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Abstract

We begin this dissertation by studying the relationship between the Poincaré metric of a

simply connected domain Ω ⊂ C and the geometry of Dome(Ω), the boundary of the convex

hull of its complement. Sullivan showed that there is a universal constant Keq such that one

may find a conformally natural Keq-quasiconformal map from Ω to Dome(Ω) which extends

to the identity on ∂Ω. Explicit upper and lower bounds on Keq have been obtained by

Epstein, Marden, Markovic and Bishop. We improve upon these upper bounds by showing

that one may choose Keq ≤ 7.1695. As part of this work, we provide stronger criteria

for embeddedness of pleated planes. In addition, for Kleinian groups Γ where N = H3/Γ

has incompressible boundary, we give improved bounds for the average bending on the

convex core of N and the Lipschitz constant for the homotopy inverse of the nearest point

retraction.

In the second part of this dissertation, we prove an extension of Basmajian’s identity to

n-Hitchin representations of compact bordered surfaces. For 3-Hitchin representations, we

provide a geometric interpretation of this identity analogous to Basmajian’s original result.

As part of our proof, we demonstrate that for a closed surface, the Lebesgue measure on the

Frenet curve of an n-Hitchin representation is zero on the limit set of any incompressible

subsurface. This generalizes a classical result in hyperbolic geometry.

In our final chapter, we prove the Bridgeman-Kahn identity for all finite volume hyperbolic

n-manifolds with totally geodesic boundary. As part of this work, we correct a commonly

referenced expression of the volume form on the unit tangent bundle of Hn in terms of the

geodesic end point parametrization.
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CHAPTER 1

Introduction

1. Convex Hulls, Sullivan’s Theorem and Lipschitz Bounds

In Chapter 3 of this thesis, we will consider the relationship between the Poincaré metric

on a simply connected hyperbolic domain Ω ⊂ Ĉ = ∂H3 and the geometry of the boundary

of the H3-convex hull of its complement, denoted by Dome(Ω). Sullivan [Sul81] (see also

Epstein-Marden [EM87]) showed that there exists a universal constant Keq > 0 such that

there is a conformally natural Keq-quasiconformal map f : Ω→ Dome(Ω) which extends to

the identity on ∂Ω. Epstein, Marden and Markovic provided bounds for the value of Keq.

Theorem 1.1. (Epstein-Marden-Markovic [EMM04, EMM06]) There exists Keq ≤ 13.88

such that if Ω ⊂ Ĉ is a simply connected hyperbolic domain, then there is a conformally

natural Keq-quasiconformal map f : Ω → Dome(Ω) which extends continuously to the

identity on ∂Ω ⊂ Ĉ. Moreover, one may not choose Keq ≤ 2.1.

Recall that f is said to be conformally natural if for all conformal automorphism A of Ĉ

which preserve Ω, one has Ā◦f = f ◦A, where Ā is the extension of A to an isometry of H3.

In particular, this result is of interest in the setting of Kleinian groups. If Γ ≤ Isom+(H3)

is a Kleinian group such that N = H3/Γ has non-empty incompressible boundary, then

Sullivan’s Theorem provides a universal bound on the Teichmüller distance between the

hyperbolic structure on the convex core of N and its conformal structure at infinity. The

setting where N has compressible boundary has been extensively studied in [BC03, BC13].

If one does not require that the quasiconformal map f : Ω → Dome(Ω) to be conformally

natural, Bishop [Bis04] obtained a better uniform bound on the quasiconformality con-

stant. However, Epstein and Markovic [EM05] showed that even in this setting one cannot

uniformly bound the quasiconformality constant above by 2.

Theorem 1.2. (Bishop [Bis04]) There exists K ′ ≤ 7.88 such that if Ω ⊂ Ĉ is a simply

connected hyperbolic domain, then there is a K ′-quasiconformal map f : Ω → Dome(Ω)

which extends continuously to the identity on ∂Ω ⊂ Ĉ.

1



2 1. INTRODUCTION

In joint work with Bridgeman and Canary [BCY16], we further improve the upper bound.

Theorem 1.3. There exists Keq ≤ 7.1695 such that if Ω ⊂ Ĉ is a simply connected hyper-

bolic domain, then there is a conformally natural Keq-quasiconformal map f : Ω→ Dome(Ω)

which extends continuously to the identity on ∂Ω ⊂ Ĉ.

Chapter 3 is organized around the key techniques and results that culminate in the above

Theorem. We begin by realizing Dome(Ω) as the image of a pleated plane Pµ : H2 → H3

whose bending is encoded by a measured lamination µ. Given L > 0, we define the L-

roundness ||µ||L of µ to be the least upper bound on the total bending of Pµ(α) where α

is an open geodesic segment in H2 of length L. This generalizes the notion of roundness

introduced by Epstein-Marden-Markovic [EMM04]. Our first bound improves earlier work

of Bridgeman [Bri98, Bri03] on the roundness of embedded pleated planes. Below is an

extended version of what appears in our published work [BCY16].

Theorem 1.4. If L ∈ (0, 2 sinh−1(2)], µ is a measured lamination on H2, and Pµ is an

embedding, then ‖µ‖L ≤ F (L) where

F (L) =

2 cos−1(− sinh(L/2)) for L ∈ [0, 2 sinh−1(1)]

3π − 2 cos−1
((√

cosh(L)− 1
)
/2
)

for L ∈ (2 sinh−1(1), 2 sinh−1(2)]

Next, we generalize the work of Epstein-Marden-Markovic [EMM04, Theorem 4.2, part

2] and an unpublished result of Epstein and Jerrard [EJ], to give criteria on L-roundness

which guarantee that Pµ is an embedding.

Theorem 1.5. There exists a computable monotonic function G : (0,∞) → (0, π) such

that if µ is a measured lamination on H2 with ||µ||L < G(L), then Pµ is a quasi-isometric

embedding. Moreover, Pµ extends continuously to P̂µ : H2 ∪ S1 → H3 ∪ Ĉ with P̂µ(S1) a

quasi-circle.

With these bounds in place, we adapt the techniques of Epstein, Marden and Markovic

[EMM04, EMM06] for using complex earthquakes and angle scaling to approximate dis-

tances in universal Teichüller space. A computational approximation of an associated Rie-

mann mapping completes the proof of Theorem 1.3.
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The extended version of Theorem 1.4 allows us to improve bounds by Bridgeman [Bri03]

on average bending and the Lipschitz constant for the homotopy inverse of the retraction

map.

Theorem 1.6. Let Γ be a Kleinian group with the components of Ω(Γ) simply connected

and let N = H3/Γ. There exist universal constants K0,K1 with K0 ≤ 2.494 and K1 ≤ 3.101

such that

(i) if µΓ is the bending lamination of ∂C(N), then

`∂C(N)(µΓ) ≤ K0 π
2 |χ (∂C(N))|

(ii) for any closed geodesic α on ∂C(N),

BΓ(α) =
i(α, µγ)

`(α)
≤ K1

where BΓ(α) is called the average bending of α.

(iii) there exists a (1 + K1)-Lipschitz map s : ∂C(N) → Ω(Γ)/Γ that is a homotopy

inverse to the retract map r : Ω(Γ)/Γ→ ∂C(N).

2. Basmajian’s Identity for Hitchin Representations

Spectral identities for hyperbolic manifolds express a constant quantity as a summation

over the lengths of some class of curves. The first such identity was introduced by McShane

in 1991 [McS91]. It was extended by Mirzakhani and used to give recursive formulas for

Weil-Petersson volumes of moduli space [Mir07b] and to count simple closed geodesics on

surfaces [Mir08]. This thesis will focus on the Basmajian and Bridgeman-Kahn identities.

Let Σ be a connected oriented compact surface with nonempty boundary whose double

has genus at least 2. Given a finite area hyperbolic metric σ on Σ such that ∂Σ is totally

geodesic, Basmajian defined an orthogeodesic in (Σ, σ) to be an oriented proper geodesic

arc perpendicular to ∂Σ at both endpoints; denote the collection of all such arcs by O(Σ, σ).

The orthospectrum |O(Σ, σ)| is the multiset of the lengths of orthogeodesics counted with

multiplicity. Basmajian’s identity [Bas93] states:

`σ(∂Σ) =
∑

`∈|O(Σ,σ)|

2 log coth

(
`

2

)
,

where `σ(∂Σ) denotes the length of ∂Σ measured in σ.
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In Chapter 4, we formulate an extension of this identity to the setting of Hitchin represen-

tations using Labourie’s notion of associated cross ratios [Lab08]. Hitchin representations

are the connected component in the character variety Hom(π1(Σ),PSL(n,R)) // PSL(n,R)

containing the Veronese embedding of Fuchsian representations.

A Hitchin representation ρ : π1(Σ)→ PSL(n,R) gives rise to a notion of length given by

`ρ(γ) = log

∣∣∣∣λmax(ρ(γ))

λmin(ρ(γ))

∣∣∣∣ ,
where λmax(ρ(γ)) and λmin(ρ(γ)) are the eigenvalues of maximum and minimum absolute

value of ρ(γ), respectively. This definition make sense as ρ(γ) is has all real eigenvalues

with multiplicity one [Lab06].

Let Σ have m boundary components and choose A = {α1, . . . , αm} to be a collection of

primitive peripheral elements of π1(Σ) representing distinct boundary components oriented

such that the surface is to the left. We call such a collection a positive peripheral marking.

Set Hi = 〈αi〉, then we define the orthoset to be the following disjoint union of cosets:

O(Σ,A) =

 ⊔
1≤i 6=j≤m

Hi\π1(Σ)/Hj

 t
 ⊔

1≤i≤m
(Hi\π1(Σ)/Hi) rHieHi

 ,

where e ∈ π1(Σ) is the identity. The orthoset serves as an algebraic replacement for O(Σ, σ)

and there is clear bijection between O(Σ,A) and O(Σ, σ) in the hyperbolic setting.

A cross ratio on the boundary at infinity ∂∞(Σ) of π1(Σ) is a Hölder function defined on

∂∞(Σ)4∗ = {(x, y, z, t) ∈ ∂∞(Σ)4 : x 6= t and y 6= z}

and invariant under the diagonal action of π1(Σ). In addition, it must satisfy several

symmetry conditions (see Section 5 of Chapter 4). In [Lab08], Labourie showed how to

associate a cross ratio Bρ to a Hitchin representation ρ of a closed surface. For compact

surfaces, this was done by Labourie and McShane [LM09] using a doubling construction.

Define the function Gρ : O(Σ,A)→ R by

Gρ(HigHj) = logBρ(α
+
i , g · α

+
j , α

−
i , g · α

−
j ) ,

where α+, α− ∈ ∂∞(Σ) denote the attracting and repelling fixed points of α ∈ π1(S),

respectively. In joint work with Nicholas Vlamis [VY15], we prove :
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Theorem 2.1. Let Σ be a compact connected surface with m > 0 boundary components

whose double has genus at least 2. Let A = {α1, . . . , αm} be a positive peripheral marking.

If ρ is a Hitchin representation of π1(Σ), then

`ρ(∂Σ) =
∑

x∈O(Σ,A)

Gρ(x) ,

where `ρ(∂Σ) =
∑m

i=1 `ρ(αi). Furthermore, if ρ is Fuchsian, this is Basmajian’s identity.

In order to prove this result, we need to understand the measure of ∂∞(Σ) in the limit set of

its double. In [Lab06], Labourie defines a Hölder map ξρ : ∂∞(S)→ PRn for an n-Hitchin

representation ρ of a closed surface S, which we call the limit curve associated to ρ. The

image of this curve is a C1+α submanifold and thus determines a measure class µρ on ∂∞(S)

via the pullback of the Lebesgue measure. With respect to this measure we prove :

Theorem 2.2. Let S be a closed surface and Σ ⊂ S an incompressible subsurface. Let ρ be

a Hitchin representation of S and ξρ the associated limit curve. If µρ is the pullback of the

Lebesgue measure on the image of ξρ, then µρ(∂∞(Σ)) = 0.

This result generalizes a classical fact about the measure of the limit set of a subsurface for

closed hyperbolic surfaces (see [Nic89, Theorem 2.4.4]).

In Section 8 of Chapter 4, we give a geometric picture and motivation for our definitions

and techniques by considering the case of 3-Hitchin representations. These correspond to

convex real projective structures on surfaces as seen in the work of Choi and Goldman

[Gol90, CG93]. We also show that our formulation recovers Basmajian’s identity for

Fuchsian representations. In Section 10, we demonstrate the relationship between Theo-

rem 2.1 and Labourie-McShane’s extension [LM09] of the McShane-Mirzakhani identity

[McS91, McS98, Mir07a] to the setting of Hitchin representations. Both identities cal-

culate the length of the boundary by giving a countable full-measure decomposition. We

explain how these decompositions are related in both the classic hyperbolic setting and that

of Hitchin representations.

3. Bridgeman-Kahn Identity for Finite Volume Hyperbolic Manifolds

In Chapter 5, we provide an extension of the Bridgeman-Kahn orthospectral identity to

the setting of all finite volume hyperbolic manifolds with totally geodesic boundary. As
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part of our work, we provide the following correction to [Nic89, Theorem 8.1.1], where the

statement is off by a factor of 2n−2.

Theorem 3.1. Let Ω = dV dω be the standard volume form in T1Hn+1. Then, with the

following coordinates arising from the upper half space and conformal ball models for the

geodesic endpoint parametrization

T1Hn+1 ∼= {(x,y, t) ∈ R̂n × R̂n × R : x 6= y}

T1Hn+1 ∼= {(p,q, t) ∈ Sn × Sn × R : p 6= q},

we have

dΩ =
2ndx dy dt

|x− y|2n
=

2ndω(p) dω(p) dt

|p− q|2n

where | · | is the Euclidean norm in Rn and Rn+1 respectively.

Let M be a finite volume hyperbolic n-manifold with non-empty totally geodesic boundary.

As before, the collection of oriented geodesic arcs perpendicular to ∂M at both ends is

called the orthoset of M , denoted OM . The Bridgeman-Kahn identity states

Theorem 3.2. (Bridgeman-Kahn [BK10]) Let M be a compact hyperbolic n-manifolds with

totally geodesic boundary, then

Vol(M) =
∑
l∈OM

Fn(l)

where Fn : R+ → R+ is a decreasing function expressed as an integral of an elementary

function and satisfies

(i) there exists Dn > 0, depending only on n, such that

Fn(l) ≤ Dn

(el − 1)n−2

(ii) let H(m) denote the mth harmonic number and Γ(m) = (m− 1)!, then

lim
l→0

ln−2 Fn(l) =
π
n−2

2 H(n− 2) Γ
(
n−2

2

)
Γ
(
n−1

2

)
Γ
(
n+1

2

)
(iii)

lim
l→∞

e(n−1)l

l
Fn(l) =

2n−1 π
n−2

2 Γ
(
n
2

)
Γ
(
n+1

2

)2
Utilizing their identity, Bridgeman and Kahn were able to provide lower bounds on volume.
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Theorem 3.3. (Bridgeman-Kahn [BK10]) There exists Cn > 0, depending only on n, such

that if M is a compact hyperbolic n-manifolds with totally geodesic boundary, then

Vol(M) ≥ Cn Area(∂M)
n−1
n−2 .

Remark 3.1. It is important to note that we have taken the liberty to correct the asymp-

totics in Theorem 3.2 to agree with our Theorem 3.1 as the authors of [BK10] referenced

the volume form from [Nic89].

The proof of the identity relies on a clever decomposition of the unit tangent bundle. Cala-

grai [Cal10] produced a similar identity for the orthospectrum using a rather different

decomposition. Recently, Masai and McShane [MM13], using a countable equidecompos-

ability argument, demonstrated that the Bridgeman-Kahn and Calagari identities are one

and the same. Additionally, they show that1

F3(l) =
2π(l + 1)

e2l − 1
.

Note that the asymptotics agree with that of Theorem 3.2.

In the case of surfaces, Bridgeman extended his identity to surfaces with cusped boundary.

A boundary cusp of a surface looks like a vertex of an ideal hyperbolic polygon.

Theorem 3.4. (Bridgeman [Bri11]) Let S be a finite area hyperbolic surface with totally

geodesic boundary and m boundary cusps, then

Area(S) =
π

3
m+

∑
l∈|OS |

2

π
L
(

sech2 l

2

)

where L(z) = 1
2 log |z| log(1− z) +

∑∞
k=1

zk

k2 is the Rogers dilogarithm.

By applying this identity to simple hyperbolic surfaces with cusped boundary, Bridgeman

was able to recover classical functional equations for the Rogers dilogarithm and provide

infinite families of new ones.

In joint work with Nicholas Vlamis, we have extended the Bridgeman-Kahn identity to all

finite volume hyperbolic n-manifolds with totally geodesic boundary.

1In [MM13], the authors compute the integral formula of [Cal10], which already takes into account dividing
by Vol(S2).
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Theorem 3.5. For n ≥ 3 and M a finite volume hyperbolic n-manifold with totally geodesic

boundary, let C to be the set of ∂-cusps of M and |O(M)| the orthospectrum. For every

c ∈ C, let Bc be the maximal horoball in M and dc the Euclidean distance along ∂Bc between

the two boundary components of c. Then

Vol(M) =
∑

`∈|O(M)|

Fn(`) +
H(n− 2) Γ

(
n−2

2

)
√
π Γ

(
n−1

2

) ∑
c∈C

Vol(Bc)

dn−1
c

where Γ(m) = (m− 1)! and H(m) is the mth harmonic number.

Remark 3.2. Observe that by (ii) of Theorem 3.2, one has

lim
l→0

ln−2 Fn(l) =
π
n−2

2 H(n− 2) Γ
(
n−2

2

)
Γ
(
n−1

2

)
Γ
(
n+1

2

) =
Vol(Sn)

2π

H(n− 2) Γ
(
n−2

2

)
√
π Γ

(
n−1

2

) .

Since both of these quantities compute volumes of tangent vectors, it is possible that there

might be a direct relationship using some kind of geometric rescaling argument. Unfortu-

nately, our proof of Theorem 3.5 does not provide such an insight.



CHAPTER 2

Background

1. Hyperbolic Space

1.1. Models. Hyperbolic n-space, denoted by Hn, is the unique complete, simply con-

nected, Riemannian n-manifold of constant sectional curvature −1. Throughout, dHn will

denote the hyperbolic metric, ds will be the length element, and dV will be the volume

element of Hn. We will also need to consider the standard compactification of Hn via the

boundary at infinity ∂∞Hn. We will think of ∂∞Hn as the visual sphere at infinity from

any point of Hn or as the space of endpoints of geodesic rays. A good reference for all of

the following details is [Rat13].

The conformal ball model, is given by

Hn ∼= {x ∈ Rn : |x| < 1} = Bn, ∂∞Hn ∼= {x ∈ Rn : |x| = 1} = Sn−1,

ds =
2|dx|

1− |x|2
, and dV =

2ndx

(1− |x|2)n
.

Here, complete geodesics are realized as circular arcs perpendicular to Sn−1 and a hyperbolic

hyperplane is the intersection of Bn with an (n− 1)-sphere perpendicular to Sn−1.

In the upper half space model, one has

Hn ∼= {x ∈ Rn : xn > 0} = Un, ∂∞Hn = {x ∈ Rn : xn = 0} ∪ {∞} = R̂n−1

ds =
|dx|
xn

, and dV =
dx

(xn)n
.

Similarly, complete geodesics are circular arcs or lines perpendicular to Rn−1 and a hyper-

bolic hyperplane is the intersections of Un with an (n−1)-sphere or a Euclidean hyperplane

perpendicular to Rn−1.

A half space is the closure of a connected component of Hn cut by a hyperplane. A horoball

is a Euclidean ball tangent to ∂∞Hn and contained in Hn in either of these models. In the

upper half space model, a horoball can also be realized as {x ∈ Rn : xn > a > 0}. The

9



10 2. BACKGROUND

boundary of a horoball is called a horosphere and is Euclidean in the induced path metric

from Hn.

The space of unoriented geodesics of Hn will be denoted by

G (Hn) = (∂∞Hn × ∂∞Hn r ∆)/(Z2)

and the space of hyperplanes by P(Hn).

We will also make mention of the hyperboloid model. Let 〈x,y〉q = x1y1 + · · · + xnyn −

xn+1yn+1 be the Lorentzian inner product on Rn+1, then

Hn ∼= P{x ∈ Rn+1 : 〈x,x〉q = −1}, ∂∞Hn = P{x ∈ Rn+1 : 〈x,x〉q = 0}, and

P(Hn) ∼= P{x ∈ Rn+1 : 〈x,x〉q = 1}

where the induced metric from 〈·, ·〉q is the hyperbolic metric on Hn and a pseudo-Riemannian

metric on P(Hn).

1.2. Isometries. The group of orientation preserving isometries Isom+(Hn) acts tran-

sitively on Hn and can be realized in several different ways. Let M(R̂n) denote the group of

transformations of R̂n is generated by reflections in hyperplanes and inversions in spheres.

Elements of M(R̂n) are called Möbius transformations. The isometry groups Isom+(Un)

and Isom+(Bn) are precisely the orientation preserving elements of M(R̂n) that preserve

Un and Bn, respectively. Note that a Möbius transformation of Hn−1 or Sn−1 extends to

Möbius transformation that preserves Un and Bn, respectively (see [Rat13] for details).

Additionally, we have Isom+ (Hn) ∼= SO+(n, 1) acting on the hyperboloid model. Here

SO+(n, 1) is the identity component in SO(n, 1). In fact, one may realize Hn as the ho-

mogeneous space SO+(n, 1)/SO(n). The metric and volume forms arise in this setting

by projecting the Killing form and the Haar measure. For a detailed reference on this

perspective, see [FLJ12].

For n = 2 and n = 3 we can identify Isom+(U2) ∼= PSL(2,R) and Isom+(U3) ∼= PSL(2,C)

acting on z ∈ U2 or z ∈ Ĉ = ∂∞U3 bya b

c d

 · z 7→ az + b

cz + d

Elements of Isom+(Hn) are classified into three different types. We say g ∈ Isom+(Hn) is
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(i) elliptic if g fixes a point of Hn.

(ii) parabolic if g fixes no point of Hn and unique point of ∂∞Hn.

(iii) hyperbolic or loxodromic if g fixes no point of Hn and exactly two points of ∂∞Hn.

2. Teichmüller Space and Quasiconformal Maps

Let S be a closed smooth surface of genus g ≥ 2. A (marked) hyperbolic structure on S

is a diffeomorphism f : S → X where X = H2/Γ for a discrete torsion free subgroup Γ

of Isom+(H2) ∼= PSL(2,R). For α ∈ π1(S), this allows us to define `X(α) as the length

of the unique geodesic representative in the free homotopy class f∗(α) on X. We say that

(X, f) ∼ (Y, g) whenever g ◦ f−1 is isotopic to an isometry between X and Y . Define the

Teichmüller space of S as

Teich(S) = {(X, f) | f : S → X is a hyperbolic structure}/ ∼ .

This space non-empty for g ≥ 2 and is homeomorphic to R6g−6. Notice that every hyper-

bolic structure (X, f) gives rise to a holonomy representation f∗ : π1(S) → PSL(2,R). In

fact, let AH(π1(S),PSL(2,R)) denote the space of conjugacy classes of discrete, faithful

representations ρ with H2/ρ(π1(S)) compact, then the holonomy map defines a natural

homeomorphism

Teich(S) ∪ Teich(S) ∼= AH(π1(S),PSL(2,R))

where S is S with the reversed orientation.

A metric on Teich(S) can be defined by measuring how far g ◦ f−1 is from being isotopic

to an isometry. A homeomorphism h form a plane domain Ω ⊂ C onto f(Ω) is said to be

K-quasiconformal, if h has locally integrable, distributional derivatives hz, hz̄ and

1 + |hz̄/hz|
1− |hz̄/hz|

≤ K almost everywhere on Ω

The quasiconformal constant K(h) is the smallest such K. Note, that h is 1-quasiconformal

if and only is it is conformal. Since X is locally a plane domain, we can define

dTeich((X, f), (Y, g)) = inf{K(h) | h is isotopic to g ◦ f−1}.

Let k : D → D be a quasiconformal map with k(1) = 1, k(i) = i, and k(−1) = −1, then k

extends to quasisymmetric map on qs(k) : S1 → S1. A map h : S1 → S1 that fixes three
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points is said to be quasisymmetric if there exists M > 0 such that

1

M
≤
|h
(
ei(x+t)

)
− h

(
eix
)
|

|h (eix)− h
(
ei(x−t)

)
|
≤M for all real x, t 6= 0 mod 2π.

A powerful result of Ahlfors [Ahl66] shows that any quasisymmetric map extends to to

a quasiconformal map of the unit disk. Further, if Γ ≤ Isom+(D) is discrete and hγh−1

is a restriction of a Möbius transformation for all γ ∈ Γ (this is called the automorphy

condition), then the quasiconformal extension of h also satisfies the automorphy condition.

For details, see [GL99]. With this in mind, we define the universal Teichmüller space as

U = {h : S1 → S1 | h is quasisymmetric}/ Isom+(D).

Observe that if we fix a point (X, f) ∈ Teich(S), then we get an embedding Teich(S)→ U

given by (Y, g) 7→ qs([g ◦ f−1]), where [g ◦ f−1] the quasiconformal map isotopic to g ◦ f−1

which attains the minimal quasiconformal constant.

We would also like to mention that one can define a non-symmetric metric on Teich(S),

called the Thurston metric, by considering the minimal Lipschitz constant in the isotopy

class of g ◦ f−1. Recall that a map h : X → Y between two metric spaces is K-bi-Lipschitz

if
1

K
dX(x, y) ≤ dY (h(x), h(y)) ≤ K dx(x, y) for all x, y ∈ X

and K-Lipschitz if only the right hand inequality holds.

Lastly, recall that a quasi-isometric embedding is a map h : X → Y such that there exist

constants A,K with

1

K
dX(x, y)−A ≤ dY (h(x), h(y)) ≤ K dx(x, y) +A for all x, y ∈ X.

3. Kleinian Groups and Convex Hulls

Let Γ ≤ Isom+(Hn) be a discrete torsion free subgroup. Define the limit set of Γ to be

ΛΓ = Γx∩ ∂∞Hn for any x ∈ Hn. This definition is independent of the choice of x. We say

that Γ is a Kleinian group (or a Fuchsian group for n = 2) if ΛΓ contains at least 3 points.

The set Ω(Γ) = ∂∞HnrΛΓ is called the domain of discontinuity of Γ. It can be equivalently

defined as the largest open subset in ∂∞Hn where Γ acts properly discontinuously.

The convex hull CH(X) of a closed set X ⊂ ∂∞Hn is smallest convex subset of Hn such

that CH(X)∩∂∞Hn = X. We require that X contain more than two points. For a Kleinian
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group Γ, the convex hull of Γ is CH(ΛΓ) and the convex hull of Hn/Γ is CH(ΛΓ)/Γ, which

is the smallest π1-injective convex submanifold.

One defines the nearest point retraction r : Hn → CH(X) as follows. For x ∈ Hn r CH(X)

let Bt(x) denote the 1-parameter family of hyperbolic balls or horoballs centered at x with

Bt0(x) ⊂ Bt1(x) for all t0 < t1. Then, for x ∈ CH(X), we define r(x) = x and for all other

x, r(x) is the first (unique) intersection point of CH(X) with Bt(x). See [EM87] for a proof

that this is a well defined continuous distance decreasing map. For a Kleinian group Γ, this

map projects to r : Hn/Γ→ CH(ΛΓ)/Γ.

We focus our attention to the case where n = 3 and ∂∞H3 is identified with Ĉ. A hyperbolic

domain Ω in Ĉ is a connected open set such that ĈrΩ is at least 3 points. In particular, a

connected component of Ω(Γ) for a Kleinian group Γ is a hyperbolic domain. Let X = ĈrΩ.

Epstein and Marden [EM87] show that if X is not contained in a circle, then CH(X) has

non empty interior and a well defined boundary, denoted Dome(Ω) = ∂CH(X). If X lies in

a circle, then CH(X) lies in a hyperbolic plane and is bounded by a countable collection of

complete geodesics. In this setting, Dome(Ω) is defined as the double CH(X) along those

geodesics.

Points on Dome(Ω) can be connected by rectifiable paths along Dome(Ω) and so it inherits a

path metric from H3. Thurston [Thu91] showed that this path metric is, in fact, a complete

hyperbolic metric. Further, he demonstrates that the covering map H2 → Dome(Ω) as a

very specific structure that we now describe.

A geodesic lamination on H2 is a closed subset λ ⊂ G (H2) which does not contain any

intersecting geodesics. It can be realized on H2 as a closed set foliated by complete geodesics

and therefore the elements of λ are called leaves. A measured lamination µ on H2 is a non-

negative countably additive measure µ on G (H2) supported on a geodesic lamination. A

geodesic arc α in H2 is said to be transverse to µ, if it is transverse to every geodesic in

supp(µ). Whenever α is transverse to µ, we define

i(µ, α) = µ
(
{γ ∈ G (H2) | γ ∩ α 6= ∅}

)
.

If α is not transverse to µ, then it is contained in a geodesic of supp(µ) and we let i(µ, α) = 0.

Given a measured lamination µ on H2, we may construct a pleated plane Pµ : H2 → H3,

well-defined up to post-composition with elements of Isom+(H3). Pµ is an isometry on the

components of H2 r supp(µ), which are called flats. If µ is a finite-leaved lamination, then
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Pµ is simply obtained by bending, consistently rightward, by the angle µ({l}) along each

leaf l of µ. Since any measured lamination is a limit of finite-leaved laminations, one may

define Pµ in general by taking limits (see [EM87, Theorem 3.11.9]).

Lemma 3.1. [EM87] If Ω is a hyperbolic domain, there is a lamination µ on H2 such that

Pµ is a locally isometric covering map with image Dome(Ω).



CHAPTER 3

Convex Hulls, Sullivan’s Theorem and Lipschitz bounds

1. Pleated Planes and L-roundness

1.1. Pleated Planes. For any point x ∈ Dome(Ω), a support plane P at x is a totally

geodesic plane through x which is disjoint from the interior of the convex hull of Ĉ rΩ. At

least one support plane exists at every point x ∈ Dome(Ω) and Dome(Ω) ∩ P is either a

geodesic line with endpoints in ∂Ω, called a bending line, or a flat, which is the convex hull

of a subset of ∂P containing at least 3 points. The boundary geodesics of a flat will also

be called bending lines. Support planes come with a preferred normal direction pointing

away from CH(Ĉ rΩ). The closure of the complement of H3 rP that lies in this direction

is called the associated half space, denoted HP . A detailed discussion and proofs on these

facts can be found in [EM87].

For a curve α : (a, b) → Dome(Ω), it is natural to consider the space of support planes

at each point α(t). A theorem of Kulkarni and Pinkall [KP94] asserts that the space of

support planes to Dome(Ω) is an R-tree in the induced path metric from P(H3) whenever

Ω is a simply connected hyperbolic domain. Recall that an R-tree is a simply connected,

geodesic metric space such that for any two points there is a unique embedded arc connecting

them. Therefore, dual to any rectifiable path α : (a, b) → Dome(Ω), there is a continuous

path Pt : (c, d) → P(H3) and a map p : (c, d) → (a, b) such that Pt is a support plane

at α(p(t)). It also follows that we can define terminal support planes on the ends of α by

Pa = limt→c+ Pt and Pb = limt→d− Pt.

Epstein and Marden further show that for every point x ∈ Dome(Ω), there is a neighborhood

W ⊂ H3 of x such that if l1, l2 are bending lines that meet W , then any support plane that

meets l1 intersects all support planes that meet l2 [EM87, Lemma 1.8.3]. The transverse

intersection of two support planes P,Q is called a ridge line. Notice that if two support

planes P,Q intersect, they either do so at a ridge line or P = Q. If P = Q and the interiors

of HP , HQ are not equal, then Ĉ r Ω is contained in a the circle ∂P .

15
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The exterior angle, denoted ∠ext(P,Q), between two intersecting or tangent support planes

is the angle between their normal vectors at any point of intersection or tangency. We define

the interior angle by ∠int(P,Q) = π − ∠ext(P,Q).

Let µ be the measured lamination on Dome(Ω) such that Pµ : H2 → Dome(Ω) is the

pleated plane. By a transverse geodesic arc α : (a, b) → Dome(Ω), we will mean arc such

that P−1
µ (α) is a geodesic arc in H2 and transverse to supp(µ). We say the terminal support

planes Pa, Pb form a roof over α if the interiors of the associated half spaces Ht intersects

Ha for all t. Roofs play an important role in approximating the bending along α.

Lemma 1.1. (Lemmas 4.1 and 4.2 [BC03]) Let µ be the measured lamination on Dome(Ω).

If α : (a, b) → Dome(Ω) is a transverse geodesic arc such that the terminal support planes

Pa, Pb form a roof over α then i(α, µ) ≤ ∠ext(P,Q) = π − ∠int(P,Q).

Lemma 1.2. Let Ω be a simply connected hyperbolic domain and α : (a, b) → Dome(Ω) a

transverse geodesic arc. If the interiors of the terminal half spaces Ha, Hb intersect, then

Pa and Pb form a roof over α.

Proof. Intuitively, this is a consequence of the fact that support planes can’t form

“loops” when Ω is simply connected. Recall that the space of support planes to Dome(Ω)

is an R-tree. Since α is geodesic, the of support planes Pt to α must be embedded, and

therefore the unique path between Pa and Pb. As the interiors of Ha, Hb intersect, either

Pa = Pb or Pa, Pb intersect at a ridge line `r. In the former case, it follows that Pt = Pa = Pb

is constant and therefore Ht = Ha for all t.

In the later case, consider the path β which goes from α(a) to `r along Pa and from `r to

α(b) along Pb. We can project β to r(β) ⊂ Dome(Ω). Since Pt is the unique path connecting

Pa to Pb, it follows that the path of support planes along r(β) must fun over all of Pt. By

construction, every support plane to r(β) must contain the ridge line `r. Thus, the interiors

of Ht and Ha intersect for all t and Pa, Pb is a roof over α. �

1.2. L-roundness. For a measured lamination µ on H2, Epstein, Marden and Markovic

[EMM04] defined the roundness of µ to be ||µ|| = sup i(µ, α) where the supremum is taken

over all open unit length geodesic arcs in H2. The roundness bounds the total bending of Pµ

on any segment of length 1 and is closely related to average bending, which was introduced

earlier by Bridgeman [Bri98].
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In our work, we consider the L-roundness of a measured lamination for any L > 0

||µ||L = sup i(α, µ)

where now the supremum is taken over all open geodesic arcs of length L in H2. We note

that the supremum over open geodesic arcs of length L, is the same as that over half open

geodesic arcs of length L.

In [Bri03], Bridgeman obtained an upper bound on the L-roundness of an embedded pleated

plane.

Theorem 1.1. (Bridgeman [Bri03]) There exists a strictly increasing homeomorphism F :

[0, 2 sinh−1(1)] → [π, 2π] such that if µ is a measured lamination on H2 and Pµ is an

embedding, then ||µ||L ≤ F (L) for all L ≤ 2 sinh−1(1). In particular,

||µ|| ≤ F (1) = 2π − 2 sin−1

(
1

cosh(1)

)
≈ 4.8731.

Epstein, Marden and Markovic [EMM04] provided a criterion guaranteeing that a pleated

plane is a bi-Lipschitz embedding.

Theorem 1.2. (Epstein-Marden-Markovic [EMM04, Theorem 4.2, part 2]) If µ is a mea-

sured lamination on H2 such that ||µ|| ≤ c2 = 0.73, then Pµ is a bi-Lipschitz embedding

which extends to an embedding P̂µ : H2 ∪ S1 → H3 ∪ Ĉ such that P̂µ(S1) is a quasi-circle.

In [EMM06], Epstein, Marden and Markovic comment “unpublished work by David Ep-

stein and Dick Jerrard should prove that c2 > .948, though detailed proofs have not yet

been written”. David Epstein kindly provided their notes. In Section 4 of this Chapter, we

prove a generalization of their result using the approach outlined in their notes.

2. An Upper Bound on L-roundness for Embedded Pleated Planes

In this section, we adapt the techniques of [Bri03] to obtain an improved bound on the

L-roundness of an embedded pleated plane. As it appears here, Theorem 1.4 is an extended

version of our work in [BCY16, Theorem 3.1] and will appear in a separate manuscript.
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Theorem 1.4. If L ∈ (0, 2 sinh−1(2)], µ is a measured lamination on H2, and Pµ is an

embedding, then ‖µ‖L ≤ F (L) where

F (L) =

2 cos−1(− sinh(L/2)) for L ∈ [0, 2 sinh−1(1)]

3π − 2 cos−1
((√

cosh(L)− 1
)
/2
)

for L ∈ (2 sinh−1(1), 2 sinh−1(2)]

The proof relies on a careful analysis of minimal lengths of arcs joining a sequence of 3 or

4 pleated planes. We present these arguments as Lemmas 2.1, 2.2, 2.4.

Lemma 2.1. Let P0, P1, P2 be planes in H3 with boundary circles Ci ∈ ∂∞H3. Assume that

C0 ∩ C2 = {a}, a /∈ C1, and the minor angles ∠m(C0, C1) = ∠m(C1, C2) = θ < π/2. If

α : [0, 1] → H3 is a rectifiable path with α(0) ∈ P0, α(1) ∈ P2 and α(t1) ∈ P1 for some

t1 ∈ (0, 1). Then,

`(α) ≥ 2 sinh−1(cos θ).

Proof. Since a /∈ C1, there is a plane T ⊂ H3 perpendicular to all Pi. Let λi = T ∩Pi.

Take α to be the nearest point projection of α onto T . Since nearest point projections shrink

distances, `(α) ≥ `(α). In addition, as T is perpendicular to Pi, we have α(0) ∈ λ0, α(1) ∈ λ2

and α(t1) ∈ λ1. We can identify T with the Poincare disk and conjugate λi as in Figure 1.

θ θ

β

x

λ0

λ1

λ2

Figure 1. Configuration of λi ⊂ T in the Poincare disk model for Lemma 2.1

By symmetry, the shortest curve connecting λ0 to λ2 via λ1 is the symmetric piecewise

geodesic β depicted in Figure 1. Let x be the sub-arc of λ1 between λ1∩λ2 and λ1∩β. Then,

one may apply hyperbolic trigonometry formulae [Bea95, Theorem 7.9.1] and [Bea95,
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Theorem 7.11.2] to obtain

sinh(x) tan θ = 1 and sinh(`(β)/2) = sinh(x) sin θ.

Therefore,

`(α) ≥ `(β) ≥ 2 sinh−1(cos θ).

�

Lemma 2.2. Let P0, P1, P2, P3 be planes in H3 with boundary circles Ci ∈ ∂∞H3. Assume

(i) P0 ∩ P2 = P1 ∩ P3 = P0 ∩ P3 = ∅

(ii) C0 ∩ C3 = {a} and C1 ∩ C2 = {b}

(iii) a /∈ C1 ∪ C2 and b /∈ C0 ∪ C3.

(iv) let ηi be normal directions to Ci such that η0, η3 point away from each other and

η1, η2 point toward each other, then ∠(η0, η1) = ∠(η2, η3) = θ < π/2.

If α : [0, 1]→ H3 is a rectifiable path with α(0) ∈ P0, α(1) ∈ P3, α(t1) ∈ P1, and α(t2) ∈ P2

for some t1, t2 ∈ (0, 1) with t1 < t2. Then,

`(α) ≥ cosh−1
(

(2 cos θ + 1)2
)
.

Proof. Let ρi denote the reflection across Pi and ρi,j = ρi ◦ ρj . Since α is supported

by the planes Pi, we may look at pieces of α under a series of reflections. In particular,

consider the curve

β = α[0, t1] ∪ ρ1(α[t1, t2]) ∪ ρ1,2(α[t2, 1]).

Notice that β is a curve from P0 to ρ1,2(P3) and `(α) = `(β). Our goal is now to find a

lower bound for `(β) in terms of θ.

By construction, β is longer than the geodesic from P0 to ρ1,2(P3). Notice that this geodesic

intersects P1 and ρ1(P2), so after reflecting some pieces, it satisfies the assumptions of the

Lemma. Let T be the hyperplane going through the Euclidean centers of C0 and ρ1,2(C3).

Since the geodesic between P0 and ρ1,2(P3) is unique, it must lie in T . Refer to Figure 2

for the generic configuration.

We need to say a few words about the validity of Figure 2 for our computations. Conjugat-

ing, we can map the points a→ 0 and b→∞. It follows from (ii) and (iii) that C1, C2 are

parallel lines and C0, C3 are circles in the plane. Assumptions (i) and (iv) also guarantee
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∂H3

C0

C1C2

C3

1

r3

φ
r0

θ

θ

ρ1(C0)

ρ1(C3)

ρ1(C2)

ρ1,2(C3)
∂T

z1

z2

z3

z4

Figure 2. Boundaries of the planes Pi in Lemma 2.2 and their reflections
in the upper half space model.

that, maybe after flipping, 0 ≤ φ ≤ π/2. It is straightforward to check that assumption (iv)

on a choice of normal directions guarantees that θ is correctly labeled in Figure 2.

Identify T with U2 so that the center of C0 corresponds to 0. We compute the distance

between the two disjoint geodesics λ = T ∩P0 and γ = T ∩ ρ1,2(P3). Let z1 < z2 < z3 < z4,

zi ∈ R ⊂ ∂T be the points ∂λ ∪ ∂γ. We can use the standard cross ration to compute

(z1, z3; z2, z4) =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
= coth2

(
1

2
dH(λ, γ)

)
> 0

dH(λ, γ) = log

(√
(z1, z3; z2, z4) + 1√
(z1, z3; z2, z4)− 1

)
.

Let r0, r1, φ, θ be as in Figure 2 and normalize the diagram as shown. By directly construct-

ing a diagram from our parameters, one checks that a configuration satisfies out assumptions

if and only if

0 ≤ θ < π/2 and 0 ≤ φ ≤ π/2

0 ≤ ri + ri cosθ ≤ 1 for i = 0, 1

1 = (r0 + r1) (cos θ + cosφ)

To evaluate the cross ratio, let z1 = −r0, z2 = r0, z3 = c − r0, and z4 = c + r0, where c is

the distance between the Euclidean centers of C0 and ρ1,2(C3). Computing, we have

c2 = (r0 + r1)2 sin2 φ+ (2− (r0 + r1) cosφ)2 = 4− 4(r0 + r1) cosφ+ (r0 + r1)2.
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The cross ratio of these point is then

x = (−r0, c− r1; r0, c+ r1) =
(r0 − r1)2 − c2

(r0 + r1)2 − c2
= 1 +

r0r1

1− (r0 + r1) cosφ
= 1 +

r0r1

(r0 + r1) cos θ
.

Therefore,

`(α) ≥ dH(P0, ρ1,2(P3)) ≥ inf
r0,r1,φ

log

(√
x+ 1√
x− 1

)
= inf

r0,r1,φ
log

(
1 +

2√
x− 1

)
.

Since log (1 + 2/(
√
x− 1)) is a decreasing function of x, our goal is to maximize x over all

allowable configurations with fixed 0 ≤ θ < π/2. Our parameter conditions imply

0 ≤ ri + ri cos θ ≤ 1,
1

1 + cos θ
≤ (r0 + r1), and (r0 + r1) ≤ 1

cos θ
.

Since 0 ≤ θ ≤ π/2, it is easy to see that this region is a triangle in the (r0, r1)-plane bounded

by ri = 1/(1 + cos θ) and (r0 + r1) = 1/(1 + cos(θ)), see Figure 3.

r1 = 1
1+cos θ

r0 = 1
1+cos θ

r0 + r1 = 1
1+cos θ

r0 + r1 = 1
cos θ

Figure 3. Constraints for maximizing x = 1 + r0r1
(r0+r1) cos θ in Lemma 2.2.

We also have

∂x

∂ri
=

r2
j

(ri + rj)2
> 0 for ri, rj > 0 where {i, j} = {0, 1},

so the maximum value of x is attained on the boundary of our triangle. On the edges

corresponding to ri = 1/(1 + cos θ), we get a maximum when r0 = r1 = 1/(1 + cos θ). For

the edge corresponding to (r0 + r1) = 1/(1 + cos(θ)), we have a maximum at r0 = r1 =

1/(2 + 2 cos θ). Of these two points, x has the largest value at the former, so

sup
r0,r1,φ

x = x |ri=1/(1+cos θ)= 1 +
1

2(1 + cos θ) cos θ

Lastly, note that using cosh(z) = (ez + e−z)/2, we have

cosh

(
log

(√
x+ 1√
x− 1

))
=

1

2

(√
x+ 1√
x− 1

+

√
x− 1√
x+ 1

)
=
x+ 1

x− 1
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Our desired results follows,

`(α) ≥ inf
r0,r1,φ

log

(√
x+ 1√
x− 1

)
= inf

r0,r1,φ
cosh−1

(
x+ 1

x− 1

)
= cosh−1

(
(2 cos θ + 1)2

)
.

�

Corollary 2.3. The shortest rectifiable path α(t) ⊂ H3 connecting four mutually tangent

hyperplanes in H3 has length 2 sinh−1(2) and is attained when the planes support four of

the faces of a standard ideal octahedron.

Proof. If θ = 0, then the geodesic we have find in Lemma 2.2 has length

cosh−1
(

(2 cos(0) + 1)2
)

= cosh−1(9) = 2 sinh−1(2).

The critical values of r0, r1 were ri = 1/(1 + cos θ) = 1/2, so 1 = (r0 + r1)(cos θ + cosφ) =

1 + cosφ and φ = π/2. This configuration and the other four planes supporting a standard

ideal octahedron are shown in Figure 4. �

Figure 4. The supporting planes of a standard ideal octahedron in Cor 2.3.

Next, we prove a slight generalization of Lemma 2.2 where we replace the tangency of P0

and P3 for another condition.

Lemma 2.4. Let P0, P1, P2, P3 be planes in H3 with boundary circles Ci ∈ ∂∞H3. Assume

(i) P0 ∩ P2 = P1 ∩ P3 = ∅

(ii) C1 ∩ C2 = {b} and b /∈ C0 ∪ C3.

(iii) let P? be the unique plane between P1 and P2 tangent to P3, then ∂P? ∩ C0 6= ∅

(iv) let ηi be normal directions to Ci such that η0, η3 point away from each other and

η1, η2 point toward each other, then ∠(η0, η1) = ∠(η2, η3) = θ < π/2.
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If α : [0, 1]→ H3 is a rectifiable path with α(0) ∈ P0, α(1) ∈ P3, α(t1) ∈ P1, and α(t2) ∈ P2

for some t1, t2 ∈ (0, 1) with t1 < t2. Then,

`(α) ≥ cosh−1
(

(2 cos θ + 1)2
)
.

Proof. We will reduce to the case of Lemma 2.2 as follows. We can conjugate b→∞

and build as similar diagram with C3 “below” C0 as before, except they may no longer be

tangent. Condition (iii) implies that there is some “slide” of P0 along P? to a plane P ′0 that

is tangent to P3, see Figure 5.

∂H3

C0

C1

C2

C3

ρ1,2(C3)
c′

c

∂P?

∂P ′0

Figure 5. The “slide” move of P0 to P ′0 in Lemma 2.4. Notice that the
Euclidean length c ≥ c′.

Notice that the “slide” operation does not change radii of the circles in our configuration.

In the proof of Lemma 2.2, the cross ratio was given as

x =
(r0 − r1)2 − c2

(r0 + r1)2 − c2

This function is decreasing in c, so if we replace c with the shorter c′ as in Figure 5. This

gives a larger value of x and, therefore, a shorter geodesic. Thus, we replace P0 with P ′0

and apply Lemma 2.2. �

Proof of Theorem 1.4. Fix L ∈ (0, 2 sinh−1(2)]. If we fix ‖µ‖L, then for every ε > 0,

we can find a geodesic arc α : (0, 1)→ Pµ with `(α) = L such that ‖µ‖L−ε < i(α, µ) ≤ ‖µ‖L.

Let {Pt} for t ∈ [0, 1] denote the path of support planes to α and p : [0, 1]→ [0, 1] be such

that Pt is a support plane at α(p(t)). Here, we take P0 = lim
t→0+

Pt and P1 = lim
t→1−

Pt. We

will divide our argument into cases via bounds on ‖µ‖L.
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Case ‖µ‖L ≤ π. This is the trivial case as 0 ≤ L implies ‖µ‖L ≤ π = F (0) ≤ F (L).

Case π < ‖µ‖L ≤ 2π. Fix ε > 0 small enough and α of length L such that

π < ‖µ‖L − ε < i(α, µ) ≤ ‖µ‖L ≤ 2π.

Let 2θ = 2π − ‖µ‖L + ε < π, then by assumption 2π − 2θ < i(α, µ). As the interior angle

between P0 and Pt decreases continuously, it follows from the roof property (Lemma 1.1)

that there must be a t1 such that ∠int(P0, Pt1) = θ as i(α, µ) > π− θ. Similarly, there must

be at t2 such that ∠int(Pt1 , Pt2) = θ as i(α, µ) > 2π − 2θ. Notice that P0 ∩ Pt2 = ∅, as

otherwise either they form a roof over α by Lemma 1.2 and i(α, µ) ≤ π, a contraction.

∂H3

∂P0

∂Pt1

∂P ′0

∂Pt1
θ θ

Figure 6. The “grow” move of P0 to P ′0 in Case π < ‖µ‖L ≤ 2π of Theorem 1.4.

Since 2θ < π, our planes P0, Pt1 , Pt2 almost satisfy the conditions of Lemma 2.1. By

mapping Pt1 to a vertical plane in the upper half space model for H3, we easy see that we

can “grow” P0 to a plane P ′0 that is tangent to Pt2 while keeping the interior angle with Pt1

equal to θ, see Figure 6. The plane P ′0 is not a support plane, but a sub-arc of α[p(0), p(t2)]

joins it to Pt2 . Therefore, the shortest curve between P ′0 and Pt2 with a point on Pt1 is

shorter than α. We apply Lemma 2.1 to P ′0, Pt1 , Pt3 and see

L ≥ 2 sinh−1(cos θ) =⇒ cos−1 (sinh(L/2)) ≤ θ.

‖µ‖L = 2π − 2θ + ε ≤ 2π − 2 cos−1 (sinh(L/2)) + ε = 2 cos−1 (− sinh(L/2)) + ε.

Since ε > 0 can be taken arbitrarily small and F (L) is an increasing function, ‖µ‖L ≤ F (L).

Case 2π < ‖µ‖L ≤ 3π. Fix ε > 0 small enough and α of length L such that

2π < ‖µ‖L − ε < i(α, µ) ≤ ‖µ‖L ≤ 3π.
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Let 2θ = 3π − ‖µ‖L + ε < π, then by assumption 3π − 2θ < i(α, µ). As before, since

the interior angle decreases and we cannot violate the roof property, there exists t1 such

that ∠int(P0, Pt1) = θ, the smallest t2 such that ∠int(Pt1 , Pt2) = 0, and t3 such that

∠int(Pt2 , Pt3) = θ.

∂H3

∂P3

∂P0

∂P2

∂P1

θ

θ

∂P?

∂P ′0

Figure 7. The “grow” move of P0 to P ′0 in Case 2π < ‖µ‖L ≤ 3π of
Theorem 1.4.

We want to modify our set of planes slightly to satisfy the assumptions of Lemma 2.4. We

see that P0 ∩ Pt2 = Pt1 ∩ Pt3 = P0 ∩ Pt3 = ∅ by Lemma 1.2 as any roofs over subarcs of α

would decrease its bending. Let P? be the unique plane between Pt1 and Pt2 that is tangent

to Pt3 . If P? ∩ P0 = ∅, we can then “grow” P0 to P ′0 so that P ′0 ∩ P? 6= ∅, see Figure 7. As

before, P ′0 is joined to Pt3 by a sub-arc of α[p(0), p(t3)]. As θ < π/2, all the assumptions of

Lemma 2.4 are satisfied, so we have

L ≥ cosh−1
(

(2 cos θ + 1)2
)

=⇒ cos−1
((√

cosh(L)− 1
)
/2
)
≤ θ.

‖µ‖L = 3π − 2θ + ε ≤ 3π − 2 cos−1
((√

cosh(L)− 1
)
/2
)

+ ε.

Since ε > 0 can be taken arbitrarily small, ‖µ‖L ≤ F (L).

Case ‖µ‖L > 3π. We can choose α of length L such that i(α, µ) > 3π. As before, we find the

smallest t1, t2, t3 (in that order) such that ∠int(P0, Pt1) = ∠int(Pt1 , Pt2) = ∠int(Pt2 , Pt3) = 0.

Notice that Pt3 is not the terminal support plane for α, as i(α, µ) > 3π. After a possible

“grow” move, this configuration corresponds to the case of Lemma 2.4 with θ = 0. This,
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however, implies

L > cosh−1
(

(2 cos(0) + 1)2
)

= cosh−1(9) = 2 sinh−1(2)

which contradicts the fact that we fixed L ∈ (0, 2 sinh−1(2)]. �

3. Improved Bounds on Average Bending and Lipschitz Constants

We take an aside from bounds on Sullivan’s Theorem to improve the Lipschitz and average

bending bounds of [Bri03, Theorem 1.2 ]. One may revisit this section at a later time.

Theorem 1.6. Let Γ be a Kleinian group with the components of Ω(Γ) simply connected

and let N = H3/Γ. There exist universal constants K0,K1 with K0 ≤ 2.494 and K1 ≤ 3.101

such that

(i) if µΓ is the bending lamination of ∂C(N), then

`∂C(N)(µΓ) ≤ K0 π
2 |χ (∂C(N))|

(ii) for any closed geodesic α on ∂C(N),

BΓ(α) =
i(α, µγ)

`(α)
≤ K1

where BΓ(α) is called the average bending of α.

(iii) there exists a (1 + K1)-Lipschitz map s : ∂C(N) → Ω(Γ)/Γ that is a homotopy

inverse to the retract map r : Ω(Γ)/Γ→ ∂C(N).

Proof. Our result is a direct generalization of [Bri03] by using our function F (L) from

Theorem 1.4. We provide an outline of the proof.

Let δ be a geodesic arc on PµΓ and fix L ∈ (0, 2 sinh−1]. Set dxe to be the least integer ≥ x.

By subdividing δ into arcs or length ≤ L, we see

BΓ(δ) ≤ ‖µΓ‖L
`(δ)

⌈
`(δ)

L

⌉
≤ ‖µΓ‖L

`(δ)

(
`(δ)

L
+ 1

)
=
‖µΓ‖L
L

(
1 +

L

`(δ)

)
≤ F (L)

L

(
1 +

L

`(δ)

)
For an infinite length geodesic β on PµΓ and a point x ∈ β, let βtx denote the sub-arc

centered at x of length 2t. One can define average bending for β as

BΓ(βx) = lim sup
t→∞

BΓ(βtx).
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In [Bri98], Bridgeman shows that this notion is well defined and independent of x. In

particular, by taking `(δ) → ∞ in the bound on BΓ(δ), we see that for any infinite length

geodesic β on PµΓ ,

BΓ(β) ≤ F (L)

L
for all L ∈ (0, 2 sinh−1(2)].

Let

K1 = min

[(
3π − 2 cos−1

(√
cosh(L)

2
− 1

2

))
/L

]
over L ∈ (2 arcsinh(1), 2 sinh−1(2)]

Then, BΓ(β) ≤ K1 ≤ 3.101, where the minimum is attained at L ≈ 2.74104.

For a closed geodesic α on ∂C(N), let α̃ ⊂ PµΓ be a lift. Then (ii) follows, as

BΓ(α) = BΓ(α̃) ≤ K1.

The statement of (iii) can be derived from (ii). Let Ks be the minimal Lipschitz constant

of s : ∂C(N)→ Ω(Γ)/Γ. Then, Thurston characterized

Ks = sup

{
`(s∗α)

`(α)

∣∣∣∣α is a simple closed curve on ∂C(N)

}
and McMullen’s showed that `(s∗α) ≤ `(α) + i(α, µΓ) (see [Thu98, Theorem 8.5] and

[McM98, Theorem 3.1]). Combining these two facts gives Ks ≤ 1 + BΓ(α) ≤ 1 + K1, so

(iii) holds.

For (i), we use a computation from [Bri03, Section 5] to bound `(µΓ) by integrating along

the unit tangent bundle of ∂C(N). Fix L ∈ (0, 2 sinh−1(2)] and for v ∈ T1(∂C(N)), let

αv : (0, L) → ∂C(N) be the unit speed geodesic in the direction v. Then, Bridgeman and

Canary [BC05] show

`(µΓ) =
1

4L

∫
T1(∂C(N))

i(αv, µΓ) dΩ

By taking a maximal lamination µ̃ ⊃ µΓ, one can integrate our bound F (L) ≥ i(αv, µΓ)

over the set of ideal triangles ∂C(N) r µ̃. In [Bri03, Section 5], Bridgeman works out this

integral and shows that

`(µΓ)

π2 |χ (∂C(N))|
≤ 3

π2L

∫
(x,y)∈U

dx dy

y2

∫ cos−1
(
D(x,y)
tanh(L)

)
0

F

(
L− tanh−1

(
D(x, y)

cos θ

))
dθ = Keq

where U is the ideal triangle

U = {(x, y) | −1 ≤ x ≤ 1, y ≥
√

1− x2} and
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D(x, y) =
x2 + y2 − 1√

(x2 + y2 − 1)2 + 4y2

computes the length of the unique perpendicular from (x, y) to the “bottom” edge of U .

We compute this integral with using numerical approximation in Mathematica. We choose

L = sinh−1(89/10) < 2 sinh−1(2) and find the upper bound

`(µΓ)

π2 |χ (∂C(N))|
≤ Keq ≤ 2.494.

�

4. A New Criterion for Embeddedness of Pleated Planes

In this section, we provide a new criterion which guarantees the embeddedness of a pleated

plane. This section is a revised version of what appears in [BCY16]. Our results generalize

earlier work of Epstein-Marden-Markovic [EMM04] referenced here as Theorem 1.2 and

an unpublished work of Epstein-Jerrard [EJ].

Theorem 4.1. There exists a computable increasing function G : (0,∞)→ (0, π), such that

if µ is a measured lamination on H2 and

||µ||L < G(L),

then Pµ is a bi-Lipschitz embedding and extends continuously to a map P̂µ : H2∪S1 → H3∪Ĉ.

Further, P̂µ(S1) is a quasi-circle.

Since G(1) ≈ 0.948, we recover this result claimed by Epstein and Jerrard as a special case.

Corollary 4.1. (Epstein-Jerrard [EJ]) If µ is a measured lamination on H2 such that

||µ||1 < .948

then Pµ is a bi-Lipschitz embedding and extends continuously to a map P̂µ : H2∪S1 → H3∪Ĉ.

Further, P̂µ(S1) is a quasi-circle.

The derivation begins by finding an embedding criterion for piecewise geodesics. This por-

tion of the proof follows Epstein and Jerrard’s outline quite closely. Such a criterion is

easily translated into a criterion for the embeddedness of pleated planes associated to lami-

nations with finitely many leaves. We proceed to show that, in the finite-leaved lamination
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case, the pleated planes are in fact quasi-isometric embeddings with uniform bounds on the

quasi-isometry constants. The general case is handled by approximating a pleated plane by

pleated planes associated to finite-leaved laminations.

Remark 4.2. As in [EMM04, Theorem 4.2] one can consider a horocycle H in H2 and a

consecutive sequence of points on H hyperbolic distance L apart. Connecting these points

in sequence, one obtains an embedded piecewise geodesic γ in H3. Let Pµ(H2) be the pleated

plane in H3 obtained by extending each flat in γ to a flat in H3. One may check that

||µ||L = 2 sin−1

(
tanh

(
L

2

))
.

This is the conjectured optimal bound. Since 2 sin−1(tanh(1/2)) ≈ .96076, Theorem 4.1 is

nearly optimal when L = 1. In Figure 8, we observe that our G(L) is close to optimal for

all L ∈ [0, 2 sinh−1(1)].

Figure 8. G(L) and the conjectured optimal bound 2 sin−1(tanh(L/2)) on [0, 2 sinh−1(1)]

4.1. Piecewise Geodesics. Let J be an interval in R containing 0. A continuous map

γ : J → H3 will be called a piecewise geodesic if there exists a discrete set {ti} ⊂ int(J),

parameterized by an interval in Z (possibly infinite), such that, for all i, ti < ti+1 and

γ |(ti,ti+1) is a unit speed geodesic. We call ti (or γ(ti)) a bending point of γ. The bending
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angle φi at ti is the angle between γ([ti−1, ti]) and γ([ti, ti+1)). We will further assume that

φi > 0 for all i. By analogy with the definition of L-roundness, we define ||γ||L to be the

supremum of the total bending angle in any open subsegment of γ of length L > 0.

For t 6= ti for any i, let θ(t) ∈ [0, π] be the angle between the ray from γ(0) to γ(t) and the

tangent vector γ′(t). For i = 1, . . . , n, define θ±(ti) ∈ [0, π] to be the angle between the ray

from γ(0) to γ(t) and limt→t+i
γ′(t) or limt→t−i

γ′(t), respectively. We set θ±(t) = θ(t) for

t 6= ti. Notice that θ(t) smooth and non-increasing on (ti, ti+1) for all i and that

(4.1) |θ+(ti)− θ−(ti)| ≤ φi for all i.

If t 6= ti for any i, Epstein-Marden-Markovic [EMM04, Lemma 4.4] show that for

rγ(t) = dH3(γ(0), γ(t))

one has

(4.2) r′γ(t) = cos(θ(t)) and θ′(t) = − sin(θ(t))

tanh(rγ(t))
≤ sin(θ(t)).

4.2. The Hill Function of Epstein and Jerrard. A key tool in Epstein and Jer-

rard’s work is the hill function h(x), where

(4.3) h : R→ (0, π) is given by h(x) = cos−1(tanh(x)).

The hill function is convex, decreasing, and a homeomorphism, with the key features

(4.4) h′(x) = − sech(x) = − sin(h(x)) and h(0) =
π

2
.

For fixed L > 0, we consider solutions for x to the equation

h′(x) =
h(x)− h(x− L)

L
.

Geometrically, this corresponds to finding a point on the graph of h such that the tangent

line at (x, h(x)) intersects the graph at the point (x − L, h(x − L)), see Figure 9. We will

show that there is a unique solution x = c(L) and that c(L) ∈ (0, L).

Given x ∈ R r {0}, the tangent line at (x, h(x)) to the graph of h intersects it in two

distinct points (x, h(x)) and (f(x), h(f(x)). Letting f(0) = 0, we see that function f

is continuously differentiable and odd. Define A(x) = x − f(x) and note that it is also
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continuously differentiable and odd. We argue that A is strictly increasing. Since A is odd,

it suffices to work over [0,∞). Suppose that 0 ≤ x1 < x2, and that Ti is the tangent line

to h at xi. As h is convex on [0,∞), T1 ∩ T2 = (x0, y0) lies below the graph of h and

x1 < x0 < x2. For x ≤ x0, it follows that T2 lies below T1 and f(x2) < f(x1) ≤ f(0) = 0.

We conclude that f is decreasing and A(x) = x − f(x) is increasing with A(x) > x for all

x ∈ (0,∞). The function c is the inverse of A, so c is also continuously differentiable and

strictly increasing. Since A(x) > x for x > 0, c(L) ∈ (0, L).

Define

Θ(L) = h(c(L)) and G(L) = h(c(L)− L)− h(c(L)) = −Lh′(c(L)).

We observe that G is monotonic. Define B(x) = h(f(x))− h(x) to be the height difference

between intersection points of the tangent line at (x, h(x)) with the graph of h. As h and

f are both strictly decreasing continuous functions, B is strictly increasing and continuous.

By definition, G(L) = B(c(L)), so G is also strictly increasing and continuous.

The following fact is the key estimate in the proof of Theorem 4.1.

Lemma 4.3. If γ : [0,∞)→ H3 is piecewise geodesic with a first bending point, L > 0, and

||γ||L ≤ G(L),

then for all t > 0

θ+(t) ≤ Θ(L) +G(L) = h(c(L)− L) < π.

Proof. Our argument will proceed by contradiction. Fix L > 0, c = c(L), G = G(L),

Θ = Θ(L) and choose our indexing so that t1 > 0 is the first bending point of γ. Suppose

there exits T0 with θ+(T0) > Θ +G. Define

T = inf{t ∈ [0,∞) | θ+(t) > Θ +G > 0}

and note that T > 0 as θ+(t) = 0 on [0, t1). In addition, T is a bending point of γ as θ+(t)

is continuous and non-increasing on [ti, ti+1) for all i. It follows that T is the first bending

point with θ+(T ) > Θ +G. Also, since θ−(t) = θ+(t) on (ti, ti+1), we have

0 < θ±(t) ≤ Θ +G < π for all t ∈ (t1, T ).
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Using equation (4.2), we see that

θ′(t) < − sin(θ(t)) for t ∈ (ti, ti+1) ⊂ (t1, T ).

In particular, θ is decreasing on those intervals. For the remainder of the argument, we

only consider (ti, ti+1) ⊂ (t1, T ).

Define

s0 = sup{s ∈ (0, T ] | θ−(s) ≤ Θ}.

By continuity, θ−(s0) ≤ Θ. Observe that s0 < T , as otherwise s0 = T and we obtain a

contraction by

||γ||L ≤ G =⇒ |θ+(T )− θ−(s0)| ≤ G =⇒ θ+(T ) ≤ θ−(s0) +G ≤ Θ +G.

Further, we must have s0 = ti for some i, as otherwise the fact that θ− is continuous and

decreasing on all intervals (ti, ti+1) would contradict the choice of s0.

If T − s0 < L, then [s0, T ] is contained in an open interval of length L and we again obtain

a contradiction by

||γ||L ≤ G =⇒ θ+(T ) ≤ θ−(s0) +G ≤ Θ +G.

Thus, we may assume that T − s0 ≥ L and θ−(t) > Θ on (s0, s0 + L] by our choice of s0.

In addition, note that θ+(t) ∈ [Θ,Θ + G] for t ∈ [s0, s0 + L), as otherwise the decreasing

nature of θ± on (ti, ti+1) contradicts the definition of s0 or T . We now proceed to obtain a

contradiction and complete the proof. Our trick will be to use the hill function h to keep

track of the drops in θ(t) over (ti, ti+1) and the jumps at ti.

To have a visual picture for our construction, we define maps P± : (t1, T ) → R2 which

are continuous away from {ti} and whose images lie on the graph of h. Since h is a

homeomorphism onto (0, π) and 0 < θ±(t) < π for all t ∈ (t1, T ), we can find a unique

g±(t) ∈ R, such that

h(g±(t)) = θ±(t) for t ∈ (t1, T ).

We then define

P±(t) = (P±1 (t), P±2 (t)) = (g±(t), h(g±(t))) = (g±(t), θ±(t)).
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Since the functions P+ and P− agree away from the bending points, we denote the common

functions by P (t), g(t), and θ(t) on the intervals (ti, ti+1).

Notice that as one moves along the geodesic ray γ, the functions θ±(t) decrease on each

interval (ti, ti+1) and have vertical jumps equal to ψi = θ+(ti) − θ−(ti) at each ti. By

equation 4.1, we have

|ψi| = |θ+(ti)− θ−(ti)| ≤ φi.

Correspondingly, the points P±(t) slide rightward and downward along the graph of h for

t ∈ (ti, ti+1) and jump vertically, either upward or downward, by ψi at ti, see Figure 9.

 }
G

Θ

c− L d cc− L
Figure 9. Jumps and slides of P±(t) on the graph of h

Under our hypotheses, a careful analysis of this picture will lead to the contradiction that

θ−(s0 + L) ≤ Θ. The key observation in the proof is that

h′(g(t))g′(t) = θ′(t) < − sin(θ(t)) = − sin(h(g(t))) = h′(g(t))

where the last equality follows from equation (4.4). Since h′(g(t)) < 0, we conclude that

g′(t) > 1 for all t ∈ (ti, ti+1) and therefore, by the Mean Value Theorem, for all i we have

(4.5) g−(ti+1)− g+(ti) > ti+1 − ti.

Let {s0 = tj , tj+1, . . . , tj+m} be the bending points in the interval [s0, s0 + L). For conve-

nience, we redefine tj+m+1 = s0 +L. Since ||γ||L ≤ G, the total vertical jump in the region

[s0, s0 + L) is at most G, that is

j+m∑
i=j

|θ+(ti)− θ−(ti)| ≤ G.

Let

d = min{g+(t) | t ∈ [s0, s0 + L)}.
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Notice that d ∈ [c−L, c] since θ+(t) ∈ [Θ,Θ +G] for all t ∈ [s0, s0 +L) by our choice of s0

and T . We now break the proof into two cases on the values of d.

Case d ∈ [−c, c]. If d ∈ [−c, c] then g+([s0, s0 + L)) ⊆ [−c, c]. Since θ−(t) > Θ on

(s0, s0 + L], we have g−((s0, s0 + L]) ⊆ [−c, c]. Notice that since h′(x) = − sin(h(x)) and h

is decreasing, then for x ∈ [−c, c],

h′(x) ≤ h′(c) = −G
L
.

Therefore, applying equation (4.5) and the Mean Value Theorem, we see that

θ−(ti+1)− θ+(ti) ≤ h′(c)(g−(ti+1)− g+(ti)) = −G
L

(g−(ti+1)− g+(ti)) < −
G

L
(ti+1 − ti)

for all i = j, . . . , j +m. Thus,

θ−(s0 + L)− θ−(s0) =

j+m∑
i=j

θ+(ti)− θ−(ti)

+

j+m∑
i=j

θ−(ti+1)− θ+(ti)


<

j+m∑
i=j

|θ+(ti)− θ−(ti)|

−(j+m∑
i=1

G

L
(ti+1 − ti)

)

≤ G− G

L

j+m∑
i=1

(ti+1 − ti) = 0.

Since θ−(s0) ≤ Θ, this implies that θ−(s0 + L) ≤ Θ, which contradicts the choice of s0.

Case II: d ∈ [c− L,−c). If d ∈ [c− L,−c), then for all t ∈ [s0, s0 + L), we have

|h′(g(t))| ≥ |h′(d)|

Another application of the Mean Value Theorem gives

(4.6) θ+(ti)− θ−(ti+1) ≥ |h′(d)|(g−(ti+1)− g+(ti)) > |h′(d)|(ti+1 − ti)

for all i = j, . . . , j +m. Whenever g+(ti) < g−(ti) for i = j, . . . , j +m, we also obtain

(4.7) θ+(ti)− θ−(ti) ≥ |h′(d)|(g−(ti)− g+(ti)) > 0
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Notice that as g+ is increasing on [ti, ti+1) for all i, there exists a largest k ∈ {j, . . . , j+m}

with g+(tk) = d. By (4.6), we obtain

k−1∑
i=j

θ+(ti)− θ−(ti+1) > |h′(d)|(tk − s0).

Since θ+(tk) = h(d) and θ−(tj) = θ−(s0) ≤ Θ,

k∑
i=j

θ+(ti)− θ−(ti) > h(d)−Θ + |h′(d)|(tk − s0).

Therefore, as the total jump on the interval [s0, s0 + L) is at most G,

j+m∑
i=k+1

θ+(ti)− θ−(ti) ≤ G− (h(d)−Θ)− |h′(d)|(tk − s0) = h(c−L)−h(d)− |h′(d)|(tk − s0).

Since g+(tk) = d and s0 + L = tj+m+1,

g−(s0 + L) = d+

(
j+m∑
i=k

g−(ti+1)− g+(ti)

)
−

(
j+m∑
i=k+1

g−(ti)− g+(ti)

)
.

Let I = {i | k + 1 ≤ i ≤ j + m and g−(ti) − g+(ti) > 0}. After dropping any terms in the

right hand sum with indices not in I, we can applying inequalities (4.5) and (4.7) to obtain

g−(s0 + L) > d+

(
j+m∑
i=k

ti+1 − ti

)
− 1

|h′(d)|

(∑
i∈I

θ+(ti)− θ−(ti)

)

> d+ (s0 + L− tk)−
1

|h′(d)|
(
h(c− L)− h(d)− |h′(d)|(tk − s0)

)
= d+ L−

(
h(c− L)− h(d)

|h′(d)|

)
.

Since h′ is negative and decreasing on the interval [c − L, d], we can take the tangent line

at d and observe that

h(c− L) ≤ h(d) + h′(d)(c− L− d)

which implies that
h(c− L)− h(d)

|h′(d)|
≤ d− c+ L.

Therefore,

g−(s0 + L) > d+ L+ (d− c+ L) = c

Since Θ = h(c), this implies that θ−(s0 + L) ≤ Θ contradicting the definition of s0. This

final contradiction completes the proof. �
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As a nearly immediate corollary, we obtain an embeddedness criterion for piecewise geodesics.

Corollary 4.4. If γ : [0,∞) → H3 is a piecewise geodesic with a first bending point, and

||γ||L ≤ G(L) for some L > 0, then γ is an embedding.

Proof. If the corollary fails, then there exist 0 ≤ a < b such that γ(a) = γ(b). Let

β : [0,∞)→ H3 be given by β(t) = γ(t+a). Then ||β||L ≤ G(L) and since a, b are separated

by a finite number of bending points, β has a first bending point. By definition, there exists

ti ∈ (0, b) such that β is geodesic on [ti, b]. However, this implies that θ+(t) = π on (ti, b),

a contradiction to Lemma 4.3 above. �

For a finite-leaved measured lamination µ on H2 and any geodesic ray α : [0,∞) → H2,

the curve γ = Pµ ◦ α is a piecewise geodesic and ||γ||L ≤ ||µ||L by definition. Since any

two points in H2 can be joined by a geodesic ray, we immediately obtain an embeddedness

criterion for pleated planes.

Corollary 4.5. If µ is a finite-leaved measured lamination on H2 and ||µ||L ≤ G(L) for

some L > 0, then Pµ : H2 → H3 is an embedding.

4.3. Uniformly Bi-Lipschitz Embeddings. We next prove that if γ : R→ H3 is a

piecewise geodesic and ||γ||L < G(L), then γ is uniformly bi-Lipschitz. We note that since

γ is 1-Lipschitz by definition, we only have to prove a lower bound K for the bi-Lipschitz

constant depending only on L and ‖µ‖L. This will immediately imply that if µ is a finite-

leaved lamination on H2 and ||µL|| < G(L), then Pµ is a K-bi-Lipschitz embedding.

Proposition 4.6. If γ : R→ H3 is a piecewise geodesic such that

||γ||L < G(L),

then γ is K-bi-Lipschitz where K depends only on L and ||γ||L.

Proof. We first set our notation. We may assume, without loss of generality, that 0 is

not a bending point of γ. Let t0 = 0 and index the bending points in (0,∞) by an interval

of positive integers beginning with 1 and the bending points in (−∞, 0) by an interval of

negative integers ending with −1. As before, φi will be the bending angle of γ at ti.

The following lemma will allow us to reduce to the planar setting.
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Lemma 4.7. There exists an embedded piecewise geodesic α : R→ H2 with the same bending

points as γ such that

(i) if the bending angle of α at a bending point ti is given by φ′i, then φ′i ≤ φi,

(ii) d(α(0), α(t)) = d(γ(0), γ(t)) for all t, and

(iii) there exists a continuous non-decreasing Ψ : R → (−π, π) such that for t > 0,

Ψ(t) is the angle between α([0, t1]) and the geodesic joining α(0) to α(t) and for

t < 0, Ψ(t) is the angle between α([−t1, 0]) and the geodesic joining α(0) to α(t).

Proof. Let fi be the geodesic arc from γ(0) to γ(ti) and let Ti be the possibly degen-

erate hyperbolic triangle with vertices γ(0), γ(ti), and γ(ti+1) and edges fi, γ([ti, ti+1]) and

fi+1. We construct α by first placing an isometric copy of T0 in H2, so that f1 is counter-

clockwise from f0.We then iteratively place a copy of Ti counterclockwise from a copy of

Ti−1 along the image of fi for all positive ti. We then place a copy of T−1 in H2 so that the

image of f−2 is clockwise from f−1, T−1 and T0 meet at the image of γ(0), and the images

of f1 and f−1 lie in a geodesic. We then iteratively place a copy of T−i−1 clockwise from a

copy of Ti−1 along the image of fi for all negative t−i. See Figure 10.

γ(0) f1

f2

f3

f4f5

f6

f−1

f−2

f−3

f−4

f−5

f−6

Figure 10. The construction of α, shown in red, for Lemma 4.7
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Let α : R → H2 be the piecewise geodesic traced out by the images of the pieces of γ.

By construction, α has the same bending points as γ and, moreover, since d(α(0), α(t)) is

realized in the isometric copy of Ti for t ∈ [ti, ti+1], it is immediate that d(α(0), α(t)) =

d(γ(0), γ(t)) for all t.

We next check that the bending angle φ′i of α at ti is at most ψi. Note that the possibilities

for gluing Ti to Ti−1 in H3 are given by the one-parameter family of triangles obtained by

rotating Ti about fi. Consider the vectors v−i = γ′−(ti) and v+
i = γ′+(ti) at γ(ti). Then the

exterior angle φi is the distance between v−i and v+
i in the unit tangent sphere at γ(ti). The

edge fi defines an axis ri in this unit sphere and our one-parameter family corresponds to

rotating v+
i around ri. It is straightforward to see that that distance between v−i and v+

i

is minimized when v+
i , v

−
i and ri are coplanar and the interiors of Ti and Ti−1 are disjoint.

See Figure 11. We conclude that, φ′i ≤ φi. It follows that

||α||L ≤ ||γ||L < G(L),

so Corollary 4.4 implies that α is an embedding.

v−iv+
i

ri

Ti−1

γ

Ti

Figure 11. Configuration of triangles Ti, Ti1 , vectors v±i , and the axis ri
for the piecewise geodesic γ in Lemma 4.7

We can now define a continuous non-decreasing function Ψ : R → R with Ψ(0) = 0 and

the property that for t > 0, Ψ(t) mod 2π is the angle between α([0, t1]) and the geodesic

joining α(0) to α(t) and for t < 0, Ψ(t) mod 2π is the angle between α([−t1, 0]) and the

geodesic joining α(0) to α(t).

To conclude (iii), we show that Ψ(t) < π for all t > 0. If this fails, then γ intersects the

geodesic g0 containing α([0, t1]). Suppose that α(b) ∈ g0 for some b > 0. Then, consider
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the piecewise geodesic α̂ given by α̂(t) = α(b − t) for t ∈ [0, b] and unit speed along g0 in

the direction of α(b) for t > b. Notice that α̂ is not an embedding. However,

||α̂||L ≤ ||α||L < G(L),

so Corollary 4.4 would imply otherwise. Therefore, α̂ cannot exist and Ψ(t) < π. One

similarly argues that Ψ(t) > −π for all t < 0, completing the proof of (iii). �

Our next goal, before we can address the bi-Lipschitz constants of α and γ, is to show that

α is proper. Since Ψ is monotone and bounded we may define

Ψ+∞ = lim
t→∞

Ψ(t) and Ψ−∞ = lim
t→−∞

Ψ(t).

Lemma 4.8. The piecewise geodesic α : R→ H2 constructed in Lemma 4.7 is proper.

Proof. The basic idea is that by monotonicity of Ψ, α([0,∞)) can only accumulate

on the geodesic ray ρ+ emanating from α(0) and making angle Ψ+ with α([0, t1]). If it has

an accumulation point q ∈ H2, then there must be infinitely many segments of α running

nearly parallel to ρ+ and q ∈ ρ+. However, Lemma 4.3 tell us that no segment of α can be

“pointing” nearly straight back to α(0). In particular, the total length of these segments

which are “pointing” towards α(0) is finite. This will allow us to arrive at a contradiction.

Fix L > 0 and assume that α is not proper on the ray α|[0,∞). Recall that if t is not a

bending point, then θ(t) is the angle between α′(t) and the geodesic segment joining α(0)

to α(t). Lemma 4.3 implies that for all t > 0

θ+(t) ≤ Θ0 = Θ(L) +G(L) < π.

Since α|[0,∞) is not proper, there is an accumulation point q of α|[0,∞) on the ray ρ+

emanating from α(0) which makes an angle Φ+∞ with α([0, t1]).

Working in the disk model, we let α(0) = 0 and α([0, t1]) lie on the positive real axis. For

small ε > 0, we consider the region Bε given in hyperbolic polar coordinates (r, ϕ) at 0 by

Bε = [r(q)− ε, r(q) + ε]× [ϕ(q)− ε, ϕ(q)] ⊂ D2.

A standard computation in these coordinates shows that the hyperbolic metric on Bε

given by ds2 = dr2 + sinh2(r)dϕ2. On Bε, we also consider the taxicab metric given by
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dT ((r1, ϕ1), (r2, ϕ2)) = |r1 − r2| + |ϕ1 − ϕ2|. It follows that dT and dH are bi-Lipshitz

equivalent on Bε. We will show that α([0,∞))∩Bε has finite length in the taxi cab metric.

Let J = α−1(Bε) and note that J is a countable collection of disjoint arcs with α(J) =

α([0,∞))∩Bε. Since Ψ is monotonic, the ϕ coordinate of α is also monotonic, and therefore,

the total length of α(J) in the ϕ direction is bounded above by ε. In addition, since α

accumulates on q, the signed length of α(J) in the r direction is bounded above by 2ε.

We will now use the fact that θ+(t) ≤ Θ0, to show that the length in the negative r-direction

is bounded. Let (Ψ(t), rα(t)) parametrize α in polar coordinates over some t ∈ [a, b) ⊂ J

away from bending points. By the law of sines on the triangle with vertices α(0), α(a), α(t)

for t ∈ (a, b) and since α is unit speed, we have

sin(Ψ(t)−Ψ(a))

sinh(t− a)
=

sin(θ(t))

sinh(rα(a))
.

Taking the limit as t→ a, we obtain

Ψ′(a) =
sin(θ(a))

sinh(rα(a))
.

Equation (4.2) then gives

drα
dΨ

(Ψ(t)) Ψ′(t) = r′α(t) = cos(θ(t)) =⇒ drα
dΨ

(Ψ(a)) = cot(θ(a)) sinh(rγ(a)).

Since 0 < θ(a) ≤ Θ0 < π and rγ(a) ≤ r(q) + ε, we have drα
dΨ (Ψ(a)) ≥ cot(Θ0) sinh(r(q) + ε).

Integrating over Ψ, we see that the total length of of α(J) in the negative r-direction is

bounded by ε | cot(Θ0)| sinh(r(q) + ε). Therefore, using the 2ε bound on the signed length,

the total length of α(J) in the r-direction is bounded by 2 ε (1 + | cot(Θ0)| sinh(r(q) + ε)).

It follows that α(J) has finite length in the taxicab metric on Bε. We can therefore choose t̄ ∈

J , so that α(J ∩ [t̄,∞)) has length less than ε/4 in the taxicab metric and dT (α(t̄), q) < ε/4.

Therefore, α(J ∩ [t̄,∞)) ⊂ Bε/2(q) and Bε/2(q)) ⊂ Bε, where Bε/2(q) is the neighborhood

of radius ε/2 of q in the taxicab metric on Bε. This implies that [t̄,∞) ⊂ J and therefore

α([t̄,∞)) has finite hyperbolic because dT and dH are bi-Lipshitz equivalent on Bε. However,

α is unit speed, so this is a contraction. Therefore, α must be proper. �

Returning to the proof of Proposition 4.6, we note that it suffices to show that there exists

K, depending only on L and ‖µ‖L, such that for all t ∈ R,

rγ(t) = d(γ(0), γ(t)) = d(α(0), α(t)) ≥ K|t|.
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Indeed, if γ : R → H3 is any piecewise geodesic with ||γ||L < G(L) and a < b, then we

can consider the new piecewise geodesic γa : R → H3 given by γa(t) = γ(t + a). Then by

construction ||γa||L = ||γ||L ≤ G(L) and

rγa(t) = d(γa(0), γa(t)) ≥ K|t| =⇒ d(γ(a), γ(b)) = rγa(b− a) ≥ K|b− a|.

Since γ is 1-Lipschitz by definition, it would follow that γ is a K-bi-Lipschitz embedding.

As we have show that α is proper and Ψ is monotone, α has two unique limit points ξ−

and ξ+ in S1 which are endpoints of the geodesic rays from α(0) that make angles Ψ−∞

and Ψ+∞ with α([t−1, t1]). Since α is embedded,

Ψ+∞ −Ψ−∞ ≤ π.

In fact, this inequality is strict by the following argument. Let B = (G(L)− ||α||L)/2 and

construct a new piecewise geodesic α1 : R → H2 which has a bend of angle B at 0. Then,

by definition,

||α1||L ≤ ||α||L +B = ||α||L + (G(L)− ||α||L)/2 < G(L)

and by Corollary 4.4, α1 is an embedding. Therefore,

Ψ+∞ −Ψ−∞ ≤ π −B < π.

Let g be the geodesic joining ξ− to ξ+. By the above inequality, the visual distance between

ξ+ and ξ−, as viewed from α(0) is at least B. It follows that there exists C, depending only

on B, so that d(α(0), g)) ≤ C. In fact, one may apply [Bea95, Theorem 7.9.1] to choose

C = cosh−1

(
1

sin(B/2)

)
.

Notice that, by applying the above argument to αt(s) = α(s + t), we see that the visual

distance between ξ+ and ξ− is at least B as viewed from α(t) for any t ∈ R. Therefore,

α(t) lies within C of g for any t ∈ R.

We now claim that there exists K > 0 such that if p : H2 → g is the orthogonal projection,

then p ◦ α is a 1-Lipschitz and K-bi-Lipschitz orientation-preserving embedding. The fact

that p ◦ α is 1-Lipschitz follows immediately since both p and α are 1-Lipschitz. Let h0 be

the oriented orthogonal geodesic through α(0) toward g and let ν0 be the angle between h0
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and the oriented geodesic segment α([t−1, t1]). Since Ψ+∞ −Ψ−∞ ≤ π −B, one has that

B

2
≤ ν0 ≤ π −

B

2

and, therefore, restriction of p ◦ α to [t−1, t1] is an orientation-preserving embedding. Let

η0 be a unit tangent vector at α(0) perpendicular to h0. Then, since ρ is an projection,

||p′(α(0))(η0)|| = 1

cosh(d(α(0), g))
≥ 1

cosh(C)
= sin(B/2)

Since B/2 ≤ ν0 ≤ π−B/2, the projection of α′(0) onto η0 has lengths at least sin(B/2), so

||(p ◦ α)′(0)|| ≥ sin(B/2)

cosh(C)
= sin2(B/2) =

1

K
.

By reparameterizing αt(s) = α(s+ t), we conclude that away from bending points, p ◦ α is

an orientation-preserving local homeomorphism and ||(p ◦ α)′(t)|| ≥ 1
K . Therefore, for all t,

d(p(γ(0)), p(γ(t)) ≥ t

K
.

Lastly, since p is 1-Lipschitz (in fact, it decreases lengths),

rγ(t) = d(α(0), α(t)) ≥ d(p(γ(0)), p(γ(t))) ≥ t

K

Our previous remarks show that this is enough to guarantee that γ is K-bi-Lipschitz. �

As an immediate corollary, we obtain a version of Theorem 4.1 for finite-leaved laminations.

Corollary 4.9. If µ is a finite-leaved measured lamination on H2 such that

||µ||L < G(L),

then Pµ is a K-bi-Lipschitz embedding, where K depends only on L and ||µ||L.

Proof of Theorem 4.1. Suppose that µ is a measured lamination on H2 with ||µ||L <

G(L). By [EMM06, Lemma 4.6], there exists a sequence {µn} of finite-leaved measured

laminations which converges to µ such that ||µn||L = ||µ||L for all n. Corollary 4.9 implies

that each Pµn is a K-bi-Lipschitz embedding where K depends only on L and ||µ||L. The

maps {Pµn} converges uniformly on compact sets to Pµ (see [EM87, Theorem III.3.11.9]),

so Pµ is also a K-bi-Lipschitz embedding. It follows that Pµ extends continuously to P̂µ :

H2 ∪ S1
∞ → H3 ∪ S2

∞ and P̂µ(S1) is a quasi-circle. �
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5. Complex Earthquakes

In this section, we use Theorem 4.1 to give improved bounds in results of Epstein-Marden-

Markovic which will lead to the improved bound obtained in Theorem 1.3. We first obtain

new bounds guaranteeing that complex earthquakes extend to homeomorphisms at infinity,

see Corollaries 5.1 and 5.2. Once we have done so, we obtain a generalization of [EMM04,

Theorem 4.14] which produces a family of conformally natural quasiconformal maps associ-

ated to complex earthquakes with the same support µ which satisfy the bounds obtained in

Corollary 5.1 or Corollary 5.2. Finally, we give a version of [EMM06, Theorem 4.3] which

gives rise to a family of quasiregular maps associated to all complex earthquakes with pos-

itive bending along µ. Recall that a map g = h ◦ f is quasiregular if f is a quasiconformal

homeomorphism and h is locally injective and holomorphic on the image of f .

The goal of building these families will be to construct a holomorphic map F from the

largest possible domain in C into the universal Teichmüller space such that the image

contains the quasisymmetric map associated of r : Ω → Dome(Ω) and the identity map.

The quasiconformal constant for the retraction map corresponds to the distance between

these two points in universal Teichmüller space. The larger we can make the domain, the

better the Poincare metric on the domain approximates Teichmüller distance.

If µ is a measured lamination on H2, we let Eµ : H2 → H2 to be the earthquake map defined

by fixing a component of the complement of µ and left-shearing all other components by an

amount given by the measure on µ. An earthquake map is continuous except on leaves of µ

with discrete measure and extends to a homeomorphism of S1. In particular, any measured

lamination λ on H2 is mapped to a well-defined measured lamination on H2, which we

denote Eµ(λ).

Given a measured lamination µ on H2 and z = x+ iy ∈ C, we define the complex earthquake

CEz = PyExµ ◦ Exµ : H2 → H3

to be the composition of earthquaking along xµ and then bending along the lamination

yExµ(µ). The sign of y determines the direction of the bending. By linearity,

||yExµ(µ)||L = |y| ||Exµ(µ)||L.
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See Epstein-Marden [EM87, Chapter 3] or Epstein-Marden-Markovic [EMM04, Section

3] for a detailed discussion of complex earthquakes.

The following estimate allows one to bound ||Exµ(µ)||L.

Theorem 5.1. (Epstein-Marden-Markovic [EMM04, Theorem 4.12]) Let `1 and `2 be dis-

tinct leaves of a measured lamination µ on H2. Suppose that α is a closed geodesic segment

with endpoints on `1 and `2 and let x = i(α, µ). Let `′1 and `′2 be the images of `1 and `2

under the earthquake Eµ. Then

sinh(d(`′1, `
′
2)) ≤ ex sinh(d(`1, `2)) and d(`′1, `

′
2) ≤ ex/2d(`1, `2).

Furthermore,

sinh(d(`1, `2)) ≤ ex sinh(d(`′1, `
′
2)) and d(`1, `2) ≤ ex/2d(`′1, `

′
2).

Motivated by this result, Epstein, Marden, and Markovic define the function

(5.1) f(L, x) = min
(
Le|x|/2, sinh−1(e|x| sinh(L))

)
.

Corollary 4.13 in [EMM04] to Theorem 5.1 generalizes to give:

Corollary 5.1. If µ is a measured lamination on H2, z = x+ iy ∈ C, and L > 0, then

||Exµ(µ)||L ≤
⌈
f(L, x)

L

⌉
||µ||L.

Furthermore, if

|y| < G(L)⌈
f(L,x)
L

⌉
||µ||L

,

then CEz extends to an embedding of S1 into Ĉ.

We similarly define

(5.2) g(L, x) = max
(
Le−|x|/2, sinh−1(e−|x| sinh(L))

)
and combine Theorem 5.1 and Theorem 4.1 to obtain :

Corollary 5.2. If µ is a measured lamination on H2, z = x+ iy ∈ C, and L > 0, then

||Exµ(µ)||g(L,x) ≤ ||µ||L.
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Furthermore, if

|y| < G(g(L, x))

||µ||L
,

then PyExµ is a bi-Lipschitz embedding and CEz extends to an embedding of S1 into Ĉ.

Note, we will show later that if 2 tanh(L) > L then g(L, x) = Le−|x|/2. See Lemma 7.1.

Proofs. The proofs of Corollaries 5.1 and 5.2 both follow the same outline as the proof

of [EMM04, Corollary 4.13].

Let µ be a measured lamination on H2, z = x + iy ∈ C, and fix L > 0. Suppose that

A > 0 and that α is an open geodesic arc in H2 of length A which is transverse to Exµ(µ).

Theorem 5.1 guarantees that one can choose an open geodesic arc β in H2 of total length

at most f(A, x) which intersects exactly the leaves of ` of µ for which Exµ(`) intersects α.

By construction,

i(α,Exµ(µ)) = i(β, µ) ≤ ||µ||f(A,x),

and therefore,

(5.3) ||Exµ(µ)||A ≤ ||µ||f(A,x).

For the proof of Corollary 5.2, inequality 5.3 immediately implies that

||Exµ(µ)||g(L,x) ≤ ||µ||f(g(L,x),x) = ||µ||L.

Thus, by linearity,

|y| < G(g(L, x))

||µ||L
=⇒ ||y Exµ||g(L,x) < G(g(L, x)).

Theorem 4.1 then implies that PyExµ is a bi-Lipschitz embedding which extends to an

embedding of S1 into Ĉ. Since Exµ extends to a homeomorphism of S1, it follows that CEz
extends to an embedding of S1 into Ĉ. This completes the proof of Corollary 5.2.

We now turn to the proof of Corollary 5.1. If we subdivide a half open geodesic arc in H2

of length f(L, x) into df(L, x)/Le half open geodesic arcs of length less than or equal to L,

then (5.3) implies

||Exµ(µ)||L ≤ ||µ||f(L,x) ≤
⌈
f(L, x)

L

⌉
||µ||L.
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Therefore, linearity again gives

|y| < G(L)⌈
f(L,x)
L

⌉
||µ||L

=⇒ ||y Exµ(µ)||L < G(L).

and we may again use Theorem 4.1 to complete the proof of Corollary 5.1. �

For all L > 0, define

(5.4) Q(L, x) = max

 G(L)⌈
f(L,x)
L

⌉ , G(g(L, x))


and

(5.5) T L0 = int({x+ iy | |y| < Q(L, x)} .

The following theorem is a direct generalization of Theorem 4.14 in Epstein-Marden-Markovic

[EMM04]. In its proof, we simply replace their use of Corollary 4.13 in [EMM04] with

our Corollaries 5.1 and 5.2.

Theorem 5.2. Suppose that L > 0 and µ is a measured lamination on H2 such that ||µ||L =

1. Then, for t ∈ T L0 ,

(i) CEt extends to an embedding φt : S1 → Ĉ which bounds a region Ωt.

(ii) There is a quasiconformal map Φt : D2 → Ωt with domain the unit disk and

quasiconformal dilatation Kt bounded by

Kt ≤
1 + |h(z)|
1− |h(z)|

where h : T L0 → D2 is a Riemann map with h(0) = 0. Moreover, the map

Φt ∪ φt : D2 ∪ S1 → Ĉ is continuous.

(iii) If G is a group of Möbius transformations preserving µ, then Φt can be chosen so

that there is a homomorphism ρt : G → Gt where Gt is also a group of Möbius

transformations and

Φt ◦ g = ρt(g) ◦ Φt

for all g ∈ G.

In order to extend the family of quasisymmetric maps that arise from Φt to a larger domain,

Epstein, Marden and Markovic introduce the theory of complex angle scaling maps and use
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them to produce a quasiregular family Ψt ◦Φt0 which agree on S with Φt for t ∈ T L. Given

Theorems 4.1 and 5.2, their proof of this extension follows immediately:

Theorem 5.3. ([EMM06, Theorem 4.13]) Suppose that L > 0, µ is a measured lamination

on H2 with ||µ||L = 1, v0 > 0 and t0 = iv0 ∈ T L0 . If t ∈ T L0 , let Ωt be the the image of D2

under the map Φt given by Theorem 5.2. Then there exists a continuous map Ψ : U2×Ωt0 →

Ĉ, such that

(i) Ψt0 = id.

(ii) For each z ∈ Ωt0, Ψ(t, z) depends holomorphically on t.

(iii) For each t ∈ T L0 ∩ U2, Ψt can be continuously extended to ∂Ωt0 such that

Ψt ◦ Φt0 |S1 = Φt|S1 .

In particular Ψ0 : ∂Ωt0 → S1 and Φt0 : S1 → ∂Ω0 are inverse homeomorphisms.

(iv) If t ∈ T L0 ∩ U2, then Ψt is injective and Ψt(Ω0) = Φt(D2) = Ωt.

(v) If t = u+ iv ∈ U2, then Ψt is locally injective Kt-quasiregular mapping where

Kt =
1 + |κ(t)|
1− |κ(t)|

, |κ(t)| =
√
u2 + (v − v0)2√
u2 + (v + v0)2

(vi) If G is a group of Möbius transformations preserving Ω0, then there is a homo-

morphism ρt : G→ Gt where Gt is also a group of Möbius transformations, such

that

Ψt ◦ g = ρt(g) ◦Ψt

for all g ∈ G.

6. Quasiconfomal Bounds

By combining their version of Theorem 5.2 and 5.3, Epstein, Marden and Markovic [EMM06]

produce a family of quasiregular mappings indexed by

SL = int

{
x+ iy ∈ C | y > − 0.73

f(1, x)

}
such that if |Im(t)| < 0.73

f(1,x) , then Φt is quasiconformal. We consider the enlarged region

T L = T L0 ∪ U2 = int {x+ iy ∈ C | y > −Q(x, L)} .
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One can now readily adapt the techniques of the proof of Epstein-Marden-Markovic [EMM06,

Theorem 6.11] to establish:

Theorem 6.1. If Ω is a simply connected hyperbolic domain in Ĉ and L > 0, then there

is a conformally natural K-quasiconformal map f : Ω → Dome(Ω) which extends to the

identity on ∂Ω ⊂ Ĉ such that

log(K) ≤ dT L(ic1(L), 0)

where dT L is the Poincaré metric on the domain T L and c1(L) = 2 cos−1
(
− sinh

(
L
2

))
.

We offer a brief sketch of the proof in order to indicate where our new bounds, as given in

Theorems 1.4, 5.2 and 5.3, are used in the argument.

We recall that universal Teichmüller space U is the space of quasisymmetric homeomor-

phisms of the unit ciricle S1, modulo the action of Möbius transformations by post-composition

(see, for example, Ahlfors [Ahl66, Chapter VI]). The Teichmüller metric on the space U is

defined by

dU (f, g) = log inf K(f̂−1 ◦ ĝ)

where the infimum is over all quasiconformal extensions f̂ and ĝ of f and g to maps from

the unit disk to itself and K(f̂−1 ◦ ĝ) is the quasiconformal dilatation of f̂−1 ◦ ĝ. If Γ

is a group of conformal automorphisms of D2, we define U(Γ) ⊆ U to be the quasisym-

metric homeomorphisms which conjugate the action of Γ to the action of an isomorphic

group of conformal automorphisms. The Teichmüller metric on U(Γ) is defined similarly by

considering extensions which conjugate Γ to a group of conformal automorphisms.

Let g : D2 → Ĉ be a locally injective quasiregular map, i.e. g = h ◦ f where f is a

quasiconformal homeomorphism and h is locally injective and holomorphic on the image

of f . We may define a complex structure Cg on D2 by pulling back the complex structure

on Ĉ via g. The identity map defines a quasiconformal homeomorphism ĝ : D2 → Cg. We

then uniformize Cg by a conformal map R : Cg → D2 and consider the quasiconformal

map R ◦ ĝ : D2 → D2. This map extends to the boundary to give a quasisymmetric map

qs(g) : S1 → S1.
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Fix L ∈ (0, 2 sinh−1(1)] and choose µ so that Dome(Ω) = Pcµ(D2) where ||µ||L = 1 and

c > 0. We use Theorem 5.2 to define a map

F : T L0 → U(Γ) by F(t) = qs(Φt) = (Rt ◦ Φt)|S1

where Γ is the group of conformal automorphisms of H2 preserving µ and Rt : Ωt → D2 is

a uniformization of Ωt.

Similarly, we may use Theorem 5.3, with some choice of t0 = iv0 ∈ T L0 , to define a map

G : U→ U(Γ) by G(t) = qs(Ψt ◦ Φt0).

If t lies in the intersection of the domains of F and G, then even though Φt and Ψt ◦ Φt0

need not agree on D2, Theorem 5.3 implies that they have the same boundary values and

quasi-disk image Ωt. Therefore F and G agree on the overlap T L0 ∩U of their domains. We

may combine the functions to obtain a well-defined function

F̄ : T L → U(Γ).

Theorem [EMM06, Theorem 6.5 and Proposition 6.9] further shows that F̄ is holomorphic.

The Kobayashi metric on a complex manifold M is defined to be the largest metric on M

with the property that for any holomorphic map f : D2 →M , f is 1-Lipschitz with respect

the hyperbolic metric on D2. Therefore, holomorphic maps between complex manifolds

are 1-Lipschitz with respect to their Kobayashi metrics. The Kobayashi metric on U and

U(Γ) turns out to be equivalent to the Teichmüller metric we describer earlier (see [GL99,

Chapter 7]). Moreover, the Poincaré metric on any simply connected domain, in particular

T L, agrees with its Kobayashi metric. It follows then that for any t ∈ T L,

dU(Γ)(F̄(t), F̄(0)) ≤ dT L(t, 0).

Since we normalized Dome(Ω) = Pcµ(D2) and ||µ||L = 1, Theorem 1.4, our upper bound on

L-roundedness, implies that

c ≤ c1(L) = 2 cos−1

(
− sinh

(
L

2

))
.

Therefore,

dU(Γ)(F̄ (ic), F̄ (0)) ≤ dT L(ic, 0) ≤ dT L(ic1(L), 0).
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Since CEic = Pcµ and Ω = Ωic is simply connected, the map gic = Ψic ◦Φt0 is a conformally

natural quasiconformal mapping with image Ω. Moreover, Pcµ◦g−1
ic : Ω→ Dome(Ω) extends

to the identity on ∂Ω = ∂Dome(Ω). For more details, see the discussion in the proofs of

[EMM06, Theorem 6.11] or [BC13, Theorem 1.1].

We have that F̄(ic) = qs(gic) = (R ◦ gic)|S1 where R : Ω → D2 is a uniformization map.

Therefore,

dU(Γ)(F̄(ic), F̄(0)) = dU(Γ)(F̄(ic), Id) = log inf K(h)

where the infimum is taken over all quasiconformal maps from D2 to D2 extending (R ◦ gic)|S1

and conjugating Γ to a group of conformal automorphisms. By basic compactness results

for families of quasiconformal maps, this infimal quasiconformal dilatation is achieved by a

quasiconformal map h : D2 → D2. If f : Ω→ D2 is given by f = h−1 ◦R, then

K(f) = K(h) = dU(Γ)(F̄ (ic), F̄ (0)) ≤ dT L(ic1(L), 0).

Since h and R ◦ gic are quasiconformal maps with the same extension to ∂H2, they are

boundedly homotopic (see, e.g., [EMM06, Lemma 5.10]). Therefore, f is boundedly ho-

motopic to g−1
ic and Pcµ ◦ f : Ω → Dome(Ω) is boundedly homotopic to Pcµ ◦ g−1

ic . Since

Pcµ◦g−1
ic extends to the identity on ∂Ω, it follows that Pcµ◦f also extends to the identity on

∂Ω. Therefore, Pcµ ◦ f : Ω→ Dome(Ω) is the desired conformally natural K-quasiconformal

map which extends to the identity on ∂Ω such that

log(K) ≤ dT L(ic1(L), 0).

This completes the sketch of the proof of Theorem 6.1.

Remark: Epstein, Marden and Markovic showed that if Ω is simply connected, then a

quasiconformal map between Ω and Dome(Ω) extends to the identity on ∂Ω if and only if it

is boundedly homotopic to the nearest point retraction from Ω to Dome(Ω). See [EMM06,

Theorem 5.9].

7. Derivation of Numeric Bound

In order to complete the proof of Theorem 1.3, it suffices to show that one can choose

L ∈ (0, 2 sinh−1(1) such that

dT L(ic1(L), 0) < 7.1695.
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Motivated by computer calculations for various values of L, we choose L = 1.48.

We will construct an inscribed polygonal approximation T Lpol for the region T L and then use

an implementation of the Schwarz-Christoffel formula to approximate the Poincare distance.

The approximation is constructed using MATLAB’s Symbolic Math Toolbox and variable

Figure 12. Polygonal approximation T Lpol of T L

precision arithmetic. Variable precision arithmetic allows us to compute vertex positions to

arbitrary precision. In particular, we can deduce sign changes to find intervals containing

intersection points.

Our polygonal region will be bounded by a step function Step(x) ≤ Q(L, x), as seen in

Figure 12. Let us recall that

Q(L, x) = max

 G(L)⌈
f(L,x)
L

⌉ , G(g(L, x))

 .

To construct Step(x), we find all intervals where G(L)
df(L,x)/Le and G(g(L, x)) intersect in a

desired range of x ∈ [−a, a]. For values where G(L)
df(L,x)/Le dominates, we bound Q(L, x) by

truncated decimal expansions (i.e. lower bounds) of values of G(L)
df(L,x)/Le , which we compute

using variable precision arithmetic.

For parts dominated by G(g(L, x)), we simplify our computation by using the following

Lemma.
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Lemma 7.1. Let L0 > 0 be the unique positive solution to 2 tanh(L) = L. If L < L0 ≈

1.91501, then 2 tanh(L) > L and g(L, x) = Le−|x|/2.

Proof. Recall that

g(L, x) = max
(
Le−|x|/2, sinh−1(e−|x| sinhL)

)
.

Let L < L0 and consider the function j(x) = ex sinh(Le−x/2). It has a critical point precisely

when

2 tanh(Le−x/2) = Le−x/2.

Since L < L0, we have Le−x/2 < L0 when x ≥ 0, so j has no critical points in the interval

[0,∞). Since j′(0) = sinhL− L
2 coshL > 0, j is increasing on the interval [0,∞). Therefore,

j(x) = ex sinh(Le−x/2) ≥ sinh(L) = j(0)

for all x ≥ 0, so

Le−x/2 ≥ sinh−1(e−x sinh(L))

for all x ≥ 0. Thus, g(L, x) = Le−|x|/2 for all x. �

From our initial analysis of the hill function h, we know that G(t) is an increasing function

on t ∈ [0,∞). It follows that G(g(L, x)) is a decreasing function for x ∈ [0,∞). Therefore,

we can approximate G(g(L, x)) by a step function from below.

To compute the values of G(g(L, x)), recall that G(t) = h(c(t)− t)− h(c(t)). The function

c(t) can be computed to arbitrary precision from the equation

t h′(c(t)) = h(c(t))− h(c(t)− t).

In particular, variable precision arithmetic can give us truncated decimal expansions of

values of G(g(L, x)). We sample at a collection of points to obtain a step function where

G(g(L, x)) dominates.

These computations give Step(x) ≤ Q(L, x) on some interval [−a, a]. Outside of that

interval, we set Step(x) = 0. The graph of −Step(x) gives bounds of our region T Lpol,

which is properly in T L. Proper containment implies that the inclusion map T Lpol → T L is

1-Lipschitz in the Poincare metric.
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L=1.48

G(L) = 1.327185362837166

HPL(0) = 0.000007509959438 + 0.009347547230674i

HPL(B) = 0.000009420062234 + 0.067016970686742i

H(L) = 1.969831901361628

K(L) = 7.169471208698489

Figure 13. Output of our program for computing a bound on the quasi-
conformal constant in Sullivan’s Theorem

Using the Schwarz-Christoffel mapping toolbox developed by Toby Driscoll [Dri], the images

of the points 0 and 2 cos−1
(
− sinh

(
L
2

))
i are computed under a Riemann mapping for T Lpol

to the upper half plane. Computing the hyperbolic distance between the images provides

the result. The Schwarz-Christoffel mapping toolbox provides precision and error estimates.

The error bounds are on the order of 10−5.

We found that the optimal bound is given when L is approximately 1.48. Using L = 1.48,

the point

B = c1(L)i = 2 cos−1

(
− sinh

(
L

2

))
i ≈ 5.027888826784i

and

edT L (ic1(L),0) ≈ 7.16947.

A truncated version of the output (Figure 13) provides the values of G(L), HPL(0), and

HPL(B), where HPL : T Lpol → H2 is the Riemann mapping. We also have the computed

values H(L) = dH2(HPL(0), HPL(B)) and K(L) = exp(dT L(ic1(L), 0).





CHAPTER 4

Basmajian’s Identity for Hitchin Representations

1. Hitchin Representations

Let Σ be a connected compact oriented surface possibly with boundary and with negative

Euler characteristic. A homomorphism ρ : π1(Σ) → PSL(2,R) ∼= Isom+(H2) is said to be

Fuchsian if it is faithful with discrete image Γ such that CH(Γ)/Γ is compact (i.e. convex

cocompact). Let ι : PSL(2,R) → PSL(n,R) be a preferred representative arising from the

unique irreducible representation of SL(2,R) into SL(n,R). An n-Fuchsian homomorphism

is defined to be a homomorphism ρ that factors as ρ = ι ◦ ρ0, where ρ0 is Fuchsian.

Following the definition in [LM09], a Hitchin homomorphism from π1(Σ) → PSL(n,R) is

one that may be deformed into an n-Fuchsian homomorphism such that the image of each

boundary component stays purely loxodromic at each stage of the deformation. An element

of PSL(n,R) is purely loxodromic if it has all real eigenvalues with multiplicity 1.

For the rest of the Chapter, we will let ρ denote the conjugacy class of a Hitchin homomor-

phism and refer to this class as a Hitchin representation.

2. Doubling a Hitchin Represenation

In this section, we will recall relevant details from the construction of Labourie and McShane

on doubling of Hitchin representations. See [LM09, §9] for a complete discussion.

Let Σ be a connected compact oriented surface with boundary whose double Σ̂ has genus

at least 2 and let ρ be an n-Hitchin representation of π1(Σ). There are two injections

ι0, ι1 : Σ → Σ̂ and an involution ι : Σ̂ → Σ̂ fixing all points on ∂Σ such that ι ◦ ι0 = ι1.

Fix a point v ∈ ∂Σ and a primitive element ∂v ∈ π1(Σ̂, v) corresponding to the boundary

component of v. For γ ∈ π1(Σ̂, v), define γ̄ = ι∗(γ). One can choose R : π1(Σ, v) →

PSL(n,R) in the conjugacy class of ρ with R(∂v) a diagonal matrix with decreasing entries.

55
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Such a representative is called a good representative. Define

Jn =



1 0 0 . . . 0

0 −1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .

0 0 0 1


,

then Corollary 9.2.2.4 of [LM09] constructs a Hitchin representation ρ̂ of π1(Σ̂) whose

restriction to π1(Σ) is ρ; furthermore, for any good representative R of ρ there exists

R̂ : π1(Σ̂, v)→ PSL(n,R) in the conjugacy class of ρ̂ with

R̂(γ̄) = Jn · R̂(γ) · Jn

for all γ ∈ π1(Σ̂, v). We refer to such a ρ̂ as the Hitchin double of ρ and we will refer to R̂,

as constructed from R, as a good representative of ρ̂.

From this construction and [Lab06, Theorem 1.5], it follows that for a Hitchin representa-

tion ρ, the image ρ(γ) of any nontrivial element of π1(Σ) is purely loxodromic. In particular,

associated to a Hitchin representation ρ there is a length function `ρ defined by

(2.1) `ρ(γ) := log

∣∣∣∣λmax(ρ(γ))

λmin(ρ(γ))

∣∣∣∣ ,
where λmax(ρ(γ)) and λmin(ρ(γ)) are the eigenvalues of maximum and minimum absolute

value of ρ(γ), respectively. Note that for a 2-Hitchin representation (i.e. a Fuchsian repre-

sentation) this length function agrees with the hyperbolic length.

3. The Boundary at Infinity

Let Σ be a connected compact oriented surface with negative Euler characteristic and choose

a finite area hyperbolic metric σ such that if ∂Σ 6= ∅, then ∂Σ is totally geodesic. We can

then identify the universal cover Σ̃ of Σ with H2 if ∂Σ = ∅ or with a convex subset of H2

cut out by disjoint geodesics in the case that ∂Σ 6= ∅.

One defines the boundary at infinity ∂∞(Σ) of π1(Σ) to be Σ̃ ∩ ∂H2
. With this definition,

it makes sense to talk about Hölder functions on ∂∞(Σ). Recall that a map f : X → Y

between metric spaces is α-Hölder for 0 < α ≤ 1, if there exists C > 0 such that,

dY (f(x), f(y)) ≤ C dX(x, y)α for all x, y ∈ X
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Clearly, Hölder functions are closed under composition, though the constant may change.

For any two hyperbolic metrics σ1, σ2 on Σ, there exists a unique π1(Σ)-equivariant qua-

sisymmetric map ∂∞(Σ, σ1)→ ∂∞(Σ, σ2) (see [Ahl66, IV.A]). This map is a Hölder home-

omorphism (see [GH02, Lemma 1]) and therefore a Hölder map on ∂∞(Σ) will remain so if

we choose a different metric. Our definition of ∂∞(Σ) topologically coincides with the Gro-

mov boundary of a hyperbolic group (see [BH13, III.H.3]), however the Hölder structure

is additional.

Note that if Σ is closed, then ∂∞(Σ) ∼= S1. If Σ has boundary and a double of at least genus

2, then ∂∞(Σ) is a Cantor set. Further, ∂∞(Σ) is identified as a subset of S1
∞ = ∂H2

and

therefore admits a natural cyclic ordering from the orientation of Σ. For convention, we

will view the ordering as counterclockwise.

We will use the notation (x, y) ⊂ ∂∞(Σ) to denote the open set consisting of points z such

that the tuple (x, z, y) is positively oriented. Note that (y, x) ∩ (x, y) = ∅.

We say that a quadruple (x, y, z, t) is cyclically ordered if either (x, y, z), (y, z, t) and (z, t, x)

are all positively or negatively oriented.

4. The Frenet Curve

Let F be the complete flag variety for Rn, i.e. the space of all maximal sequences V1 ⊂

V2 . . . Vn−1 of proper linear subspaces of Rn. Consider a curve Ξ: S1 → F with Ξ =

(ξ1, ξ2, . . . , ξn−1). We say that Ξ is a Frenet curve if

• for all sets of pairwise distinct points (x1, . . . , xl) in S1 and positive integers d1 +

· · ·+ dl = d ≤ n,
l⊕

i=1

ξdi(xi) = Rd .

• for all x in S1 and positive integers d1 + · · ·+ dl = d ≤ n,

lim
(y1,...,yl)→x,
yi all distinct

(
i=l⊕
i=1

ξdi(yi)

)
= ξd(x) .

We call ξ = ξ1 the limit curve and θ = ξn−1 the osculating hyperplane. The second property

above guarantees that the image of ξ is a C1-submanifold of PRn.
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It turns out that given a Hitchin representation of a closed surface, one can construct an

associated Frenet curve. As a set of points, this curve is the closure of the attracting fixed

points of ρ(γ) for all γ ∈ π1(S).

Theorem 4.1. [Lab06, Theorem 1.4] Let ρ be an n-Hitchin representation of the funda-

mental group of a closed connected oriented surface S of genus at least 2. Then there exists

a ρ-equivariant Hölder Frenet curve on ∂∞(S) .

The metric on F arrises from a choice of inner product on Rn and the associated embedding

F →
∏n−1
i=1 PRn. In particular, we may use the usual spherical angle metric on im ξ1. Since

ξ2 is Hölder, we have the immediate Corollary.

Corollary 4.1. If ξ : ∂∞(S) → F is the Frenet curve associated to an n-Hitchin repre-

sentation, then im(ξ) is a C1+α submanifold of PRn.

For a closed surface, let ξρ and θρ be the limit curve and osculating hyperplane associated to

a Hitchin representation ρ, respectively. For a connected compact surface Σ with boundary

and a Hitchin representation ρ, we define ξρ to be the restriction of ξρ̂ to π1(Σ), where ρ̂ is

the Hitchin double of ρ.

5. Cross Ratios

In this section, following [Lab08], we construct the Hölder cross ratio on ∂∞(Σ) associated

to a Hitchin representation. Let

∂∞(Σ)4∗ = {(x, y, z, t) ∈ ∂∞(Σ) |x 6= t and y 6= z} .

A cross ratio on ∂∞(Σ) is a π1(Σ)-invariant Hölder function B : ∂∞(Σ)4∗ → R satisfying:

B(x, y, z, t) = 0 ⇐⇒ x = y or z = t ,(5.1)

B(x, y, z, t) = 1 ⇐⇒ x = z or y = t ,(5.2)

B(x, y, z, t) = B(x, y, w, t)B(w, y, z, t) ,(5.3)

B(x, y, z, t) = B(x, y, z, w)B(x,w, z, t) .(5.4)
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In addition, the above conditions imply the following symmetries:

B(x, y, z, t) = B(z, t, x, y) ,(5.5)

B(x, y, z, t) = B(z, y, x, t)−1 ,(5.6)

B(x, y, z, t) = B(x, t, z, y)−1 .(5.7)

The period of a nontrivial element γ of π1(Σ) with respect to B is

`B(γ) := log |B(γ+, x, γ−, γx)| = log |B(γ−, γx, γ+, x)| ,

where γ+ (rest., γ−) is the attracting (rest., repelling) fixed point of γ on ∂∞(Σ) and x is

any element of ∂∞(Σ) r {γ+, γ−}. This definition is independent of the choice of x.

A cross ratio B is said to be ordered, if in addition B satisfies

B(x, z, t, y) > 1 ,(5.8)

B(x, y, z, t) < 0 ,(5.9)

whenever the quadruple (x, y, z, t) is cyclically ordered.

This definition of the cross ratio is motivated by the classical cross ratio BP on RP1 defined

in an affine patch as

(5.10) BP(x, y, z, t) =
(x− y)(z − t)
(x− t)(z − y)

.

Before we associate a cross ratio to a Hitchin representation, consider the following con-

struction. If L ⊂ RPn is a projective line, let RPnV
∗ = {Z ∈ RPn∗ : V 6⊂ Z} and let

ηV : RPnV
∗ → RPn be given by ηV (w) = w ∩ V . For points p, q ∈ RPn with V = p⊕ q and

r, s ∈ RPnV
∗, define

B(r, p, s, q) := BV (ηV (r), p, ηV (s), q) ,

where BV is the classical cross ratio on V . Note that B is a smooth function on its domain.

Let ρ be a Hitchin representation for Σ, a connected compact oriented surface with double

of genus at least 2. We can then define Bρ, the cross ratio associated to ρ, for a quadruple

(x, y, z, t) ∈ ∂∞(Σ)4∗ by

(5.11) Bρ(x, y, z, t) := B (θρ(x), ξρ(y), θρ(z), ξρ(t)) .
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By [Lab06, Theorem 1.4] and [LM09, Theorem 9.1], Bρ is an ordered cross ratio. Further-

more,

`Bρ(γ) = `ρ(γ)

for any nontrivial element γ of π1(Σ).

Remark. We should note that the cross ratio associated to a Hitchin representation ρ as

defined here is referred to as Bρ∗ in [Lab08] and [LM09], where ρ∗(γ) = ρ(γ−1)t. The cross

ratio used in [Lab08] and [LM09] has Bρ(x, y, z, t) = Bρ∗(y, x, t, z). Both cross ratios have

all the same properties, as shown in [Lab08]. The choice to use this definition is a cosmetic

one for the case of RP2-surfaces considered below.

6. Lebesgue Measure on the Frenet Curve

Let S be a closed surface and Σ ⊂ S an incompressible connected subsurface. A complete

hyperbolic structure on S gives an identification of ∂∞(S) with S1
∞ = ∂H2. It is a classical

result that under this identification ∂∞(Σ) is measure 0 with respect to the Lebesgue mea-

sure on S1
∞ (for instance, see [Nic89, Theorem 2.4.4]). The goal of this section is to show

that this holds true with respect to the Lebesgue measure on the limit curve associated to

a Hitchin representation.

For the entirety of this section, if ρ is a Hitchin representation of a surface with boundary,

we will use R to denote a good representative. Further, we will assume that ξρ = ξR.

Lemma 6.1. Let ρ̂ be the Hitchin double of ρ : π1(Σ) → PSL(n,R), then Jn preserves the

limit curve ξρ̂ ⊂ PRn associated to ρ̂.

Proof. Let ξ = ξρ̂ = ξ
R̂

. Since the attracting fixed points of R̂ are dense in ξ, we will

first show that Jn preserves the set of attracting fixed points.

Let γ ∈ π1(Σ̂), then by equivariance, ξ(γ+) is the attracting fixed point of R̂(γ). It follows

that Jn · ξ(γ+) is fixed by Jn · R̂(γ) · Jn = R̂(γ). Recall that γ is the image of γ under

the induced map of the canonical involution of Σ̂. Choose x /∈ R̂(γ)⊥ such that y =

Jn · x /∈ R̂(γ)⊥. Here, R̂(γ)⊥ is the hyperplane spanned by the eigenvectors associated to

the eigenvalues of non-maximal absolute value. We then have that

lim
k→∞

(
R̂(γ̄)k · x

)
= ξ(γ̄+)
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and also

lim
k→∞

(
R̂(γ̄)k · x

)
= lim

k→∞

(
Jn · R̂(γ)k · Jn · x

)
= Jn ·

(
lim
k→∞

R̂(γ)k · y
)

= Jn · ξ(γ+) .

In particular, ξ(γ̄+) = Jn · ξ(γ+) ∈ ξ is the attracting fixed point of R̂(γ̄). Now choose

z ∈ ξ, then there exists a sequence {γj} in π1(Σ̂) such that

lim
j→∞

ξ(γ+
j ) = z .

Hence,

lim
j→∞

(
Jn · ξ(γ+

j )
)

= Jn · z

and as ξ is closed, we have Jn · z ∈ ξ. Therefore Jn preserves ξ. �

Definition 6.2. A finite positive measure µ on ∂∞(S) is quasi-invariant if, for every

g ∈ π1(S), the pushforward measure g∗(µ) is absolutely continuous with respect to µ.

In addition, if the Radon-Nikodym derivative is Hölder, we say µ is Hölder quasi-invariant.

Let ξρ : ∂∞(S) → PRn be the limit curve associated to an n-Hitchin representation ρ of

π1(S). By Corollary 4.1, the image of ξρ is a C1+α submanifold, so we let ηρ : S1 → im(ξ)

be a C1-parameterization with Hölder derivatives. W further assume that ηρ is constant

speed ‖η′ρ‖ = cρ (recall that PRn carries the standard spherical metric). Let λ be the

Lebesgue measure on S1 and define µρ = (ξ−1
ρ ◦ ηρ)∗λ.

Lemma 6.3. The measure µρ is Hölder quasi-invariant.

Proof. Fix γ ∈ π1(S) and let A ⊂ ∂∞(S) be measurable. By definition,

γ∗µρ(A) = µρ(γ
−1A) = λ

(
η−1
ρ ◦ ξ

(
γ−1A

))
= λ

(
η−1
ρ ◦ ρ(γ−1) ◦ ξ (A)

)
.

Let sγ(t) = η−1
ρ ◦ ρ(γ−1) ◦ ηρ(t) then,

(6.1) γ∗µρ(A) = λ(sγ(η−1
ρ ◦ ξ(A))) =

∫
η−1
ρ ◦ξ(A)

s′γ dλ =

∫
A
s′γ ◦ η−1

ρ ◦ ξ dµρ.

Since η is constant speed and ρ(γ−1) preserves im(ξ),

s′γ(t) = ‖Dρ(γ−1)(ηρ(t)) · η′ρ(t)‖/cρ.
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Because Dρ(γ−1) is continuously differentiable on T (PRn) (and therefore Hölder) and η′ρ(t)

is Hölder by construction, it follows that s′γ(t) is as well. Additionally, since ηρ is constant

speed, the quantity

sup
p,q∈S2

dS1(p, q)

dPRn(ηρ(p), ηρ(q))
< +∞.

It follows that s′γ ◦ η−1
ρ ◦ ξ is Hölder and therefore µ is a Hölder quasi-invariant measure

with respect to the action of π1(S) on ∂∞(S) by (6.1). �

This Lemma along an argument of Anosov, as cited by Ledrappier [Led94, Section e], tells

us that that µρ is π1(S)-ergodic. In particular, if A ⊂ ∂∞(S) is a π1(S)-invariant set, then

A has either null or full measure. We now apply this π1(S)-ergodicity to obtain:

Lemma 6.4. For a compact bordered surface Σ with a double Σ̂ of genus at least 2, fix ρ a

Hitchin representation of π1(Σ) and its Hitchin double ρ̂. Then, viewing ∂∞(Σ) ⊂ ∂∞(Σ̂),

µρ̂(∂∞(Σ)) = 0.

Proof. Fix a basepoint in Σ and consider ∂∞(Σ) ⊂ ∂∞(Σ̂) via the natural inclusion

π1(Σ)→ π1(Σ̂). Let ξ = ξρ̂ = ξ
R̂

. Define

U =
⋃

g∈π1(Σ̂)

g · ∂∞(Σ) .

As µρ is ergodic, either µρ(U) = 0 or U has full measure. Let ι be the involution on ∂∞(Σ̂)

defined by ξ−1 ◦ Jn ◦ ξ. Then,

U ′ = ι(U)

is another π1(S)-invariant set implying it either has null or full measure. Moreover, since

Jn|im(ξρ) is C1,

µρ(U) = 0 ⇐⇒ µρ(U
′) = 0 .

Notice that both µρ(U) and µρ(U
′) cannot be full measure, as U ∩ U ′ consists of the

attracting and repelling fixed points of primitive peripheral elements and must be countable.

Therefore, 0 = µρ(U) ≥ µρ̂(∂∞(Σ)) �

This measure property for the Hitchin double will be enough to prove the general case where

Σ ⊂ S is an incompressible surface. For this, make use of the Hausdorff measure in Rn−1.
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Lemma 6.5 (Theorem 3.2.3 [Fed69]). Let f : Rn → Rm be a Lipschitz function for m ≤ n.

If A is an λm (Lebesgue) measurable set, then∫
A
Jm(f(x)) dλmx =

∫
Rn
N(f | A, y) dHmy

where Hm is the m-dimensional Hausdorff measure, N(f | A, y) = #{x ∈ A | f(x) = y},

and Jm(f(x)) =
√

det(Df t ·Df)(x).

Theorem 2.2. Let S be a closed surface and Σ ⊂ S an incompressible subsurface. Let ρ be

a Hitchin representation of S and ξρ the associated limit curve. If µρ is the pullback of the

Lebesgue measure on the image of ξρ, then µρ(∂∞(Σ)) = 0.

Proof. By fixing a basepoint on Σ, there are natural inclusions i : π1(Σ)→ π1(S) and

ı̂ : π1(Σ) → π1(Σ̂) and the induced inclusions i∗, ı̂∗ on the boundaries at infinity. Let R

be a representative of ρ such that R ◦ i is a good representative for ρ|π1(Σ) and build R̂ by

doubling R ◦ i.

Let ξ = ξR and ξ̂ = ξ
R̂

be the limit curves associated to ρ and ρ̂, respectively. For γ ∈ π1(Σ),

ξ ◦ i∗(γ+) = R(i(γ))+ = R̂(̂ı(γ))+ = ξ̂ ◦ ı̂∗(γ+)

as R(i(γ)) = R̂(̂ı(γ)). By the density of attracting fixed points in ∂∞(Σ) we see that

ξ ◦ i∗ = ξ̂ ◦ ı̂∗. In particular, they have the same image ΛΣ = ξ ◦ i∗(∂∞(Σ)) = ξ̂ ◦ ı̂∗(∂∞(Σ)).

Fix some affine chart Rn−1 of PR containing ΛΣ (and by convexity im(ξ) and im(ξ̂) as well).

Let η, η̂ : ∂∞(S)→ Rn−1 be the two C1+α constant speed parametrization for im(ξ), im(ξ̂) of

constant speed cρ, cρ̂, respectively. We apply Theorem 6.5 and Lemma 6.4. By construction,

Jn−1(η) = cρ and Jn−1(η) = cρ̂ and therefore

µρ(i∗(∂∞(Σ))) =

∫
η−1
ρ (ΛΣ)

cρ dλ = H1(ΛΣ)

0 = µρ̂(̂ı∗(∂∞(Σ))) =

∫
η−1
ρ̂ (ΛΣ)

cρ̂ dλ = H1(ΛΣ)

It follows that µρ(i∗(∂∞(Σ))) = 0, as desired. �

Remark 6.6. Notice that we have show that the Hausdorff dimensions of ΛΣ is ≤ 1. A

questions of interest would be to understand the variation this quantity under deformations

of ρ as one leaves the Fuchsian locus.
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7. Orthogeodesics and Double Cosets

Let Σ be connected compact orientable surface with genus g and m > 0 boundary compo-

nents such that the double of Σ has genus at least 2. Fix a finite volume hyperbolic metric

σ on Σ such that ∂Σ is totally geodesic. In particular, we can fix an identification of the

universal cover U of Σ with a convex subset of H2 cutout by geodesics. This also gives an

identification of π1(Σ) with a discrete subgroup of Isom+(H2).

An orthogeodesic in (Σ, σ) is an oriented properly embedded arc perpendicular to ∂Σ at

both endpoints. Denote the collection of orthogeodesics as O(Σ, σ). The orthospectrum is

the multiset containing the lengths of orthogeodesics with multiplicity and is denoted by

|O(Σ, σ)|. Observe that every element of |O(Σ, σ)| appears at least twice as orthogeodesics

are oriented. Also note that O(Σ, σ) is countable as the orthogeodesics correspond to a

subset of the oriented closed geodesics in the double of (Σ, σ). Let `σ(∂Σ) be the length of

∂Σ in (Σ, σ), then recall Basmajian’s identity [Bas93]

`σ(∂Σ) =
∑

`∈|O(Σ,σ)|

2 log coth

(
`

2

)
.

In order to extend this identity to the setting of Hitchin representations, we first need to

replace the geometric object O(Σ, σ) with an algebraic object; this is the goal of this section.

Let A = {α1, . . . , αm} ⊂ π1(Σ) be a collection of primitive elements representing the m

components of ∂Σ in π1(Σ) oriented such that the surface is to the left. We will call such

a set A a positive peripheral marking. Set Hi = 〈αi〉 and, treating π1(Σ) as a subgroup of

PSL(2,R), let α̃i ⊂ H2 be the lift of αi such that Hi = Stab(α̃i).

Fix 1 ≤ i, j ≤ n (possibly i = j), then for g ∈ π1(Σ) (or g ∈ π1(Σ) rHi if i = j) define the

arc α̃i,j(g) to be the minimal length arc oriented from α̃i to g · α̃j . Now α̃i,j(g) descends to

an orthogeodesic αi,j(g) on (Σ, σ). For i 6= j, we denote the set of double cosets

Oi,j(Σ,A) = Hi\π1(Σ)/Hj = {HigHj : g ∈ π1(Σ)}

and for i = j, define

Oi,i(Σ,A) = (Hi\π1(Σ)/Hi) r {HieHi} ,

where e ∈ π1(Σ) is the identity. We will denote an element of Oi,j(Σ,A) corresponding to

HigHj as [g]i,j . Associated to the pair (Σ,A) we define the orthoset to be the collection of
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all such cosets

O(Σ,A) =
⊔

1≤i,j≤n
Oi,j(Σ,A) .

From the definitions, it is clear that the map

Φ : O(Σ,A)→ O(Σ, σ)

given by

Φ([g]i,j) = αi,j(g)

is well-defined.

Proposition 7.1. The map Φ is a bijection.

Proof. We first show it is injective. Suppose Φ([g]i,j) = Φ([g′]i′,j′). First note that

i′ = i and j = j′ since the arcs must be oriented from αi to αj . Now α̃i,j(g) and α̃i,j(g
′)

must differ by an element of π1(Σ). Since both these arcs start on α̃i it is clear that there

exists hi ∈ Hi such that

α̃i,j(g) = hi · α̃i,j(g′) .

In particular, we must have that g · α̃j = (hig
′) · α̃j implying

(g′)−1h−1
i g ∈ Hj .

Set hj = (g′)−1h−1
i g ∈ Hj , then

g = hig
′hj ∈ Hig

′Hj ,

so that [g]i,j = [g′]i,j and Φ is injective.

To see that Φ is surjective, take an orthogeodesic β ∈ O(Σ, σ) from αi to αj . Choose a lift

β̃ of β such that β̃ starts on α̃i. But β̃ must also end on some lift of αj which we can write

as g · α̃j , so that Φ([g]i,j) = β and Φ is surjective. Notice that if i = j, then g /∈ HieHi as

β is a non-trivial orthogeodesic. �

We will see how to rewrite Basmajian’s identity in terms of the orthoset as a corollary of

generalizing the identity to real projective structures.

Remark 7.2. (1) In his paper, Basmajian [Bas93] uses the fact that an orthogeodesic can

be obtained from g ∈ π1(Σ); in our notation, he constructs αi,i(g) for a fixed i.
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(2) Despite using the language and setting of surfaces, the above discussion holds just as

well for connected compact hyperbolic n-manifolds with totally geodesic boundary.

8. Real Projective Structures (n = 3)

A convex real projective surface, or convex RP2-surface, is a quotient Ω/Γ where Ω ⊂ RP2

is a convex domain in the complement of some RP1 and Γ < PGL(3,R) is a discrete

group acting properly on Ω. A convex RP2-structure on a surface S is a diffeomorphism

f : S → Ω/Γ. The work of Goldman [Gol90] tells us that the conjugacy class of the

holonomy coming from a convex RP2-structure on a surface S is a Hitchin representation

π1(S) → SL(3,R). In fact, for closed surfaces this identification is a bijection by the work

of Choi-Goldman [CG93].

In this section we give a generalization of Basmajian’s identity to convex RP2-surfaces and

by extension to 3-Hitchin representations. This result is an immediate corollary of Theorem

2.1, however, the proof here is geometric in nature and will closely follow Basmajian’s

original proof in [Bas93]. Further, it motivates the general case.

8.1. Hilbert metric. Let F = Ω/Γ be a convex RP2-surface, then F carries a natural

Finsler metric called the Hilbert metric, which we now describe.

Let x, y ∈ Ω and define L ⊂ RP2 to be the projective line connecting x and y. L intersects

∂Ω in two points p, q such that p, x, y, q is cyclically ordered on L. Choose any affine patch

containing these four points, then the Hilbert distance between x and y is

h(x, y) := logBP(p, y, q, x) ,

where BP is the projective cross-ratio defined in (5.10). The geodesics in the Hilbert geom-

etry correspond to the intersection of projective lines with Ω. As the cross-ratio is invariant

under projective transformations we see that the Hilbert metric descends to a metric on F .

Let ρ be the holonomy associated to a convex RP2-structure on a surface S, then for a

primitive element g ∈ π1(Σ), the length `ρ(g) (see (3.3)) agrees with the translation length

of the geodesic representative of ρ(g) in the Hilbert metric.

Note that when Ω is a conic, it is projectively equivalent to a disk. In this case, F is

hyperbolic and h = 2dH where dH denotes the hyperbolic metric. For more details on

Hilbert geometry see [BK12].
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8.2. Basmajian’s identity. Let F be a connected compact orientable convex RP2-

surface with non-empty totally geodesic boundary whose double is at least genus 2. Using

the doubling construction described in §2 for Hitchin representations, let F̂ = Ω/Γ be the

double of F . Then F̂ is a closed convex RP2-surface. Note that there is also a doubling con-

struction in [Gol90] inherent to convex RP2-surfaces, which is essentially a more geometric

version of the Hitchin doubling that we have already discussed.

Ũgi,j g · LjLi

α0
i

α+
i

α−i

Figure 1. Orthogonal projection of g · Lj onto Li whose image we defined as Ũgi,j .

Choose a positive peripheral marking A = {αi}mi=1. Let F̃ ⊂ Ω be the universal cover of

F and let Li be the geodesic in Ω stabilized by αi ∈ Γ. In projective geometry, orthogonal

projection to Li is defined as follows: As Ω is strictly convex [Gol90], for x ∈ ∂Ω let θ(x)

denote the line tangent to ∂Ω at x. Set α0
i = θ(α+

i ) ∩ θ(α−i ), then the projection to Li is

defined to be ηi : Ω → Li where ηi(y) is the intersection of the line connecting α0
i and y

and the line Li. For [g]i,j ∈ O(F,A), we let

Ũgi,j = ηi(g · Lj)

be the orthogonal projection of g · Lj onto Li. This is shown in Figure 1.

Lemma 8.1. Let π : Ω→ F̂ be the universal covering map, then π|Ũgi,j is injective.

Proof. Suppose that π|Ũgi,j were not injective, then (αi ·Ugi,j)∩U
g
i,j 6= 0. This can only

happen if (αig) ·Lj and g ·Lj intersect in Ω, which is impossible as the boundary is totally

geodesic. �

By Lemma 8.1, we may define Ugi,j = π(Ũgi,j).
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Lemma 8.2. If [g]i,j , [h]r,s ∈ O(F,A) are distinct elements, then Ugi,j ∩ Uhr,s = ∅.

Proof. If Ugi,j intersects Uhr,s, then i = r and by fixing lifts, one has g · Lj ∩ h · Ls 6= ∅,

which would mean that ∂Σ is not totally geodesic. �

We define GF : O(F,A)→ R+ by

GF ([g]i,j) = logBP(α+
i , ηi(g · α

+
j ), α−i , ηi(g · α

−
j ))

for [g]i,j ∈ O(F,A). Let ρ be a 3-Hitchin representation realizing F , then by a standard

fact in projective geometry about cross-ratios of four lines

GF ([g]i,j) = logBρ(α
+
i , g · α

+
j , α

−
i , g · α

−
j ) ,

which agrees with our function in Theorem 2.1. We can then write Basmajian’s identity:

Proposition 8.3 (Basmajian’s identity for RP2-surfaces). Let F be a connected compact

orientable convex RP2-surface with non-empty totally geodesic boundary whose double has

genus at least 2. Let A = {α1, . . . , αm} be a positive peripheral marking. Then,

`F (∂F ) =
∑

x∈O(F,A)

GF (x)

where `F measures length in the Hilbert metric on F and `F (∂F ) =
∑n

i=1 `F (αi). Further-

more, if F is hyperbolic, then this is Basmajian’s identity.

Proof. Abusing notation, we will use αi to denote both the element in π1(F ) and its

geodesic representative in F . From above, we have Ugi,j is an interval embedded in αi and

by construction

`(Ugi,j) = logBP(α+
i , ηi(g · α

+
j ), α−i , ηi(g · α

−
j )) .

For a fixed i, the complement of ⋃
[g]i,j∈O(F,A)

Ugi,j

in αi is the projection of ∂∞(F ), or π(ηi(∂∞(F ))), which has measure zero by Lemma 6.4.

This gives the identity as stated.

We now show that this is Basmajian’s identity in the case that Σ is hyperbolic. In this

case, we may draw a standard picture with Ω being the unit disk in an affine patch as in

Figure 2. The line connecting g ·Lj and Li is a lift of the orthogeodesic corresponding to the
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(x, y)(−x, y)

(0, 0)
(−1, 0) (1, 0)

Li

g · Lj

Figure 2. A standard diagram for the orthogonal projection of g · Lj onto
Li in the hyperbolic case.

element [g]i,j (this can be seen by considering the corresponding geodesics in the Poincaré

disk model). We have

` = logBP((0,−1), (0, y), (0, 1), (0, 0)) = log

(
1 + y

1− y

)
is the length of this orthogeodesic in the Hilbert metric and let

L = logBP((−1, 0), (x, 0), (1, 0), (−x, 0)) = 2 log

(
1 + x

1− x

)
be the length of the projection of g · Lj onto Li. From this we see that

x = tanh
L

4
and y = tanh

`

2
.

From x2 + y2 = 1 we see that

1 = tanh2

(
L

4

)
+ tanh2

(
`

2

)
=⇒ tanh2

(
L

4

)
= sech2

(
`

2

)
.

Now using the fact that

arctanh(z) =
1

2
log

(
1 + z

1− z

)
we have

L = 4arctanh

(
sech

(
`

2

))
= 2 log

(
1 + sech

(
`
2

)
1− sech

(
`
2

)) = 4 log coth

(
`

4

)
.
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Recalling that the Hilbert metric is twice the hyperbolic metric, we recover

`h(∂F ) =
∑

`h∈|O(F )|

2 log coth

(
`h
2

)
,

where `h(γ) measures length of γ in the hyperbolic metric on F , which is as desired. �

9. Basmajian’s Identity

We saw in the case of convex RP2-structures (or 3-Hitchin representations) on a bordered

surface that Basmajian’s identity is derived by computing the lengths of orthogonal projec-

tions in the universal cover. In the n-Hitchin case, we no longer have the same picture of

a universal cover (for n > 3), but the idea is roughly the same. In fact, in terms of cross

ratios, we will be using the same function on the orthoset as the summand.

Let Σ be a compact surface with m > 0 boundary components whose double has genus at

least 2. Choose a positive peripheral marking A = {α1, · · · , αm}, then for an ordered cross

ratio B on ∂∞(Σ) we define the function GB : O(Σ,A)→ R+ by

GB ([g]i,j) := logB (α+
i , g · α

+
j , α

−
i , g · α

−
j ) .

For a Hitchin represenation ρ and the associated cross ratio Bρ we set

Gρ = GBρ .

We think of Gρ([g]i,j) as measuring the length of the projection of the line connecting g ·α+
j

and g · α−j to the line connecting α+
i and α−i .

Theorem 2.1. Let Σ be a compact connected surface with m > 0 boundary components

whose double has genus at least 2. Let A = {α1, . . . , αm} be a positive peripheral marking.

If ρ is a Hitchin representation of π1(Σ), then

`ρ(∂Σ) =
∑

x∈O(Σ,A)

Gρ(x) ,

where `ρ(∂Σ) =
∑m

i=1 `ρ(αi). Furthermore, if ρ is Fuchsian, this is Basmajian’s identity.

Remark. Theorem 2.1 holds for surfaces Σ with m > 0 boundary components and p

cusps if one assumes that Hitchin representations of Σ̂, the double, have associated Frenet

curves. In particular, our result relies of the existence of a Frenet curve for closed surfaces.
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It is currently not known if all Hitchin representations with parabolic holonomy around

punctures admit Frenet curves.

Proof. We use the framework from [LM09, Theorem 4.1.2.1]. Let us focus our at-

tention on a single boundary component. Let α = α1. Fix a finite area hyperbolic

structure on Σ so that ∂Σ is totally geodesic. Identify Σ with U/Γ for a convex set

U ⊂ H2 whose boundary in H2 is a disjoint union of geodesics. With this identification,

∂∞(Σ) ∼= ∂∞U = U ∩ S1
∞ and π1(Σ) ∼= Γ. Moreover, S1

∞ r ∂∞U is a union of disjoint

intervals of the form Ĩβ = (β−, β+) for primitive peripheral elements β ∈ Γ which have Σ

on their left. By construction, β = gαjg
−1 for some aj in the positive peripheral marking

A and g ∈ Γ.

Observe that
(
gαjg

−1
)±

= α±k if and only if gαjg
−1 = αk because gαjg

−1 and αk are

primitive. In particular, we must have that j = k and g ∈ Hj = 〈αj〉. We therefore

conclude that Ĩg1αjg
−1
1

= Ĩg2αkg
−1
2

if and only if j = k and g−1
2 g1 ∈ Hj , giving us the

bijection {
Components Ĩβ of S1

∞ r ∂∞U
}
⇐⇒

⊔
1≤j≤n

π1(Σ)/Hj .

Let B = Bρ be the cross ratio associated to ρ and fix some ζ ∈ (α+, α−) ⊂ ∂∞(Σ) in order

to define the continuous function FB : (α+, α−)→ R by

(9.1) FB(x) = logB(α+, x, α−, ζ).

Note that B(α+, x, α−, ζ) is positive by (5.8) and (5.7).

Lemma 9.1. FB is a homeomorphism onto its image. Further, if Σ is closed, then FB is

surjective.

Proof. This follows from the proof of [LM09, Theorem 4.1.2.1] bur we include an

argument here for completeness. First injectivity: if B(α+, x, α,ζ) = B(α+, x
′, α, ζ), then

B(α+, x, α−, x′) = 1 by (5.3); hence, x = x′ by (5.2). Furthermore, the inequality (5.8)

implies FB preserves the ordering and therefore it is a homeomorphism onto its image.

Lastly, note that as x→ α± we have FB(x)→ ∓∞ by (5.1) and (5.7) and that (α+, α−) is

connected if Σ is closed. �
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Since FB is increasing, we see that the set R r FB(∂∞U) is a union of disjoint intervals

Îβ = (FB(β−), FB(β+)). Further,

FB(α · x) = logB(α+, α · x, α−, ζ)

= log
B(α+, x, α−, ζ)

B(α+, x, α−, α · x)

= FB(x)− `ρ(α)

by (5.4) and (5.7). Now, set T = R/`ρ(α)Z and define π : R → T to be the projection.

From above, we have that Îαβα−1 ∩ Îβ = ∅ and

Îαβα−1 = (FB(α · β+), FB(α · β−)) = Îβ − `ρ(α)

so π|Îβ is injective. Define Iβ = π(Îβ) and observe that

{Components Iβ of T r π(FB(∂∞U))} ⇐⇒

 ⊔
1≤j≤m

H1\π1(Σ)/Hj

r {H1eH1} ,

where we remove H1eH1 as it corresponds to the interval Ĩα, which is outside (α+, α−).

Using our notation from §7, the right hand side is simply
⊔

1≤j≤mO1,j(Σ,A).

For each Iβ, there is a j and an element [g]1,j ∈ O1,j(Σ,A), where β = gαjg
−1. With this

representative, we see that if λ is the Lebesgue measure on R, then

λ(Iβ) = FB(β+)− FB(β−)

= log
B(α+, β+, α−, ζ)

B(α+, β−, α−, ζ)

= log
(
B(α+, β+, α−, ζ) ·B(α+, ζ, α−, β−)

)
(by (5.7))

= logB(α+, β+, α−, β−) (by (5.4))

= logB(α+, g · α+
j , α

−, g · α−j )

= Gρ([g]1,j) .

It follows that

`ρ(α) = λ(T) = λ(π(FB(∂∞U))) +
∑

1≤j≤m

∑
x∈O1,j(Σ,A)

Gρ(x) .
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Lemma 6.4 tells us that λ(π(FB(∂∞U))) = 0 giving the identity for a single boundary

component. By doing the same for the other boundary components and summing, we have

arrived at

`ρ(∂Σ) =
∑

x∈O(Σ,A)

Gρ(x) .

We finish by noting that the proof of Proposition 8.3 implies that if ρ is Fuchsian then we

recover Basmajian’s original identity. �

Remark. In Theorem 2.1, Gρ is defined using the Frenet curve associated to the doubled

representation ρ̂ : π1(Σ̂) → PSL(n,R). However, if we are given Σ as a subsurface of a

closed surface S and a Hitchin representation ρ′ : π1(S)→ PSL(n,R), then we may use the

cross ratio associated to ρ′ restricted to π1(Σ)4∗, which agrees with that of ρ̂ as seen in the

proof of Theorem 2.2.

10. Relations to the McShane-Mirzakhani Identity

In this section, we discuss the relation between our identity and Labourie-Mcshane’s gener-

alization of the McShane-Mirzakhani identity. We will first consider the hyperbolic surface

case and then generalize to Hitchin representations.

There are three spectral identities on hyperbolic surfaces with nonempty totally geodesic

boundary (the McShane-Mirzkani [Mir07a], Basmajian [Bas93], and Bridgeman [Bri11]

identities) that originally appeared to be using completely different ideas, but were put

into a unified framework by S.P. Tan by viewing them as different decompositions of the

geodesic flow. This viewpoint is outlined in the survey [BT16]. These ideas led to the

Luo-Tan identity for closed surfaces [LT14]. This is the viewpoint we take in this section.

We note that finding relationships between the identities listed has been of recent interest.

Connections between Basmajian and Bridgeman’s identities were explored in [BT14] and

[Vla15]. Also, in a sense, the identity of Luo-Tan for closed surfaces gives connections

between Bridgeman’s identity and that of McShane-Mirzakhani.

The McShane-Mirzakhani identity gives the length of a boundary component as sum over a

collection of pairs of pants in the surface. As the geometry of a pair of pants is dictated by the

lengths of its boundary components, the summands depend on the lengths of simple closed

geodesics in the surface. In order to prove this identity, one has to give a decomposition
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of the boundary into intervals. As this is the same idea for Basmajian’s identity, the goal

of this section is to relate the Basmajian decomposition of the boundary to that of the

McShane-Mirzakhani decomposition.

10.1. McShane-Mirzakhani Decomposition. Let F be a compact hyperbolic sur-

face with nonempty totally geodesic boundary. Fix α to be a component of ∂F . For a point

x ∈ α, let βx(t) be geodesic obtained by flowing the unit vector vx normal to α at x for

time t. Define tx ∈ R+ to be either

• the first value of t such that there exists t0 ∈ [0, t) with βx(t) = βx(t0), i.e. tx is

the first time the geodesic obtained by flowing vx hits itself, or

• if the arc obtained from this flow is simple and returns to the boundary, then we

let tx to be the time it takes to return to ∂F , i.e. βx(tx) ∈ ∂F , or

• if the arc is simple and infinite in length, let tx =∞.

Note that the set of boundary points with tx =∞ is measure zero as the limit set projects

to a set of measure zero on α in the natural Lebesgue measure class. For those x ∈ α with

tx < ∞, define the geodesic arc δx = βx([0, tx]). The arc δx defines a pair of pants Px as

follows (there are two cases):

(i) If δx is simple and finite, let α′ be the components of ∂F containing nt(tx) (possibly

α′ = α) and define Px to be the neighborhood of δx ∪α∪α′ with totally geodesic

boundary.

(ii) If δx is not simple, then define Px to be the neighborhood of δx ∪ α with totally

geodesic boundary. This case is shown in Figure 3.

x δx

Figure 3. An example of Px with δx non-simple.
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The McShane-Mirzakhani decomposition of the boundary is as follows. Let Pα(F ) be the

set of embedded pairs of pants P ⊂ F with geodesic boundary and with α as a boundary

component. For P ∈ Pα(F ) set

VP = {x ∈ α : Px = P},

We then have that VP is a disjoint union of two intervals unless P contains two components

of ∂F , in which case VP is a single interval. Further, VP ∩ VP ′ = ∅ for P 6= P ′ yielding

`(α) = `

 ⋃
P∈Pα(F )

VP

 =
∑

P∈Pα(F )

`(VP ) ,

see [Mir07a] or [BT16] for details. The McShane-Mirzakhani identity is derived from

computing `(VP ) for P ∈ Pα(F ).

In the case that F has a single boundary component, this identity becomes

`(α) =
∑

P∈Pα(F )

log

(
e
`(∂P )

2 + e`(∂F )

e
`(∂P )

2 + 1

)
.

10.2. Comparing Decompositions. In §8, we saw how to decompose the boundary

for Basmajian’s identity using orthogonal projection in the universal cover; let us give the

same decomposition from a slightly different perspective that better matches the discussion

on the McShane-Mirzakhani decomposition.

For x ∈ ∂F , let βx be the oriented geodesic obtained by flowing the vector normal to ∂F

based at x as before. βx will have finite length and terminate in ∂F for almost every x ∈ ∂F

as the limit set projects to a set of measure zero on ∂F . For every orthogeodesic β ∈ O(F )

we define

Uβ = {x ∈ ∂F : βx is properly isotopic to β}.

As no two orthogeodesics are properly isotopic, we see that Uβ ∩ Uβ′ = ∅ and as almost

every βx is properly isotopic to some orthogeodesic we again arrive at Basmajian’s identity

`(∂F ) = `

 ⋃
β∈O(F )

Uβ

 =
∑

β∈O(F )

`(Uβ) =
∑

β∈O(F )

2 log coth
`(β)

2
.

As the McShane-Mirzakhani identity calculates the length of a particular boundary com-

ponent, for α a component of ∂F , let Oα(F ) be the collection of orthogeodesics emanating

from α.



76 4. BASMAJIAN’S IDENTITY FOR HITCHIN REPRESENTATIONS

Proposition 10.1. Let F be a compact hyperbolic surface with nonempty totally geodesic

boundary. For each β ∈ Oα(F ), there exists P ∈ Pα(F ) such that Uβ ⊂ VP .

Proof. There exists x such that β = βx, so we set P = Px. Given y ∈ Uβ, we know

that there is a proper isotopy taking βy to β, which must also take δy to δx. Given the

definition of Py, we have that Py = P . �

For P ∈ Pα(F ), let

OP = {β ∈ Oα(F ) : Uβ ⊂ VP } .

We then immediately have:

Corollary 10.2. Let F be a compact hyperbolic surface with nonempty totally geodesic

boundary. For P ∈ P(F )

`(VP ) =
∑
β∈OP

2 log coth
`(β)

2
.

10.3. Decompositions in the Hitchin Setting. In order to proceed, we need to

translate the geometric language in the two decompositions to information about the fun-

damental groups of the surface. We have already seen how to do this in the context of

Basmajian’s identity using the orthoset in §7. Now let us do the same for the McShane-

Mirzakhani identity following [LM09].

Let Σ be a compact connected oriented surface with nonempty boundary whose double has

genus at least two. Fix a hyperbolic metric σ on Σ such that ∂Σ is totally geodesic. As we

have done before, let us identify the universal cover of Σ with a convex subset of H2 cut out

by geodesics. Fix a positive peripheral marking A = {α1, . . . , αm} for Σ and let α = α1 be

a fixed peripheral element. As in the previous section, we have the set Pα(Σ, σ) consisting

of embedded pairs of pants with totally geodesic boundary containing the component of ∂Σ

represented by α. We would like to replace these geometric objects with topological ones.

In particular, we will translate VP into a subset of S1
∞ instead of a subset of α itself. In the

geometric setting, this would be done via projection from α to (α+, α−) ⊂ S1
∞.

Given P ∈ Pα(Σ, σ) we can find a good pair (β, γ) ∈ π1(P )2 such that αγβ = e and

β, γ oriented with P on the left. Let (β′, γ′) be another good pair, then we will say that
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(β, γ) ∼ (β′, γ′) if for some n

β′ = αnβα−n

γ′ = αnγα−n .

Up to his equivalence there only exist two such pairs: (β, γ) and (γ, γβγ−1). These pairs

and equivalences depend only on the topology, so let us define Pα(Σ) to be the set of isotopy

classes of embedded pairs of pants in Σ containing α as a boundary component. Note that

we have a natural bijection Pα(Σ, σ)→ Pα(Σ) by sending P to its isotopy class [P ].

The pairs (β, γ) and (γ, γβγ−1) correspond to the two isotopy classes of embeddings of a

fixed pair of pants P0 into Σ with a choice of peripheral elements α0, β0, γ0 ∈ π1(P0) with

P0 on the left, α0γ0β0 = e and α0 7→ α. This language is used in [LM09].

α+ α−

β−

β+ γ · β− = (γβγ−1)−

γ · β+ = (γβγ−1)+

γ+
γ−

x̃

δ̃x

D

δ̃+
x

Figure 4. A fundamental domain D for P and the lift of δx. One can verify
that αγβ = e and α−1 · β± = γ · β±.

Let us fix [P ] ∈ Pα(Σ) with P ∈ Pα(Σ, σ) and fix a good pair (β, γ) ∈ π1(P )2 ⊂ π1(Σ)2.

We can draw a fundamental domain D for P as in Figure 4. Abusing notation and letting

α also denote its geodesic representative in ∂Σ, let x ∈ α be such that Px = P . Lift x

to x̃ ∈ D on the geodesic G(α−, α+) ⊂ H2 and let δ̃x be the lift of δx (as defined in the

previous subsection) living in this fundamental domain.
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Assuming β and γ are not peripheral, observe that δx determines P if and only if δx ⊂ P

and has finite length, see Figure 3 for an example. In particular, this means that δx stays

inside P and either self interests or hits α. This is equivalent to having δ̃+
x in the set

J̃P = (β+, γ−) ∪ (γ+, γ · β−) ⊂ S1
∞

as shown in Figure 4. The orthogonal projection of JP to the geodesic G(α−, α+) ⊂ H2

followed by the universal covering projection to ∂Σ is injective and corresponds to VP .

Now suppose only γ is peripheral, then δx determines P if and only if δ̃+
x is in the interval

J̃P = (β+, γ · β−). We simply add in the interval (γ−, γ+) to allow for simple arcs δx that

hit the boundary component γ for the scenario in the previous paragraph.

Similarly, if only β is peripheral, then δx determines P if and only if δ̃+
x is some α translate

of a point in the interval

J̃P = (α · γ+, γ−) = (β−, γ−) ∪ α · (γ+, γ · β−) .

The technicality of translating by α arrises because be chose our lift x̃ ∈ D and want to

write J̃P as one interval.

If both β and γ are peripheral, then Σ = P and the interval is simply JP = (β−, γ · β−).

The same sequence of projections also gives VP in these cases.

Let ρ be a Hitchin representation of Σ and let B = Bρ be the associated cross ratio.

We define the pants gap function Hρ : Pα(Σ) → R as follows. Let [P ] ∈ Pα(Σ) and let

(β, γ) ∈ π1(P )2 ⊂ π1(Σ) be a good pair. Define the auxiliary function i∂ : π1(Σ) → {0, 1}

by i∂(ω) = 1 if ω is primitive peripheral and i∂(ω) = 0 otherwise. Then

Hρ([P ]) = log
[
B(α+, γ−, α−, β+) ·B(α+, γ · β−, α−, γ+)

]
+

+ i∂(β) logB(α+, β+, α−, β−) + i∂(γ) logB(α+, γ+, α−, γ−) .

With this setup at hand, the McShane-Mirzakhani identity for Hitchin representations from

[LM09] states

`ρ(α) =
∑

[P ]∈Pα(Σ)

Hρ([P ]) .

If we let T = R/`ρ(α)Z and let JP be the projection of J̃P under the composition of the

projection π : R → T and the map FB defined in (9.1), then the McShane-Mirzakhani

identity is saying that the JP are all disjoint and give a full measure decomposition of T.
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As in the proof of Theorem 2.1, for a primitive peripheral element β of π1(Σ), let Ĩβ =

(β−, β+) and Iβ = π((FB(β−), FB(β+))). Using α = α1 in some positive peripheral marking,

let

Oα(Σ,A) = O1,j(Σ,A) .

We saw that Iβ corresponds to an element x ∈ Oα(Σ,A), so let us rename this interval

Ix. As the sets JP are all disjoint, it follows that for x ∈ Oα(Σ,A), there is a unique

[P ] ∈ Pα(Σ) such that Ix ⊂ JP . This gives the analog of Proposition 10.1:

Proposition 10.3. Let Σ be a compact connected orientable surface with nonempty bound-

ary whose double has genus at least 2. For each x ∈ Oα(Σ,A) there exists a unique

[P ] ∈ Pα(Σ) such that Ix ⊂ JP .

For [P ] ∈ Pα(Σ), let

OP (Σ,A) = {x ∈ Oα(Σ,A) : Ix ⊂ JP } .

We then immediately have the analog of Corollary 10.2:

Corollary 10.4. Let Σ be a compact connected orientable surface with nonempty boundary

whose double has genus at least 2 and let [ρ] a Hitchin representation of π1(Σ). For [P ] ∈

Pα(Σ)

Hρ([P ]) =
∑

x∈OP (Σ,A)

Gρ(x) .





CHAPTER 5

Bridgeman-Kahn Identity for Finite Volume Hyperbolic

Manifolds

1. Finite Volume Hyperbolic Manifolds with Totally Geodesic Boundary

For us, a hyperbolic n-manifold with totally geodesic boundary M can be defined as an

orientable manifold with boundary that admits an atlas of charts {ϕα : Uα → Dα}, where

Dα ⊂ H3 are closed halfspaces, ϕα(Uα∩∂M) = ϕα(Uα)∩∂Dα, and the transition maps are

restrictions of elements of Isom+(H3). We will assume that all our manifolds are complete,

in the sense that the developing map D : M̃ → H3 is a covering map onto the convex hull

of some subset of ∂∞Hn. If fact, when M has finite volume, it can be show that D is an

isometry and D(M̃) is a countable intersection of closed half-spaces bounded by mutually

disjoint hyperplanes. Further, if Γ is the image of the holonomy map, M ∼= CH(ΛΓ)/Γ (see,

for example, [Deb07]). To understand the structure of ∂M , we have the following result

of Kojima.

Theorem 1.1. (Kojima [Koj90]) If M is a complete finite volume hyperbolic n-manifold

with totally geodesic boundary, then ∂M is a complete finite volume hyperbolic (n − 1)-

manifold.

In particular, if X ⊂ ∂M is a boundary component, then X̃ is a hyperplane on ∂M̃ .

1.1. Cusps. Let M be a complete finite volume hyperbolic n-manifold M and Γ ≤

Isom+(Hn) the image of the holonomy map for M . A cusps c of M is a Γ-orbit of the fixed

point of some parabolic element g ∈ Γ. By the Margulis Lemma, c admits an embedded

horoball neighborhood Bc ⊂M . Following [Koj90], c arises in two different ways. We say

c is an internal cusp of M whenever Bc
∼= Ec × [0,∞) for some closed Euclidean (n − 1)-

manifold Ec. We call c a boundary cusp, or ∂-cusps for short, whenever Bc
∼= E∂c × [0,∞) for

some compact Euclidean (n − 1)-manifold E∂c with totally geodesic boundary. In the case

81
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of a ∂-cusp, the two components of ∂E∂c correspond to horoball neighborhoods of cusps of

∂M . In particular, ∂-cusps corresponds to some pairs of cusp of ∂M .

2. Volume Form on the Unit Tangent Bundle

2.1. Unit Tangent Bundle. The volume form Ω on T1Hn is invariant under the

action of Isom+ (Hn) ∼= SO+(n, 1) in the hyperboloid model. Here SO+(n, 1) is the identity

component in SO(n, 1). As homogeneous spaces, one may identify Hn ∼= SO+(n, 1)/ SO(n)

and T1Hn ∼= SO+(n, 1)/ SO(n − 1). The form Ω arrises by projecting the Haar measure

from SO+(n, 1) to T1Hn, which is unique up to multiplication by a scalar. We may also

parametrize T1Hn ∼= Hn × Sn−1, which carries the natural volume element dV dω. Since

SO+(n, 1) acts on T1Bn by orientation preserving Möbius transformations, dV dω is also

invariant. With this in mind, we normalize to have

(2.1) dΩ = dV dω.

For a detailed reference on this perspective, see [FLJ12].

2.2. Stereographic Projection and Standard Volume Formulae. We will need

a few facts about the standard volume element dω on Sn ⊂ Rn+1. Instead of using spherical

coordinates, we can parametrize Sn − {en+1} using stereographic coordinates. Define π̊ :

Rn → Rn by

π̊(x) =
2x

|x|2 + 1
.

Then stereographic projection π : Rn → Sn − {en} is given by

(2.2) π(x) =

(
π̊(x),

|x|2 − 1

|x|2 + 1

)
=

(
2x1

|x|2 + 1
, . . . ,

2xn
|x|2 + 1

,
|x|2 − 1

|x|2 + 1

)
.

We will also make use of the standard transformation η : Un → Bn given by η = σ ◦ rn
where σ is the reflection in the sphere S(en,

√
2) and rn is the reflection through the plane

en = 0. In coordinates, for x ∈ Un − {∞},

(2.3) η(x1, . . . , xn) =

(
2x1

|x|2 + 2xn + 1
, . . . ,

2xn−1

|x|2 + 2xn + 1
,
|x|2 − 1

|x|2 + 2xn + 1

)
.

See [Rat13, §4.4] for details. Notice that π = η |Rn .

Next, we consider the volume form π∗(dω) in stereographic coordinates.
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Lemma 2.1. The pullback of ω from Sn to Rn via π has element

π∗(dω) =
2n dx

(|x|2 + 1)n
.

Unable to find a reference for this fact, we do the computation in the appendix (see 0.2).

Our volume form dω is induced from Rn and therefore

(2.4) Vol(Sn) =
2π

n+1
2

Γ
(
n+1

2

) ,

(2.5) Vol(Sn)/Vol(Sn−1) =

√
π Γ

(
n
2

)
Γ
(
n+1

2

)
where Γ(·) is the Γ-function normalized to Γ(n) = (n− 1)! for n ∈ Z+.

Let BHn(R) denote a hyperbolic ball of radius R. Using spherical coordinates for Hn, one

can derive

(2.6) Vol(BHn(R)) = Vol(Sn)

∫ R

0
sinhn−1(r) dr

see [Rat13, §3.4] for details. In the appendix, we provide a expression for this volume in

terms of hypergeometric functions (see Proposition 0.3).

2.3. Möbius Transformations. For γ ∈ M(R̂n) and x ∈ Rn, γ′(x) is a conformal

matrix (i.e. a constant multiple of an orthogonal transformation). Thus, we can define

|γ′(x)| ∈ R+ to be the unique number such that γ′(x)/|γ′(x)| is orthogonal.

In this Chapter, | · | will always denote the standard Euclidean norm |x| =
√
x2

1 + . . .+ x2
n

for x ∈ Rn and {ei}ni=1 will be the standard basis for Rn. With this in mind, Nicholls

provides the following useful formula for γ ∈M(R̂n) and x,y ∈ Rn [Nic89, (1.3.2)].

(2.7) |γ(x)− γ(y)| = |γ′(x)|1/2 |γ′(y)|1/2 |x− y|

We will make extensive use of equation (2.7). Additionally, we will need the following two

constructions.

Let σ̊(v) = v/|v|2 be the inversion through the sphere of radius 1 around 0 ∈ Rn. A simple

computation (see [Rat13, proof of Theorem 4.1.5]) shows that the Jacobian of σ̊ is

(2.8) | det σ̊′| = 1/|v|2n
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Lastly, for y ∈ Rn−1 ⊂ ∂∞Un, we construct a hyperbolic rotation γy : Un → Un around

en ∈ Un that takes 0 to y. Observe that the stereographic projection π acts radially in the

sense that the plane 〈en,y〉 equals 〈en, π(y)〉. Let roty be a rotation of Sn−1 in the plane

〈en, π(y)〉 taking −en to π(y) and define γy = π−1 ◦ roty ◦π. From the definition, it is clear

that γy acts on the line Ry. A simple computation in this plane shows that

γy

(
t

y

|y|

)
=

t+ |y|
1− |y| t

y

|y|
for t ∈ R.

Since γ′y is conformal, we can compute

(2.9) |γ′y(0)| = d

dt

∣∣∣∣
t=0

t+ |y|
1− |y| t

= 1 + |y|2

2.4. Hypergeometric, Gamma, and Harmonic Number Functions. We will

need to use a few special functions. Recall that the Γ function defined by Γ(m) = (m− 1)!

for m ∈ Z+ satisfies the following doubling formula,

(2.10) Γ(z)Γ
(
z + 1

2

)
= 21−2z √π Γ(2z)

We will also use the mth harmonic number H(m) given as

(2.11) H(m) =
m∑
k=1

1

k
=

∫ 1

0

1− wm

1− w
dw.

Lastly, we will require a few facts about hypergeometric functions. Given a, b, c ∈ C with

c /∈ Z− ∪ {0} one defines the hypergeometric function

(2.12) 2F1(a, b, c; z) =
Γ(c)

Γ(a) Γ(b)

∞∑
k=0

Γ(a+ k) Γ(b+ k)

Γ(c+ k)

zk

k!
for |z| < 1

and by continuation elsewhere. Note that 2F1(a, b, c; z) = 2F1(b, a, c; z). For a reference on

hypergeometric functions see [AAR99].

Theorem 2.1 (Euler 1769, [AAR99, Theorem 2.2.1] for proof). If <(c) > <(b) > 0, then

(2.13) 2F1(a, b, c; z) =
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0
xb−1 (1− x)c−b−1 (1− zx)−a dx

for z ∈ C− [1,∞), arg(t) = arg(1− t) = 0 and (1− zt)−a taking its principal value.

Using this integral formula, one can prove the following transform due to Pfaff and Euler.
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Theorem 2.2 (Euler 1769, [AAR99, Theorem 2.2.5] for proof).

(2.14) 2F1(a, b, c; z) = (1− z)c−a−b 2F1(c− a, c− b, c; z)

2.5. Geodesic Endpoint Parametrization. In this section, we will rewrite the natu-

ral volume element dΩ = dV dω on T1Hn in terms of the geodesic endpoint parametrization.

A common reference for this formula can be found in [Nic89, Theorem 8.1.1], however, the

formula is off by a scalar multiple. We correct this here. After this manuscript was com-

plete, we did find a correct version in [FLJ12, Proposition III.6.2.6], however, our proofs

are dramatically different.

For this parametrization we fix a base point O ∈ Hn. For convenience, we will choose

the origin 0 ∈ Rn in the conformal ball model and en ∈ Un. In the geodesic endpoint

parametrization a point v ∈ T1Hn is mapped to a triple (ξ−, ξ+, t) ∈ ∂∞Hn×∂∞Hn×R where

ξ−, ξ+ are the backwards and forwards endpoints of the geodesic defined by v, respectively.

On this geodesic there is a closest point p(ξ−, ξ+) to O, called the reference point. The value

of t is the signed hyperbolic distance along this geodesic from p(ξ−, ξ+) to the basepoint of

v. This assignment is a bijection and we have

T1Hn ∼= {(ξ−, ξ+, t) ∈ ∂∞Hn × ∂∞Hn × R : ξ− 6= ξ+}.

For a a Möbius transformation γ of Hn and a point (ξ−, ξ+, t) we have that

(2.15) γ(ξ−, ξ+, t) = (γ(ξ−), γ(ξ+), t+ sγ(ξ−, ξ+))

where sγ(ξ−, ξ+) is the signed distance between p((γ(ξ−), γ(ξ+)) and γ(p(ξ−, ξ+)) along the

geodesic from γ(ξ−) to γ(ξ+).

The following proposition is the corrected version of [Nic89, Theorem 8.1.1].

Theorem 3.1. Let Ω = dV dω be the standard volume form in T1Hn+1. Then, with the

following coordinates arising from the upper half space and conformal ball models for the

geodesic endpoint parametrization

T1Hn+1 ∼= {(x,y, t) ∈ R̂n × R̂n × R : x 6= y}

T1Hn+1 ∼= {(p,q, t) ∈ Sn × Sn × R : p 6= q},
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we have

dΩ =
2ndx dy dt

|x− y|2n
=

2ndω(p) dω(p) dt

|p− q|2n

where | · | is the Euclidean norm in Rn and Rn+1 respectively.

We first do a computation to show the second equality in Theorem 3.1.

Lemma 2.2. The standard transformation η : Un → Bn induces the map φ = π × π × id

between the two geodesic endpoint parametrization models, where π is the stereographic

projection. In addition

φ∗
(

2ndω(p) dω(p) dt

|p− q|2n

)
=

2ndx dy dt

|x− y|2n
.

Proof. Since η(en+1) = 0 (our fixed base points) and η preserves the hyperbolic

metric, the identity component of φ is clear. By constriction, η |Rn= π and so Proposition

2.1 implies

(2.16) φ∗
(

2ndω(p) dω(p) dt

|p− q|2n

)
=

2n

(|x|2 + 1)n
· 2n

(|y|2 + 1)n
· 2ndx dy dt

|π(x)− π(y)|2n
.

Using the defining equation (2.2) for π, we get

|π(x)− π(y)|2 =

∣∣∣∣ 2x

|x|2 + 1
− 2y

|y|2 + 1

∣∣∣∣2 +

(
|x|2 − 1

|x|2 + 1
− |y|

2 − 1

|y|2 + 1

)2

=
4|x|2

(|x|2 + 1)2
+

4|y|2

(|y|2 + 1)2
− 8 x · y

(|x|2 + 1)(|y|2 + 1)

+
(|x|2 − 1)2

(|x|2 + 1)2
+

(|y|2 − 1)2

(|y|2 + 1)2
− 2(|x|2 − 1)(|y|2 − 1)

(|x|2 + 1)(|y|2 + 1)

Adding the terms vertically, we have

|π(x)− π(y)|2 = 1 + 1− 2(|x|2 − 1)(|y|2 − 1) + 8 x · y
(|x|2 + 1)(|y|2 + 1)

=
2(|x|2 + 1)(|y|2 + 1)− 2(|x|2 − 1)(|y|2 − 1)− 8 x · y

(|x|2 + 1)(|y|2 + 1)

=
4|x|2 + 4|y|2 − 8 x · y

(|x|2 + 1)(|y|2 + 1)
=

4|x− y|2

(|x|2 + 1)(|y|2 + 1)

Substituting into equation (2.16), we obtain the desired result

φ∗
(

2ndω(p) dω(p) dt

|p− q|2n

)
=

2ndx dy dt

|x− y|2n
.

�
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Lemma 2.3. There exists a constant C ∈ R such that

C dΩ =
2ndx dy dt

|x− y|2n
=

2ndω(p) dω(p) dt

|p− q|2n

Proof. By Lemma 2.2 we can work in the upper half space model. Recall from section

2.1 that the form Ω arrises from the Haar measure on SO+(n, 1), with SO+(n, 1) acting on

T1Hn ∼= SO+(n, 1)/SO(n− 1) by orientation preserving Möbius transformations. Let γ be

a Möbius transformation of Un+1, then

γ∗
(

2ndx dy dt

|x− y|2n

)
=

2ndγ(x) dγ(y) d(t+ sγ(x,y))

|γ(x)− γ(y)|2n

=
2n|γ′(x)|n|γ′(y)|ndx dy dt(
|γ′(x)|1/2|γ′(x)|1/2|x− y|

)2n =
2ndx dy dt

|x− y|2n

using equations (2.15) and (2.7) for Möbius transforamtions. By uniqueness of the Haar

measure up to scalar multiple, our lemma follows. �

Define

Bh = {z ∈ Hn+1 | dH(z, O) < arcsinh(1)}

In Un+1, Bh has Euclidean center
√

2 en+1 and radius 1. We will prove that

(2.17)

∫
T1Bh

dΩ =

∫
T1Bh

2ndx dy dt

|x− y|2n
,

which implies C = 1 and Theorem 3.1 holds. We will make use of standard volume formulae

(2.2) and hypergeometric functions (2.4.)

Lemma 2.4.

(2.18)

∫
T1Bh

dΩ = Vol(Sn) Vol(Sn−1)

√
π Γ

(
n
2

)
2 Γ
(
n+3

2

) 2F1

(
1

2
,
n+ 1

2
,
n+ 3

2
;−1

)
.

Proof. Using dΩ = dV dω on T1Bh ∼= Bh × Sn and the volume formula (2.6),∫
T1Bh

dΩ = Vol(Sn)2

∫ arcsinh(1)

0
sinhn(ρ) dρ = Vol(Sn)2

∫ 1

0

t(n−1)/2

2
√

1 + t
dt

where we made the substitution ρ = arcsinh(
√
t) with dρ = dt/(2

√
t
√

1 + t).
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It is straight forward to recognize this integral as a hypergeometric function with coefficients

a = 1/2, b = (n+ 1)/2, c = (n+ 3)/2, and z = −1 (see 2.4). For future convenience, let

IΩ =
Vol(Sn)

Vol(Sn−1)

∫ 1

0

t(n−1)/2

2
√

1 + t
dt =

√
π Γ

(
n
2

)
Γ
(
n+1

2

) Γ (b) Γ (c− b)
2 Γ (c)

2F1 (a, b, c; z)

=

√
π Γ

(
n
2

)
Γ
(
n+1

2

) Γ
(
n+1

2

)
Γ (1)

2 Γ
(
n+3

2

) 2F1

(
1

2
,
n+ 1

2
,
n+ 3

2
;−1

)

=

√
π Γ

(
n
2

)
2 Γ
(
n+3

2

) 2F1

(
1

2
,
n+ 1

2
,
n+ 3

2
;−1

)

using equations (2.5) and (2.13). Note that
∫

T1Bh
dΩ = Vol(Sn) Vol(Sn−1) IΩ. �

For the sake of completeness, we write down the volume formula for a hyperbolic ball of

arbitrary radius in the appendix (see 0.3).

Lemma 2.5.

(2.19)

∫
T1Bh

2ndx dy dt

|x− y|2n
= Vol(Sn) Vol(Sn−1)

√
π Γ

(
n
2

)
√

2 Γ
(
n+3

2

) 2F1

(
1,
n

2
+ 1,

n+ 3

2
;−1

)
.

Proof. Let G (x,y) be the complete oriented hyperbolic geodesic from x to y and

define

LBh(x,y) = hyperbolic length of Bh ∩ G (x,y).

Note that LBh is invariant under any hyperbolic isometry fixing O ∈ Hn+1. Then∫
T1Bh

2ndx dy dt

|x− y|2n
=

∫
Rn

∫
projy(Bh)

2n LBh(x,y)

|x− y|2n
dx dy

where projy(Bh) is the geodesic visual projection of Bh from y onto ∂∞Hn+1. By Fubini’s

Theorem, we can integrate dx and dy separately.

Let γy denote the hyperbolic rotation around en+1 defined in Section 2.3 that takes 0 to y.

Recall that |γ′y(0)| = 1 + |y|2 by formula (2.9). Using the change of coordinates x = γy(u)
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with dγy(u) = |γ′y(u)|n du, equations (2.9) and (2.7), and Lemma 2.1, we obtain∫
T1Bh

2ndx dy dt

|x− y|2n
=

∫
Rn

∫
projy(Bh)

2n LBh(x,y)

|x− y|2n
dx dy

=

∫
Rn

∫
γ−1
y (projy(Bh))

γ∗y

(
2n LBh(x,y)

|x− y|2n
dx

)
dy

=

∫
Rn

∫
proj0(Bh)

(
2n LBh(γy(u), γy(0))

|γy(u)− γy(0)|2n
dγy(u)

)
dy

=

∫
Rn

∫
proj0(Bh)

(
2n LBh(u,0)

|γ′y(u)|n|γ′y(0)|n|u|2n
|γ′y(u)|n du

)
dy

=

∫
Rn

2n dy

(1 + |y|2)n

∫
proj0(Bh)

LBh(u,0) du

|u|2n

= Vol(Sn)

∫
|u|>1

LBh(u,0) du

|u|2n
.

We used the fact thatBh has Euclidean center
√

2 en+1 and radius 1 to substitute proj0(Bh) =

{u ∈ Rn | |u| > 1}. For convenience, we set

IΨ =
1

Vol(Sn) Vol(Sn−1)

∫
T1Bh

2ndx dy dt

|x− y|2n
=

1

Vol(Sn−1)

∫
|u|>1

LBh(u,0) du

|u|2n

Let σ̊(v) = v/|v|2 be the inversion through the sphere of radius 1 around 0 in Rn. Note

that σ̊ preserves Bh. By formula 2.8, the Jacobian is |det σ̊′| = 1/|v|2n = |u|2n. Changing

coordinates using u = σ̊(v) with du/|u|2n = dv, we have

IΨ =
1

Vol(Sn−1)

∫
|v|<1

LBh (̊σ(v), σ̊(∞)) dv =
1

Vol(Sn−1)

∫
|v|<1

LBh(v,∞) dv.

By symmetry, the choice of Bh, and the formula for hyperbolic distance in U2, we have

LBh(v,∞) = log

(√
2 +

√
1− |v|2

√
2−

√
1− |v|2

)

Let dv = ρn−1 sinn−2(θ1) . . . sin(θn−2) dρ dθ1 . . . dθn−2 be the spherical change of coordi-

nates for v ∈ Rn, then
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IΨ =
1

Vol(Sn−1)

∫
|v|<1

LBh(v,∞) dv =

∫ 1

0
ρn−1 log

(√
2 +

√
1− ρ2

√
2−

√
1− ρ2

)
dρ

=

[
ρn

n
log

(√
2 +

√
1− ρ2

√
2−

√
1− ρ2

)]1

0

+

∫ 1

0

ρn

n

(
2
√

2 ρ√
1− ρ2 (1 + ρ2)

)
dρ

= 0 +

√
2

n

∫ 1

0

2 ρn+1√
1− ρ2 (1 + ρ2)

dρ =

√
2

n

∫ 1

0

tn/2√
1− t (1 + t)

dt

where we substitute ρ =
√
t with dρ = dt/(2

√
t). It is straight forward to recognize this

integral as a hypergeometric function with coefficients a = 1, b = (n+ 2)/2, c = (n+ 3)/2,

and z = −1 (see 2.4). If follows that

IΨ =

√
2

n

∫ 1

0

tn/2√
1− t (1 + t)

dt =

√
2

n

Γ (b) Γ (c− b)
2 Γ (c)

2F1 (a, b, c; z)

=

√
2 Γ
(
n
2 + 1

)
Γ
(

1
2

)
nΓ
(
n+3

2

) 2F1

(
1,
n

2
+ 1,

n+ 3

2
;−1

)

=

√
π Γ
(
n
2

)
√

2 Γ
(
n+3

2

) 2F1

(
1,
n

2
+ 1,

n+ 3

2
;−1

)

Note that
∫

T1Bh
2ndx dy dt/|x− y|2n = Vol(Sn) Vol(Sn−1) IΨ. �

We can now combine all of our results to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. The work we have done in Lemmas 2.2, 2.3, 2.4, and 2.5

shows that we only need IΩ = IΨ. To do this, we use the symmetry of the a, b parameters

and the hypergeometric transformation (2.14). With a = 1/2, b = (n+1)/2, c = (n+3)/2,

and z = −1, we have

2F1

(
1

2
,
n+ 1

2
,
n+ 3

2
;−1

)
= (1− z)c−b−a 2F1(c− b, c− a, c; z)

=
√

2 2F1

(
1,
n

2
+ 1,

n+ 3

2
;−1

)

Multiplying both sides by
√
π Γ(n2 )

2 Γ(n+3
2 )

gives IΩ = IΨ as desired. �
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3. Identity for Manifolds with Cusped Boundary

The Bridgman-Kahn identity for a compact hyperbolic n-manifold M with totally geodesic

boundary can be expressed as

Vol(T1M) = Vol(Sn−1)
∑

`∈|O(M)|

Fn(`),

where O(M) is the set of all oriented orthogeodesics of M and |O(M)| is the length spec-

trum. For each v ∈ T1M , let expv : Iv → M be the longest unit speed geodesic with

exp′v(0) = v and Iv ⊂ R and interval. Define `v to be the length of expv. For each

γ ∈ O(M), Vol(Sn−1)Fn(`v) represents the volume of vectors

Vγ = {v ∈ T1M | expv has finite length and expv is homotopic to γ relative ∂M}.

A universal covering argument shows that Fn only depends on the length of γ. In this

section, we extend this identity.

Theorem 3.5. For n ≥ 3 and M a finite volume hyperbolic n-manifold with totally geodesic

boundary, let C to be the set of ∂-cusps of M and |O(M)| the orthospectrum. For every

c ∈ C, let Bc be the maximal horoball in M and dc the Euclidean distance along ∂Bc between

the two boundary components of c. Then

Vol(M) =
∑

`∈|O(M)|

Fn(`) +
H(n− 2) Γ

(
n−2

2

)
√
π Γ

(
n−1

2

) ∑
c∈C

Vol(Bc)

dn−1
c

where Γ(m) = (m− 1)! and H(m) is the mth harmonic number.

The asymptotics of our coefficient are straightforward to analyze. In particular, one has

Proposition 3.1. As n→∞,

H(n− 2) Γ
(
n−2

2

)
√
π Γ

(
n−1

2

) ≈
√

2

π

(
γ√
n

+
log(n)√

n

)
+O

(
1

n3/2

)
where γ is Euler’s constant.

Proof. This observation follows directly of the well known asymptotic of H(m) and

Γ(z). As m, z →∞,

H(m) ≈ γ + log(m) +
1

2m
+O

(
1

m2

)
,
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Γ(z + a)

Γ(z + b)
≈ za−b

(
1 +

(a− b)(a+ b− 1)

2z
+O

(
1

z2

))
where we take z = n/2, a = −1 and b = −1/2. �

3.1. Decomposition of the Unit Tangent Bundle. For finite volume hyperbolic

n-manifold M with totally geodesic boundary without ∂-cusps, the set
⋃
γ∈O(M) Vγ is full

measure in T1M by ergodicity of the geodesic flow for the geometric double DM (see

[Nic89, Theorem 8.3.7]). Indeed, ergodicity implies that for almost every vector v ∈ T1M ,

expv has finite length, and since the geometric structure on ∂M has no cusps, every such arc

is homotopic to some orthogeodesic relative ∂M . To extend this construction to the case

where ∂M has a geometric structure with cusps, we must consider the volume of vectors

that exponentiate to finite arcs homotopic out a ∂-cusp of M relative ∂M . Notice, we do

not worry about internal cusps of M as the set of vectors what wander off into an internal

cusp has measure zero by ergodicity.

Fix a ∂-cusp c of M and let

Vc = {v ∈ T1M | expv has finite length and expv is homotopic out c relative ∂M}.

Then, immediately, we have

(3.1) Vol(T1M) =
∑

γ∈O(M)

Vol(Vγ) +
∑
c∈C

Vol(Vc)

We now proceed to compute Vol(Vc).

Let v ∈ T1M be such that expv is of finite length and homotopic out c. Let X− and X+

be the backwards and forwards boundary components hit by expv. They are precisely the

components that meet every horoball neighborhood of c. As discussed in Section 1.1, any

lift of a component of ∂M is a complete hyperplane in Hn that bounds M̃ . Thus, any lift

ẽxpv must terminate on two hyperplanes H− and H+ in Hn corresponding to X− and X+.

Further, as we have remarked in Section 1.1, they are tangent. We fix a lift ẽxpv and let

p = H− ∩H+ be the unique point of tangency on ∂∞Hn. Let Γc ≤ π1(M) be the subgroup

of elements fixing p. Recall that Γc is a discrete group of parabolic transformations.

Let Bc be the maximal horoball neighborhood of c in M and let dc denote the Euclidean

distance along ∂Bc between X− and X+. Conjugating to take p 7→ ∞, we can assume

that every element γ ∈ Γc acts on span〈e1, . . . , en−1〉 by γ(x) = aγ + Aγx, where Aγ is
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an orthogonal transformation, aγ 6= 0, and Aγaγ = aγ [Rat13, Theorem 4.7.3]. We can

further assume that in standard coordinates for Hn

∂B̃c = {x ∈ Hn | xn = 1}

H− = {x ∈ Hn | x1 = 0}

H+ = dce1 +H−.

In particular, this implies that aγ · e1 = 0 and Aγe1 = e1 for all γ ∈ Γ. Let

V = {x ∈ Hn | 0 ≤ x1 ≤ dc}

denote the region between H− and H+. We will also need to consider the subsets

U− = {x ∈ ∂∞Hn | x1 < 0}

U+ = {x ∈ ∂∞Hn | x1 > dc}.

Note that Γc naturally acts on U±.

To compute Vol(Vc), we must find the volume of all unit tangent vectors v ∈ T1V such that

the complete geodesic expv has endpoints in U− and U+ up to the action of Γc. Let D be

a fundamental domain for the action of Γc on U−, then

Vol(Vc) = 2 Vol{v ∈ T1V | v is tangent to a complete geodesic going from D to U+}.

For points x,y ∈ ∂∞Hn, let G (x,y) be the complete hyperbolic geodesic connecting x and

y. Define

L(x,y) = hyperbolic length of V ∩ G (x,y).

Note that L(x,y) = `v for every vector tangent to G (x,y) ∩ V . See Figure 1.

From Theorem 3.1 it follows that

(3.2) Vol(Vc) =

∫
Vc

dΩ = 2

∫
y∈U+

∫
x∈D

2n−1 L(x,y) dx dy

|x− y|2n−2

where we integrate out the dt to get L(x,y).

To evaluate the quantity L(x,y), we will need a generalization of the following computation

of Bridgeman and Dumas. See Figure 3.
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U+
U−

D

H+

H−

x

y

v

Figure 1. To compute Vol(Vc), we must find the volume of all vectors
v ∈ V for which the corresponding complete geodesic emanates from D and
terminates in U+.

Lemma 3.2. [BD07, Lemma 8] For n = 2 and d = 1, for x, y ∈ R ⊂ ∂∞H2, with x < 0 and

y > 1,

L(x, y) =
1

2
log

(
y(x− 1)

x(y − 1)

)
.

Lemma 3.3. As defined above, the function L only depends on the x1, y1 coordinates of

x,y ∈ ∂∞Hn and on dc. In particular,

(3.3) L(x,y) =
1

2
log

(
y1(x1 − dc)
x1(y1 − dc)

)
.

Proof. Without loss of generality, we may fix x = (x1, 0, . . . , 0) by applying parabolic

transformations that fix ∞ and preserve H−, H+. We will show that L(x,y) depends only

on x1, y1 and dc. Consider Figure 2 showing x,y on ∂∞Hn. Here, G (x,y) is perpendicular

to the page. There is a hyperbolic 2-plane H2
x,y in Hn whose boundary is the line through

x,y. It follows that L(x,y) is the length of the arc on the geodesic G (−u,w+v) lying above

the interval (0, w) in H2
x,y, where u, d, v are as in Figure 2. By construction, w = cos(θ) dc,

u = cos(θ) |x1| and w+v = cos(θ) y1. Since multiplication by cos(θ) is a hyperbolic isometry,

L(x,y) we see that the length of the arc on the geodesic G (x1, y1) lying above the interval

(0, dc) in H2. See the diagram in Figure 3.

Rescaling further by 1/dc, we see by Lemma 3.2 that

L(x,y) =
1

2
log

(
y1

dc
(x1
dc
− 1)

x1
dc

(y1

dc
− 1)

)
=

1

2
log

(
y1(x1 − dc)
x1(y1 − dc)

)
�
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|y − y1e1|

|x1|

u

θ

y1 − dc

v

dcO

w

∂∞H+∂∞H− U+U−

x

y

Figure 2. The diagram above shows the points x,y on ∂∞Hn without ∞
in the e1, . . . en−1 coordinates. The point O = (0, . . . , 0) denotes the origin
and horizontal is the e1-axis.

L(x1, y1)

x1 y1dcO

Figure 3. The diagram showing L(x1, y1) in the plane H2
x,y for Lemma 3.3.

3.2. Integration. To set up the integration, we observe that D = (−∞, 0)×D′ where

D′ is a fundamental domain for the action of Γc on ∂∞H− = {x ∈ ∂∞Hn | x1 = 0}. Also,

U+ = (dc,∞)× Rn−2, refer once again to Figure 1. Applying our observations to equation

(3.2) and making the substituions wi = yi − xi for i = 2, . . . n− 1, we obtain

Vol(Vc) = 2n−1

∫ 0

−∞

∫ ∞
dc

∫
D′

∫
Rn−2

log
(
y1(x1−dc)
x1(y1−dc)

)
dy2 . . . dyn−1 dx2 . . . xn−1 dy1 dx1√

(x1 − y1)2 +
∑n−1

i=2 (xi − yi)2
2n−2

= 2n−1

∫ 0

−∞

∫ ∞
dc

∫
D′

∫
Rn−2

log
(
y1(x1−dc)
x1(y1−dc)

)
dw2 . . . dwn dx2 . . . xn dy1 dx1√

(x1 − y1)2 +
∑n−1

i=2 w
2
i

2n−2 .

(3.4)

To integrate out wi for i = 2, . . . n-1, one can show with induction on k ≥ 3 and the

substitution w = A tan(θ) that

(3.5)

∫ ∞
−∞

dw
√
w2 +A2 k

=
1

Ak−1

∫ π/2

−π/2
cosk−2(θ)dθ =

√
π Γ((k − 1)/2)

Ak−1 Γ(k/2)
.

See Proposition 0.1 in the appendix for the proof.
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For wi with i ≥ 2, we let A =
√

(x1 − y1)2 +
∑n−1

j=i+1w
2
j and k = 2n− i. Applying equation

(3.5) recursively for i ≥ 2, we obtain

Vol(Vc) =
2n−1π(n−2)/2 Γ(n/2)

Γ(n− 1)

∫ 0

−∞

∫ ∞
dc

∫
D′

log
(
y1(x1−dc)
x1(y1−dc)

)
dx2 . . . xn dy1 dx1

(y1 − x1)n

=
2n−1π(n−2)/2 Vol(D′) Γ(n/2)

Γ(n− 1)

∫ 0

−∞

∫ ∞
dc

log
(
y1(x1−dc)
x1(y1−dc)

)
dy1 dx1

(y1 − x1)n

Note that the Euclidean volume Vol(D′) is finite by the following lemma.

Lemma 3.4. In the given parametrization,

Vol(D′) =
(n− 1) Vol(Bc)

dc

Proof. By construction, Γc ≤ π1(M) is the largest subgroup fixing ∞ and

Bc = {x ∈ Hn | xn > 1}/Γc.

Recall that γ ∈ Γc acts on span〈e1, . . . , en−1〉 by γ(x) = aγ+Aγx, where Aγ is an orthogonal

transformation, aγ 6= 0, and Aγaγ = aγ [Rat13, Theorem 4.7.3], and that aγ · e1 = 0 and

Aγe1 = e1 for all γ ∈ Γ. In particular, the action of Γc restricts to span〈e2, . . . , en−1〉

with D′ as a fundamental domain for this action. It follows that [0, dc] ×D′ × (0,∞) is a

fundamental domain for the action of Γc on {x ∈ Hn | xn > 1} and, by the volume form on

Un, we have

Vol(Bc) = dc Vol(D′)/(n− 1).

�

For the remaining integral, we turn to the following Lemma, which we will prove last.

Lemma 3.5. For n ≥ 3

∫ 0

−∞

∫ ∞
dc

log
(
y(x−dc)
x(y−dc)

)
dy dx

(y − x)n
=

2H(n− 2)

(n− 1)(n− 2) dn−2
c

It follows that

Vol(Vc) =
2nπ(n−2)/2 H(n− 2) Γ(n/2)

(n− 2) Γ(n− 1)

Vol(Bc)

dn−1
c

.

and
1

Vol(Sn−1)
Vol(Vc) =

2n−1 H(n− 2) Γ(n/2)2

π (n− 2) Γ(n− 1)

Vol(Bc)

dn−1
c

.
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By the duplication formula (2.10) for Γ(z), one has

21−(n−1)√π Γ(n− 1) = Γ

(
n− 1

2

)
Γ

(
n− 1

2
+

1

2

)
= Γ

(
n− 1

2

)
Γ
(n

2

)
.

Using this relation, we can simplify

1

Vol(Sn−1)
Vol(Vc) =

2 H(n− 2) Γ(n2 )
√
π (n− 2) Γ(n−1

2 )

Vol(Bc)

dn−1
c

=
2 H(n− 2)

(
n
2 − 1

)
Γ(n−2

2 )
√
π (n− 2) Γ(n−1

2 )

Vol(Bc)

dn−1
c

=
H(n− 2) Γ(n−2

2 )
√
π Γ(n−1

2 )

Vol(Bc)

dn−1
c

.

(3.6)

Up to the proof of Lemma 3.5, our version of the Bridgeman-Kahn identity is complete by

assembling our computations and the decomposition in equation (3.1).

Vol(M) =
∑

`∈|O(M)|

Fn(`) +
H(n− 2) Γ

(
n−2

2

)
√
π Γ

(
n−1

2

) ∑
c∈C

Vol(Bc)

dn−1
c

Proof of Lemma 3.5. We first split up the integral into three pieces

I =

∫ 0

−∞

∫ ∞
dc

log
(
y(x−dc)
x(y−dc)

)
dy dx

(y − x)n
= I1 − I2 − I3

where

I1 =

∫ 0

−∞

∫ ∞
dc

log (dc − x) dy dx

(y − x)n

I2 =

∫ 0

−∞

∫ ∞
dc

log (−x/y) dy dx

(y − x)n

I3 =

∫ 0

−∞

∫ ∞
dc

log (y − dc) dy dx
(y − x)n

We can easily compute I1 to be

I1 =

∫ 0

−∞

∫ ∞
dc

log (dc − x) dy dx

(y − x)n

=
1

n− 1

∫ 0

−∞

log (dc − x) dx

(dc − x)n−1

=
1

n− 1

[
log(dc − x)

(n− 2)(dc − x)n−2
+

1

(n− 2)2(dc − x)n−2

]0

−∞

=
(n− 2) log(dc) + 1

(n− 1)(n− 2)2 dn−2
c
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For I2, we first use the change of coordinates z = x/y and y = y, where dy dx = ydy dz.

With the proper change of limits of integration,

I2 =

∫ 0

−∞

∫ ∞
dc

log (−x/y) dy dx

(y − x)n

=

∫ 0

−∞

∫ ∞
dc

log (−z) dy dz
yn−1 (1− z)n

=
1

(n− 2) dn−2
c

∫ 0

−∞

log (−z) dz
(1− z)n

Next, we change coordinates to w = 1/(1− z) with dw = dz/(1− z)2, giving

I2 =
1

(n− 2) dn−2
c

∫ 1

0
log

(
1

w
− 1

)
wn−2dw

=
−H(n− 2)

(n− 1)(n− 2) dn−2
c

by Lemma 3.6 below.

Lemma 3.6. For m ∈ Z≥0, ∫ 1

0
log

(
1

w
− 1

)
wmdw =

−H(m)

m+ 1

Proof of Lemma 3.6. We begin by splitting the integral into two parts,∫ 1

0
log

(
1

w
− 1

)
wmdw =

∫ 1

0
log (1− w)wm − log (w)wmdw

=

∫ 1

0

log(1− w)

−m− 1
d
(
1− wm+1

)
−
∫ 1

0

log(w)

m+ 1
d
(
wm+1

)
As m ≥ 0, the two integrals inside are as follows∫ 1

0

log(1− w)

−m− 1
d
(
1− wm+1

)
=

[
log(1− w)

(
1− wm+1

)
−m− 1

]1

0

− 1

m+ 1

∫ 1

0

1− wm+1

1− w
dw

= 0− H(m+ 1)

m+ 1
.

and ∫ 1

0

log(w)

m+ 1
d
(
wm+1

)
=

[
log(w)wm+1

m+ 1

]1

0

− 1

m+ 1

∫ 1

0
wmdw

= 0− 1

(m+ 1)2
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Combining, we see that∫ 1

0
log

(
1

w
− 1

)
wmdw =

1

m+ 1

(
−H(m+ 1) +

1

m+ 1

)
=
−H(m)

m+ 1

�

Returning to the proof of Lemma 3.5, we compute I3 using the change of coordinates

u = y/dc and z = x/y, where dy dx = u d2
c du dz.

I3 =

∫ 0

−∞

∫ ∞
dc

log (y − dc) dy dx
(y − x)n

=

∫ 0

−∞

∫ ∞
1

log (dc(u− 1)) du dz

un−1(1− z)n dn−2
c

=
1

dn−2
c

(∫ 0

−∞

log (dc) dz

(1− z)n

∫ ∞
1

du

un−1
+

∫ 0

−∞

dz

(1− z)n

∫ ∞
1

log (u− 1) du

un−1

)
=

1

dn−2
c

(
log (dc)

n− 1

1

n− 2
+

1

n− 1

∫ ∞
1

log (u− 1) du

un−1

)
.

We do one last change of coordinates to w = 1/u with dw = −du/u2 and apply Lemma 3.6

to obtain

I3 =
1

(n− 1) dn−2
c

(
log (dc)

n− 2
+

∫ 1

0
log

(
1

w
− 1

)
wn−3dw

)
=

1

(n− 1) dn−2
c

(
log (dc)

n− 2
− H(n− 3)

n− 2

)

=
log (dc)−H(n− 3)

(n− 1)(n− 2) dn−2
c

Combining, we have our desired result.

I = I1 − I2 − I3

=
(n− 2) log(dc) + 1

(n− 1)(n− 2)2 dn−2
c

+
H(n− 2)

(n− 1)(n− 2) dn−2
c

+
H(n− 3)− log (dc)

(n− 1)(n− 2) dn−2
c

=
1

(n− 1)(n− 2) dn−2
c

(
1

n− 2
+H(n− 2) +H(n− 3)

)
=

2H(n− 2)

(n− 1)(n− 2) dn−2
c

.

�





CHAPTER 6

Appendix

Proposition 0.1. For k ≥ 3,∫ π/2

−π/2
cosk−2(θ)dθ =

√
π Γ((k − 1)/2)

Γ(k/2)
.

Proof. We proceed by induction on k. For k = 3, we have∫ π/2

−π/2
cos(θ)dθ = 2 =

√
π · 1√
π/2

=

√
π Γ((3− 1)/2)

Γ(3/2)
.

We also need to compute for k = 4,∫ π/2

−π/2
cos2(θ)dθ =

[
θ

2
+

sin(θ) cos θ

2

]π/2
−π/2

=
π

2
=

√
π(
√
π/2)

1
=

√
π Γ((4− 1)/2)

Γ(4/2)
.

Using the induction assumption for k > 4, we have∫ π/2

−π/2
cosk−2(θ)dθ =

[
cosk−3(θ) sin(θ)

k − 2

]π/2
−π/2

+
k − 3

k − 2

∫ π/2

−π/2
cosk−4(θ)dθ

= 0 +

√
π ((k − 3)/2) Γ((k − 3)/2)

((k − 2)/2) Γ((k − 2)/2)
=

√
π Γ((k − 1)/2)

Γ(k/2)
.

�

Proposition 0.2. The pullback of ω from Sn to Rn via π has element

π∗(dω) =
2n dx

(|x|2 + 1)n

101
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Proof. The induced Riemannian metric on the Sn from Rn+1 in stereo graphic coor-

dinates is given by

gSn =
(
dy2

1 + . . .+ dy2
n+1

)∣∣
y=π(x)

=

(
d

(
|x|2 − 1

|x|2 + 1

))2

+
n∑
i=1

(
d

(
2xi
|x|2 + 1

))2

=

(
n∑
i=1

4xi
(|x|2 + 1)2

dxi

)2

+ 4

n∑
i=1

 |x|2 + 1− 2x2
i

(|x|2 + 1)2
dxi −

n∑
j=1,j 6=i

2xi xj
(|x|2 + 1)2

dxj

2

=
4

(|x|2 + 1)2

( n∑
i=1

2xi
|x|2 + 1

dxi

)2

+

n∑
i=1

dxi − n∑
j=1

2xi xj
|x|2 + 1

dxj

2
Let α =

n∑
i=1

xi dxi, then

gSn =
4

(|x|2 + 1)2

(
4α2

(|x|2 + 1)2
+

n∑
i=1

(
dx2

i +
4x2

i α
2

(|x|2 + 1)2
− 4xi dxi α

|x|2 + 1

))

=
4

(|x|2 + 1)2

(
4α2

(|x|2 + 1)2
+

4 |x|2 α2

(|x|2 + 1)2
− 4α2

|x|2 + 1
+

n∑
i=1

dx2
i

)

=
4

(|x|2 + 1)2

n∑
i=1

dx2
i

Since gSn is diagonal, it follows that

π∗ω =
√

det gSn dx =
2n dx

(|x|2 + 1)n

�

Proposition 0.3. Let BHn(R) denote a hyperbolic ball of radius R in Hn, then

Vol (BHn(R)) = Vol
(
Sn−1

) sinhn(R)

n
2F1

(
1

2
,
n

2
,
n

2
+ 1;− sinh2(R)

)
=

sinhn(R) π
n
2

Γ
(
n
2 + 1

) 2F1

(
1

2
,
n

2
,
n

2
+ 1;− sinh2(R)

)
Note that there are several different transformations that can be applied to 2F1 to get different

version of this formula. We prefer this form because sinh(R) is the Euclidean radius of

BHn(R) centered around en ∈ Un.
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Proof. The volume formula 2.6 gives

Vol (BHn(R)) = Vol(Sn−1)

∫ R

0
sinhn−1(ρ) dρ = Vol

(
Sn−1

) ∫ 1

0

sinhn(R) t(n−2)/2

2
√

1 + sinh2(R) t
dt

where ρ = arcsinh(sinh(R)
√
t) with dρ = sinh(R) dt/

(
2
√
t
√

1 + sinh2(R) t

)
.

It is straight forward to recognize this integral as a hypergeometric function with coefficients

a = 1/2, b = n/2, c = (n+ 2)/2, and z = − sinh2(R) (see 2.13). Therefore

Vol (BHn(R)) = Vol
(
Sn−1

) sinhn(R)

2

Γ (b) Γ (c− b)
Γ (c)

2F1 (a, b, c; z)

= Vol
(
Sn−1

) sinhn(R)

2

Γ
(
n
2

)
Γ (1)

Γ
(
n
2 + 1

) 2F1

(
1

2
,
n

2
,
n

2
+ 1;− sinh2(R)

)
= Vol

(
Sn−1

) sinhn(R)

n
2F1

(
1

2
,
n

2
,
n

2
+ 1;− sinh2(R)

)
=

sinhn(R) π
n
2

Γ
(
n
2 + 1

) 2F1

(
1

2
,
n

2
,
n

2
+ 1;− sinh2(R)

)
�
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