ,

Pr sin θr +
1

2
θr +

1

2
sin−1(ξ sin θr) =

nπ

2
. (3.58)

We observe that for ξ sin θr << 1, Eq. (3.58) reduces to the following form

P
′
r sin θr +

1

2
θr =

nπ

2
, (3.59)

which is identical in form to Eq. (3.55) for the SIW, with P
′
r ≡ Pr + ξ/2 representing a shift in the

well-strength parameter due to ξ. As discussed above for the solution of Eqs. (3.55) and (3.56), the

solution for Eq. (3.59) is obtained in the form of Eq. (3.57) with Nr replaced by N
′
r = Nr + ξ/π.

The effective length and the energy is then found in the same manner used for the SIW.

To generalize this approach to all ξ, we write Eq. (3.58) as

P
′′
r sin θr +

1

2
θr =

nπ

2
, (3.60)

where now P
′′
r ≡ Pr + s/2, and

s =

[
sin−1(ξ sin θr)

sin θr

]
. (3.61)

While Eq. (3.60) has the solution in the form of Eq. (3.57), with Nr replaced by N
′′
r = Nr+s/π, this

is still an implicit solution since s depends on θr, which itself varies with ξ. The simplest approach

to make this explicit is to approximate θr in s through interpolation between the known limiting

80



values at ξ = 0 (SIW) and ξ = 1 (SQW). This is expressed as

θr = θsir − ξ(θsir − θsymr ), 1/2 ≤ Nr − (n− 1). (3.62)

For the range 0 ≤ Nr − (n − 1) ≤ 1/2, the θr fit will be different since θr attains the maximum

value π/2 at ξ = ξc, before the asymmetric well becomes a semi-infinite well. At this value of ξ, the

marginal state leaves the quantum well, and thus ξc (and not 0) is the minimum value of ξ for this

range of Nr. The fit now becomes

θr =
π

2
− (ξ − ξc)

(1− ξc)
(
π

2
− θsymr ), 0 ≤ Nr − (n− 1) ≤ 1/2, (3.63)

where ξc is given by Eq. (3.47). Using these fits for the appropriate range of Nr in the alternate

form of Eq. (3.60),

P
′′
r cosφr − 1

2
φr = (n− 1/2)

π

2
, (3.64)

and expanding the cosine to two terms results in a quadratic equation for φr, with the explicit

solution

φr,n =
1

N ′′
r π

(
−1 +

√
1 +N ′′

r π
2(2N ′′

r + 1− 2n)

)
, (3.65)

where N
′′
r = Nr+s/π. The alternate form of Eq. (3.44), Pr cosφr = Pl cosφl is then used to find the

corresponding φl,n. An explicit expression for the energy is then found through Eqs. (3.51), (3.50)

and (3.52). The process of obtaining the approximate ASQW energies by inserting the quadratic

expression for φr,n in the effective length expression, is the key to achieving high accuracy, just as

was the case for the SQW.

The function fn = f(n,Nr, ξ) that was given in Eq. (3.54) represents the fractional reduction in

the ASQW energies from the corresponding infinite well of length L. The approximate f(n,Nr, ξ)

curves for the levels n = 1, 3, 5 and 7 are shown in Figure 3.10 as a function of Nr, for three values

of ξ, ξ = 0, ξ = 0.707, and ξ = 1. The f(1, Nr, ξ) curve for each ξ forms an envelope about the

successively shorter n = 3, 5 and 7 curves. For each ξ the curves also asymptotically merge with

the n = 1 curve. For each n, the curves f(n,Nr, ξ = 1) start at the value of f = ((n − 1)/n)2, at

Nr = (n − 1), with cl = cr = π/2. For 0 < ξ < 1 however, the f(n,Nr, ξ) curves start with the
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Figure 3.10: The f(n,Nr, ξ) = En/ε
∞
n curves for the levels n = 1, 3, 5 and 7. The solid lines represent

the ξ = 1 limit of the approximations based on Eq. (3.65), while the dotted lines represent the ξ = 0

limit. The dashed curve in between the two is for ξ = 0.707, or Vl = 2Vr. The inset provides a

comparison between the exact f curves (solid lines) and the approximate f curves (dashed lines) for

the case of n = 1 and n = 3, for the same ξ values as in the main figure.
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value f = (Nr/n)
2, at Nr = n− 1/2 − (1/π) sin−1(ξ). This can be seen in Figure 3.10 for each n,

for the range 0 ≤ Nr − (n − 1) ≤ 1/2. The inset shows the comparison of the exact f curves with

the approximate f curves based on Eq. (3.65) for n = 1 and n = 3. The two sets of curves are

essentially indistinguishable to the eye. The inset also shows clearly that the 0 < ξ < 1 curves do

not reach Nr = n− 1 but Nr = n− 1/2− (1/π) sin−1(ξ).

3.3.4 Error analysis

The errors made in approximating the ASQW energies are shown in Figure 3.11 for the levels

n = 1, 3, 5 and 7 (dashed lines). The figure gives the percentage error (ΔEn/En) × 102, where

ΔEn = En − E
(a)
n , is defined as the difference between the exact energy En, and the approximated

energy E
(a)
n . The exact En is obtained by use of any one of the transcendental equations, (3.43),

(3.44) or (3.45). The approximate E
(a)
n , Eq. (3.52), is found by use of (3.65) in Eqs. (3.51) and

(3.50). So as not to clutter the plot, only three values ξ = 1(Vl = Vr), ξ = 0(Vl = ∞) and

ξ = 0.707(Vl = 2Vr) were chosen. The maximum, or peak error for the family of ξ curves for each

n occurs around Nr
<∼ 2n. The largest error made is < 0.5% (for n = 1, ξ = 1), the errors diminish

with increasing n, and for n ≥ 7 the error for all cases is < 0.1%. Note that for any n and any given

ξ, the error curves start with zero error at Nr = n− 1/2− (1/π) sin−1(ξ).

The errors in approximated ASQW energies are comparable to those in the approximated SQW

energies. Figure 3.11 also includes the approximated SQW energies (solid lines, from the SQW study)

for the levels n = 1, 3, 5 and 7. The curves based on both the SQW and ASQW approximations

share the same uniform behavior for all n. The limiting case of the ASQW approximation for ξ = 1

also represents the SQW, but solved through the “shift method.” The two methods for getting the

SQW energies do not give identical results (that is not unexpected since an additional approximation

is made in the ASQW method) but it is reassuring that the two sets of error curves (the solid lines

and the top (ξ = 1) ASQW curve) have the same shape and only slightly different numerical values.
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Additionally, for higher n, the difference between these two curves becomes indistinguishable. The

SIW percentage errors are also given in the figure as dotted lines. For any n, the progression from

the SIW (ξ = 0) case to the SQW (ξ = 1) case can be followed by moving upward on the figure.

There are two approximations made in this analysis of the ASQW. The first is approximating

cosφr by a two-term expansion in Eq. (3.64). Second is the modeling of θr in the shift s through

linear interpolation. These two approximations lead to an error Δφr = φexactr − φ
(a)
r . In principle,

the energies could have been calculated via α = Pr cosφr, once an explicit expression for φr was

obtained. The resulting error in α is Δα = −Pr sinφrΔφr . But the resulting fractional error in

α, Δα/α = − tanφrΔφr, becomes quite large due to the tanφr factor when φr exceeds π/4 and

approaches π/2. On the other hand when we obtain the energy through the concept of the effective

length (Eqs. (3.50) and (3.52)), the errors become small, just as was the case for the SQW study.

3.3.5 Wave Functions

The exact wave function of the ASQW is given by

ψn(z) = C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

eκlz sin δ, z ≤ 0,

sin(knz + δ), 0 ≤ z ≤ L,

e−κr(z−L) sin(knL+ δ), z ≥ L,

(3.66)

where the constants A and B in Eq. (3.39) have been re-expressed in terms of C by applying the

continuity condition at the boundaries of the well. The normalization constant C is given by

C−2 =
L

2
− 1

4kn
[sin(2knL+ 2δ) + sin(2δ)] +

1

κl
sin2 δ +

1

κr
sin2(knL+ δ). (3.67)

A simpler expression can be obtained by using Eq. (3.40),

C−2 =
L

2
+

1

2κl
+

1

2κr
. (3.68)

The wavenumber, the decay constants, and the phase angle can be expressed in terms of the exact

effective length, as kn = nπ/Ln, κl,n = π
√
(Nl/L)2 − (n/Ln)2, κr,n = π

√
(Nr/L)2 − (n/Ln)2,
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Figure 3.11: The percentage error in ΔEn/En × 102 vs. Nr, for n = 1, 3, 5 and 7, based on the

quadratic-φr approximation. The dashed curves are the ASQW approximation, which for each n,

start at ξ = 0 (the bottom curve) and move higher for increasing ξ. The topmost dashed curve for

each n represents the ξ = 1 case from the ASQW approximations, while the solid curve is the SQW

approximation of Sec. 3.2. The dashed line in between the ξ = 0 and ξ = 1 case is for ξ = 0.707.
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Figure 3.12: Comparison of the exact and the approximated ψn, for n = 1 and n = 2. For each n, the

solid line is the exact ASQW wave function, the heavy dashed line represents use of the approximated

Ln in Eq. (3.66), and the thin dashed line represents Eq. (3.71). Note that the approximate ψn based

on Eq. (3.66) are indistinguishable from the exact ψn. The vertical dashes displaced by ll,n and lr,n

from the boundaries of the actual well mark the boundaries of the equivalent wider infinite wells for

the levels shown. Since Ln depends weakly on n, the shifts for n = 1 and n = 2 do not differ much.

δ = sin−1(nL/NlLn). The wave functions are then completely expressed in terms of the effective

length.

A physical interpretation can now be made regarding the phase angles θr and θl, derived in con-

junction with the eigenvalue equation, and the effective length Ln. Eq. (3.45) can be recast as

(θr/2) + (θl/2) ≡ (kn/2)(Ln − L). If the sinusoidal portion of the wave function inside the well

(Eq. (3.66)) were to be extended outside the well the distance ll,n ≡ (Ln)(on the left side of the

well), it would reduce the phase by knll,n = θl,n, making θl,n the phase to be subtracted from the

phase at the boundary (z = 0) to make it reach zero, where the wave function vanishes. For the

right-hand side of the well, if the wave function were to be extended the distance lr,n ≡ (L + Ln),
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it would accumulate the extra phase knlr,n = θr,n, making θr,n the phase to be added to the phase

at the boundary (z = L) to make it reach knLn/2 = nπ/2, where the wave function vanishes.

The phase change that occurs when the barrier height is brought down from infinite to the given

value Vl, and Vr, is precisely θl,n for the left side, and (−θr,n) for the right side. Using Eq. (3.51),

lr,n ≡ (cr,n/2Pr)L. Identical arguments for the left side lead to ll,n ≡ (cl,n/2Pl)L, and the overall

effective length is therefore given by Ln = ll,n + L+ lr,n.

Another consequence of the asymmetry is the shift in the center of symmetry for the wave function.

As Pl > Pr (by choice), the auxiliary relation Pl sin θl = Pr sin θr implies θl < θr, and therefore the

extension of the wave function will be greater on the lower barrier side and smaller on the higher

barrier side. The shift is obtained (exactly) based on the effective length expression, Eq. (3.50), as

zcenter,n =
L

2
+ ln, (3.69)

where

ln =

(
lr,n
2

− ll,n
2

)
, (3.70)

is the magnitude of the shift, and L/2 is the geometric center of the asymmetric well. Note that

ln being a function of n, is different for each level. In studies of realistic quantum well structures,

knowledge of where the wave function center of symmetry is located (in asymmetric wells) allows

one to determine where the charge density is most likely to reside [44], for example. Furthermore,

additional (analytical) insight may be possible when studying more complicated structures, such as

a coupled, or double asymmetric quantum well, in which two ASQW’s are separated by a barrier of

varying thickness.

Employing the approximation (3.65) in the effective length expression, Eq. (3.50), explicit approx-

imate wave functions are obtained. Note that the normalization constants, Eqs. (3.67) and (3.68),

will now no longer be identical. The inaccuracy of Eq. (3.68), although quite small, is a result

of using (the now inaccurate) Eq. (3.40) to obtain the simpler form. Figure 3.12 compares these

approximated ψn (heavy dashed lines), with the exact ψn (solid lines), and shows that they are
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indistinguishable to the eye. The parameter values chosen for the figure are based on a (typical)

quantum well structure composed of the semiconducting materials gallium arsenide GaAs, and alu-

minum gallium arsenide, Al0.3Ga0.7As, where the subscripts refer to the relative concentration of

the component materials[2]. The parameter values are Nr = 1.46 (Vr = 30 meV) and Nl = 2.07

(Vl = 60 meV), and L = 20 nm. Figure 3.12 also illustrates the shift l1 in the location of the center

of the ground state (n = 1) wave functions due to the unequal barrier heights. The n = 2 wave

function has a shift l2 in the location of the node.

A simpler approximation, though of limited applicability, can be obtained by a mapping to the wider

infinite well. The wave functions are given by the ISW form

ψn(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
√

2/Ln sin[(nπ/Ln)(z + ll,n)],−ll,n ≤ z ≤ L+ lr,n,

0, otherwise.

(3.71)

where ll,n = (cl,n/2Pl)L. The shift ln, Eq. (3.70), in the position of the central node (even n) or of

the central maximum (odd n) is accounted for by Eq. (3.71). This simple approximation for ψn is

represented in Figure 3.12 as the thin dashed line. The vertical dashed lines in the figure represent

the boundaries ±Ln/2 of the equivalent wider infinite well for each level n = 1 and n = 2. While

for both n = 1 and n = 2, the wave functions are well-approximated in the interior region of the

well by this simpler form, the latter obviously fails to describe the exponential decay. Additionally,

the amplitudes for this ISW form are slight overstatements in the interior of the well. This effect

will increase with n, becoming especially large for n levels which can become marginal, or near-

marginal. Despite these limitations, the ISW mapping offers a quick and simple approximation of

the deeper-bound finite ASQW states.

Accurate approximate energies and wave functions of the finite asymmetric quantum well based on

the effective length approach have been obtained. The approach employed is globally applicable to

all cases (for all n, strength parameter Pr and asymmetry parameter ξ = Pr/Pl). The resulting

worst-case error in energy is less than 0.5%. That the errors remain uniformly small and bounded,

is due to the algebraic structure of the effective length, through which the energies are found. As in
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the SQW analysis, the emphasis here also is on the effective length, which serves as the fundamental

quantity.

As the approximate energies are inversely proportional to the square of the effective length Ln,

the percentage errors of Ln are only half the percentage errors of the corresponding En. Thus

the accuracy of our wave functions (which directly depend on Ln) is very good. This fact will be

crucial in establishing analytic descriptions of more complex quantum well systems which can be

compounded from the basic units, ASQW and SQW, described in this and the preceding section.

In the next section, the problem of the triangular, or wedge-well potential is presented.
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3.4 The Triangular Quantum Well

This section contains the triangular quantum well results, studied separately in the following four

subsections: the infinite triangular well (ITW), in which there are infinitely confining potentials

on either side Fig. 3.13 (a), the half-infinite triangular well, Fig. 3.13 (b), for which the vertical

wall has a finite potential height, but with an infinitely extended slope, the second variation of the

half-infinite triangular well, Fig. 3.14 (a), which has a truncated slope, but with an infinitely high

vertical wall, and lastly, the fully finite triangular well (FTW), in which both sides of the potential

are finite valued, Fig. 3.14 (b).
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Figure 3.13: A schematic of the infinite triangular well (ITW), and the half-infinite well, in which

the slope is of infinite extent, but finite vertical wall.

3.4.1 The Infinite Triangular Well (ITW)
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Just as in the ISW case, the inifinte triangular well (ITW) is the simplest of the wedge-shaped

potentials to study (Fig. 3.13 (a)). The potential is defined as

V (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∞, z ≤ 0

Fz, z > 0

where F is the strength of the applied electric field. The Schrödinger equation

d2ψ(z)

dz2
+

2m∗

h̄2
(E − Fz)ψ(z) = 0 (3.72)

can be put into dimensionless form, by taking

y = αz − γ, α =

(
2m∗F
h̄2

)1/3

, γ =
αE

F
(3.73)

giving the Airy differential equation

φ′′(y)− yφ(y) = 0 (3.74)

with the general solutions

φ(y) = C ·Ai(y) +D · Bi(y) (3.75)

Taking the vertical wall to be at z = 0, the boundary conditions require that φ(y) go to zero at z = 0

and also at z → ∞. From the properties of the Bi(y) function in the Airy solution, this requires

B = 0, with the solution now given by

φ(z = 0) = C ·Ai(−γ) = 0 (3.76)
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where the zeroes of the Airy function Ai(−γ) are well-known and tabulated. The eigenvalues of the

triangular potential well are related to the zeroes of the Ai(−γ), and are given by

En =
γnF

α
= γn

(
h̄2F 2

2m∗

)1/3

(3.77)
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Figure 3.14: A schematic of the half-infinite triangular well, in which there is an infinite vertical

wall, but finite-extent slope, and the finite triangular well (FTW), where both slope and wall are

finite.

3.4.2 The Finite Barrier Height Wedge Potential

The next variation for the infinite triangular well is one in which left-side infinite barrier is lowered

to a finite value V0 as shown in Figure 3.13(b). Here the wavefunctions are given by
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ψ(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ceρz , z < 0

D ·Ai(αz − γn + ε), z > 0

(3.78)

where ρ =
√

2m∗(V0 − E)/h̄2, α = (2m∗F/h̄2)1/3. Matching boundary conditions at z = 0 gives

C = Ai(ε− γn), ρC = αD ·Ai′(ε− γn) (3.79)

and divding these two equations eliminates C, giving

ρ

α
=
Ai′(ε− γn)

Ai(ε− γn)
(3.80)

Expanding the Airy function about its zeroes,

Ai(ε− γn) ≈ εAi′(−γn) (3.81)

and inserting this into Eq. (3.80) gives a simple approximation for ε:

ε ≈ α

ρ
(3.82)

For large potentials V0, and low energies, this is approximately

ε ≈ α

κ
, κ =

√
2m∗V0
h̄2

(3.83)

and the corresponding wavefunctions are

ψII(z) ≈ A2Ai(α(z + κ−1)− γn) (3.84)

Now the eigenvalues for an Airy function in an infinite wedge potential are obtained through the

relation between the phase and the ’slope’:

CnAi(gz + f) ⇔ −Ff/g (3.85)

93



and therefore the approximate eigenvalues are

En ≈ F

α

(
γn − α

κ

)
= En

∞ − F

κ
(3.86)

Note that this result can be derived geometrically when looking for an appropriate effective wedge.

3.4.3 Truncated Wedge with Infinite Barrier Height

The second variation on the infinite triangular well is that of the half-infinite TW in which the slanted

side is of finite extent V0, and with an infinitely high vertical barrier, as shown in Figure 3.14 (a).

For the truncated wedge, the wavefunctions are given by

ψI = Ai(y) +R · Bi(y), y <
α

F
(V0 − E) (3.87)

ψII = Ceρy/α, y >
α

F
(V0 − E) (3.88)

noting that where the wedge stops is y0 = (α/F )(V0 − E). The boundary condition at the infinite

barrier, z = 0, are

ψI

(
y = −αE

F

)
= Ai

(
−αE
F

)
+R · Bi

(
−αE
F

)
= 0 (3.89)

Now approximating the eigenvalues as E ≈ E∞ − ε, and inserting above gives

94



Ai
(
−|γn|+ αε

F

)
+R ·Bi

(
−|γn|+ αε

F

)
= 0 (3.90)

Taking ε to be a small correction to the energies, the Ai term can be expanded to obtain an expression

for the coefficient R:

R =
Ai′(−|γn|)
Bi(−|γn|) · αε

F
(3.91)

The next boundary condition at y1 = (α/F )(V0 −E), where the wedge becomes constant, results in

ψ′
I(y1)

ψI(y1)
=
Ai′(y1) +R · Bi′(y1)
Ai(y1) +R · Bi(y1) (3.92)

and

ψ′
II(y1)

ψII(y1)
=

−ρ
α

= −√
y1 (3.93)

Since y1 > 1 especially for small E, the derivatives of the Airy function can be approximated by

their asymptotic expansions:

Ai′(y1) ≈ −√
y1Ai(y1) (3.94)

Bi′(y1) ≈ √
y1Bi(y1) (3.95)

and
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Bi(y1) ≈ 2e
4
3y

3/2

Ai(y1) (3.96)

With these three relations, Eq. (3.92) becomes:

Ai′(y1) +R ·Bi′(y1)
Ai(y1) +R ·Bi(y1) = − 1

4y1
+
√
y1

[
1− 2

1 + 2Re
4
3 y

3/2

]
(3.97)

Now setting this equation equal to Eq. (3.93), a second expression for R is obtained:

R ≈ −Ai(y1)
Bi(y1)

· 1

1 + 8y
3/2
1

(3.98)

Taking the two espressions for R, Eq. (3.91) and Eq. (3.98), an expression for the perturbation to

the eigenvalues, ε, is found:

ε ≈ −Ai(y1)Bi(−|γn|)F
Bi(y1)Ai′(−|γn|)α (1 + 8y

3/2
1 )−1 (3.99)

Note that ε is always greater than zero because the signs of the Airy functions for all possible values.

3.4.4 The Finite Triangular Well (FTW)

The situation for which both barriers are finite is presented here as shown in Fig. 3.14 (b). By the

construction of reducing each barrier height, the left-side vertical wall, and the right-side slant, the
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previous results can be applied independently, as a first approximation, so that the overall energies

may be written as

E ≈ E∞ − ε1 − ε2 (3.100)

This approximation can be made conceptually based on the previous two half-infinite cases. First,

consider the left vertical barrier being lowered to a finite value V0. This leads to an effective infinite

wedge potential with a reduction given by:

ε1 =
F h̄√
2m∗V0

(3.101)

as derived earlier, Eq. (3.86). Secondly, consider the truncation of the wedge at y1. Though the

effective position of y1 with respect to y0 has been changed, the effect of truncating the wedge

remains the same. This leads to a lowering of the energies given by:

ε2 ≈ −Ai(y1 − ακ−1
1 )Bi(−|γn| − ακ−1

1 )F

Bi(y1 − ακ−1
1 )Ai′(−|γn| − ακ−1

1 )α

(
1 + 8(y1 − ακ−1

1 )3/2
)−1

(3.102)

where the extra κ term in comparison with equation Eq. (3.99) comes from the lowering of the left

barrier. Thus, while there is a change in this reduction due to the first reduction, the manner in

which the energy is reduced is unchanged. To summarize, the eigenenergies for this now finite barrier

and wedge system are given by the equation:

E ≈ E∞ − F

κ
− −Ai(y1 − ακ−1

1 )Bi(−|γn| − ακ−1
1 )F

Bi(y1 − ακ−1
1 )Ai′(−|γn| − ακ−1

1 )α

(
1 + 8(y1 − ακ−1

1 )3/2
)−1

(3.103)
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3.5 Double Symmetric Quantum Well (DSQW)

The finite double quantum well (DSQW), or coupled-well problem is a very interesting and important

one in that this model system describes many semiconductor heterostructure devices. This scenario

allows a coupling to exist between the neighboring wells, leading to the possibility of many new and

interesting transport phenomena. Figures 3.15 and 3.16 shows four possiblilities of the finite DQW

system. In this section an exact transcendental equation for the eigenvalues of the DSQW is given

(with details on the derivation given in Appendix A), upon which analytical approximations are

made that allow explicit forms for the energies to be obtained.
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Figure 3.15: Examples of possible finite 1D double well systems, including the (a) the (fully) sym-

metric double quantum well (DSQW), and (b) the asymmetric double quantum well (ADSQW).

Figure 3.15 (a) shows the potential energy of the DSQW, with equal well widths L and barrier width

d, and with all barrier heights equal to V0. Also shown is Fig. 3.15 (b) the case of the finite double

quantum well for which the middle barrier height V1 is V1 < V0. The finite DQW with variable

middle barrier height, but with unequal well widths (Fig. 3.16 (a)), and the DQW with unequal
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barrier heights and unequal well and barrier widths (Fig. 3.16 (b)), are also possible. The value

z = 0 is taken at the center of the middle barrier. In this section only the fully symmetric DQW is

studied.

V (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
V0, −∞ < z < −L, −d/2 < zd/2, L < z <∞;

0, −L < z < −d/2, d/2 < z < L

(3.104)

The range of the potential is split up and denoted by the roman numerals I through V, and the

TISE is given by the following forms

−h̄2
2m∗

d2ψ(z)

dz2
= Eψ(z) (II,IV) (3.105)

−h̄2
2m∗

d2ψ(z)

dz2
= (V0 − E)ψ(z) (I,III,V) (3.106)

or in terms of the quantities k and κ as

d2ψ(z)

dz2
= k2ψ(z) (II,IV) (3.107)

d2ψ(z)

dz2
= κ2ψ(z) (I,III,V) (3.108)

where

k =

√
2m∗E
h̄2

κ =

√
2m∗(V0 − E)

h̄2
(3.109)

The wavefunctions of the SDQW in regions I,III,V are denoted by

ψI(z) = Aeκz +Be−κz (3.110)

ψIII(z) = Ceκz +De−κz (3.111)

ψV (z) = Feκz +Ge−κz (3.112)

and in regions II,IV

ψII(z) = H cos

{
k

[
z +

(
L

2
+
d

2

)]}
+ I sin

{
k

[
z +

(
L

2
+
d

2

)]}
(3.113)
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ψIV (z) = J cos

{
k

[
z −

(
L

2
+
d

2

)]}
+K sin

{
k

[
z −

(
L

2
+
d

2

)]}
(3.114)
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Figure 3.16: Examples of possible finite 1D double well systems, including the (a) the (fully) sym-

metric double quantum well (DSQW), and (b) the asymmetric double quantum well (ADSQW).

As detailed in the appendix, the solution for the energie of the DSQW are given by

(κ+ k cot(kL/2)(κ− k tan(kL/2) = ±(k2 + κ2)e−κd (3.115)

Multiplying through by L/2 and rearranging gives

β − α tanα = ± (α2 + β2)

(β + α cotα)
γ, γ ≡ e−κd (3.116)

where α =
√
(2m∗E)/h̄2(L/2) and β =

√
(2m∗(V0 − E))/h̄2(L/2) (see Eq. (3.4)). Considering the

’zeroth’ order, γ → 0, Eq. (3.116) is then

β − α tanα = 0 =⇒ β

α
= tanα (3.117)

and this resulting zeroth-order solution is just Eq. (3.5), that of the single SQW for the even

100



wavefunctions. Next, to first-order in γ, Eq. (3.116) gives

β − α tanα = ± (α2 + β2)

(β + α cotα)
γ, (3.118)

and using the zeroth-order expression for β/α above,

β − α tanα = ± (α2 + β2)

(β + α
β/α )

γ, (3.119)

β − α tanα = ± (α2 + β2)
1
β (α

2 + β2)
γ,

or

β − α tanα = ±βγ, =⇒ α tanα = βλ, λ ≡ (1∓ γ) (3.120)

Note this has the same form as that of Eq. (3.5). A solution to this equation for the eigenvalues of

the DSQW can be found by the graphical method outlined in detail in the Appendix A as follows.

tanα =
βλ

α
, =⇒ tan2 α =

P 2 − α2λ2

α2
=⇒ sec2 α− 1 =

P 2λ2 − α2λ2

α2

≈ sec2 α =
P 2λ2

α2
=⇒ | cosα| = α

Pλ
(3.121)

where the assumption λ ≈ 1 has been made. This is a reasonable one as this implies that V0 be large

and/or d be large which is the case for many realistic situations. The error incurred from this will

be shown below. Now, from the graphical method (see Appendix A), | cosα| can be approximately

written as

| cosα| = α

Pλ
=⇒ nπ

2
− αn =

αn

Pλ
=⇒ nπ

2
= αn

(
1 +

1

Pλ

)
(3.122)

Now invoking the idea of the effective length (which was similarly introduced for the SQW), this

can be recast as

nπ = kL′, L′ ≡ L

(
1 +

1

pλ

)
(3.123)
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and expressing k in terms of E, this is written

k =
nπ

L′ =⇒
√

2m∗E
h̄2

=
nπ

L′ =⇒ En =
(nπh̄)2

2m∗L′2 (3.124)

This expression for En is identical in form to that of the ISW, Eq. (3.1). The approximated eigenen-

ergies of the SDQW for the even states (+) can therefore be written as

E+
n = En,∞

(
1

1 + 1
P (1∓γ)

)2

, γ ≡ e−κd (3.125)

where λ has been rewritten in terms of the well-strength P , and the energies depend explicilty in

terms of the middle barrier width d.
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Figure 3.17: The percentage error in using Eqs. (3.125) and (3.128) to calculate the even and odd

state energies of the DSQW, as a function of the middle barrier width d, for the case of L=200 Å

and barrier height V0=250 meV.

Similarly, for the odd states, starting with Eq. (3.116), and performing the same iteration, gives

cotα = −βλ
α
, =⇒ cot2 α =

P 2 − α2λ2

α2
=⇒ csc2 α− 1 =

P 2λ2 − α2λ2

α2

≈ csc2 α =
P 2λ2

α2
=⇒ | sinα| = α

Pλ
(3.126)
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and

| sinα| = α

Pλ
=⇒ nπ − αn =

αn

Pλ
=⇒ nπ = αn

(
1 +

1

Pλ

)
(3.127)

and the approximated eigenenergies for the odd states (-) are

E−
n = 4En,∞

(
1

1 + 1
P (1∓γ)

)2

, γ ≡ e−κd (3.128)

Using Eqs. (3.125) and (3.128), approximate energies for the even and odd states E+
1 , E−

1 of the

DSQW system are found. Fig (3.17) shows the % error compared with the exact values found from

the transcendental equation, (3.115). The case used was for a DSQW of well width L=200 Å and

height V0=250 meV,

3.5.1 Resonant Coupling in Double Quantum Wells

When two (or more) quantum wells, with discrete energy levels, are close to each other, there is a

non-zero coupling that exists, and leads to very interesting physics. Fig. (3.18) shows a schematic

of a situation in which there is a coupling in a DQW system, with E0 denoting the energy of the

corresponding isolated QW, and E1 and E2 denoting the energies of the coupled system.

In Figure (3.18) the states presented between cases a) and b), and between c) and d) are the time-

independent eigenstates of the DQW, and represent equal probabilities to be in each well. This can

be seen from the |ψ1(z)|2 and |ψ2(z)|2 of each state, which have a maximum probability in the center
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Figure 3.18: Schematic of the coupling between energy levels in a DQW system. a), b) When

the middle barrier width is much larger than the individual well widths, d >> L, (with the barrier

heights equal) the coupling ≈ 0 and the energies of the DQW, E1 ≈ E2 ≈ E0, where E0 is the energy

of the uncoupled, isolated well. As d is made smaller, the initially doubly degenerate levels split into

two levels, with the symmetric wave function having a lower energy than the antisymmetric wave

function. c), d) For the case in which d is fixed, and the middle barrier height V1 >> V0, a similar

situation arises. Note that in the cases a) and b), the degenerate level E0 is more or less the average

of the energies E1 and E2. However in the cases c) and d), the level E0 has risen substantially,

comparitively. d) shows the limit in which the single ASQW is achieved, while in a) the limit of two

single SQW’s is obtained. The levels for the cases a) and b) are not equal to those in cases c) and

d).
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of each respective well. However, realistically, a particle (or wavepacket description of one) will be

in either one of wells at any given time. That is, there is an oscillation of the probability |ψ(z, t)|2

between the two wells with some frequency ω. To gain an understanding of this time-dependence,

consider the sum of the symmetric and antisymmetric states at t = 0. If we start with the example

given in Fig. (3.18 b), arbitrarily, then

Ψ(z, t) =
1√
2

(
ψs(z)e

iE1t/h̄ + ψa(z)e
iE2t/h̄

)
(3.129)

and for t = 0

Ψ(z, 0) =
1√
2
(ψs(z) + ψa(z)) (3.130)

and due to the parity, on the right side of the DQW, a cancellation occurs, and in the left well a

’build-up’ of the wavefunction occurs, representing a localization of the particle in the left side at

t = 0. Taking the square of the absolute value of Ψ(z, t),

|Ψ(z, t)|2 = 1

2

[
ψs(z)e

iE1t/h̄ + ψa(z)e
iE2t/h̄

] [
ψ∗
s (z)e

−iE1t/h̄ + ψ∗
a(z)e

−iE2t/h̄
]

|Ψ(z, t)|2 =
1

2

[
|ψs(z)|2 + |ψa(z)|2 + ψa(z)ψ

∗
s (z)e

i(E2−E1)t/h̄ + ψsψ
∗
a(z)e

i(E2−E1)t/h̄
]

|Ψ(z, t)|2 = 1

2

[
|ψs(z)|2 + |ψa(z)|2 + ψsψ

∗
a(z) cos(

ΔEt

h̄
)

]

or

|Ψ(z, t)|2 =
1

2

[|ψs(z)|2 + |ψa(z)|2 + ψsψ
∗
a(z) cos(ωt)

]
(3.131)

where ΔE = E2−E1 and ω = ΔE/h̄ is the frequency of the oscillation of the probability. Fig. (3.19)
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Figure 3.19: Example showing the oscillation of the probability in the DSQW.

3.6 The Finite Symmetric Quantum Well with Particles

The Poisson eq. for the three-dimensional charge density n(z) is

d2VH
dz2

= −4πe2

ε
n(z) = −4πe2

ε

(
ns|ψ(z)|2

)
(3.132)

where VH is the Hartree potential, ε is the permittivity of the material (for GaAs, ε = 13.1), and

ns is the areal density of the QW, which can be determined explicity. For the SQW, it has been

empirically determined that for moderately doping (nd 1x10−6A) the ground-state wavefunction ψ

(in the presence of charge) could be reasonably modeled by

ψ(z) = A−Bz2 − Cz4 (3.133)
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Using this in the Poisson eq. (3.132),

d2VH
dz2

= −4πe2

ε

(
ns(A−Bz2 − Cz4)2

)
(3.134)

d2VH
dz2

= −4πe2

ε

(
ns(A−Bz2 − Cz4)2

)

and

d2VH
dz2

= −4πe2

ε

(
ns(A−Bz2 − Cz4)2

)

and keeping only three terms,

d2VH
dz2

= −4πe2

ε

(
ns(A−Bz2 − Cz4)2

)
(3.135)

The results here show that for a (symmetrically) doped SQW, the bottom of the potential well is

very well described as a cosine function of the position.
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Chapter 4

Tunneling Transmission

The concept of tunneling through a potential barrier illustrates a fundamental principle of quantum

theory, the wave-like property of matter. Tunneling was introduced into solid state physics in 1928

by Fowler and Nordheim [1], and by Oppenheimer [2] in an attempt to describe field emission from

metals. Zener [3], in 1934 described the internal field emission in semiconductors, and tunneling

between the valence and conduction bands of a semiconductor p-n junction diode was reported by

Esaki in 1958 [4]. The examples cited here essentially involved a triangular-shaped barrier. The first

observation of resonant tunneling through double-barrier resonant tunneling structures (DBRTS)

by Tsu, Esaki and Chang [5, 6] in the early 1970’s attracted much interest due to their potential

applications [7, 8, 9] and the potential opportunities they offer for both theoretical and experimental

study of quantum effects and tunneling processes [10, 11].

A theoretical treatment of tunneling was done by Bohm [12] in 1951 using the WKB approximation.

A thorough review of the tunneling phenomena in solids was given by Duke [13], and a more recent

review of tunneling in semiconductors done by Price [14]. After the advent of molecular beam epitaxy

for compound semiconductor crystal growth techniques, electron tunneling was predicted for an

AlGaAs/GaAs/AlGaAs double barrier heterostructure based on the electron wave resonance [5]. A
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“particle” picture in which an electron is constrained inside the GaAs quantum well, can describe the

dwell time (before escaping into the anode region), with a bias-dependent tunneling current through

the structure, showing a negative differential resistance as a result of the resonant tunneling. This

process is quantitatively described by the transmission and reflection of electron waves through the

structure [15].

In this chapter, the transmission probability of single barriers is studied: the single symmetric rect-

angular barrier, the triangular barrier, and the single asymmetric rectangular barrier. An important

and new result is an exact mapping from the rectangular barrier result to that of the triangular

barrier. Through this mapping an effective barrier width and barrier strength is found, for the tri-

angular barrier. As in the previous chapter, the Appendix B gives the full details of the derivations,

while only the most relevant details are given here.

4.1 The Symmetric Single Rectangular Barrier

In this section the matrix elements for the transmission through a single symmetric rectangular bar-

rier are derived. The single rectangular barrier is a well-known one, and is important in illustrating

the use of the transfer matrices. The results obtained here can then be used for the case of the

symmetric double barrier, the triple barrier and the superlattice, in which there are many similar

barriers in succession. Particles encountering barriers and other obstacles must be handled appro-

priately through the transfer matrix [16], in which the potential of interest is divided into piece-wise

constant regions, as shown in Fig. 4.1.
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Fig. 4.2 gives the picture of the single barrier studied here. The potential only exists between z = −d

and z = d,

V (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, z < −d,

V0, −d < z < d,

0, z > d,

(4.1)

with both incoming and outgoing waves on either side of the barrier described by propagating waves

k2 = (2m∗E)/h̄2, while in the barrier the waves are attenuated, with κ2 = (2m∗(V0 − E))/h̄2. The

wavefunction is given in general by

ψ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1e
ikz +B1e

−ikz , z < −d,

A2e
κz +B2e

−κz, −d < z < d,

A3e
ikz +B3e

−ikz , z > d,

(4.2)

where Ai’s and Bi’s are the amplitudes of the waves. Applying the boundary and continuity equa-

tions results in a matrix expression for the transmission and reflection coefficients (see Appendix B

for details), the relevant matrix elements M sb
11 and M sb

21 are given as

M sb
11 =

[
cosh(2κd)− i

2

k2 − κ2

kκ
sinh(2κd)

]
e2ikd, single symmetric barrier (4.3)

and

M sb
21 = − i

2

k2 − κ2

kκ
sinh(2κd), single symmetric barrier (4.4)

The tunneling transmission probability T (E) is given by

T =
1

|M11|2 =⇒ =

[
cosh2(2κd) +

(
k2 − κ2

2kκ

)2

sinh2(2κd)

]−1

(4.5)

or
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Figure 4.1: Illustration of the transfer matrix method by dividing up the potential into segemnts.

T =
1

1 +
(
k2+κ2

2kκ

)2
sinh2(2κd)

(E < V0) (4.6)

T =
1

1 +
(
k2−k′2
2kk′

)2
sin2(2k′d)

(E > V0) (4.7)

where the second equation accounts for above the barrier transmission, with κ → ik′, and k′2 =

2m∗(E − V0)/h̄
2. The overall behavior of the tunneling coefficient is shown in Fig. 4.2. Eqns. (4.6)

and (4.7) can be expressed in terms of the energy variables, as

T−1 = 1 +
V 2
0

4E(V0 − E)
sinh2(2κd) (E < V0) (4.8)

T−1 = 1+
V 2
0

4E(E − V0)
sin2(2k′d) (E > V0) (4.9)

By introducing the scaled energy ε and barrier strength parameter Q, defined by

ε = (E/V0) Q = 2dk0 = 2d

√
2m∗V0/h̄2 (4.10)

the transmission coefficient is seen to be a function of only two variables, ε and Q,
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Figure 4.2: The single rectangular barrier of total width 2d, and height V0. The tunneling trans-

mission probability T (E) as a function of the energy, in meV. T (E) pictured at right for a barrier

of V0=40 meV, and width 100 Å.

T−1(ε,Q) = 1 + [4ε(1− ε)]−1 sinh2(Q
√
1− ε) ε < 1 (4.11)

T−1(ε,Q) = 1 + [4ε(ε− 1)]−1 sin2(Q
√
ε− 1) ε > 1 (4.12)

Thus all rectangular barriers of equal strengths Q have the same transmission coefficient at the same

scaled energy. This is a mapping from a barrier of potential height V0 and width 2d (strength Q) to a

barrier of height V ′
0 and width 2d′ such thatQ′=Q, for corresponding energies E = εV0 and E

′ = εV ′
0 .

The particular functional form of T is characteristic of the shape of the potential, i.e., it is the same

for all rectangular barriers. We will show in the section this universality property, T = T (ε,Q), is

valid for any barrier shape. The Schrödinger equation can be cast into a dimensionless form in terms

of ε and Q, V0 being the maximum value of the potential and 2d the spatial extent of the potential.

The particular functional form of T (ε,Q) depends on the shape of the potential, and for example

will differ from Eq. (4.11) for a triangular barrier, Ttriangle(ε,Q) 
= Trectangle(ε,Q). This raises

the interesting question: Is it possible to find a mapping from one shape to another by defining an

’equivalent’ strength parameter for the other shape? Can we have Ttriangle(ε,Q) = Trectangle(ε,Q
′)
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for some suitably defined Q′?

4.2 The Triangular Barrier

Consider a triangular barrier defined by

V (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, z < 0,

V0(z/L), 0 < z < L,

0, z > L,

(4.13)

The Schrödinger equation for energy E is given by

− h̄2

2m

d2

dz2
ψ(z) + V0(z/L)ψ(z) = Eψ(z), 0 < z < L, (4.14)

Let E = (h̄2/2m)k2, V0 = (h̄2/2m)K2
0 , y = z/L, ε = E/V0, and Q = K0L = L

√
2mV0/h̄

2 and

Eq. (4.14) reduces to

d2

dy2
ψ(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Q2(y − ε)ψ(y), 0 < y < 1,

−εQ2ψ(y), outside

(4.15)

Note εQ2 = k2L2 and the outside solutions are exp(±ikLy) = exp(±ikz). It is clear from Eq. (4.15)

ψ(y) = ψ(y; ε,Q) and the transmission coefficient obtained from solving this equation with appro-

priate boundary conditions can only be a function of ε and Q. All triangular barriers with different
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V0 and L, but with the same strength parameter Q will lead to identical transmission coefficients at

the same scaled energy ε.

A further change of variables

ξ = (y − ε)Q2/3 (4.16)

converts Eq. (4.15) to the standard Airy equation in the interval y = (0, 1) or z = (0, L),

d2

dξ2
ψ = ξψ (4.17)

and outside this interval we have

d2

dξ2
ψ = −εQ2/3ψ (4.18)

The solutions in terms of Airy functions of argument ξ are discussed in the next subsection. An

arbitrarily-shaped potential V (z) of limited extent (0 to L) can also be treated similarly, by defining

V0 = [V (z)]max, y = z/L, Q = K0L, and the dimensionless potential v(y) = V (z)/V0. Then the

Schrödinger equation is

d2

dy2
ψ(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Q2(v(y) − ε)ψ(y), 0 < y < 1,

−εQ2ψ(y), outside

(4.19)

and the resulting transmission coefficients will also have the form T = T (ε,Q). All similar potentials

obtained by scaling V (z) → λV (z) and L→ L/
√
λ will preserveQ and thus lead to the same T (ε,Q).
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4.2.1 The Triangular-Rectangular Barrier Mapping

Figure 4.3 shows the triangular potential (V0, L) and a particle of energy E. It is clear that the higher

the energy, the lesser the obstruction due to the barrier will be. The effective distance traversed

through the barrier is only L(1− (E/V0)) = L(1− ε). We can relate this situation to a rectangular

barrier of width Leff = L(1 − ε). The triangular potential has a maximum of V0 only at the tip of

L, and its value above E diminishes to 0 at z = Lε. So a rectangle of height V0 and width Leff

will still be a stronger obstruction than this triangle. A further reduction of Leff is required to get

the correct effective V0. One way to estimate this is to use the WKB picture, where the relevant

measure is
∫
κ(z)dz over the distance inside the triangular barrier:

∫ L

Lε

dz

√
2m

h̄2

√
V0(

z

L
)− E (4.20)

=
2

3
L(1− ε)

√
2m

h̄2
(V0 − E) (4.21)

≡ Lrect.
eff

√
2m

h̄2
(V0 − E) (4.22)

This shows that the equivalent length for the rectangle is further reduced by the factor 2/3. So we

can expect a rectangular barrier of height V0 and width Lrect.
eff = (2/3)L(1−ε) to have a transmission

coefficient similar to the triangle under consideration. The corresponding strength parameter for the

rectangle will be Q′ = K0L
rect.
eff = Q(2/3)(1−ε) = Qr. Based on this, we can expect Ttriangle(ε,Q) =

Trectangle(ε,Q
′), where Q′ = Qr(ε,Q), and the strength reduction factor, r, could, in general depend

on Q also. Since WKB is a good approximation for strong barriers, (i.e. Q >> 1), we can expect

that for Q >> 1, the rectangle T formula, Eq. (4.11) with strength Q′ = rQ, with r = (2/3)(1− ε)

will provide the transmission coefficient for the triangular barrier.

This conjecture can be tested by computer evaluation of the exact transmission coefficient for a

triangular barrier of strength Q and determining the effective length or effective strength Q′ of
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Figure 4.3: The triangular barrier of height V0 and length L.

a rectangular barrier that will match that transmission coefficient. This comparison is shown in

Fig. 4.4 for several triangular barriers with different Q’s. The ratio r = Q′/Q is plotted vs. ε, and it

shows that indeed r = (2/3)(1− ε) for the case of the largest Q. Even for decreasing Q, the r curves

remain straight lines and the intercept moves from 2/3 to 1/2 and the slope moves from -2/3 to 0

as Q is decreased. A full analysis of Eq. 4.15 in terms of Airy functions is given below.

Consider the triangular barrier, with the wavefunctions defined as

ψ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1e
ikz +B1e

−ikz , z < 0,

A2Ai(ξ(z)) +B2Bi(ξ(z)), 0 < z < L,

A3e
ikz , z > L,

(4.23)

where ξ is given by Eq. (4.16), and Ai(ξ) and Bi(ξ) are the Airy functions the arise due to the

slanted barrier. From the continuity conditions of the wavefunction and its derivative (denoted by

primes) at the boundary z = 0 we have

A1 +B1 = A2Ai(0) +B2Bi(0), ik(A1 −B1) = A2Ai
′(0) +B2Bi

′(0) (4.24)

and at z = L,
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A3e
ikL = A2Ai(L) +B2Bi(L), ikA3e

ikL = A2Ai
′(L) +B2Bi

′(L) (4.25)

Here Ai(0) means Ai(ξ(0)) etc. Now taking A1 = 1, and rewriting A2 as a2, B1 as b1, etc. these

equations can be written as

1 + b1 = a2Ai(0) + b2Bi(0), ik(1− b1) = a2Ai
′(0) + b2Bi

′(0) (4.26)

and at z = L,

a3e
ikL = a2Ai(L) + b2Bi(L), ika3e

ikL = a2Ai
′(L) + b2Bi

′(L) (4.27)

From (4.27) we have

ik =
a2Ai

′(L) + b2Bi
′(L)

a2Ai(L) + b2Bi(L)
=
Ai′ + ρ2Bi

′

Ai + ρ2Bi

∣∣∣∣∣
L

(4.28)

where ρ2 = b2/a2. Rewriting Eq. (4.28) as

ik(Ai+ ρ2Bi) = Ai′ + ρ2Bi
′ =⇒ (ikAi−Ai′) = ρ2(Bi

′ − ikBi) (4.29)

or

ρ2 =
ikAi−Ai′

Bi′ − ikBi

∣∣∣∣∣
L

(4.30)

For Eq. (4.26),
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ik
1− b1
1 + b1

=
a2Ai

′ + b2Bi
′

a2Ai+ b2Ai′

∣∣∣∣∣
0

=⇒ Ai′ + ρ2Bi
′

Ai+ ρ2Bi

∣∣∣∣∣
0

or

1− b1
1 + b1

=
Ai′ + ρ2Bi

′

ik(Ai+ ρ2Bi)

∣∣∣∣∣
0

(4.31)

and

b1 =
(ikAi−Ai′) + ρ2(ikBi−Bi′)
(ikAi+Ai′) + ρ2(ikBi+Bi′)

∣∣∣∣∣
0

(4.32)

= − (Ai′ − ikAi) + ρ2(Bi
′ − ikBi)

(Ai′ + ikAi) + ρ2(Bi′ + ikBi)

∣∣∣∣∣
0

b1 = −a
∗ + ρ2b

∗

a+ ρ2b

∣∣∣∣∣
0

, a = Ai′ + ikAi

∣∣∣∣∣
0

, b = Bi′ + ikBi

∣∣∣∣∣
0

(4.33)

Taking the absolute value sqaured,

|b1|2 =
(a∗ + ρ2b

∗)(a+ ρ∗2b)
(a+ ρ2b)(a∗ + ρ∗2b∗)

∣∣∣∣∣
0

(4.34)

|b1|2 =
aa∗ + ρ2ρ

∗
2bb

∗ + ρ2ab
∗ + ρ∗2a

∗b
aa∗ + ρ2ρ∗2bb∗ + ρ∗2ab∗ + ρ2a∗b

(4.35)

and for the transmission coefficient,
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T = 1− |b1|2 =
ρ∗2ab

∗ + ρ2a
∗b− (ρ2ab

∗ + ρ∗2a
∗b)

aa∗ + ρ2ρ∗2bb∗ + ρ∗2ab∗ + ρ2a∗b
(4.36)

T =
ab∗(ρ∗2 − ρ2) + (ρ2 − ρ∗2)a

∗b
aa∗ + ρ2ρ∗2bb∗ + ρ∗2ab∗ + ρ2a∗b

(4.37)

T =
(ρ2 − ρ∗2)(a

∗b− ab∗)
aa∗ + ρ2ρ∗2bb∗ + ρ∗2ab∗ + ρ2a∗b

(4.38)

The numerator can be simplified as follows. The first factor is

ρ2 − ρ∗2 =
ikAi−Ai′

Bi′ − ikBi
− −ikAi−Ai′

Bi′ + ikBi
(4.39)

=
ikAi−Ai′

Bi′ − ikBi
+
ikAi+Ai′

Bi′ + ikBi

=
(ikAi−Ai′)(ikBi+Bi′) + (Bi′ − ikBi)(Ai′ + ikAi)

(Bi′)2 + k2(Bi)2

=
2ik(AiBi′ −Ai′Bi)
(Bi′)2 + k2(Bi)2

∣∣∣∣∣
L

Identifying the Wronskian W (Ai,Bi) ≡ AiBi′ −Ai′Bi, the expression above becomes

ρ2 − ρ∗2 =
2ikW

(Bi′)2 + k2(Bi)2
(4.40)
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where W the Wronskian is a constant for the Schrodinger equation.

For the second term in the numerator, (a∗b− ab∗ = 2iIm(a∗b)), and since

a∗b = (Ai′ − ikAi)(Bi′ + ikBi)

∣∣∣∣∣
0

(4.41)

we have

iIm(a∗b) = −ik(AiBi′ −Ai′Bi) = −ikW (4.42)

or

a∗b− ab∗ = −2ikW (4.43)

Finally, the expression for T above, Eq. (4.38), can be written as

T =
2ikW

(Bi′)2 + k2(Bi)2
−2ikW

aa∗ + ρ2ρ∗2bb∗ + ρ∗2ab∗ + ρ2a∗b

=
4(kW )2

(Bi′)2 + k2(Bi)2
1

aa∗ + ρ2ρ∗2bb∗ + ρ∗2ab∗ + ρ2a∗b
(4.44)

For strong barriers (Q >> 1), ρ2 and ρ∗2 become very small and only aa∗ remains in the second

denominator in Eq. (4.34). Also Bi and Bi′, which are evaluated at z = L become very large and

the asymptotic forms for the Bi and Bi′ functions are valid. Then we find

Ttriangle(ε,Q) =⇒
√
16ε(1− ε)e−2Q

√
1−ε r0 (4.45)
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Figure 4.4: Mapping factor r = r(ε,Q) vs. ε for various Q values.

where r0 = (2/3)(1− ε). In this limit (Q >> 1),

Trect(ε,Q
′) =⇒ 16ε(1− ε)e−2Q′√1−ε (4.46)

and so the mapping is Q′ = r0Q. This proves that the WKB-based mapping is valid in the lowest

order in 1/Q. For any Q the mapping is given by Q′ = Qr(ε,Q) where the r-factor is displayed in

Fig. 4.4. The analytical form of r(ε,Q) can be determined from detailed analysis of (4.44) in terms

of the properties of the Airy functions.
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Chapter 5

Finite Barrier Width Structures

Resonant tunneling-based devices, which utilize electron-wave resonance in potential barriers, have

emerged as one of the most important testing grounds for transport physics. Resonant tunneling in

semiconductor double barriers was first demonstrated by Chang, Esaki and Tsu in 1974 [1, 2], and

since then has become a topic of great interest, investigated both from the standpoints of quantum

physics and of its application in functional quantum devices [3]. Over the past three decades,

resonant tunneling structures have received a great deal of attention. Despite its simple structure,

the resonant tunneling diode (RTD) can reveal various manifestations of quantum transport in

semiconductor nanostructures, such as single electron tunneling [4], and enable the study of more

complex and advanced quantum mechanical systems [5]. RTDs have two distinct features when

compared with other semiconductor devices, from an applications point of view: their potential for

very high speed operation and their negative differential conductance (NDC) [4].

The finite barrier width structure represents a novel device concept based on the quantum mechanical

nature of electrons. As discussed in Chapter 3, the electronic states in a quantum well with very

thick barriers are bound states, and an electron cannot leave the well without an external excitation,

because there are no equivalent energy states outside the well to where the electron can move. A far
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more realistic and equally important situation is that of the quantum well with finite barriers, both

in height and thickness, as this naturally gives rise to the concept of a decaying state, which in turn

implies that a current can exist. From the point of view of ’device-physics’, this is a fundamental

requirement, in order that there be device-like behavior. The electron states are now quasibound or

resonant states, rather than true bound states; as a consequence of the finite barriers, the energy

of a resonant state is spread into a range h̄/τ , where τ is the lifetime of the carriers in that state.

These quasibound states can become resonant with the energy of an incoming electron (or stream

of electrons), thereby acting as an energy filter.

The distinctive feature of the tunneling process in the double barrier structure is that the trans-

mission rises to much higher values than the product of the two individual barrier transmissions

at energies around the values corresponding to the resonant levels. This is the resonant tunneling

phenomena. In a structure with identical barriers there is perfect transmission at the resonance en-

ergy, however small the transmission through the individual barriers. Knowledge of the transmission

coefficient is necessary in order to calculate the current-voltage characteristic of the double barrier

structure, or any device containing such a structure.

In this chapter the transmission probability of a symmetric finite-width double barrier structure is

studied, with a resulting new transcendental equation for the energy levels. To our knowledge this

has not been given previously. Two methods are employed to study this problem: the first in which

the transmission of particles incident on the double barrier is considered, and the second, in which

particles leak out of the double barrier, thereby giving the complex energies. It is then shown that

the eigenvalue equation for the finite SQW becomes modified by an additional factor due to the

finite barrier thickness d and in the limit of large d, the SQW eigenvalue equation is obtained.
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Figure 5.1: An illustration of the relation between the single and double rectangular barrier trans-

mission characteristics. A particle of energy E incident on a barrier of height U0 and the resulting

transmission coefficient T (E). The double barrier contains resonant energy levels.

5.1 The Double Symmetric Rectangular Barrier

In this section the first method is presented, in which the usual transfer matrix approach is used,

for waves incident on the barriers. Figure 5.2 depicts a schematic for the double barrier structure,

propagation constants are denoted. We begin by calculating the transfer matrix Mi,j for each

interface (as as done in Chapter 4 for the single rectangular barrier problem). The potential of the

double barrier structure is given by

V (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, z < −d− a/2,

V0, −d− a/2 < z < −a/2,

0, −a/2 < z < a/2,

V0, a/2 < z < d+ a/2,

0, z > d+ a/2,

(5.1)
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Figure 5.2: The symmetric double rectangular barrier with height V0, barrier widths d, and (total)

well width a. The propagation constants for the appropriate region are labled.

and the wavefunctions in each region are given by

ψ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1e
ikz +B1e

−ikz , z < −d− a/2,

A2e
ρz +B2e

−ρz, −d− a/2 < z < −a/2,

A3e
ikz +B3e

−ikz , −a/2 < z < a/2,

A4e
ρz +B4e

−ρz, a/2 < z < d+ a/2,

A5e
ikz +B5e

−ikz , z > d+ a/2,

(5.2)

where the propagation constants k2 = (2m∗E)/h̄2 and ρ2 = (2m∗(V0 − E))/h̄2. Note that in

Chapter 4 (and in the Appendix B, Section B.1 for the details of the single rectangular barrier) the

propagation constant for the single barrier was taken as κ and the barrier width was 2d. In this

chapter ρ is used, and the (single) barrier width is d. Figure 5.2 shows the double barrier structure

and the relevant wavenumbers. As there are four interfaces, there will be four matrix multiplications.

Listed here are the matrices (see Appendix B, Section B.2 for details),
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⎡
⎢⎢⎣ A1

B1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(
ik+ρ
2ik

)
e(ik−ρ)(d+a/2)

(
ik−ρ
2ik

)
e(ik+ρ)(d+a/2)

(
ik−ρ
2ik

)
e−(ik−ρ)(d+a/2)

(
ik+ρ
2ik

)
e−(ik−ρ)(d+a/2)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣ A2

B2

⎤
⎥⎥⎦

⎡
⎢⎢⎣ A2

B2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
(

ik+ρ
2ρ

)
e−(ik−ρ)(a/2) −

(
ik−ρ
2ρ

)
e(ik+ρ)(a/2)

−
(

ik−ρ
2ρ

)
e−(ik+ρ)(a/2)

(
ik+ρ
2ρ

)
e(ik−ρ)(a/2)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣ A3

B3

⎤
⎥⎥⎦

Before doing the next two matrices, the matrix elements for the single barrier transmission can be

found and are identical to the results derived in Section 4.1 of Chapter 4. Writing

⎡
⎢⎢⎣ A1

B1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Msb
11 Msb

12

Msb
21 Msb

22

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣ A3

B3

⎤
⎥⎥⎦

where the individual elements are given by (sb denoting single barrier)

Msb
11 =

[
cosh(ρd) − i

2

k2 − ρ2

kρ
sinh(ρd)

]
eikd, (5.3)

Msb
21 = − i

2

k2 + ρ2

kρ
sinh(ρd)e−ik(d+a) (5.4)

Msb
22 =

[
cosh(ρd) +

i

2

k2 − ρ2

kρ
sinh(ρd)

]
e−ikd, (5.5)

Msb
12 = +

i

2

k2 + ρ2

kρ
sinh(ρd)eik(d+a) (5.6)
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which gives the following relations,

Msb
22 = Msb∗

11 Msb
12 = Msb∗

21 (5.7)

For the next two interfaces

⎡
⎢⎢⎣ A3

B3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
(

ik+ρ
2ρ

)
e−(ik−ρ)(a/2)

(
ik−ρ
2ρ

)
e−(ik+ρ)(a/2)

(
ik−ρ
2ρ

)
e(ik+ρ)(a/2)

(
ik+ρ
2ρ

)
e(ik−ρ)(a/2)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣ A4

B4

⎤
⎥⎥⎦

⎡
⎢⎢⎣ A4

B4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
(

ik+ρ
2ik

)
e(ik−ρ)(d+a/2) −

(
ik−ρ
2ik

)
e−(ik+ρ)(d+a/2)

−
(

ik−ρ
2ik

)
e(ik+ρ)(d+a/2)

(
ik+ρ
2ik

)
e−(ik−ρ)(d+a/2)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣ A5

B5

⎤
⎥⎥⎦

and as expected the product of these matrices results in identical expressions for Msb
11, Msb

12, Msb
21,

and Msb
22 for the second barrier. To obtain an expression for the total transmission

⎡
⎢⎢⎣ A1

B1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M12
11 M12

12

M12
21 M12

22

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

M23
11 M23

12

M23
21 M23

22

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

M34
11 M34

12

M34
21 M34

22

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

M45
11 M45

12

M45
21 M45

22

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣ A5

B5

⎤
⎥⎥⎦

Multiplying out the first two matrices gives

⎡
⎢⎢⎣ A1

B1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

M12
11M23

11 +M12
11M23

11 M12
11M23

12 +M12
12M23

22

M12
21M23

11 +M12
22M23

21 M12
21M23

12 +M12
22M12

22

⎤
⎥⎥⎥⎦×

133



⎡
⎢⎢⎢⎣

M34
11M45

11 +M34
12M45

21 M34
11M45

12 +M34
12M45

22

M34
21M45

11 +M34
22M45

21 M34
21M45

12 +M34
22M45

22

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣ A5

B5

⎤
⎥⎥⎦

Now the first element of the first matrix, (M12
11M23

11 + M12
11M23

11) = Msb
11 and the first element of

the second matrix (M34
11M45

11 +M34
12M45

21) = Msb
11 are just that of the single rectangular barrier,

Msb
11 =

[
cosh(ρd)− i

2

k2 − ρ2

kρ
sinh(ρd)

]
eikd (5.8)

The second, upper entry in the first matrix, as well as the first, lower entry in the second matrix

(M12
11M23

12 + M12
12M23

22) = Msb
21 and (M34

21M45
11 + M34

22M45
21) = Msb

21 respectively, are the Msb
21 for

the single barrier:

Msb
21 = − i

2

k2 + ρ2

kρ
sinh(ρd)e−ik(d+a) (5.9)

Now the product of these gives the transmission probability through the double barrier system, that

is

(M12
11M23

11 +M12
11M23

11)× (M34
11M45

11 +M34
12M45

21) (5.10)

=⇒ (Msb
11)

2 (5.11)

and

(M12
11M23

12 +M12
12M23

22)× (M34
21M45

11 +M34
22M45

21) (5.12)

=⇒ (Msb
21)

2 (5.13)

or
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MT11 = (Msb
11)

2 + (Msb
21)

2 (5.14)

=

{[
cosh(ρd)− i

2

k2 − ρ2

kρ
sinh(ρd)

]
eikd

}2

+

{
− i

2

k2 + ρ2

kρ
sinh(ρd)e−ik(d+a)

}2

(5.15)

= − (k2 + ρ2)2

(2ikρ)2
sinh2(ρd)e2ik(d+a) +

1

4ik2ρ2
[
2ikρ cosh(ρd) + (k2 − ρ2) sinh(ρd)

]2
e2ikd (5.16)

= − (k2 + ρ2)2

(2ikρ)2

(
e2ρd − 1

2eρd

)2

e2ik(d+a) +
1

4ik2ρ2
[
2ikρ cosh(ρd) + (k2 − ρ2) sinh(ρd)

]2
e2ikd (5.17)

where the sinh(ρd) was re-expressed in terms of exponentials, and

=
1

(16k2ρ)2

(
(k2 + ρ2)2e−2ρd(e2ρd − 1)2e2ik(d+a) − 4

[
2ikρ cosh(ρd) + (k2 − ρ2) sinh(ρd)

]2
e2ikd

)
(5.18)

=
1

(16k2ρ)2

(
(k2 + ρ2)2e−2ρd(e2ρd − 1)2e2ik(d+a) − 4

[
2ikρ cosh(ρd) + (k2 − ρ2) sinh(ρd)

]2
e2ikd

)
(5.19)

=
1

(16k2ρ)2
e−2ρde2ikd

(
(k2 + ρ2)2(e2ρd − 1)2e2ika − 4e2ρd

[
2ikρ cosh(ρd) + (k2 − ρ2) sinh(ρd)

]2)
(5.20)
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Now letting κ2 = (k2 + ρ2), we have

=
1

(16k2ρ)2
e2d(ik−ρ)

(
κ4e2ika(e2ρd − 1)2 − 4e2ρd

[
2ikρ cosh(ρd) + (k2 − ρ2) sinh(ρd)

]2)
(5.21)

This is identical to the result in [6], p. 17.

5.1.1 Quasibound State Determination

⎡
⎢⎢⎣ A1

B1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ M11M12

M21M22

⎤
⎥⎥⎦
⎡
⎢⎢⎣ A5

B5

⎤
⎥⎥⎦

In this expression, B5 = 0 (no incoming waves from the right), A1 = 1, A5 = t, B1 = r, and the

transmission and reflection coefficients are given by

T = |t2|, R = |r2| =⇒ T +R = 1 (5.22)

For the case of full transmission,

A1 = M11A5 =⇒ 1 = M11 (5.23)

and

T = |t2| = 1

|M11|2 =⇒ |M11|2 = 1 (5.24)

Eq. (5.24) is the condition required, and when this occurs, R = 0 and B1 = 0. With this,
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B1 = M21A5 +M22B5 =⇒ M21 = 0 (5.25)

as B5 = 0 and A5 
= 0. Eqs. (5.24) and (5.25) are equivalent conditions for full transmission in

the symmetric double barrier structure. Alternately, the quasibound state energies (transmission

energies) are then given by either

|M11|2(Ej) = 1 M21(Ej) = 0, j = 1, 2... (5.26)

While both of these equations are different, they give equivalent transcendental equations for the

Ej ’s. For the case of full transmission it can be shown that Eq. (5.21) can be expressed as

16ε2 sin4(2φ) =
[
e−ika(1− ε) + (e2iφ − εe−2iφ)

] · [e−ika(1− ε)− (e2iφ − εe−2iφ)
] · [cc] (5.27)

where ε = e−2ρd, φ = tan−1(k/ρ) and [cc] is the product of the complex conjugates of the first two

brackets. We expect that this transcendental equation will produce an energy condition of the form

ka = nπ − 2φ− g(ε, φ) (5.28)

This is expected because, in the case of the infinite square well, the energy eigenvalue condition was

given by

ka = nπ (5.29)

while that of the finite square well (SQW) with infinitely thick barriers, was given by

ka = nπ − 2φ (5.30)

For the SQW, the effect of the finite potential height is contained in the φ-parameter. Thus it

is expected that in the case of the finite width and finite height double barrier that there will be

an additional function g which depends on the finite barrier width, which is characterized by the

ε-parameter and the height, again given by the φ-parameter.

137



5.1.2 Complex Energy Roots

The second method employed for obtaining the quasibound state energies and their intrinsic linewidth,

is to consider the scenario in which particles only leak out (in contrast to the waves incident on the

barriers). The population decay of N particles is described by N(t) = N0e
−Γt. This can be seen

from the following. An electron in a state with Ej is given by ψ(z, t) = e−iωtψ(z), with |ψ(z)|2

is constant in time. The time-development is given by |ψ(t)|2 e−Γt, where ω = E/h̄, so that

e−iωt = e−i(ωR−i(Γ/2))t = e−iωRte−(Γ/2)t. Thus

Ec = h̄(ωR − i
Γ

2
), EIm = −i h̄Γ

2
(5.31)

where h̄Γ is the ’energy width’. Now considering A1 = B5 = 0, that is, with outgoing particles only,

so that B1 
= 0 and A5 
= 0. Then the matrix equation becomes⎡
⎢⎢⎣ 0

B1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ M11M12

M21M22

⎤
⎥⎥⎦
⎡
⎢⎢⎣ A5

0

⎤
⎥⎥⎦

and

0 = M11A5, =⇒ M11 = 0 (5.32)

This condition provides the complex energy roots Ec
j , with Re(E

c
j ) ≈ Ej from the first method, and

Im(Ec
j ) = −h̄Γj/2 gives the linewidths. From B1 = M21A5, the relative fluxes are in the ratio |B1|2

to |A5|2. That is,

Flux to left = |M21|2 × Flux to right (5.33)

or

JL
JR

= |M21|2 (5.34)
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For flat potentials, JL ∝ TL ∝ α and JR ∝ TR ∝ β. TL and TR are the tunneling transmission

probabilities for the left and right barrier, respectively, and α and β are the injection and extraction

rates, or escape rates. For the symmetric DB, the incoming and outgoing rates are the same, α = β

and Γ = α + β = 2β, and β = Γ/2 = α. In summary, use of conditions |M11|2 = 1 or M21 = 0

will determine the real Ej , and from M11 = 0, the complex energies Ec
j = ER

j − i(h̄Γ/2) are found.

Note Ec
j will be ER

j ≈ Ej of the first methods.

Now taking the expression for M11 of the symmetric double barrier and now with the condition

M11 = 0, we have, with ε = exp(2ρd),

e2ika −
(
ρ− ik

ρ+ ik

)2

= 2ε
(
e2ika − 1

)
+ ε2

((
ρ+ ik

ρ− ik

)2

− e2ika

)
(5.35)

which can be further simplified as

e2ika(1 − ε)2 =

(
ρ− ik

ρ+ ik
− ε

ρ+ ik

ρ− ik

)2

(5.36)

with the definitions k = K sin θ, ρ = K cos θ, and P = Ka/2, this reduces to

∓eika(1− ε) = e2iθ − εe2iθ, ∓ = e−inπ, n = 1, 3, 5, ..or 2, 4, 6 (5.37)

where the terms ρ− ik → K cos θ−K sin θ → Ke−iθ, and ρ+ ik → K cos θ+K sin θ → Keiθ. Now

we have

eika−inπ(1− ε) = e−2iθ − εe2iθ,=⇒ ei(ka−nπ+2θ)(1− ε) = 1− εe4iθ,

=⇒ ei(ka−nπ+2θ) =
1− εe4iθ

(1 − ε)
≡ Z,

so Z = Reiφ. Then

ei(ka−nπ+2θ) = elnZ = elnReiφ ,

or

ei(ka−nπ+2θ) = elnReiφ, (5.38)
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where R is given by

R2 = a2 + b2, a =
1

1− ε
(1− ε cos(4θ)), b =

−ε sin(4θ)
1− ε

and tanφ = b/a can be written

tanφ =
−ε sin(4θ)

1− ε cos(4θ)

Note that ε and θ can be complex, in general. However, for real values of θ, φ is real. On the real

axis in the θ-plane, one can define φ as

φ = − tan−1

(
ε sin(4θ)

1− ε cos(4θ)

)
(5.39)

and from Eq. (5.38),

ei(ka−nπ+2θ) = elnReiφ, (5.40)

ei(ka−nπ+2θ) + tan−1

(
ε sin(4θ)

1− ε cos(4θ)

)
= elnR (5.41)

Now taking the log and multiplying by −i:

ka− nπ + 2θ + tan−1

(
ε sin(4θ)

1− ε cos(4θ)

)
= −i lnR (5.42)

Taking R from Eq. (5.1.2) and expressing as

R2 = a2 + b2 =⇒ 1

(1 − ε)2
[
(1 − ε cos2(4θ))2 + ε2 sin2(4θ)

]
(5.43)

=⇒ 1

(1− ε)2
[
(1 + ε2 − 2ε cos(4θ))

]
(5.44)

=⇒ 1

(1− ε)2
[
(1− ε)2 − 2ε(1− cos(4θ))

]

or

R2 = 1 +
2ε

(1− ε)2
2 sin2(2θ)
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= 1 +
4ε

(1− ε)2
sin2(2θ) (5.45)

so that

ka− nπ + 2θ + tan−1

(
ε sin(4θ)

1− ε cos(4θ)

)
= − i

2
ln

[
1 +

4ε

(1 − ε)2
sin2(2θ)

]
(5.46)

This is the basic equation arising from the condition M11 = 0. On the real θ-axis, the LHS side of

Eq. (5.46) defines solutions θRn , since then, ka = 2P sin θ, and the RHS alters this expression. This

is to be compared to the expression for both the infinite square well result, ka = nπ, and the finite

SQW, ka = nπ − 2θ.

The complex roots can be analyzed by rewriting Eq. (5.46) as

2P sin θ + 2θ + tan−1

(
ε sin(4θ)

1− ε cos(4θ)

)
= nπ − i

2
ln

[
1 +

4ε

(1− ε)2
sin2(2θ)

]
(5.47)

and rewriting further as

f(θ) = nπ − i

2
ln

[
1 +

4ε

(1− ε)2
sin2(2θ)

]
. (5.48)

The effective parameter for the ’imaginary’ term is 4ε/((1− ε)2). Therefore this can be expressed as

f(θn,0) = nπ, for real solutions. (5.49)

f(θn,0 + θn,1) = nπ − i

2
ln

[
1 +

4ε

(1− ε)2
sin2(2θ)

]
, for ’altered’ solutions. (5.50)

For small θn,1,

f(θn,0 + θn,1) = f(θn,0) + θn,1f
′(θn,0) (5.51)

and since f(θn,0) = nπ,

θn,1f
′(θn,0) = − i

2
ln

[
1 +

4ε

(1 − ε)2
sin2(2θn,0)

]
+ θn,1

(−i
2

a′

b

)
(5.52)
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Chapter 6

Current in QW Structures

6.1 Tunneling Current

The analysis of the tunneling current through a semiconductor layer as a function of the applied volt-

age begins by considering the electron fluxes incident at the interfaces and the quantum mechanical

transmission coefficient. The current density through the two interfaces depends on the perpendicu-

lar component of the wave vector kz, the transmission coefficient T (Ez), the perpendicular velocity

vz, the density of states and the distribution function at both sides of the barrier:

Jz =

(
2eh̄

(2π)3m∗

)∫ ∞

0

kzdkzT (Ez)

∫
dk⊥fFD(E). (6.1)

f(E) = (1+exp(E−μ)/kT )−1 is the Fermi-Dirac distribution function. Note that when calculating

the Jz in from the left side, the lower limit will change to EF − E0
F to reflect the limited range of

incoming particles. The change to Ez can be done by starting with Ez = (h̄kz)
2/2m∗,

Ez =
(h̄kz)

2

2m∗ =⇒ kz =

√
2m∗Ez/h̄

2 =⇒ dkz =

√
2m∗

h̄2
1

2

dEz√
Ez

,
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=⇒ kzdkz =
m∗

h̄2
dEz .

Inserting above, gives

Jz =
2eh̄

(2π)3m∗

∫ ∞

0

(
m∗

h̄2

)
dEzT (Ez)

∫
dk⊥fFD(E),

and so

Jz =
2e

(2π)3h̄

∫ ∞

0

dEzT (Ez)

∫
dk⊥fFD(E).

Since the T (Ez) is a function only of the z-direction, the k⊥-integration can be done. Rewriting

this integral in terms the magnitude k⊥ and the angle φ,

Jz =
2e

(2π)3h̄

∫ ∞

0

dEzT (Ez)

∫ ∞

0

∫ 2π

0

k⊥dk⊥dφfFD(E),

and with k⊥dk⊥ = (m∗/h̄2)dE⊥,

Jz =
2e

(2π)3h̄

∫ ∞

0

dEzT (Ez)

∫ ∞

0

∫ 2π

0

m∗

h̄2
dE⊥dφfFD(E),

Jz =
2e ∗ 2π ∗m∗

(2π)3h̄3

∫ ∞

0

dEzT (Ez)

∫ ∞

0

dE⊥fFD(E),

Jz =
em∗

2π2h̄3

∫ ∞

0

dEzT (Ez)

∫ ∞

0

dE⊥fFD(E).

Inserting the Fermi-Dirac distribution into the above expression,

Jz =
em∗

2π2h̄3

∫ ∞

0

dEzT (Ez)

∫ ∞

0

dE⊥
1 + e−β(μ−Ez−E⊥)

, (6.2)

Jz =
em∗

2π2h̄3

∫ ∞

0

dEzT (Ez)

{
(1/β) ln

(
1

1 + e−x

) ∣∣∣∣
∞

0

}
,

where a substitution on the E⊥-integral has been performed, and is of the form

∫
dx

1 + ex
= ln

(
1

1 + e−x

)
+ C, x ≡ −β(μ− Ez − E⊥) (6.3)

and C is an integration constant. The result is

Jz =
em∗

2π2h̄3β

∫ ∞

0

T (Ez)dEz ln(1 + eβ(μ−Ez)), (6.4)

for the (particle) current flux. This expression for the current flux contains the n2D factor, which

can be resolved into a T = 0 term, and a T 
= 0 term, as

n2D = kT ln(1 + eβ(μ−Ez)) =⇒ kT ln[eβ(μ−Ez)(e−β|μ−Ez| + 1)],
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=⇒ kT [ln eβ(μ−Ez) + ln(1 + e−β|μ−Ez|)] =⇒ kT [β(μ− Ez) + ln(1 + e−β|μ−Ez|)],

or with kT = 1/β

n2D = (μ− Ez)Θ(μ− Ez) +
1

β
ln(1 + e−β|μ−Ez|),

or

n2D = (μ− Ez)Θ(μ− Ez) + n̂2D, (6.5)

with

n̂2D =
1

β
ln(1 + e−β|μ−Ez|). (6.6)

Inserting the into the Jz integral above gives

Jz =
em∗

2π2h̄3

∫ ∞

0

T (Ez) [(μ− Ez)Θ(μ− Ez) + n̂2D] dEz , (6.7)

or

Jz = Jz(T = 0) + Jz(T 
= 0), (6.8)

where

Jz(T = 0) =
em∗

2π2h̄3

∫ ∞

0

T (Ez)(μ− Ez)Θ(μ− Ez)dEz (6.9)

Jz(T 
= 0) = Jz(T = 0) +
em∗

2π2h̄3

∫ ∞

0

T (Ez)n2DdEz . (6.10)

Next the energy flux associated with the current into and out of the structure will be found. The

energy flux, and the average energy flux associated with the z-directed incoming current is readily

found, as it is only dependent upon the z-component, Ez, of the total energy. The perpendicular

component, E⊥, must be dealt with separately as the resulting expression is not easily evaluated.

6.2 Energy flux
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The energy flux associated with the current flux in the z-direction is Jε = JEz + JE⊥ , where the

charge e has been omitted, and the total energy is ε = Ez+E⊥. In the following expressions, the JEz

does not contain E⊥ as it has been integrated out, and the JE⊥-integral must be analyzed further as

it contains both Ez and E⊥. The goal here is to obtain the average incoming and outgoing energy

flux associated with the current entering and leaving the structure, which will be detailed below.

JEz =
m∗

2π2h̄3β

∫ ∞

0

T (Ez)EzdEz ln(1 + eβ(μ−Ez)), (6.11)

JE⊥ =
m∗

2π2h̄3

∫ ∞

0

dEzT (Ez)

∫ ∞

0

E⊥dE⊥
1 + e−β(μ−Ez−E⊥)

. (6.12)

6.2.1 Energy Flux: T = 0 Limit

The T = 0 contribution to JEz can immediately be seen, using Eq. (6.5), as

JEz(T = 0) =
m∗

2π2h̄3β

∫ ∞

0

T (Ez)Ez(μ− Ez)Θ(μ− Ez)dEz . (6.13)

The JE⊥ expression can also be written as

JE⊥ =
m∗

2π2h̄3

∫ ∞

0

dEzT (Ez)

∫ ∞

0

E⊥dE⊥
1 + CeβE⊥

,

with C = e−β(μ−Ez). Factoring out the eβE⊥ term in the denominator

JE⊥ =
m∗

2π2h̄3

∫ ∞

0

dEzT (Ez)

∫
E⊥dE⊥

eβE⊥(e−βE⊥ + C)

→ m∗

2π2h̄3

∫ ∞

0

dEzT (Ez)

∫
E⊥e−βE⊥dE⊥
(e−βE⊥ + C)

,

and letting x = e−βE⊥ (and e−βE⊥dE⊥ = −(1/β)dx), then

JE⊥ =
m∗

2π2h̄3

∫ ∞

0

dEzT (Ez)

∫
(−1/β)E⊥dx

(x+ C)
,
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and finally replacing E⊥ = −(1/β) lnx, the expression becomes

JE⊥ =
m∗

2π2h̄3

∫ ∞

0

dEzT (Ez)

∫
(1/β)2 lnxdx

(x+ C)
,

or

JE⊥ =
m∗

2π2h̄3β2

∫ ∞

0

dEzT (Ez)

∫
lnxdx

(x+ C)
. (6.14)

In the T = 0K limit, the fFD distribution is the Heaviside step function Θ(x), and Θ(x) = 0 if

x < 0. Starting with Eq. (6.12),

JE⊥(T = 0) =
m∗

2π2h̄3

∫ ∞

0

T (Ez)dEz

∫ ∞

0

E⊥Θ(−β(μ− Ez − E⊥))dE⊥, (6.15)

=
m∗

2π2h̄3

∫ ∞

0

T (Ez)dEz

∫ μ−Ez

0

E⊥dE⊥,

=
m∗

2π2h̄3

∫ ∞

0

T (Ez)dEz

(
1

2
E2

⊥

) ∣∣∣∣
μ−Ez

0

,

JE⊥(T = 0) =
m∗

2π2h̄3

∫ ∞

0

T (Ez)dEz

(
1

2
(μ− Ez)

2

)
. (6.16)

6.2.2 Average Energy Flux: T = 0 Limit

As noted above, the average energy into the structure depends only on z, while that of the outgoing

energy has a component associated with the perpendicular direction, which will be integrated out,

leaving it in terms of Ez. The average 〈Q〉 of a physical quantity Q(Ez) is defined as (in terms of

Ez)

〈Q〉 =
∫
g(Ez)QdEz∫
g(Ez)dEz

. (6.17)

The average energy flux is then defined as

〈E〉 = 〈Ez〉+ 〈E⊥〉 , (6.18)
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where

〈E⊥〉 = JE⊥

Jflux
(6.19)

〈Ez〉 = JEz

Jflux
. (6.20)

For 〈E⊥〉 in the T = 0 limit

〈E⊥〉T=0 =
JE⊥(T = 0)

Jflux(T = 0)
, (6.21)

or

〈E⊥〉T=0 =
m∗

2π2h̄3

∫∞
0 T (Ez)dEz

(
1
2 (μ− Ez)

2
)
Θ(μ− Ez)

m∗e
2π2h̄3

∫∞
0
T (Ez)dEzkT ln(1 + eβ(μ−Ez))

,

or

〈E⊥〉T=0 =
m∗

2π2h̄3

∫∞
0 T (Ez)dEz

(
1
2 (μ− Ez)

2
)
Θ(μ− Ez)

m∗e
2π2h̄3

∫∞
0
T (Ez)dEz(μ− Ez)Θ(μ− Ez)

. (6.22)

In terms of the statistical average defined above, this can be written

〈E⊥〉T=0 =

∫∞
0

1
2 (μ− Ez)g(Ez)dEz∫∞

0 g(Ez)dEz

, (6.23)

where the weight factor g(Ez) is defined here as

g(Ez) ≡ T (Ez)(μ− Ez)Θ(μ− Ez). (6.24)

By Eq. (6.17) this gives

〈E⊥〉T=0 =
1

2
〈μ− Ez〉 = 1

2
μ− 1

2
〈Ez〉 . (6.25)

In the T = 0 limit, for 〈Ez〉,

〈Ez〉T=0 =
JEz(T = 0)

Jflux(T = 0)
=

m∗
2π2h̄3

∫∞
0 T (Ez)dEzEz(μ− Ez)Θ(μ− Ez)

m∗
2π2h̄3

∫∞
0
T (Ez)dEzkT ln(1 + eβ(μ−Ez))

, (6.26)

or

〈Ez〉T=0 =
m∗

2π2h̄3

∫∞
0
T (Ez)dEzEz(μ− Ez)Θ(μ− Ez)

m∗
2π2h̄3

∫∞
0 T (Ez)dEz(μ− Ez)Θ(μ− Ez)

.

Again, as in Eq. (6.17), this is written

〈Ez〉T=0 =

∫∞
0
Ezg(Ez)dEz∫∞

0
g(Ez)dEz

, (6.27)
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where the weight factor g(Ez) is given by Eq. (6.24), and is evaluated as

〈Ez〉T=0 = 〈Ez〉 . (6.28)

Now the total average energy flux at T = 0, is

〈E〉T=0 = 〈Ez〉T=0 + 〈E⊥〉T=0 ,

or

〈E〉T=0 = 〈Ez〉+ 1

2
μ− 1

2
〈Ez〉 ,

or

〈E〉T=0 =
1

2
μ+

1

2
〈Ez〉 . (6.29)

6.2.3 Energy Flux: Full T dependence

Starting with the current flux

Jflux =
2

(2π2)3h̄

∫ ∞

0

T (Ez)f(ε)dEzdE⊥, f(ε) =
1

1 + e−β(μ−ε)
(6.30)

and taking the ∂/∂β-derivative,

∂Jflux
∂β

=
2

(2π2)3h̄

∫ ∞

0

∫ ∞

0

T (Ez)
∂f(ε)

∂β
dEzdE⊥, (6.31)

∂Jflux
∂β

=
2

(2π2)3h̄

∫ ∞

0

∫ ∞

0

T (Ez)

{ |μ− ε|e−β(μ−ε)

(1 + e−β(μ−ε))2

}
dEzdE⊥,

∂Jflux
∂β

=
2

(2π2)3h̄

∫ ∞

0

∫ ∞

0

T (Ez)

{ |μ− ε|(e−β(μ−ε) + 1− 1)

(1 + e−β(μ−ε))2

}
dEzdE⊥,
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∂Jflux
∂β

=
2

(2π2)3h̄

∫ ∞

0

∫ ∞

0

T (Ez)

{
(|μ− ε|)(e−β(μ−ε) + 1)− (|μ− ε|)

(1 + e−β(μ−ε))2

}
dEzdE⊥,

∂Jflux
∂β

=
2

(2π2)3h̄

∫ ∞

0

∫ ∞

0

T (Ez)

{
(|μ− ε|)

(1 + e−β(μ−ε))
− (|μ− ε|)

(1 + e−β(μ−ε))2

}
dEzdE⊥,

=
2

(2π2)3h̄
μ

∫ ∞

0

∫ ∞

0

T (Ez)
1

(1 + e−β(μ−ε))
dEzdE⊥− 2

(2π2)3h̄

∫ ∞

0

∫ ∞

0

T (Ez)ε
1

(1 + e−β(μ−ε))
dEzdE⊥

− 2

(2π2)3h̄

∫ ∞

0

∫ ∞

0

T (Ez)
|μ− ε|

(1 + e−β(μ−ε))2
dEzdE⊥,

=
2

(2π2)3h̄
μ

∫ ∞

0

∫ ∞

0

T (Ez)f(ε)dEzdE⊥ − 2

(2π2)3h̄

∫ ∞

0

∫ ∞

0

T (Ez)εf(ε)dEzdE⊥

− 2

(2π2)3h̄

∫ ∞

0

∫ ∞

0

T (Ez)
|μ− ε|

(1 + e−β(μ−ε))2
dEzdE⊥,

∂Jflux
∂β

= μJflux − Jε
flux − I(β),

where Jflux is the current flux integral (which is to be integrated over the perpendicular energies

giving Jz), and J
ε
flux is the (total) energy flux integral, and I(β) is given by,

I(β) =
2

(2π2)3h̄

∫ ∞

0

∫ ∞

0

T (Ez)
|μ− ε|

(1 + e−β(μ−ε))2
dEzdE⊥,

which is intractable.
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A new integral L, can be defined such that the derivative −∂L/∂β gives terms that can be evaluated.

L is given by

L =

∫ ∞

0

dEzT (Ez)

∫ ∞

0

dE⊥ ln(1 + e−β(ε−μ)), (6.32)

where ε = Ez + E⊥ is the total energy. A property of this integral is such that the JE
flux can be

evaluated by noting that

−∂L
∂β

=

∫ ∞

0

dEzT (Ez)

∫ ∞

0

dE⊥
(ε− μ)e−β(ε−μ)

1 + e−β(ε−μ)
, (6.33)

=

∫ ∞

0

dEzT (Ez)

∫ ∞

0

dE⊥
ε− μ

1 + eβ(ε−μ)
, (6.34)

= −
∫ ∞

0

dEzT (Ez)

∫ ∞

0

dE⊥
μ

1 + eβ(ε−μ)
+

∫ ∞

0

dEzT (Ez)

∫ ∞

0

εdE⊥
1 + eβ(ε−μ)

, (6.35)

= −μ
∫ ∞

0

dEzT (Ez)

∫ ∞

0

dE⊥
1 + eβ(ε−μ)

+

∫ ∞

0

dEzT (Ez)

∫ ∞

0

εdE⊥
1 + eβ(ε−μ)

, (6.36)

or

−∂L
∂β

= −μJflux + JE
flux, (6.37)

and rearranging, the following expression is then evaluated,

JE
flux = μJflux − ∂L

∂β
. (6.38)

Recalling from the defining equation for the average energy flux, Eq. (6.19)

〈E〉 = μ− 1

Jflux

∂L

∂β
. (6.39)
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If the ∂L/∂β term can be evaluated then the average energy can be found. Taking Eq. (6.32) and

first making the substitution y = e−β(ε−μ), dy = −βe−β(ε−μ)dE⊥ = −βydE⊥, or dE⊥ = −dy/(βy),

and the limits change from E⊥ = 0 → y = y1, where y1 = eβ(μ−Ez), E⊥ = ∞ → y = 0,

L =

∫ ∞

0

dEzT (Ez)

∫ eβ(μ−Ez )

0

(
1

β

dy

y

)
ln(1 + y),

L =

∫ ∞

0

dEzT (Ez)

∫ eβ(μ−Ez )

0

(
1

β

ln(1 + y)dy

y

)
. (6.40)

Then

−∂L
∂β

=

∫ ∞

0

dEzT (Ez)

{(
1

β2

∫ eβ(μ−Ez)

0

ln(1 + y)dy

y

)
−
(
1

β

ln(1 + y1)

y1
(μ− Ez)e

β(μ−Ez)

)}
,

−∂L
∂β

=

∫ ∞

0

dEzT (Ez)

{(
1

β2

∫ eβ(μ−Ez )

0

ln(1 + y)dy

y

)
−
(
1

β
(μ− Ez) ln(1 + y1)

)}
,

or

−∂L
∂β

=

∫ ∞

0

dEzT (Ez)

{(
1

β2

∫ y1

0

ln(1 + y)dy

y

)
−D1

}
, (6.41)

where D1 is (and the upper limit has been written as y1 = eβ(μ−Ez))

D1 =
1

β
(μ− Ez) ln(1 + y1), (6.42)

and can be positive or negative depending on whether Ez < μ or Ez > μ. At this point Eq. (6.41)

must be analyzed separately for y1 < 1 or Ez > μ and y1 > 1 or Ez < μ.

6.2.4 L-integral: y1 > 1

For the case y1 > 1 or Ez < μ the y-integral, Eq. (6.41), must be split between 0 and 1, and 1 and

y1,

−∂L
∂β

=

∫ ∞

0

dEzT (Ez)

{
1

β2

[∫ 1

0

(
ln(1 + y)dy

y

)
+

∫ y1

1

(
ln(1 + y)dy

y

)]
−D1

}
.

Now the first integral can be evaluated, and in the second integral, the identity ln(1 + y) ≡ ln y +

ln(1 + 1/y) is inserted, that is

C1 =

∫ 1

0

(
ln(1 + y)dy

y

)
=
π2

12
, (6.43)
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∫ y1

1

(
ln(1 + y)dy

y

)
→
∫ y1

1

ln y

y
dy +

∫ y1

1

ln(1 + 1/y)

y
dy → Q1 +Q2. (6.44)

The Q1-integral can now be evaluated as

Q1 =

∫ y1

1

ln y

y
dy =

1

2
β2(μ− Ez)

2Θ(μ− Ez), (6.45)

where the theta function represents the T = 0 limit term. The ∂L/∂β now reads

−∂L
∂β

=

∫ ∞

0

dEzT (Ez)

{
1

β2
[C1 +Q1 +Q2]−D1

}
, (6.46)

and the Q2-integral remains to be evaluated, which can be done by another substitution t = 1/y,

dt = −(1/y2)dy, which gives,

Q2 =

∫ y1

1

ln(1 + 1/y)

y
dy →

∫ 1

1/y1

ln(1 + t)

t
dt, (6.47)

where the limits have changed from y = 1 → t = 1 and y = y1 → t = 1/y1. Expanding the ln term

in a power series

Q2 =

∫ 1

1/y1

ln(1 + t)

t
dt→

∫ 1

1/y1

1

t
(t− 1

2
t2 +

1

3
t3 − 1

4
t4 +

1

5
t5 − 1

6
t6 + · · ·)dt, (6.48)

Q2 =

∫ 1

1/y1

(1− 1

2
t+

1

3
t2 − 1

4
t3 +

1

5
t4 − 1

6
t5 + · · ·)dt, (6.49)

and integrating,

Q2 = (t− 1

4
t2 +

1

9
t3 − 1

16
t4 +

1

25
t5 − 1

36
t6 + · · ·)

∣∣∣∣
1

1/y1

, (6.50)

Q2 =

{
1− 1

4
+

1

9
− 1

16
+

1

25
− 1

36
+ · · ·

}

−
{

1

y1
− 1

4

1

(y1)2
+

1

9

1

(y1)3
− 1

16

1

(y1)4
+

1

25

1

(y1)5
− 1

36

1

(y1)6
+ · · ·

}
,

or with y1 = eβ(μ−Ez)

Q2 =
π2

12
−
{
e−β(μ−Ez) − 1

4
e−2β(μ−Ez) +

1

9
e−3β(μ−Ez) − 1

16
e−4β(μ−Ez) +

1

25
e−5β(μ−Ez) − · · ·

}
.

(6.51)
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6.2.5 L-integral: y1 < 1, Ez > μ case

For the case of y1 < 1 or Ez > μ, the log term in Eq. (6.41) can be expanded as

∫ y1

0

ln(1 + y)

y
dy =

∫ y1

0

1

y
(y − y2

2
+
y3

3
− y4

4
+ · · ·)dy, (6.52)

=

∫ y1

0

(1− y

2
+
y2

3
− y3

4
+ · · ·)dy, (6.53)

= (y − y2

4
+
y3

9
− y4

16
+ · · ·)

∣∣∣∣
y1

0

, (6.54)

= (y1 − y21
4

+
y31
9

− y41
16

+ · · ·). (6.55)

The portion of the ∂L/∂β expression which contains this term can be called Y1,

Y1 =

∫ ∞

μ

dEzT (Ez)(kT )
2

[
e(μ−Ez)/kT − 1

4
e2(μ−Ez)/kT +

1

9
e3(μ−Ez)/kT − 1

16
e4(μ−Ez)/kT + · · ·

]
,

(6.56)

and is valid for Ez beyond the chemical potential.

6.2.5.1 L-Integral: T = 0 Limit

The average energy flux for T = 0 can be found based on the L-integration, as the JE
flux is given by

JE
flux = μJflux − ∂L

∂β
(6.57)

and

〈E〉
∣∣∣∣
T=0

= μ− 1

Jflux

∂L

∂β

∣∣∣∣
T=0

. (6.58)
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The ∂L/∂β form is, with the upper integration limit now μ,

−∂L
∂β

∣∣∣∣
T=0

=

∫ μ

0

dEzT (Ez)

{
1

β2
[C1 +Q1 +Q2]−D1

}
, (6.59)

=

∫ μ

0

dEzT (Ez)

{[
C1

β2
+
Q1

β2
+
Q2

β2

]
−D1

}
,

=

∫ μ

0

dEzT (Ez)

{(
π2

12
(kT )2 +

1

2
(μ− Ez)

2 + (kT )2Q2

)
−D1

}
.

with β = 1/kT . The D1-term can be factored to separate the T = 0 and T 
= 0 terms, as follows:

D1 = kT (μ− Ez) ln(1 + y1) → kT (μ− Ez) ln(1 + eβ(μ−Ez)), (6.60)

= kT (μ− Ez) ln
[
eβ(μ−Ez)(e−β(μ−Ez) + 1)

]
,

= kT (μ− Ez)

{
1

kT
(μ− Ez) + ln(1 + e−β(μ−Ez))

}
,

or

D1 = (μ− Ez)
2Θ(μ− Ez) + (μ− Ez)kT ln(1 + e−β|μ−Ez|), (6.61)

where the first term above represents the T = 0 term.

With these factorizations, the ∂L/∂β expression reads,

−∂L
∂β

∣∣∣∣
T=0

=

∫ μ

0

dEzT (Ez)

{(
π2

12
(kT )2 +

1

2
(μ− Ez)

2 + (kT )2Q2

)
− (μ− Ez)

2 − kT ln(1 + e−β|μ−Ez|)
}
,

(6.62)

and in the T = 0 limit,

−∂L
∂β

∣∣∣∣
T=0

=

∫ μ

0

dEzT (Ez)

{(
1

2
(μ− Ez)

2

)}
− (μ− Ez)

2,

or

−∂L
∂β

∣∣∣∣
T=0

= −
∫ μ

0

dEzT (Ez)

(
1

2
(μ− Ez)

2

)
, (6.63)

and with

〈E〉T=0 = μ− 1

Jflux

∂L

∂β

∣∣∣∣
T=0

, (6.64)

this becomes

〈E〉T=0 = μ− 1

Jflux

∫ μ

0

dEzT (Ez)

(
1

2
(μ− Ez)

2

)
.
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The Jflux here is the T = 0 limit and is given by Eq. (6.9), as

Jz(T = 0) =
em∗

2π2h̄3

∫ ∞

0

T (Ez)(μ− Ez)Θ(μ− Ez)dEz ,

,

and the average energy at T = 0 is written

〈E〉T=0 = μ−
m∗

2π2h̄3

∫∞
0 dEzT (Ez)

(
1
2 (μ− Ez)

2
)
Θ(μ− Ez)

m∗
2π2h̄3

∫∞
0
dEzT (Ez)(μ− Ez)Θ(μ− Ez)

, (6.65)

or, by Eq. (6.17)

〈E〉T=0 = μ−
∫∞
0 dEzg(Ez)

1
2 (μ− Ez)∫∞

0 dEzg(Ez)
,

with g(Ez) given by Eq. (6.24). This expression then reads

〈E〉T=0 = μ− 1

2
〈μ− Ez〉 = μ− 1

2
μ+

1

2
〈Ez〉 , (6.66)

and

〈E〉T=0 =
1

2
μ+

1

2
〈Ez〉 , (6.67)
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6.2.6 Summary-Average Energy Flux: Full T-dependence

For the full T range, the average energy flux expression reads,

〈E〉 = μ− 1

Jflux

∂L

∂β
, (6.68)

and with ∂L/∂β given by Eq. (6.46),

−∂L
∂β

=

∫ ∞

0

dEzT (Ez)

{
1

β2
[C1 +Q1 +Q2]−D1

}
, (6.69)

where C1, Q1, Q2 and D1 given by Eq’s (6.43,6.45,6.51,6.60), and Jflux (the particle flux) by,

Jflux =
em∗

2π2h̄3

∫ ∞

0

dEzT (Ez)kT ln(1 + e(μ−Ez)/kT ) (6.70)

this can be written as

〈E〉 = μ+A+B + C −D, (6.71)

where

A =
m∗

2π2h̄3

∫∞
0 dEzT (Ez)

π2

12 (kT )
2

em∗
2π2h̄3

∫∞
0
dEzT (Ez)kT ln(1 + e(μ−Ez)/kT )

(6.72)

B =
m∗

2π2h̄3

∫∞
0 dEzT (Ez)

1
2 (μ− Ez)

2Θ(μ− Ez)
em∗
2π2h̄3

∫∞
0
dEzT (Ez)kT ln(1 + e(μ−Ez)/kT )

(6.73)

C =

m∗
2π2h̄3

∫∞
0 dEzT (Ez)(kT )

2
{

π2

12 − [
e−(μ−Ez)/kT − 1

4e
−2(μ−Ez)/kT + 1

9e
−3(μ−Ez)/kT − · · ·]}

em∗
2π2h̄3

∫∞
0 dEzT (Ez)kT ln(1 + e(μ−Ez)/kT )

(6.74)

D =
m∗

2π2h̄3

∫∞
0
dEzT (Ez)(μ− Ez)kT ln(1 + e(μ−Ez)/kT )

em∗
2π2h̄3

∫∞
0 dEzT (Ez)kT ln(1 + e(μ−Ez)/kT )

(6.75)
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Chapter 7

Transport Models

7.1 The H656 Structure

This chapter discusses the comparison of the theoretical transport modeling with the current-voltage

(IV) measurements of the H656 structure. The sample H656 was designed to investigate the behavior

of a single period structure. Figure 7.1 gives the conduction band diagram at zero bias as a function of

the growth direction, showing the wavefunctions at the corresponding energy levels. The energies,

wavefunctions, and resulting potential of the structure were calculated self-consistently using a

Schrodinger-Poisson solver [1]. H656 consists of a 1.2 nm wide AlAs barrier, followed by 75 nm

wide GaAs drift region and a 28.2 nm wide In0.5Ga0.95As quantum well region. Directly adjacent to

the quantum well is the resonant tunneling diode (RTD), which consists of an 8.4 nm In0.5Ga0.95As

quantum well between two 1.2 nm AlAs barriers. After the RTD, there is a 100 nm GaAs spacer

region, and a 70 nm n-doped region. A doping region, with nd = 5 x 1016 cm−2 surrounds both
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sides, which act as electron reservoirs. The redistribution of electrons throughout the structure and

the GaAs/InGaAs band offset results in a deep pocket (quantum well) region.
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Figure 7.1: Conduction band diagram vs. growth axis, showing the relative placement of the wave-

functions (at their corresponding energies), at zero bias (Vb = 0, μL = μR). μL and μR are the left

and right chemical potentials respectively. Dotted line represents the quasi-Fermi level.). Note that

the height of the AlAs barriers is much higher than depicted on the plot.

In order to characterize the properties of the investigated samples with respect to their proper be-

havior, both spectral and transport measurements were performed. As there is a significant serial

resistance in addition to the device resistance, small samples are ideal for current voltage measure-

ments. In contrast, device geometries with longer and larger surface areas (long fingers, or comb-like

structure) are assumed to optimize the efficiency of the emission behavior. Therefore two devices

with different lateral shape are processed for each different utilization [2-5]. Samples were produced

and current-voltage measurements were performed on this sample by the Vienna group [3], as shown

in Fig. 7.2. This depicts the current vs. bias on a log scale, for both bias directions (negative

bias ≡ forward bias, positive bias ≡ reverse bias). In the next chapter, the observed radiation and
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the comparison with theoretical work is discussed. In the following subsections, the analysis is di-

vided between the low bias and mid-to-high bias ranges, as there are different physical mechanisms

which occur in these ranges.
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Figure 7.2: Experimental current I vs. bias Vb for the one-period H656 structure, for both forward

(negative) and reverse (positive) bias. Current is plotted on a log scale. There are three main

features, one at Vb=-25 meV, and two on the reverse side, at roughly Vb=10 meV and Vb=40 meV.

The structure as a whole can be broadly considered as two adjacent resonant tunneling structures,

one portion of the structure containing the region of the RTD + deep well, and the other distinct part

of the structure containing the triangular wedge/barrier region. This is easily seen by referring to

Fig. 7.1. This asymmetrical aspect of H656, in which there is a ’wedge-well’ RT structure, alongside

the deep-well RT structure explains the difference between the relative magnitude of the features

(at low bias) for each bias range.

When the system is in the reverse bias direction, the entry into the structure is through the (outside)

triangular barrier, plus the RTD, and the exit is through the wedge-levels of the latter portion of
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the structure. On the forward bias side, the entry/exit is reversed and so electrons will encounter

the wedge-well region first, and then exit through the deep well levels, and RTD (at sufficiently high

biases). Below it is shown that these particular features in the IV’s are due to the passage of the

wedge-levels past the injection region (for reverse bias), and for the forward bias, the triangular well

level allowing an additional channel for the current to enter the structure.

The goal of this chapter is to quantitatively described the features of the low-bias IV’s for the H656

structure, for both forward and reverse bias. This is not intended as a comprehensive description of

the entire IV curves. The reasons for focusing on the low-bias range, is that at these biases there

is a minimum number of processes occurring, such as effects due to scattering. The LO phonon

process can only come in to the picture when there is an energy spacing of at least 36 meV. Based

on self-consistent calculations of the NESS consistent with the IV’s, LO phonons must be taken

into account around Vb 120 meV and higher. In the modeling presented here, the electron-electron

interaction is implicitly considered through the assumption that there is a quasi-thermal equilibrium

established through the fast collision times. For the acoustic phonon process, the average energy

flux was considered in Chapter 6. This new consideration of this macro-constraint into our modeling

through the average energy inequality, places bounds on the available NESS’s possible. For a truly

quantitative description of all relevant internal processes, the full phase-space calculation must be

made, and is not considered here.

7.1.1 Low Bias Range

For the low bias ranges, for both forward and reverse biases, the model is based on three parameters:

the bound state chemical potential μ1 assumed to hold for both the first and second well levels, the

chemical potential of the continuum distribution μc, and a common temperature T for all particles
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in the structure. These three parameters are subject to three constraints: Jin = Jout = Jobserved,

and Eavg
in ≤ Eavg

out . The existence of a continuum population inside the deep well must be considered

in order to account for the observed current. In particular, on the reverse bias side, the first

feature/bump of the experimentally observed IV’s, as seen in Fig. 7.3, can only be explained by

allowing a continuum population to coexist with the bound-state population. In Fig. 7.1 the bound-

state wavefunctions are represented for the case of Vb=0. Just as in the case of a simple RTD,

there exists a continuum process bringing particles into the structure which have an imprint of that

distribution. In the deep well-region, the assumption of a common T accounts for the electron-

electron collisions to produce a quasi-thermal equilibrium. Even though the numerical electron-

electron scattering rates have not been calculated for this structure (for any bias), the assumption

of a common T implicitly takes this into consideration.
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Figure 7.3: Comparison of the low-bias transport model self-consistent calculated NESS, with the

experimental JV (solid line) for the one-period H656 structure, reverse bias (right). The various

contributions are labeled, and the sum of the calculated currents matches the observed current. On

the left is the experimental JV showing a detail of the very low bias bump.

The self-consistent calculation of the nonequilibrium steady state (NESS) was compared to the
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observed JV’s as a function of the applied bias by applying the conservation conditions discussed

above. In Figure 7.3 the results of these calculations for the reverse bias range up to Vb=17 meV are

shown. The solid line represents both the observed current and the total of the calculated currents

based on the model outlined above. The broad humped feature which begins around Vb=3 meV

and extends to around Vb=14 meV, is due to effectively three processes that involve the continuum

distribution in the deep well. In the Fig. 7.3 the currents are designated as follows: Jβ1(μ1, T ) is

the E1 bound state-associated current, Jβ2(μ1, T ) is the current from the E2 bound state. Due to

the transmission characteristics of the side of the structure which contains the wedge-well, there are

the following contributions: Jbg
cont(μcont, T ) is the ’background’ continuum current, Jres

cont1(μcont, T )

is the first wedge-resonance, and Jres
cont2(μcont, T ) is the second wedge-resonance. All three of these

(continuum) processes extract carriers from the continuum population, as those of the bound-state

cannot contribute. That is, the E1 and E2 levels have very narrow Lorentz-distributions (especially

at the very low biases), and contribute a small amount to the observed outgoing current in this

range. As the bias increases, the continuum population is depleted because the first wedge-resonant

level passes through the injection band, no longer taking particles out, while that of the second

bound state begins to pick up.

For the forward bias, low-bias range, the entry into the structure is through the triangular well, and

out through one of the deep well levels. For the very low-bias ranges, this entry assists particles into

the well region across the (large) triangular barrier. The feature at Vb=25 meV is due to the passage

of the second wedge level through the injection band. This can be seen from Fig. 7.5, where the

self-consistent NESS’s (consistent with the observed current condition) for two bias values, Vb =16

meV and Vb =22 meV show the tail portion of the second well level passing through and out of the

triangular well region. As the bias is increased, the E2 level falls out of range, and it is this process

which is observed as a dip on the JV curve. This is basically an NDR phenomena, which is routinely

observed in simple RTD’s.
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Figure 7.4: Experimental current density J vs. bias Vb for the one-period H656 structure, for forward

bias (left) and model comparison (right).
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Figure 7.5: NESS for Vb=16 meV and 22 meV, forward bias, indicating the placement of the second

deep well level within range of the injection band.

7.1.2 Mid-High Bias Range

For the mid-high bias range, on both bias directions, the resulting current is essentially that of a

pass-through current. On the forward side, the drift region (which is the triangular barrier region)

will begin to disappear, and the current coming into the structure will be less obstructed, and

more importantly there is no longer a entry-well region, which means the electrons can traverse the
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Figure 7.6: Calculated NESS for the Vb=35 meV, reverse bias, corresponding to the second bump

on the IV. This clearly shows the resonant interaction of the second deep well level with the third

wedge level. As the bias is increased the wedge level will cross enhancing the current, then passing

through the injection region, which accounts for the observed dip in the IV around 40 meV.

structure, either tunneling out of the structure, or transitioning down to lower levels through LO

phonon, and electron-electron interactions. Then they exit the structure through those lower levels.
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Figure 7.7: Measured JV curve (semi-log scale) for the forward (left) and reverse (right) bias, showing

that for biases Vb ∼ 100 meV there are no discernible features.

7.2 Summary

The transport modeling for the low-bias range of both the forward and reverse bias directions, based

on three parameters μb, μc, and T , subject to the three conditions Jin = Jout, Jin = Jobs, and

Eavg
in ≤ Eavg

out has decisively shown that there must exist a continuum population, in addition to

the usual bound-state population in the structure. As the bias increases, the bound-state levels

begin to send out more current as these levels will enter into the region of the incoming injection

band, allowing for fast entry of particles into those levels of the structure. Various intersubband

transport processes can redistribute them to other levels, from which they exit the structure. When

the bias is high enough, LO phonon processes start if Vb−E1 > 36 meV. The full interlevel dynamics

involving LO-phonon, electron-electron, electron-surface interactions would be required to arrive at

the NESS in these bias domains. However, the scattering processes, such as the LO phonon and

electron-electron scattering must be handled numerically through a detailed balance to correctly
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account for the transport into the structure and the subsequent transitions to lower levels through

which the particles exit.
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Chapter 8

Radiation and Response

This chapter discusses the response theory needed to describe the radiation emitted from quantum

well heterostructures. As introduced at the beginning of the thesis, the H656 structure was spe-

cially designed to produce THz radiation, based on the plasma instability concept. This plasma

instability-based concept offers distinct advantages as it relies on a collective phenomenon, which

is less susceptible to disruption due to higher temperatures and various scattering effects. Based

on previous investigations of plasma instabilities in various other systems, it was determined that

quantum well structures operating under bias in a nonequilibrium steady state (NESS), with appro-

priate carrier injection and extraction rates were the best candidates for a realization of this idea [1].

The simplest scenario for the generation of plasma instabilities requires [3] a three-subband system,

with the first and third subband well populated and the second nearly empty (or vice-versa). The

essential instability mechanism is the resonant interaction of two plasma modes, due to the up and

down depolarization shifted intersubband plasmons, in such a structure [1].

The response program was developed by Dr. Kempa and Dr. Bakshi long before I joined this

research effort. The modeling done, and presented in Chapter 7 determined the appropriate NESS

at a given bias, consistent with the observed IV measurements. With a particular NESS determined,
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the energies and wavefunctions are then entered into the response program to obtain the lineshape

of radiation. It is shown that for the H656 structure at a bias of Vb =150 meV

8.1 Plasma Instability

A plasma is a system of charged particles interacting through the long-range Coulomb force. In a

quantum well heterostructure the active region is considered to be a slab of plasma in which the

charged particles are electrons and ions. While the electrons are highly mobile, the ions remain

essentially fixed to the lattice sites, providing a uniform neutralizing background, and participating

in lattice vibrations which scatter electrons (and holes). Through the Coloumb interaction, and their

response to external electric and magnetic fields, a collective oscillation arises, known as a plasmon.

If a nonequilibrium carrier distribution is created, the relaxation to equilibrium can occur through

phonon, photon, and plasmon processes. Under certain, special conditions plasmon generation can

be the dominant channel for relaxation to equilibrium, with the plasmons arising from a population

inversion in the carrier distribution function. Therefore a substantial energy transfer in to a growing

plasma mode may become possible under suitable conditions, resulting in a plasma instability. This

energy relaxation mode will be the dominant mechanism for energy loss of the carriers. This plasmon

energy can then be transformed into electromagnetic radiation at the frequency of the plasma mode,

leading to potential device scenarios. The frequency of the radiation is in the THz and meV range.
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8.2 Intersubband Plasmon

The excited intersubband (ISB) excitation is known to be a collective mode of the 2D electron gas

(2DEG), the intersubband plasmon. The ISB plasmon can be thought of as a coherent superposition

of single-particle intersubband excitations, with an energy renormalized from the bare intersubband

spacing by Coulomb and exchange effects [4, 5]. In the case of the intersubband resonance (ISR)

plasmon the Coulomb interactions of two electron subbands are described as a virtual exchange of

plasmons, i.e., when averaged over time some parts of the electron subband energies are stored in

a quasiparticle. The ISR plasmon can therefore likewise be considered as a coherent superposition

of two subband wavefunctions weighted with their respective subband electron sheet densities that

undergo Rabi type oscillations under the action of their mutual Coulomb interaction [7]. Physically

the depolarization effect arises because in the case of high carrier densities each electron in a subband

resides in a field which is different from the external field by the mean Hartree field of the other

electrons polarized by the external field.

8.2.1 Two-Level Case-Depolarization Shift

A one-band model is insufficient to describe an intersubband excitation, and taking multiple sub-

bands into consideration complicates an analytical solution because the Fourier component of the

nonequilibrium correction to the density becomes a (complicated) function in space. Therefore the

Random Phase Approximation (RPA) approach is used which works on the principle that inter-

171



E2

E3

E1

ω1

ω1

ω2

ω2

Figure 8.1: A schematic of the three level system, with subbands E1, E2, and E3. The single-particle

(bare) frequencies are labeled

actions between density fluctuations can be neglected if the phase of the interactions is randomly

varying [7]. Using the RPA one can derive the plasmon frequency of a two-band 2D system:

ω̃21 =
1

h̄

√
ΔE2

21 +W 2
P (8.1)

where

W 2
P = −4Δf21ΔE21G2121 (8.2)

is the depolarization shift which depends on the single particle transition energy ΔE21, the difference

in population density Δf21, and the Coulomb matrix element

G2121(ω) =
e2

εεr

∫
ψ1(r)ψ2(r)

1

|r− r′|ψ1(r
′)ψ2(r

′)drdr′ (8.3)

with z the direction perpendicular to the layers of the sample. In the case of a ’normal’ distribution

f2 < f1, the depolarization is a blueshift of the bare frequency. However, in the case of population

inversion, i.e., when f2 > f1, the depolarization is a redshift of the bare frequency (E2 − E1)/h̄ to

the plasmon frequency ω21.
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8.2.2 Three-Level Case-Intersubband Resonance

It can be shown that for an electron plasma with a strong enough population inversion (basically a

two-humped velocity distribution function) the plasmon frequency becomes complex and the imagi-

nary part γ = Im(ω) can become positive, leading to an exponential growth in time of the plasmon

mode. That defines the plasma instability. Figure 8.1 shows such a system in two different inversion

situations. In each case an absorption ω1 and an emission process ω2 from one or two “source” levels

into a relatively empty band (drain levels) are both possible. The corresponding plasmonic modes

of the two processes may become resonant if, after the depolarization shifts, their frequencies match,

ω2=ω1. According to the expressions above, and due to the inversion situation ω2 will be redshifted

while ω1 will be blueshifted.

8.2.3 Criteria for Plasma Instabilities in a Three-Level System

The signatures of the plasma instability are summarized as follows [2]. In the range of the instability

a mode-merging is expected to result, which is essentially an attractive crossing of the emission and

absorption modes. For most bias ranges the emission and absorption modes are distinct, but in the

range of interaction the merging of these modes results in a mode locking. The second signature of

the instability is a maximum value for the growth rate of the instability in the range of the mode

locking. The growth rate reduces to zero where the emission and absorption modes separate. If

the instability can overcome losses due to collisions, then the linewidth vanishes, and an extremely

sharp line of high intensity is produced. This is the onset of the plasma instability, which results in
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the (stimulated) generation of plasmons. In the range of biases where the (calculated) growth rate is

not strong enough to overcome losses, line-narrowing, and an increased line intensity will sill occur.

Thus a comparison of the linewidths both outside and in the range of mode merging provides the

third criteria for the plasma instability. The fourth condition for the PI arises from the fact that the

mode frequency becomes complex in the range of the plasma instability. The mixing of the original

emission and absorption modes modifies the typical Lorentzian shape by the form (1+ ax)/(1 + x2)

rather than the standard 1/(1+x2), where a is a constant depending on the amount of mixing of the

two original modes. The resulting new feature is a sharp maximum followed by a sharp minimum,

or vice versa.
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8.3 Observed Radiation/Comparison

In this section a calculated lineshape corresponding to a self-consistent NESS is compared with

the observed radiation lineshape. Measurements were made [7] for the single period H656 structure

corresponding to currents 100 mA and 300 mA, displayed in Figs. 8.2 and 8.3. A calculated lineshape

based on an assumed NESS is given in Fig. 8.4, and has the main features of the observed lineshape.
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Figure 8.2: FTIR measurements of the radiation for the forward bias direction of sample H656, for

the measured current of I =100 mA. The characteristic feature of this lineshape is that of a modified

Lorentzian.
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Figure 8.3: FTIR measurements of the radiation for forward bias of H656 for a current of 300 mA.

Note the appearance of the broadband background radiation.

14 14.5 15 15.5 16

Figure 8.4: Theoretical lineshape showing the modified Lorentzian form.
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Chapter 9

Conclusions and Outlook

In Part I globally accurate algebraic expressions were obtained for the finite SQW, ASQW, and the

triangular well. Concerning the transmission properties of the triangular barrier, an exact mapping

of the triangular barrier problem into the rectangular barrier has been established. Finally a new

transcendental equation has been given describing the energy levels of the finite-width double barrier

structure. Extensions of these methods are topics for further study: the finite SQW with particles in

the well, with and without bias, the asymmetric double quantum well, with and without particles,

and the analysis of composite structures.

In Part II the transport modeling revealed the underlying processes responsible for the main features

of the experimental IV’s for the low bias range, for both forward and reverse bias. Further tranport

studies with various intersubband processes included are envisioned allowing for the NESS for the

mid- to higher biases to be calculated, and the resulting radiation profiles for this sample, and other

samples can be determined.
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Appendix A

Quantum Wells

In this appendix the details regarding the derivation of the energies and wavefunctions of the systems

presented in Chapter 3 are given. This includes: the infinte square well (ISW), the finite symmetric

quantum well (SQW), the finite asymmetric quantum well (ASQW), and the finite symmetric double

quantum well (SDQW) (both well widths equal and all barrier heights equal). Any standard quantum

mechanics text [1-8] gives plenty of details on the ISW, and the SQW. However, for the case of the

ASQW, and the double square well, both symmetric and asymmetric, little widespread information

exists [2, 9, 12, 13].

A.1 The Infinite Square Well (ISW)

For a particle in an infinite potential well (see Fig. A.1),

V (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if −L/2 ≤ z ≤ L/2;

∞, otherwise.

(A.1)

As the potential is infinite, the boundary conditions at z = +L/2 and z = −L/2 are required to be

ψ(z = +L/2) = 0, ψ(z = −L/2) = 0, (A.2)
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and as V = 0 inside the well region (between −L/2 and L/2), and the time-independent Schrodinger

equation (TISE) is,

− h̄2

2m∗
d2ψ(z)

dz2
= Eψ(z), −L/2 ≤ z ≥ +L/2 (A.3)

which can also be expressed as

d2ψ(z)

dz2
+ k2ψ(z) = 0, k2 =

2m∗E
h̄2

(A.4)

where m∗ is the effective mass value for the particular semiconductor material (e.g. for GaAs

m∗ = 0.067me. Between −L/2 and L/2 the general solution which satisfies Eq. (A.3) is

ψ(z) = A sin(kz) +B cos(kz), (A.5)

and with the boundary conditions ψ(−L/2) = ψ(L/2) = 0,

ψ(L/2) = A sin(kL/2) +B cos(kL/2) = 0 =⇒ A = 0 =⇒ ψ(z) = B cos(kz).

The wavenumber k can be found from the condition ψ(L/2) = A cos(kL/2) = 0 → kL/2 = nπ/2 or

k = nπ/L. To fix the constant B, the normalization condition is used:

∫ ∞

−∞
|ψ(z)|2dz = |B|2

∫ L/2

−L/2

cos2(nπz/L)dz = |B|2L
2
= 1, (A.6)

=⇒ B =

√
2

L
, (A.7)

so that the normalized stationary states of the infinite potential well of width L are given by

ψn(z) =

√
2

L
cos

(nπz
L

)
, n = 1, 2, .. (A.8)

It is noted that the above wavefunctions form a complete set, are alternately even and odd functions

about the center of the well and with increasing n, each successive state has one more node in the
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wavefunction. This can be seen from Fig. (A.1). The eigenvalues are obtained from the relation in

Eq. (A.4)

k =

√
2mE

h̄2
=⇒ E =

(h̄k)2

2m∗ =⇒ En,∞ =
(nπh̄)2

2m∗L2
, n = 1, 2, .. (A.9)

where the relation k = nπ/L was used.
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Figure A.1: The infinite square well for well width

L = 200 Å, showing the first four wavefunctions.
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Figure A.2: The finite symmetric well for well

width L = 200 Å, showing four wavefunctions.

A.2 The Finite Symmetric Quantum Well (SQW)

In contrast to the case of a particle in an infinite potential well, the finite symmetric quantum well

has barriers of finite height. For a particle in finite potential well of width L and barrier height V

(Fig. A.2), the TISE reads

− h̄2

2m∗
d2ψ(z)

dz2
+ V (z)ψ(z) = Eψ(z) (A.10)

where the potential V (z) is constant in the three regions, denoted I and II and given by
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V (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if −L/2 ≤ z ≤ L/2;

V, otherwise.

(A.11)

The general solution of the TISE in the region between −L/2 and L/2 is

ψ(z) = A sin kIz +B cos kI − L/2 ≤ z ≥ +L/2 (A.12)

where kI =
√
2m∗E/h̄, and in the regions of the barriers, the general solutions are

ψ(z) = CekIIz +De−kIIz z < −L/2 (A.13)

ψ(z) = FekIIz +Ge−kIIz z > L/2 (A.14)

where kII =
√
2m∗(V − E)/h̄. To determine the constants, first note that in the limit z →

+∞,−∞, it is required that D = F = 0. Next impose the boundary conditions that the wavefunc-

tions and the derivatives be continuous at the boundary z = −L/2 and z = +L/2. This results in

four equations:

−A sin(kIL/2) +B cos(kIL/2) = Ce−kIIL/2 (A.15)

AkI cos(kIL/2) +BkI sin(kIL/2) = CkIIe
−kIIL/2 (A.16)

A sin(kIL/2) +B cos(kIL/2) = Ge−kIIL/2 (A.17)

AkI cos(kIL/2)−BkI sin(kIL/2) = −GkIIe−kIIL/2 (A.18)

Subtracting Eq. (A.15) from Eq. (A.17) gives

2A sin(kIL/2) = (G− C)e−kIIL/2, (A.19)
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Adding Eq. (A.15) to Eq. (A.17) gives

2B cos(kIL/2) = (G+ C)e−kIIL/2, (A.20)

Subtracting Eq. (A.18) from Eq. (A.16) gives

2BkI sin(kIL/2) = (G+ C)kIIe
−kIIL/2 (A.21)

And finally adding Eq. (A.18) to Eq. (A.16) gives

2AkI cos(kIL/2) = −(G− C)kIIe
−kIIL/2 (A.22)

The equations (A.19)-(A.22) can be reduced to two equations, one for each parity. Dividing

Eq. (A.21) by Eq. (A.20) yields

kI tan(kIL/2) = kII , even parity (A.23)

and dividing Eq. (A.22) by Eq. (A.19) yields

kI cot(kIL/2) = −kII , odd parity (A.24)

Multiplying through by L/2, and letting α = kIL/2 and P = kIIL/2 =
√

2m∗V/h̄2L/2, these can

be written

α tanα =
√
P 2 − α2, (even parity) − α cotα =

√
P 2 − α2 (odd parity) (A.25)

where

α =

√
2m∗E
h̄2

L

2
P =

√
2m∗V
h̄2

L

2
(A.26)

and α represents the energy eigenvalue, and P represents the well-strength parameter. The two

Eqs. (A.25) can be further reduced as

α tanα =
√
P 2 − α2 =⇒ tanα =

√
(P 2 − α2)

α
=⇒ tan2 α =

P 2 − α2

α2
(A.27)
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=⇒ sec2 α =
P 2 − α2 + α2

α2
=⇒ cos2 α =

α2

P 2
=⇒ | cosα| = α

P
(A.28)

and similarly for the odd parity solution:

−α cotα =
√
P 2 − α2 =⇒ | sinα| = α

P
(A.29)
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Figure A.3: Graphical solution of Eqs. (A.28) and

(A.29) giving the energies of the finite symmet-

ric square well for (an arbitrarily chosen) well-

strength P = 7, showing five solutions (bound

states), determined by the intersection of the de-
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α/P curve.
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Figure A.4: Detail of the graphical method for

the SQW energies. Plot is close-up of the n = 1

solution for the P = 7 case presented in the text,

showing the ’smallness’ parameter εn = αn−αn,∞,

where αn,∞ = nπ/2 and αn is the approximate

energy eigenvalue.

The standard approach to solving these transcendental equations is to take the Eqs. (A.28),(A.29)

and find a solution by graphical means [4], or numerically. Fig. (A.3) shows a plot of Eq. (A.28) and

(A.28); the conventional method of solution is by finding the intersection (the roots) of α/P with

the descending branch of both |cosα| and |sinα|. The method will be presented here as it is used in
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approximating the energies of the DQW system (see below). From the graph of | cosα| and | sinα|

vs. α/P , it is seen that the actual solutions (intersections) are ’close’ to the value αn,∞ = nπ/2.

Therefore an approximation of the cosine and sine can be made, by defining the ’small’ departure

εn from the value nπ/2, as

εn = αn,∞ − αn =⇒ cosαn = cos(
nπ

2
− εn) = sin εn = εn − ε3n

3!
+
ε5n
5!

− · · · (A.30)

where αn represents the approximate energy eigenvalue, and the sine expansion is used as ε is small.

Taking the first term in the sine expansion gives

cosαn = εn =⇒ αn

P
= αn,∞ − αn =⇒ αn =

P

P + 1
αn,∞ (A.31)

=⇒ En = En,∞

(
P

P + 1

)2

(A.32)

where aαn =
√
2m∗En/hbar2 was used. For the next higher approximation, taking the two terms

in the sine expansion gives

cosαn = εn − ε3n
3!

=⇒ αn

P
= (αn,∞ − αn)− (αn,∞ − αn)

3

6
(A.33)

=⇒ αn

P
= (αn,∞ − αn)− 1

6

(
αn,∞ −

(
αn,∞

P

P + 1

))3

(A.34)

where the result αn = αn,∞(P/(P + 1)) from the first approximation was used,

=⇒ αn = αn,∞

(
P

P + 1

)[
1− 1

6

α2
n,∞

(P + 1)3

]
(A.35)

or in terms of En,∞

En = En,∞

(
P

P + 1

)2 [
1− 1

6

(nπ/2)2

(P + 1)3

]
(A.36)

and up to three terms,

cosαn = εn − ε3n
3!

+
ε5n
5!

=⇒ αn

P
= (αn,∞ − αn)− (αn,∞ − αn)

3

6
+

(αn,∞ − αn)
5

120

=⇒ αn

P
= (αn,∞ − αn)− 1

6

(
αn,∞ −

(
αn,∞

P

P + 1

))3

+ · · ·

+
1

120

(
αn,∞ −

(
αn,∞

P

P + 1

)
− Pα3

n,∞
6(P + 1)4

)5

(A.37)

αn =

(
P

P + 1

)
αn,∞

⎡
⎣1− 1

6

α2
n,∞

(P + 1)3
+
α4
n,∞
120

(
1− 6(P (P + 1)3)− Pα2

n,∞
6(P + 1)4

)5
⎤
⎦

185



or

En = En,∞

(
P

P + 1

)[
1− 1

6

(nπ/2)2

(P + 1)3
+

(nπ/2)4

120

(
1− 6(P (P + 1)3)− P (nπ/2)2

6(P + 1)4

)5
]2

(A.38)

A.2.1 SQW Wavefunctions

The wavefunctions are determined as follows. Recalling the general solution for the regions I and

II, for the odd parity solutions, it is required that A = D = F = 0, and C = G, that is

ψ(z) = CekIIz z < −L/2 (A.39)

ψ(z) = B cos kI − L/2 ≤ z ≥ +L/2 (A.40)

ψ(z) = Ge−kIIz z > L/2 (A.41)

and C and G are found from Eqs. (A.17) as

B cos(kIL/2) = Ge−kIIL/2, G = B cos(kIL/2)e
kIIL/2 = C, (A.42)

and so the odd eigenfunctions are

ψn(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[B cos (kIL/2) e
kIIL/2]ekIIz , z ≤ −L/2,

B cos(kIz), −L/2 ≤ z ≤ L/2,

[B cos (kIL/2) e
kIIL/2]e−kIIz , z ≥ L/2,

(A.43)

and similarly for the even solutions, the eigenfunctions are

ψn(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−B sin (kIL/2) e
kIIL/2]ekIIz, z ≤ −L/2,

B sin(kIz), −L/2 ≤ z ≤ L/2,

[B sin (kIL/2) e
kIIL/2]e−kIIz , z ≥ L/2.

(A.44)
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The final constants B are determined by the normalization condition,

1 =

∫ ∞

−∞
|ψ(z)|2dz = |B|2(

∫ −L/2

−∞
cos2(kIL/2)e

2kIIL/2e2kIIzdz +

∫ L/2

−L/2

cos2(kIz)dz + · · ·

+

∫ +∞

L/2

cos2(kIL/2)e
2kIIL/2e−2kIIzdz) (A.45)

or

1 = |B|2(cos2(kIL/2)e2kIIL/2 1

2kII
e2kIIz

∣∣∣∣
−L/2

−∞
+

1

2
z +

1

4kI
sin(2kIz)

∣∣∣∣
L/2

−L/2

+ · · ·

+cos2(kIL/2)e
2kIIL/2 −1

2kII
e−2kIIz

∣∣∣∣
∞

L/2

) (A.46)

and

1 = |B|2(cos2(kIL/2)e2kIIL/2 1

2kII
e−kIIL +

L

2
+

1

4kI
(sin(kIL)− sin(−kIL)) + · · ·

− cos2(kIL/2)e
2kIIL/2 −1

2kII
e−kIIL) (A.47)

and then

1 = |B|2(L
2
+

1

2kII
cos2(kIL/2)

1

2kII
+

1

2kI
sin(kIL)) (A.48)

so that the normalization constant is given by

B =

(
L

2
+

1

2kII
cos2(kIL/2)

1

2kII
+

1

2kI
sin(kIL)

)−1

(A.49)

Putting the TISE in the form

d2ψ(z)

dz2
=

2m∗(V (z)− E)

h̄2
ψ(z) (A.50)

allows one to examine the curvature of the wavefunctions. This can be interpreted by saying that

the left-hand side, the rate of change of the slope, is the curvature, i.e., the curvature of the function

is equal to (essentially) (V (z)− E)ψ(z). This means that if E > V (z), for ψ(z) positive, then ψ(z)

is curving negatively, and for ψ(z) negative, then ψ(z) is curving positively. In both cases, ψ(z) is

always curving towards the axis. This means that for E > V (z), ψ(z) has a kind of stability: its

curvature is always bringing it back towards the axis, so it has oscillatory character. On the other

hand, for V (z) > E, the curvature is always away from the axis. This means that ψ(z) tends to
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diverge to infinity. Only under exactly the right conditions will this curvature be just enough to

bring the wave function to zero as z goes to infinity, and as ψ(z) tends to zero, the curvature tends

to zero, too.

A.2.2 Single Eigenvalue Equation for the SQW

For the purposes of analytical approximations, it desirable to have a single eigenvalue equation

instead of the individual parity solutions. Taking Eqs. (A.15) and (A.16)[10, 11] and expressing A

and B in terms of C and D, then using this to eliminate A and B in Eqs. (A.17) and (A.18), gives

the result

D = C[sin(2α)((
√
P 2 − α2)/α+ cotα) − 1] (A.51)

and

D = −C[cos(2α)− (α/(
√
P 2 − α2)) sin(2α)] (A.52)

respectively, and equating these two gives

sin(2α)((
√
P 2 − α2/α)− (

√
P 2 − α2) + cotα) + cos(2α) = 1 (A.53)

Next, from the definition of α and P , the following form is obtained

(
1− 2

α2

P 2

)
sin(2α) +

(
2
α

P

√
1− α2

P 2

)
cos(2α) = 0 (A.54)

This has been shown to be an identity for the sine of the sum of two angles,

sin[2(α+Φ)], where Φ = sin−1
(α
P

)
(A.55)

and from these two equations can then be combined to give

α+ sin−1
( α
P

)
=
nπ

2
(A.56)

This particular will prove useful for the approximations made for the SQW.
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A.3 The Finite Asymmetric Square Well (ASQW)

For a finite potential well with barrier heights V1 > V2 (see Fig. A.5),

V (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1, if z < 0;

0, if 0 < z < L

V2, if z > L

(A.57)

the Schrodinger equation is

−h̄2
2m∗

d2ψ(z)

dz2
= (V1 − E)ψ(z) =⇒ d2ψ(z)

dz2
= κ2Iψ(z) (I) (A.58)

−h̄2
2m∗

d2ψ(z)

dz2
= Eψ(z) =⇒ d2ψ(z)

dz2
= k2ψ(z) (II) (A.59)

−h̄2
2m∗

d2ψ(z)

dz2
= (V2 − E)ψ(z) =⇒ d2ψ(z)

dz2
= κ2IIIψ(z) (III) (A.60)

where

k =

√
2m∗E
h̄2

κI =

√
2m∗(V1 − E)

h̄2
κIII =

√
2m∗(V2 − E)

h̄2
(A.61)

The wavefunctions are given by

ψI(z) = AIe
κIz z ≤ 0 (A.62)

ψII(z) = A sin(kz + δ) 0 ≤ z ≤ L (A.63)

ψIII(z) = AIIIe
−κIIIz z ≥ L (A.64)

and matching the logarithmic derivatives at z = 0 and z = L,

1

ψI(z)

dψI(z)

dz

∣∣∣∣
z=0

=
1

ψII(z)

dψII(z)

dz

∣∣∣∣
z=0

(A.65)

=⇒ 1

AI
AIκI =

1

AI sin δ
AIk cos δ =⇒ κI = k cot δ (A.66)

and similarly,

1

ψII(z)

dψII(z)

dz

∣∣∣∣
z=L

=
1

ψIII(z)

dψIII(z)

dz

∣∣∣∣
z=L

(A.67)
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∞ for well width L = 200 Å, showing the first four

wavefunctions.

=⇒ 1

A sin(kL+ δ)
Ak cos(kL+ δ) =

1

AIIIe−κIIIL
− κIIIAIIIe

−κIIIL (A.68)

=⇒ κIII = −k cot(kL+ δ) (A.69)

The above two equations can be rewritten as

cot δ =
κI
k

=⇒ δ = cot−1(
κI
k
) =⇒ nπ − sin−1(

κI
k
) (A.70)

where the identity cot−1(x) = nπ − sin−1(1/
√
1 + x2) was used, and similarly for the second condi-

tion,

cot(kL+ δ) = −κIII
k

=⇒ kL+ δ = cot−1(
κIII
k

) =⇒ nπ − sin−1(
κIII
k

) (A.71)

Eliminating δ gives

kL = nπ − sin−1

(
kh̄

2m∗V1

)
− sin−1

(
kh̄

2m∗V2

)
(A.72)
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This is the eigenvalue equation for the finite asymmetric quantum well. In chapter 3 this is equation

is used to approximate the energies. The wavefunctions are given by

ψn(z) = C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

eκlz sin δ, z ≤ 0,

sin(knz + δ), 0 ≤ z ≤ L,

e−κr(z−L) sin(knL+ δ), z ≥ L,

(A.73)

A.4 The Finite Symmetric Double Quantum Well (DSQW)

This section details the work of the finite symmetric double quantum well (DSQW), with equal well

widths L, barrier width d, and with all barrier heights equal to V0 (refer to Fig. 3.14 (a)). The value

z = 0 is taken at the center of the middle barrier, and the potential is given by

V (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
V0, −∞ < z < −L, −d/2 < zd/2, L < z <∞;

0, −L < z < −d/2, d/2 < z < L

(A.74)

The range of the potential is split up and denoted by the roman numerals I through V, and the

TISE is given by the following forms

−h̄2
2m∗

d2ψ(z)

dz2
= Eψ(z) (II,IV) (A.75)

−h̄2
2m∗

d2ψ(z)

dz2
= (V0 − E)ψ(z) (I,III,V) (A.76)

or in terms of the quantities k and κ as

d2ψ(z)

dz2
= k2ψ(z) (II,IV) (A.77)
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d2ψ(z)

dz2
= κ2ψ(z) (I,III,V) (A.78)

where

k =

√
2m∗E
h̄2

κ =

√
2m∗(V0 − E)

h̄2
(A.79)

The wavefunctions of the SDQW in regions I,III,V are denoted by

ψI(z) = Aeκz +Be−κz (A.80)

ψIII(z) = Ceκz +De−κz (A.81)

ψV (z) = Feκz +Ge−κz (A.82)

and in regions II,IV

ψII(z) = H cos

{
k

[
z +

(
L

2
+
d

2

)]}
+ I sin

{
k

[
z +

(
L

2
+
d

2

)]}
(A.83)

ψIV (z) = J cos

{
k

[
z −

(
L

2
+
d

2

)]}
+K sin

{
k

[
z −

(
L

2
+
d

2

)]}
(A.84)

To begin with this problem, first note that the requirement that ψ(z) be finite at all z implies that

ψ(z) → 0 as |z| → ∞, and since eκz → ∞ as z → ∞ and e−κz → ∞ as z → −∞, we get B = F = 0.

Next, due to the symmetry of this system, that is, V (z) = V (−z), there are even and odd functions,

and this requirement gives

ψI(z) = ±ψI(−z) =⇒ A = ±G (A.85)
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ψIII(z) = ±ψIII(−z) =⇒ C = ±D (A.86)

ψII(z) = ±ψIV (−z) =⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
H = ±J

I = ±K
(A.87)

where the upper sign corresponds to the even state and the lower sign to the odd state. The updated

wavefunctions now are,

ψI(z) = ±Geκz (A.88)

ψIII(z) = ±Deκz +De−κz (A.89)

ψV (z) = Ge−κz (A.90)

and in region II,IV

ψII(z) = H cos

{
k

[
z +

(
L

2
+
d

2

)]}
+ I sin

{
k

[
z +

(
L

2
+
d

2

)]}
(A.91)

ψIV (z) = J cos

{
k

[
z −

(
L

2
+
d

2

)]}
+K sin

{
k

[
z −

(
L

2
+
d

2

)]}
(A.92)

Now matching the logarithmic derivatives, (1/ψ)dψ/dz, at the boundaries z = −L − d/2 and z =

−d/2, that is in the region of the left well,

1

ψI(z)

dψI(z)

dz

∣∣∣∣
z=−L−d/2

=
1

ψII(z)

dψII(z)

dz

∣∣∣∣
z=−L−d/2

(A.93)

1

ψII(z)

dψII(z)

dz

∣∣∣∣
z=−d/2

=
1

ψIII(z)

dψIII(z)

dz

∣∣∣∣
z=−d/2

(A.94)

193



Starting with Eq. (A.93), the expression becomes

1

Ge−κ(L+d/2)
Gκe−κ(L+d/2) =

−Hk sin(−kL/2) + Ik cos(−kL/2)
H cos(−kL/2) + I sin(−kL/2)

and factoring out the ratio H/I, and using the even/odd property of the sine and cosine functions,

κ =
(H/I)k sin(kL/2) + k cos(kL/2)

(H/I) cos(kL/2)− sin(kL/2)
(A.95)

Now taking the second condition Eq. (A.94), we get

−Hk sin(kL/2) + Ik cos(kL/2)

H cos(kL/2) + I sin(kL/2)
=

±Dκe−κd/2 ∓Dκeκd/2

±De−κd/2 +Deκd/2

or

−(H/I)k sin(kL/2) + k cos(kL/2)

(H/I) cos(kL/2) + sin(kL/2)
=

±Dκe−κd/2(1 − eκd/2)

De−κd/2(1 + eκd/2)

and then

−(H/I)k sin(kL/2) + k cos(kL/2)

(H/I) cos(kL/2) + sin(kL/2)
= ±κ (1− eκd/2)

(1 + eκd/2)
(A.96)

Next defining the ratio tan δ ≡ H/I, Eqs. (A.95) and (A.96) become

κ =
tan δk sin(kL/2) + k cos(kL/2)

tan δ cos(kL/2)− sin(kL/2)

±κ (1− eκd/2)

(1 + eκd/2)
=

− tan δk sin(kL/2) + k cos(kL/2)

tan δ cos(kL/2) + sin(kL/2)
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and expressing each of these equations in terms of tan δ, respectively, gives

tan δ =
κ sin(kL/2) + k cos(kL/2)

κ cos(kL/2)− k sin(kL/2)
(A.97)

tan δ =
k cos(kL/2)∓ λ sin(kL/2)

±λ cos(kL/2) + k sin(kL/2)
, λ ≡ κ

(1− e−κd)

(1 + eκd)
(A.98)

Now eliminating tan δ, one expression is obtained as

κ sin(kL/2) + k cos(kL/2)

κ cos(kL/2)− k sin(kL/2)
=

k cos(kL/2)∓ λ sin(kL/2)

±λ cos(kL/2) + k sin(kL/2)
(A.99)

which gives

[κ+ k cot(kL/2)][±λ cot(kL/2) + k] = [k cot(kL/2)∓ λ][κ cot(kL/2)− k]

or

±kκ (1− eκd)

(1 + eκd)
cot2(kL/2)−kκ cot2(kL/2)±2κ2

(1− eκd)

(1 + eκd)
cot(kL/2)+2k2 cot(kL/2) = −kκ±kκ (1− eκd)

(1 + eκd)

which then becomes

kκ cot2(kL/2)

( ∓eκd
(1 + eκd)

)
± 2 cot(kL/2)

[
κ2(1− eκd) + k2(1 + eκd)

1 + eκd

]
= ∓kκ± kκ

( ∓eκd
(1 + eκd)

)

which reduces to

kκ cot2(kL/2)± cot(kL/2)e−κd
(
κ2(1− eκd) + k2(1 + eκd)

)
= kκ

Next factoring out the cot term:

kκ cot2(kL/2)± cot(kL/2)
[
e−κd(κ2 + k2) + k2 − κ2

]
= kκ

and then factoring out the kκ term,
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kκ
(
cot2(kL/2)− 1

)
= cot(kL/2)

[±e−κd(κ2 + k2) + k2 − κ2
]

(A.100)

Now recognizing that the cot2(kL/2) term can be put in terms of a single cot(kL/2), from the

identity

tan(θ + φ) =
cot θ + cotφ

cot θ cotφ− 1
, (A.101)

where for θ = φ = kL/2 this gives

cot2(kL/2)− 1 =
2 cot(kL/2)

tan(kL)
, (A.102)

and so Eq. (A.100) becomes

2kκ cot(kL) = k2 − κ2 ± (k2 + κ2)e−κd (A.103)

where k and κ are given by

k =

√
2m∗E
h̄2

κ =

√
2m∗(V0 − E)

h̄2
(A.104)

This is the eigenvalue equation for the symmetric DQW, with well width L, barrier height V0, and

middle barrier width d. The ± sign accounts for the even (+) and odd (−) states of the double well

system and the exponential factor ’splitting’ or separation of the even and odd wavefunctions as

d varies. To accurately determine the energies, Eq. (A.103) must be solved numerically. However,

analytical approximations will made with this equation to arrive at algebraic expressions for the

energy eigenvalues, in terms of the well-strength parameter appropriate for this system (see main

text, Chap.3). To get a feel for how the energies vary with the middle barrier width variation,

however, Eq. (A.103) was solved numerically. Fig. (A.7) shows this behavior of the first and second

energy levels as d is increased.

One further useful result is a variation of Eq. (A.103) above. By using the identity cot θ =

(1/2) cot(θ/2)− (1/2) tan(θ/2),
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2kκ [(1/2) cot(kL/2)− (1/2) tan(kL/2)]− k2 + κ2 = ±(k2 + κ2)e−κd

or

kκ cot(kL/2)− kκ tan(kL/2)− k2 + κ2 = ±(k2 + κ2)e−κd

and

κ2 − k2 cot(kL/2) tan(kL/2) + kκ cot(kL/2)− kκ tan(kL/2) = ±(k2 + κ2)e−κd

where cot(kL/2) tan(kL/2) = 1 was inserted, and finally

(κ+ k cot(kL/2)(κ− k tan(kL/2) = ±(k2 + κ2)e−κd (A.105)
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A.4.1 DSQW: Limiting Cases, d → ∞, d → 0 and V0 → ∞

By using this second form of the SDQW eigenvalue equation, two important limiting cases are

quickly obtained. As the middle barrier width is increased, d → ∞, e−κd → 0 and we expect this

equation to reduce to that of the single finite quantum well. Eq. (A.105) then becomes

(κ+ k cot(kL/2)(κ− k tan(kL/2) = 0

and therefore

(κ+ k cot(kL/2)) = 0 =⇒ −α cotα =
√
P 2 − α2 (odd parity) (A.106)

(κ− k tan(kL/2)) = 0 =⇒ α tanα =
√
P 2 − α2, (even parity) (A.107)

where both expressions in Eqs. (A.108) and (A.109) were multiplied by L/2, and then using the

identification of α =
√
2m∗EL/2. These are just the eigenvalue equations for the separate SQW of

width L, and height V0, as expected. For the next limit, d→ 0, e−κd → 1, it is more convenient to

use the first SDQW eigenvalue equation, Eq. (A.103), which gives

2kκ cot(kL) = k2 − κ2 ± (k2 + κ2)

and because of the ±, this becomes

2kκ cot(kL) = −2κ2 =⇒ k cot(kL) = −κ =⇒

=⇒ −α cot(2α) =
√
P 2 − α2 (odd parity) (A.108)

2kκ cot(kL) = 2k2 =⇒ k tan(kL) = κ =⇒
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=⇒ α tan(2α) =
√
P 2 − α2, (even parity) (A.109)

These two expressions are simply the eigenvalue equations for the SQW of width 2L. For the

intermediate d values, analytical approximations were made and are detailed in the main text in

Chapter 3. For the limit V0 → ∞,

199



Bibliography

[1] L. D. Landau, L. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford 1958), pp. 61-64.

[2] D. Ter Harr, Selected Problems in Quantum Mechanics (Academic, New York, 1964), pp. 47-49.

[3] A. S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 1965), pp. 88-90.

[4] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics (Wiley-Interscience, New York,

1977) vol 1, pp. 74-78.

[5] R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles

(Wiley, New York, 1987), pp. G1-G6.

[6] M. A. Morrison, Understanding Quantum Physics (Prentice-Hall, Englewood Cliffs, NJ, 1990),

pp. 319-340.

[7] R. Gilmore, Elementary Quantum Mechanics In One Dimension (Johns Hopkins University

Press, Baltimore, MD, 2004), pp. 91-104.

[8] D. J. Griffiths, Introduction to QuantumMechanics (Prentice-Hall, Englewood Cliffs, NJ, 1995),

pp. 60-62.

[9] M. A. Morrison, Quantum States of Atoms, Molecules, etc (Prentice-Hall, Englewood Cliffs,

NJ, 1990), pp. 319-340.

[10] B. C. Reed, “A single equation for finite rectangular well energy eigenvalues,” Am. J. Phys.,

58 (5), 503-504 (1990).

[11] D. W. L. Sprung, H. Wu, J. Martorell, “A new look at the square well potential,” Eur. J. Phys.,

13, 21-25 (1992).

[12] J. F. Bloch, V. Ignatovich, “A new approach to bound states in potential wells,” Am. J. Phys.,

69 (11), 1177-1181 (2001).

200



[13] A. Ganguly, S. Kuru, J. Negro, L.M. Nieto, “A study of the bound states for square potential

wells with position-dependent mass,” Phys. Lett. A., 360, 228-233 (2006).

201



Appendix B

Appendix: Tunneling and Transfer Matrix Calculations

In this appendix, the details of the derivation of the tunneling transmission probability are presented

for several relevant cases: the single symmetric rectangular barrier, the asymmetric rectangular

barrier, the trinagular barrier, the symmetric double barrier, and the asymmetric double barrier.

B.1 Single Rectangular Barrier

Consider a simple, single rectangular barrier as shown in Fig. 4.2 (a) of Chapter 4, Section 4.1. The

potential only exists between z = −d and z = d,

V (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, z < −d,

V0, −d < z < d,

0, z > d,

(B.1)

with both incoming and outgoing waves on either side of the barrier described by propagating waves

k2 = (2m∗E)/h̄2, while in the barrier the waves are attenuated, with κ2 = (2m∗(V0 − E))/h̄2. The
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wavefunction is given in general by

ψ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1e
ikz +B1e

−ikz , z < −d,

A2e
κz +B2e

−κz, −d < z < d,

A3e
ikz +B3e

−ikz , z > d,

(B.2)

where Ai’s and Bi’s are the amplitudes of the waves. There are six unknowns to evaluate. Since the

transmission of a wave through the barrier incident from the left is sought, the incoming wave from

the right is ignored. However, when considering the double and triple barrier cases, this will not be

so, as there will be reflected waves from those boundaries to be considered. Applying the conditions

ψ1(z = −d) = ψ2(z = −d) and ψ′
1(z = −d) = ψ′

2(z = −d) to the first interface, z = −d, gives the

two conditions

A1e
−ikd +B1e

ikd = Ce−κd +Deκd, ik[A1e
−ikd −B1e

ikd] = κ[A2e
−κd −B2e

κd], (B.3)

which can be solved for A1 and B1 in terms of A2 and B2. First, adding these two equations gives

A1 in terms of A2 and B2, then subtracting these equations gives B1 in terms of A2 and B2:

A1 = A2

(
ik + κ

2ik

)
e(ik−κ)d +B2

(
ik − κ

2ik

)
e(ik+κ)d (B.4)

B1 = A2

(
ik − κ

2ik

)
e−(ik+κ)d +B2

(
ik + κ

2ik

)
e−(ik−κ)d (B.5)

or in terms of matrices, ⎡
⎢⎢⎣ A1

B1

⎤
⎥⎥⎦ =M[1,2]

⎡
⎢⎢⎣ A2

B2

⎤
⎥⎥⎦
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where M[1,2] is given by

M[1,2] =

⎡
⎢⎢⎣

(
ik+κ
2ik

)
e(ik−κ)d

(
ik−κ
2ik

)
e(ik+κ)d

(
ik−κ
2ik

)
e−(ik+κ)d

(
ik+κ
2ik

)
e−(ik−κ)d

⎤
⎥⎥⎦

For the interface at z = d, the amplitudes A2 and B2 in terms of A3 and B3 are (from the ψ and ψ′

matching)

A3e
ikd +B3e

−ikd = A2e
κd +A3e

−κd, ik[A3e
ikd −B3e

−ikd] = κ[A2e
κd −B2e

−κd], (B.6)

where again, adding and subtracting these equations gives the A2 and B2 in terms of A3 and B3:

A2 = A3

(
ik + κ

2κ

)
e(ik−κ)d −B3

(
ik − κ

2κ

)
e−(ik+κ)d (B.7)

B2 = −A3

(
ik − κ

2κ

)
e(ik+κ)d +B3

(
ik + κ

2κ

)
e−(ik−κ)d (B.8)

or in terms of matrices,

⎡
⎢⎢⎣ A2

B2

⎤
⎥⎥⎦ =M[2,3]

⎡
⎢⎢⎣ A3

B3

⎤
⎥⎥⎦

where the matrix M[2,3] is

M[2,3] =

⎡
⎢⎢⎣
(
ik+κ
2κ

)
e(ik−κ)d − (

ik−κ
2κ

)
e−(ik+κ)d

− ( ik−κ
2κ

)
e(ik+κ)d

(
ik+κ
2κ

)
e−(ik−κ)d

⎤
⎥⎥⎦
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Now putting the A1, B1 matrix in terms of the A3, B3 matrix,

⎡
⎢⎢⎣ A1

B1

⎤
⎥⎥⎦ =M[1,2]M[2,3]

⎡
⎢⎢⎣ A3

B3

⎤
⎥⎥⎦

or

⎡
⎢⎢⎣ A1

B1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

(
ik+κ
2ik

)
e(ik−κ)d

(
ik−κ
2ik

)
e(ik+κ)d

(
ik−κ
2ik

)
e−(ik+κ)d

(
ik+κ
2ik

)
e−(ik−κ)d

⎤
⎥⎥⎦
⎡
⎢⎢⎣
(
ik+κ
2κ

)
e(ik−κ)d − (

ik−κ
2κ

)
e−(ik+κ)d

− ( ik−κ
2κ

)
e(ik+κ)d

(
ik+κ
2κ

)
e−(ik−κ)d

⎤
⎥⎥⎦
⎡
⎢⎢⎣ A3

B3

⎤
⎥⎥⎦

Now the M sb
11 for the single barrier is

M sb
11 =

(
ik + κ

2ik

)(
ik + κ

2κ

)
e2(ik−κ)d −

(
ik − κ

2κ

)(
ik − κ

2ik

)
e2(ik+κ)d

=

[(−k2 + 2ikκ+ κ2

4ikκ

)
(cosh(2κd)− sinh(2κd))−

(−k2 + 2ikκ+ κ2

4ikκ

)
(cosh(2κd) + sinh(2κd))

]
e2ikd

where ex = coshx± sinhx was used, and then

M sb
11 =

[
cosh(2κd)− i

2

k2 − κ2

kκ
sinh(2κd)

]
e2ikd, single symmetric barrier (B.9)

For the M sb
21 element, multiplication gives

M sb
21 =

(
ik + κ

2κ

)(
ik − κ

2ik

)
e2−κd −

(
ik + κ

2κ

)(
ik − κ

2ik

)
e2κd
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=

(−k2 − κ2

4ikκ

)
(cosh(2κd)− sinh(2κd))−

(
k2 − κ2

4ikκ

)
(cosh(2κd) + sinh(2κd))

or

M sb
21 = − i

2

k2 + κ2

kκ
sinh(2κd)single symmetric barrier (B.10)

The remaining elements M sb
21 and M sb

22 are similarly found to be

M sb
22 =

[
cosh(2κd) +

i

2

k2 − κ2

kκ
sinh(2κd)

]
e−2ikd, single symmetric barrier (B.11)

M sb
12 = +

i

2

k2 + κ2

kκ
sinh(2κd)single symmetric barrier (B.12)

which gives the following relations,

M22 =M∗
11 M12 =M∗

21 (B.13)

B.1.1 Tunneling Probability

For the case of a particle tunneling from the left to the right of the single barrier, G = 0, then

A =M11F , and the transmission probability is given by

T =
1

|M11|2 =⇒ =

[
cosh2(2κa) +

k2 − κ2

kκ
sinh2(2κa)

]−1

(B.14)
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or

T =
1

1 +
(
k2+κ2

2kκ

)2
sinh2(2κa)

(E < V ) (B.15)

T =
1

1 +
(
k2+k′2
2kk′

)2
sin2(2k′a)

(E > V ) (B.16)

where the second equation accounts for above the barrier transmission, with κ→ ik′.

B.2 Single Asymmetric Rectangular Barrier

The next example is the single rectangular barrier with one side of the barrier off-set by the amount

−V1, and lower (see Fig. (B.1)). Here the wavevector on the left side remains unchanged from

the previous example, but the right side waves are characterized by different wave vectors, k1 =√
(2m∗/h̄2)(E − (−V1)). Therefore the condtions at z = −d remain unchanged, but the conditions

at z = d are now

A3e
ik1d +B3e

−ik1d = A2e
κd +B2e

−κd, ik1[A3e
ik1d −B3e

−ik1d] = κ[A2e
κd −B2e

−κd], (B.17)

A2 = A3

(
ik1 + κ

2κ

)
e(ik1−κ)d −B3

(
ik1 − κ

2κ

)
e−(ik1+κ)d (B.18)

B2 = −A3

(
ik1 − κ

2κ

)
e(ik1+κ)d +B3

(
ik1 + κ

2κ

)
e−(ik1−κ)d (B.19)

and in matrix form,⎡
⎢⎢⎣ A2

B2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
(
ik1+κ
2κ

)
e(ik1−κ)a

(
ik1−κ
2κ

)
e−(ik1+κ)a

(
ik1−κ
2κ

)
e(ik1+κ)a

(
ik1+κ
2κ

)
e−(ik1−κ)a

⎤
⎥⎥⎦
⎡
⎢⎢⎣ A3

B3

⎤
⎥⎥⎦

Again putting the A1, B1 matrix in terms of the A3, B3 matrix, and recasting in terms of the Mi,j

M11 =

(
ik + κ

2ik

)(
ik1 + κ

2κ

)
e(ik+ik1−2κ)a −

(
ik1 − κ

2κ

)(
ik − κ

2ik

)
e(ik+ik1+2κ)a

=

((−kk1 + ik1κ+ ikκ+ κ2

4ik1κ

)
(cosh(2κa)− sinh(2κa))

)
e2ik1a−
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Figure B.1: Single rectangular barrier of height V0, but with an offset −V1.

((−k1k + ikIIIκ+ ikκ+ κ2

4ik1κ

)
(cosh(2κa) + sinh(2κa))

)
e2ik1a

and

M11 =

[
1

2

(
1 +

k1
k

)
cosh(2κa)− i

2

kk1 − κ2

kκ
sinh(2κa)

]
ei(k+k1)a (B.20)

For the element M21, the same is done,

M21 =

(
ik + κ

2κ

)(
ik − κ

2ik

)
e−2κa−i(k−k1)a −

(
ik + κ

2κ

)(
ik − κ

2ik

)
e2κa−i(k−k1)a

=

(−k2 − κ2

4ikκ

)
(cosh(2κa)− sinh(2κa))−

(
k2 − κ2

4ikκ

)
(cosh(2κa) + sinh(2κa))

M21 = −
[
i

2

(
kk1 + κ2

kκ

)
sinh(2κa) +

1

2

(
k1
k

− 1

)
cosh(2κa)

]
e−i(k−k1)a (B.21)

Now the momenta are different on each side of the barrier, and so the determinant of the matrix is

no unity, and considering only outgoing waves on the right-hand side, G = 0, and the transmission

coefficient for the asymmetrical single rectangular barrier is given by

T =
k1
k

1

|M11|2 =
4k1k/(k1 + k)2

1 +
(κ2+k2)(κ2+k2

1)
κ2(k1+k)2 sinh2(2κa)

(B.22)

Two points can be made from the above expression for T . First, the numerator describes the

asymmetry in the propagation constants on either side of the barrier, and the denominator describes

the transparency of the barrier. Additionally, the ratio of the wavenumbers k and k1 in T are both of
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Figure B.2: The schematic for analyzing the general case of the double barrier system. The arrows

indicate the incoming and outgoing waves, with the lengths labeled. For this general case, the

wavenumbers are denoted for each region.

the same order, representing a symmetry of the structure (even though the barrier is asymmetric),

meaning that the transmission is the same whether going left-to-right of right-to-left.

B.3 Double Rectangular Barrier

In this section the details of the derivation of the transmission characteristics of the symmetric

double barrier structure are given. In general, a wave propagating to the right and to the left,

respectively, between the barriers, will be given by

A′ = Feikb, B′ = Ge−ikb =⇒

⎡
⎢⎢⎣ F

G

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
e−ikb 0

0 eikb

⎤
⎥⎥⎦
⎡
⎢⎢⎣ A′

B′

⎤
⎥⎥⎦ (B.23)

where b is the width of the well region and k is the wave vector for that region. This gives the

connection between the left-hand barrier and the right-hand barrier, as (taking the results from

above) ⎡
⎢⎢⎣ A

B

⎤
⎥⎥⎦ = [ML] [MW ] [MR]

⎡
⎢⎢⎣ F ′

G′

⎤
⎥⎥⎦

where the subscripts L, W and R refer to left, well and right respectively. In terms of the elements,
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[ML] =

⎡
⎢⎢⎣
ML11 ML12

ML21 ML22

⎤
⎥⎥⎦ , [MW ] =

⎡
⎢⎢⎣
MW11 MW12

MW21 MW22

⎤
⎥⎥⎦ , [MR] =

⎡
⎢⎢⎣
MR11 MR12

MR21 MR22

⎤
⎥⎥⎦ (B.24)

_______________________________________________________> z

V
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V
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-2a
L

b+2a
R
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k
3
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3

Figure B.3: The general double rectangular bar-

rier with heights V0, V2 and barrier widths 2aL and

2aR, and potential well width b and depth −V1.

V
0

V
0

k k k

-a/2 a/2-d-a/2 d + a/2

Figure B.4: The symmetric double rectangular

barrier with height V0, barrier widths 2a, and well

width b.

As the Mi’s are complex, it is convenient to write them in the following form

Mi = mie
iθi (B.25)

where i ≡ L11, L12, R11, R21 and

ML11 =

√
1

4

(
1 +

k1
k

)2

cosh2(2κaL) +
1

4

(
kk1 − κ2

kκ

)2

sinh2(2κaL) (B.26)

ML12 =

√
1

4

(
kk1 + κ2

kκ

)2

sinh2(2κaL) +
1

4

(
k1
k

− 1

)2

cosh2(2κaL) (B.27)

MR11 =

√
1

4

(
1 +

k3
k1

)2

cosh2(2κ2aR) +
1

4

(
k1k3 − κ22
k1κ2

)2

sinh2(2κ2aR) (B.28)

MR12 =

√
1

4

(
k1k3 + κ22
k1κ2

)2

sinh2(2κ2aR) +
1

4

(
k3
k1

− 1

)2

cosh2(2κ2aR) (B.29)

and the phases are given by
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θL11 = − tan−1

[
kk1 − κ2

(k + k1)κ
tanh(2κaL)

]
+ (k + k1)aL (B.30)

θL12 = − tan−1

[
kk1 + κ2

(k + k1)κ
tanh(2κaL)

]
+ π + (k − k1)aL (B.31)

θR11 = − tan−1

[
k1k2 − κ21
(k1 + k2)κ1

tanh(2κ1aR)

]
− (k1 + k2)aR (B.32)

θR21 = tan−1

[
k1k2 − κ21
(k2 − k1)κ1

tanh(2κ1aR)

]
+ π + (k1 − k2)aR (B.33)
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Appendix C

Growth Sheet
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Layer Thickness (nm) Doping (cm−3)

GaAs substrate 350 ± 25 μm SI

GaAs 400 2.00·1018

GaAs 70 5.00·1016

GaAs 30 -

AlAs 1.2 -

In0.05Ga0.95As 8.4 -

AlAs 1.2 -

In0.05Ga0.95As 28.2 -

GaAs 75 -

AlAs 1.2 -

GaAs 40 5.00·1016

GaAs 200 2.00·1018

Figure C.1: Growth sheet for H656.
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