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ANGULAR MAGNETORESISTANCE OSCILLATIONS IN  
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By: Pashupati Dhakal 

Advisor: Prof. Michael J. Naughton 

Abstract 

 

Quasi-one dimensional (Q1D) molecular organic conductors are among the most 

exciting materials in condensed matter physics, exhibiting nearly every known ground 

state. They are highly anisotropic, structurally and electronically, and show large 

oscillatory phenomena in conductivity for magnetic field rotated in different crystalline 

planes. Several theoretical works have been published to explain these angular 

magnetoresistance oscillation (AMRO) effects, but the underlying physics remains ill-

understood. Here, we present measurements and calculations of magnetotransport in the 

molecular organic (super)conductor (DMET)2I3 which detect and simulate all known 

AMRO phenomena for Q1D systems. Employing, for the first time, the true triclinic 

crystal structure in the calculations, these results address the mystery of the putative 

vanishing of the primary AMRO phenomenon, the Lebed magic angle effect, for 

orientations in which it is expected to be strongest. They also show a common origin for 

Lebed and so-called “Lee-Naughton” oscillations, and confirm the generalized nature of 

AMRO in Q1D systems. Furthermore, we report the temperature dependence of the upper 

critical magnetic field in (DMET)2I3, for magnetic field applied along the intrachain, 

interchain, and interplane directions. The upper critical field exhibits orbital saturation at 

low temperature for field in all directions, implying that superconductivity in (DMET)2I3 

is conventional spin singlet.  
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Chapter 1 

Introduction  

 

1.1 Molecular Organic Conductors 

The study of organic conductors has become an important research area in 

condensed matter physics, with almost all known electronic and magnetic ground states 

available [1.1]. By varying temperature, pressure and magnetic field, one can arrange to 

make a single specimen a superconductor, metal, semimetal, semiconductor, or a 

correlated insulator, exhibiting single particle, quantum Hall, and sliding density wave 

transport [1.2].  Organic conductors in this context are crystalline charge transfer salts 

with carbon-containing (organic) anions and organic or inorganic anions.  In general, 

organic and polymeric compounds have been historically believed to be insulators.  The 

study of conductivity in organic compounds was started almost a century ago by McCoy 

and Moore [1.3], and Kraus [1.4], if not earlier.  These researchers studied a number of 

amalgams of organic moities and discussed their physical properties, such as crystallinity, 

metallic luster, and possible electrical conductivity, without making any systematic 

measurements.  In 1948, Eley [1.5] discovered that the electrical conductivity of a 

number of organic compounds varied exponentially with temperature.  Later, Akamatu 

and Inokuchi [1.6] measured the conductivity of polycrystalline samples of violanthrone 

and pyranthrone, which followed the same temperature dependence as inorganic 

semiconductors, namely Tk Be


~  with a semiconducting gap  of approximately 0.75 - 

1 eV, kB is Boltzmann constant and T is absolute temperature.  In 1960, Kepler et al. [1.7] 
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synthesized a salt of the radical anion formed by an addition of an electron to 

tetracyanoquinodimethane (TCNQ) [Fig. 1.1 (a)], and discovered this had a room 

temperature conductivity of 100 S/cm.   

After the interpretation of superconductivity in inorganic metals by the well-

known BCS theory [1.8], Little in 1964 [1.9] proposed the possibility of high temperature 

superconductivity in linear chain polymers, based on an excitonic mechanism, which 

depends on the movement of charge along the linear chain of polarizable molecules as 

shown in Fig. 1.2. Thus began the quest for highly conducting molecular superconductors 

as well as conductors.  In the early 1970’s, Wudl and co-workers [1.10] synthesized salts 

of the tetrathiafulvalene (TTF) molecule [Fig. 1.1 (b)], and showed they exhibited 

semiconducting behavior. Shortly thereafter, metallic-like electrical conduction was 

observed in a well ordered molecular conductor, TTF-TCNQ [1.11, 1.12].   The crystal 

structure of TTF-TCNQ exhibited stacked segregated columns of donor molecules TTF 

and acceptor molecules TCNQ.  Charge is transferred from donor to acceptor, the amount 

determined by the overall crystal stability, but typical between 0.5 to 1 electron or hole 

per molecule.  The conductivity of this conductor showed metallic behavior upon cooling 

down to 60 K, followed by transition to an insulating ground state at low temperature. 

This discovery opened a vast area for study of conductivity in organic compounds.  

 

 

 

(a)    (b) 

FIG. 1.1  (a) TCNQ and (b) TTF molecule.   
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FIG. 1.2 Little’s hypothetical superconducting molecule. The molecule is built 
around a “spine” of carbon atoms connected by alternating single and double 
bonds. These side-chain molecules are highly polarizable; that is, an electron can 
move freely from a nitrogen site close to one end of the molecule to another 
nitrogen site close to the other end [1.13].  

 

In these highly one dimensional systems, for which the term “quasi-one 

dimensional” (Q1D) term is applied, the conducting state is often found to be unstable 

against a lattice distortion, which opens an energy gap at the Fermi level. This was almost 

immediately identified as resulting from a Peierls transition, which until this time was 

only a theoretical prediction [1.14, 1.15]. The work on organic compounds in the early 

1970’s suggested that a decrease in Coulomb repulsion between charge carriers boosts 
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the conductivity of metals [1.16].  The idea to minimize electron-electron interactions and 

increase electron-phonon interactions, while keeping the overlap between neighboring 

stacks as large as possible, subsequently led to the synthesis of a new compound, 

TMTSF-DMTCNQ, which is the tetramethylated derivative of the TSF molecule 

combined with dimethylated TCNQ.  The conductivity of this conductor was found to be 

quite high ~ 105 S/cm at 10 kbar pressure and 1 K [1.17, 1.18, 1.19], comparable to 

inorganic metals such as Cu, Au, etc. 

Following the above work on conducting salts, Jérome and Bechgaard [1.20] 

succeeded in 1979 in synthesizing the first organic superconductor, (TMTSF)2PF6 

(bistetramethyl-tetraselenafulvalene-hexafluorophosphate).  At ambient pressure, this 

compound undergoes a metal-insulator transition associated with the Peierls transition, 

into an antiferromagnetic spin density wave (SDW) state.  This SDW can be suppressed 

by pressure, recovering the metallic state, which upon further cooling was found to 

superconduct at 1.2 K.  After the seminal discovery of this first organic superconductor, a 

series of conducting salts, based on the TMTSF molecule, namely (TMTSF)2X, where X 

is an inorganic mono-anion with various possible symmetries, such as spherical (PF6, 

AsF6, SbF6, TaF6), tetrahedral (BF4, ClO4, ReO4) or triangular (NO3), were synthesized 

[1.21].  Of these, only the compound (TMTSF)2ClO4 exhibited superconductivity at 

ambient pressure, with Tc = 1.4  K [1.22].  In addition, the basic building block, TMTSF, 

has itself been modified to make other types of molecular organic conductors and 

superconductors, such as (TMTTF)2X (S replacing Se) and (BEDT-TTF)2X [1.23].  To 

date, there have been more than one hundred organic superconductors synthesized.  
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Finally, the non-symmetrical donor DMET (dimethylethylenedithio-

diselenadithiafulvalene), which is a hybrid of TMTSF and BEDT-TTF, yielded several 

superconductors (DMET)2X, where X = I3, IBr2, AuBr2, AuI2 [1.24]. The conducting and 

superconducting properties of one of these molecular organic conductors (DMET)2I3, 

which superconduct at Tc = 0.58 K at ambient pressure, is the primary subject of this 

thesis.  

 

1.2 Crystal and Band Structure of Q1D Systems 

In the tight binding band approximation [1.25], the electron band energy for a 

three dimensional system can be written as  

            )cos(2)cos(2)cos(2)( zzzyyyxxx aktaktaktkE     (1.1) 

where kx, ky and kz are wave vectors along the lattice directions ax, ay and az ,  respectively, 

and tx, ty and tz are transfer (wave function overlap or hoping) integrals along these 

directions, respectively.  The shape of the momentum-space Fermi surface (FS) of a 

metal with this dispersion relation is governed by the magnitudes and relative ratios of 

these transfer integrals.  For three dimensional (3D) isotropic conductors, this ratio is tx : 

ty :  tz ~ 1 : 1 : 1, which in its simplest form gives a spherical FS, as shown in Fig. 1.3 (a).  

When the transfer integral in one direction is smaller than those in the other two 

directions (i.e., tx ~ ty > tz), the FS distorts in such a way that it looks ellipsoidal [Fig. 1.3 

(b)].  For further decreases in tz relative to tx and ty, the FS becomes multiply connected 

across Brillouin zones, and the surface is open at both ends within a given zone [Fig. 1.3 

(c)]. If, in addition to this biaxial asymmetry, the transfer integrals have uniaxial 

asymmetry such that tx > ty > tz, the FS further disturbs, as shown in Fig. 1.3 (d).  In the 
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highly anisotropic case of tx >> ty >> tz, the FS consists of a pair of warped open 

surfaces, now multiply-connected in both transverse directions ky and kz , as shown in Fig 

1.3 (e). This is the characteristic Fermi surface of a Q1D molecular conductor. Finally, if 

we consider the perfect one-dimensional (1D) conductor (ty = tz = 0), the FS is a pair of 

parallel sheets extended to infinity as shown in Fig. 1.3 (f). 

 
FIG. 1.3 The evolution of a Fermi surface in its first Brillouin zone for a 
conductor by varying the magnitude of tight-binding transfer integrals.  For the 
isotropic three-dimensional (3D) conductor, the Fermi surface is spherical (a).  
For different transfer integrals, the Fermi surface is ellipsoidal for Q3D (b), 
cylindrical for Q2D (c) and (d), and a warped pair of Fermi surface sheets for 
Q1D (e).  For a completely one dimensional solid (ty = tz = 0), the Fermi surface 
is an infinite pair of sheets extended along the y and z- directions (f).  
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In real space, the building blocks of organic molecular conductors are arranged in 

linear chains, planes, or stacks of chains and planes.  The interactions between the chains 

or planes are different for different compounds and the resulting electrical conduction in 

these conductors is also different.  In some cases, the electrical conduction takes place, 

principally, along unique crystalline directions.  In Q1D molecular organic conductors, 

the interactions within the chains are much stronger than those between adjacent chains, 

which are in torn stronger than between the planes. A schematic diagram is shown in Fig. 

1.4.  

 

 

 

 

 

 

 

 

 

 

 
 
FIG. 1.4 The schematic diagram of organic compound forming the chains and 
planes. The conductivity of the compound is proportional to the interaction in the 
chain (ta), between the chains (tb) and between the planes (tc), in their respective 
directions. In Q1D systems ta >> tb >> tc give the a >> b >> c. 
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In case of (TMTSF)2X, each of the carbon and selenium atom has a perpendicular 

-orbital which form the molecular  structures such that all the p-electrons of the 

molecules are delocalized. The overlap of these orbital along a-direction form a -bond, 

which is responsible for the high conduction along the a-direction. The relatively smaller 

overlaps along the b and c-directions leads to finite but reduce electron (hole) conduction 

in these directions. As a result, with ta >> tb >> tc, the conductivity scales as i ~ ti
2.  

 
 

 

 

 
FIG. 1.5 A schematic diagram showing all axes and directions in triclinic 
(TMTSF)2X. Here, b′ (c′) is the projection of b (c) onto the plane perpendicular to 
the a-axis, and b* (c*) is perpendicular to both the a and c-axes (a and b-axes), in 
the conventional definition of reciprocal space vectors.  Note that the angle 
between b′ and b* (c′ and c*) is 5.54° for (TMTSF)2ClO4 .The inset scanning 
electron microscope images of a single crystal of (TMTSF)2ClO4.  
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kxkF- kF 0-/a /a

EF

E

kxkF- kF 0-/a /a

EF

E

Q1D molecular organic conductors as discussed herein are thus highly anisotropic 

structurally and electronically, with the crystals structures that are triclinic, meaning ∂ ≠ 

β ≠ γ ≠ 90o and a ≠ b ≠ c (,  and  are unit cell angles).  Figure 1.5 depicts a schematic 

diagram showing all axes and directions in a triclinic system.  In Fig. 1.5, the triclinic 

crystallographic axes a, b and c are transformed to a, b’ and c* in a Cartesian coordinate 

systems, which are then parallel to the x, y and z-axes. In this transformation, a → a, b → 

b’ = bsin and c → c* = c sinsin* where * = cot-1{( cos cos – cos)/(sin sin)}. 

In the case of (TMTSF)2X, the conduction band is three-fourths-filled (or a 

quarter-filled hole band) with a reduced Brillouin zone of approximate size (2π)3/(asbscs), 

where as=a/2, bs=b and cs=c.  The dimerization of the TMTSF molecules along the 

chains is represented by as = a/2, which opens a gap at the zone boundary, kx = ± π/a, and 

splits the band into two HOMO (highest occupied molecular orbital) bands per Brillouin 

zone leaving the upper band half-filled as shown in Fig. 1.6. 

 

 

 

 

 

 

 

 

 
FIG. 1.6 Band structure of Q1D system in the chain direction. The dimerization 
opens up a gap at the zone boundary (kx = ± π/a). The upper band becomes a half 
filled. 
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 1.3 Electrical Conductivity in Q1D Systems 

Prerequisites for the formation of a molecular conductor are, first, having charged 

molecules in a solid state system, and second, allowing these charges to delocalize 

between molecular entities [1.26]. Charging the molecules is achieved by charge transfer 

reactions. The physical properties of these molecular conductors depend greatly on the 

amount of charge transferred, , between the constituent donor (D) and acceptor (A) 

molecules:  

A  +  D →  A + D  

and/or on the charge distribution within a conducting column. In case of the (TMTSF)2X 

salts, the inorganic anion X is singly charged, and owing to the 1:2 stoichiometry,  = ½ 

hole per donor molecule. Since there is only one independent anion in this unit cell, each 

TMTSF molecule receives the same charge, but this may change at low temperature if the 

material undergoes a phase transition to a superstructure. In TMTSF, the electron transfer 

energies along the, b and c directions are estimated to be 0.25, 0.025 and 0.0015 eV, 

respectively. Figure 1.7 show the temperature-dependent resistivity of first organic 

superconductor the resistivity of sample shows metallic behavior on cooling and it goes 

to SDW transition around 12 K, for all three directions (TMTSF)2PF6 in ambient pressure. 

However, the sample goes to superconducting transition at higher pressure. As discussed 

earlier, the electrical conducting takes place due to the overlap of  orbital of organic 

molecules forming  -bond. Furthermore, the resistivity measurement shows the 

electrical anisotropy, characteristic of Q1D conductors. 
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FIG. 1.7 Temperature dependence of resistivity components ρxx (a-axis) ρyy (b-
axis) ρzz (c-axis) of (TMTSF)2PF6..  The resistivity varies widely from one another 
along the three principal axes with the lowest resistivity along a-axis and highest 
along c-axis [1.27]. 

 
 
As mentioned, (TMTSF)2X compounds are materials in which a nominally 

quarter-filled band is created by charge delocalization on the organic chain.  At low 

temperature, the ground state can be insulating, metallic or superconducting.  The origin 

of the insulating ground state is closely related to the choice of anion X.  In the case of 

centrosymmetric anions, such as PF6, AsF6, and SbF6, the ground state is due to the 

formation of a spin density wave phase at TSDW ~ 12K. In compounds with non-

centrosymmetric anions, such as ClO4, ReO4, FSO3 and BF4, a metal-to-insulator phase 
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transition occurs, driven by an ordering of the anions. A generalized temperature-pressure 

phase diagram for this class of materials is shown in Fig. 1.8.  Depending upon the 

temperature and pressure, each compound shows a different ground states, such as spin 

Peierls (SP), spin density wave (SDW), and superconducting (SC). 

 
 

 

 

 

 

 

 

 

FIG. 1.8 Temperature-pressure (T-P) phase diagram of (TMTSF)2X salts. 

 

1.4 Ground States and Instabilities in Q1D Systems 

 In low-dimensional systems, transitions to many ground states are observed, such 

as Peierls instabilities, charge-density-waves, spin-Peierls instabilities, antiferromagnetic 

states, spin-density-waves and singlet and possibly triplet superconductivity states.  These 

ground states are affected by the topology of the Fermi surface.  In the case of a strictly 

1D Fermi surface, any point on one sheet of Fermi surface can be mapped to the other 

sheet by the wave vector Q = 2kF, known as a nesting vector.  Due to this nesting, 

correlations of electrons on the FS become divergently strong, leading to a divergence at 

the response function (dielectric function or susceptibility or phonon dispersion relation) 
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phenomenon known as the Kohn anomaly.  As a result, the electron-phonon interaction 

becomes divergently strong at the nesting vector Q = 2kF with decreasing temperature, 

leading to a soft phonon mode at Q = 2kF as shown in Fig. 1.9.  This soft phonon 

frequency goes to zero at low temperature, resulting in a static lattice distortion with Q = 

2kF, called the Peierls distortion, at a temperature TP.  For temperatures T > TP, the 

system is metallic, and for T < TP, the system is insulating.  In other words, the Peierls 

transition leads to a metal-insulator transition in low-dimensional systems, destroying the 

high temperature 1D FS.  The Peierls transition also can leads to the modulation of 

charge density, known as a charge density wave state. A similar type of distortion can 

happen in the electron spin system, known as an SDW state, which is a type of weak 

antiferromagnetism. Table 1 summarizes the typical behavior of 1-D instabilities in 

organic conductors. 

 

 

 

 

 

 

 

 

(a) (b) 
 
FIG 1.9 Peierls instability in a 1D system.  (a) The FS is represented by a pair of 
open FS sheets.  Any points on one FS can be mapped into the other FS by a single 
wave vector Q = 2kF, the so-called nesting vector.  (b) Kohn anomalies in 1, 2 and 3 
dimensional system [1.28]. 
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Table 1 Typical behavior of one-dimensional instabilities in organic conductors 
 

 Peierls (CDW) SDW Spin-Peierls (S-P) 

Wave Vector 2kF 2kF 2kF 

Lattice distortion Yes No Yes 

Interaction Electron-phonon Spin-spin Spin-phonon 

Ground state Nonmagnetic Antiferromagnetic Nonmagnetic 

Susceptibility T > TP : Pauli 

T < TP : activated 

T > Tc : Pauli 

T < Tc : anisotropic 

T > TSP : Pauli 

T < TSP : activated 

ESR HPP(max) at TP HPP diverges at Tc HPP(max) at TSP 

 

1
1
T  

T > TP : º Korringa 

T < TP : activated 

Diverges at Tc T > TSP º Korringa

T < TSP : activated 

 

Examples 

TTF-TCNQ 

(Per)2[M(mnt)2], M = 

Cu, Co 

(TMTSF)2PF6 (BCPTTF)2PF6 

(BCPTTF)2AsF6 

MEM-TCNQ 

 

The nesting of the FS is suppressed in the presence of external pressure, but it has 

been shown to be able to be re-induced by a magnetic field (H), a phenomenon known as 

the field induced spin density wave. Figure 1.10 shows the field-temperature-pressure 

phase diagram of (TMTSF)2PF6. Here, the SDW transition temperature decreases under 

increasing pressure and superconductivity appears above 6 kbar. Above a critical pressure 

around 6 kbar, the cascade of FISDW transitions is observed above a finite threshold 

field. The initial threshold field increases from 4.5 T at 8 kbar to 8T at 16 kbar pressure.  

When the magnetic field is applied perpendicular to the highly conducting ab-plane, the 

electron motion tends to be confined to the chains (a).  For high magnetic field, the width 

of the electron trajectories between chains becomes smaller and, eventually, the electron 

trajectory is confined to the Q1D chains, leading to the strong nesting of FS [Fig. 1.11]. 
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FIG 1.10  T-H-P phase diagram for (TMTSF)2PF6.  The FISDW phase is 
observed in high magnetic field. The FISDW effect is caused by the field 
dependent nesting (confinement) effect on the ab-plane [1.29].  

  

 

 

 
 

 
 
 
 
 
 
 
 
 
FIG.1.11 Illustration of the confinement effect on the trajectories of electron in a 
magnetic field.  Upon increasing the magnetic field, the transverse width of the 
trajectories of electrons decreases.  This results in an increase in the one-
dimensional properties, (i.e., the nesting on the FS becomes stronger). 
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In the presence of a magnetic field, one can define a magnetic reciprocal lattice 

vector G, and FS nesting can occur at Q = 2kF  nG, where n is an integer.  This leads to 

a cascade of FISDW transitions, as this new quantum number n takes on high values for 

small field and decreases to the conventional SDW with n = 0 at very high field.  Due to 

this quantization, the Hall resistance is also quantized within each FISDW sub-space as 

experimentally observed in (TMTSF)2X (X = ClO4 and PF6) [1.30, 1.31, 1.32]. 

 

1.5  (DMET)2I3 

The non-centrosymmetric molecule dimethyldiselenadithiafulvalene (DMET) is 

formed by combining half of a tetramethyl-tetraselenafulvalene (TMTSF) molecule and 

half of a bis-ethylenedithio-tetrathiafulvalene (BEDT-TTF) also called ET molecule [Fig. 

1.12].  The TMTSF and the ET ends have different thicknesses, due to the difference in 

the Van der Waals radii of the constituent atoms.  To produce face-to-face stacks, 

successive molecules must be rotated 180˚ relative to one another. The salt (DMET)2I3 

consists of two donor molecules and three acceptor anions, forming conducting sheets in 

the a-b plane which in turn are separated by layers of anions along the c-axis.  The 

highest conductivity in DMET is along the b-direction, which is the chain direction.  The 

lattices parameters are a = 6.699 Å, b = 7.761 Å and c = 15.776 Å, α = 89.96º, β = 81.81º 

and γ = 78.19 º [3.33].  The band structure is considered to have a pair of Fermi surfaces 

spread along the kakc* plane (i.e. the b-axis is the most conducting axis) shown in Fig 1.2 

(e).  
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(a)(a)

(b)(b)

(c)(c)

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 1.12 (a) Single DMET molecule.  The right half of the molecule resembles 
the TMTSF structure and the left half is the BEDT-TTF (ET) structure.  (b) 
DMET molecules in a unit cell.   The molecules are rotated 180˚ relative to one 
another to produce a planar stack because of the different thickness on the 
TMTSF and the ET sides.  (c) Crystal structure of (DMET)2I3 viewed along the a 
axis. 
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FIG. 1.13 Temperature dependence of resistivity of (DMET)2I3 showing an onset 
of superconductivity [1.24]. 
 
 

The DMET salts (DMET)2X show a rich variety of electron transport properties, 

ranging from insulator to superconductor, which are classified into five groups. The ones 

with octahedral anions X = PF6, AsF6 exhibit semiconducting behavior with room 

temperature conductivity in the range of 200 to 300 S/cm. Those with tetrahedral anions 

like BF4, ClO4, ReO4 have typical room temperature conductivities of ~100 S/cm and 

show a metal-insulator transition at around 40 K. Salts with gold dihalide anions like 

AuCl2, AuI2, and Au(CN)2  have a room temperature conductivity of 230 S/cm and 

exhibit metallic behavior down to low temperature, before showing a weak increase in 

resistance below 3K to undergo a superconducting transition. The salts with linear anions 

like I3, I2Br, IBr2, SCN and AuBr2 have conductivities of 170, 320, 210, and 80 S/cm 
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respectively. Among these, (DMET)2I3  and (DMET)2IBr2 exhibit superconductivity 

under ambient pressure. Figure 1.13 shows the temperature dependent resistivity of 

(DMET)2I3. It showed the indication of superconducting transition ~ 0.58 K. The clear 

superconducting transition has been observed in our present work and it will be discussed 

in Chapter 4.  

  

Fig. 1.14 (a) The magnetic field dependence of resistance (Rxx) for the field B//c* 
at various temperature (inset shows the derivative of data at T = 0.05 K). The kink 
in resistance was observed for the field strength higher then 10 T showing the 
FISDW transition.   (b) The temperature-field (T-H) phase diagram for 
(DMET)2I3 for B//c*.  The FISDW phase was observed with the threshold field of 
10 T. The dotted line was the phase diagram for (TMTSF)2AsF6 for the direct 
comparison of FISDW transition [taken from Uji, et al., 1.34] 

 

 

The study of FISDW in (DMET)2I3 was carried out by Uji et al., [1.34] for the 

magnetic field perpendicular to the conduction plane (B//c*) showed that the FISDW 

phases are induced by the magnetic field higher then 10T, which is much higher than in 

(TMTSF)2X family of Q1D systems. The magnetic field dependence resistance for B//c* 
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at different temperature is shown in Fig 1.14 (a) and the temperature-field phase diagram 

is shown in Fig. 1.14 (b).  It showed that the frequency of the successive transitions in 

about 70T for (DMET)2I3, smaller than that of (TMTSF)AsF6, which is 83T. It was also 

found that FISDW transition roughly corresponds to the Shubhnikov-de-Haas frequency 

of the small pocket formed by the imperfect nesting. Thus, the FS nesting for (DMET)2I3 

is found to be more perfect than that for (TMTSF)2AsF6.  

 

1.6 Angular Effects in Conductivity 

As discussed earlier, the Fermi surfaces of Q1D conductors are open and warped, 

so conventional Landau quantization is not possible in the presence of magnetic field. 

This Landau orbital quantization effect is known to lead to large oscillatory effects, such 

as Shubnikov-de Haas and de Haas-van Alphen effects, which themselves are used as 

tools to measure the structure of Fermi surfaces.  However, in the metallic phase of these 

Q1D conductors, several other types of magnetoresistance oscillations have been 

observed experimentally, which are related not to the orbital quantization, but to the 

shape of Q1D Fermi surfaces. To date, Lebed magic angle resonances [1.35, 1.36, 1.37, 

1.38, Danner-Kang-Chaikin (DKC) oscillations [1.40] and the Yoshino angular effect 

(YAE) [1.41, 1.42 ], have been observed, in particular, for field rotations about the  three 

principal axes.   In addition, more complex oscillations are observed when the magnetic 

field is rotated through arbitrary (out-of-plane) directions [1.43, 1.44]. These have been 

refereed to in the literature as Lee-Naughton (LN) oscillations after their discoverers. 

Figure 1.15 shows the orientations of magnetic field for which these remarkable AMRO 

phenomena have been observed. 



   

 21

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 

 
 
 
FIG. 1.15 The schematic diagram for the rotation of magnetic field in different 
plane for which AMRO has been observed. From top left in clockwise direction; 
Lebed effect (y-z rotation), DKC (x-z rotation), YAE (x-y rotation), and LN (out-
of-plane rotation). 
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While such AMRO effects have been observed in many Q1D materials, their 

origin(s) and relationships to each other have puzzled researchers for over two decades. 

This topic is important enough in this thesis that it requires a separate chapter to fully 

elaborate. AMRO effects will thus be discussed in Chapter 2.  Chapter 3 discusses the 

details of the experimental setup.  Chapter 4 discusses the results of experiments on 

(DMET)2I3, comparison to available theoretical models, and simulations electrical 

conductivity and magnetoresistance using the true triclinic crystal structure.  In Chapter 5, 

the superconductivity in (DMET)2I3 and measurement of its upper critical field will be 

presented and discussed.  
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Chapter 2 

Angular Magnetoresistance Oscillations in Q1D Organic Conductors 
 

2.1 Introduction 

The effect of a magnetic field on the physical properties of solids, especially on 

their electrical conductivity, started as a field of research when William Thompson (later 

Lord Kelvin) discovered in 1856 that the resistance of iron and nickel changed when 

placed in a magnetic field [2.1]. The resistivity of iron increases when the magnetic field 

is applied along the direction of current. Such changes in resistance (increase or decrease) 

with magnetic field are referred to as magnetoresistance. Theoretically, the conductivity 

 of solids in the free electron model is directly proportional to the density of carriers n 

and in the relaxation time approximation, inversely proportional to a constant scattering 

time . When the magnetic field B is applied, charge carriers experiences a Lorentz force 

such that electron trajectories bend their paths into helices, with a angular velocity given 

by the cyclotron frequency c=eB/m, where e is electronic charge. The average angle 

turned between collisions is c and, unless c > 1, no significant magnetoresistance 

effects are expected. However c >1 is not the only requirement to observe 

magnetoresistance. 

Magnetic field is also known to be a useful tool in exploring the Fermi surface 

(FS) of conductors, especially metals [2.2].  When a strong magnetic field is applied in a 

conductor, Landau quantization of electron orbits gives rise to oscillations of the Fermi 

energy and thus various thermodynamic properties, such as heat capacity, magnetization, 

sound velocity, and electrical conductivity. This is essentially a macroscopic realization 
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of the Bohr-Summerfield quantization of action   npdq , where p is momentum; dq is 

line element along the close path, n in an integer.   

In the presence of perpendicular magnetic field, the orbit of an electron quantized in such 

a way that  

   n
c

e
pdq 2         (2.1) 

where ec /2  = 4.14 x 10-7 gauss cm2, is the flux unit, and n is an integer 

corresponds to the Landau Level. 

 When the magnetic field is increases, the Landau level approaches an extremal 

cross-section of Fermi surfaces AF and then the free energy increases to a maximum. On 

further increase in field, the highest Landau level with n becomes depleted, causing a 

sudden decrease of the free energy. The free energy then increases again until the next 

maximum is reached. The maximum occur whenever the area of orbit is equal to AF, 

which is equally spaced with intervals periodic in 1/B, 
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


       (2.2). 

This quantization lead to the remarkable magneto-oscillations in in resistivity and 

magnetization are referred to as the Shubnikov-de Haas (SdH) and de Haas-van Alphen 

(dHvA) effects, respectively. Experimental methods to detect these effects are used to 

explore the FS of conventional metals.  The first observation of such oscillations in the 

magnetization and resistivity, were seen in three-dimensional (3D) metal (semi-metal) 

bismuth in 1930 [2.3 and 2.4].  Also, when a magnetic field is applied perpendicular to 

the plane of a two-dimensional electron gas (2DEG), Landau quantization gives rise to 

quantization of the transverse resistivity of the system, yielding the integer quantum Hall 
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Effect (QHE) [2.5]. Under special conditions where there are strong correlations between 

electrons in a 2DEG, another related quantizing phenomenon occurs called the fractional 

quantum Hall effect (FQHE) [2.6]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 2.1 The magnetoresistance of -(ET)2Cu(NCS)2 as a function of magnetic 
field. Clear SdH oscillations are observed at temperature below 1K and higher 
magnetic field [2.7]. 

 
 

A prerequisite for the application of magnetic field techniques for the study FS 

properties of conductors is high crystal quality.  This requirement is fulfilled most 

explicitly by the expression c >> 1, meaning an electron is able to complete several 

cyclotron orbits before scattering. Due to the self selecting nature of growth process, 

crystals of molecular organic conductors can be of high qualities, with low defect and 
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impurity concentrations and the requirement c >> 1, is often easily met. An example 

of SdH oscillations in an organic conductor -(ET)2Cu(NCS)2, reported by Oshima et al. 

in 1988, is shown in  Fig. 2.1 [2.7].  SdH and dHvA oscillations observed in -(ET)2I3 as 

shown in Fig. 2.2 [2.8]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 2.2 Typical dHvA (top) and SdH (bottom) oscillations of a single crystal of 
-(ET)2I3 at 0.5 K in the magnetic field range 7 - 23.5 T ; inset: FS of -(ET)2I3 
[2.8]. 

  

In addition to these orbital quantization-based magnetic oscillations, another kind 

of oscillation in magnetoresistance is observed in certain crystalline materials when they 

are rotated in a strong magnetic field. In fact, it can be said that there are two distinct 
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(a) (b)(a) (b)

classes of such angular magnetoresistance oscillations (AMRO), depending on the 

dimensionality of the crystals. For Q2D systems, Katrsovnik et al., [2.9] observed the 

magnetoresistance oscillate as a magnetic field is rotated in a plane perpendicular to the 

most conducting plane as shown in Fig. 2.3 (a). It was soon thereafter noted that the 

angles where minima in magnetoresistance occurred were well defined by the relation 

tan = sN (s = 0.39 and N = 0,1, 2, 3…..). Immediately, these oscillations were explained 

by Yamaji [2.10] in terms of semi-classical electron orbits in the reciprocal lattice in a 

magnetic field. They are now generally known as Yamaji oscillations.  Again, Landau 

quantization of these close orbits gives rise to increases in magnetoresistance, but now 

only in the vicinity of certain angles due to the vanishing of electron group velocity along 

the field direction.  Based on this analysis, the transverse cross section of the FS of the 

Q2D organic conductor -(BEDT-TTF)2IBr2 was obtained as shown in Fig. 2.3 (b). 

 

 

FIG. 2.3 (a) Angle dependence magnetoresistance oscillation (AMRO) in -
(ET)2IBr2. (b) Transverse cross-section of the Fermi surface (thick line) deduced 
from the angular magnetoresistance oscillations [from Kartsovnik et al., 2.9]  
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The conductor under study in this thesis, (DMET)2I3, belongs to the other class of 

materials exhibiting AMRO effects, beside Q2D systems, that of the layered, quasi one-

dimensional conductors. Its FS consists of a pair of corrugated sheets that are open in the 

plane of the layers as shown in Fig. 1.2 (e).  This unique characteristic of the FS leads to 

new features in magnetoresistance, as compared to 2D and 3D FS’s, which are closed 

surfaces.  Those Q1D molecular conductors are highly anisotropic materials, leads to the 

presence of a remarkable number of oscillatory magnetoresistance phenomena with 

respect to magnetic field orientation [2. 11 ].  For examples, Lebed magic angle 

resonances (LMA) [2.12, 2.13, 1.14, 2.15,  2.16, 2.17 ], Danner-Kang-Chaikin (DKC) 

oscillations [2.18] and the Yoshino angular effect (YAE) [2.19 and 2.20], have been 

observed for field rotations about the three principle axes, a//x, b’//y and c*//z, 

respectively.  In addition, more complex Lee–Naughton (LN) oscillations have been 

observed when the magnetic field is rotated through arbitrary (out-of-plane) directions 

[2.21, 2.22, and 2.23]. 

In this Chapter, we will discuss these four AMRO effects, models developed to 

explain them, and their relationships to each other. 

 

2.2 Lebed Magic Angle (LMA) Oscillations 

The study of the orientation dependence of a magnetic field on the conductivity of 

Q1D molecular organic conductors started in the early 1980’s. Measurements of the 

magnetoresistance anisotropy in (TMTSF)2ClO4 and (TMTSF)2PF6 showed dramatic 

deviations from a simple sinusoidal behavior that might be due to the three-dimensional 

effects, even though the interplane integral tc is very small  [2.24, 2.25, 2.26]. However, 
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in 1986 Lebed showed that in a tilted magnetic field, the electron motion in the y-z plane 

is quasiperiodic, and a type of low dimensional limit is reached i.e., for the fields for 

which the cyclotron frequency c = eB/mc exceeds the band with, ħc ≥ 4tc. This 

corresponds to the limit where the amplitude of electron motion along the z- direction 

becomes smaller than the lattice parameter c [2.12]. Lebed’s original paper contradicted 

on the effects that this tilted field would have the threshold field for which metal-FISDW 

transitions. It predicted that at certain “magic” angles give by 
c

b

q

p
tan   where p and q 

are integers; b and c are lattice parameters, these fields would collapse to zero, meaning 

the electronic system was susceptible to a Fermi surface unstable in any finite magnetic 

field. The experimental search of such an effect was performed by the Yan, Naughton 

and others in the Chaikin group at Princeton [2.27]. They studied the angular dependence 

of FISDW states, as well as the frequency of the unexplained so-called rapid magnetic 

oscillations in the (TMTSF)2ClO4. As B was rotated away from the z-axis, the transition 

field positions and the oscillation frequency were found increased, exhibiting 

conventional 1/cos behavior expected for an anisotropic electronic system, verifying 

both effects were orbital and two dimensional in nature. However, no evidence for 

nonmonotonic behavior of the threshold field with angle was found (though in retrospect, 

it may have been present) for the angular range the experiment was performed. 
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FIG. 2.4 Angular dependence of magnetoresistance calculated by Lebed and Bak 
for the magnetic field rotating in the y-z plane at B = 4T and at temperature 0.2K 
[2.28]. 

 

Shortly thereafter (1989) Lebed and Bak, showed that the quasiperiodic motion of 

electrons leads to a complicated angular dependence of the magnetoresistance in the 

normal state of Q1D conductors as shown in Fig 2.4 [2.28]. They calculated that the 

magnetoresistance has prominent peaks at certain angles (magic angle) given by the same 

equation as the Lebed predicted for FISDW states, 

 sintan
*c

b

q

p
         (2.3) 

Boebinger et al. [2.29] reported oscillations in the transverse magnetoresistance in 

(TMTSF)2ClO4 in both the metallic and FISDW phases. In the metallic phase, the 

magnetoresistance varied as B, where  < 2 and decreasing as the magnetic field was 
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tilted from the z- axis. In the FISDW states, there was an enhancement of the 

magnetoresistance anomalies at the FISDW phase transitions as the magnetic field was 

tilted, with particular angles for stronger and weaker enhancement. However, there was 

no clear correlation between these results and Lebed’s or Lebed and Bak’s predictions. 

  Further experimental search for features in magnetoresistance at certain magic 

angles were observed on the Bechgaard salt (TMTSF)2ClO4 followed by Naughton et al. 

and [2.13. 2.14] Osada et al. [2.15]. Each group found magnetoresistance minima, 

however, rather then the maxima predicted by Lebed. Figure 2.5 shows the initial results 

from both groups. It is thought that, at these magic angles, the periods of electron orbits 

along the ky and kz directions on an open FS sheet are commensurate, as shown in Fig 2.6.  

The electrons have non-zero average velocity along the direction of the field at these 

special angles, which leads to an increase in conductivity along the field direction.  As a 

result, when the magnetic field is rotated from the y to the z-axis, a series of minima in 

the interlayer resistance is expected at those angles.  These angles for a triclinic system 

are given by  *
*

cot
sinsin

sin
tan 


 

c

b

q

p
     (2.4) 

p and q are an integer, and * is give by 



sinsin

coscoscos
cos * 

 , in which  denotes 

the angle that the magnetic field makes from the z-direction, , , , b and c are the 

lattice parameters.  

A similar effects has since been found in several other Q1D organic conductors, 

such as (TMTSF)2PF6 [2.30, 2.31 ], (TMTSF)2ReO4 [2.32], (DMET-TSeF)2X ( AuCl2, 

AuI2, I3) [2.33 , 2.34 ,2.35], (DMET)2CuCl2 [2.36], (DMET)2I3 [2.17], and (BEDT-
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TTF)(TCNQ) [2.37]. In general, it seems that effects are seen at integral values of the 

ratio p/q = 0, 1, 2, 3, …… i.e., p = integer and q = 1. 

 

 

 

  

 
FIG. 2.5 The first experimentally observed Lebed magic angle (LMA) effect in 
(TMTSF)2ClO4  (a) from Naughton et al. [2.14] and (b) from Osada et al. [2.15]. 

(b) 
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FIG. 2.6 Commensurate conditions are shown in real space.  Resistance will have 
minima when the field is oriented along the real space lattice vector.  The first 
minimum with n = 0 will occur ~ 6± (TMTSF)2ClO4 and ~ 8.5± for (DMET)2I3 
away from the z(c*)-axis, the c’-direction. 
 
 

2.3 Danner-Kang-Chaikin (DKC) Oscillations 

The second AMRO effect on Q1D organic conductors was discovered by Danner, 

Kang and Chaikin in 1994, when the magnetic field is rotated in the x-z plane (rather than 

y-z plane), a series of peak structures in resistivity is observed for fields near x-axis. The 

positions of these structures were found to be independent of the magnetic field strength 

as shown in Fig. 2.7.  These oscillations in magnetoresistance have been interpreted in 

terms of the semiclassical orbital averaging of the z-axis electron velocity given by vz = 

2ctcsin(kzc).  For field along the x-axis, there is no Lorentz force from the velocity along 

x-axis and the velocities are only finite away from the extrema of the FS and the largest 

vy is found along the lines at ky =  /2b.  There are orbits traversing up and down kz at, 

or near, these lines as shown by the dotted lines in Fig. 2.8.  There are some close orbits, 
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but these do not go from inside to outside of a closed FS and therefore, do not contribute 

to the oscillations (i.e. they are not extremal orbits).  The open orbits which traverse the 

FS in the z direction tend to average vz to zero, hence, contributing to a nonsaturating 

magnetoresistance.  

 

 
 

FIG 2.7 The angle dependence of interlayer resistance of (TMTSF)2ClO4 for 
magnetic field rotation in the x-z plane measured at 0.5K  At low fields (1T and 
2T) and small angle, the resistance goes to zero due to superconductivity [2.18].  
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FIG 2.8 The Fermi surface for (TMTSF)2ClO4.Orbits (dotted)  show the trajectory of 
electrons when the field is parallel to x for closed and open  orbits.   Here the angles 
for the peak resistance are directly related to the band parameters.  The fastest 
averaging of <vz> is when an orbit sweeps across the FS crossing an integral number 
of 2/c’s for each 2/b [from Danner et al., 2.18]. 
 

When the magnetic field is tilted, there becomes finite component along the z-axis, 

such that the orbit trajectories move along both y and z directions as shown in Fig. 2.8. 

There is averaging of vz, particularly, if an orbit sweeps periodically over an integral 

number of reciprocal lattice along c, then <vz> = 0 for all orbits.  This condition for 

maxima in magnetoresistance along z, corresponds to the tilt angle, which is proportional 

to tb.  Thus, measuring the field angle along the c direction allows for a determination of 

the warping of the FS.  In the case of (TMTSF)2ClO4, the maxima in the 

magnetoresistance is found to be  =  6o, which corresponds to the tb = 0.012  0.001 eV 

in the anion ordered state of ClO4 [2.18].  
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2.4 Yoshino Third Angular Effects (YAE) 

When the magnetic field is rotated in the most conducting x-y plane of Q1D 

systems, the magnetoresistance was found to exhibit a pair of minima centered at the 

angle  =  15o. This phenomenon was called the “third angular effect”, with the LMA 

and DKC oscillations being the first two effects.  The first TAE was initially observed in 

(DMET)2I3 by Yoshino et. al, [2.19 ] as shown in Fig. 2.9. Here, we call this third 

angular effect as “Yoshino third angular effect” (YAE) after it was discovered. It has 

been observed in many Q1D conductors, such as (TMTSF)2ClO4 [2.21, 2.22, 2.23], 

(TMTSF)2PF6  (0.85 GPa) [2.38], (DMET)2AuBr2 [2.38], (DMET)2AuCl2 [2.39] and 

(DMET)2CuCl2 [2.40]. 

 

 

 

 

 

 

 

 

 

 

 
FIG. 2.9 Angle dependence of magnetoresistance of (DMET)2I3 for the current 
along  the (c*) z-axis . For the value of higher magnetic field, a pair of minima are 
observed at an angle ~ ± 15± [2.19]. 
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In a semiclassical framework, Osada et al. has proposed an explanation of the 

YAE based on small closed electronic orbits becoming open orbits as the field is rotated 

away from the x-axis, where the motion of the carriers on the FS is affected by the 

Lorentz force [2.41]. They claimed that the carriers drawing the close orbits then have no 

contribution to the conductivity along the z-axis (that being measured), such that the 

electrical resistivity shows a slight increase in the angle region where the closed orbital 

motion exists. While rotating the magnetic field in x-y plane, the closed orbits were 

claimed to disappear at an angle where magnetoresistance shows a minimum.  However, 

Lebed and Bagmet [2.42] proposed that the YAE can be explained without the closed 

orbits. In their interpretation, the YAE is ascribed to the velocity-preserving nature of 

“effective” electrons, via their proximity to geometrical inflection points on the Fermi 

surface.  These electrons are free from the Lorentz force because their carrier velocity is 

parallel to the magnetic field.  The Lorentz force, acting on such electrons, is therefore 

vanishingly small, such that their momentum is conserved and the interlayer velocity 

does not oscillate.  As a result, these electrons (i.e. electrons near particular sections of 

the Fermi surface) are the most “effective” in interlayer charge transport, which gives 

large contributions to the conductivity.  At an inflection point of the Q1D Fermi surface, 

the number of carriers which are so effective is maximum.  Since the density of the 

effective carriers diverges at the angle where the velocity is normal to the Fermi surface, 

when the inflection point matches with the magnetic field direction, there is a significant 

magnetoresistance drop. In other words, as shown by Lebed and Bagmet, when the 

direction of the magnetic field approaches an inflection point, more and more electrons 
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become effective, leading to  a localized angular region of enhanced conductivity, and 

thus a local minima in the resistivity. 

 

 

 

 

 

 

 

 

 
 
 
FIG. 2.10 The in-plane magnetic field is normal to the cross-section pa - pf  = 
2tbcos(pbb*)/vF [2.47]. 
 

Figure 2.10 show the side of the typical Q1D Fermi surface, with the magnetic 

field H oriented along θ as shown.  At the geometrical inflection point PH, the largest 

number of electrons becomes effective, giving rise to the resistance minimum.  Lee and 

Naughton directly calculated the angle at which the previously mentioned open-closed 

event occurs, and showed it to be distinct from the angle at which the YAE is both 

characterized via the “effective electron” model and observed in (TMTSF)2PF6 [2.23].  

Nevertheless, the origin of the YAE is closely related to the corrugation of the 

Q1D FS within the x-y plane and the critical angle c (where the minima in 

magnetoresistance are observed).  The in-plane anisotropy  can be defined as the ratio of 

ty to tx, and can be measured using the TYAE. Yoshino et. al., [2.38, 2.39] numerically 
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calculated dependence of  (angular width of the two minima in magnetoresistance in 

either side of the x-axis) and compared it to the estimated values of from experiment for 

several Q1D conductors.  The dimensionality for (DMET)2I3 at ambient pressure was 

estimated to be 1/9.7, for (TMTSF)2PF6 under pressure  to be 1/8.6, for (DMET)2AuBr2 

to be 1/10, for (DMET)2AuCl2 is 1/9.8 and 1/10 for (DMET)2CuCl2.  Furthermore, 

Yoshino et al., measured the pressure dependence of  from YAE data on 

(TMTSF)2PF6 [2.43], (DMET)2I3 [2.43] and (TMTSF)2ClO4 [2.44]. It was found that 

increases with pressure, corresponding to an increase in Thus, the YAE gives 

direct experimental evidence of the dimensionality enhancement in Q1D conductors by 

pressure. 

 

2.5 Lee-Naughton (LN) Oscillations  

  Finally, when a Q1D crystal is rotated along an arbitrary magnetic field 

plane, in particular nearly about the z-axis and close to the x-y plane, far more complex 

magnetoresistance oscillations are observed.  These were first observed in (TMTSF)2PF6 

[2.23] by Lee and Naughton, and therefore came to be known as Lee-Naughton or LN 

Oscillations. The original LN data for (TMTSF)2PF6 is shown in Fig. 2.11. Similar LN 

oscillations were later observed in (TMTSF)2ClO4, [2.45] by Ha and Naughton and in 

(DMET)2I3 by Yoshino et al. [2.20].  

 

 

 

 



 

  43

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

FIG. 2.11 
Angle dependence of transverse resistance, Rzz, in (TMTSF)2PF6 with y-axis 
offset for various tilt angles  At , the  TAE is observed, while the extra 
oscillations associated with the LN-effect occur for finite angles The inset 
shows the sample orientation in magnetic field [2.23]. 

 
 

As discussed earlier, for the field rotated in the x-y plane, the YAE is observed.  

In case of (TMTSF)2PF6, additional small oscillations appear for the field rotation in a 

plane slightly off the x-y plane (~ 3o), second curve from the bottom in Fig. 2.11.  At 

higher tilt angles, more pronounced oscillations are observed.  Initially, these oscillations 

were conjectured to be projections of the LMA in to the rotation plane employed. 
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However, more oscillations are observed in off-angle rotations than in a pure Lebed (y-z 

plane) rotation of the magnetic field.  Lebed and Naughton [2.46] provided an alternate 

explanation, known as the “interference commensurate effect” (IC) , which refers to the 

interference between electron waves from adjacent Brillouin zones at particular field 

orientations, give either local maxima or local minima in resistivity, depending on the 

orientation of the magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
FIG. 2.12 Electron trajectory, interlayer velocity vz(t) and coordinate z(t) under a 
magnetic field [2.47].  
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This IC effect can be elaborated as follows. As shown in the upper curve in Fig. 

2.12,momentum-space electron trajectories in the pypz-plane are no longer straight lines, 

but oscillate with an amplitude pz = 4ty tancos/uF, where vF is the Fermi velocity. At 

an LMA field direction, an electron, following the trajectory is displaced along pz by an 

integer number of unit cell, N(2Ñ/c), during one oscillation period Ty = 2/wy. The 

interlayer velocity is then a periodic function of time; its average, contributed mainly by 

the trajectory parts near extremal values of pz(t), is generally nonzero.  Thus, the electron 

acquires a finite shift along the z-axis, as shown in lower curve in Fig. 2.12.  As a result, 

the resistivity zz exhibits local minima.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 2.13 1D→2D dimensional crossovers as revealed by Rzz(B) at certain 
commensurate and non commensurate orientations.  For each angle θ indicated, 
was adjusted to reach a resistance maximum or minimum [2.45]. 
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A particular manifestation of the IC effect was found in fixed angle measurements, 

where the magnetoresistance displays qualitatively different behavior at field orientations 

when the resistance is at a local minimum versus a local maximum. As discussed by Ha, 

Lebed and Naughton [ 2.45], these behavior are associated with 1D and 2D transport.  A 

key point is that the LN magnetoresistance oscillations can be then interpreted in terms of 

these 1D to 2D crossovers.  In the absence of close orbits for Q1D Fermi surfaces, in 

stead of Landau quantization, the quantum effect in a magnetic field is that of Bragg 

reflections which the authors of Ref. 2.45 suggest, resulting in a series of 1D to 2D 

crossovers at the minima of the LN oscillations.  In other words, electron wave functions, 

localized on the 1D chain at arbitrary field directions, become delocalized on 2D planes 

at the commensurate directions.  This dimensional crossover notion was used to 

investigate electron motion in the Q1D metal (TMTSF)2ClO4 in a strong magnetic field 

[2.45]. In this model ρzz(B,θ,φ) is expected saturate at high field for commensurate 

orientations.  However, away from these special directions, it should follow B2 

dependence as shown in Fig. 2.12. ρzz  indeed saturates at commensurate directions 

(minima), while at non-commensurate directions (maxima) it exhibits a non-saturating 

behavior.  Thus, the prediction of saturating magnetoresistance at commensurate angles 

(minima in angle sweeps) and non-trivial, non-saturation otherwise, seems to be borne 

out in the experiments. 

Lee and Naughton defined the position of minima observed in terms of the angle 

 in terms of  and  by the relation  

 tan/sintan         (2.5) 
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where tan is given by Eq. (2.4). It is found that the numbers of minima in oscillations in 

LN-orientations are higher than the pure Lebed orientations [2.23]. 

In next section, we will discuss some available theoretical models to explain these 

experimentally observed AMROs. 

 

2.6 Some Theoretical Models on AMRO 

When a magnetic field is applied to a conducting material, Lorentz force 

isexperienced by an electron, given by 

Bve
dt

pd
FL




         (2.6) 

where p, v, and e are the electron’s momentum, velocity, and charge, respectively.  In 

Q1D systems, the FS consists of the sheets extended perpendicular to the x-axis and 

wrapped along the y-axis [Fig. 1.3 (e)].  For such a system, the electron dispersion 

relation in the lowest order tight-binding approximation was provided in Eq. (1.1). 

When a strong magnetic field )cos,sin,0(  BBB 


 is applied in a plane 

perpendicular to the chains in such systems, the Lorentz force makes electrons move 

along the Fermi sheets, crossing many Brillouin zones.  One can define a frequency with 

which an electron crosses a given Brillouin zone in the ky and kz directions is, respectively, 

as 

  cosB
bev

dt

dk
b Fy

y


        (2.7) 

and  sinB
cev

dt

dk
c Fz

z


        (2.8). 

For the field along the direction given by 
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c

b

q

p
tan          (2.9) 

where p and q are integers, these frequencies are commensurate and the motion in 

momentum space becomes periodic. In other words, orientations given by Eq. (2.9) yield 

commensurability resonances. This results in the oscillations of the magnetoresistance 

with the sharp minima observed at the angle given by Eq. (2.9). As discussed in Section 

2.2, this was first suggested Lebed [2.12], and is the Lebed magic angle (LMA) effect 

and was experimentally reported by Naughton et al. [2.13, 2.14 ] and Osada et al. [2.15] 

in the metallic state of (TMTSF)2ClO4.  For a triclinic crystal structure, the Eq. (2.9) is 

modified to the Eq. (2.4). 

There exist several theoretical models to explain this LMA effects in Q1D 

conductors in terms of the field-induced density-wave instability [2.12, 2.48, 2.49], 

electron-electron interactions [2.50, 2.51,2.52] and non Fermi liquid behavior [2.53, 2.54]. 

In one of the model, Osada et al., [2.55] proposed a dispersion relation with higher order 

interchain transfer integrals, as  

))/cos()/cos((2)/cos(2)(
,
 

nm
znymFxx cnptbmptaptp 

   (2.10) 

where m and n are integers. The conductivity calculated using this dispersion relation 

gives the correct condition for the observed magnetoresistance minima; however, an 

explanation for the physical significance of this extra mixed m-n term added to the 

dispersion relation has yet to be preferred.. Furthermore, in the case of (TMTSF)2X (X = 

ClO4 and PF6), the experimentally observed minima in magnetoresistance are observed 

for q = 1, meaning p/q takes only integer values n.  It is suspected, however that the 
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LMA oscillations observed in (TMTSF)2ReO4 [2.56] may be attributed to the existence 

of such high-order interchain transfer terms [2.57].  

When the magnetic field is applied in the direction defined 

by )cos,0,sin(  BBB 


, the trajectories of electrons are extended along the ky-axis and 

the interlayer momentum kz oscillates as 

 )sin(tan
2

)0()( t
v

t
ktk y

F

y
zz 


      (2.11) 

where wy is given by Eq. (2.5). The amplitude of this oscillation is given by 4tytan/F.  

When  is close to zero, the amplitude of this oscillation is smaller than the size of the 

Brillouin zone in the kz-direction, and <vz> has a non-zero value.  When  increases, the 

amplitude is equal to the 2Ñ/c and <vz> vanishes, giving rise to the maxima in 

resistivity.  The series of magnetoresistance peaks (DKC oscillations) thus occur every 

time the electron orbit crosses the Brillouin zone.  The period of the DKC oscillations in 

magnetoresistance can be expressed as 

 
ct

v

y

F

2
)(tan


  , and        (2.12) 

the condition for the <vz> = 0 is determined by the zeros of the Bessel function 

J0[2tyctan/ÑvF].  McKenzie and Moses [2.58] calculated the interlayer conductivity for 

coherent and incoherent transport for a tilted magnetic field for such a system and their 

results are similar to the experimentally observed DKC oscillations. 

A general quantum picture for magnetoresistance angular effects in Q1D 

conductors was given by Osada and coworkers [2.59, 2.60].  They considered the 

incoherent limit where in-plane scattering happens more often than interlayer tunneling, 
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such that the tunneling between adjacent layers leads to all the angular effects, except the 

a “peak effect” caused by closed orbits.  The LMA is described as resulting from resonant 

magnetotunneling between adjacent layers, and the DKC oscillations and YAE are just 

modulations of this tunneling amplitude. In this model, the expression for the DC 

conductivity using the Kubo formula with the lowest order contribution for tc is written as 












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
 

(2.13) 

When the field is rotated in the y-z plane, the denominator of last term gives in Eq. 

2.13, 
c

b
n

B

B

z

y  , which is the same as Eq. [2.7], with n being an integer.  However, when 

the field is rotated in the y-z plane, higher order Bessel functions vanish, with only 

1)0(0 J  remaining giving rise to a smooth variation in resistivity with no oscillations.  

This expression for the conductivity, qualitatively explains the experimentally observed 

AMRO in Q1D systems as shown in Fig. 2.13, 2.14 and 2.15. Figure 2.13 is the three 

dimensional plot of the calculated magnetoconductivity using eq. (2.13) for the Q1D 

conductor (TMTSF)2PF6 with anisotropy tx:ty:yz = 300:30:1 at magnetic field strength of 

9T. The spikes like structures developed towards the center of the plot, are called LN–

oscillations. Figure 2.14 shows the density plot of the interlayer magnetoconductivity 

calculated using the same Eq. (2.13). It is seen that the features in plot developed with the 

increase in the magnetic field strengths and becomes sharper at higher magnetic field. 

The horizontal line for Bx/Bz = 0 represents the Lebed plane of field rotation, having the 



 

  51

single peak structure at the center. The features developed along the diagonal lines in Fig. 

2.15 are LN–oscillations. 

 A similar expression was derived by Lebed and Naughton [4.47], assuming that 

the origin of the oscillations observed for the field rotating along an arbitrary direction is 

related to interference effects resulting from Bragg reflections, which occur as electrons 

move along quasi-periodic and periodic (“commensurate”) electron trajectories in the 

extended Brillouin zone.  This expression qualitatively explains the YAE and LN 

oscillations, but fails to reproduce the LMA.  Alternately, Lebed et al. [2.61] proposed 

that an interference effect between the velocity of electrons and the density of states, 

gives rise to 1D and 2D crossover, which appear to result in peaks of the interlayer 

conductivity at magic angles. 
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FIG. 2.14 Three-dimensional (3D) plot of the calculated magnetoresistance using 
Eq. (2.13) for Q1D conductors with tx:ty:tz = 300:30:1 at magnetic field 9T.  The 
upper figure is viewed along the y-axis.  The left and right structures are the DKC 
oscillations, which are observed for the field rotated in the x-z plane.  The spike-
like structures developed towards the center which is the LN oscillations.  The 
lower figure is viewed along the x-axis.  Again the spike-like features developed 
while going away from the center (LN oscillations).  These spike features are 
discontinuous at the y-z plane shown by vertical dotted line. Also, the horizontal 
dotted line represents the YAE. 
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FIG. 2.15 The density plot of the interlayer conductivity calculated using Eq. 
(2.13) for Q1D (parameter used in calculation are for (TMTSF)2PF6). The plots 
(a)-(f) are for different magnetic field 0.1, 2, 5, 10, 15, and 20T. The AMRO 
becomes sharper and broader while increasing magnetic field. 
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FIG. 2.15 The density plot of the interlayer conductivity calculated using Eq. 
(2.13) for Q1D (parameter used in calculation are for (TMTSF)2PF6).  The black 
horizontal dotted line represents the LMA, where as the diagonal dotted 
represents the LN oscillations.  
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In a very intriguing interpretation of AMRO in Q1D, Cooper and Yakovenko 

[2.62] derived an expression which is also similar to the Kubo-based expression of Eq. 

2.11 by considering Aharonov-Bohm interference in interlayer electron tunneling.  This 

interpretation also qualitatively explains the experimentally-observed effects but again 

fails to reproduce the yz- plane Lebed effect. 

 All theoretical models explained above are based on an orthorhombic 

approximation to the actual triclinic crystal structure of the materials, in which the 

AMRO effects have been seen. Osada et al. [2.21], calculated the interlayer 

magnetoresistance using Boltzmann transport equation with constant relaxation time and 

found the oscillations in magnetoresistance for the field rotation in x-y, y-z and z-x planes 

for cubic Q1D system.  

In summation, each of models qualitatively explains some of the experimentally-

observed angular magnetoresistance oscillations in Q1D systems, but not all.  However, 

the question is still debatable, whether these angular effects are independent or these are 

the modulation of one effect.  Kang et al., [2.63] measured the magnetoresistance of 

(TMTSF)2PF6 for all possible angular orientations of magnetic field of 8T at 1.5K under 

pressure 8.4 kbar.  They have presented their data in a 3D plot and compared the data 

with the similar plot obtained using Eq. 2.11. The experimental data and calculated 

magnetoconductivity for (TMTSF)2PF6 has similar 3D structures, however, the calculated 

data has no oscillating features for the field rotated in the yz-plane.  Based on the 

experimental results and calculated data, the authors of Ref. 2.63 concluded that the LMA 

is the only “fundamental effects,” where as all remaining effects are the modulations of 

LMA.  This contention is arguable, since, experimentally, the oscillation amplitudes 
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decrease as the field direction approaches the y-z plane, where the Lebed effect is 

expected to be strongest.  Furthermore, higher order oscillations vanish when the field 

direction approaches the y-z plane. This led us in the direction to search the origin of 

these magnetoresistance oscillations and their relationships (if any) to other Q1D system 

(DMET)2I3 which has similar crystals structure as (TMTSF)2X and crystal anisotropy.  

Are all four (LMA, DKC, YAE and LN) independent phenomenon observed in Q1D 

systems?  Are they related to each other?  Is one of the effect fundamental and all others 

are the modulations of one effect? 

  In the present work, we have measured the magnetoresistance of the different 

kind of Q1D conductor, namely (DMET)2I3, for all possible angular orientation of 

magnetic field with higher magnetic field and very low temperature (100mK).  This 

allows us to achieve B/T = 90 T/K, and explore the magnetoresistance oscillations more 

accurately, whether or not these oscillations have field and temperature dependence. 

Furthermore, the material (DMET)2I3 itself appears to be a suitable candidate to explore 

AMRO, because of the absence of any phase transitions at low temperature.  Also, we 

have simulated the magnetoresistance of (DMET)2I3 using true triclinic crystals structures 

where all previously discussed models were approximated to orthorhombic crystal 

structures. 
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Chapter 3 

Experimental Setup 

 

3.1 Introduction 

All experimental work was carried out in a dilution refrigerator with horizontal 

magnetic field.  The four-terminal resistance measurement technique was employed to 

measure magnetoresistance of the (DMET)2I3 samples.  In this Chapter, we discuss a 

brief-working principle of the dilution refrigerator, the measurement technique, and the 

two rotators used for sample alignment. 

 

3.2 Dilution Refrigerator 

  H. London in 1951 proposed the principle of operation of the dilution refrigerator 

based on the phase diagram of 3He-4He mixture.  The phase diagram of 3He-4He mixture 

is shown in [Fig. 3.1].  There exists the tricritical point, below which the mixture will 

separate into two liquid phases divided by a phase boundary.  One phase is 3He rich 

phase and mostly contains 3He, whereas the other is 4He phase (the “dilute” phase).  The 

two phases are maintained in liquid-vapor form.  Since there is a boundary between them, 

extra energy is required for particles to go from one phase to the other.  When the mixture 

is pumped, most of the 3He will be removed, upsetting the equilibrium.  To restore 

equilibrium, 3He must cross the phase boundary from the rich side to the dilute side at the 

expense of energy.  This energy is in the form of heat, which is taken off through the 

walls of the mixing chamber that is thermally in contact to the sample space.  With this, 
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the continuous circulation of the 3He (i. e., evaporation of 3He carries heat) removes heat 

from the sample space and cools it down. 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 3.1 Phase diagram of 3He-4He mixture. 

 

 

The dilution refrigerator employed for the present work is the Oxford Instruments 

Kelvinox system, including HE-100 insert and IGH intelligent gas handling system.  The 

system can reach a base temperature of ~10 mK without any load.  Fig. 3.2 shows the 

schematic diagram of the dilution refrigerator in the full circulating mode and Fig. 3.3 

shows the setup of the dilution refrigerator. 
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FIG. 3.2 Schematic diagram of the dilution refrigerator [3.1]. 



 63

 

 

 
 
 
FIG. 3.3 The dilution refrigeration setup used for the present work.  The dil-fridge is 
situated on the goniometer as shown.  All possible rotation of steradian of 4 in ( and ) 
can be achieved with the combination of stepper motor and goniometer.  To avoid any 
restriction to rotate the fridge, the turntable (not shown in figure) is designed such that, 
when the ex situ goniometer is rotated in one direction, the turntable allow the cryogenic 
Dewar to simultaneously rotate in the opposite direction, to keep the fridge at the same 
orientation.  
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The mixture which is stored in the dumped vessel may contain some impurities 

(such as N2, O2, H2O vapors etc).  This contaminated mixture is thus purified by liquid 

nitrogen and liquid helium cold traps.  When passed through the cold trap, these 

impurities are condensed on the wall of the traps, not causing any problems in running 

the dilution refrigerator.  The system is pre-cooled down to 77 K with LN2 and then to 

~10 K with the liquid helium.  When the system if ~ 10 K, the mixture is condensed into 

the mixing chamber through the 1K pot that is maintained at a temperature of about 1.6K 

with the 4He pump.  This condensed mixture of about 2.0 K can be further cooled by 

slowly being pumped with a 3He pump.  When the mixture temperature reaches  at least 

0.86 K (triclinic point), the phase separation of 3He-4He takes place.  With the full 

circulation of 3He, using the 3He pump, the sample space cools down to the base 

temperature.  The detailed operational procedure of KelvinoxHE-100 can be found 

elsewhere [3.1, 3.2].  

There are some important factors that make dilution refrigerator work for 

laboratory uses. Firstly, the amount of 3He and 4He in the mixture need to be chosen 

properly so that the phase boundary of the two phases is inside the mixing chamber and 

the liquid phase is in the still pot.  Usually, the concentration of 3He is 10-20 %, and total 

volume of mixture depends on the size of the mixing chamber. In our case, the 3He 

concentration and the total volume are set to be about 14 % and 53.5 liters, respectively. 

Secondly, a flow-impedance, denoted as the primary impedance in the figure, is placed 

underneath the 1 K pot. The primary impedance is usually made of a stainless steel thin 

rod of about 2 inches long and a little smaller diameter than that of the condensing 

capillary, and is tightly fitted in the capillary. It plays a role in keeping the pressure of the 
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condenser in the 1 K pot high enough for 3He gas to condense. Cooperating with the 

capillary line, denoted as the secondary impedance in Fig. 3.2, between the primary 

impedance and the mixing chamber, it also prevents hot 3He from being fed too fast into 

the mixing chamber.  

The 3He leaving the mixing chamber is used through them to cool the 3He 

returning into the mixing chamber. While conventional coiled tubular heat exchangers are 

very effectively used for both the still heat exchanger and the continuous heat exchanger, 

located above the 50 mK shield, they turned out to be ineffective at very low 

temperatures because of significant increase of the Kapitza resistance (the thermal 

boundary resistance) between the liquid mixture and the solid wall of the heat exchanger 

[3.3]. This shortage is well known to be overcome by coating sintered metals on the solid 

wall, which can increase the surface area of the solid wall by a factor of 105, leading to a 

great decrease in the Kapitza resistance between the liquid and the solid wall. [3.4] In fact, 

a sintered silver heat exchanger is used inside the 50 mK shield. Also, silver sinters are 

coated on the inner surface of the mixing chamber. The use of silver sinters appears to be 

the most important key element to building modern dilution refrigerators. Caution is 

made that the dilution unit has to be vented, if necessary, only with a high purity 4He gas 

since a little contamination of these silver sinters by the atmosphere may result in severe 

deterioration of the dilution refrigerator. At last, emphasis is made on the still heater that 

supplies heat on the still pot to keep the still temperature at 0.6 ~ 0.7 K. In doing so, a 

proper 3He flow maintains to keep the dilution refrigerators in dynamic equilibrium while 

circulating. Moreover, the still heater can be employed to adjust the cooling power of the 

dilution refrigerators. 
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3.3 Operation of KelvinoxHE-100 

The first step in the operation of the dilution refrigerator is to make all the 

electrical connections ready and to evacuate any vacuum parts on the system such as the 

mixture circulation line, outer vacuum jacket of the Dewar, and so on.  The sample was 

mounted in the rotating platform that is vacuum sealed with indium and all of the 

electrical connections were then checked.  It is always good to monitor the sample while 

preparing to run the system.  If the rotating sample platform is used, it is recommended to 

check the rotation of the platform before indium sealed. Note that when sealed with the 

radiation shield and the vacuum can, the sample space must be thermally isolated from 

the radiation shield and the vacuum can.  Also note that the system needs to be helium 

leak checked after pumped out.  Once the leak check is done, the refrigerator is ready to 

be inserted into the Dewar. 

 

 

 

 

 

 

 

 

 

 

FIG. 3.4 Plot of G1 pressure versus the time during the throughput test. Inset 
shows different pressure rise at different temperature. 
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FIG. 3.5 A picture of the front panel of KelvinoxIGH, where the Kelvinox 
temperature controller is also shown on the top of the KelvinoxIGH.  The picture is 
taken when the system is not being used. 
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A preliminary step to run the KelvinoxHE-100 is to perform the throughput test at 

room temperature.  This process is necessary to check if there is any blockage in the 

mixture circulation line.  When all the still and pumping lines are connected as described 

in the manual [3.1], these lines must be evacuated using the 4He pump, by opening the 

valve 5A, 2A, 7, 11A, 2, 1 and 3 of the KelvinoxIGH front panel [Fig. 3.4].  The still line 

is filled with pure 4He gas through valves 7, 11A, 12A and 3 until the pressure reading on 

G1 is less then 1 bar.  Since the safety valve S2 is connected between the still lines and 

the dump vessel (mixture), the pressure difference between G1 and the mixture should be 

less then 500mbar, otherwise there is a probability of losing and contaminating the 

mixture.  Once the pressure reading on G1 approaches 1 bar, valves 7, 11A, 12A and 3 

are closed and valve 1 is opened.  The pressure on G1 drops quickly and then starts to 

increase slowly.  Figure 3.5 shows our pressure change on G1.  The throughput rate was 

about 16.6mbar/min (test value at Oxford instruments is 15.5mbar/min).  Once the room 

temperature throughput test is done, 4He gas has to be pumped out and the system is then 

ready for pre-cooling with liquid nitrogen.  Since the sample environment was under 

vacuum, a small amount of hydrogen gas (~ 10 cc) was introduced for the controlled 

cooling of the system. 

Once the system is ready to transfer liquid nitrogen (LN2), it is recommended to 

transfer slowly in the helium bath and nitrogen jacket.  There must be a sufficient amount 

of LN2 in the helium bath in order to cool down the magnet around ~77K and also to 

cover the magnet until blowing the liquid nitrogen out.  It is best to transfer LN2 a day 

earlier and leave it overnight.  Once the temperature of the magnet reaches ~77K (sample 

temperature may be slight higher ~80K), the second throughput test at this temperature 
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might be desired.  The next step is to blow out the liquid nitrogen from the helium bath.  

4He gas of pressure 1-2 psi was used to pressurize the bath and LN2 was collected.  To 

blow out the LN2, the blow out tube has to be inserted all the way down (which is the top 

position of the magnet).  Once there is no more LN2 coming out from the tube, the helium 

bath is pumped with the 4He rotary pump to make sure there is no LN2 in the helium bath.  

If the pressure of the helium bath passes through the 100mbar smoothly, it can be 

assumed that there is no more LN2 inside the bath.  At this point, the helium bath needs to 

be pumped and flushed with pure 4He gas at least twice, and the opening of the 1K pot 

needle valve should be checked as well.  If the lambda point refrigerator is used, a couple 

of pumping and flushing of the lambda point refrigerator is desired.  At the end of the 

final flushing, the needle valve of lambda point refrigerator should be left open until the 

end of liquid helium transfer. 

Now, the system is ready for transferring liquid helium.  A slow transfer of liquid 

helium is recommended. This can be controlled by monitoring the temperatures of the 

sample and magnet so that they can be cooled at the same rate (temperature difference is 

usually 5-10 K).  One important thing to keep in mind is that a rapid cooling may cause 

the H2 exchange gas in the refrigerator to freeze at higher temperature than required to 

run the system. While transferring the liquid helium, the sorb heater is kept at ~ 100 K 

until the temperature of the sample space goes below 20 K.  At the end of the transfer, the 

sample temperature should reach 8-10 K, for which the dilution refrigerator can be 

operated.  

The next step is to cool the system down to the base temperature.  The 

KelvinoxHE-100 is designed to run the system automatically from this point.  This can be 
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done by manually opening the two storage dump valves, 1K pot valve, still valve, and 

return line valve.  Once this is done, the automatic operation can be performed by 

clicking three icons in a row in KelvFrontPanal.vi:  Fill 1K Pot, Condense in and 

Circulate.  The cooling sequence will run one after another and the base temperature can 

be reached within 2-3 hours.  However, the refrigerator has been operated manually for 

this work. 

For manual operation, the first step is to open the 1K pot needle valve about 10% 

and open the KF-25 speedivalve on the fridge while pumping on 1K pot.  The opening of 

needle valve can be controlled by monitoring the pressure reading on P2.  The pressure 

reading of P2, about 5-6mbar, gives rise to the temperature of 1.6K on the 1K pot.  When 

the 1K pot reaches ~ 1.6 K, the system is ready for condensing the mixture.  The 

condensing process begins with opening the valves:  the two dump valves, 9, 13A, 1, 3, 

the 3He return valve, and the still valve.  While doing so, the mixture goes through the 

liquid nitrogen and liquid helium cold traps.  The condensing process starts once the 

valve 12A is opened by a small amount.  The valve 12A has to be open in such a way that 

the pressure reading on G1 is less than 200mbar.  If the pressure reading on G2 is less 

than 100mbar with the valve 12A opened fully, the initial condensation of the mixture is 

done.  At this stage, the temperature of the sample is about ~1.8K. Then, the valve 9 and 

3 is closed and valve 14 is opened to collect the remaining mixture in the dump (the 

valves on the dump vessel should be open until the end of experiment.  Simultaneously, 

without any delay, the opening of the valve 6 by 11% triggers the circulation of mixture.  

The opening of valve 6 is gradually increased in such a way that the pressure on G2 is 

below 200mbar.  During this circulation, the temperature of the sample space 
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(temperature of mixing chamber) decreases.  When the sample temperature is ~ 1.3K, the 

Pirini gauge P1 will come to its working range and the pressure reading on P1 decreases 

on further cooling.  When the pressure reading on G2 < 200mbar and P1 < 10mbar, valve 

14 must be closed and valve 6 can be opened fully, depending on the desired cooling rate.  

When the pressure reading on G2 falls below 140mbar, the still heater is turned on.  The 

power required on the still heater, for the proper cooling, is about 6mW.  The base 

temperature of approximately 20mK will be then achieved in one hour. 

To keep the system running, the liquid helium level has to be greater than 50% for 

our Dewar and the liquid nitrogen bath should be always full.  The amount of the liquid 

helium consumption depends on the working environments, such as the temperature and 

the magnetic field.  The sample temperature was monitored, while the system was 

cooling down from room temperature to 4.2K, using Cernox (LakeShore model CX-1030-

SD) resistance thermometer; a separate mixing chamber thermometer (RuO2 resistance) 

was used below 4K or 5K. Also, we used another RuO2 thermometer mounted on the 

sample platform. 

 

3.4 Split-coil Magnet and Dual Axis Rotation 

Split-coil magnet, also known as split pair magnet, is the two horizontal magnets 

made of Nb3Sn superconductors, used to achieve  high horizontal magnetic fields. The 

use of two rotator and the split-coil magnet allows us to measure angular dependence for 

all possible angles.  The most common use of dual-axis rotation is, nowadays, a 

combination of an external (ex situ) rotator and an internal (in situ) rotator as shown in 

Fig. 3.6. The ex situ goniometer gives a complete rotation of the fridge about the center 



 72

vertical line of the fridge itself, whereas the in situ rotator allows the sample stage to 

rotate about an axis in a plane normal to the fridge. For this work, we used an Oxford 

Instruments made split-coil magnet with a 40mm access gap, and two rotators that 

include a commercially-made goniometer (Huber model 420) and a home-made in situ 

rotator.  The split-coil magnet uses an IPS120 magnet power supply that can produce 

magnetic fields up to 12T (≡ 105.51 A) at 4.2K or up to 13.5T (≡ 118.70 A) at 2.2K.  

During this work, the maximum field employed was 9T.  

The rotational sample holder was made of OFHC (oxygen free high conductivity) copper, 

giving good thermal link between the mixing chamber and the sample stage. The 

(DMET)2I3 sample was mounted on the sample stage.  On the backside of the sample 

platform, a flat Minco 75� local heater and Cernox (LakeShore model CX-1030-SD) 

temperature sensor were mounted along with 12 twisted paired wires.  As depicted in Fig. 

3.6 (also in Fig. 3.3), the dilution refrigerator was placed on the goniometer, providing a 

complete 360± rotation and very accurate rotation of the refrigerator (��= 0.0025°). This 

high angular resolution is necessary to accurately align our sample with respect to the 

sample.  The refrigerator was connected to electronics as well as pumping lines from the 

KelvinoxIGH.  To avoid any restriction of rotation of the refrigerator, a turntable was 

designed such that, when the ex situ goniometer is rotated in one direction, this turntable 

allows the cryogenic Dewar to simultaneously rotate in the opposite direction, to keep the 

refrigerator at the same orientation. Otherwise, the rotation of the fridge will be 

constrained by the length of the still pumping line, which is the shortest line attached on 

the fridge from the KelvinoxIGH. 
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FIG. 3.6 Photograph of the rotating sample holder (left) and schematic diagram of 
the dilution refrigerator in the split-coil superconducting magnet (right).  

 

 

The use of the rotator can produce the temperature fluctuation during the 

measurement. It was found that while rotating the refrigerator using goniometer (ex-situ 

rotator), there was a small fluctuation in temperature (<5 mK). But, the in situ rotator can 

easily cause excessive sample heating at low temperature due to friction, since the sample 

was directly mounted on the rotator.  In order to prevent possible excessive frictional 

heat, a string-driven (Spectra-1000 fiber) in situ rotator was employed instead of a gear-
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driven rotator for this work.  This Kevlar-based fiber string, which has very poor thermal 

conductivity, has some linear expansion at low temperatures.  For compensation, three 

beryllium copper springs (with spring constant k = 95.8N/m and 168mm free length, 

annealed for 2 hours at 130°C), were used to adjust the variation of string length. By a 

release or pull of the linear positioner in step units, where 1 step gives 0.8125m 

displacement of the linear positioner, an angular resolution of  0.003° was obtained. 

 

3.5 Measurement Technique 

The conventional 4-probe method combined with AC Lock-In technique was used 

for all transport measurements.  Electrical contacts on the sample of the dimension ~ 0.5 

x 0.3 x 0.15 mm3 were made by attaching 12μm gold wires with conducting carbon paste.  

The schematic diagram of the electrical connection as well as the real sample used during 

the experiment is shown in Fig. 3.7.  Two temperature sensors have been mounted: one is 

a Cernox (LakeShore model CX-1030-SD) sensor for high temperature valid above 2K, 

and the other is a RuO2 (R = 1004 at room temperature) for monitoring low 

temperature (valid below 6.5 K).  The RuO2 sensor had been previously calibrated at zero 

magnetic field with respect to the Oxford Instruments supplied RuO2 mixing chamber 

thermometer.  Note that temperatures of the mixing chamber and the sample turn out to 

be nearly equal.  In other words, the sample platform and mixing chamber was nearly in 

thermal equilibrium. 
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FIG. 3.7 (a) Schematic picture (b) the sample with the four 12 m gold wire 
connected to the sample with graphite paste for 4-probe measurement on 
(DMET)2I3. 

 

Typically, measurement currents of 1μA (~10-3 A/cm2) with low frequency (< 

~300Hz) were employed to monitor the interlayer resistance (Rzz) by using a Stanford 

Research Systems 830 lock-in amplifier.  A Stanford Research Systems 560 low-noise 

preamplifier was also used to amplify the signal  as well as filter out noise.  In addition to 

the sample measurement, the CX-1030-SD thermometer was measured by using 

Lakeshore 340 temperature controller and Linear Research Inc LR700 ac Resistance 

Bridge. The LR-700 ac Resistance Bridge was used to measure the resistance of our 

RuO2 thermometer.  A home-written Labview code was used for data acquisition as well 

as electronic control, via a GPIB parallel port. Also, RS-232 serial ports were used to 

control the goniometer and stepper motor, whereas the magnetic field and the mixing 

temperature were measured via LAN (Local Area Network). 
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Chapter 4 

Angular Magnetoresistance Oscillations (AMRO) in (DMET)2I3 : 

Experiment and Calculation 

 

4.1 Introduction 

Quasi-one-dimensional (Q1D) molecular conductors are highly anisotropic 

materials which show remarkable oscillatory magnetoresistance phenomena with respect 

to magnetic field orientation [4.1].  Several related types of so-called angular 

magnetoresistance oscillations (AMRO) have been observed in many families of Q1D 

conductors, as well as in quasi-two-dimensional (Q2D) conductors.  In Q1D, Lebed 

magic angle (LMA) resonances [4.2-4.6]23456[Fig. 2.5], Danner-Kang-Chaikin (DKC) 

oscillations [4.7] [Fig. 2.7], and the Yoshino angular effect (YAE) [4.8, 4.9] [Fig. 2.9] 

have been observed for field rotations about the three principle axes x, y and z, 

respectively, as shown in Fig. 1.7 and Fig. 1.15.  In addition, more complex Lee–

Naughton (LN) oscillations are observed when the magnetic field is rotated in arbitrary 

(out-of-plane) directions [4.10, 4.11, 4.12] as shown in Fig. 2.11. 

While such AMRO effects have been observed in many Q1D materials, their 

origin(s) and relationships to each other have puzzled researchers for over two decades.  

Several theoretical models have been put forth to explain interlayer AMRO in Q1D 

materials  [4.13-4.21]131415161718192021. Some observed effects (DKC, YAE, and LN) are qualitatively 

explained by the above-referenced models.  For magnetic field rotation in the least 

conduction y-z plane (i.e., about x-axis), however, these theories have consistently failed 

to explain or reproduce in simulations, the first experimentally observed effect, the Lebed 
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magic angle effect.  The models in Refs. [4.18 - 4.21] result in a similar expression for 

the interlayer conductivity, though with slightly different starting assumptions, that can 

be used to qualitatively reproduce many observed AMRO features, excluding the Lebed 

effect.  According to these models, the conductivity is modulated by a series of nth-order 

Bessel functions that themselves are functions of the magnetic field ratio Bx/Bz, where x 

and z are the most and least conducting directions, respectively.  When the field is rotated 

in the crystal y-z plane, all of these Bessel functions vanish, with the exception of that for 

n = 0, and the resulting resistivity has a smooth, featureless variation with field angle. In 

particular, no Lebed oscillations appear, even though this is the orientation (rotation) 

plane in which the Lebed effect is both conceptually anticipated and experimentally 

observed.  Based on experimental data and theoretical models, the authors of Ref. [4.22], 

nonetheless assert that Lebed oscillations are the only “fundamental effect”, with all other 

AMRO effects (DKC, YAE, and LN) being mere modulations of this master effect.  This 

contention is arguable since, experimentally, the observed oscillation amplitudes decrease 

as the field direction approaches the y-z plane, where the Lebed effect is expected to be 

strongest.  Furthermore, higher order oscillations fully vanish when the field direction 

approaches the y-z plane [2.11, 4.22].  

In a slightly alternate theoretical approach, Lebed and Naughton [4.19] proposed 

that an “interference effect” between the velocity of electrons in the Q1D FS and the 

variation of the density of states across this FS gives rise to 1D-2D dimensional 

crossovers, which appear to result in peaks of the calculated interlayer conductivity at the 

correct magic angles. To date, all available theoretical models have been derived based 

on an orthorhombic approximation to the actual triclinic crystal structure of the materials 
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in which the AMRO effects have been seen. None of these models reproduce the Lebed 

AMRO effects, except for the above “interference model”, which assumes density of 

state variations for electrons across the FS for which little if any experimental support 

exists. Here, we have measured the interlayer magnetoresistance of Q1D conductor, 

(DMET)2I3, which has similar crystal structure to that of (TMTSF)2X, for all angular 

orientation of magnetic field, and have simulated the same via numerical calculations 

employing the actual triclinic crystal structure. This constitutes the first use of the correct 

crystal symmetry in such calculations. These simulations reveal, for the first time, the 

Lebed oscillations in the predicted y-z plane.  

 

4.2 Experimental Results 

Experimental data for the temperature dependence of the resistance of (DMET)2I3 

is shown in Fig. 4.1. This was measured using the 4-probe measurement technique [Fig. 

3.8], using 1 A rms with 77.77 Hz lock-in frequency. The room temperature resistivity 

is ~ 200 cm, indicating good metallicity. Conventional metallic behavior (dR/dT < 0) 

is seen upon cooling, with a superconducting transition observed ~ 0.58K. It was found 

elsewhere that the spin density wave phases induced by a magnetic field occur in fields 

greater than 10 T [4.6]. Here, an applied magnetic field of 9T will always be below the 

minimum of the threshold field for FISDW transition. This, in turn, ensures the system is 

always in the normal metal (field is too small for FISDW and too large for 

superconductivity). This contrasts with all previous AMRO studies in Q1D systems, 

where complicated mixtures of metallic and SDW states occurred in measured magnetic 

fields, tending to complicate interpretation of data.  
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FIG. 4.1 (Upper) interlayer resistance measurement scheme used showing the real 
crystal of (DMET)2I3 in lower right corner. (Lower) the temperature dependent 
interlayer resistance of (DMET)2I3 with I//z – axis (i.e., current is perpendicular to 
the most conducting plane). The resistance of the sample is measured using 4-
probe technique. The sample shows conventional metallic behavior upon cooling 
with a superconducting transition ~ 0.58K. Inset shows the low temperature part 
of the resistance showing the clear superconducting transition. 
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 The interlayer resistance Rzz() was measured for two comparably-sized 

(DMET)2I3 samples as a function of different angle orientations in a magnetic field. One 

rotation angle  was varied by rotating the magnet about the vertical while keeping the 

sample stationary, whereas a second, perpendicular rotation angle  was controlled with 

an external stepper motor driving an internal Kevlar string attached to an internal rotation 

platform. Note that the angle  is measured from the z-axis and the angle  is measured 

from x-axis unless otherwise defined. We obtained data for both samples, simultaneously.  

Sample #1 exhibited a residual resistivity ratio (RRR = T=300K / T=4K) of 3,000, 

compared to 1,000 for Sample #2. Although both samples showed qualitatively similar 

results, so we concentrate on the better sample #1 in most of the following discussion.  

Similar sets of experiments were carried at out two different times. For the first 

set, only sample #1 was measured, with data recorded every 0.5o of  from 100o to 

100o; and every 5o of  from 45o to 135o. The resistance was always 

measured by varying the angle  keeping angle constant.  Whereas, in the second set of 

experiments both samples #1 and #2 were simultaneously measured for resistance for the 

field in, and in the vicinity of the y-z plane (Lebed plane). The measured resistance (raw 

data) as a function of  for various  from the first set of experiment (sample #1) is 

shown in Fig. 4.2.  As expected, remarkable oscillations in resistance is observed for all 

angular orientation of the magnetic field with respect to the sample.  

As discussed in Chapter 2, the y-z plane rotation of magnetic field is where the 

first predicted and observed AMRO effect occurs in Q1D systems. The facts that some 

theoretical models predict the absence of Lebed oscillations and a vanishing of the 

amplitudes of those oscillations, as the magnetic field rotation plane approaches the y-z 
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plane,   motivated us to measure the resistance of the sample with finer angular spacing 

(that is  = 2o). Thus, in second set of experiment, the resistance for the field rotated 

near the y-z plane, was measured for every 2o of as shown in Fig. 4.3 for sample #1 

and sample #2. As discussed earlier, the resistance has pronounced oscillations for a field 

rotation in every rotation plane.  

 Figure 4.4 shows the expanded view of data for sample #1 for angular span of 

15o ≤  ≤ 60o (right) and 15o ≤  ≤ 60o, to see the closer look on resistance oscillations. 

In these angular span lower order oscillations with indices n = ≤1, ≤2, and ≤3 are visible. 

The amplitude of oscillations in resistance in positive  direction is bigger then on 

negative direction. Furthermore, the dips in resistance in positive  are more sharper 

then in negative  We believe that this asymmetry arises due to the triclinic crystal 

symmetry and (or) due to the slight misalignment of the sample with respect to magnetic 

field during the measurements. Looking at these angular spans, the amplitude of the 

oscillations decreases with the increase in angle  and becomes minimum for angle  = 

90o. Upon further increase in  angle the amplitude oscillations again increases. The more 

quantitative analysis of this feature will be presented later in this chapter.  
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FIG. 4.2 (Upper) the sample orientation in magnetic field. (Lower) Measured 
interlayer resistance (raw data) as a function of polar angle  for different 
azimuthal angle  at magnetic field 9T and 100 mK temperature for sample #1.  
The data are measured for every half degree of  from 100o to +100o, and every 
five degrees of  from 45o to +135o. The plot shown is only labeled from 0o 
to 90o as the curve for 80o approximately the same as that for o, and 
so on. The resistance has pronounced oscillations for a field rotation in every 
rotation plane.  



   

 84

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 4.3 Measured interlayer resistance at different  angles at B = 9T and T 
=100 mK for sample #1 (upper) and sample #2 (lower).  The data are measured 
for every half degree of  from 100o to +100o; and every two degrees of  from 
60o to 120o.  The resistance has pronounced oscillations for a field rotation in 
every rotation plane. 
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FIG. 4.4 (Upper) the sample orientation in magnetic field. (Lower) measured 
interlayer resistance as a function of  angle at different  angle at B = 9T and T = 
100 mK for sample #1, showing only the low-index oscillations (n = ≤1, ≤2, and 
≤3). The dependence of resistance is measured for every 2± of  angle from 
60± and 120±. The resistances of the sample for angles 60± and 120± are 
approximately equal. Finite difference in resistance for angle  = 60± and 120± is 
expected due to the tricilinicity of crystal structure.  
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Now, we have plotted the measured interlayer resistance as a function of for 

different  angle with vertical offset for clarity. The curve for a given  represents a 

magnetic field rotation plane. For  = 0±, the field is rotated in the x-z plane as shown in 

the schematic diagram in Fig. 4.5. Even though, the oscillations are not visible in this plot 

(will be presented separately later), this plane represents the plane where DKC 

oscillations are observed in the family of TMTSF Q1D systems. In present experiment, 

for the first time, we have observed the DKC oscillations near  = 90± and +90± for  = 

0±. On increasing the angle , the field rotation plane moves towards the y-z plane. In 

doing so, the more pronounced oscillations in resistance are observed as seen in Fig 4.5. 

For angular position of  = 90±, the Lebed oscillations (LMA) are observed as indicated 

by thick solid line in Fig. 4.5. However, the oscillations, which were pronounced while 

the field rotation plane moves from  = 0± towards  = 90±, becomes bigger for  º 45±, 

and decreases when the rotation plane becomes  = 90±. In other words, the amplitude of 

oscillations in resistance increases and again decreases when the magnetic field rotation 

plane moves from x-z plane to y-z plane.  

Nonetheless, the present measurement is done changing  angle and keeping  

angle fixed, we can extract the data for different  with constant  angle. In doing so, the 

YAE effect is observed for the field rotating in a plane with  = ≤90±, i.e., for the field 

rotation in the x-y plane. The detail origin of these oscillations was presented in chapter 2 

and more explanation of this effect in this present experiment will be presented later in 

this chapter. Even more complex oscillations called LN oscillations are observed when 

the sample is rotated in a plane while keeping  angle constant. Thus, all four kind of 
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oscillations observed in the family of Q1D (mostly in (TMTSF)2X) are now observed in 

present single experiment. 

Assuming the 180±  angle symmetry in the resistance data, we have plotted the 

resistance data as shown in Fig 4.5 in to polar plot for an illustrative purpose, for an 

angular span of  = 0± to 360± for every 5± of  from 0± to 180± covering all 4 steradian, 

however, in conventional co-ordinate system,  varies from 0± to 180± and  varies from 

0± to 360±. The resistance shows the complicated oscillations as a function of angular 

orientations. The angles  = 90o and 270o represents the field parallel to the y-axis, 

whereas the angular position of  = 0o (180o) is parallel to z-axis.  The oscillations are 

observed in LMA, DKC, YAE, when the magnetic field is rotated in three principal 

planes, y-z, z-x, and x-y, respectively. The LN oscillations are originally introduced as  

rotation with constant  angle. From this plot, it is much clear that, the oscillations in 

resistance are observed in any possible rotation plane of magnetic field.  
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FIG. 4.5 (Upper) the sample orientation in magnetic field. (Lower) measured 
interlayer resistance as a function of polar angle  for different azimuthal angles 
at B = 9T and T = 100 mK for sample #1.  The data are measured for every 0.5o of 
 from 100o to +100o; and every 5o of  from 0o to +180o. The plot is vertically 
offset for clarity and the curved dashed line is to guide the lowest order oscillation 
(n = ≤1). 
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FIG. 4.6 Polar plot of the measured resistance from Fig 4.5 for all possible 
angular orientation of magnetic field of strength 9T at 100 mK. Resistance is 
plotted for every 5o of  from 0o to 180o and every 0.5o of  from 0o to 360o. The 
angular orientation of magnetic field covers all 4 steradian. The resistance shows 
the complicated oscillations as a function of angular orientations. The angles  = 
90o and 270o represents the field parallel to the y-axis, whereas the angular 
position of  = 0o (180o) is parallel to z-axis.   
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As presented in Figs. 4.2 - 4.6, the resistance shows pronounced oscillations when 

the magnetic field is rotated in different planes. The numbers of oscillations as well as 

their amplitudes are not symmetric about  = 0o, and higher order oscillations observed 

when the field rotation plane moves away from y-z plane. This nonsymmetric feature in 

may arise from slight misalignment of sample during the measurement. In the above 

experimental data, the resistance has its lowest value at about º 8.5o corresponding to 

magnetic field parallel to the z-axis and the resistance has a dip at the angle  = ≤ 90o 

corresponding to the magnetic field parallel to x-y plane.  

In most of the above discussion, we have presented the data from sample #1 

(except in Fig. 4.3). A comparison of the resistance measured for the two samples #1 and 

#2, for the magnetic field rotating in y-z plane, is shown in Fig. 4.7. The measured 

resistance of these two samples is qualitative in agreement with each other, meaning the 

oscillations in resistance coincide to each other. Even though both samples have nearly 

equal dimensions, the difference in resistance in two samples may be due to crystal 

quality. Sample #1 had under gone several cooling process while sample #2 was intrinsic 

“virgin-cooled state”. Our experience with organic molecular conductors showed that the 

thermal cycles can greatly affect the resistivity of the sample.  

 The resistance of both samples increases with an oscillations while increasing the 

angle || with peak resistance about  = ≤ 75o. And, on further increase in ||, the 

resistance shows the local minima at  = ≤ 90o. This feature observed local minima for  

= ≤ 90o will be discussed later in this chapter and some possible scenario in Chapter 5.  
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FIG. 4.7 (a) Sample orientation with respect to magnetic field in LMA scheme. 
(b) Measured interlayer resistance of two samples in 9T magnetic field rotated in 
the y-z plane (Lebed plane) at 100 mK.  The open circles (sample #1) and solid 
line (sample #2) distinguish the samples. The dotted vertical lines are the 
calculated positions of Lebed resonances given by Eq. (4.1) with  = .  
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As presented in Figs. 4.7, the resistance shows pronounced oscillations when the 

magnetic field is rotated in a-c plane (= 90±). The number of oscillations as well as their 

amplitudes are not symmetric about  = 0o, and higher order oscillations observed when 

the field rotation plane moves away from y-z plane. A small nonsymmetric feature in 

magnetoresistance may arise from slight misalignment of sample during the 

measurement. Another possible reason may be due to the triclinic crystal structure with 

different magnitudes of the transfer integrals between the DMET molecules as shown in 

Fig. 8.  

 

 

 

  

 

 

 

 

 

 

 
 
 
Fig. 4.8 The molecular arrangement of (DMET) and transfer integrals of (DMET)2I3 
viewed along the most conducting axis (b) where the molecular plane is separated by 
inorganic I3 molecules along the c-axis. The nearest neighbor interactions are t2 and t2’ 
and the second nearest neighbor interactions are t3 and t4. The transfer integrals may be 
responsible for nonsymmetric in the number and the amplitudes of magnetoresistance 
oscillations. 
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In this two dimensional (a-c plane) molecular packing each DMET molecule is 

surrounded by eight neighboring DMET molecules as shown in Fig 8, each having 

different interactions. It is expected that the nearest neighbor interactions ta, t2 and t2’ are 

strongest, while second nearest neighbor t3 and t4 are weaker. The interactions t2 ~ t2’ = tc 

and with t3 > t4, the magnetoresistance is expected to be different along the right and left 

from the vertical plane as  ~ t2. The number of oscillations and amplitudes is believed to 

be connected to the strength of these transfer integrals giving the nonsymmetric feature in 

numbers as well as the amplitudes of these oscillations. However, away from the a-c 

plane the effect is dominated due to the strongest transfer integral tb and more symmetric 

oscillations are observed as shown in Figs. 4.2-4.6. 

 Similar nonsymmetrical features have been observed in the (TMTSF)2ClO4 [22] 

and (DMET-SeF)2I3 [23] in resistivity data as well as in (DMET)2I3 in periodic orbit 

resonance data  [24]. Ishikawa [4.25] calculated the transfer integral for (DMET)2I3 in the 

a-b plane, however no report has been found for the transfer integral calculations in a-c 

plane However, the calculations of these transfer integrals are very complicated due to 

the presence of Se and S atoms. The DMET molecule is made of TMTSF and ET 

molecules. The TMTSF and ET ends have different thicknesses, due to the difference in 

the Van der Waals radii of the constituent atoms.  To produce face-to-face stacks, 

successive molecules must be rotated 180˚ relative to one another which gives the very 

complex transfer integrals. In the current experiment, the ratio of the amplitudes of 

magnetoresistance oscillations in the vicinity of a-c plane (y-z plane in Cartesian 

coordinate system) is estimated to be ~ 10. Thus the nonsymmetrical feature in 
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amplitudes and number of oscillations may be due to the tricilinicity of crystals structure 

due to the anisotropic transfer integrals. 

So far, it can be seen that these large resistance oscillations are a very peculiar 

feature of Q1D conductors. They are seen for virtually any possible  or  angular 

rotation of magnetic field. We can empirically define the positions of the minima 

observed in these resistance oscillations by the relation 

*

*
cot

sinsin

sin
sintan 


 

c

b
n       (4.1) 

where n is an integer, and * is give by  




sinsin

coscoscos
cos * 

        (4.2) 

Here,  denotes, as usual, the angle that the magnetic field makes from the z-direction, 

and (, , ) and (a, b, c) are the lattice angles and parameters, respectively. For 

(DMET)2I3, these lattice parameters were reported to be a = 6.669  Å, b = 7.761 Å, c = 

15.776 Å, α = 89.96o , β =81.81o, and γ = 78.19o [4.2425]. Most of the resistance minima 

found in Fig. 4.6 and Fig. 4.7 can be indexed by the relation give by Eq. (4.1), with an 

exception for field rotations in the x-y and x-z planes. 

 All of the above experimental data shown in Figs. 4.2 – 4.7 were taken for a 

magnetic field strength of 9T. It is worth exploring whether or how these features evolve 

with field strength (The evolution of field dependence of these features calculated based 

on available theoretical models is shown in Fig. 2.15. We have thus measured the 

resistance of sample #1 for three different field strengths 3T, 6T, and 9T, for field 

rotations in the y-z plane, as shown in Fig. 4.9. For 3T, only lower order oscillations (i.e., 

n = 1, 0, 1) are clearly observed, though higher order oscillations are identified in 
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second derivatives of the raw data (shown in the inset of Fig. 4.9). For higher field, 9T, 

oscillations as high as n = +5 are observed. These oscillations for the field rotation in y-z 

plane are first predicted and observed experimentally in (TMTSF)2X (X = ClO4 and PF6). 

As discussed in Chapter 2, they are ascribed to the commensurate motion of electrons 

across the Fermi surface and are purely geometrical resonances which measure the lattice 

parameters rather than the band parameters [4.2, 4.3, 4.4].  

 As shown in Fig. 4.9, the overall nature of angular dependence of resistance is 

similar for different magnetic field strength i.e., resistance increases with the increase in 

angle || with several oscillations. Also, the amplitude of oscillations increases with the 

increase in magnetic field. One of the striking features observed from this plot is that the 

positions of minima observed in resistance are independent to the strength of applied 

magnetic field. We now plotted the field dependence of resistance (extracted from Fig. 

4.9) for angular position  = 8.6±, 15.5±, 31±, and 90± as shown in Fig 4.10. The angle  = 

8.6± is the position at which the resistance has local maxima, between the two local 

minima indexed by n = 0 and 1. The angle  = 15.5± is the position of minima n = 1. 

Again, the angle  = 31± is the position at with the resistance has local maxima, between 

the two local minima indexed by n = 1 and 2. Finally, the angle  = 90± is the position of 

sharp minima observed.  

From Fig. 4.10, it is seen that the resistance of sample increases with field 

strength for angular position  = 8.6±, 31±, and 90±, however it tends to saturate for 

angular position  = 15.5±. In other words, the resistance of sample saturates at higher 

field at certain angular position. The saturation and non-saturation of this resistance was 

explained by dimensional crossover due to the interference effects between electron 
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velocity components along the z-axis and the electron motion along the y-direction [12]. 

The more results and explanation of this feature will be discussed later in this chapter 

(section 4.4). Interestingly, for the angular position  = 90±, at which the resistance shows 

sharp minima, the resistance does not show any saturating behavior.   

When the magnetic field is applied parallel to the y-axis (i.e.,  = 90±), such as 

shown in Fig. 4.7, and electron motion is perpendicular to the magnetic field, due to 

current being applied along z, electrons experience the largest Lorentz force as depicted 

in Fig 4.11. As results, magnetoresistance is expected to be maximal. Experimentally, 

however, we observe a pronounced, if broad, local minimum. Strong et al. [4.13] and 

independently, McKenzie and Moses [4.15] suggested that the magnetic field parallel to 

the y-axis larger than a certain value de-emphasizes coherent motion (3D Fermi liquid) 

along z, and induces 2D non-Fermi liquid. This is basically Lebed’s field induced 

dimensional crossover effect, but for the normal state (i.e., non-superconducting state). A 

study on (TMTSF)2PF6 by Lee and Naughton [4.26] for field parallel to y, showed 

saturating of magnetoresistance at  high field, however. Classically, the 

magnetoresistance is predicted to be non-saturating.  Also, in (TMTSF)2X, it is known 

that for B//y, the superconducting state is highly anomalous, with Hc2 far exceeding the 

Pauli limit, potentially associated with spin triplet Cooper pairing [4.27,4.28]. In contrast, 

Hc2(T) for (DMET)2I3, saturates at low temperature, without exceeding the Pauli limit, as 

will be discussed in Chapter 5.  Further studies will be required to explore the 

relationship between the magnetoresistance minimum observed for field parallel to y-axis 

and superconducting state or any dimensionality enhancement. 
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FIG. 4.9 The angular rotation of magnetic field (a) in real space, (b) in 
momentum space.  (c) The observed interlayer resistance for the field rotation in 
the Lebed y-z plane for different magnetic field strengths. The arrows represents 
the position of Lebed minima given by Eq. (4.1) with  = 90o. The inset shows the 
2nd derivative of raw data showing the higher order of oscillations. 
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Fig. 4.10 The field dependence of resistance for angular position  = 8.6±, 15.5±, 
31±, and 90±. The data extracted from Fig. 4.9.  
 

 

 

 

 

 

 

 

 

FIG. 4.11 The schematic diagram showing the motion of an electron along z-
direction with magnetic field along y-axis. The electron experiences a maximum 
Lorentz force FL ~ JB and classically the magnetoresistance is expected to be the 
maximum.  
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As discussed earlier, upon closer examination of the experimental data, 

oscillations are observed for the field rotation in a plane with  = 0o and around  = ≤90o 

(x-z plane). These are the DKC oscillations and are observed for the first time in 

(DMET)2I3. In Fig. 4.12, the curve  = 0o represents the true x-z plane, and the DKC 

oscillations set shifted for  ∫ 0o by an interplay of these DKC oscillations and the Lebed 

oscillations, which is responsible for the asymmetry of the data. Similar shifts in 

oscillations have been observed in (TMTSF)2PF6 [4.31]. Classically, when the magnetic 

field is perpendicular to the current direction, the largest magnetoresistance is expected 

(i.e., maximum Lorentz force). In this current field rotation scheme (x-z plane), the 

magnetoresistance is expected to be maximum when the magnetic field is parallel to the 

x-axis. A small local maximum in resistance is observed experimentally for field parallel 

to x-axis as shown in Fig. 4.12. However, this peak in resistance was explained in terms 

some close orbit when the magnetic field is parallel to x-axis [4.7]. When the field is 

directly parallel to x-axis, there is a small band of closed orbits near the extrema of the 

FS. The closed orbits are more effective averaging the velocity to zero than the extended 

orbits, resulting in an enhanced resistance. This peak can be used to estimate the strength 

of interlayer coupling tc. The DKC oscillations can be used for determination of FS 

warping by calculating transfer integral ty along ky-direction: provided the interlayer 

distance c and the Fermi velocity vF along the chain, by using the relation given by Eq. 

(2.12), which is given as 
ct

v

y

F

2
)(tan


        (4.3). 

In case of (DMET)2I3, the peak in resistance is observed around  º ≤15± and 

using c = 15.776 Å and vF = 2.7  104 ms-1 [4.23], the transfer integral is estimated to be 
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ty = 53 meV. For (TMTSF)2ClO4 in the anion ordering state, the value  was estimated to 

be ty = 12 meV (24 meV in above anion ordering state) [4.7] and for (TMTSF)2PF6, it 

was estimated to  ty = 32 meV  under a pressure of º 10 kbar [4.35].  

  

 

 

 
 
 
 
 
 
(a)      (b) 
 
 
 

 

FIG. 4.12 The angular rotation of magnetic field (a) in real space, (b) in 
momentum space. (c) Measured interlayer resistance of (DMET)2I3 (Sample #1) 
for the field of 9T rotated in the x-z plane (DKC for  = 0o). (Inset) the curve is 
offset vertically for clarity and the angle  is measured from the x-axis. 
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The third kind of Q1D resistance oscillation (after the Lebed and DKC effects), 

known as the Yoshino angular effect (YAE) observed for a rotation for  = 90o (x-y 

plane) as shown in Fig. 4.13. The YAE causes two resistance minimum ~ 15±  either side 

of the x-z plane, when magnetic field rotating in the x-y plane. The positions of resistance 

minima are in agreement with the previously reported positions [4.8]. The angular 

separation between two minima is observed to be  º 30±, with an asymmetry in the 

positions of the minima observed due to the triclinic crystal structure. 

As discussed in Chapter 2, the origin of the YAE is closely related to the 

corrugation of the Q1D Fermi surface within the x-y plane and YAE resistance minima 

can be used to estimate the ratio of transfer integrals tx/yy by using the following 

analytical expression [4.29] 

 sin22
x

y

t

t

a

b
        (4.4). 

With  lattice parameter of b = 7.761 Å and a = 6.669  Å, γ = 78.19o and observed angular 

width of  º 30±, the transfer integral ratio is estimated as tx/ty ~ 9.0 ≤ 0.9. Since our 

experimental data are every  = 5o, so the estimation of  has an uncertainty, which is 

estimated as  = ≤2.5±. This yields transfer integral ratio as tx/ty ~ 9.0 ≤ 0.9. A 

somewhat more accurate estimation of  can be found in literature [4.38], which gives a 

value of  = 28± with the estimated value of the transfer integral ratio tx/ty = 9.7. The 

anisotropy ratio estimated the conductivity measurement is tx/ty’ º x/y’ = 10 from [4.8]. 

However, in triclinic system tx/ty ∫  tx/ty’. Thus the estimated value of tx/ty from the 

current measurement is in agreement with the previously reported ratio within the 

experimental error.  
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FIG. 4.13 The angular rotation of magnetic field (a) in real space, (b) in 
momentum space. (c) The observed interlayer resistance of (DMET)2I3 (Sample 
#1) for a field of 9T rotated in the x-y plane at 100mK: YAE oscillations. Local 
minima are observed for the angle  ~ ±15±. The line is a guide to the eye. 
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FIG. 4.14 The angular rotation of magnetic field (a) in real space, (b) in 
momentum space. (c) The observed interlayer resistance of (DMET)2I3 (Sample 
#1) for the field of 9T rotated arbitrary plane ( ~ 8o from x-y plane) at 100mK: 
LN oscillations. 
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Finally, more complex oscillations, the Lee-Naughton (LN) oscillations, are 

observed for the field rotating along arbitrary directions. The first experimental 

observation of LN oscillations occurred for (TMTSF)2PF6 while rotating angle  for 

different fixed angles  [4.11]. The oscillations in resistance in the LN scheme is shown 

in Fig. 4.14. Most of the oscillations in resistance shown in Fig. 4.5 can be referred to LN 

oscillations, even though that measurement was taken varying  while keeping  

constant. Since a field rotation in the  = 90o plane yields the Lebed effects, we believe 

that it is appropriate to name the oscillations seen in Fig 4.5 as Lee-Naughton-Lebed 

(LNL) oscillations. In other words, either the LN oscillations are specialized to the Lebed 

effects for a particular rotation plane (y-z plane) or the Lebed oscillations are generalized 

to LN oscillations which cover all possible angular orientation of magnetic field rotation 

plane.  

Thus, all previously reported AMRO effects are experimentally observed in the 

present single set of experiments.  In the following sections, these experimentally-

observed results are compared with new calculations based on the triclinic crystal 

structure, as well as with previously existing theoretical models. 

There is a broad agreement between the angular positions of the LMA and LN 

(i.e., LNL) oscillations, given theoretically by Eq. (4.1) and summarized experimentally 

in Fig. 4.15.  Here, the integer n, which defines the positions of the minima is plotted as a 

function of tan  for in-plane ( = 90o) and out-of-plane rotations for  between 60o and 

120o.  A series of clear V-shaped symmetric patterns emerges, not about 0tan   but 

about 05.015.0tan  .  Moreover, these resistance minimum positions shift 

progressively away from this symmetry point as the rotation plane moves away from the 
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y-z plane (i.e. as  deviates from 90°), as indicated by the curved lines (which can also be 

seen in Fig 4.5 with the dotted line for the lowest order oscillations i.e., for n = ≤1).  

Meanwhile, owing to the tricilinicity of the crystal structure (Eq. 4.2), the curves in Fig. 

4.15 are symmetric about a calculated value of 146.0cottan *   . The measured 

value of 15.0tan   is within experimentally uncertainty ≤0.05 of this calculated 

value.  Interestingly, the number of minima observed for different  angles, at least in the 

raw data, is not symmetric with respect to tan .  Similar nonsymmetrical features have 

been observed in magneto-optical absorption spectrum measurements [4.25]. As 

discussed earlier, a certain asymmetry is expected due to the tricilinicity of the crystal 

structure; however, a contributing factor could be slight misalignment of the sample 

during the experiment.  

These experimentally-measured resistance data can be summarized in the three 

dimensional plot shown in Fig 4.16 and Fig. 4.17. This plot is generated for interlayer 

conductivity (zz º 1/zz) with a logarithmic scale. In Fig 4.16, the horizontal and vertical 

lines correspond to the DKC and YAE effects, which are shown in Fig 4.17. The spikes 

emerge diagonally are LNL oscillations. The LN oscillations near the origin developed to 

the original Lebed oscillations along the circumference of the image. Similar three 

dimensional plots calculated using the theoretical model by Osada et al., [4.22] was 

shown in Fig 2.15.  In Fig 2.15, the spikes that are developed from the origin are 

discontinuous in circumference, showing the lack of Lebed oscillations in theoretical 

model. 
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FIG. 4.15 Dependence of the resistance minima number ‘n’ on tan,  are the 
angles at which minima are observed for the field rotation in different planes ( = 
90± is y-z plane). The solid points are the angular  position of minima observed in 
resistance for the field rotation in give plane (represented by angle ). The solid 
straight and curved lines are calculated using Eq. (4.1). The experimentally 
observed data points lie at the intersection of two solid lines, showing the good 
agreement with theoretical predicted minima in experiment. The data are offset 
vertically for different  for clarity.  

 



   

 107

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
FIG. 4.16 Three dimensional presentation of the experimentally measured 
interlayer conductivity (zz º 1/zz) of (DMET)2I3 in logarithmic scale in 
magnetic field of strength 9T at 100 mK. The horizontal and vertical lines 
correspond to the YAE and DKC effects, respectively (not all oscillations are 
visible due to the resolution of the image). Meanwhile, the spikes which emerge 
diagonally are LNL oscillations (the LN-oscillations near the origin developed to 
the original Lebed oscillations along the circumference of the image).  
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FIG. 4.17 Three dimensional presentation of the experimentally measured 
interlayer conductivity (zz º 1/zz) of (DMET)2I3 in logarithmic scale in 
magnetic field of strength 9T at 100 mK, showing all four AMROs. The 
horizontal and vertical lines correspond to the YAE (pointing towards right), LN 
(pointing towards left) and DKC effects, respectively. Meanwhile, the spikes 
which emerge diagonally are LNL oscillations (the LN-oscillations near the origin 
developed to the original Lebed oscillations along the circumference of the 
image).  
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4.3 Triclinic Calculations 

A number of theoretical models have been developed to explain AMRO in Q1D 

conductors, including some based on field-induced density-wave instabilities [4.2, 4.30, 

4.31], electron-electron interactions [4.32, 4.33, 4.34], and non-Fermi liquid behavior 

[4.13, 4.35].  Analytical expressions for interlayer magnetoresistance calculated within 

each of these have employed an orthorhombic approximation to the Q1D crystals 

structure.  However, these Q1D conductors are not orthorhombic, but triclinic in nature 

and it has proven very difficult to derive an exact analytical solution of 

magnetoconductivity using triclinic crystal symmetry.  Here, we have succeeded to 

simulate the magnetoconductivity tensor derived from Boltzmann transport equation for 

this true triclinic crystal structure [4.36]. 

The Boltzmann transport equation is a semi-classical approach to calculate the 

carrier transport in crystalline metals.  The expression for the magnetoconductivity tensor 

ij, under the relaxation time approximation [4.37] is given by  

 










k

t
jiij dtetkvkv

dE

df

V

e 0
/

2

,),()0,(
2       (4.3) 

where e = electronic charge, V = sample volume, f = Fermi distribution function, E = 

electron energy, vi = ith  component of the carrier velocity, k = electron wave vector, t = 

time, and  = relaxation time, respectively, with  assumed to be constant.  The carrier 

velocity can be calculated based on tight binding energy dispersion, 

E = – 2tacoskaa – 2tbcoskbb – 2tccoskcc      (4.4) 

where a, b and c, are lattice parameters and ta, tb and tc  are intermolecular transfer 

integrals along a, b and c , respectively. We have solved the Eq. (4.3) numerically in the 

presence of a magnetic field using the software developed by Prof. H. Yoshino at Osaka 
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City University in Japan. We calculate the interlayer magnetoresistance using ta:tb:tc = 

300:30:1 [4.38] and  = 10-14 sec. It is found that this value of  gives clear AMRO 

structures with the magnitude of B that we can easily achieve in the laboratory. The 

velocities va, vb, and vc along triclinic crystal axes are calculated as 
FEEi

i k

E
v
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transformed into that along the x, y and z-axes of the Cartesian co-ordinate system, by 

using matrix transformations (Q) in real space given by [4.34] 































cba

b
a

a

Q











coscos

0sin
sin

)coscos(cos

00
sin

coscoscos2coscoscos1 222

 

 Once the Lorentz forces and wave vectors are calculated along the Cartesian 

coordinate system, they are converted to the triclinic system by using an inverse matrix 

transformation Q
~

given by 
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 This calculates a new Fermi velocity from the dispersion relation.  To acquire 

computational simulation results with sufficient precision, the first Brillouin zone is 

divided into a grid of 128 x 128 x 128 sites.  As for the time integration, it is assumed that 

the time step of t=10-16 sec is sufficient (i.e., /100) to obtain accurate results with 

relaxation time  = 10 -14 sec.  However, for very high magnetic fields (B > 30T), a much 
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finer t must be taken (i.e., t ~ /1000), since the Lorentz force and the change in wave 

vector k of a carrier in t become too large to draw precise trajectories of carriers. The zz-

component of magnetoresistivity tensor , zz is calculated as, 

zyyzxxzyyxxzzxyzxyzxyyxzyxxyyyxxxx

yxxyyyxx
zz 









)(
  (4.4).

The zz  is reduced to 1/zz, since the second to last terms in the denominator at 

the right hand side of Eq. (4.4) are much smaller than (xxyy - yxyx) for (DMET)2I3. 

The calculated zz as a function of angle at different angles  is shown in Fig 4.18. 

Again the comparison of the experimental and calculated data is shown in Fig. 4.19. We 

have plotted the true magnetoresistance () as a function of  angle for various  

angles. Here, it can be seen that the calculated magnetoresistance is qualitatively and 

semi-quantitatively in accordance with the experimental data, reproducing all known 

AMRO effects. The minima in magnetoresistance observed are well defined by Eq. (4.1), 

which also indicates the validity of our calculations.  As we have seen in experimental 

data, the amplitudes of the oscillations decrease when the magnetic field rotation planes 

approaches towards the y-z plane. The detail comparisons of this amplitude of oscillations 

will be presented later in this chapter. Even though, we have calculated the 

magnetoresistivity, in Fig. 4.18, the data are plotted resistance versus the angle  in such 

a way as to allow for a direct comparison of calculated data with experiment. It turns out 

that, the calculated resistance is about three times higher then the experimentally 

measured resistance. This may reflect the choice of relaxation time  and (or) uncertainty 

in sample dimensions.  
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FIG. 4.18 The calculated interlayer magnetoresistance at different  and  angle 
at B = 9T using ta:tb:tc = 300:30:1 and  = 10-14 sec with lattice parameter for 
(DMET)2I3 given in above text. The curves are offset vertically for clarity (lower). 
The magnetoresistance has oscillations for the field rotation in every rotation 
plane.  
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Fig. 4.19 (a) Interlayer magnetoresistance of (DMET)2I3 versus polar angle  for 
different azimuthal angles  at B = 9T and T = 100mK. (b) Calculated 
magnetoresistance at 9T using the true triclinic crystal structure.  All known types 
of AMRO oscillations, LMA (dotted line at 90 ), DKC, YAE and LN, as 
indicated, are detected in the experiment and reproduced in the calculations (DKC 
and YAE are clearly evident on expanded scales).  The DKC effect had not been 
previously observed in this compound. 
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We have calculated the dependence of magnetoresistance for the magnetic field 

rotating in y-z plane (i.e.,  = 90±) using the above equations and sample parameters. The 

resulting plot for three values of is shown in Fig. 4.20. The overall magnetoresistance 

of sample increases with the increase in . However, the sharp oscillation in 

magnetoresistance as observed for higher value.  

Finally, some of the discrepancy can be attributed to uncertainties in the sample 

dimensions. We estimated these to be x = y = z º 20 m, which yields the resistivity 

uncertainty of  ~ 12.64 %.  Another affecting factor could be the current density to 

the sample. Nonetheless, calculated magnetoresistance is qualitatively in accordance with 

the experimental data. 

 

 
 
Fig. 4.20 The calculated interlayer magnetoresistance at different relaxation time 
as a function of angle  for = 90±  at 9T using ta:tb:tc = 300:30:1. The resistance 
of the sample increases with the decrease in .  
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4.4 Comparison of Experimental Data with Calculations 

 It is clear that the present calculations are qualitatively in agreement with 

experimentally-observed magnetoresistance oscillations. As discussed earlier, some 

theoretical models [4.14 - 4.18] derive analytical expressions for the interlayer 

magnetoresistance oscillations using different approximations.  These expressions are 

able to predict the positions of minima in magnetoresistance, given by Eq. (4.1).  

However, they fail to reproduce the experimentally observed magnetoresistance 

oscillations; the first predicted and observed AMRO in Q1D systems. The causes of 

absence of these features in magnetoresistance can be few. The first possible explanation 

could be that these expressions are derived assuming the orthorhombic crystal structure. 

It may be that Lebed oscillations (y-z plane) may be characteristic features of triclinic 

Q1D systems only.  However, no experimental evidence exists for the absence of Lebed 

oscillations in orthorhombic Q1D materials, for the simple reason that no data are 

available. The second possible scenario could be that all of the above analytical models 

are ill-defined, meaning one can’t derive the equation using single electron model.  

Here, we have calculated the interlayer magnetoresistance in (DMET)2I3 for field 

rotated in the y-z plane using the expression given in Ref. [4.14] i.e., Eq (2.14) (for 

simplicity) and compared this with the experiment as well as present triclinic calculation. 

The comparison is shown in Fig 4.21. Fig. 4.21(a) uses orthorhombic crystal symmetry 

(Eq. 2.14), while Fig. 4.21 (b) uses the present triclinic symmetry Boltzmann model.  

These can be compared to our experimental data in Fig. 4.21(c).  The positions of Lebed 

minima calculated from Eq. 4.1, using the triclinic lattice parameters for (DMET)2I3, are 

in good agreement with the experimental results of Fig. 4.21(c).  As shown in Fig. 4.21, 
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the magnetoresistance is as high as several thousand in both experiment and calculations. 

Indices as high as n = ≤6 are observed both experiment and the present triclinic 

calculations but are absent in calculation using the analytical expression for 

magnetoconductivity. Derivatives 22   illustrate this latter point, as well as the 

complete absence of LMA in the Kubo model calculations [4.14] 

 We have also calculated the magnetoresistance using the Boltzmann transport 

equation with the orthorhombic approximation (i.e.,  90±) for the field rotated 

in the y-z plane. The result is shown in Fig 4.21 (a) along with the calculations using 

analytical expression. Curiously, the oscillation in resistance has been observed and 

minima in resistance can be well indexed by the relation tan = n(b/c) (symmetric 

resistance minima due to the orthorhombic approximation of crystal structure). However, 

the amplitude of oscillations observed in orthorhombic approximation is about 10 times 

smaller then the oscillations observed using true triclinic crystal symmetry. Now, it is 

very important to look for experimental resistance oscillations in orthorhombic Q1D 

before drawing any conclusion, whether AMRO are special in triclinic Q1D systems. 

 As in other theoretical models, the present calculation is unable to reproduce the 

experimentally observed resistance dips for field parallel to the y-axis. In the present 

calculations, the resistance does not show local minima for field parallel to the y-axis. As 

discussed earlier, at this orientation the electron experiences the maximum Lorentz force 

and hence the maximum resistance is expected. However, employing the triclinic crystal 

symmetry, the resistance is found to be maximal at about ~8.5± away from the x-y plane.  
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FIG. 4.21 Polar angle dependence (i.e. magnetic field rotated in y-z plane) of the 
9T magnetoresistance of (DMET)2I3. (a) Orthorhombic Boltzmann numerical 
(blue) and Kubo analytic (red) calculations [4.14], (b) Present triclinic Boltzmann 
numerical calculation, and (c) Experiment.  Insets show d2/d2 for the 
calculations, indicating the lack of Lebed oscillations using the Kubo formula, 
and their presence in Boltzmann calculations, with triclinic symmetry yielding 
features ~10 times larger than orthorhombic. Oscillations up to n = 5 or higher are 
observed in triclinic calculations (b) and experiment (c). Triangles indicate 
angular positions of the resistivity minima for indices n according to Eq. (4.1).   
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FIG. 4.22 Measured at 100 mK (solid lines) and calculated using triclinic 
Boltzmann transport equation (dashed lines) angle-dependent magnetoresistance 
of (DMET)2I3 at 3, 6 and 9 T, rotated in the y-z plane ( = 90º).   
 

 

The magnetic field dependence of magnetoresistance for field strength of 3, 6, and 

9T is calculated and compared with the experimentally observed magnetoresistance as 

shown in Fig 4.22.  The calculation qualitative reproduces the experimentally observed 

magnetoresistance, except for the field in the vicinity of y (a’)-axis. Note that the 

calculations in Fig. 4.22 yield a maximum for field not along y//a’, the normal to the 

planes at  = 90º, but at  ~ 81.5º, corresponding to reciprocal lattice a* direction.  This 

suggests that the internal current flows along the intermolecular c-axis, as opposed to the 

c*//z-axis. This is in fact borne out by experiment: the 3 T experiment curve in Fig. 4.22 
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also exhibits a maximum at  ~ 81.5º, as seen in Fig. 4.23. In the absence of this 

experimentally-observed minimum for  = 90±, the magnetoresistance shows the peak 

~81.5±, at which the magnetic field is perpendicular to the b-c lattice plane. Classically, 

in this orientation of magnetic field, the current is perpendicular to the magnetic field and 

the electron motion experiences the largest Lorentz force and maximum 

magnetoresistance is expected and detected.   

 
 
 
 
 

  

 

 

 

 

 

 

 

 

 

 

 

FIG. 4.23 Measured at 100 mK (solid lines) and calculated using triclinic 
Boltzmann transport equation (dashed lines) angle-dependent magnetoresistance 
of (DMET)2I3 at 3T, rotated in the y-z plane ( = 90º).   
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 We can also compare present triclinic calculation with the experimentally 

observed DKC oscillations as shown in Fig. 4.24. The calculations are qualitatively in 

agreement with the observed data.  Two symmetric peaks are observed about ||  15o, 

characterizing the DKC effect, which measures the ratio of transfer integrals tx/ty.  

Furthermore, a local maxima in resistance for  = 0± is observed in both calculations and 

experimentally.  

 

 

 

FIG. 4.24 Comparison of calculated magnetoresistance of (DMET)2I3 for 
magnetic field rotated in the x-z plane (DKC oscillations) with experiment data.  
The solid line is for calculated data and scatter points are our experiment. 
Experiment and calculation are qualitatively in agreement, with the peak in 
resistance at about   º ≤ 15±. The angle  is measured from the x-axis. 
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A comparison of YAE in the present calculations, with experimental data, is 

shown in Fig. 4.25.  The experiment and calculations are qualitatively in agreement. 

Since the experimental data are taken every 5o, it is not a particularly clear fit to the 

experimental data; however, the minima in magnetoresistance are close in both the 

experiment and the calculation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
FIG. 4.25 Comparison of calculated magnetoresistance of (DMET)2I3 for 
magnetic field rotated in x-y plane (YAE).  The solid line is for calculated data 
and scatter points are experiment. Experiment and calculation are qualitatively in 
agreement, with the resistance minima at about   º ≤ 15±. The angle  is 
measured from the x-axis. 
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FIG. 4.26 The interlayer magnetoresistance measured (open circle) for 
(DMET)2I3 and triclinic calculation (solid like) near the x-y plane (8o from x-y 
axis) with finite z-component.  The present calculations are qualitatively in 
agreement with experimental data. 
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We now turn our attention to the oscillations observed in x-y rotations with a 

finite z-component of a magnetic field (i.e. the LN-effect).  Due to the very complex 

behavior of these oscillations, their physical meaning has remained somewhat elusive, 

their properties have not been described in detail.  Recently, Lebed and Naughton [4.17]  

proposed an “interference commensurate (IC)” nature to these oscillations, and they 

demonstrated that the origin of the LN-oscillations (or IC oscillations) is related to 

special “commensurate” electron trajectories in a magnetic field, where an average 

electron velocity along the  z-axis is non-zero.  Ha et al, [4.12] measured the interlayer 

magnetoresistance in (TMTSF)2ClO4, and their experiment is quantitatively in agreement 

with the theory for an angle 66 d 20o. 

 Let us discuss Lebed and Naughton’s approach to the IC oscillations in terms of 

dimensional crossovers, and compare this with our measurements in (DMET)2I3.  In 

particular, they demonstrated that, in the absence of Landau level quantization for open 

Fermi surfaces, this “other” quantum effect in a magnetic field, “Bragg reflections” 

results in a series of 1D to 2D crossovers at the minima of the LN oscillations.  In other 

words, electron wave functions, which are localized on the Q1D conducting chains at 

arbitrary directions of a magnetic field, become 2D (i.e. delocalized on some planes) at 

the magnetic field commensurate LN directions. The non-trivial physical origin of these 

1D   2D crossovers is said to be related to interference effects between velocity 

components along the z-axis and the electron motion along the y-direction [4.17].  These 

interference effects occur as electrons move along open FS sheets in the extended 

Brillouin zone and are qualitatively different from those that are responsible for the 

magic angle effect.  They discussed how 1D 2D crossover can lead to the appearance 
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of LN-oscillation minima in Rzz using qualitative arguments. The present triclinic 

calculations is compared with the experimentally observed magnetoresistance for angle  

= 82o (or 8o from x-axis) as shown in Fig.4.26. The present calculations are qualitatively 

in agreement with experimental data. We haven’t measured magnetoresistance for other 

than  = 82o, but we can extract the data from Fig. 4.5 for other  angle. It will be worth 

to compare the calculations with experimental data for different  angles.  

 For electrons localized on conducting x-chains (1D), it is natural to expect that the 

resistivity component zz  (i.e. between chains) is nonzero in the absence of impurities 

and varies as   22 ~ Hc  at high field. Here, )(Hcc   is one of the cyclotron 

frequencies related to electron motion along the open FS, and   is the electron relaxation 

time.  If, at LN-directions of the field, electron wave functions become delocalized (2D), 

then zzR  is expected to have similarities with resistivity in the absence of a magnetic 

field.  Therefore, zzR is expected to saturate at high magnetic fields and to be proportional 

to . In other words, it is possible to show that ),,( HRzz  is characterized by an unusual 

linear behavior for “non-commensurate” directions of a magnetic field,  whereas, for 

“commensurate” directions, ),,( HRzz saturates with increasing magnetic field. This is 

what Ha et al., showed in Ref 4.12 for (TMTSF)2ClO4.  Fig. 4.27 presents the results of 

our field sweeps at each of the minima and maxima in our “x-y with finite z-component” 

experiment.  As predicted by the theory, ),,( HRzz  saturates at “commensurate” 

direction (at minima), while ),,( HRzz  (shows some power-law behavior) at “non-

commensurate” direction (at maxima)  HHRzz ~),,( .  The experimental data were fit 

using the polynomial and found that 2~),,( HHRzz  as shown in Fig 4.28, giving the 
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exponent  ~ 2. As this point, it appears that determination of the precise exponent  is 

beyond the scope of the one-electron theory, and will require future work.  But, the basic 

idea of saturating magnetoresistance at commensurate angles (minima in angle sweeps) 

and non-trivial, non-saturation, otherwise, is borne out in the experiments as well as in 

present triclinic calculation. 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 4.27 1D-2D topological crossover at certain commensurate and non-
commensurate orientations. For maxima (as shown by arrow in Fig 4.23), the 
magnetoresistance is nonsaturating in the field (1D-like), while for minima (as 
shown by arrow in Fig 4.23), it tends to saturation (commensurate, 2D-like). 
Consistent dependencies occur in the calculated magnetoresistance (solid point) to 
the experimental data (solid lines). The experimental data for minima at higher 
field shows slight upward turn due to the temperature fluctuation during 
measurements. 
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Fig. 4.28 The magnetic field dependence resistance at a non-commensurate 
orientation (maxima observed in Fig 4.26, shown by arrow). The circle is 
experimentally measured value and solid line is the polynomial fit with Rzz = 0.14 
+0.03603B2. We have ignored the low field data due to the superconducting state. 

 

We have also investigated the amplitudes of the magnetoresistance oscillations at 

positions where the minima are observed.  To determine these oscillations, the 

background magnetoresistance ( i.e., in the absence of oscillations) of the experimental 

and calculated data are fitted using an oscillatory function ( sin2) and the deviation 

from such lines is taken as the amplitude of oscillations, as shown in Fig. 4.29 and 4.30 

for experimental and calculated data, respectively. There is a very reasonable fit to the 

calculated data using a sine function but the match to the experimental data is far from 

perfect (Fig. 4.29). We have used these fit to estimate the background in the absence of 

magnetoresistance oscillations.  
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FIG. 4.29 The experimental data (open circles) for field rotating in the y-z plane 
were fit (solid line) using the oscillatory sine function Rzz = a sin (+0)

2 with a = 
115 and 0 = 8.4±. The deviation of the solid line from the experimental data is 
taken as the amplitude of the oscillation. Here the angular offset 0 = 8.4± is due 
to the tricilinicity of crystal structure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 4.30 The calculated data for the field rotating in y-z plane were fit using the 
oscillatory sine function Rzz = a sin (+0)

2 with a = 325 and 0 = 8.4±. The 
deviation of the solid line from the experimental data is taken as the amplitude of 
the oscillation. Here the angular offset 0 = 8.4± is due to the tricilinicity of crystal 
structure.  
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 Now, the amplitudes of the magnetoresistance oscillations ( at the magic 

angles for different angle as observed experimentally and from present triclinic 

calculation are shown in Fig. 4.31 As shown in Fig 4.4, the amplitude oscillations 

decrease when the magnetic field rotation plane rotation approaches to y-z plane ( the 

rotation plane is defined by angle , where 60± ≤  ≤ 120± and  = 90± is y-z plane). This 

can be seen more clearly in Fig. 2.31 (a). Interestingly, the lower order oscillation 

amplitudes i.e., for n = 0, ≤1 and +2, remain about constant, whereas higher oscillation 

amplitudes (n ¥3) significantly decreases and has minimum for  = 90± with n= -2, -3, -4, 

and +5 completely vanish ( (< 1%). In triclinic Boltzmann numerical calculations 

show diminishing oscillation amplitudes for n = ≤1 and vanishing completely for all 

higher oscillations while approaching the y-z plane, as shown in Fig. 4.31 (b). In Kubo 

analytic model, all oscillations completely vanish within our calculation precision.  

As seen, the measured amplitudes indeed decrease, at least for |n|>1, while 

approaching the y-z plane, where naively they were expected to be maximal.  One 

possible explanation for this behavior, now observed in both theory and experiment, is 

that as the magnetic field is tilted away from the Lebed plane, Fermi surface electrons 

acquire velocity components along the magnetic field which are even larger that those 

thought to be responsible for the original Lebed effect, resulting in stronger conductivity 

increases (deeper resistivity minima) for the generalized LNL effect [4.39]. Likewise, 

detailed differences between theory and experiment may suggest that the one-electron 

theory employed may be too simplistic, and electron interactions, which are expected to 

increase in such low dimensional systems, may be involved. 
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FIG. 4.31 Amplitudes of magnetoresistance oscillations from data and 
simulations in Fig. 1 for different LNL indices n versus angle  as observed 
experimentally (upper) and from present triclinic calculations (lower). High index 
amplitudes decrease significantly while approaching the magic angle 
orientation 90 , but they remain finite. The amplitude in oscillations is 
calculated by fitting the AMRO data with an arbitrary sine function as shown in 
Figs. 4.29 and 4.30.  
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Notice that, the amplitudes of the magnetoresistance oscillations in experimental 

data decrease while the field rotation plane approaches the y-z plane.  However, in our 

present calculations the amplitudes of these oscillations have minimum values, while 

approaching to ~ 10± away from the y-z-plane, this is close to the actual b-c lattice plane 

of (DMET)2I3, is yet to be understand and is left for future study. 

Finally, we show in Fig. 4.32 a the density plot of the resistance Rzz() in the 

vicinity of the most conducting x-axis. Here, the vertical and horizontal dotted lines 

represent the DKC and YAE orientations, whereas the oblique dotted lines represent the 

LNL (LMA+LN) oscillations. Thus three (formerly four) distinct AMRO are observed in 

experiment and are simulated using true triclinic calculations.  
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FIG. 4.32 Density plot of the resistance Rzz() around the most conducting x-
axis in (DMET)2I3 for (a) experimental data and (b) triclinic calculation. The 
color green (red) corresponds to the maximum (minimum) resistance. The vertical 
and horizontal dotted lines represent the DKC and YAE orientations, whereas the 
oblique dotted lines represent the LNL (LMA+LN) oscillations. Thus three 
(formerly four) distinct AMRO are observed in experiment and are simulated 
using true triclinic calculations. 
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4.5 Conclusion 

 In summary, we have measured the interlayer magnetoresistance of the Q1D 

organic molecular conductor (DMET)2I3 at low temperature and across all magnetic field 

orientations.  All known Q1D AMRO effects are now observed in this system.  We have 

numerically solved the interlayer magnetoconductivity tensor for the same field 

orientations, using the true triclinic lattice parameters, a procedure that should now be 

employable for other Q1D systems.  Even though the LNL amplitudes decrease while the 

magnetic field rotation plane approaches the y-z plane, the calculated results confirm that 

Lebed oscillations survive, up to at least n=5th order, in contrast to some previous 

theoretical models which predict their absence.  These Lebed oscillations may indeed be 

“magic” in Q1D molecular conductors.   
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Chapter 5 

Superconductivity and Upper Critical Field in (DMET)2I3 

 

5.1 Introduction 

After the discovery of superconductivity in Bechgaard salts by Jerome et al. in 

1980 [5.1], there has been a sustained period of interest in the study of the existence and 

origin of superconductivity in molecular organic superconductors. This is because, not 

only is it remarkable that organic materials superconduct, let alone conduct, but aspects 

of the superconductivity were immediately found to be anomalous. The study of 

impurities in these superconductors by Choi et al. [5.2] showed that the superconductivity 

is of unconventional type. Conventional superconductors are only mildly perturbed by the 

impurities that are not magnetic, but they found that radiation doses introducing defect 

concentrations of only a few 100 ppm were found to completely suppress 

superconductivity. Takigawa et al. [5.3] performed the first NMR experiments of the 

NMR spin-lattice relaxation rate 1
1
T in the superconducting state of (TMTSF)2ClO4, and 

found 31
1 ~ TT  below Tc, consistent with a zero-field superconducting state with nodal 

lines on the open Fermi surface. However, it turns out they didn’t explore temperatures 

sufficiently low enough to be definitive.  

Lebed in 1986 [5.4] predicted a divergence of the upper critical field (Hc2) in 

these superconductors, based on a novel field-induced dimensional crossover concept. 

This theory anticipated a complete recovery of superconductivity in very intense 

magnetic fields, for the condition of magnetic field parallel to the x-y plane but 

perpendicular to the chains (i.e. in the ydirection). This reentrance has yet to be 
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definitely observed experimentally. However, a pronounced positive upturn in upper 

critical field with no sign of saturation, and with y
cH 2  growing larger than x

cH 2 , has been 

observed. In addition, y
cH 2  well-exceeds the Pauli paramagnetic limit (the magnetic field 

required to destroy the spin-singlet Cooper pairs) [5.5, 5.6, 5.7, 5.8]. Later Lee et al., 

found that the spin susceptibility measured via NMR Knight shift remained unchanged 

upon cooling through the superconducting state in (TMTSF)2PF6 [5.9]. The unusual high 

critical fields, as well as the observed absence of resonant frequency shift in the Knight 

shift suggest spin triplet pairing may be responsible for the superconductivity. In this 

Chapter, we will discuss superconductivity in Q1D systems, in general, and in 

(DMET)2I3, in particular. We present Hc2 data for (DMET)2I3 for field carefully oriented 

along the three principal axes and compare our results with those of the Bechgaard salts. 

These result may help to understand whether the anomalous upper critical field is unique 

to (TMTSF)2X or is a more generalized characteristic of all Q1D systems.  Also, the 

anisotropy in the upper critical field, for the field with in the y-z plane, will be presented.  

 

5.2 Superconductivity in Q1D Systems 

The Bechgaard salt (TMTSF)2PF6 has a superconducting transition transition of 

approximately 1.2 K under 6 kbar pressure (it is a spin density wave state at ambient 

pressure). Soon after the discovery of the superconductivity, the general belief was that 

the nature of the superconductivity is conventional, meaning that the order parameter is s-

wave singlet.  The primary evidence for conventionality of the superconducting state was 

from upper critical field measurements. For example, Murata et al.[ 5.10] showed early 

evidence of singlet pairing as they measured the temperaturedependent upper critical 
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field in the ambient pressure superconductor (TMTSF)2ClO4 down to 0.5 K ( which was 

about Tc/2), and showed it tends to saturate at low temperature. Hc2 (T) was shown to be 

anisotropic, consistent with the crystal and band structures, but nonetheless, conventional 

(i.e., x
cH 2 > y

cH 2 > z
cH 2 ), as reproduced in Fig 5.1. Notice also that the highest critical field 

value for B//x appears to tend to saturate at zero temperature at about ~ 2.5 T. This is 

below the limit [5.11, 5.12] at which the single Cooper pairs breaks (Pauli paramagnetic 

limit).    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 5.1 Temperature dependence of Hc2 with magnetic field along the x (a), y 
(b’) and z (c*)-axes in (TMTSF)2ClO4 [from Murata et al. 5.10].  
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Around the same time as his prediction of the AMRO magic angle effect, Lebed 

also proposed a type of field-induced dimensional crossover effect relating to the 

superconducting state of Q1D superconductors [5.4]. He used the typical energy 

dispersion relation of a Q1D system, the tight binding approximation as in Eq. 2.4 given 

by   

Fzzyyxx cktbktaktk  )cos(2)cos(2)cos(2)(


    (5.1) 

where the parameters have the same meaning as discussed in Chapter 2. When the 

magnetic field is applied along the y-axis, an electron moving along the z-axis 

experiences a Lorentz force given by  

Bve
dt

kd
FL





 ,   

where the velocity  
k

kE
v 











)(1 .       (5.2) 

From Eq. (5.1) and (5.2), an electron moving along the z-axis can be shown to follow a 

trajectory given by   Gx
t

cz
c

c cos2 










      (5.3) 

where G = -eBc is a magnetic wave vector and wc = eBcvF/Ñ is the frequency with which 

the electron crosses the Brillouin zone in the z (c*) direction. Lebed pointed out that the 

motion of this electron is oscillatory along the x-axis, with z-direction oscillation 

amplitude eBctc /4 . That is, this amplitude is inversely proportional to the magnetic 

field strength (z ~ 1/B).  This leads to the conceptualization of a localization of electronic 

motion in the x-y plane as the field increases, since B can be increased to the point where 

z<c, the interlayer separation distance. Lebed called this field-induced dimensional 

crossover (FIDC), as depicted in Fig 5.2 in neighboring TMTSF molecular chains.  
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Low B High B
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FIG 5.2 A schematic display of the field induced dimensional crossover (FIDC) 
mechanism. The electron motion in the vicinity of single chain is displayed here 
for simplicity. The amplitude of oscillatory motion along the z-direction is 
proportional to 1/B when B//y.  Therefore, with a sufficient field, the electron 
motion becomes localized within the x-y plane, as depicted by the dotted line. 

 
 

In a strong magnetic field, when Ñwc >> tc, a crossover from a 3D Abrikosov 

vortex lattice to a 2D Josephson one is said to take place.  In this crossover regime, the 

ability of magnetic field parallel to the plane to break Cooper pairs is reduced, and 

eventually, orbital frustration vanishes, leading, in theory, to the reentrance of 

superconductivity at very high field [5.13, 5.14, 5.15, 5.16]. The H-T phase diagram 

according to the FDIC concept is shown in Fig 5.3. 
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FIG. 5.3 H-T phase diagram where FIDC quenches orbital pair breaking effect. 
Curve 1 and 2 are for triplet pairing with tc/Tc = 7 and 4 respectively for B//y-axis. 
Where as curve 3 is for single pairing with tc/Tc = 7. The cross marks are the 
experimental data for (TMTSF)2ASF6 at P = 11 kbar.  For (TMTSF)2ClO4, tc/Tc ~ 
7 [5.13]. 

 
 
 

In fact, evidence for such a dimensional crossover effect and a potential re-

entrance of the superconductivity for field parallel to the y-axis have been observed by 

Lee et al. [5.2-5.4]. They found that the temperature where the onset of superconductivity 

in (TMTSF)2ClO4 is observed did not follow the conventional H-T phase diagram.  The 

H-T phase diagram instead shows strong upward curvature at low T and Hc2 for H//y 

(H//b’) is several times larger than the Pauli paramagnetic limit at the lowest T.  A more 
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extensive study on (TMTSF)2PF6 by Lee et al. [5.5, 5.6] shows conventional anisotropic 

behavior of *
2

'
22

c
c

b
c

a
c HHH   near Tc, but  with an unconventional crossover occurring at 

high field, with '
2

b
cH  growing larger than a

cH 2  and showing no signature of saturation, also 

shown in Fig. 5.4.  

  

FIG. 5.4 H-T phase diagram in (left) (TMTSF)2ClO4 for the field along y (b’)- 
axis [5.5] and (right) (TMTSF)2PF6 for field aligned along the x (a), y(b’), and z 
(c*) directions [5.6]. 
 

 

The upper critical fields shown in Fig. 5.4 were obtained from resistivity 

measurements. Later, simultaneous resistivity and magnetic measurements using a 

microcantilever magnetometer to record the magnetic torque, were carried out by Oh and 

Naughton on (TMTSF)2ClO4 [5.17].  They found that the upper critical fields measured 

by resistivity and magnetization coincided.  Furthermore, Ha et al. [5. 18 ] made 

measurements on crossed bicrystals of (TMTSF)2ClO4 for a tunneling experiment.  They 

observed a prominent zero-bias conductance peak (ZBCP), which they interpreted as 
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consistent with unconventional superconductivity. These recent experiments provide 

some additional evidence of unconventionality, in particular spin triplet (p- or f-wave) 

superconductivity in the (TMTSF)2X organic superconductors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5.5 A 1D electron spectrum near the Fermi level. The arrows represent spin 
up or down. 
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There may be another mechanism besides triplet superconductivity to explain the 

observed anomalous 2cH . Fulde and Ferrell, and independently Larkin and Ovchinnikov, 

often referred to as FFLO or LOFF, were the first to realize that the destructive influence 

of Pauli paramagnetism can be mitigated by displacing the Fermi sphere of spin up () 

and spin down () electrons, relative to each other, by a wave vector, which is roughly 

given by *2)()( kkk FF   [5.19, 5.20].  Fig. 5.5 shows a 1D electron spectrum near 

the Fermi level under zero (a) and a large enough (b) magnetic field.  If one can pair 

electrons with opposite signs, one () at *kkk FTOT   and the other () at 

*kkk FTOT   then the total momentum of the pair will be 2k* (as opposed to 0TOTk  

for the conventional case).  Therefore, by moving the Fermi surface by an amount k*, the 

pairing condition for spin singlet superconductivity, which requires that opposite spins 

with equal and opposite momentum and equal energy should be paired, can be fulfilled 

over part of the Fermi surface.  However, electrons can not pair at all on the other parts of 

the Fermi surface.   

According to FFLO, this non-uniform superconducting state with finite 

momentum is more stable than the uniform solution, if the Zeeman energy is large 

enough. An inhomogeneous order parameter which has been considered by Larkin and 

Ovchinnikov [5.20], is given by Qzyxr cos),()(  , where the vector Q serves as a 

pseudo-momentum for the Cooper pairs in the magnetic field.  Such a FFLO state have 

been reported in the Q2D organic superconductor -(BEDT-TTF)2Cu(NCS)2 [5.21], 

though this remains up for debate. Note also, the experimental evidence for the existence 
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of FFLO state in CeCoIn5, a strongly anisotropic heavy Fermions compound and 

superconductor has been reported [5.22]. 

Recently, Shinagawa et al., [5.23] showed the 77Se NMR Knight shift at low 

fields revealing the decrease in spin susceptibility (cs) consistent with singlet spin pairing 

most likely with gap nodes. However, the H-T phase diagram still remains puzzling. Also, 

the study on the in-plane anisotropy of the onset of superconductivity in (TMTSF)2ClO4 

by Yonezawa et al., [5. 24 ] reported the evidence for a transition with in the 

superconducting state and attributed it to shifting of the symmetric principal axis away 

from the one of the which points along y at low fields, shifts away from this direction 

around 3T but evolves back toward the y- axis at higher fields, consistent with the singlet 

scenario. The possibility remains, therefore, that superconductivity in (TMTSF)2X is spin 

singlet, perhaps with a FFLO state or perhaps with a crossover in high magnetic field 

between the conventional singlet and unconventional singlet or spin triplet.  

In the next subsections, we will discuss our upper critical field measurements 

carried out in (DMET)2I3, which has similar anisotropy and crystal structure as the 

(TMTSF)2X Bechgaard salts. 
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5.3 Upper Critical Field in (DMET)2I3 

As mentioned, interpretation of the unusual the upper critical field behavior in 

Bechgaard salts, especially along the principal axes, is still debatable. Therefore, it 

worthwhile investigating Hc2(T) in other Q1D systems with similar crystal structure and 

anisotropy. Here, we have measured the upper critical field of (DMET)2I3 along the three 

principal axes. To measure Hc2(T) along these axes, the sample needs to be aligned along 

the direction of the field with high accuracy.  As discussed in Chapter 3, we have 

employed a dual-axis rotator, which allows us to align a sample in any desired direction, 

with precision  = 0.003± and  = 0.0025±.  We have used the external rotator 

(goniometer) to find the sample x-y plane [in case of (DMET)2I3, this is the b-a’ plane].  

From our AMRO measurements, we found that the resistivity of the sample has a local 

minimum when the magnetic field is along the x-y plane. We measured the resistance of 

the sample, rotating the sample in a plane perpendicular to this plane, as shown in Fig 5.6.  

Then, the external goniometer was set at a fixed position where the resistance is 

minimum and the internal sample stage was rotated using a stepper motor to find the 

precise y-axis. From the same AMRO measurements, the resistance of the sample was 

maximal when the field was along the y-axis, as shown in Fig. 5.7.  Thus, the resistance 

of the sample itself is a good way (perhaps the only way) to find the precise alignment of 

the magnetic field along the principal axes.  Once we were able to find the precise y-axis 

of the sample, successive 90 degree rotation of goniometer and stepper motor allowed us 

to find the z and x-axes with high precision i.e.,  = 0.05± and  = 0.05±.    
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FIG. 5.6 The measured resistance of the sample when the field is rotated in the 
plane perpendicular to x-y plane at 6T and 0.1 K.  The local minimum was 
observed when the field crossed the x-y plane. The measured data point was fitted 
with a polynomial of second order (red line) and local minimum was identified as 
x-y plane. 

 

 

 

 

 

 

 
 
 
 
 
 
FIG. 5.7 The measured resistance of the sample when the field is rotated in the x-
y plane at 6T and 0.1 K.  The local maximum was observed when the field is 
along the y-axis. The measured data point was fitted with a polynomial of second 
order (red line) and local maximum was identified as y-axis. 
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Fig. 5.8 Summarizing Fig 5.6 and Fig 5.7 in a single plot. The resistance of the 
sample shows the local minima for the field rotation in y-z plane and the 
resistance of the sample shows the local maxima for the field rotation in x-y plane. 
The intersection of these two rotation plane is y- axis. 
   

 Once the magnetic field was aligned as accurately as possible along the y-axis, the 

magnetic field was brought back to 0T.  Resistivity versus magnetic field measurements 

were then recorded at a number of fixed temperatures, using low excitation amplitude AC 

current.  The typical current used in the measurements was 1 A, corresponding to 

current density ~ 10-3 A/cm2.  The measurement was also done for higher (5 A) and 

lower (0.1A) current to see if there was any sign of Joule self-heating.  It was found that 

there was no significant Joule heating in this current range so that 1A current was used 

during all the measurements. Fig. 5.9 shows the interlayer resistance versus magnetic 

field at different temperatures for field along the y-axis. From preliminary measurements, 

it was found that the upper critical field is very low. Therefore, for more precise 
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measurement of the critical field, the magnetic field was scanned from negative to 

positive field. The data shown in Fig. 5.9 have a very large noise level. To remove the 

noise level, the curve was digitally smoothed using the 50 point “adjacent averaging” 

option in Origin 7.1 data analysis software. Figure 5.10 shows a comparison of the 

smoothed with raw data for one particular temperature (T = 0.1K), giving an indication of 

the veracity of smoothed result. Fig 5.11 shows the systematic shift of Hc2 with 

temperature using the smoothed results. Similar measurements were made for field along 

the most conducting direction (x-axis) as shown in Fig. 5.12. 

The transition out of the superconducting state, upon increasing the magnetic field, 

is seen as a gradual rise of resistance, ending in a quasi-linear dependence on field in the 

normal metal state. Since there is not any well defined rule to extract the upper critical 

field from such experiments, we have employed different criteria: O (superconducting 

onset), J (upper junction point), M (mid point of transition), Y (lower junction point) and 

Z (zero resistance point), as shown in Fig. 5.13. In addition, for some upper critical field 

data points the sample was cooled down to the base temperature with constant magnetic 

field along the x-axis. Figure 5.14 shows the H-T phase diagram for the upper critical 

field obtained using these criteria. Since all curves show the similar temperature 

dependence, we have plotted the upper critical field versus the temperature taking in to 

account the mid point criterion as shown in Fig. 5.15. Recalling that the upper critical 

field is anomalous for the field parallel to the (b’) y-axis in (TMTSF)2X, so much of the 

present study was focused on measurements of Hc2 along this axis. Similar criterion were 

taken to extract the upper critical field for the field along x and z- directions.  
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FIG. 5.9 The raw data for the magnetic field dependent interlayer resistance at 
different temperatures when the field is parallel to the y-axis.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.10 comparison of the smoothed with raw data for one particular 
temperature (T = 0.1 K), giving an indication of the veracity of smoothed result. 
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FIG. 5.11 The smoothed data for the magnetic field dependent interlayer 
resistance at different temperatures when the field is parallel to the y-axis showing 
the systematic shift of Hc2 with temperature. 

 

 

 

 

 

 

 

 

 

 
 
 
FIG. 5.12 Determination of  Hc2 from resistance versus magnetic field data. 
employed different criteria: T (superconducting onset), J (upper junction point), M 
(mid point of transition), Y (lower junction point) and Z (zero resistance point).  
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FIG. 5.13 Magnetic field dependent interlayer resistance at different temperatures 
when the field is parallel to the x-axis. Data points on the plots are interpolated 
from the measurements. The broad superconducting transition has been observed 
showing the systematic shift of transition. 
 
 

 

 

 

 

 

 

 

 

FIG. 5.14 H-T phase diagram for superconducting state of (DMET)2I3 for field 
aligned along the y – direction, for different Hc2 criteria as described in Fig. 5.12, 
where T (superconducting onset), J (upper junction point), M (mid point of 
transition), Y (lower junction point) and Z (zero resistance point). The lines are 
guides to the eye. 
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Figure 5.15 shows a cumulative phase diagram for all three directions using the 

midpoint (M) criterion. The measured Hc2 is fitted with the well-known Werthamer-

Helfand-Hohenberg (WHH) formula, given by  






















2

22 1)0()(
c

cc T

T
HTH        (5.4) 

where )0(2cH is the zero temperature critical field. It is clear that, unlike the lack 

of saturation in (TMTSF)2ClO4 [5.5] and (TMTSF)2PF6 [5.6] )(2 TH c  saturates as T 

approaches zero for all directions B//x, B//y, and B//z in (DMET)2I3. That is, we do not 

observe any indication of FIDC in this material. We have extracted the estimated value of 

the zero temperature critical field along the three directions to be 0.79 T, 0.186 T and 

0.019 T, respectively. Using the Ginzburg-Landau (G-L) relation, )0(2
i
cH  = 0 / 

2j(0)k(0), where 0 is the flux quantum and  i(0) is the zero temperature anisotropic 

coherence length along the ith direction, these i(0)’s can be obtained as x(0) = 271.23 

m, y(0) = 63.86 nm, and z(0) = 6.52 nm.  That is, the anisotropy of the coherence 

length is found to be x : y :  z = 41.2 : 9.8 : 1. On the basis of the tight binding 

approximation, this anisotropy, due to orbital effects, is related to the band structure 

anisotropy via x : y : z = (ax/2)tx : ayty : aztz, where ai and ti are the lattice parameters 

and transfer integrals, respectively [25]. Using the lattice parameters of (DMET)2I3 and 

the calculated coherence length anisotropy, we estimate the transfer integral anisotropy to 

be tx : ty : tz = 194 : 20 : 1. The same anisotropy ratio tx/ty = 9.7 was found in this material 

from the Yoshino angular effect measurements [26]. 
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FIG. 5.15 H-T phase diagram in (DMET)2I3 for the field aligned along the x, y, 
and z axes – direction calculated using midpoint ‘M’ criterion.  The dotted line is 
calculated using WHH formula. The Pauli paramagnetic limit (Hp) for isotropic s-
wave pairing and in the absence of strong spin-orbit coupling is estimated to be 
0.9 -1 T. 
 
 

There are two pair breaking effects of magnetic field in superconductivity, of 

orbital and spin origin. When the interlayer coherence length in a Q1D superconductor is 

comparable to the interplane distance, i.e., z(0) ~ c* at sufficient high magnetic field, 

FIDC can suppress orbital pair breaking and allow superconductivity to persist. This may 

be the case in (TMTSF)2X (X = ClO4 and PF6). However, in (DMET)2I3, the interplane 

coherence length z(0) is about four times the 1.55 nm interlayer distance, suggesting that 
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FIDC does not occur. On the other hand, the spin pair breaking Pauli limit in a 3D system 

is given by Hp(T=0) = 1.84Tc(H=0) for isotropic s-wave pairing [5.11, 5.12] in the 

absence of strong spin-orbit coupling, or 1.58Tc(H=0) for the case of anisotropic singlet 

pairing [5.28].  Using the observed superconducting transition temperature, Tc = 0.58 K, 

Hp becomes 1 T and 0.9 T within these two limits.  The extrapolated value of 
2cH  along 

all three axes is smaller than these calculated values of Hp, as shown in Fig. 5.15. 

Therefore, the upper critical field in (DMET)2I3 does not exceed the paramagnetic limit, 

in contrast to the case of (TMTSF)2X.  Curiously, the nature of superconductivity in 

(DMET)2I3, from the viewpoint of Hc2, appears to be conventional, quite unlike the 

isostructural Bechgaard salts. 

We have also measured the upper critical field anisotropy within the y-z plane, 

between perpendicular and parallel to the conducting plane, at 0.05 K, as shown in Fig. 

5.16. Hc2() has a sharp peak around the y-axis, with an anisotropy 



2

//
2

c

c

H

H
  of about 10. 

This ratio  is close to the experimentally-observed value of ~ 8 for (TMTSF)2PF6 at 

0.07 K and ~ 17 at 0.75 K [5.8]. Also, plotted in Fig. 5.16 are fits to the anisotropic 

effective-mass G-L theory [5.29] given by 
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     (5.4). 

Here, 
2cH and //

2cH  are the upper critical field perpendicular and parallel to the x-y 

plane, respectively. The critical field parameters used for the curve are 
2cH = 0.019 T and 

//
2cH = 0.186 T.  There is fairly good agreement between the data and Eq. (5.4) for field 

near the y and z-axes. However, in the y-z plane the data are skewed from Eq. (5.4). More 
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measurements may be needed to conclude any further, though it turns out that it is rare to 

find strong agreement across the full angular regime in highly anisotropic 

superconductors. 

 

 

 
 
 
FIG. 5.16 Angular dependence of upper critical fields taken at 0.05 K along the y-
z plane. The dotted  line is the fit to anisotropic effective-mass G-L theory. 
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5.4 Conclusion 

The temperature dependence of the upper critical magnetic field )(2 THc of the 

Q1D molecular organic superconductor (DMET)2I3 has been measured, along three 

principle axes x (b), y (a’), and z (c*), for the first time.  Although (DMET)2I3 has strong 

structural and electronic similarity to the (TMTSF)2X (X = ClO4, PF6) system, as well as 

exhibits all other ground states observed therein, the )(2 THc dependence in (DMET)2I3 

shows conventional G-L saturation at low temperature (T`Tc). This lead us to conclude 

that the superconductivity in (DMET)2I3 is conventional spin singlet, and thus different 

from the possible triplet superconductivity in the Bechgaard salts. This may motivate 

future work in the (TMTSF)2X (X = ClO4, PF6) system to fully understand the 

unconventional behavior seen in upper critical field.  
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Chapter 6 

Conclusions and Future Works 

 

6.1 Conclusion 

Quasi-one-dimensional (Q1D) molecular conductors are highly anisotropic 

materials which show remarkable oscillatory magnetotransport phenomena with respect 

to crystal orientation in a strong magnetic field [ 1 , 2 ]. Several types of angular 

magnetoresistance oscillations (AMRO) have been observed in Q1D conductors.  In the 

prototypical Q1D conductors based on the TMTSF molecule, Lebed “magic angle” 

(LMA) resonances [3,4,5,6,7], Danner-Kang-Chaikin (DKC) oscillations [8, 9] and the 

Yoshino angular effect (YAE) [10,11,12] have been observed for field rotations about the 

three principle axes., respectively  In addition, more complex “Lee-Naughton” 

oscillations [13] were observed when the magnetic field was rotated through arbitrary, 

out-of-plane directions [12,13,14]. 

 While such AMRO effects have been detected in several Q1D materials, their 

origin(s) and relationships to each other have puzzled researchers for over two decades.  

For example, while numerical calculations of magnetoconductivity using the Boltzmann 

transport equation for a Q1D system qualitatively reproduce the observed AMRO [10], 

several other theoretical models introduced to explain interlayer AMRO in Q1D systems, 

quasi-classical and quantum [15,16,17,18,19,20,21,22,23,24], qualitatively explain only 

some of the observed effects (DKC, YAE, and LN).  Curiously, these theories have 

consistently failed to simulate the initially predicted [3,4], and detected [5,6], Lebed 

effect. The models in Refs. 21-23 result in identical expressions for the interlayer 
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conductivity, though from slightly different starting assumptions, each yielding a series 

of resistivity minima for integer values of an index n in the Lebed relation 

,/tan zy aan where  is the magnetic field angle between lattice directions ay and az.   

 According to these models, each nth-order oscillation is modulated by an 

equivalent order Bessel function that is itself a function of the magnetic field ratio Bx/Bz, 

x and z being the intrachain and interplane (the most and least conducting) directions, 

respectively. However, when the field is rotated in the y-z plane (i.e. perpendicular to the 

Q1D chains, x), the presumed optimal situation for the Lebed effect, all Bessel functions 

vanish, with the exception of n = 0, and the resulting resistivity has a smooth, featureless 

angular variation with field, with no Lebed oscillations.  In spite of this fact, the Lebed 

effect has recently been suggested to be the “only fundamental angular effect” [25], with 

the remaining effects (DKC, YAE, and LN) being simple modulations of this.  This 

seems arguable since, experimentally, Lebed oscillation amplitudes have been 

anecdotally observed to decrease (some becoming immeasurably small) as the field 

rotation plane approaches the “preferred” y-z plane where, again, the effect is expected to 

be strongest [12, 25]. 

 To date, all available theoretical models [15-26] have employed an orthorhombic 

or cubic approximation to the actual triclinic crystal structure of the materials in which 

the AMRO effects have been seen. In this dissertation, we have simulated electrical 

conductivity via numerical calculations employing the actual triclinic lattice parameters 

of a Q1D conductor, (DMET)2I3, and measured its interlayer magnetoresistance. We 

show that all AMRO effects appear in both theory and experiment and, moreover, now 

match in the Lebed rotation plane with respect to the overall magnetoresistance and the 
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presence of LMA features, including their still somewhat curious diminishment upon 

approaching the y-z plane [27]. 

Furthermore, we have measured the temperature dependence of the upper 

critical magnetic field of the quasi-one-dimensional molecular organic 

superconductor (DMET)2I3, for magnetic field applied along the intrachain, 

interchain, and interplane directions. The upper critical field tends to saturation at 

low temperature for field in all directions and does not exceed the Pauli 

paramagnetic limit (Hp) in any direction. Superconductivity in (DMET)2I3 thus 

appears to be conventional spin singlet, in apparent contrast to the status of the 

isostructural Bechgaard salts. There, Hc2 was found to significantly exceed Hp in 

the in-plane, interchain direction, interpreted as either a signature of spin triplet or 

an FFLO inhomogeneous singlet state. 

The study of several aspects of AMRO and superconductivity in Q1D systems 

still remains an active area of research. Issues such as the diminishing of the LNL 

oscillations in the y-z plane, the non-symmetry of the amplitudes and number of 

oscillations, the validity of one electron theory in such strongly correlated electron 

systems, and the curious difference between superconductivity in the closely-related 

DMET and TMTSF systems are left for future investigations. 
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