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Abstract 

One or More External Representations: What Is Better For Learning? 

Anna Ermakova 

Dissertation Chair: Elida V. Laski 

 

Use of base-10 decomposition strategy for addition in first grade is related to 

mathematics advantage in the later years (Geary et al., 2013), yet we know little about the 

strategy’s prevalence among first graders or factors contributing to its use. The present study 

sought to bridge this gap by testing 87 first graders in the greater Boston area. The results 

confirmed previous findings that showed that in the last 10 years first graders in the US have 

increased in frequency of base-10 decomposition. Children who had better knowledge of basic 

number facts used it more frequently, particularly on problems with smaller addends. 

Further, the study tested whether an instructional intervention would be effective in 

increasing reliance on base-10 decomposition. 61 of the original participants were selected to 

take part in an experimental intervention that taught them to execute the strategy while relying 

on external representations – sometimes known as manipulatives. Informed by two lines of 

research, the present study tested the hypothesis that the efficacy of the intervention may depend 

on whether one or multiple external representations are used for instruction. 

The results showed a dramatic increase in first graders’ mental base-10 decomposition 

use as a result of the intervention. Children grew in their use of the strategy at the same rates 

across genders, levels of basic arithmetic fluency, and working memory. Overall, the results 

showed that relying on multiple representations during instruction appears more beneficial to 



 
 

strategy use on mental arithmetic, but this benefit may be conditional on how well the children 

have mastered and abstracted the strategy. Implications to classroom interventions aimed to 

increase the use of advanced arithmetic strategies are discussed.  
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Chapter 1: Introduction 

Mathematics mastery is important to both individuals’ professional success and a nation’s 

progress and well-being (National Mathematics Advisory Panel, 2008). Early mathematics 

performance, in particular, is crucial for later achievement because it lays the foundation for 

future math learning (e.g., Geary, 2011). An especially important emphasis of early mathematics 

instruction is mastery of the base-10 decomposition strategy (National Governors Association, 

2010).  

The base-10 strategy involves decomposing one of the addends to reach the nearest ten, 

and then adding the remainder (e.g., 15 + 7 = 15 + 5 + 2 = 20 + 2 = 22). It is a central goal of 

early mathematics instruction that features prominently in the Common Core Standards for 

Mathematics; students are expected to use base-10 properties to add single- and double-digit 

numbers with sums up to 100 by the end of first grade (Geary, 2006; Miura, 1987; National 

Council of Teachers of Mathematics, 2000; National Research Council, 2001).  

Significance 

There is good reason to focus on this strategy; the frequency with which children use 

decomposition strategies in first grade is related to the use of more efficient arithmetic strategies 

up to fifth grade, as well as greater accuracy on word problems and arithmetic involving 

fractions up to seventh grade (Fennema, Carpenter, Jacobs, Franke, & Levi, 1998; Geary, Hoard, 

Byrd-Craven, & DeSoto, 2004; Geary, Hoard, Nugent, & Bailey, 2013). Yet, despite the 

evidence that connects this strategy to greater math fluency through middle school, we know 

little about its prevalence among first graders or factors contributing to its use. 

Further, it is imperative that research examine the efficacy of early instructional 

interventions aimed at increasing children’s use of base-10 decomposition. A common approach 

to classroom instruction of this strategy specifically and early mathematics in general is using 
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external representations (ERs) (e.g., Correa, Perry, Sims, Miller, & Fang, 2008; Puchner, Taylor, 

O’Donnell, & Fick, 2008). Manipulatives, such as Dienes blocks and unifix cubes, are often used 

as external representations in the instruction of this strategy. Research about the value of ERs for 

student learning, however, is inconsistent: some studies find that they promote learning while 

others find they hinder it (e.g., Ball, 1992; Boulton-Lewis & Tait, 1994; Kaminski, Sloutsky, & 

Heckler, 2006; McNeil & Jarvin, 2007; Resnick & Omanson, 1987; Sowell, 1989).  

Purpose 

Though base-10 decomposition is predictive of long-term mathematics achievement and 

is emphasized in curricular standards, the effect of child and problem characteristics on students’ 

choice of this strategy is underresearched. Further, there is little experimental research examining 

the influence of targeted educational interventions, particularly those using manipulatives, on 

growth in students’ use of base-10 decomposition. In light of these gaps in research, the present 

study had three primary goals. The first goal was to explore the current rates of prevalence of 

base-10 decomposition in first grade, as well as factors related to its use. The second goal was to 

test the effectiveness of a brief instructional intervention in promoting the use of base-10 

decomposition among first graders. The third goal was to test the hypothesis that the efficacy of 

base-10 decomposition instruction using external representations may depend on whether one or 

multiple ERs are used for instruction.  
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Chapter 2: Literature Review 

The literature review section is divided in three parts. First, it examines research on early 

addition strategies, particularly base-10 decomposition and factors related to its use. Then, it 

reviews research in support of two perspectives for effectively using external representations in 

base-10 decomposition instruction: single versus multiple. Finally, the Present Study section 

describes the particular goals and predictions of this study. 

Addition Strategies in First Grade 

Addition is a key goal in early mathematics instruction. During the first years of 

elementary school, children acquire new addition strategies and become increasingly accurate at 

solving simple and more complex problems. Generally, by first grade children use three main 

kinds of strategies to solve addition problems: retrieval, counting, and decomposition (Geary, 

Fan, & Bow-Thomas, 1992; Shrager & Siegler, 1998).  Retrieval involves recalling a number 

fact from memory. This strategy is typically used only on single-digit problems (Geary et al., 

2004). Counting involves counting from 1 the value of both addends or up from one addend the 

value of the second (e.g., 4 + 3 = “5, 6, 7”). Decomposition involves transforming the original 

problem into two or more simpler problems, often using either a previously memorized number 

fact (e.g., 6 + 7 = 6 + 6 + 1 = 12 + 1 = 13) or the base-10 properties of the number system. Base-

10 decomposition, which is the focus of the present study, involves decomposing one of the 

addends into a part required to reach the nearest decade and the remainder (e.g., 25 + 7 = 25 + 5 

+ 2 = 30 + 2 = 12).  

Decomposition is considered to be a more efficient and advanced strategy than counting 

(e.g., Geary, 2006; Shrager & Siegler, 1998).  Consider the problem 6+9. Solving it using base-

10 decomposition only involves three steps – decomposing the 9 to 4 + 5, adding 6 + 4 =10, then 
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10+ 5 = 15. In contrast, solving it using counting-on involves 9 steps – enumerating by one 9 

times, “7, 8, 9, 10, 11, 12, 13, 14, 15”. Indeed, Siegler (1987) found that first graders solved 

single-digit addition faster when using decomposition than counting. Further, children who use 

decomposition more frequently to solve addition problems also tend to be more accurate than 

their peers who rely more frequently on counting strategies (Fennema et al., 1998; Geary et al., 

2004). In fact, the frequency with which children use decomposition mediates gender (Carr, 

Steiner, Kyser, & Biddlecomb, 2008; Shen, Vasilyeva, & Laski, 2016), income-group (Laski, 

Schiffman, Vasilyeva, & Ermakova, 2016), and cross-national differences in arithmetic accuracy 

(Geary, Bow-Thomas, Liu, & Siegler, 1996; Vasilyeva, Laski, & Shen, 2015).  

Trends in use of decomposition. The use of decomposition in first grade is positively 

predictive of arithmetic performance through middle school (e.g., Geary et al., 2004; Geary et 

al., 2013); yet, our understanding of its current prevalence among first graders and factors that 

promote its use is limited. Prior research has focused primarily on first graders’ counting 

strategies. When researchers have examined decomposition, it generally has been combined with 

other “backup” or “invented” strategies (Fennema et al., 1998; Geary et al., 1996). Only a few 

studies have included decomposition as a separate category, and those have mostly focused on 

single-digit addition.  

An analysis of studies of arithmetic strategies conducted over the past 30 years suggests 

there has been an increase in the use of decomposition. As shown in Table 1, the prevalence  of 

U.S. first graders’ use of decomposition on single-digit problems remained relatively constant 

between the late 1980’s to mid-2000’s, but recently Vasilyeva and colleagues (2015) reported a 

sharp increase in children’s use of decomposition, with children using it nearly two to three times 

as often. Similarly, although there are fewer studies to compare, there seems to have been an 
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increase in the use of decomposition on mixed-digit addition problems over the last eight to ten 

years (Geary et al., 2004; Vasilyeva et al., 2015). Geary and colleagues found that first graders 

used decomposition on eight percent of mixed-digit problems in 2004, and six percent in three 

years later (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007), while Vasilyeva and 

colleagues found they used decomposition on 42% of problems in 2015. One potential 

explanation for this trend is the recent emphasis on decomposition in curriculum standards, 

particularly the Common Core (National Governors Association, 2010) according to which 

students are expected to use base-10 properties to add single- and double-digit numbers with 

sums up to 100 by the end of first grade, and subsequent changes to mathematics instruction 

(e.g., Rampey, Dion, & Donahue, 2009).  

Table 1 

Percentage of problems solved using decomposition in research studies in the U.S. from 1987 to 

2015 

Reference Single-digit addition Mixed-digit addition  

Siegler (1987) 9%  

Geary et al. (1992) 7%  

Geary et al. (1996) 4%  

Geary et al. (2004) 7% 8% 

Canobi (2004) 11%  

Geary et al. (2007) 6% 6% 

Vasilyeva et al. (2015) 20% 42% 

Note: Geary et al. (1996) statistic reflects the highest decomposition frequency in the 
course of first grade. Geary et al. (2004) statistics were inferred from graphs in the article. The 
numbers reported for Geary et al. (2004) and Geary et al. (2007) are averaged across all children 
in the studies. 
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Factors related to use of decomposition.  Various factors might influence the use of 

decomposition, and base-10 decomposition, in particular.  An analysis of the literature points to 

four likely factors: fluency with number facts, problem characteristics, gender, and instructional 

emphases.  

Basic arithmetic fluency. Fluency – the ability to quickly and accurately retrieve the 

sums to basic arithmetic problems (e.g., those involving two single-digit addends) – generally 

contributes to efficient arithmetic strategy choice and accuracy of advanced strategy execution 

(e.g., Ashcraft, Donley, Halas, & Vakali, 1992; Campbell & Xue, 2001; Geary & Burlingham-

Dubree, 1989; Imbo, Vandierendonck, & Rosseel, 2007; LeFevre, Sadesky, & Bisanz, 1996). It 

may be particularly important in the use of base-10 decomposition because easy retrieval of 

number facts would allow greater working memory resources to be dedicated to the execution 

and mental tracking of the steps involved (Ashcraft, 1995; Ashcraft et al., 1992). For instance, to 

execute the base-10 decomposition strategy for the problem 25 + 7, one needs to retrieve 5 + 5 = 

10 (to add 5 to the double-digit number to reach the nearest decade) and 5 + 2 = 7 (to know 2 left 

from 7 remains to be added to 30). Thus, without knowledge of the basic number facts, the base-

10 strategy is likely to be cumbersome and inefficient to execute. Indeed, Cheng (2012) showed 

that children who were familiar with basic number facts were more likely to use base-10 

decomposition on single-digit addition with sums over 10. 

Problem characteristics. Problem characteristics are widely accepted to be involved in 

strategy choice (Siegler, 1987). The magnitude of the sum and the type of problem (e.g., single-

digit vs. double-digit) has been found to be related to use of decomposition. For example, Geary 

and colleagues (1996) found that Chinese kindergartners used decomposition more frequently on 

problems with sums greater than 10 than on problems with sums up to 10. Other studies found 
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that kindergartners and first graders used decomposition more frequently on double-digit 

problems than either mixed- or single-digit problems (Laski, Ermakova, & Vasilyeva, 2014; 

Vasilyeva et al., 2015). 

The unique demands of the base-10 decomposition strategy suggest another characteristic 

of problems might influence its use on mixed-digit problems: the magnitude of the single-digit 

addend. As stated above, fluency with number facts up to 10 likely contributes to the ease of 

executing the base-10 strategy accurately. At the same time, children acquire fluency with 

smaller numbers earlier than larger ones (Sielger & Robinson, 1982). Thus, it seems likely that 

children may choose to use the base-10 decomposition strategy more frequently on problems 

with smaller single-digit addends than on those with larger single-digit addends (e.g., 28 + 3 vs. 

28 + 9) because of increased likelihood of success.   

Gender. Another factor likely related to the use of base-10 decomposition is gender. 

Fennema and colleagues (1998) found that boys used counting as frequently as girls in first 

grade, but by second grade preferred invented strategies including variations of decomposition, 

while girls persisted in relying on counting. Similarly, Carr and colleagues found that first grade 

boys relied more frequently on mental strategies to solve mixed-digit addition problems, while 

girls tended to rely on overt strategies, such as counting using manipulatives or fingers (Carr & 

Davis, 2001; Carr & Jessup, 1997). The reason for this gender difference is not apparent, but the 

consistent findings suggest it would generalize to the use of base-10 decomposition. 

Instructional emphases. As would be expected, individual differences in the use of 

decomposition seem to be related to differences in instruction. Studies conducted before the 

Common Core placed greater emphasis on decomposition in US instruction indicated that East 

Asian students used decomposition more frequently than their American peers (e.g., Geary et al., 
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1996), possibly due to curricular differences between the countries (e.g., Fuson & Kwon, 1992); 

whereas, a recent study found no cross-national difference in students’ performance (Vasilyeva 

et al., 2015). Further, differences in instructional emphases seem to attenuate gender differences 

in strategy choice. In Taiwan, where instruction highly emphasizes decomposition, there are no 

gender differences in the use of decomposition, while in the US and Russia where the strategy is 

less emphasized gender differences are present (Shen et al., 2016).   

My literature review revealed two studies that tested instructional interventions 

specifically designed to promote the use of decomposition. Cheng (2012) found that children 

who practiced composing single-digit numbers on a frame with ten slots before receiving 

instruction about base-10 decomposition for single-digit problems with sums greater than 10 

used the strategy on the majority of posttest trials. In contrast, children in the control group who 

had instead practiced classification of objects based on their physical properties continued using 

counting on most problems even after receiving the same instruction about base-10 

decomposition.   

Instruction of base-10 decomposition often includes manipulatives. Hiebert and Wearne 

(1992) compared traditional instruction to an approach designed specifically to teach place value, 

and double-digit addition and subtraction without regrouping using decomposition. The key 

difference between the approaches was the use of manipulatives; the experimental approach used 

fewer external representations, spent more time using each one, and allowed children hands-on 

practice, rather than only demonstration, in contrast to the traditional approach. At the end of the 

three-month training period, first graders who had been taught with the experimental approach 

were more accurate on arithmetic problems than those who had received traditional instruction. 

This study’s findings suggest that the number of manipulatives used influenced learning of 
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decomposition, but the lack of experimental controls prohibit strong conclusions.  

Using External Representations for Instruction: Two Perspectives  

External representations (ERs) are commonly used as an aide to student learning in 

mathematics classrooms, particularly in early elementary grades (e.g., Correa et al., 2008; 

Puchner et al., 2008). Research about the value of ERs for student learning, however, is 

inconsistent: some studies find that they promote learning while others find they hinder it (e.g., 

Ball, 1992; Boulton-Lewis & Tait, 1994; Kaminski et al., 2006; McNeil & Jarvin, 2007; Resnick 

& Omanson, 1987; Sowell, 1989). One explanation for the inconsistent findings may be 

differences in the number of external representations used to teach a given concept.  

Argument in favor of using one external representation for learning: Ease of 

abstraction. Some evidence suggests that consistent use of a single representation over time 

might lead to easier abstraction of conceptual information than reliance on multiple 

representations. Support for this position is rooted in the principles of cognitive load theory 

(Sweller, 1988), which suggests that one’s cognitive processing capacity is limited and should be 

minimally taxed during educational activities for effective learning to occur. Boulton-Lewis 

(1998) suggested that the process of extracting abstract mathematical concepts from ERs poses a 

high processing load on children’s limited cognitive resources. It follows from Sweller’s theory 

that having to attend to a range of features when processing multiple representations may present 

students with an even higher cognitive load than attending to the features of a single 

representation, and may prove to be too challenging (Mayer & Moreno, 2003). In support of this 

view, Boulton-Lewis (1998) found adverse effects of teaching place value concepts using two 

ERs: bundles of ten sticks and single-unit counters. When elementary school students were 

encouraged to use both ERs to represent double-digit numbers, they demonstrated a decrease in 
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understanding of place value, and many of them preferred to represent numbers using the less 

efficient unit counters, even if they had preferred more efficient bundles of ten sticks before 

instruction with multiple ERs. Researchers have inferred from this and similar findings that 

limiting the number of ERs used during instruction may lead to a decrease in cognitive load and 

promote students’ ability to abstract the mathematical concepts instantiated in external 

representations with greater ease (Boulton-Lewis, 1998; Uttal, 2003). 

Further evidence for the potential benefit of consistent use of one ER can be inferred 

from research on symbolic reasoning – specifically, the dual representation hypothesis (e.g., 

DeLoache, de Mendoza, & Anderson, 1999). Researchers have suggested that simultaneously 

treating ERs both as entities in themselves and as demonstrations of mathematical concepts 

(“dual representation”) may be a difficult task for children, who often lose sight of what the 

objects are intended to represent and focus instead on their physical features (DeLoache et al., 

1999; Uttal, Scudder, & DeLoache, 1997). For example, in studies involving spatial models 

(representations) of actual rooms, young children have difficulty finding an object based on the 

location of its symbol in a model room. This difficulty mapping from a representation to an 

actual location has been interpreted by researchers as being due to children’s challenge with 

treating a symbol (model room) as both a concrete entity and an abstract representation of 

another entity. While older (5-7 year old) children are able to perform this task successfully, the 

challenges associated with dual representation likely still apply in more sophisticated 

instructional contexts. 

Indeed, there is evidence that the cognitive demands of having to mentally represent ERs 

as both symbols for math concepts and objects in and of themselves may impede children’s 

mathematics learning. For example, using highly realistic (perceptually rich) dollar bills to 
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represent money during mathematics instruction in fourth through sixth grades was related to 

lower accuracy on word problems than using (perceptually bland) pieces of paper or using no ER 

at all (McNeil, Uttal, Jarvin, & Sternberg, 2009). If the translation demands associated with ERs 

interfere with learning, it stands to reason that the effect may be further exacerbated when the 

demands are increased through use of multiple representations. Instead, consistent practice with a 

single ER might provide the time for the symbol to lose its superficial appeal and, thus, for 

children to focus on the mapping between the concept and its symbol (Sowell, 1989; Uttal, 2003; 

Uttal et al., 1997; Uttal, Marzolf, Pierroutsakos, Smith, Troseth, Scudder et al., 1998).  

Finally, this view is supported by empirical evidence that indicates that using multiple 

ERs is detrimental to learning. Studies of story comprehension have shown that both information 

recall and processing speed were negatively affected when children who were already using one 

ER (text) were required to form a new mental representation of the same concepts through being 

presented with an additional ER (a second text) that did not map well onto the existing mental 

structure (Fernandez, Yoshida, & Stigler, 1992). An experimental intervention with 

kindergartners also showed greater benefits of learning numerical operations from one structured 

type of ER (ten frames) than multiple ERs that varied in structure (various spatial arrangements 

of objects, such as apples, animals, etc.; Chao, Stigler, & Woodward, 2000). In summary, there is 

evidence that children find abstraction of conceptual information from external representations 

challenging, and consistently using one ER to represent a concept has been suggested to increase 

the ease of abstraction. 

Argument in favor of using multiple external representations for learning: Depth of 

abstraction. On the other hand, there is evidence suggesting that using multiple external 

representations during instruction may facilitate deeper abstraction of the concepts represented 
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by them. Used to support this view, structure mapping theory (Gentner, 1983) posits that in order 

to map knowledge gained from external representations onto abstract mental concepts a learner 

must form an analogy between the concrete and the abstract. In this theoretical framework, 

simultaneously interacting with multiple representations allows for a more effective formation of 

the analogy by drawing children’s attention to the abstract concept captured by the ERs, instead 

of their superficial perceptual attributes (Ainsworth, 1999; Ainsworth, 2006).  

This is important because children naturally tend to notice perceptual – rather than 

substantive – features of objects. For example, one study found four-year olds were more likely 

to categorize an apple as round than as a fruit (Gentner & Namy, 1999). Providing children with 

multiple examples of the conceptual category (fruit), however, increased the extent to which they 

focused on the substantive feature (as evidenced by them matching apples with bananas). On the 

other hand, when the children were presented with only one example of the conceptual category 

(apples are fruit), they were equally likely to focus on substantive and perceptual features 

(matching apples with bananas and with balloons). Thus, learning from multiple representations 

allowed the young participants to highlight the relevant conceptual features and lose their more 

natural focus on perceptual ones. 

This line of research posits that it is through the process of comparison of multiple 

representations that children (and adults) benefit from their use. In Kotovsky and Gentner’s 

(1996) study with four-year olds – who did not spontaneously focus on abstract features of 

representations – it was the comparison of surface similarities of multiple ERs that allowed 

children to most deeply abstract the concepts behind representations. Children in the study who 

learned to compare size relations of three squares with similar size relations of three circles were 

better able to later translate size relations of squares to a novel context: color relations of circles. 
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Even more strikingly, Loewenstein and Gentner (2001) adapted the task used in prior research to 

support the dual representation hypothesis (e.g., DeLoache et al., 1999), discussed above, and 

found that when preschoolers were allowed to compare two representations of the same room, 

they found it easier to locate the hidden object in the actual room. Further support for the benefit 

of comparison of multiple representations comes from an experimental study in which college 

students who were prompted to conduct an intensive comparison of two ERs (e.g., pictures of 

different examples of heat flow) abstracted the science concept behind the representations more 

deeply than those who were not guided in their comparison or whose prompt led to less intensive 

comparison (Kurtz, Miao, & Gentner, 2001). 

Though the process of comparing multiple representations may take a longer time than 

learning from one representation, there is empirical evidence that the former is associated with 

deeper abstraction, as reflected in students’ greater ability to generalize the learned material to 

novel contexts (Bransford & Schwartz, 1999; Gilmore & Green, 1984; Hakel & Helpern, 2005; 

Schnotz & Kurschner, 2008). One study found that sixth graders who learned fractions concepts 

from multiple representations outperformed their peers who learned from a single representation 

both on direct assessments of acquired knowledge and on new types of problems with fractions 

when prompted to verbalize their reasoning during the solution process (Rau, Aleven, & 

Rummel, 2015).  

The Present Study 

The present study examined first graders’ addition strategies, and tested the benefits of an 

intervention using a single ER or multiple ERs for teaching base-10 decomposition.  Participants 

were randomly assigned to one of three conditions: (1) base-10 frames, (2) base-10 tiles, or (3) 

base-10 frames and tiles. As shown in Figure 1, each representation instantiated the base-10 
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numeric structure and required children to represent double-digit numbers as tens and ones: the 

frames involved ten green beads on the top row representing ones and ten blue beads on the 

second row representing tens, while the base-10 tiles involved ten green tiles in a section on the 

left representing ones and ten blue tiles in a section on the right representing tens. The materials 

were selected because of their similarities (e.g., identical color coding) and absence of 

mathematically irrelevant features, which should theoretically increase children’s ability to 

abstract the mathematical concepts within and across them.  A pre-to-posttest design was used to 

measure the effectiveness of the training in each condition. In addition, a microgenetic 

component allowed for examination of the rate of learning. 

Figure 1. Manipulatives used for training. 

The study had three primary goals. The first goal was to describe the extent to which first 

graders used base-10 decomposition to solve mixed-digit problems. Based on the trends in the 

literature, I expected first graders’ use of decomposition to be comparable to the results of more 

recent studies, rather than those of older studies. In addition, because I hypothesized the trend of 

increased use of decomposition to be related to greater instructional emphasis on base-10 
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knowledge, I expected base-10 decomposition to be the most prevalent kind of decomposition. 

Further, based on previous findings of gender differences in relation to the use of counting (e.g., 

Carr & Davis, 2001; Fennema et al., 1998), I expected to also find gender differences with boys 

using base-10 decomposition more frequently than girls.  

To get a more nuanced depiction of first graders’ strategy choice, the present study also 

examined whether problem type and children’s arithmetic fluency were related to the frequency 

with which they used base-10 decomposition. Because using base-10 decomposition on mixed-

digit problems involves knowing how to decompose the single-digit addend to arrive at the value 

needed to change the double-digit number to the next decade, I predicted children with greater 

fluency with basic addition facts (e.g., easily retrieving the combinations of 5 as 4+1 and 3+2) 

would be more likely to use the strategy. Thus, children with better knowledge of addition facts 

in the present study should execute the strategy with greater ease, and thus be more likely to 

select it over more cumbersome counting strategies. Further, children are typically more fluent 

on the arithmetic facts for smaller numbers before larger ones (Siegler & Robinson, 1982), in 

part because of more experience with these numbers and in part because they involve fewer 

combinations. Thus, I also predicted that base-10 decomposition would be used more frequently 

on mixed-digit problems with a smaller single-digit addend than those with a larger single-digit 

addend, and that this aspect of the problem would be more predictive of strategy choice than 

magnitude of the sum.   

The second goal of the study was to explore whether strategy choice was malleable, such 

that a brief instruction could substantially increase the use of base-10 decomposition.  On the one 

hand, existing cross-national studies and intervention studies suggest that instruction can 

influence strategy choice (Cheng, 2012; Fuson & Kwon, 1992; Geary et al, 1996; Hiebert & 
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Wearne, 1992; Siegler & Jenkins, 1989; Vasilyeva et al., 2015). Thus, it was possible that with 

even brief targeted instruction children might opt to use the strategy more frequently when given 

a choice, and that the change would occur on a broad range of problems. Further, there may also 

be spillover to the use of other kinds of decomposition.  

On the other hand, it is possible that prolonged instructional experience is necessary to 

induce change. Change in strategy choice is typically depicted as a gradual process of strategy 

discovery and strengthening of associations between problems and a strategy’s accuracy (Siegler 

& Shipley, 1995). In fact, most cross-national studies and existing intervention studies are 

characterized by prolonged instructional intervention. For example, Hiebert and Wearne’s (1992) 

intervention extended over the course of three months.  If this is the case, then if any 

improvement occurred, the breadth of change would be expected to be limited. A brief 

intervention might promote accurate execution of the strategy when children are directed to use it 

on no-choice tasks, but not extend to how often the strategy is used on a choice task. The change 

also might be limited to problems on which the strategy is more easily executed (e.g., those with 

single-digit addends less than 5). Another possibility is that the change might occur specifically 

in children who are already primed to adopt the strategy (e.g., Cheng, 2012), such that frequency 

and accuracy of base-ten execution at posttest may depend on children’s basic arithmetic fluency 

or prior use of the base-10 decomposition strategy.  

Of course, the extent to which children actually improve on executing the strategy during 

training should influence the extent to which they generalize it. Previous studies of strategy 

choice indicate that children are more likely to choose a strategy they can accurately execute. 

Thus, children who are better able to execute the strategy with or without the instructional 

materials – the manipulatives – should be more likely to choose to use the strategy when asked to 
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solve problems mentally following training than those who never “master” the strategy. 

The third goal of the study was to test the hypothesis that the efficacy of using external 

representations for instruction depends on the number of representations used. My approach to 

testing this hypothesis involved examining the relative strengths and weaknesses of using either 

a single or multiple external representations in instruction. While there might be an overall 

advantage of one approach over the other, it seemed more likely, given the reasonable theoretical 

arguments in favor of each, that the differences for learning between the two would be more 

subtle. Thus, I conducted specific analyses to explore the two key aspects debated:  ease and 

depth of abstraction of the mathematics concepts instantiated in the representations.   

On the one hand, the literature seems to suggest that abstracting conceptual information 

from manipulatives is an arduous process for young children (e.g., Ball, 1992; McNeil & Jarvin, 

2007; McNeil et al., 2009), and that the demands of the task should be minimized as much as 

possible in order to afford ease of abstraction. For this reason, using a single external 

representation consistently over time is argued to be better than using multiple external 

representations. One argument in support of this view is that using only one manipulative allows 

for a greater number of instances of practicing the strategy with that representation, allowing the 

child to become proficient in using it and to lose interest in the manipulative as an object in and 

of itself (e.g., Uttal, 2003). If the sheer number of instances using the manipulative influences 

learning, then the single representation conditions should promote greater and more rapid 

learning of how to accurately execute the hands-on base-10 strategy than the multiple 

representation condition. This increased ability to execute the strategy should, in turn, lead 

children whose instruction includes only one manipulative to choose to use the strategy more 

frequently than those who were taught with multiple manipulatives. Another argument is that 
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using one manipulative consistently over time taxes working memory less than using multiple 

because there are fewer external (and distracting) features for the child to process (Boulton-

Lewis, 1998; McNeil & Jarvin, 2007; Uttal, 2003). If this is the case, then individual differences 

in working memory should influence the extent to which children benefit from using a single 

versus multiple representations. One would expect no relation between working memory 

capacity and children’s learning in the single representation condition, but a positive relation in 

the multiple representation condition.   

On the other hand, the literature argues that an important result of learning from external 

representations is depth of abstraction, often measured as the ability to extend the knowledge to 

novel contexts (e.g., Bransford & Schwartz, 1999; Hakel & Helpern, 2005). According to 

existing research, using multiple representations may be better than using a single external 

representation to ensure depth of abstraction. In the current context, ability to execute the strategy 

using the manipulative does not necessarily require the child to abstract the underlying 

mathematical concepts; rather, acquiring the procedure as it relates to the manipulative is 

sufficient. In contrast, choosing to and being able to accurately execute the strategy in the 

absence of the manipulative, once it is acquired with the manipulatives, suggests that the concept 

has been abstracted. Additionally, it has been suggested that reliance on a single ER encourages 

formation of a mental representation that reflects the features of the ER – essentially, 

visualization of the ER itself, rather than abstraction of the concept – and thus hinders 

application of the concept to new tasks that require that these features be adjusted (Schnotz & 

Kurschner, 2007). Learning from multiple ERs, on the other hand, has been shown to lead to 

more flexible mental representations that do not reflect the physical features of the ERs.  

If using multiple representations promotes deeper abstraction of the mathematics 
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concepts, then children who learn to execute it successfully using the external representation 

(“master”) in the multiple ER condition should demonstrate higher frequency and accuracy of 

base-10 decomposition when asked to extend that learning to mental arithmetic, than those who 

mastered the strategy in the single ER condition. Moreover, executing the strategy on mental 

tasks without making references to ERs (visualizing the manipulatives on which they were 

trained) would be further indicative of ability to extend knowledge of the hands-on strategy to 

mental arithmetic. If, indeed, children in the multiple representation condition are better able to 

transfer the hands-on strategy to mental arithmetic, I predicted that they would use visualization 

less than children in the single representation condition. A summary of research predictions is 

reflected in Table 2. 

Table 2 

Research Predictions Based on Ease and Depth of Abstraction Hypotheses 

Single Representation Multiple Representations 

Ease of abstraction hypothesis:  

 More practice with one manipulative 

will promote accuracy of strategy 

and do so faster 

 Cognitive load is low: Working 

memory will not be related to 

frequency of base-10 choice  

 Less practice with each manipulative 

will inhibit accuracy of strategy or 

take more time 

 Cognitive load is high: Working 

memory will be positively related to 

base-10 choice 

Depth of abstraction hypothesis:  
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 Less frequent choice of base-10 

decomposition on novel (mental) 

task 

 Less accurate use of base-10 

decomposition on novel (mental) 

task 

 Mental model will be visualization-

based 

 More frequent choice of base-10 

decomposition on novel (mental) 

task 

 More accurate use of base-10 

decomposition on novel (mental) 

task 

 Mental model will be numerically-

based 

 

 

 

 

  



21 
 

Chapter 3: Method 

Participants 

The present study included 88 first graders (50 girls and 38 boys; mean age = 6.99 years, 

SD = .38) recruited from five urban parochial schools.  First grade was chosen because it is a 

time when children are acquiring the decomposition strategy and when hands-on materials are 

frequently used in mathematics instruction (Sherman & Richardson, 1995). The majority of 

participants were White (62%); the remaining participants were 14% Latino, 10% Black, 8% 

multiracial, and 6% Asian. Most children came from middle- to high-income educated families 

(80% of the parents reported an annual income of $100,000 or more; 92% of participants had at 

least one parent with a Bachelor’s degree or higher).  

Twenty children were eliminated from participating in the training sessions based on their 

strategy use at pretest. These children either (1) accurately used base-10 decomposition on the 

majority of the trials, or (2) were inaccurate on the majority of the trials (usually, this was due to 

an invalid strategy, such as guessing). The former group was considered to already be at or close 

to ceiling on their performance and thus not able to detectably grow in base-10 strategy choice 

based on the intervention. The latter group was considered to not yet possess the basic number 

sense required to benefit from the intervention. Seven children who qualified did not complete 

the intervention due to absences. The selected and eliminated samples did not differ from one 

another on demographic characteristics: age, t(37.85) = .16, p = .872, sex, χ²(1) = 2.43, p = .119, 

race, χ²(4) = 4.82, p = .306, household size, t(63) = .48, p = .634, household income, t(66) = 

1.07, p = .291, and parents’ highest level of education, χ²(5) = 6.02, p = .304. 

Design 
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This study used a pretest–posttest design across seven sessions. In sessions 1 and 7, 

children met individually with an experimenter to complete pretest and posttest measures. In 

sessions 2-6, children met with an experimenter in small groups to learn and practice solving 

addition problems with manipulatives. At the end of sessions 4-6, children were asked to solve 3 

problems without any assistance or feedback, which served as a microgenetic measure of 

learning during training.  

Pretest/Posttest Measures 

At pretest and posttest, children were presented tasks to measure their addition strategy 

and accuracy. Further, at pretest only, children also completed measures of working memory, 

and arithmetic fluency.   

Addition Tasks. At pretest, children completed a Choice Task, on which they were asked 

to choose any strategy to mentally solve 15 mixed-digit addition problems. All problems 

included one double-digit addend and one single-digit addend (e.g. 16 + 7), and were printed on 

separate sheets of paper (see list of problems in Appendix A). The experimenter read each 

problem aloud and gave the children as much time as needed to solve it. Children were not 

provided with any manipulatives or paper and pencil, but were permitted to use their fingers or 

count aloud.  

At posttest, children completed three addition tasks in a set order: No Choice 

Manipulatives Task, No Choice Mental Task and Choice Mental Task. In the No Choice tasks, 

children were instructed to solve the problems using the base-10 strategy: “Remember how 

we’ve been practicing adding numbers in the ‘base-10 way’? Can you use the ‘base-10 way’ to 

add these numbers [in your mind] or [using the ten-frame/ the ten-tiles]?” The experimenter 

showed and read each problem aloud one at a time and gave the children as much time as needed 
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to solve the problem. In the No Choice Manipulatives Task, children solved six mixed-digit 

addition problems using the manipulative(s) used during training. Children who were exposed to 

more than one manipulative during training solved three of the problems with one manipulative, 

and three with the other, with the order of manipulatives counterbalanced across participants. In 

the No Choice Mental Task, children were instructed to solve six mixed-digit addition problems 

using the base-10 decomposition strategy. The experimenter did not provide any manipulatives 

or paper and pencil. The experimenter recorded participants’ ability to use the base-10 strategy 

correctly on the no-choice tasks. The Choice Task was identical to the one used at pretest, except 

that it only included ten trials. 

During the training period, children independently solved two (Session 3) to four 

(Sessions 4 and 5) problems using manipulatives. In the multiple representation condition, they 

solved the first half of the randomly ordered problems with a base-10 frame and the second half 

with base-10 tiles. Experimenters made note of accuracy of children’s strategy execution on 

every problem during independent solution portions of the training sessions. The rate of learning 

measure recorded the number of training sessions it took for children to reach and maintain high 

accuracy of base-10 execution, considering posttest No Choice Manipulatives Task as “session 

6”. “High accuracy” was defined as all problems solved correctly during the intervention 

sessions and at least 5 of the 6 problems using manipulatives solved correctly at posttest.  

Addition strategy coding. During the Choice Task experimenters observed children’s 

behaviors on each problem to determine strategy use. Any overt signs of strategy use (e.g., if the 

child counted out loud, the experimenter recorded a counting strategy, if the child verbalized the 

intermediate addition steps for decomposition, the experimenter noted decomposition) were 

recorded. When there were no overt behaviors, the experimenter asked the participant how he or 
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she “figured it out” after an answer was provided. This type of combination of experimenter 

observations and child self-report has been validated and used for strategy classification in prior 

research (Rittle-Johnson & Siegler, 1999; Siegler, 1987).  

Children's strategies on each problem were coded as one of four categories: counting, 

base-10 decomposition, another type of decomposition, and an “other” code. The counting 

strategy was used when a child counted up starting from 1 (count all strategy) or from one of the 

addends (count from larger addend or count from smaller addend). For example, for 18 + 4, 

“count from larger addend” strategy could involve the child saying out loud, “19, 20, 21, 22.” 

The base-10 decomposition strategy was used when a child added to the decade following the 

larger addend, and then added the remainder (e.g., for 18 + 4, adding 18 + 2 to get to 20, and 

then adding 2 more). The other type of decomposition code included trials on which a child 

separated out tens and ones, and then added the ones in a manner other than base-10 (e.g., for 18 

+ 4, decomposing 18 into 10 and 8, counting up 4 from 8, and then adding the resulting 12 to the 

separated 10). Because it is generally accepted that retrieval applies to stored number facts that 

typically include single-digit numbers (e.g., Geary et al., 2004) and all problems in this study 

involved double-digit numbers, a retrieval code was not used. If a child reported that he/she “just 

knew” and no overt behavioral cues were present, guessed, or described a strategy that did not fit 

one of the other codes the trial was coded as “other.”  The experimenter also indicated whether 

execution of the strategy involved fingers, verbal (guiding oneself or counting out loud, 

including whisper), a combination of fingers and verbal, or mental (no observable behavior). All 

trials on which a strategy was not readily apparent were discussed by both experimenters until 

agreement on the strategy code was achieved. 
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During the No Choice Mental Task, when children were instructed to only use the base-

10 decomposition strategy, the child’s explanation of the strategy was coded as either purely 

numerical or reflective of visualizing the ER/s. For example, to solve 25 + 7, a numerical 

explanation only referenced the addends (e.g., “I added 5 to get to 30, and then added 2 more.”),  

while a visualization-based explanation referenced the manipulative as well (e.g., “I imagined 

adding 5 green tiles, then trading all the green ones for a blue ten, and then adding 2 more green 

ones.”).   

Working memory tasks. At pretest, working memory was measured using two tasks 

from the Working Memory Test Battery for Children (Pickering & Gathercole, 2001): backward 

digit recall, and backward block recall. Both tasks have been used as predictors of mathematics 

performance in elementary-school aged children (e.g., Meyer, Salimpoor, Wu, Geary, & Menon, 

2010). 

The Digit Recall task measures verbal working memory (Wechsler, 2003). Child repeat a 

sequence of orally-presented numbers in backward order. Sequences increase in length from 2 

digits up to 9 until the child is no longer able to correctly repeat a sequence of a particular length 

on two consecutive trials. Test-retest reliability for children ages 6–16 is high (r = 0.83; 

Williams, Weiss, & Rolfhus, 2003).  

The Corsi Blocks task measures visuospatial working memory. Child tapped a visually-

presented series of blocks, arranged in a scattered array in backward order. Sequence lengths 

increase from 2 blocks to a maximum of 9 blocks until the child is unable to correctly tap a 

sequence of a particular length on two consecutive trials. Test-retest reliability for older children, 

ages 11–16, is moderately high (r = 0.70–0.79; Orsini, 1994), and the task has been used 

successfully with preschool children in prior research (Bull, Espy, & Wiebe, 2008; Orsini et al., 
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1987). On both tasks, children’s scores were calculated as the total number of sequences 

correctly recalled and standardized. 

Number sets task.  Participants’ fluency with basic arithmetic facts was assessed using a 

modified version of the Number Sets Task (Geary, Bailey, & Hoard, 2009). In this task, children 

are asked to identify sets of objects and numerals that total a target number (either 5 or 9). In this 

study, children completed the symbolic items involving sets of two quantities represented with 

Arabic numerals, and the mixed (symbolic/ non-symbolic) items, involving sets with one 

quantity represented with small shapes, such as dots or stars, and the other represented with 

Arabic numerals. 

Children were given 60 seconds per page for target number 5 and 90 seconds per page for 

number 9. At the start of each page, the experimenter instructed children to work quickly to 

circle as many sets as possible that equaled the target number. Participants’ scores were 

standardized using a sensitivity score, d-prime (Geary et al., 2009; MacMillan, 2002): d’ = z 

scores hits – z scores false alarms. 

Training Sessions  

Participants received training in one of three experimental conditions: (1) single 

representation--base-10 frame, (2) single representation--base-10 tiles, or (3) multiple 

representations--base-10 frames and base-10 tiles.  To be certain that any difference found 

between the single and multiple representation condition was not an artifact of the particular 

single representation used, I included two single representation conditions. Children were 

assigned to these conditions using stratified randomization by working memory score, to ensure 

that cognitive capacity levels of the participants were comparable across conditions.  The 

structure of the training sessions across the three conditions was identical. The only difference 
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was that in the multiple representation condition, the participants practiced with one 

manipulative on half the problems, and with the other on the remaining half.  

During training, groups of three children (or, when not possible, two) met with an 

experimenter for five 20-minute sessions over the course of two to three weeks. Child-to-child 

interactions were limited as much as possible to ensure consistency of intervention across 

conditions and groups. During the sessions, children listened to the experimenter’s explanations 

then individually practiced using the manipulative(s) with assistance from the experimenter, as 

necessary.   

The sessions were designed to provide scaffolded learning, with decreasing amount of 

experimenter guidance and increasing amount of independent practice with time. In the first 

session, the experimenter demonstrated how to count by ones and by tens using the 

manipulatives. The experimenter then illustrated equivalence of ten ones and one ten, provided 

two examples of how to represent double-digit numbers as tens and ones, then asked the children 

to represent two double-digit numbers with the manipulatives and provided feedback, if 

necessary. Finally, the experimenter modeled execution of base-10 decomposition using the 

manipulative(s) on two problems, after which the children solved two additional problems 

following experimenter directions step by step for executing the strategy. Appendix B presents a 

sample script for Session 1. By session three, experimenter demonstrations were phased out, and 

independent practice without feedback was introduced.   

The problems practiced in each session included single-digit addends ranging from 2 to 9 

and double-digit addends ranging from 14 to 88. The independent practice problems at the end of 

sessions 3-5 served as the microgenetic measure of improvement in accurately executing the 

base-10 decomposition strategy during training. Thus, the four independent practice problems 
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were the same across sessions 4 and 5, and included the two problems from the independent 

portion of session 3.  See Table 3 for an overview of the structure of the intervention sessions, 

including the type and number of practice problems used at each session as part of the 

scaffolding process.  

Table 3  

Intervention Structure: Number and Type of Practice Problems by Session 

 Session 1 Session 2 Session 3 Session 4 Session 5 

Demonstration 17 + 5 

6 + 38 

9 + 24 

45 + 7 

   

Guided practice 9 + 25 

47 + 8 

7 + 16 

5 + 39 

18 + 7 

4 + 47 

8 + 36* 35 + 7* 

Practice with feedback  34 + 8 

6 + 46 

4 + 27 

18 + 8 

9 + 26 

35 + 8 

7 + 49 

17 + 6 

9 + 14 

47 + 4 

7 + 39 

23 + 8 

47 + 6 

9 + 34 

16 + 8 

5 + 28 

Independent practice   29 + 4 

5 + 36 

6 + 38 

27 + 5 

29 + 4 

5 + 36 

6 + 38 

27 + 5 

29 + 4 

5 + 36 

Note: Problems were presented in a random order within each portion of the sessions.  
*In the multiple representation condition, one of the manipulatives was used during guided 
practice in Session 4 and the other in Session 5, counterbalanced across intervention groups. 
Both manipulatives were used during practice with feedback and independent practice. 
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Chapter 4: Results 

Overview of Analyses 

The results are organized in three main sections, paralleling the goals of the study. The 

first section focuses on addition performance before training – strategy frequencies overall and 

by gender, relation between base-10 decomposition and problem characteristics, and between 

base-10 decomposition and accuracy. The second section explores effect of addition strategy 

training on mental base-10 decomposition preference overall, as well as by gender, basic 

arithmetic fluency, and considering problem characteristics. Relation between children’s ability 

to execute base-10 decomposition accurately when asked and their preference for the strategy is 

also examined. The third section discusses the effect of experimental condition on participants’ 

ease and depth of strategy abstraction. Specifically, analyses examining condition effects on 

children’s rate of learning and differential role of working memory on posttest mental strategy 

preference are used to test the ease of abstraction hypothesis. In order to test the depth of 

abstraction hypothesis, I compare those children in the two conditions who demonstrated 

mastery of base-10 decomposition using manipulatives at posttest on their preference for and 

accuracy of mental strategy execution. I also explore condition effects on frequency with which 

participants reported visualizing the manipulatives during mental base-10 decomposition 

execution. 

Initial Use of Base-10 Decomposition 

 To describe the distribution of strategies and prevalence of decomposition among current 

first graders, I examined the strategy choice of all children tested at pretest, including those who 

were excluded from the intervention. As shown in Table 4, while counting was the most 

prevalent strategy, decomposition was used on 19% of trials, twice as often as reported by Geary 
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and colleagues in 2004. As expected, base-10 decomposition was substantially more prevalent 

than other types of decomposition, used on 13% vs. 6% of problems respectively, t(87) = 2.34, p 

= .022, d = 0.31. Also as expected, girls used base-10 decomposition less frequently than boys, 

t(86) = 2.13, p = .050, d = 0.45, and counting more frequently than boys, t(70.36) = 2.39, p = 

.019, d = 0.52. 

Table 4 

Addition strategies used at pretest: Percentage of all problems (standard deviations presented in 

parentheses) 

 All children Boys Girls 

Counting 68 (39) 57 (42) 77 (35)* 

Decomposition 19 (34) 27 (40) 12 (28) 

      Base-10 13 (29) 20 (35) 7 (21)* 

      Other 06 (13) 6 (12) 5 (13) 

Other strategies 13 (26) 16 (29) 11 (23) 

*p < .05, gender-based difference 

Next, I tested the hypothesis that strategy choice may depend in part on problem 

characteristics. The size of the problem, defined as the magnitude of sum, was correlated with 

overall accuracy, r = .60, p = .009, but not with the frequency with which base-10 decomposition 

was used. In contrast, the magnitude of the single-digit addend – up to or greater than 5 – was 

not related to overall accuracy, but was related to the frequency with which base-10 

decomposition was used. A paired-samples t-test indicated first graders chose base-10 

decomposition more frequently on problems with a single-digit addend up to 5 (M = 15% of 
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problems, SD = 33) than on problems with a single-digit addend over 5 (M = 12% of problems, 

SD = 27), t(87) = 2.85, p = .005, d = 0.10.  

Further, I used linear regression to examine the hypothesis that basic arithmetic fluency is 

related to rate of base-10 strategy use. My prediction was confirmed: d’ score on the Number 

Sets Task was a significant predictor of base-10 strategy frequency, F(1, 86) = 20.92, p <.001, R² 

= .20. Children who were more familiar with basic number facts indeed chose to use base-10 

decomposition more frequently, regardless of the size of the single-digit addend. 

Effect of Instruction on Use of Base-10 Decomposition  

Next, I examined whether children’s use of base-10 decomposition changed after the 

brief instruction.  These analyses were conducted with only the sample selected for participation, 

excluding the 20 children who were either at ceiling levels of accurate base-10 decomposition 

use or floor levels of accuracy at pretest.  

A repeated-measures MANOVA indicated a substantial increase in the percentage of 

problems on which participants used base-10 decomposition for mental calculation on the Choice 

task, from 4% (SD = 12) of problems on pretest to 28% (SD = 38) on posttest, F(1, 60) = 29.05, 

p <.001, ŋ² = .33. As shown in Figure 2, the same pattern was apparent when for the percentage 

of problems on which participants used base-10 for each problem type: 7% (SD = 19) to 28% 

(SD = 42) on problems with single-digit addends less than 5, F(1,60) = 21.58, p <.001, ŋ² = .26, 

and 3% (SD = 9) to 27% (SD = 37) on problems with single-digit addends greater than 5, 

F(1,60) = 29.76, p <.001, ŋ² = .33. A follow-up paired-samples t-test showed that while the 

selected sample used base-10 decomposition more on problems with single-digit addends up to 5 

at pretest, at posttest first graders used the strategy at an equal rate on problems with single-digit 

addends less than 5 and single-digit addends greater than 5. Further, when first graders opted to 



32 
 

use the strategy on the Choice task at posttest, they executed it as accurately as when they were 

required to execute it on the No Choice task (M = .83, SD = .22, and M = .82, SD = .30, for No 

Choice and Choice task base-10 decomposition accuracy rates, respectively, t(24) = .24, p = 

.815, d = .04). 

 

Figure 2. Pretest to posttest change in percent of base-10 decomposition of all problems, and by 

problem type. 

This effect was limited to improvement on the base-10 strategy: a paired-samples t-test 

indicated no pretest to posttest change in the percentage of problems solved using other types of 

decomposition. Further, as shown in Figure 3, improvement was also comparable for both 

genders: a repeated measures ANOVA on the percentage of trials solved with base-10 

decomposition found a main effect of time, F(1,59) = 29.06, p < .001, ŋ² = .33, but no time by 

gender interaction. 
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Figure 3. Decomposition frequency by strategy type and gender. 

This improvement was not limited to participants who possessed prerequisite knowledge. 

Individual differences in arithmetic fluency were not related to learning: first graders’ d’ score on 

the Number Sets Task was not correlated to the percentage of problems on which they used base-

10 decomposition on the Choice Task, or their accuracy on the problems on which base-10 

decomposition was used on posttest, controlling for pretest base-10 decomposition frequency and 

accuracy, respectively. However, children who already chose to use the strategy on some 

problems prior to instruction were more likely to choose it after instruction. A regression 

analysis indicated that pretest frequency of base-10 decomposition accounted for 20% of the 

variance in the percentage of trials on which the strategy was used at posttest, F(1, 60) = 14.68, p 

< .001, R² = .20. Nonetheless, improvement occurred for all children – even those who had not 

used base-10 decomposition at pretest. As shown in Figure 4, 37% of the participants who had 

not used the strategy at pretest used it at posttest on at least one trial.  
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Figure 4. Posttest base-10 decomposition users by pretest user type. 

Further, I investigated whether growth in base-10 decomposition frequency was limited 

to the most successful learners of the hands-on strategy. In order to do this, I compared children 

who had “mastered” how to execute the strategy using manipulatives and those who had not. 

Children who used base-10 decomposition accurately on at least 5 out of 6 trials on the 

Manipulatives task at posttest were coded as “masters” (57% of the sample), while all others 

were labeled “non-masters.” A repeated-measures ANOVA with percentage of trials solved 

using base-10 decomposition on pretest and posttest mental Choice tasks as within-subjects 

variables and learner type (master vs. non-master) as the between subjects variable showed that 

in addition to a main effect of time – described above – there was a time by learner type 

interaction, F(1,59) = 7.41, p =.009, ŋ² = .11. A follow-up regression analysis showed that, 

controlling for frequency of base-10 decomposition at pretest, learner type was predictive of 

frequency of the strategy on the mental Choice task at posttest, t(58) = 2.51, p = .015, β = .29. 

Children who mastered base-10 decomposition using manipulatives as a result of the intervention 

grew more than children who did not master it. As shown in Figure 5, the gap between masters 

and non-masters widened from pretest to posttest, with the percent of base-10 decomposition use 
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growing from 11% (SD = 25) to 40% (SD = 41) for masters, and 1% (SD = 3) to 11% (SD = 25) 

for non-masters. Nevertheless, even children who did not reach the specified level of “mastery” 

on the Manipulatives task grew in frequency of base-10 decomposition on the mental Choice 

task as a result of the intervention, t(25) = 2.20, p = .037, d = .59. 

 

Figure 5. Pretest to posttest change in percent of base-10 decomposition of all problems by 

learner type. 

It is interesting to note that the participants who spontaneously chose base-10 

decomposition at pretest carried it out almost exclusively mentally, while those that chose it at 

posttest seemed to require additional supports, such as fingers and verbal self-guidance – 

whether in combination or separately. The tool was coded as purely mental on 96% (SD = 8) of 

the base-10 trials at pretest and only 54% (SD = 41) of the base-10 trials at posttest. At the same 

time, a paired-samples t-test showed that using external supports at posttest did not put first 

graders at a disadvantage on accuracy: participants who chose the strategy at pretest and posttest 

were able to reach the same level of accuracy of base-10 decomposition. 
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Finally, I examined the relation between participants’ accuracy of base-10 decomposition 

execution on the two No Choice tasks and their preference for it on the mental Choice task. A 

linear regression controlling for frequency of base-10 decomposition at pretest, showed that a 

composite variable of percentage of base-10 decomposition trials solved accurately on the 

Manipulatives and mental No Choice tasks predicted frequency of base-10 decomposition on the 

posttest Choice task, t(2,60) = 2.52, p = .015, ∆R² = .08. Thus, preference for the strategy was 

positively related to accuracy of its hands-on and mental execution. 

Effect of Experimental Condition  

Preliminary analyses indicated no effect of the kind of single-representation used on any 

of the outcome measures. Thus, these conditions were collapsed in all subsequent analyses.   

Ease of abstraction. No difference was found between using either a single 

representation or multiple representations for ease of abstraction. At posttest, children in both 

conditions were equally accurate at executing base-10 decomposition when prompted to do so, 

despite having twice as many instances of practice using the manipulative in the single 

representation conditions. The mean percent correct of problems solved using base-10 

decomposition on the Manipulatives and mental No Choice task was 68% (SD = 31) in the single 

representation condition and 69% (SD = 33) in the multiple representation condition, t(59) = .16, 

p = .870, d = .03.  There also was no effect of condition on how rapidly participants mastered the 

strategy. Rate of learning – the number of training sessions, including posttest as the “sixth” 

session, before individuals reached and maintained high accuracy of base-10 execution (all 

problems during the intervention sessions and at least 5 out of 6 problems at posttest) – was the 

same across conditions, 5.19 and 5.43 in the single and multiple representations, respectively, 

t(33) = .59, p = .557, d = .26. Further, a repeated measures ANCOVA with frequency of base-10 
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decomposition at pretest and posttest as the within-subjects variables, condition as the fixed 

factor, and working memory score as the covariate showed only an effect of time, but no 

working memory by time interaction, F(1,57) = .45, p = .453, ŋ² = .01, or working memory by 

condition interaction, F(2,57) = .50, p = .609, ŋ² = .02. First graders in the multiple ER condition 

were as likely to choose mental base-10 decomposition as their peers in the single ER condition, 

regardless of their working memory scores. 

Depth of abstraction. Results did suggest a difference between using either a single 

representation or multiple representations for depth of abstraction. To examine whether acquiring 

the strategy through instruction with two manipulatives, rather than one, enabled generalization 

to mental execution of the strategy, I ran a chi-square analysis comparing the number of children 

who mastered the hands-on strategy in the two conditions. As a reminder, “mastery” was defined 

as successful execution of base-10 decomposition on 5 out of 6 posttest trials involving 

manipulatives. The analysis showed no condition differences in the number of masters and non-

masters:  57% master (single representation), 43% non-master (single representation), 58% 

master (multiple representation), and 42% non-master (multiple representation), χ² (1,61) = .02, p 

= .903, V = .02.  

Next, I conducted learning path analysis (Klahr & Nigam, 2004), in which I compared 

masters and non-masters in the two conditions (four learning paths in total) on (a) percentage of 

all Choice task problems they solved using base-10 decomposition or (b) percentage of all base-

10 decomposition trials they executed accurately on the Choice task as the dependent variable. A 

repeated measures ANOVA on the percentage of Choice task problems solved using base-10 

decomposition at pretest and posttest, found a significant main effect of time, F(1, 57) = 31.81, p 

< .001, ŋ² = .36, and a time by learning path interaction, F(3, 57) = 5.78, p = .002, ŋ² = .23. As 
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reflected in Table 5, non-masters in the two conditions were not significantly different in their 

frequency of use of mental base-10 decomposition (14% (SD = 28) and 6% (SD = 19) for single 

and multiple representation conditions, respectively, p = .601), but masters in the multiple 

representations condition used the strategy more frequently than masters in the SR condition 

(58% (SD = 38) vs. 28% (SD = 39), respectively, p = .044). Further, masters in the SR condition 

were not significantly different from non-masters in the MR condition in their frequency of base-

10 decomposition choice at posttest (p = .069). Additionally, while masters in the multiple 

representation condition used mental base-10 strategy more frequently than non-masters (p = 

.001), masters and non-masters in the single representation condition used base-10 at the same 

rate on the mental Choice task at posttest (p = .137).  

Similarly, an ANOVA of the percentage of all base-10 decomposition trials executed 

accurately on the Choice task indicated a main effect of learning path, F(3, 27) = 3.05, p = .048, 

ŋ² = .28. Pairwise comparisons revealed that masters in both conditions were equally accurate at 

executing the strategy, as were the non-masters. Mirroring the pattern of findings of frequency, 

however, non-masters and masters in the single ER condition executed the mental strategy at the 

same level of accuracy, while masters in the multiple ER condition were more accurate than 

respective non-masters (p = .025; Table 5). 

Table 5 

Base-10 Frequency and Accuracy Scores for Children Following Different Learning Paths 

Learning Path % of Trials Solved 

Using Base-10 

Mean (SE) 

% of Base-10 Trials 

solved Accurately 

Mean (SE) 

% within condition 

Master (SR) 28 (39) 80 (31) 56.8 
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Master (MR) 58 (38) 91 (11) 58.3 

Nonmaster (SR) 14 (28) 58 (49) 43.2 

Nonmaster (MR) 06 (19) 17* 41.7 

*Note: Only one nonmaster in the multiple ER condition attempted using base-10 decomposition 
at posttest; therefore, standard error is not reported. 

Congruent findings were found when examining children’s reported visualization of the 

manipulative during mental calculation. An independent-samples t-test found children assigned 

to the multiple representation condition reported visualizing the hands-on procedure less during 

mental base-10 addition than children assigned to the single representation condition (7% (SD = 

24) and 30% (SD = 39) of all base-10 decomposition trials, respectively), t(42.09) = 2.34, p = 

.024, d = .71.  

Summary of Analyses and Key Findings 

In summary, children used decomposition on 19% of all pretest addition problems, with 

base-10 decomposition being the most prevalent type of decomposition used (13% of the pretest 

problems). Girls used base-10 decomposition less frequently and counting more frequently than 

boys. Magnitude of the single-digit addend was negatively related to the frequency with which 

base-10 decomposition was used, though the effect size of the relation was small. Basic 

arithmetic fluency positively predicted frequency of the strategy. 

Children selected for the intervention increased their use of base-10 decomposition on the 

mental Choice task from 4% of problems at pretest to 28% at posttest. Problem type, gender and 

number fluency were not related to frequency of base-10 decomposition after the intervention. 

Participants who used base-10 decomposition for addition at pretest did so almost exclusively 

mentally (96% of the problems); in comparison, those who used it on the Choice task at posttest 
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tended to rely on fingers and verbal counting more, solving an average of 54% of the problems 

without the use of external supports. 

Preference for base-10 decomposition on the mental Choice task was accompanied by as 

high accuracy of execution (82%) as when they were required to execute the strategy on the 

mental No Choice task (83% accuracy). Further, children’s ability to execute base-10 

decomposition accurately when required (on the two No Choice tasks) was positively predictive 

of their preference on the strategy (on the mental Choice task at posttest). 

First graders who used base-10 decomposition at pretest were more likely to use the 

strategy at posttest, though 37% of those who did not use the strategy at pretest relied on it at 

least once at posttest. Children who executed base-10 decomposition strategy using 

manipulatives at a high level of accuracy (“masters”) were more likely to use it mentally when 

given a choice at posttest, but even those who did not fully master the hands-on strategy grew in 

their use of it from pretest to posttest.  

Contradicting the ease of abstraction hypothesis for single representation advantage, 

accuracy of base-10 decomposition execution on the No Choice task was equivalent in the two 

conditions. The participants also learned the strategy at the same rate regardless of condition. 

Finally, working memory was not related to frequency of base-10 decomposition on the mental 

Choice task for participants in the multiple representation condition. 

In contrast, the depth of abstraction hypothesis for multiple representation advantage was 

supported. Though there were no condition differences in the number of masters and non-masters 

of base-10 decomposition on the Manipulatives task, those children who mastered the strategy 

using manipulatives in the multiple representation condition were more likely to rely on it on the 

novel mental Choice task than masters in the single representation condition. Additionally, 
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participants trained in the multiple representation condition reported visualizing the hands-on 

procedure less during mental base-10 addition than children assigned to the single representation 

condition. 
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Chapter 5: Discussion, Conclusion and Implications 

 Early mathematics learning is predictive of long-term mathematics achievement (Duncan 

et al., 2007; Geary, 2011; LeFevre et al., 2010). Effective math interventions in elementary 

school thus hold the potential of positively influencing one’s math performance through the 

years of formal schooling, and even into one’s professional life (National Mathematics Advisory 

Panel, 2008). A particularly important goal of math instruction in elementary school is students’ 

mastery of base-10 decomposition for addition, which has been predictive of advanced 

arithmetic strategies up to middle school (Geary, 2006; Geary et al., 2013; National Council of 

Teachers of Mathematics, 2000; National Research Council, 2001). 

A majority of elementary school teachers believe that using external representations 

during math instruction is beneficial or even necessary for students’ learning (Puchner et al., 

2008; Sherman & Richardson, 1995). Though this is a popular view among practitioners, 

empirical evidence of the effectiveness of ERs is inconclusive: their use sometimes promotes and 

sometimes hinders learning (Boulton-Lewis & Tait, 1994 Kaminski et al., 2006; McNeil & 

Jarvin, 2007; Uttal, 2003). In the context of base-10 decomposition instruction in first grade, the 

present study tested the hypothesis that the efficacy of external representations may depend on 

whether one or multiple ERs are used for instruction.  

The study had three main goals. The first goal was to give an account of base-10 

decomposition use on mixed-digit problems in first grade, particularly as it relates to arithmetic 

fluency, gender, and problem characteristics. The second was to examine the effect of a brief 

intervention on first graders’ use of base-10 decomposition. The third goal was to test the 

hypothesis that the efficacy of using external representations for instruction depends on the 

number of representations used. 
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Use of Base-10 Decomposition in First Grade 

In the last 10 years, research studies have noted an increase in the use of the 

decomposition strategy for addition in first grade. In 2004 and then in 2007, Geary and 

colleagues found that first graders used decomposition on 8% and 6% of the problems with 

mixed-digit addends, respectively, while Vasilyeva and colleagues observed a rate of 42% in 

2015. First graders in the present study spontaneously used decomposition on 19% of mixed-

digit problems – a rate two to three times that of the 2004 and 2007 studies, though lower than 

that of the 2015 study. Decomposition may have been less prevalent in the current sample than in 

Vasilyeva and colleagues’ (2015) sample due to socioeconomic or curricular differences. Indeed, 

the present sample appears to have come from a slightly lower socioeconomic background. Prior 

research (Laski et al., 2016) has related income and arithmetic strategy, with children coming 

from higher socioeconomic backgrounds choosing to use decomposition more than their peers 

coming from lower socioeconomic backgrounds. Additionally, it is possible that the curricula of 

the schools in Vasilyeva’s study emphasized base-10 number properties and arithmetic strategies 

more than the curricula of the schools in the present study.  

Nevertheless, the present findings provide support for an increase in first graders’ use of 

decomposition over the last decade. This is likely due to a recent focus on base-10 

decomposition in US educational standards, instruction, and curricular materials (National 

Governors Association, 2010; Shen et al., 2016). Indeed, the Common Core Standards for 

Mathematics, which were released in 2010 – that is, in the time between the 2007 and 2015 

studies – expect first graders to add single- and double-digit numbers with sums up to 100 using 

base-10 properties of number. The observed increase in decomposition strategies among first 

graders may be attributable to increase in base-10 decomposition specifically. As a matter of 
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fact, the base-10 strategy was the most prevalent decomposition strategy among first graders in 

the present study – used twice more frequently than other types of decomposition. 

Existing research has not examined factors related to first graders’ choice of base-10 

decomposition for addition in detail. Prior studies have found that size of the problem predicted 

decomposition use (Geary et al., 1996; Laski et al., 2014; Vasilyeva et al., 2015). The current 

findings indicated that base-10 decomposition, in particular, it is the size of the single-digit 

addend that predicts how frequently first graders use the strategy on mixed-digit problems 

specifically. This may be because children tend to be more fluent with smaller numbers than 

larger ones (Siegler & Robinson, 1982), and thus may perceive a higher likelihood of success in 

carrying out the strategy that requires composing and decomposing the smaller numbers. Indeed, 

the larger the number, the more number facts a child needs to know to decompose it effectively. 

For instance, one needs to be familiar with only two number facts to fluently decompose the 

number 3 (1 + 2 and 2 + 1), while decomposing the number 9 takes familiarity with eight (1 + 8, 

8 + 1, 2 + 7, 7 + 2, and so forth). The importance of basic arithmetic fluency was indeed 

confirmed in the study: children were more likely to use base-10 decomposition when they were 

fluent with basic number facts.  

Finally, as in earlier studies, boys relied on base-10 decomposition more than girls, while 

girls relied on counting more than boys. There was no difference in the rates of other types of 

decomposition between genders, suggesting that differences in rates of “cognitive strategies” 

(e.g., Carr & Davis, 2010; Fennema et al., 1998) may have been driven by differences in base-10 

decomposition. Additionally, this finding supports Shen and colleagues’ (2016) claim that 

though the overall prevalence of base-10 decomposition has increased over the last decade, 

differences in its use by gender have remained, and girls are still at a disadvantage. 
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Effect of Instruction on Use of Base-10 Decomposition 

With the exception of Cheng (2012) which provided nine training sessions, most 

evidence for the importance of instruction for strategy choice has up to this point come from 

comparisons of expansive curricular programs (e.g., Fuson & Kwon, 1992; Shen et al, 2016) , or 

from prolonged experimental interventions (e.g., Hiebert & Wearne, 1992; Siegler & Jenkins, 

1989). The present study further demonstrated that even brief instruction can be effective in 

increasing the rate of a desirable strategy. As a result of only five hands-on training sessions 

(lasting an average of 19 minutes each), first graders in this study increased in their choice of 

base-10 decomposition from 4% to 28% of the problems. Moreover, they were as accurate 

executing the strategy spontaneously as they were when specifically instructed to use it, 

suggesting that the increase in frequency was not due to a “priming effect,” but constituted a 

meaningful adoption of the strategy. In fact, choice of base-10 decomposition at posttest was 

predicted by how well children were able to execute it. Mastery of the strategy in the presence 

and absence of the manipulatives resulted in higher rates of base-10 decomposition choice during 

mental addition among first graders in the study. Shrager and Siegler’s (1998) model of change 

in strategy choice suggested that children choose the strategies which they perceive to lead to the 

highest likelihood of successful execution. The present findings show that this is applicable not 

only to spontaneous strategy discovery, but also to strategy instruction: encouraging children’s 

proficiency with an advanced strategy is likely to lead to them choosing it more for themselves.  

The change in prevalence of base-10 decomposition occurred on a broad range of 

problems. As a result of the brief targeted intervention, participants became as likely to choose 

the strategy on problems with larger single-digit addends as on problems with smaller ones. The 

practice they received composing and decomposing single-digit numbers of varying magnitudes 
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likely made them more confident in the likelihood of successfully carrying out base-10 

decomposition at posttest, even on problems with larger single-digit addends. This finding 

underscores the importance of building children’s basic arithmetic fluency in order to affect their 

preference of base-10 decomposition for addition. Additional evidence that this training may 

have affected strategy choice through increasing participants’ arithmetic fluency comes from the 

finding that pretest fluency levels were no longer predictive of posttest strategy choice. 

Consistent with this explanation, number composition training has indeed been shown to 

increase rates of base-10 decomposition use in previous studies (Cheng, 2012).  

In addition to increasing first graders’ choice of base-10 decomposition by increasing the 

likelihood of their accuracy on it, the intervention appears to have highlighted the benefits of 

base-10 decomposition for children with a wide range of skills. First graders who chose to use 

base-10 decomposition before the intervention did so almost exclusively mentally. Yet, after the 

intervention, children who chose the strategy carried it out using fingers or verbal self-guidance 

on almost half of the problems. On the one hand, this may suggest that the brevity of the 

instruction resulted in fragile abstraction, where children were still unable to fully adopt the 

mental strategy and instead had to rely on external supports. On the other hand, however, this 

finding may be revealing that the instruction enabled a wider range of learners to take advantage 

of the strategy. While only those who had been able to carry it out mentally relied on it before, 

the intervention may have convinced even children who were only able to carry it out using 

external supports of the benefits (e.g., efficiency) of using the strategy, promoting its use among 

them.  

Evidence from earlier studies also suggests that first grade girls fail to abandon 

manipulatives in favor of mental addition strategies longer than boys (e.g., Fennema et al., 1998). 
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Yet, the present study shows that an effective intervention is able to attenuate for this difference. 

The brief intervention was as effective in promoting base-10 decomposition for girls as it was for 

boys, as the two groups increased their use of the strategy at the same rate.  

Prior models of strategy choice focus mostly on spontaneous strategy discovery, guided 

by children’s prior knowledge and characteristics of the problem at hand (Shrager & Siegler, 

1998). However, it is reasonable to suspect that children’s strategies do not change 

spontaneously most of the time, but are rather affected by formal instruction. Based on the 

findings of this study, instruction may not only equip children with skills necessary to execute 

advanced strategies accurately, but also increase their confidence in the efficiency of using a 

strategy on its own merit, even if its execution is cumbersome to begin with, such as in the case 

of using fingers. 

Moreover, Shrager and Siegler (1998) suggested that after a strategy is spontaneously 

discovered, its generalization – that is, increase in the frequency of its use – occurs slowly and 

gradually. The present intervention demonstrates that effective formal instruction can allow 

generalization to take place at a relatively fast rate. Indeed, evidence from other fields of learning 

attests to the ability of brief instruction to rapidly influence children’s mental representations and 

approaches. For example, Rosenthal and Zimmerman (1972) altered Piaget’s classic 

conservation experiment by demonstrating volume equivalence to participating children. As a 

result, children who had failed the conservation task prior to the demonstration instead succeeded 

on it. Similarly, Saxon and Towse (1998) demonstrated to a sample of kindergartners who had 

represented numbers as collections of single units regardless of their size that double-digit 

numbers can also be represented as collections of tens and ones. Due to this demonstration the 

participants’ number representation preference shifted from single-unit to tens-based on an 
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independent practice task. The findings of the present study likewise show that instruction-

guided strategy change may occur more rapidly than spontaneous strategy change previously 

investigated by researchers (e.g., Shrager & Siegler, 1998; Siegler & Shipley, 1995). Paralleling 

Vygotsky’s (1978) argument that learning leads development – i.e., that interactions with a more 

knowledgeable other are able to push the child to develop skills he or she would not otherwise 

possess at a particular point in time – these findings suggest that instruction can meaningfully 

influence strategy preference, accelerating the process otherwise guided by children’s own 

metacognitive processes (Shrager & Siegler, 1998). 

Single Representation or Multiple Representations: What Is Better for Learning? 

Theoretical and empirical evidence reviewed in this paper points to two opposing views 

of how to effectively use external representations: consistent use of a single ER versus reliance 

on multiple ERs. Claims in favor of using a single representation for learning are based on its 

benefits for ease of abstraction, while those in support of using multiple representations often 

cite depth of abstraction as the primary benefit. Both are discussed in light of the present study’s 

findings below. 

Ease of abstraction. Most of the literature in favor of using one representation is built on 

the underlying argument that using manipulatives poses a high cognitive load on young children, 

preventing them from gaining proficiency with the underlying concepts or strategies (e.g., 

Boulton-Lewis, 1998; McNeil & Jarvin, 2007; Uttal, 2003). This view suggests that, in contrast 

to learning from multiple representations at the same time, consistently using one promotes ease 

of abstraction by reducing the cognitive load generally associated with manipulative use. There 

are two ways in which a single ER is theorized to accomplish this: by (a) offering more practice 

with the representation, which allows for more familiarity with it and the content it represents; 
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and (b) minimizing the amount of superficial features that a child needs to process and that 

proportionately contribute to working memory demands.  

In contrast to these claims, the present study found that the two experimental conditions 

did not differ on ease of abstraction or factors hypothesized to lead to it. Children in the single 

and multiple representation conditions were able to execute the strategy in the presence and 

absence of the ER/s with the same rate of accuracy, despite the fact that the single representation 

group received twice the amount of practice with their representation. Further, working memory 

capacity was not related to the frequency with which participants in either condition used base-

10 decomposition after the intervention. This suggests that the cognitive load of learning from 

two ERs simultaneously is no greater than the cognitive load of learning from one, at least for 

first graders. Future research should explore whether cognitive load is a greater concern for 

younger children, for whom this finding may have been different. 

Depth of abstraction. Supporters of multiple representations claim that the process of 

comparison of several ERs leads children to disregard their superficial features and abstract the 

concepts more deeply, as evidenced by their ability to extend their acquired knowledge to novel 

tasks (e.g., Ainsworth, 2006; Gentner, 1983; Kotovsky & Gentner, 1996). In contrast, learning 

from a single ER has been suggested to result in children’s mental representations reflecting both 

the substantive and superficial features of the ER, limiting their flexibility in new contexts (e.g., 

Schnotz & Kurschner, 2008).  

The present study found that among children who mastered the base-10 decomposition 

strategy using ERs, those in the multiple representation condition were indeed more likely to 

choose the strategy on the novel mental addition task. This is interesting, considering that there 

were no differences between strategy “masters” in the two conditions on accuracy with which 
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they carried out the strategy. Thus, in addition to skills necessary to execute the strategy 

successfully, children’s choice of base-10 decomposition was determined by another factor, 

referred to in this study as depth of abstraction. Training with a single manipulative may have led 

to an equal amount of skill with the strategy, but less flexibility when applying it to contexts that 

do not involve a hands-on manipulative. Indeed, children who learned from a single ER in the 

present study were more likely to visualize the manipulative even when executing the strategy 

without it. This indicates that their mental representations may have been limited by the external 

features of the manipulative on which they were trained, as has been suggested in the literature 

(Schnotz & Kurschner, 2008). Thus, consistent with the literature (Ainsworth, 1999; Ainsworth, 

2006; Schnotz & Kurschner, 2008), multiple representations did lead to greater flexibility of 

mental representation: comparing two manipulatives appears to have led to a mental 

representation that embodied the concepts they represented, not their superficial features. Of 

course, it is possible that learning from a single manipulative leads to this level of abstraction 

eventually as well, but may require more time.  

In general, one would expect that achieving deep abstraction of a strategy would take a 

longer time than simply becoming proficient with its execution. Based on this, children in the 

multiple representation condition could be expected to take longer to master base-10 

decomposition than children in the single representation condition, but have deeper knowledge 

of it when they did. However, the results of this study speak to the contrary: children who 

learned from two manipulatives did not differ from their peers on the rate at which they mastered 

the strategy, and yet adopted a more generalizable mental model of it than those who learned 

from one manipulative. In other words, they did not sacrifice efficiency of learning to achieve 

depth of learning. 
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Effective Use of External Representations: Factors Other Than Number  

Why was the intervention in this study successful in increasing the rate of base-10 

decomposition, while many prior interventions using ERs have been unsuccessful (e.g., Boulton-

Lewis, 1998)? Why was processing multiple representations beneficial to learning, contrary to 

what has been shown before (e.g., Chao et al., 2000)? One possible reason is that the intervention 

followed empirically based recommendations on using ERs to ensure they pose a minimal 

cognitive load (Ball, 1992; Resnick & Omanson, 1987; Sowell, 1989; Uttal, 2003). For example, 

the materials were mathematically transparent with different color codes representing tens and 

ones; were not previously familiar to the children; and were minimally interesting as objects in 

and of themselves. Most experimental interventions that have used external representations to 

date have not adequately controlled for the quality of their intervention. Some have used 

manipulatives whose intrinsic features diminished their effectiveness (e.g., the “unstructured” 

manipulatives in the multiple representations condition of Chao et al., 2000). Others have used 

them in a way less than optimal for learning (e.g., presenting a manipulative after a concept was 

already known; Boulton-Lewis, 1998). Yet others have not controlled for comparison group 

instruction quality experimentally (e.g., Hiebert & Wearne, 1992). The present study sought to 

address these shortcomings, and found that that when high quality materials are used, they may 

in fact promote, rather than hinder learning, providing empirical support for existing theoretical 

recommendations for effective manipulative use (e.g., Ball, 1992; Uttal, 2003; Uttal et al., 1998) 

that have been minimally tested experimentally up to this point. Further, when the quality of 

manipulatives is controlled, using multiple manipulatives at one time is more beneficial to 

children’s learning than learning from a single manipulative. 
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Manipulatives in the multiple representations condition in the present study were also 

chosen using research- and theory-based recommendations. For example, for multiple 

representations to facilitate abstraction, they need to be similar in the way that they represent the 

conceptual information (e.g., Gentner, 1983). Thus, while the two manipulatives were different 

along superficial dimensions, they emphasized the base-10 structure of number in the same way: 

tens were blue and ones were green, regardless of whether they were beads or tiles. The 

regrouping procedure was also carried out similarly, by “trading” 10 ones for one 10. Thus, 

multiple representations may present an advantage for learning specifically when conceptual 

correspondences between them are salient. 

Finally, experimenters in the present study also emphasized connections between the 

concepts and the manipulatives, and between the two manipulatives in the multiple ER 

condition. This also likely contributed to the success of the intervention. As children find it 

challenging to spontaneously find correspondences between the abstract concepts and their 

concrete representations, researchers have strongly emphasized the importance of explicit 

instructor connections between the manipulatives and the mathematical concepts they represent 

in ensuring students’ concept abstraction (e.g., Ball, 1992; Uttal, 2003). 

Limitations and Future Research 

Like any study, the present investigation had some limitations. One was its small sample 

size, which created statistical power concerns in some of the analyses, particularly when groups 

were compared within the sample. Future research should seek to examine the issues raised by 

this study with larger samples, and samples of different backgrounds. Children in the present 

study were mostly White, of middle to high socioeconomic background, and born to highly 

educated parents. The results would need to be replicated with children who do not share these 
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characteristics with the present sample to be generalizable. Additionally, the benefits of using 

one versus many ERs may be different for children who are younger or older than the present 

sample, as their cognitive capacity and knowledge base are different from those of first graders. 

This study showed that first graders’ strategy choice can be affected as a result of as few 

as five sessions. Nevertheless, longitudinal follow-up would be required to answer the question 

of how persistent this effect is. Additionally, it would be interesting to look at the differences 

between the two experimental conditions in a longer intervention, and whether they would 

change or intensify with more prolonged practice. Understanding which approach to external 

representations is more beneficial in cases when interventions have to be brief versus prolonged 

is particularly important for informing classroom practice. 

Additionally, the intervention in the present study was carried out in small groups of 

students. This approach was chosen to increase the ecological validity of the study by resembling 

the classroom context, and reduce the amount of time students needed to spend out of class. 

Nevertheless, it is possible that group members affected each other’s performance, whether by 

providing motivation or distraction. Future interventions should either be conducted individually, 

or group effects should be measured in larger samples. 

One could argue that even the single representation condition contained multiple 

representations: the manipulative and the printed arithmetic problems. Indeed, written numerals 

are considered to be an external representation. Presenting children with one abstract and one 

concrete or one abstract and two concrete representations in the single and multiple 

representation conditions, respectively, allowed for the two conditions to receive an intervention 

of comparable quality. A pure single representation condition would have required that 

manipulatives be presented without the problems written out, likely putting children in that 
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condition at a disadvantage. Besides, some prior studies comparing single and multiple 

representations have also defined SR and MR in terms of concrete representations that often 

accompanied text or number expressions (e.g., Rau, Aleven, & Rummel, 2015). On the other 

hand, using two types of manipulatives was a conservative way of assessing the effectiveness of 

multiple representations. Future research should examine the benefits of higher numbers of ERs 

in order to establish a threshold past which using multiple representations is detrimental to 

learning.  

Finally, the manipulatives chosen for the intervention study were very similar in their 

mathematically relevant features, making connections between them more salient. However, one 

advantage of multiple representations cited in prior research is that they their unique properties 

may complement one another in conveying a concept and thus make up for potential limitations 

in any one representation (Cox & Brna, 1995; Friedlander & Tabach, 2001). One could argue 

that participants in the present study did not have an opportunity to draw on unique properties of 

different representations because they were too similar to one another in how they represented 

base-10 decomposition (in contrast to differences between such representations as a table and a 

Venn diagram). Future studies should take into account not only the number, but also the 

qualities of ERs, and test the benefits of similar ERs to those that instead complement each 

other’s uniqueness. 

Implications and Conclusions 

Despite these limitations, the present study makes a promising case for the effectiveness 

of instructional interventions in promoting the base-10 decomposition strategy for addition. The 

findings suggest that emphasizing base-10 decomposition in the national curricular standards, 

textbook lessons, classroom discourse, and instructional materials is likely to lead to higher rates 
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of its use. Moreover, even brief targeted interventions may be enough to substantially increase 

the prevalence of the strategy across genders and ability levels. 

The importance of explicitly teaching the strategy and the most effective ways of doing 

so needs to also be emphasized in teacher training programs. Specifically, practicing teachers 

and teachers in training should be encouraged to choose mathematically transparent 

manipulatives, make explicit correspondences between them, and make connections between the 

manipulatives and the concepts they represent, to maximize their students’ learning of the 

strategy.  

When using external representations such as manipulatives as instructional materials, 

teachers are recommended to encourage only children’s ability not only to learn the hands-on 

strategy, but also extend it to mental arithmetic. While different numbers of external 

representations appear to lead to similar rates of learning and accuracy of strategy execution with 

hands-on materials, multiple representations may promote deeper abstraction of hands-on 

strategies than using a single one. The present study provides evidence that multiple ERs 

encourage a more flexible mental representation than a single ER, which appears to constrain the 

mental representation to the context and features of the manipulative used for learning. Thus, 

while children who learn from multiple representations may not have an advantage in ease of 

learning the strategy, the evidence suggests they have an upper hand in how deeply they learn it.  

Scientific research is important to further investigation of factors that contribute to 

successful change in children’s arithmetic strategy choice as a result of educational interventions, 

particularly if these factors extend beyond those that have been found to affect children’s 

spontaneous strategy discovery. Additionally, as research and educational assessments 

investigate children’s learning as a result of instruction, how learning is measured needs to be 
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nuanced. Concepts such as ease and depth of abstraction, for example, need to be more clearly 

defined and measured, with the ultimate goal of devising interventions that promote both. 
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Appendix A 

Addition Problems Presented at Pretest 

19+6* 

7+44* 

38+4* 

5+46* 

6+25* 

7+27 

33+8* 

17+9* 

8+28* 

26+5 

8+39 

35+6 

4+18 

29+5* 

7+14* 

*problems presented on the mental Choice task at posttest  
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Appendix B 

Intervention Sessions Script Example:  

One Representation, Ten-Frame Condition 

Session 1 

Introduction  

Experimenter:  

You have been adding numbers in different ways for some time now. Today we will be learning 

[or practicing, for later sessions] about adding numbers using a way called ‘Going through Ten”. 

It is called ‘Going through Ten’ because when you add numbers using this way, you figure out 

how to get to the nearest ten first and then add on the extras. We will use base-10 frames to 

practice adding our numbers. 

Manipulative demonstration 

Look, here is a ten-frame. Each row has beads on it. We can use these beads to show numbers. 

We will use the first two rows – green and blue. The green beads on the first row are called 

‘ones’, and the blue beads on the second row are called ‘tens’. Each of green bead is worth 1 

[points to green beads], and each blue bead is worth 10 [points to the blue beads]. So, 10 green 

beads on the first row are the same as 1 blue bead on the second row. Watch: 10 of these 

[pushing to the right 10 green beads, counting, “1, 2, 3, 4, 5, 6, 7, 8, 9, 10”] are the same as 1 of 

these [pushing to the right 1 blue bead, saying “ten”].  

When we add our numbers, we will count the green ones at the top by ones, like I just did. And 

we will count the blue ones at the bottom by tens like this, [pushing beads to the right] “10, 20, 

30, 40, 50, 60, 70, 80, 90, 100.” 

Base-10 number composition demonstration 
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Okay! Are you ready to make numbers now? First, I will show you some numbers on my ten-

frame and then I will give you your own base-10 frames to show numbers by yourselves. 

Let’s start with an easy number. Here is number 9 [experimenter holds up a paper with the 

number printed on it]. To show this number, we’re just gonna push 9 green beads over to this 

side [counting out ones-beads] “1, 2, 3, 4, 5, 6, 7, 8, 9!” Now this shows 9 [pointing to the 

number card] and this shows 9 [pointing to the ten-frame]. 

Bigger numbers are made up of tens and ones. Here is number 14 [experimenter holds up 

a paper with the number printed on it]. Let’s show it on the ten-frame. We could start with the 

green beads at the top or with the blue beads at the bottom. First, let’s start with the green beads 

at the top. Count with me [experimenter pushes beads to the right], “1, 2, 3, 4, 5, 6, 7, 8, 9, 10” – 

oh no, I need 14, but I have run out of green beads! Remember how I said that 10 of these are 

just like 1 of these [pointing to the tens-row]? I can use 1 of the blue ones on the bottom instead 

of the 10 at the top. So, let’s put the ones back and use 1 ten instead! [Experimenter pushes ones-

beads back, and counts out a ten-bead, saying “ten!”] Remember, our number is 14, so let’s keep 

counting: “ten…” [pointing to the ten-bead], [counting out ones-beads] “11, 12, 13, 14!” I have 

shown number 14! Now this shows 14 [pointing to the number card] and this shows 14 [pointing 

to the ten-frame]. 

The first digit always shows how many tens we have. So, there is a ‘1’ for one ten here 

[points to the numeral 1 on the card], and one blue bead for one ten here [points to the blue bead 

on the ten-frame]. The second digit always shows how many ones we have. So, there is a ‘4’ for 

four ones here [points to the numeral 4 on the card], and four green beads for four ones here 

[points to the green bead on the ten-frame]. So, 14 is 1 ten and 4 ones [points to the numeral 

card]. 
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Now here is number 36 [experimenter holds up a paper with the number printed on it]. 

Let’s show it on the ten-frame. Now we know that we need to start with the tens, don’t we? 

Count with me, [counting out ten-beads] “10, 20, 30”. If I keep counting here, I will go to 40, but 

40 is more than 36, and I only need 36. So, now I will count my ones [counting out ones-beads], 

“31, 32, 33, 34, 35, 36!” See, here is number 36. 

Remember, the first digit always shows how many tens we have. So, there is a ‘3’ for 

three tens here [points to the numeral 3 on the card], and three blue beads for three tens here 

[points to the blue beads on the ten-frame]. The second digit always shows how many ones we 

have. So, there is a ‘6’ for six ones here [points to the numeral 6 on the card], and six green 

beads for six ones here [points to the green beads on the ten-frame]. So, 36 is 3 tens and 6 ones 

[points to the numeral card]. 

[Experimenter gives out base-10 frames to each child] Now it’s your turn to show me a number! 

How do you show number 23? [Experimenter holds up a paper with the number printed on it] 

[As children work, experimenter walks around and helps those that are not doing it correctly by 

reminding them of the directions.] 

Practice: 2 NUMBERS. 

Base-10 strategy demonstration with mixed-digit numbers 

You all tried really hard to show your numbers! Good job! Now we will add numbers 

using the ‘Going through Ten’ way! Remember, when we add two numbers using the ‘Going 

through Ten’ way, our job is to get to the next 10 first then add on the extras.  

Let me show you how to add 17+5 [experimenter shows a paper with 17+5 on it]. To 

begin with, I will make the biggest number on the ten-frame – you already know how to do that. 

My biggest number is 17. Remember, first I show how many tens are in 17. 17 has 1 ten. [points 
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to the digit on the numeral card, and counts out 1 ten] Then, I show the ones. 17 has 7 ones 

[points to the digit on the numeral card, and counts out 7 ones without counting out loud] – that’s 

17.  

The problem is 17 + 5 so now I need to add 5 more ones. First, I’ll use these 3 ones to get 

to the next ten [pointing to 3 ones], but I need to add 5, and I don’t have that many ones! So, I 

will make the next ten [pushes beads over], by trading all the green ones for 1 blue ten 

[substitutes ones-beads for a ten-bead] – which will make 20 – and then I’ll add the extra ones I 

still need. Remember, we added 3, so now to get to 5 I need to add 2 more, because 5 is 3+2. 

[Counts out two one-beads, “4, 5!”] Now I have put together both of my numbers – 17 and 5. 

Let’s see what number they added up to: [experimenter counts out the tens, “10, 20”] twenty, 

[and counts the ones, “21, 22”] 22! 17+5 equals 22. 

I added these numbers by Going through ten! To add 5, I first figured out how many ones 

I needed to get to the next 10 – it was 3 ones, to get to 20 [pointing to double-digit number on 

card] – and then added the 2 extra ones that were left over and got 22. Two tens and two extra 

(pointing to the digits on the numeral card).  

 

Let’s add two more numbers, and then you can do it yourselves! 

This time, let’s add 6+38 [experimenter shows a paper with 6+38 on it]. To begin with, I 

will count out my biggest number on the ten-frame – you already know how to do that. My 

biggest number is 38. Remember, first I show how many tens are in 38. 38 has 3 tens [points to 

numeral card, and counts out 3 tens]. Then, I show the ones. 38 has 8 ones [points to numeral 

card, and counts out 6 ones without counting out loud] – that’s 38.  
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The problem is 6 + 38, so now I need to add 6 more ones. I will use these 2 ones to get to 

the next ten, but I need to add 6, and I don’t have that many ones! So, I will make the next 10 

[pushes ones-beads over], by trading all the green ones for 1 blue ten [substitutes ones-beads for 

a ten-bead] — which will make 40 --  and then I’ll add the extra ones I still need. Remember, we 

added 2, so now to get to 6 I need to add 4 more ones because 6 is 2+4. [Counts, “3, 4, 5, 6!”] 

Now I have put together both of my numbers – 6 and 38. Let’s see what number they add up to: 

[experimenter counts out the tens, “10, 20, 30, 40”] forty, [counts out the ones, “41, 42, 43, 44”]  

44! 6 + 38 equals 44. 

I added these numbers by Going through ten! To add 6, I first figured out how many ones 

I needed to get to the next 10 – it was 2 ones to get to  40 – and then added the 4 extra ones that 

were left over and got 44. 4 tens and 4 extra ones (pointing to digits on numeral card).  

Test trials 

[Experimenter records child’s accuracy on each problem] 

Now I want you to do your best as you solve some problems on your own! 

Here is one: add 15+6 using the going through ten way. 

Now add 28+4 using the ‘Going through Ten’ way. 

 


