
Persistent link: http://hdl.handle.net/2345/1818

This work is posted on eScholarship@BC,
Boston College University Libraries.

Boston College Electronic Thesis or Dissertation, 2009

Copyright is held by the author, with all rights reserved, unless otherwise noted.

Measuring Student Growth with the
Conditional Growth Chart Method

Author: Yi Shang

http://hdl.handle.net/2345/1818
http://escholarship.bc.edu


BOSTON COLLEGE
Lynch School of Education 

Department of Educational Research, Measurement, and Evaluation

MEASURING STUDENT GROWTH WITH THE CCONDITIONAL 
GROWTH CHART METHOD

Dissertation
by

YI SHANG

submitted in partial fulfillment 
of the requirements for the degree of

Doctor of Philosophy

December, 2009



   

© Copyright by Yi Shang
2009



Abstract

     The measurement of student academic growth is one of the most important statistical 
tasks in an educational accountability system. The current methods of measuring student 
growth adopted in most states have various drawbacks in terms of sensitivity, accuracy, 
and interpretability. In this thesis, we apply the conditional growth chart method, a well-
developed diagnostic tool in pediatrics, to student longitudinal test data to produce 
descriptive and diagnostic statistics about students' academic growth trajectory. We also 
introduce an innovative simulation-extrapolation (SIMEX) method which corrects for 
measurement error-induced bias in the estimation of the conditional growth model. Our 
simulation study shows that the proposed method has an advantage in terms of mean 
squared error of the estimators, when compared with the growth model that ignores 
measurement error. Our data analysis demonstrates that the conditional growth chart 
method, when combined with the SIMEX method, can be a powerful tool in the 
educational accountability system. It produces more sensitive and accurate measures of 
student growth than the other currently available methods; it provides diagnostic 
information that is easily understandable to teachers, parents and students themselves; the 
individual level growth measures can also be aggregated to school level as an indicator of 
school growth. 



Chapter 1  Introduction

1.1 Background

The No Child Left Behind (NCLB) Act of 2001 resulted in the implementation of a 

nationwide accountability system whereby schools are held accountable on the basis of 

student achievement test results. Similar accountability testing systems had been put in 

place by a number of states in the 1990s (Haertel and Herman, 2005; Linn, 2005). These 

policies represent a hoped for political solution to an educational problem which is 

characterized by inadequate and unequal student academic achievement (McDonnell, 

2005). In order to reach the goal that all students reach proficiency on State academic 

achievement standards by the year of 2014, annual large-scale testing of students in 

grades 3 through 8 in reading and mathematics is carried out, and schools are first 

evaluated then rewarded or penalized according to the results of the tests. These specific 

provisions reflect policymakers' belief that sanctions and rewards to schools will boost 

teachers' and school administrators' level of effectiveness (McDonnell, 2005). 

The problem with this rationale is that sanctions and rewards are justified only when 

causal effects of schools on student achievement can be accurately estimated. In other 

words, we should at least be certain that a school caused the academic lag in its students 

before we penalize it. And yet credible causal inferences are not easily made on the basis 

of observational data. Various types of mixed-effects models have been proposed to 

identify and estimate school and teacher contributions to student achievement gains based 

on longitudinal test data (see, for example, Ballou et al., 2004; McCaffrey et al., 2004; 

Tekwe et al., 2004; and Lockwood et al., 2007). Yet many statisticians argue that causal 
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inferences about school effectiveness based on results of these models are not completely 

scientifically defensible (Rubin et al., 2004; Raudenbush, 2004; Braun, 2005). In the rare 

cases where the school effect on student achievement can be isolated from all non-school 

effects with observational data, the estimated school effectiveness is still a composite 

notion which includes factors not controllable by school personnel such as peer effect 

(Raudenbush, 2004). Since schools should not be held accountable for things not in their 

control, results of these models should not be used as direct evidence for school sanctions 

or rewards. And the present practice of evaluating schools based on comparing aggregate 

student achievement to an absolute standard (i.e. making the Adequate Yearly Progress 

AYP) regardless of where the students started is much less valid (Linn, 2005a). 

Moreover, even if causal inferences can be soundly made, it is doubtful whether 

penalizing the ineffective schools would help school personnel to become more 

competent.

Due to these problems, Linn (2006) calls for a change in perspective in the 

accountability system—instead of making explicit or implicit causal statements based on 

large-scale testing results, the test scores should be treated as a source of descriptive 

information and could be used to form hypotheses for further studies. “Treating the 

results as descriptive information and for identification of schools that require more 

intensive investigation of organizational and instructional process characteristics could be 

of considerable value .... It is unlikely that such a change in perspective would be 

politically acceptable at the present time. The change, however, would make the use of 

accountability results more consistent with the tenets of scientific reasoning and 
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research” (Linn, 2006).

1.2 The Conditional Growth Chart Method

The main purpose of this thesis is to propose a model or a family of models which 

evaluate student and school progress based on testing results from a perspective 

consistent with that of Linn (2006). The model proposed is called the conditional growth 

chart method. It has proved to be an effective tool in pediatrics and other areas of public 

health. One of its major applications has been to generate descriptive information about 

children's development based on longitudinal height and weight growth data, which helps 

in the early diagnosis of various diseases (see, for example, Cole, 1994; Carey et al., 

2003; and Wei et al., 2006). With some revisions in model specification, this method 

could be used with student longitudinal test data to produce easily interpretable 

descriptive and diagnostic information about the growth trajectory of each student and 

school, and to flag those who need further investigation and assistance.

The basic idea behind the conditional growth chart is that, by comparing a child's 

measurement with an appropriate set of norms or reference values, we can decide 

whether the child lies outside of the normal range and needs further tests. An 

unconditional reference growth chart usually has the dependent variable (such as height 

or weight) plotted against age. It consists of a group of smooth curves each of which 

represent a chosen percentile of the population over time obtained from cross-sectional 

data. Once the child's results are located at each age point, it becomes apparent which 

percentile groups she belonged to, whether she has changed her rank in the population 

dramatically over time, or whether she showed typical trajectories for her age group. 
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The method becomes a more powerful diagnostic tool when the unconditional 

growth chart is replaced by a set of conditional growth charts. In this process, 

longitudinal data sets are collected instead of cross-sectional ones, and relevant variables 

such as children's growth history are added as conditioning covariates. A special 

regression technique called quantile regression is a major component in the conditional 

growth chart method. Quantile regression is similar to the familiar Ordinary Least Square 

(OLS) regression, except that it does not estimate the conditional mean of the dependent 

variable as does OLS regression. Instead, it estimates outcome values that correspond to a 

set of preselected percentiles in the conditional distribution of the outcome variable given 

the covariates. With these values as a reference frame, it is possible to determine the 

relative location of an individual in the conditional distribution of the outcome, which is 

called the conditional percentile.  

In the context of educational measurement, we use the conditional growth chart 

method to reconstruct the conditional distribution of each year's test score given students' 

historical growth patterns. The quantile regression method helps us to describe the 

distributions more accurately than OLS regression, since the latter only estimates the 

mean and the variance of the conditional distribution which is assumed to be normal, 

while the former estimates a series of percentiles of the distribution without an 

assumption about its shape. The conditional percentile score estimated for each student 

answers the question—is she growing faster or slower than her peers who started from 

the same place? The student-level information can also be aggregated to school level. 

Schools in which most of the children have low conditional percentiles in their respective 
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groups merit further investigation to decide what resource they lack or what other 

assistance they need. On the other hand, it may also be necessary to study schools where 

most children grow at a higher rate than their peers conditioning on past scores, since it 

would help educators and researchers to understand what factors (of the school, the 

neighborhood, the student peer group etc.) contribute to higher academic growth rate and 

whether (or how) these factors could inform policy.

1.3 How the Growth Chart Method Addresses the Limitations of the Current Educational  

Accountability System

In order to illustrate the benefit of applying the conditional growth chart method to 

the field of educational assessment, it is necessary to probe further the limitations of the 

current school-based educational accountability system. Perhaps one of the most visible 

drawbacks of the system lies in its unreasonable expectations for schools. Linn (2003, 

2005a, 2005b) has repeatedly called attention to this problem. He points out that the AYP 

targets set in the early years of the NCLB implementation have already been unrealistic 

for many schools that started with low performance, and they “will become increasing so, 

not only for those schools but for all schools as the increases in AYP targets start kicking 

in, especially in 2005 and 2008 when many states will have big jumps in their AYP 

targets” (Linn, 2005a, p.19). This prediction has been confirmed. By the year of 2007, 

1000 of California's 9500 schools were branded chronic failures. State officials predicted 

that all 6063 public schools serving poor students will fail to meet the universal 

proficiency target by 2014. In Florida, 441 schools have failed the AYP target for 5 years 

consecutively and are candidates for closing. In Maryland, Baltimore alone has 49 
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schools falling in this category (Schemo, 2007). After AYP results for the academic year 

of 2007-08 were released in the summer of 2008, the report of National Education 

Association summarizes that “the number of schools failing to make AYP has increased, 

dramatically so in many cases. In several states the rate at which schools are failing AYP 

doubled, tripled, and even quadrupled (from that of the previous year)” (NEA, 2008).  On 

the one hand, these facts underline the inadequacy of the current U.S. educational 

outcome and the urgency for educational reform. On the other hand, they clearly show 

that the AYP targets have been unrealistic for these schools. If states strictly follow the 

law and take over all these failing schools, which they apparently have not (Schemo, 

2007), their resources would be depleted. Ambitious and realistic goals could inspire and 

motivate educators and students, but when the goals are evidently unattainable, they do 

no more than demoralize everyone involved in the system. 

To set reasonable expectations, Linn (2005a) calls for an existence proof. That is, 

the goals should be grounded in past experience. If the highest performing schools were 

not able to achieve it in the past, then such targets should be called unrealistic. The 

standard for “realistic” also changes from school to school. Although ultimately the same 

expectation applies for every student/school to achieve proficiency in reading and math, 

at the present stage it must be acknowledged that the same goal clearly involves different 

amounts of effort for students/schools that started from different places. A target that is 

reasonable for one school may be completely impractical for another. 

The conditional growth chart method proposed in this thesis comes as a handy tool 

to help setting reasonable objectives for schools and students based on their starting 
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points. The conditional distributions of academic achievement of previous cohorts are 

estimated, and they help policy makers and educators to understand the probabilities that 

a specific goal was achieved in the past by students/schools with different academic 

backgrounds, so that they have a reference frame when setting goals for the present 

cohort. Suppose that, with data pooled over the past few years, test scores associated with 

the 50th, 75th, and 95th percentiles of fourth graders given a certain third grade score are 

found to be A, B, and C respectively. It would then be reasonable to expect the fourth 

graders in the present year who shared the same third grade score to at least perform at 

the level of A. The level of B may be a somewhat ambitious goal, considering that only a 

quarter of students who shared this academic background were able to make it, but it is 

still arguably obtainable with sufficient effort. If the official target is set at or higher than 

the level of C, policy makers and educators would know that it is probably an unrealistic 

goal given the small historical probability of reaching it. The rationale of using the 

conditional growth chart method to set objective for academic progress is discussed in 

further details in the next chapter.

Setting ambitious but obtainable goals for schools and students would be the first 

step toward building a more functional accountability system, and there are other ways to 

strengthen the current system as well. O'Day (2004) presents an argument concerning 

several features of the NCLB program that inhibit organizational improvement. A central 

limitation of the system concerns the nature and quality of the information provided. The 

new accountability has its attention focused on schools. Since intervention happens at the 

school level, most of the interpretable information generated in the system is used to 
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build school-level results. Yet one has to acknowledge that, no matter what kind of 

incentives and sanctions a school receives, the actions required for higher achievement 

have to ultimately come from individual students. Improvement of student academic 

performance depends largely on the feedback that they receive. With the school-centered 

accountability scheme, most efforts in the current educational statistics community have 

been concentrated on estimating school growth and school effectiveness, which are not 

very informative and applicable for individual students' development (O'Day, 2004). Test 

scores and achievement levels of each student are reported but no additional tool is 

provided for teachers, students, and parents to evaluate the academic growth patterns 

contained in these numbers. 

Is a student keeping pace with her peers who share similar academic background? 

What kind of growth is typical for a student at her level? And does this typical rate of 

growth set students at this level on  track to ultimately achieving the proficiency goal? 

The conditional growth chart method directly addresses these questions and provide 

helpful feedback in individual-level learning and instruction process. 

One of the other important limitations of the new accountability observed by O'Day 

(2004) lies in its maladaptive incentive structure. All the negative incentives that are 

placed on “failing” schools serve to inspire fear in school administrators rather than 

motivation from students and teachers. As a result, escaping punishment might become a 

higher priority for some highly disadvantaged schools than improving learning, schools 

and other stakeholders may use part of their resource to “game the system” instead of 

helping students, and the educational system as a whole may become even less efficient 
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than it was before the reform. Familiar strategies that disadvantaged schools may employ 

to bolster aggregate test performance include teaching to the test, increasing special 

education placements, and preemptively retaining students etc. (Jacob, 2002; Figlio and 

Getzler, 2002; Cullen and Reback, 2006). Figlio (2005) also shows that with the same 

type of misbehavior, students with lower academic performance is more likely to be 

suspended than those with higher academic performance, and the gap of punishment is 

substantially widened during the high-stakes accountability regime. Needless to say, 

these gaming practices would only put the already disadvantaged students more in harm's 

way. 

Seven years after the NCLB Act was signed into law, there is still no compelling 

evidence that public schools in America are systematically improving at a greater rate 

than in the pre-NCLB era. While some studies show that state accountability systems in 

the 1990's positively affected the rate of change in student test performance (Hanushek 

and Raymond, 2003; Carnoy and Loeb, 2002), other studies demonstrate that gains on 

states' high-stakes tests typically shrink or disappear in low-stakes national and state tests 

(Jacob, 2007; Figlio and Rouse, 2005; Jacob, 2002). Fuller et al. (2007), using assessment 

data from both state tests and the National Assessment of Educational Progress (NAEP) 

spanning the 1992-2006 period, find that growth in fourth grade reading in 12 diverse 

states flattened out after enactment of NCLB, and growth of fourth grade math was 

slower post-2003 than before enactment of NCLB. The authors also find that no further 

narrowing of achievement gaps has occurred since 2002. In contrast, the Center for 

Education Policy (2007) reports that states have generally seen substantial gains in 
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reading and math since 2002 and narrowing of achievement gaps based on states' high-

stake testing results. However, Fuller et al. (2007) point out that state testing programs 

are unstable due to changes of tests and cut points, and could produce biased results due 

to test design problems, and therefore should not be used to draw inferences about trend 

of growth. Their conclusion, based on the more stable and consistent results of NAEP, 

“raises the crucial question as to whether standards-based accountability is sufficient to 

advance more effective and equitable schools”. 

As much as we may acknowledge that schools with substandard instructional 

practice (if we could prove it) should be held accountable for their students' low 

performance outcome, we believe accountability should be implemented with much more 

caution than we see at present. Schools should not be judged based on a few numbers that 

are not scientifically defensible as estimates of their effectiveness. Schools should not be 

held accountable for things beyond their control, such as community effects. And above 

all, rewards and sanctions for schools should always be a lower priority than diagnoses 

and treatments. Finding out the reasons for unsatisfactory student growth requires 

carefully-designed quantitative and qualitative studies. It is important work but not the 

most urgent one. The first and foremost task is to find out exactly where the problems are

—in which schools, in which grades, and for which individuals. The task is not as easy as 

it sounds, since achievement and growth are different concepts. Schools with adequate 

achievement are not necessarily growing at satisfactory rates. Making accurate diagnoses 

of students/schools' rates of growth helps educators to detect problems at their early 

stages. 
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The conditional growth chart method is designed for diagnosis of growth rates. It 

aims at describing the growth process as accurately as possible rather than finding the 

cause of differential growth rates. It does not claim to have the capacity to estimate 

school effectiveness,  but it can easily identify schools where most students deviate from 

the “normal” growth rates. The results of the conditional growth chart model can be used 

to direct resource distribution to achieve more efficiency in the educational system. 

Indeed, the redistribution of resources and assistance, instead of reward and punishment, 

is the real force behind the improvement of education quality and the closing of 

achievement gaps (O'Day, 2004). 

1.4 Methodological Significance of This Study

Besides significant policy implications, the model proposed in this thesis also 

introduces methodological innovations. The conditional growth chart based on quantile 

regression is a cutting-edge analysis technique in the field of biostatistics (Wei & He, 

2006). The flexibility of the model and its attractive large-sample properties suggest that 

it could become a very promising member of the growth model family that is currently 

employed for educational accountability purposes. In this thesis, we also adopt an 

innovative SIMEX method to correct for measurement error-induced bias in quantile 

regression. The SIMEX method, combined with quantile regression, has not been utilized 

to model student academic growth before, and we believe they are powerful tools to help 

us understand the tremendous amount of test data that are generated in the educational 

accountability system in recent years. 

1.5 Outline of This Thesis
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Chapter 2 provides a literature review about some of the currently available methods 

to measure and evaluate student performance and growth, as well as school performance 

and growth. The basic elements of the growth chart method and quantile regression are 

also introduced. In chapter 3, we briefly describe our data and present the models that 

will be used in this thesis to estimate student growth. A specific section will be devoted 

to the measurement error problem and possible ways of adjusting for measurement errors. 

The SIMEX method, which will be used to corrects for measurement-error-induced bias, 

is explained in detail. We then proceed to empirical data analysis and a Monte Carlo 

study in chapter 4, where results of the models are presented and discussed. Chapter 5 

concludes this thesis with its major findings, a discussion of the possible limitations of 

the models, and directions for future research.

Chapter 2  Literature Review

There are four important types of outcomes in the new accountability system—

student performance, student growth, school performance, and school growth. How to 

                                                                                                                                      12



define, estimate, and report these outcomes is one of the central issues in the 

implementation of NCLB policies. In this chapter, the concepts related to student and 

school performance and growth will be clarified, and the commonly used methods of 

measuring or estimating them will be discussed. We start with a brief review of student 

performance indicators and theories of scaling and linking. The pros and cons of using 

vertically-linked scores to measure student performance and growth are discussed. Then 

we present some common ways of measuring student growth, and introduce the concept 

of conditional percentile as an indicator of student growth which does not require 

vertical-linking. We proceed to explain how different conceptualization of growth can be 

quantified with conditional percentile produced from the growth chart method, and what 

advantage it has over the conventional methods. After analysis of student performance 

and growth, we move to school status and change and review some traditional methods of 

estimating school growth. Next we illustrate how unconditional and conditional growth 

chart models are constructed. The rest of the chapter will be devoted to the introduction 

of the key methodological issues involved in the model estimation, hypothesis testing, 

and inference about goodness-of-fit.  

2.1 Student Performance and Scale Scores

2.1.1 Student Performance Indicators

Student performance refers to an individual student's academic standing, usually 

measured by a certain test at one particular time point. It is typically presented in one or 

more of the following forms: raw scores such as number correct or percentage correct 

scores; test-specific scale scores; performance levels; and norm referenced scores such as 
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percentiles, normal curve equivalents, and grade equivalents (Ferrara and DeMauro, 

2006). 

Raw scores are produced for practically all educational achievement tests. They are 

hard to interpret and raw scores from parallel tests administered at different occasions are 

not easily comparable. Scale scores are derived from raw scores to aid interpretation and 

comparison of test performances. They may be obtained normatively based on the 

distribution of a preselected reference group, or they may be transformed from student 

ability estimates computed through Item Response Theory (IRT). When a score scale 

developed for a specific test is believed to contain some information about content 

mastery, standard setting committees can set cut scores on the scale to delineate 

performance levels (e.g., basic, proficient, and advanced). Thus, student performance 

may be reported in terms of performance levels and are usually accompanied by 

performance level descriptions to support criterion referenced interpretations of student 

achievement. Percentiles, normal curve equivalents, and grade equivalents, on the other 

hand, support norm referenced interpretations of student performance. They describe how 

well a student has done on the test in relation to other students who took the same test or 

tests that are psychometrically parallel to this one. 

2.1.2 Scale Scores

Scale scores deserve some more detailed discussion since they are the major mode 

in which student performance is reported in present accountability systems, and since 

performance levels are based on scale scores. In addition, student growth estimated by 

the method proposed in this thesis is also based on scale scores. For a good understanding 
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of student performance it is critical that test scores can be meaningfully interpreted and 

compared from year to year and sometimes from test to test. As mentioned above, scale 

scores are produced to satisfy this need. 

Interpretability and comparability are actually results from two different 

psychometric methods, namely scaling and linking. The former usually refers to the 

construction of a scale for a single test or a test battery so that scores contain some 

normative or content-related information (Kolen, 2006). The latter mainly means 

transformation between the scores from one test and those from another (Holland and 

Dorans, 2006). The following paragraphs present a brief introduction to the theories of 

scaling and linking. 

2.1.3 Introduction to the Theory of Scaling

Kolen (2006) summarizes the process of making test scores interpretable as the 

process of incorporating normative or content information into the score scales. 

Incorporating normative information into a score scale requires the designation of a norm 

group, which sets statistical characteristics of the scale score distribution (mean, standard 

deviation, etc.). The resulting scale scores show the relative standing of individual 

students with respect to this norm group. In this case, the scores and their meanings are 

strongly influenced by the choice of the norm group. 

The incorporation of content information into score scales is commonly achieved 

through item mapping and scale anchoring, which associates items of the test with 

different score points on the scale. This way scores acquire a criterion-referenced 

meaning, i.e. the chosen score points correspond to some reasonably high probability of 
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answering the specific items correctly. Based on this mapping, score intervals on the 

scale are tied to various levels of student knowledge and skills. Attaching criterion-

referenced meaning to scale scores is highly desirable from the perspective of test users 

such as students and teachers, and remains an important goal for psychometricians. 

Whether this objective has ever been satisfactorily achieved, however, is a much debated 

issue (Kolen, 2006). Forsyth (1991) has argued that fully incorporating content 

information in score scales through the current techniques of item mapping and scale 

anchoring may be unachievable unless the content domains are very well defined, which 

is not an easy task considering the complexity of human learning. Despite the challenge, 

criterion-referenced measurement of student performance has proliferated  in recent years 

due to the standard-driven accountability policies.

Whether score scales are developed normatively or non-normatively, Kolen (2006) 

points out that it is crucial to incorporate score precision information into the scales. This 

means that the scales should be refined to include enough score units to preserve the 

precision of measurement in the raw scores, but not so many that small score differences 

resulting from measurement error are magnified and treated as if they are significant. The 

refinement of the scales, of course, depend heavily on the magnitude of standard error of 

measurement of the raw scores; however, it does not mean that the patterns of conditional 

standard error of measurement of the raw scores are completely preserved in the scales. 

In fact, they can become markedly different depending on the methods of scaling (Kolen 

et. al., 1992). As a general rule, conditional standard errors of measurement are reported 

at various score levels on the scale in standardized large-scale assessments. We will 
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return to the issues of standard errors of measurement in the next chapter when discussing 

the conditional growth chart method.

2.1.4 Introduction to the Concept of Linking

Scale scores from different tests or different forms of a test are made comparable to 

each other through linking. Linking is a vast topic and its theories and techniques are 

developing at a rapid rate. Over the years, psychometricians have proposed various 

categorization schemes for linking strategies. Mislevy (1992) and Linn (1993) summarize 

a hierarchy of different linking methods according to their data requirements and their 

statistical rigor. According to them, linking methods are classified into four categories—

equating, calibration, projection (prediction), and moderation. 

Equating is the strongest form of linking and is also the most demanding in terms of 

its assumptions. Two tests that can be equated must be designed to measure the same 

specific set of knowledge and skills, i.e. they must have the same content specifications, 

and they must measure the knowledge or skills at the same level of reliability, in other 

words, they must have the same statistical specifications. Kolen and Brennan (2004) 

adopt a quite similar definition of equating. They reserve the term to refer to the process 

where scores from alternate forms of the same test are related to each other, and they 

stress that “equating adjusts for differences in difficulty, not for differences in content” 

(Kolen and Brennan, 2004, p.3). As a result of such rigorous requirements, equated 

scores can be used interchangeably on different test forms.

When two tests do not satisfy the above assumptions and differ in content 

specification and/or statistical specification, the procedures to relate their scores is 
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generally called linking by Kolen and Brennan (2004). In Mislevy (1992) and Linn's 

(1993) taxonomy, this category is further broken down into calibration, projection, and 

moderation. The details in the differences between these linking methods are not 

addressed in this thesis.

2.1.5 Vertical Scaling

Vertical scaling, also referred to as vertical linking by Mislevy (1992) and Linn 

(1993), is the basis of many methods for measuring changes in student achievement over 

time (Kolen and Brennan, 2004; Smith and Yen, 2006; Doran and Jiang, 2006; Schmidt, 

Houang, and McKnight, 2005). It is a procedure that allows scores of students at different 

grade levels to be compared.  Kolen and Brennan (2004)  categorize it as scaling instead 

of linking, because comparability is not achieved by matching tests directly to each other 

but by relating scores of each test to a common scale. It makes the assumption that 

different tests, even though written for different grade levels, measure the same construct, 

which is usually referred to as unidimensionality. About this assumption Linn (1993) 

comments that “the calibration requirement that two tests measure the same thing are 

generally only crudely approximated with tests designed to measure achievement at 

different developmental levels”. 

Vertical scaling can only be achieved through certain data collection designs. Either 

tests administered to adjacent grades must contain overlapping items, or examinees in 

each grade must be randomly assigned to take the tests designed for their grade and their 

adjacent grades. Based on an adequate data collection design, various statistical methods 

can be employed to establish the vertical scale and estimate scale scores (Kolen and 
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Brennan, 2004).

The typical reason for developing a vertical scale is to compare scores from different 

grade levels and to use gain scores to measure student improvement directly. It is 

important to recognize, however, that there are serious limitations in terms of score 

interpretability and comparability for vertically scaled tests. Because tests of different 

grades are designed to address different content with different difficulty levels, each test 

may only exhibit good psychometric properties in a certain scale score region even after 

they are vertically scaled. Thus, the comparability of scale scores from tests of different 

grades is usually limited to certain ranges as well (Kolen, 2001). Scale scores 

corresponding to observed scores that fall outside of the range in a certain grade may 

contain more than an acceptable amount of measurement error. 

An important assumption underlying most hierarchical linear models which are used 

to project student academic growth and many value-added models which are used to 

estimate school and teacher effectiveness is that test scores are vertically scaled and have 

a consistent interpretation over time. Recent studies have found that the construction 

procedures and psychometric properties of the vertical scale can significantly impact the 

results of the growth and value-added models in ways that are not completely predictable 

and not fully understood. For example, Briggs et al. (2008) find that growth modeling 

results are quite sensitive to the way an underlying vertical scale is established. Based on 

the same state assessment data, the authors create vertical scales and estimate scale scores 

using different Item Response Theory (IRT) models and different calibration and 

estimation methods, all of which are theoretically defensible. Employing a properly 
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specified growth model leads to strikingly different educational accountability 

conclusions depending on the vertical scaling procedures used. Doran and Cohen (2005) 

also show that the vertical scaling process introduces an additional component of error 

variance, and as a consequence, value-added models may estimate school and teacher 

effects with much less precision than statisticians used to believe. Martineau (2006) also 

demonstrates that violations of the vertical scale assumption of unidimensionality can 

lead to dramatic distortions in value-added estimates.

The conditional growth chart method introduced in this thesis requires longitudinal 

student assessment data. Moreover, it requires that test scores of the same grade from 

different years must have consistent meanings, i.e. scores are horizontally scaled, but it 

does not require vertical scaling. The reason for this will be explained in chapter 3 where 

the methodology is laid out in detail. Such flexibility is no doubt one of the major 

advantages of the growth chart method. However, when utilizing tests scores that are 

already vertically scaled, the growth chart method may suffer in the same ways described 

by the above mentioned authors. We recognize the importance of exploring the impact of 

scaling on the outcome of the growth chart method, but the topic is not the focus of this 

thesis.

2.2 Student Growth

The above discussion leads us naturally from assessing performance status to 

evaluating change of status. Measuring individual change is among the most important 

topics in educational measurement. Educators are ultimately concerned with individual 

learning, and “the very notion of learning implies growth and change” (Willett, 1988). 
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Individual academic growth is the principal intended outcome of building effective 

schools with competent teachers and sound curriculum. To conduct any evaluation of 

schools, teachers, or educational programs and policies, one has to start with measuring 

student growth in some way. 

2.2.1 Ways of Measuring Student Growth

With many achievement testing programs using ordinal achievement levels as a 

major component of their score reports, perhaps the most intuitive way of indicating 

student growth is to describe their change in performance levels over time. The current 

safe harbor provisions under NCLB are aggregated indicators of school growth that are 

based on individual students' change of achievement levels. This way of describing 

growth can be easily understood by all stakeholders given the convenient definitions of 

the labels such as “non-proficient”, “proficient”, and “advanced”. Performance levels, 

however, offer a very coarse description of student academic status, and any 

measurement of growth based on these levels involves a loss of information. Students 

often make substantial progress while remaining in the same performance level. Such 

growth would be inexcusably lost if we evaluate growth based only on performance 

levels. On the other hand, very small changes across cut scores of the performance levels 

would be captured and magnified. To measure change more faithfully requires a more 

refined scale. 

Another straightforward choice in assessing student growth is to use the difference 

or gain scores. They can be derived from the same tests that are administered at different 

times or from vertically-linked tests that address different grade levels. In the former 
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case, bias, reliability, and other relevant coefficients are estimated for difference scores as 

evidences for its inherent deficiency (see for example Lord, 1956 and Willett, 1988). 

Besides the psychometric properties, this type of difference score has a critical drawback: 

Using the same test at different time points makes it impossible for the test to target the 

current level of student knowledge and skills. Much is taught and learned during an 

academic year, and with the same test being used in the beginning and end, student 

learning would likely not be measured with appropriate precision. Over longer time 

periods, use of the difference score to measure student growth would be even more 

problematic.

With vertical scaling, difference scores can be produced from tests that are 

specifically designed for students' current learning levels. But this method of measuring 

growth is also very problematic as we have discussed in the previous section. Of greatest 

concern is that difference scores from vertical scales are not interpretable or comparable. 

Braun's (1988) analysis of the difficulties with measuring change still holds today—gains 

of scale scores are quantities that cannot be confidently explained or easily compared 

with each other. A 20 point gain in vertically-linked math scores in an academic year may 

represent a typical amount of growth for students who start with mid-level achievement, 

but it could also mean a breakthrough for students starting from very low levels, or an 

impossible amount of progress for students who already scored very high.

Doran (2004) reviews the normal educational growth model which is based on 

Normal Curve Equivalent (NCE) scores. In this model, it is considered “adequate” for a 

student to maintain or exceed the same position in the distribution over time. In other 
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words, a gain score of 0 computed from the NCE scores is considered as expected 

growth. Doran (2004) points out three major problems with this method. First, it requires 

different amounts of growth to maintain one's position in the distribution depending on 

where one starts, therefore growth measured in this way is not comparable. Second, the 

gain score in NCE units is obtained using only two data points which does not provide 

enough information about growth trend over time. And third, growth measured in NCE 

gain scores provide no information as to whether students are growing toward an 

acceptable standard of academic performance. 

2.2.2 Definitions of Adequate Growth, Normal Growth, and Expected Growth

In this method cited by Doran (2004), the terms of “adequate growth”, “normal 

growth”, and “expected growth” are used interchangeably. To facilitate discussions in the 

following paragraphs, we define these terms separately, and explain how these concepts 

of growth are quantified in this thesis. 

Adequate growth, as Doran (2004) argues, is a concept that implies adequacy with 

respect to some externally defined standard. That is, adequate growth, like adequate 

achievement (i.e. proficiency), refers to an underlying criterion. Following current 

growth-to-standard approaches, it could be defined as the rate of growth necessary for a 

student to reach proficiency in the designated time. 

By contrast, normal growth relies more upon norm-referencing than an external 

criterion. Whether a student's growth is judged normal or typical is dependent on how 

much other students have grown, especially those students sharing similar backgrounds. 

We suggest that, in quantifying normal growth, the conditional distribution of current 
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scores given past scores be used instead of the unconditional distributions of scores from 

the whole population, because the former employs a more relevant reference group for 

purposes of comparison. If, among those who started from the same place, a student falls 

within a reasonable interval around the median in the conditional distribution of current 

scores, one could consider this growth “normal”. 

Expected growth is an expectation that takes into account both normal growth and 

growth history. It is defined for specific individuals according to the magnitude of growth 

of peers and the historical growth patterns of the student herself. As Linn (2003) argues, 

“current levels of performance and past gains provide a context for judging future gains”. 

2.2.3 Definition of Conditional Percentile or Growth Percentile

In this thesis, we propose using the conditional percentiles to quantify student 

growth. A conditional percentile is the percentile or ranking of a student in the 

conditional distribution described above. It shows the percentile of a student's current 

score relative to the group of students who have the same past scores. It is also a 

probability statement about how likely it is for a student to score at or below a specified 

level (or how unlikely it is for her to score at or above that level) given her past score(s).

Let Y 1 , ,Y n be independently and identically distributed (iid) random variables 

that denote the current test scores of students 1, ,n , and let X 1 , , X n be iid 

random vectors that denote these students' past scores, which may include last year's 

score only or several years' scores into the past. Let F Y∣X= x be the cumulative 

distribution function (cdf) of the conditional distribution of current score given past 

score(s), then F Y∣X= x  y  is the conditional percentile corresponding to current score y 
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and past score(s) x. This quantity can usually be estimated in two ways. One approach is 

to derive the estimate of F Y∣X= x  y  based on some distributional assumptions about

F Y∣X= x . This approach will be discussed in more details later in this chapter. The other 

way is to estimate the conditional percentile through the empirical cdf of current score 

given past score(s), F Y∣X=x . Let P stands for empirical probability. Then the 

conditional percentile of student i with current score y and past score(s) x can be 

estimated as:

Conditional Percentile  y∣x≡ F Y∣X=x  y ⋅100= P Y i≤ y∣X i=x ⋅100      (2.1)

Whereas unconditional percentiles normatively quantify achievement, conditional 

percentiles normatively quantify growth. This is because, in making the above 

conditional probability statement, students in the population are classified into different 

groups according to their past scores. Suppose, in one of these groups where everyone 

has the same level of past achievement, all group members make exactly the same 

amount of progress (or no progress at all), then their current achievement would not form 

a distribution, but can only be plotted as a single point. In this case, the conditional 

percentile as defined in equation (2.1) cannot take on any value other than 0 and 1. The 

conditional distribution of current achievement given past achievement is a proper 

distribution if and only if students in the same group grow at different rates. For this 

reason the conditional percentile is a measure of relative growth, and can also be called 

student growth percentile. 

It was mentioned earlier that the estimation of conditional percentiles does not 

require test scores to be vertically scaled. Another advantage of using conditional 
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percentiles is that they are immediately interpretable and comparable. The interpretability 

mainly comes from the specifically defined reference groups based on the values of the 

conditioning variables. As discussed earlier, gain scores on vertically-linked scales are 

often not interpretable or even misinterpreted because the same amount of growth 

measured by scale scores usually means different amount of progress in learning for 

students who started high and those started low on the scale. On the other hand, a growth 

percentiles carries an intuitive message. Being a conditional probability statement, it 

simply tells how unusual the growth is among students who share the same past 

achievement. A conditional percentile of 80 means that only 20 percent of the students in 

that group surpass this one in their growth.  

The concepts of normal growth, expected growth, and adequate growth that are 

defined earlier can be conveniently and properly quantified in terms of conditional 

percentiles. We have briefly described how to define normal growth using conditional 

percentiles, as well as the rationale for making normative diagnosis. The definitions of 

expected growth and adequate growth both involve projecting student achievement into 

the future. The rest of this section reviews how projection is usually done for educational 

assessment, how it is done employing conditional percentiles, and how the latter 

projection is different from the former. The discussions about projection reveal the way 

in which expected and adequate growth are quantified and explain the basis for making 

criterion-referenced diagnosis.

2.2.4 Projecting Student Achievement Using Conditional Percentiles

 Let random variables X , Y , and Z represent scores on standardized tests 
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targeting three consecutive grades respectively. For simplification of notation, we use 

these letters to refer to their corresponding grades as well (e.g. grade X). Suppose test 

scores are available for two cohorts of students. One starts grade X at year 0 , and the 

earlier one enters grade Y at year 0. Table 2.1 summarizes the hypothetical data in terms 

of grades and years.

       Table 2.1 Grades and Years of Two Hypothetical Cohorts X YZ 

Year 0 Year 1 Year 2
Grade X Cohort b
Grade Y Cohort a Cohort b
Grade Z Cohort a Cohort b

                                                                        

Holland and Dorans (2006) differentiate the concepts of “prediction” and 

“projection”. They note that prediction is a method that links results from two different 

tests to each other when scores of both tests are observed for the same sample of students. 

Whereas projection is made from results of one test to another for a certain sample of 

students when only the former is available for the sample. In the context of Table 2.1, if 

data are available for both years 1 and 2, and we are interested in finding out the 

relationship between Y and Z for cohort b, we can predict Z from Y by regression. This 

process does not require borrowing information from other cohorts. If test scores are only 

available for years 0 and 1 for the two cohorts, and we are still interested in Z for cohort 

b, then we must project Z from Y. In the projection process, since Z is unknown for 

cohort b, we must somewhat rely upon our knowledge about the relationship between Y 

and Z for cohort a. In short, In order to make projection between Y and Z for cohort b, 

prediction must be carried out first between Y and Z for cohort a. Then certain 
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assumptions need to be made about the relationship between the populations which each 

of these two cohorts represents, and projections are made based on these assumptions.

Mislevy (1992) and Linn (1993) both identify “prediction” defined in the above 

paragraph (which they name “projection” in their own taxonomy) as a very weak form of 

linking. It is weak in the sense that it requires much less from the tests than other types of 

linking such as equating and calibration. Tests do not need to measure the same construct. 

As long as their results are correlated, prediction can be performed. The precision of the 

prediction depends on the strength of the relationship between the tests. The empirical 

relationship estimated through this process is quite sensitive to context, group, and time. 

Prediction is usually carried out based on linear regression. For example, Pashley 

and Phillips (1993) model the relationship between results of the International 

Assessment of Educational Progress and the National Assessment of Educational 

Progress (NAEP) by administering both assessments to the same sample of students and 

then regressing the NAEP scores on IAEP values. Williams et. al. (1998) use a weighted 

least square regression as their basis of prediction of the NAEP scores from a state test. 

Holland and Hoskens' (2003) method of predicting the true scores of a test from the 

observed scores of another not necessarily parallel test is also based on OLS linear 

regression, except that the standard errors of the predicted scores do not come out of the 

regression analysis and involves the reliability of the predicted test. In the context of table 

1, these predictions focus on estimating the conditional mean of Z given Y for cohort a 

when both Z and Y are observed on the same sample, i.e. E Z∣Y= y , a  , and the 

imprecision of the prediction is usually measured by the conditional prediction error 
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variance, which is Var Z∣Y=y , a  .

When the task shifts from prediction to projection, more assumptions have to be 

made to make up for the missing values of the projected test. In the case of projecting Z 

from Y for cohort b when year 2 data are not available, we have to assume that the 

conditional distribution of Z given Y is the same in both cohorts a and b, so that 

information about the relationship between the two tests in cohort a could be utilized to 

make projection in cohort b. This assumption can be characterized as       

                   Pr Zz∣Y= y , a=Pr Zz∣Y= y ,b  , ∀ y                   (2.2)

If we denote the conditional cdf's on the two sides of equation (2.2) as F Z∣y , a and

F Z∣y ,b respectively, then equation (2.2) can also be written as F Z∣y , a=F Z∣y ,b . 

Assumption (2.2) underlies the projections done in both Pashley and Phillips (1993) and 

Williams et. al. (1998). Holland and Dorans (2006) call it the “population invariance 

assumption”, as it requires that the same conditional distribution holds for both 

populations or subpopulations. In our example, because a and b denote two 

subpopulations (cohorts) that could be indexed by time, we may also call it the time-

invariant distribution assumption. It is not only needed for projections, for, as Holland 

and Dorans (2006) point out, population invariance assumption or assumptions analogous 

to it “pervade all aspects of scaling and equating where there are missing data” in the 

sense that in the above example the data for Z in cohort b are missing.

In this thesis, test score projections are performed with the same assumptions and 

rationales as those of Pashley and Phillips (1993) and Williams et. al. (1998), i.e. we 

estimate the conditional distribution F Z∣y , a with available data from cohort a first, then 
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assume that equation (2.2) holds and project scores of students in cohort b according to 

their available scores and the conditional distribution F Z∣y ,b . The difference between 

the projection model proposed here and the conventional one is that the former employs 

conditional percentiles while the latter mostly centers on conditional means. This 

difference can be elaborated as follows. 

First, models based on conditional percentiles differs from models based on 

conditional means in the prediction stage. The latter uses linear regression to estimate the 

mean and variance of F Z∣y , a , and then impose strong normality assumption on the 

distribution (see for example Pashley and Phillips, 1993). In the model based on 

conditional percentiles, a series of conditional percentiles of Z given Y for cohort a are 

estimated. These conditional percentiles define the distribution F Z∣y , a in an empirical 

way and makes fewer assumptions about its true shape. 

Second, the model based on conditional percentiles has greater flexibility than the 

conventional linear regression model in the projection stage. After assuming that equation 

(2.2) holds, the best projection of Z in cohort b in the linear regression model is

E Z∣Y= y ,b  ( Holland and Dorans, 2006). In the model based on conditional 

percentiles, however, there are various choices to make the projection. Suppose that a 

particular student in cohort b receives scores x and y in years 0 and 1 respectively, and 

has conditional percentile of y given x P y∣x ,b for year 1, and we are interested in 

projecting her score in year 2. If we define her expected growth according to how much 

her peers grow, then it may be reasonable to assume that this student will grow at the 

median speed compared to those who currently are at the same level as hers, then her 
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projected score z  in year 2 will simply be

                                               z1=F Z∣y , b
−1 0.5                           (2.3)

It is also possible to define expected growth according to the student's own past record. In 

this case we assume that this student will keep growing at her earlier normative speed, i.e.

P z∣y ,b=P y∣x ,b , and her estimated score in year 2 is given by

                                                 z 2=F Z∣y ,b
−1 P y∣x ,b                        (2.4)

To take both the peer growth and the student's own growth history into account, it is also 

possible to define expected growth as the greater value of (2.3) and (2.4). The projected 

score is the result of expected growth. Standard errors can be calculated for the projected 

score quantifying the degree of imprecision of the projection.  

To assess adequate growth, it is necessary to make projections a few years into the 

future. If the same expected growth every year eventually leads the student to reach 

proficiency, then the growth is deemed adequate based on this particular criterion. We 

can directly compute adequate growth in terms of conditional percentiles given that the 

student must reach proficiency in m years.

Compared with conditional mean, which is estimated in most growth projection 

models, conditional percentile contains more diagnostic information. With the estimate of 

a conditional mean, the usual statement that can be made is “students with past score(s)

x are on average projected to be proficient (or not proficient) in m years”. With 

projection calculated through conditional percentiles, however, one could say, “students 

with past score(s) x are projected to be not proficient in m years if they grow at 

conditional percentile P y∣x . However, if they grow at the rate P ' y∣x which is higher 

                                                                                                                                      31



than P y∣x , then they are projected to be proficient”. From the latter projection 

statement, teachers, parents, and students themselves can easily tell how difficult (or how 

probable) the task is and how much effort is involved in accomplishing it. Adequate 

growth, when quantified in terms of conditional percentiles, becomes a probability 

statement. The higher the required growth percentile, the smaller the probability that the 

student will eventually reach proficiency. If, according to the projection result, a student 

has to grow at the 95th conditional percentile every year to be able to reach proficiency, 

her chance of reaching the goal in the designated time is probably quite slim, or in other 

words, she will have to make extraordinary amount of effort to get there. Thus, the 

method of conditional percentiles not only defines adequate growth specifically for each 

student, but it also helps the student to understand what it takes to reach a specific goal. 

This information is more meaningful and constructive than a simple linear projection 

used in most available growth models.

2.3 School Performance and Growth

2.3.1 Clarification of Some Concepts

In any discussion about school performance and progress, some terms such as 

“status”, “change”, “growth”, “effectiveness”, and “efficiency” will be repeatedly used. 

Different authors often have different definitions for these terms. To avoid confusion, we 

explain in the following paragraphs the exact meanings that these terms adopt in this 

thesis. Before the discussion proceeds, we acknowledge that standardized test scores are 

by no means the only outcome of interest in evaluating schools, and arguably may not 

even be the most important outcome. Other valued school outcomes include drop-out 
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rates, graduation rates, attendance rates, and parent/community satisfaction etc. For this 

thesis however, we focus exclusively on how to estimate student academic growth which 

is measured by standardized test scores and how to aggregate the estimated individual 

growth to school level. Therefore alternative measures of school outcomes are not 

considered here.

Status of a school refers to the academic performance of the school measured at a 

single time point. In contrast, school change involves measurement at two or more time 

points, obviously, as does school growth. However, change and growth are not exactly 

the same concept. Growth is usually reserved for analyses where individual students are 

followed over time and measured repeatedly. School change treats the school as the basic 

unit and disregards the growth of individual student. In other words, school growth is the 

aggregation of change in individual performance which requires longitudinal data, while 

school change represents change of aggregated values of individual achievement in a 

school which uses cross-sectional measurements. For example, the average of individual 

gain scores in a school from one year to the next is a measure of school growth (Weeks 

and Karkee, 2008), while the change of average scores in the school from one year to the 

next is merely a measure of school status change (Hanushek and Raymond, 2002). Status 

change does not necessarily reflect real improvement or decline because sample 

differences are not accounted for. For example, the fact that fourth graders tested in 2006 

in a school on average score 10 points higher than fourth graders in 2005 in the same 

school is no evidence that instructional practices in grade 4 of the school is improving, 

because the 2006 cohort might have started at a higher level than the 2005 cohort. 
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Another important term to be clarified is “effectiveness”. Many educational 

statisticians define school effectiveness as the contribution or causal effect of a school to 

overall student growth. Raudenbush (2004), for example, uses the term “school 

effectiveness” interchangeably with “school effect”, and Braun (2005) points out that 

“the word 'effectiveness' denotes a causal interpretation”. Further, Raudenbush and 

Willms (1995) differentiate two types of causal effects of a school on student academic 

growth. According to them, one kind of school effect, or “Type A” effect is evaluated for 

school choice purposes and contains all the factors of a school that affect student growth, 

including those not in control of the school faculty and staff, such as the neighborhood 

effect and peer effect. The “Type B” school effect is the effect of school practice on 

student growth. In other words, this is the effect that is controllable by school personnels 

and can be used for accountability purposes. 

In this thesis, we use the term “school effectiveness” to denote the “Type A” effect, 

and let “school efficiency” represent the “Type B” effect of Raudenbush and Willms 

(1995). Both effects are usually estimated by adjusted versions of overall student gains. 

The difference is that when estimating school effectiveness, all non-school factors 

relevant to student growth must be controlled, while in estimating school efficiency, the 

relevant school factors not in control of the school such as available resource level and 

neighborhood effect must also be held constant in addition to the non-school factors.

2.3.2 Measuring School Status and Status Change

Various methods have been proposed to evaluate school performance and 

improvement based on test scores alone. School performance can be measured with the 
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average of student test scores in each grade of a school. Under NCLB's accountability 

model, the most commonly used school performance indicator is percent proficient—the 

percentage of students in the school who score at or above proficiency level. Each year, 

percent proficient of each of the several designated demographic group of a school is 

compared against a pre-defined target—the annual measurable objective (AMO) to 

determine whether schools are making adequate progress. Using status measure to 

evaluate progress, this accountability design is based on a confusion between status and 

growth. 

The dominant approach to measuring a school's status change in a state 

accountability system is to take the difference between percent proficient (or percent non-

proficient) of each subgroup in a school from two consecutive years. This difference of 

percent proficient between two years is one of the basic measures in the “Safe Harbor” 

provision. In the previous section, we have discussed the disadvantages of measuring 

individual growth based on performance levels, all of which apply to the difference of 

percent proficient as a measure of school change. Another important measure of school 

performance change is the difference between average scores in a given grade at different 

time points (e.g. the change of average score of fourth graders one year to fourth graders 

the next year). 

2.3.3 Measuring School Growth—The Gain Score Model

Starting in 2005, many states submitted plans of incorporating school growth 

measures into their AYP models, and some of them have already been approved by the 

federal government as pilot programs. The gain score model and variations of it are the 
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most frequently proposed models for the pilot program (Weeks and Karkee, 2008). The 

individual gain score, as discussed in the previous section, is simply the difference 

between scores from the same individual at two different time points. The gain score 

model aggregates individual gain scores to the school level to measure school growth. 

Gain score models are usually easy to employ and generate easily interpretable 

results, but they depend heavily on a sound vertical scale. Weeks and Karkee (2008) 

point out that the gain score model does not account for regression to the mean. Gain 

scores themselves also  has the problem of containing larger amount of measurement 

errors as mentioned earlier. Despite these properties, gain score remain a very important 

concept in educational studies since many other growth models (typically mixed-effects 

models) often use gain scores as outcome variables (see Ladd and Walsh, 2002; Tekwe et 

al., 2004).

2.3.4 Measuring School Growth—The Transition Models 

Another type of model generally referred to as transition models have also been 

proposed by some states for school accountability purposes. Transition models do not use 

scale score data, instead, they use longitudinal student performance data presented in 

achievement levels. These models aim to estimate the probability that an average student 

in a specific school moves from a given achievement level in one year to another 

achievement level in the next year. As an example, Betebenner (2007) presents a 

transition probability model based on the assumption that student growth is a 

homogeneous first order Markov process. The first order Markov process assumes that 

given last year's performance, a student's current performance is not related to his/her 
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earlier academic history, i.e. one's achievement at time t is dependent only on his/her 

level at time t-1. That the process is a homogeneous one means that school transition 

patterns does not change over time. Given k performance levels, the model produces a 

transition matrix P={p ij}i , j∈[ 1,k ] where each pij represents the probability that 

students in a specific school move from level i to level j during the designated time 

period. Higher probabilities of moving from lower levels to higher levels signify higher 

rates of growth in the school. Since this probability is not observed for individual 

students but can be approximated by percentages of a school's students in different 

achievement categories, this technique is mostly used with school-level data.

The transition matrix has the advantage of being more interpretable and 

“actionable” for teachers, principals, and other stakeholders (Betebenner, 2007). The 

method can also adjust for measurement errors of the test by including a misclassification 

matrix which summarizes the probabilities that students are misclassified in an 

achievement level (Betebenner et al., 2006). Nevertheless, it has the same shortcoming of 

measuring student growth with performance level change—progress made within the 

range of a single level is not counted. The results of the model are dependent on the 

density of students around the cut-scores, the ranges of different performance levels, and 

the location of the cut-scores which may be decided subjectively. Strictly speaking, 

transition analyses usually track cohorts within a school not individual students, and 

hence should probably be called a “quasi-growth” model. 

2.3.5 Measuring School Growth—The Mixed-Effects Models 

A very popular approach to assessing school growth has relied on mixed-effects 
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models. This type of model includes regression models which distinguish within-unit 

variation from between-unit variation so that the researcher can characterize each source 

separately (Pinheiro & Bates, 2000). The capability of these models to differentiate 

different sources of variation has great advantages in evaluating student growth due to the 

nested structure of longitudinal student achievement data. Measurements nested within 

the same students and students nested within the same schools (and classrooms) almost 

certainly have correlated regression residuals which, when ignored, will lead to biased 

estimates. The mixed-effects models minimize these biases by taking into account the 

effect of each hierarchical level on the variance-covariance matrix of the residuals. They 

are also able to handle the missing data problem by borrowing strength from similarly 

nested subjects in estimating growth trajectories (Raudenbush and Bryk, 2002).  

Mixed-effects models estimate individual growth trajectories. Different methods 

are used to aggregate individual results to the school level. Tekwe et al. (2004) adopt a 

grade point average (GPA) approach to evaluate schools. Since mixed-effects models 

usually include a random school effect which is a best linear unbiased predictor of the 

“value added” associated with schools, each of these estimated school-effect coefficients 

can be divided by its standard error to produce a standardized measure of school growth 

in a particular subject. Different grades can be assigned to different values of the 

standardized score, and a school GPA can be calculated across subjects. Another type of 

aggregation is based on projections. The regression lines for each student in the mixed-

effects models are projected out 2-3 years. If a student's projected score exceeds the 

proficiency cut-score in the projected grade then she is marked as being on track. The 
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percent of students who are on track to be proficient can be used as a measure of school 

growth (Weeks and Karkee, 2008).

2.3.6 Using the Mixed-Effects Models to Assess School Effectiveness and Efficiency?

Theoretically, if all non-school factors relevant to student academic growth could be 

controlled for, mixed-effects models can be used to estimate school effectiveness. The 

English education system, for example, has officially incorporated “contextual value 

added” performance measures as indicators of school effectiveness to help parents in 

school choice (Wilson and Piebalga, 2008). Hierarchical linear model is employed in the 

program to evaluate secondary schools with test scores taken at age 16 as outcome and 

those taken at age 11 as input. Other individual level predictors included in the model are 

gender, ethnicity, special educational needs status, eligibility for free school meals as 

proxy for low income, English as second language, student mobility, age, and measure of 

deprivation of the student's home neighborhood. School average intake scores and its 

standard deviation are included in the model as school level predictors to take account of 

peer effect. The model produces a predicted outcome score for each student. Subtracting 

the observed scores from the predicted scores, each student has a “contextual value 

added” (CVA) measure. The school average CVA measure, multiplied by a weight 

which adjusts for the small school volatility effect (Kane and Staiger, 2002), is used as a 

measure of school effectiveness. Despite the thoughtful design, Wilson and Piebalga 

(2008) caution that the model is still not able to isolate the school effect from all non-

school factors. For example, student achievement prior to 11 years old that is not 

captured by the test score at age 11 may still play a role in the outcome scores but is not 
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accounted for in the model.

In the school accountability system of US, there have also been waves of proposals 

and intensive studies about using the mixed-effects models to estimate school and teacher 

effectiveness. As we mentioned earlier, many statisticians argue that estimates from these 

models should not be taken as direct evidence of school or teacher effects. Rubin et al. 

(2004) shows that even with randomization, “estimating relevant causal effects of 

teachers and schools is extremely difficult to conceptualize” due to the complications of 

peer effects and data missing not at random. When only observational data are available, 

model-based analysis usually cannot support causal inference without making 

unwarranted assumptions. In a similar vein, Braun (2005) cautions against making causal 

statements based on observational data. He argues that while value-added models are 

known for estimating teacher (or school) effectiveness, they cannot eliminate all 

competing hypotheses as alternative explanations of the differences in student 

achievements, such as differences in parental support, motivation, and study habits etc. 

Raudenbush (2004) also discusses this problem in detail and point out that the “school 

effect” estimated by the mixed-effects models includes contributions due to factors which 

cannot be controlled by schools, such as the neighborhood where the school is located, 

and contributions due to factors that are in the school's control, such as its instructional 

practice. Without randomization, it is hard to envision that any statistical model can 

completely isolate the latter from the former. In other words, even if we can estimate 

school effectiveness, we still do not know how much of it is due to the efficiency of the 

school practice and competency of its personnels. Therefore Rubin et al. (2004) advocate 
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a position of taking the estimates of the mixed-effects models as descriptive measures of 

school growth rather than school effectiveness.

2.3.7 The Approach of This Thesis to Assessing School Growth

As mentioned in the introduction, this thesis does not address the problem of making 

causal inferences about school effectiveness. We are interested in accurately assessing 

student and school growth. The main question we address is: How fast are students in this 

school growing academically? 

Recall the discussions in the previous section about adequate growth, normal 

growth, and expected growth, one could go a step further and ask the following questions 

under the main one: 

1. Are most students in this school growing at a rate that is adequate for 

eventually reaching proficiency?

2. Are most students in this school growing faster or slower compared to their 

peers in other schools who started from the same levels? 

With the reference growth chart method proposed in this thesis, we describe 

student growth using estimated conditional percentiles and aggregate them to the school 

level. We experiment with different aggregation methods such as taking the median of 

students' estimated conditional percentiles and calculating the percentage of students in a 

school with exceptionally high and low growth percentiles etc. Our purpose is not to rank 

schools based on their growth from top to bottom, as most schools are hardly 

distinguishable from each other (Kane and Staiger, 2002; Wilson and Piebalga, 2008). 

The goal is to identify schools with problematically low rates of growth and unusually 
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high rates of growth, and to identify specific students within the schools with unusual 

growth patterns so that the schools and students can be studied and assisted.  

2.4 The Growth Chart Method 

In the introduction, we have briefly explained unconditional and conditional growth 

charts. In this section, these concepts are clarified further. The construction and 

application of the unconditional and conditional growth charts are also illustrated.  

2.4.1 Unconditional Growth Chart

Figure 2.1 presents an unconditional growth chart for length and weight of boys 

from birth to 36 months old in the United States in the year of 2000. The chart is based on 

cross-sectional measurements of a nationally representative sample, and it depicts 

smoothed curves for the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles associated 

with the length and weight distributions for boys by age. From the percentile curves in 

the chart, we can roughly reconstruct the distributions of length and weight at each age 

point. Quick examination of the curves, for example, shows that the distributions of both 

length and weight are more dispersed at 36 months old than at birth. An individual can be 

located on the chart according to her age, and with the curves serving as references, it is 

easy to tell which percentile group the individual falls in, for both height and weight.

The traditional way of creating unconditional growth charts is empirical. In the 

case of boys' weight, for example, if census data are available the real percentiles can be 

calculated directly. If, instead of census data, a nationally representative sample is 

available, percentiles can be estimated empirically at each age point by simply 

calculating the ratio of boys at or below a given weight level to the total number of boys 

                                                                                                                                      42



in the sample at that age. Then a smooth polynomial curve can be fitted over these 

estimated points to construct the percentile curves in the growth chart (Hamill, et al., 

1979). 

The problem with the empirical estimation of percentiles is that standard errors of 

the estimated percentiles increase steeply towards the tails of the distribution; therefore, 

the extreme percentiles are often estimated inaccurately (Cole, 1988). One way to get 

around this problem is to fit a theoretical distribution to the sample, estimate the 

distribution parameters, and then calculate the expected percentiles from the estimated 

distribution.  Equation (2.5) represents the conventional approach of assuming normality 

of the population distribution and avoiding the estimation of percentiles by estimating the 

mean and standard deviation (Wei et al., 2006).

                                          Q ∣t =t   t −1                           (2.5)

Q ∣t  is the estimated value that corresponds to the  th percentile of the population at 

time t, t  and t  are the estimated population mean and standard deviation at time t, 

and −1 is the inverse of the standard normal cumulative distribution function, −1

therefore denotes  the z-score that corresponds to the  th percentile. Equation (2.5) 

represents the procedure of converting z-scores to percentile values in the normal 

distribution.

For many types of measurement data the assumption of normality does not hold. 

Various transformation techniques have been proposed to correct for non-normality, 

though it is still doubtful whether any one of them could yield normality over the range of 

z-scores of interest. Figure 2.1, for example, is based on the LMS method proposed by 
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Cole (1988) which transforms skewed data to normality. Nonparametric quantile 

regression provides distribution-free estimation of unconditional percentiles (Wei, 2004). 

2.4.2 Conditional Growth Chart

 Equation (2.5) shows that, although the growth chart is called “unconditional”, its 

percentiles are estimated conditioning on time or age. If, besides time, other conditioning 

variables are included such as the previous measurements of the individuals, then the 

method is  called conditional growth chart. The conditional growth chart is usually based 

upon longitudinal data sets. The unconditional growth chart can only be used to 

determine whether a subject's measurement at a particular time point seems “abnormal” 

or not, which is not necessarily a useful indicator of true underlying disorders. With 

regard to both health and education, children who stay well within the normal range of a 

certain statistic sometimes follow quite distinct developmental paths. For example, a 

child whose condition steadily deteriorates may have acceptable measurements for many 

years before she finally drops out of the normal range. On the other hand, those who are 

below the standard may be catching up. In general, it takes time for a well-functioning 

child to descend to a problematic level, even if she has evidently displayed such 

tendency. Similarly, a child with unsatisfactory measurement needs time to reach the 

normal range no matter how fast she is growing. As educational/medical researchers, 

policy makers, and practitioners, we do not want to wait until the signal is clear to decide 

if this growth story has been a failure or a success. The conditional percentiles produced 

from the conditional growth chart method helps to recognize unusual growth trends 

before it is too late. 
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Since conditional percentiles are estimated given at least two covariates, the 

conditional growth chart model does not have a standard two-dimensional chart form like 

figure 1. Cole (1994) presents such a model using a longitudinal French children's height 

data based on the familiar ordinary least square regression:

                                     H i , t=bt H i ,t−1c terror                 (2.6)

where H i , t is height measured for child i at age t , H i , t−1 is height measured for the 

same child one year earlier, bt is the regression coefficient which varies from age to 

age, c t is an age-dependent intercept, and the error term is assumed to be distributed

N 0,t
2 for all subjects. If the assumption of error normality holds, then

H i , t∣H i , t−1 also has a normal distribution: N b t H i , t−1c t ,t
2 . Thus the 

conditional percentile of H i , t given H i , t−1 could be estimated by substituting the 

mean and standard deviation of this distribution into equation (2.5). If the assumption of 

error normality is problematic, in other words, if height distribution is skewed, Cole 

(1994) demonstrates transformation techniques converting skewed distribution to 

normality, and equation (2.5) can be applied. 

The conditional growth chart produced from model (2.6) consists of what Cole 

(1994) calls the “median conditional velocity centile curves”. The conditional velocity is 

defined by re-arranging (2.6): H i , t−bt H i ,t−1=c terror . In other words, it is the 

average growth occurred in a year shared by everyone in a particular age group plus 

error, therefore the conditional velocity is not dependent on H i , t−1 , and is distributed 

as N ct ,t
2 . The z-score of the conditional velocity distribution is:
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                                                 Z=
H i ,t−b t H i ,t−1−c t

 t

For a child starting at height H i , t−1 and growing along the  th conditional velocity 

percentile, height at age t is predicted by:            

                                            H i , t= bt H i ,t−1 c t  t Z            (2.7)

where Z is the z-score corresponding to percentile  , and b t , c t , and t are 

estimates of the parameters in (2.6).

For a given starting height H s and fixing the percentile to be the median, heights 

in subsequent years can all be estimated by (2.7). A curve smoothing H s and these 

fitted heights of subsequent years is called the “median conditional velocity centile 

curve”. The conditional growth chart consisting of such curves looks very similar to the 

unconditional growth chart of length presented in figure 1, with height plotted against 

age, except that each curve in the conditional growth chart represents a growth trajectory 

starting from a given H 0 value and follows the median conditional velocity in every 

year. An individual's measurements along the years can be compared against the curves 

according to her height at year 0, and it would be easy to tell whether she has been 

growing at a rate higher or lower than the median velocity. This kind of conditional 

growth chart only contains a small part of the information provided by model (2.6). Many 

different types of charts can be produced from the same model to visualize different 

aspects of the data (Cole, 1994). 

Model (2.6) is based on linearity assumption and a strong distributional assumption. 

In recent developments of the growth chart method, various authors such as Gannoun et 

                                                                                                                                      46



al. (2002) and Carey et al. (2004) apply quantile regression to the estimation of 

conditional percentiles. This technique does not require normality of the data, and will be 

the basis of the methodology presented in chapter 3. The next section gives a brief 

introduction to the assumptions, as well as the estimation and inference procedures of 

quantile regression.

2.5 Introduction to Quantile Regression

Before Koenker and Bassett (1978) formally proposed quantile regression, 

Bhattacharya (1963) called it “an analog of regression analysis”. Indeed, quantile 

regression and OLS regression essentially aim at the same goals—studying the 

relationship between dependent and independent variables through the conditional 

distribution of the former given the latter. The major difference is that OLS regression 

estimates the conditional mean of the dependent variable given the predictors while 

quantile regression concerns the conditional quantiles of the dependent variable given the 

predictors. The former implicitly assumes that the covariates exert a pure location shift 

effect on the outcome variable. When the predictors affect parameters of the conditional 

distribution of the dependent variable other than the mean, OLS regression will be 

inadequate. For example, when regressing students' current year test scores on their 

previous year's scores it is conceivable that students of different academic levels last year 

may have different distributions of scores this year—the low-achievers may have wider 

distributions of scores this year while the high-achievers, due to the ceiling effect, may 

have less variability in their distributions this year. In this case, the regressor not only 

affects the mean, but also the variance of the outcome, which is not captured by the OLS 
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model. Quantile regression, on the other hand, summarize the conditional distributions of 

the outcome with various conditional quantiles and thus allows a full characterization of 

the relationship between the outcome and the predictors. 

To illustrate this difference, we present the summary plots of an OLS regression and 

a QR in Figure 2.2. Both regressions have only one independent variable. The data used 

in the two regressions are simulated with heteroscedastic error. The black line in figure 

2.2 (a) represents the conditional mean of Y given the respective values of X. The slope of 

the line is the estimated coefficient of X in the OLS regression. The lines in figure 2.2 (b) 

represent the conditional quantiles of Y. From the lowest line to the highest line in the 

counterclockwise direction, the five lines correspond to the 10th, 25th, 50th, 75th, and 90th 

quantiles of Y respectively given the values of X. The slope of each conditional quantile 

line is the estimated coefficient of X in the QR model specific to that quantile. The 

figures show that when the predictor is related not only to the mean but also to the shape 

of the conditional distribution of the outcome variable, the OLS regression can be a poor 

fit to the data, and the QR approach provides a better fit while increasing the number of 

parameters. In the following paragraphs, we introduce the ways of solving for the sample 

median and other sample quantiles, which provides a starting point of understanding how 

quantile regression works.

2.5.1 The Estimation of Sample Quantiles

 Let Y be a random variable, and let y1 , , yn be a random sample from the 

distribution of Y. The sample median of y i is the solution to:

                                                      min
∈R
∑
i=1

n

∣y i−∣
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In other words, it is the value of ξ that minimizes the sum of absolute difference between

y i and ξ. 

In order to get the 100  th sample quantile ∈0,1 , the absolute deviance in the 

above equation need to be weighted by   or 1−  depending on the sign of the 

deviance (Wei, 2004). It can be shown that the 100  th sample quantile is given by

min
∈R
∑
i=1

n

y i−    where  u i=u i− I u i0={ ui u i0
−1ui u i0        (2.8)

2.5.2 The Estimation of Quantile Regression

Now suppose we are interested in the relationship between Y and an independent 

variable X. Both OLS regression and quantile regression start from the linear model: 

y i= xi
T e i ,  for i=1, , n , where   is the coefficient of the independent variable and

e i is the error term. OLS regression assumes that E ei∣x i=0 , which means that the 

conditional mean of y i has a linear relationship with x i : E  y i∣x i =x i
T  . Besides, the 

errors are also assumed to be independent of each other and have an identical normal 

distribution. Quantile regression, on the other hand, requires that the 100  th quantile of 

e i  given x i  is 0, written as   Q e i∣xi=0 , which implies that the conditional 100  th 

quantile of y i is linear in x i : Q y i∣x i= x i
T  . No additional distributional 

assumptions are made for QR.

The estimation of the conditional quantiles is a simple extension of (2.8)—

substituting x i
T   for  . Thus the coefficient   in quantile regression are estimated by 

minimizing the following loss function with respect to   :
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                                                  R =∑
i=1

n

  yi−x i
T                          (2.9)

By definition of  in (2.8), the loss function (2.9) is piecewise differentiable, i.e. 

it is only differentiable where u i= y i− x i
T ≠0 . This means that the loss function (2.9) 

cannot be minimized by simply differentiating the loss function with respect to   and 

setting the derivative equal to 0 as in the estimation of OLS regression. As a result, the 

estimators of quantile regression parameters do not have closed form expressions. 

Various ingenious methods were proposed for solving this kind of minimization problem 

in the regression setting where only one predictor is included, but it was not until the 

adoption of linear programming that the estimation of quantile regressions with multiple 

predictors become generally feasible. Koenker (2005) describes the simplex algorithm of 

linear programming which efficiently searches for the solution to the minimization of

R  . The solution is unique under some mild conditions about the continuity and 

density of X and Y (Koenker and Bassett, 1978). The computational details are not 

addressed in this thesis. 

2.5.3 The properties of Quantile Regression Estimators

The properties of regression estimators depend largely on how they are estimated. 

The OLS coefficients are estimated by minimizing squared deviations while the quantile 

regression coefficients are obtained by minimizing weighted absolute deviations. It has 

been a long-lasting debate as to which minimization produces more superior estimates in 

terms of finite-sample and large-sample properties (Koenker and Bassett, 1978). 

The Gauss-Markov theorem summarizes the well-known finite-sample properties 
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of OLS regression estimates—in a linear model in which the errors are independently and 

identically distributed (i.i.d.), and independent variables are not correlated with each 

other, the least-squares estimates have minimum variance among all unbiased estimates 

that are linear combination of the Y's. (The OLS estimates of parameter  can be seen 

as a linear combination of the dependent variable Y, since = X T X −1 X T Y ). Even 

though this property does not rely on normality of data, OLS regression does need the 

normality assumption for standard error estimation in finite samples. And with normality, 

the least squares estimator is also most efficient (i.e. has least variance) among all 

possible unbiased estimators according to the Rao-Cramer inequality. Without the 

normality assumption, the OLS estimates still have nice large-sample properties provided 

that the Gauss-Markov theorem conditions hold, and that the data matrix of the 

independent variables X (also called the design matrix) satisfies the following 

requirement:

                 lim
n∞

1/n X T X=Q where Q is a positive definite matrix               (2.10) 

In equation (2.10), n denotes sample size. If these conditions are satisfied, the OLS 

estimators are consistent, i.e. they converge in probability to the true values of the 

parameters. It can also be shown that the estimators have an asymptotic normal 

distribution and that the convergence rate is sufficiently fast (see, for example, Greene, 

2000).

There is no well-established finite-sample theory for quantile regression similar to 

the Gauss-Markov theorem, though the large-sample properties of QR estimators have 

been studied by many statisticians (see, for example, Koenker and Machado, 1999; and 
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Koenker and Xiao, 2002). We take comfort in the fact that, as Koenker (2005) points out, 

even the OLS regression has to rely upon asymptotic approximations as soon as the 

idealized Gaussian conditions are violated. The sufficient and necessary conditions for 

the consistency of QR estimators generally include two parts. First, the cumulative 

distribution function of the conditional distribution of Y is absolutely continuous and 

there is adequate amount of mass at or near the specific quantiles. In other words, the 

density in the neighborhood of the quantiles should not be zero and should not explode, 

either. Second, condition (2.10) holds. When these requirements are satisfied, QR 

estimators are asymptotically normal and converge to their true values at the same rate as 

the OLS estimators. Note that the residuals are still assumed to be independently 

distributed but not required to be identically distributed for these asymptotic results 

(Koenker, 2005). 

We need to be aware, however, that QR estimators for different quantiles may not 

have the same properties. Koenker (2005, p. 120) points out that while estimators of 

linear QR are consistent across different quantiles under mild conditions, the rates at 

which they converge to their true values depend crucially on the behavior of the 

conditional distribution of the outcome given the predictors near the quantile being 

estimated. With insufficient data in the neighborhood of a given quantile of the 

conditional distribution, the estimators for that quantile would exhibit slower rate of 

convergence. The asymptotic variances of QR estimators also vary across quantiles. They 

depend, again, on the density in the neighborhood of the quantiles, and they are 

proportional to the quantity 1− which is maximized at the median =0.5 . This 
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means that holding the densities constant, the QR estimators would be more precise for 

the tails of the conditional distributions, but this effect is often dominated by the density 

effect which increase the standard errors of the estimates in regions of low density.  

The Gauss-Markov theorem states that the least-squares estimates have minimum 

variance among all unbiased estimates that are linear combination of the Y's. Outside of 

this league (for example, when compared with some slightly biased estimates), however, 

and especially when the distribution of the data is not Gaussian, the least squares 

estimates may not appear so favorable. Koenker and Bassett (1978) show that, in terms of 

efficiency, the QR estimators has good properties for a wide variety of distributions and 

generally out-performs the OLS estimator in non-Gaussian cases by a large margin. 

Besides the efficiency properties, there are other advantages of quantile regression 

estimators over  OLS estimators. Least squares estimators are especially sensitive to 

distributions with longer tails (i.e. the presence of outliers), while absolute-deviation 

estimators are resistant to outlier contamination. Koenker (2005) points out that as long 

as the signs of the residuals are not changed, the quantile regression coefficient estimates 

remain the same when we perturb the dependent variable observations y i . This can be 

explained by means of equation (2.9). Since y i− xi
T   is contained in an indicator 

function, changing the values of y i does not change the loss function as long as the sign 

of the residual stays the same. Outliers in the independent variable x i 's can still alter 

the quantile estimates though and need to be watched. The quantile regression estimators 

also deals with heteroscedasticity with ease, which is a property not shared by the OLS 

estimators. As figure 2.2 (b) shows, there are different coefficient estimates for different
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 values and the the slopes are allowed to be nonparallel to each other,  the spread of 

the conditional quantiles are expected to be wider when the y i 's have larger dispersion, 

thus the quantile estimates naturally capture the changing variance of the residuals. 

2.5.4 Hypothesis Testing For Quantile Regression

Hypothesis testing in quantile regression can be done using several common 

procedures including the likelihood ratio test, the Wald test, and the rank score test 

(Koenker, 2005). All these tests involve the estimation of the asymptotic covariance 

matrix for  , which is the regression coefficient at a given 100τth quantile. In order 

to estimate this covariance matrix, it is necessary to evaluate the probability density of 

the error term at the 100τth quantile of the error distribution. Statisticians have 

established relatively non-controversial ways of estimating error density in the case that 

errors are i.i.d. (Koenker and Machado, 1999; Koenker, 2005). When errors are non-i.i.d., 

the problem of estimating coefficient standard errors becomes more complex. Not only 

does the 100τth quantile density have to be evaluated for the errors of each subject e i
 , 

but these estimated densities also have to be weighted. The number of parameters to be 

estimated increase dramatically in this process and other distributional assumptions are 

invariably made. The bootstrap method provides a way of estimating coefficient standard 

errors regardless of the error density, and makes no assumption about the distribution of 

the response variable or the error terms. Different studies show that hypothesis tests 

based on bootstrap and asymptotic standard errors usually yield the same results 

(Koenker, 2005; Hao and Naiman, 2007).

 The bootstrap method is a special type of Monte-Carlo simulation which 
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approximates the sampling distribution of a parameter estimate by drawing large number 

of samples from a known distribution and calculating the parameter estimate for each 

sample (Efron, 1979). With the bootstrap approach to estimating coefficient standard 

errors, there are different choices of resampling plans. A typical one is to sample with 

replacement from the observed residuals of the model, which again requires the errors to 

be i.i.d. for the bootstrap method to produce  acceptable approximation of the true 

distribution of parameters (Efron, 1982). Koenker (2005) presents a plan which 

resamples directly from observed predictors and outcomes instead of the residuals, and 

then estimates new coefficients with the sampled predictor and outcome values.  Since 

the independent and dependent variable values are randomly sampled with replacement 

from the observations, some subjects may be sampled multiple times while other subjects 

may not be included. Thus each of the resamples will randomly depart from the original 

dataset and so will the corresponding estimates of the parameters. A large number of 

cycles like this would produce a sampling distribution of the coefficients from which we 

could obtain standard errors, confidence intervals and perform hypothesis testing. This 

method proves to be a valid inference tool even if the errors are independent but not 

identically distributed (Koenker, 2005). 

2.5.5 Goodness-of-Fit of Quantile Regression

A test of goodness-of-fit is closely related to hypothesis testing. If a hypothesis 

test result shows that the covariates jointly have no effect on the response, then obviously 

the model is a bad fit. Yet a separate indicator still has to be developed to signify how 

well the overall model explains the data and how close the fitted values are to the actual 
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observed outcomes. Koenker and Machado (1999) propose a convenient statistic for 

quantile regression that can be used just like the R square in OLS regressions. Going back 

to the loss function of quantile regression (2.9), let V  denote the minimized sum of 

weighted absolute residuals under the full model:

                                V =min∑i=1

n
  y i− xi

T 

and let V  denote the minimized sum of weighted absolute residuals when the model 

only includes an intercept parameter:

  V =min∑i=1

n
  yi−0

The goodness-of-fit criterion is defined as:

                                                     R1=1−
V 
V                               (2.11)

R1 is the natural analog of R2 in OLS in the sense that if we replace V  and

V  with corresponding minimized residual sum of squares, equation (2.11) would 

produce R2 instead of R1 . Like R2 , R1 lies between 0 and 1. Lower 

values of this statistic suggests lack of fit. The value of R1 is easy to compute and 

easily interpretable (just like that of R2 ), but since it is  specific, it only shows how 

closely the model fits the data around the  th quantile. Various graphs of goodness-of-

fit have been designed which demonstrate model fit across quantiles. One of them will be 

applied in the data analysis chapter. 
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Chapter 3 Methodology

This chapter introduces the methodologies that are used for data analysis in this 

thesis. We begin with a description of the data consisting of four years of longitudinal test 

scores from a state. The tests are also briefly described. Next, the quantile regression 

models are presented, which are used to estimate conditional percentiles for individual 

students. The model assumptions and specifications are also explained. After this, we 

proceed to investigate the impact of measurement errors on the estimation of conditional 

percentiles. A few methods of adjusting for measurement errors are introduced, and we 

focus on the application of the simulation-extrapolation (SIMEX) method on QR models. 

This chapter is concluded by a brief exploration of the Bayesian QR model which 

accommodates random effects. 

3.1 Data 

3.1.1 A Brief Introduction to the State Assessment Program

The data used in this thesis represent four consecutive years of the scale scores of a 

state assessment program in reading. Due to confidentiality reasons, the state is not 
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identified by name and the technical reports of the state assessment are not cited below. 

The tests are developed to measure the “content standards” determined by the state 

Department of Education, and are administered in the spring every year. Student results 

are reported statewide in terms of scale scores and performance levels, and these results 

are used in the annual school accountability reports of the state. The performance level 

cut scores were adopted by the state Board of Education, based on the recommendations 

of standard setting committees composed of qualified educators. The reading and writing 

assessments are administered in grades 3-10 every year. 

According to the annual technical report of the testing program from 2003 to 2006, 

the test designers use item response theory for test scaling. Specifically, the three-

parameter logistic model (Lord and Novick, 1968) is used for the analysis of selected-

response items, and the two-parameter partial credit model (Yen, 1993) is used for the 

analysis of constructed-response items. The item parameters are estimated with these 

models based on a sample data set of the state's student population. Student scale scores 

are calculated using the item parameters. Model fit statistics are reported for each grade 

in each year. Very few items exhibit lack-of-fit, and those items that have poor statistical 

performance are removed from scale score calculations.

Even though the models we propose in this thesis do not require vertical linking 

from test scores, the scale scores of the tests in our dataset are vertically linked across 

different grades. The vertical scale for reading was established in 2001 using the Stocking 

and Lord (1983) procedures. Scale scores of the same grade in different years are also 

horizontally equated.
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The reading scores range from 150 to 1000 across the eight grades. For each year 

and each grade, conditional standard errors of measurement at different scale scores are 

reported. The scale scores are assumed to be on an interval scale for the analyses done in 

this thesis.

3.1.2 Data Description

The data set includes the results of the statewide administrations of the reading test 

in 2003-06 for students in grades 7-10. Test results of the same students in different years 

are linked through the same ID number. For the four years altogether, there are 54,625 

students in the data . Table 3.1 presents the percentages of male students, each ethnic 

group, student proficient and partially proficient, and repeaters for grades 7-10 

respectively. Besides scale scores, gender, and ethnicity, the data set contains some 

additional information on students' date of birth, school ID, and school district ID.

Table 3.1 shows that the cohort loses about 10,000 students which is almost 1/5 of 

its original size by the end of the 10th grade. A small percentage of the loss is due to 

retention, but for most of the missing students, the reason is unclear. We also notice that 

the percentages of Hispanic and Black students in the cohort become smaller in grade 10, 

while the percentages of White and Asian students increase noticeably. The timing of 

these demographic changes suggests that there may be a jump of minority drop-out rates 

in the 10th grade. There is also a jump in retention rate just before the 10th grade—1097 

students had to repeat the 9th grade in 2006, more than doubling the number of repeaters 

in the previous grades. The percentages of students reaching proficiency and partial 

proficiency, however, steadily increase over the years. The state's AYP targets use the cut 
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scores between non-proficiency and partial proficiency as the most crucial cut scores. We 

see in Table 3.1 that about 92 percent of the 10th graders reached partial proficiency, a 

quite encouraging achievement if we ignore the somewhat dramatic increase of missing 

students. 

We also present the distributions of the scores in each grade in Figure 3.1. All four 

distributions are left-skewed, indicating higher density in higher scores. Another issue to 

be noted is that there is a small jump of density in the far left side of each distribution. 

These are the students who got the Lowest Obtainable Scale Scores (LOSS). The LOSS 

are often assigned for administrative reasons instead of based on the real assessments. 

Therefore these scores contain large amount of errors and their distributions look quite 

unnatural. We decide to keep these scores in the data set despite the large errors for two 

reasons. First, in a practical accountability system, students with the lowest scores as well 

as their parents and teachers will expect a report on their growth percentiles just as those 

with higher scores do. It will be demoralizing for them if their scores are deleted from the 

system and their academic growth ignored. Second, quantile regression is generally 

robust to outliers which means that the inclusion of these scores will not lead to big 

estimation biases. We do recommend, however, that while the growth percentiles of these 

students are estimated and reported, the specific administrative reasons for their LOSS 

are also explained to all stakeholders. 

3.2 A Local Linear Quantile Regression Model 

3.2.1 Model and Notations

The basic model to be considered in this thesis is a simple linear QR model. For a 
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cohort of n students, denote by Y i , t the score of the i th student in grade t . The 

quantile regression function is specified essentially the same as equation (2.6):

             Y i , t= t
t

Y i , t−1e i , t
   i=1, ,n t=8,9,10 ∈0,1  

(3.1)     where  t
 and  t

 are grade-specific and tau-specific intercept and slope 

coefficients, and e i , t
 is assumed to be independently distributed. Theoretically, for each 

individual student, there are infinite numbers of τ's which lead to infinite numbers of 

model parameter values  t
 and  t

 and model residuals e i , t
 . The τ-value that 

corresponds to the smallest model residual among them is the student's growth percentile. 

Equation (3.1) denotes a grade-specific model, also known as a local model. 

Because the model is a local one, and because prior scores are used as conditioning 

variables, scale scores used to estimate the model are generally not required to be 

vertically linked.

The subscript t is intended to denote time. In this context, time can be represented in 

two  dimensions—grade and year. We now briefly explain why we choose to let t 

represent grade instead of year. Since the model is used to address a particular grade of a 

certain cohort, whether the subscript t is used to denote grade or year would not matter 

for most subjects in the sample—for students who are never retained, each grade 

corresponds to a unique year and vice versa. For those who have been retained, however, 

the exact meaning of t does matter. Suppose student i is repeating grade 8 this year, and 

suppose student k is also at grade 8 this year but was not retained. If t is used to denote 

year, Y i , t−1 would be student i's 8th grade score from last year, while Y k ,t−1 is student 

k's 7th grade score from last year. The growth percentile estimated for student i based on 
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this model would mean “the percentile of i among the present 8th graders whose 7th grade 

scores from last year are the same as student i's 8th grade score from last year”. Even if 

the scores are vertically linked, this quantity is still quite hard to interpret. On the other 

hand, if t is used to denote grade, which is what we choose for model (3.1), Y i , t−1

would be student i's 7th grade score from two years ago, and the meaning of Y k ,t−1

remains the same. The growth percentile estimated for student i would mean “the 

percentile of i among the present 8th graders whose 7th grade scores from last year are the 

same as student i's 7th grade score from two years ago”. This quantity is easier to 

understand and more useful in the diagnostic process than the former.

 If we let Q  to denote the τth quantile, equation (3.1) can also be expressed as

      QY i , t∣Y i , t−1= t
t

Y i , t−1      i=1, ,n t=8,9,10              (3.2) 

The expected conditional 100 th percentile of the current score distribution given past 

scores is obtained by simply plugging the coefficient estimates into the right-hand side of 

(3.2). Compared with the method for obtaining conditional percentiles based on OLS 

regression, the QRM approach is much easier and saves the fine-tuning procedures in the 

cases of non-normality. For a sufficiently large set of values of  , the estimated values 

of QY i , t∣Y i , t−1 summarize the complete distribution of student achievement in 

grade t given their scores in the previous grade. 

To account for sampling variability, it is important to construct confidence intervals 

for the estimated conditional percentiles. The bootstrap method introduced in section 

2.5.4 is suitable for this purpose. Besides constructing confidence intervals and testing 

the hypotheses that model parameters are equal to zero, the bootstrap method can also be 

                                                                                                                                      62



used to test whether the coefficients of the predictor(s) vary significantly across different 

quantiles (Hao and Naiman, 2007). This test provides important information about the 

difference in growth patterns of students at different levels of achievement. For 

goodness-of-fit assessment, the method of equation (2.11) can be used, and we will also 

employ the worm plots proposed by Buuren (2007).

Model (3.1) has some advantages over the OLS model for the purpose of 

educational diagnosis as illustrated in section 2.5.3. To sum up briefly, both the estimates 

of the conditional percentiles in (3.1) and the inferences based on these estimates are 

distribution free. Quantile regression estimators may be more efficient than OLS 

estimators when the error terms are non-normal, they are robust to outliers, and they 

naturally accommodate heteroscedasticity. These are convenient properties for studying 

educational data that usually have outliers and non-constant variance. The fact that QRM 

can characterize the entire conditional distribution of the outcome is important because 

we aim to make a diagnosis for every student, especially those in the lower tail of the 

distribution, and not just the average student. Before applying the QRM results, however, 

densities of score distributions need to be checked to ensure that QR estimators have 

adequate properties at the specific quantiles. 

3.2.2  Choice of Covariates

Model (3.1) is a lag-1 model, but it is certainly possible to include more past scores 

as predictors to form lag-2 or lag-3 models etc. The lag-2 models are specified as

    Y i , t=t
t ,1

Y i , t−1t , 2
Y i , t−2ei , t

   i=1, ,n t=9,10 ∈0,1  

(3.3)     where the parameters are interpreted similarly as in (3.1).  It is a problem of 
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balance to choose the number of past scores to be included in the QR model. On the one 

hand, including more past scores may significantly improve model fit and increase the 

power of diagnosis, since student growth percentiles are estimated within more 

homogeneous groups. An F test in the analysis of deviance can be used to determine 

whether it is the case for our data. On the other hand, we also have to consider the 

potentially serious disadvantage of multicollinearity. If the regressors are highly 

correlated with each other, which the past scores very likely are, the over-fitted model 

could produce inconsistent estimates (Weisberg, 2005). In this thesis, we primarily focus 

on the lag-1 models since they are the simplest ones for construction of the conditional 

growth chart. They also have larger sample sizes than the lag-2 or lag-3 models, because 

they only require two years of scores. Lag-2 models are also estimated in chapter 4, and 

results are used for school comparison in the next chapter. 

One potential problem with the lag-1 models is that the student growth percentiles 

estimated based on these models may not be completely comparable. Let P g8∣g7 denote 

the estimated growth percentiles of grade 8 conditioning on scores of grade 7, and let

P g9∣g8 and P g10∣g9 have similar interpretations. Suppose P g8∣g7 Pg9∣g8 for a specific 

student, we are not completely sure what it means, since the two quantities are 

conditioned on different groups of students. In order to estimate comparable growth 

percentiles we specify the “common condition” models:

       Y i , t=t
t

Y i , mint−1e i , t
   i=1, ,n t=8,9,10 ∈0,1  

(3.4)     where the parameters are interpreted similarly as in (3.1). In model (3.4), scores 

of grade 8, 9, and 10 are all regressed on grade 7 scores, thus producing growth 
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percentiles P g8∣g7 , P g9∣g7 and P g10∣g7 . For any given student, the three quantities are 

conditioned on the same group of students and are therefore completely comparable. If, 

for example, P g8∣g7 Pg9∣g7 for a specific student, we know the student made more 

progress in grade 9 than in grade 8 within the group which started from the same position 

in grade 7. Models of equation (3.4) are also estimated in chapter 4, but since these 

models usually suffer from lack-of-fit compared with the lag-1 or lag-2 models, their 

results are not used extensively in the analysis of student growth. 

Past academic achievement is by no means the only important predictor of a 

student's current achievement. Theoretically many other predictors can and should be 

included in (3.1) to improve model fit. Among the observed variables in our dataset, for 

example, ethnicity might significantly correlate with current scores even when past scores 

are held constant. In practice, whether to include additional covariates in (3.1) depends on 

the objectives of the model. 

For diagnosis of individual students, we believe that prior test scores are the only 

relevant conditioning variables as explained earlier. Including other covariates such as 

ethnicity would be equivalent to setting different academic standards for different 

demographic groups.

When the model is not used to compute conditional percentiles, including other 

relevant covariates may be meaningful. For example, adding ethnicity as a fixed effect 

intercept and testing its significance is a relatively sophisticated way of detecting and 

quantifying an achievement gap. With a simple comparison of mean scores in different 

ethnic groups at grade 8, for example, the achievement gap can be detected, but it is the 
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estimation of a cumulative gap, i.e. it indicates the achievement gap between ethnic 

groups by grade 8. There is no information about when this gap started to form and when 

it widened or narrowed. On the other hand, using the grade 8 model defined in (3.1), 

because scores from the previous grade are held constant, the estimated fixed effect for 

ethnicity is the gap of academic growth that occurred in grade 8. Moreover, if the slope 

coefficient is also allowed to vary with ethnicity, we can compare not only the average 

growth in grade 8 between different ethnic groups but also the distributions of growth in 

grade 8 between ethnic groups. This is very useful information for educational 

administration, research, and policymaking.

Another aspect of model specification that needs to be discussed is linearity. A non-

linear QR model usually fits the data better than a linear one, especially considering the 

existence of outliers discussed in figure 3.1. Wei et al. (2006) model the nonlinear 

relationship between age and height by using a cubic B-spline basis as predictors instead 

of age itself, and achieved excellent model fit. In fact, the QR models can be made 

arbitrarily close to the data if we are willing to use a more liberal B-spline basis. In doing 

so, however, we may be modeling sampling and measurement errors as well as the true 

trend of data. It is not undesirable if our sole objective is to produce accurate descriptive 

statistics, but if we also want to make inferences based on the models and use the results 

to make projections for later cohorts, it is better to have models that are less sensitive to 

sampling noise. This is not to say that the linear models are always more generalizable 

than the nonlinear ones. We choose to focus on linear models in this thesis because the 

data do not demonstrate systematic departure from linearity (see figure 4.1), and also 
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because linear models are easier to interpret and provide a starting point to understand the 

growth chart method. 

3.3 Adjusting for Measurement Error

Measurement error is associated with all test scores. The models proposed in this 

chapter use test scores as both predictor and response variables. It was mentioned in 

section 3.1.1 that standard errors of measurement (SEM) are estimated in all grade levels 

in this state assessment program. In fact, they are reported at a grid of scale scores with a 

spacing of 25 points. Since the SEM vary at different scale scores, they are called the 

conditional SEM. Figure 3.2 plots the reported conditional SEM against scale scores in 

grades 7, 8, 9, and 10. The plots show that, in each grade, the amount of measurement 

error within some ranges of scale scores are non-negligible. How do the measurement 

errors impact the results of the QR models? And how can we minimize this effect? 

In this section we begin by explaining the effect of measurement error on the 

estimation of simple OLS models, and then extends these results to QR models. We 

proceed to examine some methods that correct for the estimation bias caused by 

measurement errors. We finally focus on the simulation-extrapolation (SIMEX) method 

that corrects for measurement error induced bias for both the OLS and QR models. 

3.3.1 Types of Measurement Errors

In both classical test theory and item response theory, a student's true score is 

defined as the expected value of the measurement she has obtained, the expectation being 

taken over the hypothetical set of parallel or “nominally parallel” measurements (Lord 

and Novick, 1968, p. 173). The measurement error is defined as the discrepancy between 
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the observed score and the true score. Two important properties of the measurement error 

follow from this definition. First, the errors are additive, meaning the observed score is 

the sum of the true score and error. Additive and non-additive errors have very different 

effects on analysis results and need different treatments. Second, the expected value of 

the measurement error is zero. Carroll et al. (2006) call it unbiased measurement error. 

Besides these properties, Lord and Novick (1968, p. 493, p. 509) also concluded that a 

sufficient condition for the measurement errors on a test to be distributed independently 

of true score on the same test is that the observed scores are not artificially bounded. 

3.3.2 Measurement Error in the Dependent Variable

Additive unbiased measurement error in the dependent variable is usually 

considered to be a minor problem in regression analysis, since the error simply gets 

absorbed into the regression residuals as long as it is not correlated with the covariates 

(Ladd and Walsh, 2002; Abrevaya and Hausman, 2004). Carroll et al. (2006), after 

studying this type of error in detail, claims that additive, unbiased, and homoscedastic 

response measurement errors only increase variability of the estimated coefficients in 

linear and nonlinear regressions and thus renders statistical tests less powerful. No 

estimation bias is introduced by this type of measurement error. Moreover, they show 

that even if the response measurement error is heteroscedastic, which is likely to be the 

case in model (3.1), it only changes the form of the residual variance function and would 

not lead to additional bias if the model is specified to accommodate heteroscedastic 

residuals. These conclusions are drawn from OLS and generalized linear models, but are 

also readily extended to quantile regression models. 
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3.3.3 Measurement Error in the Independent Variables

When measurement error affects the predictor variable(s), the problem becomes 

more complex. Consider a simple OLS regression:

                                   Y=01 X e                 (3.5) 

where X is the only variable measured with error, and X= Ẋv where X is the 

observed variable, Ẋ represents the true value that is not observed, and v is the 

measurement error. As mentioned earlier, Lord and Novick (1968) argue that 

measurement errors and true scores are assumed to be and usually are independent of 

each other, i.e. Cov  Ẋ , v =0 . Therefore Cov X , v =Cov  Ẋv ,v =v
2 where

v
2 is the variance of the measurement error. In short, the observed scores are 

correlated with the measurement errors. Now consider the model that we are really 

interested in, i.e. the model that contains the true variable instead of the observed one:

                         Y=̇0̇1 Ẋ ė=̇0̇1 X ė−̇1 v                      (3.6) 

where ̇0 and ̇1 are the intercept and slope coefficients in the measurement error free 

model, and ė−̇1 v  is the composite residual of model (3.6). Since X and v are 

correlated with each other, it follows naturally that X and ė−̇1 v  are correlated 

with each other, too. In OLS models, the situation that one or all of the covariates are 

correlated with the model residuals is usually called endogeneity, and it causes bias and 

inconsistency in the estimates of all the model parameters, not just the coefficient of the 

endogenous variable. In other words, using error-contaminated observed scores instead of 

the true test scores as predictors leads to endogeneity in the OLS model, in which case 

the parameter estimates are biased.
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The effect of covariate measurement error in simple OLS regression is a well-

studied topic. Inconsistency of parameter estimation in these models can be directly 

calculated. Estimation bias in such models is called attenuation, which refers to the fact 

that slope estimates are biased in the direction of zero. In multiple regression, covariate 

measurement error leads to the same problem of endogeneity and cause estimates to be 

biased, but unlike simple OLS, the coefficients estimates in multiple regression are biased 

in unknown directions. Depending on the number of predictors measured with error and 

the extent of multicollinearity present in the predictors, the effects of measurement error 

may vary. Real relationships may be hidden, observed data may exhibit false 

relationships that are not present in error-free data, and even the signs of estimated 

coefficients may be different from those of the true coefficients (Fuller, 1987).

3.3.4 Adjusting for Covariate Measurement Error—Instrumental Variable

Various methods have been proposed to correct for measurement error induced 

bias in OLS models. One of the most established methods is the instrumental variable 

(IV) approach (Carroll et al., 2006; Wooldridge, 2002). In the context of model (3.3), an 

observable instrumental variable for the error contaminated X would be a variable Z

that fulfills the following requirements. First, Z must be uncorrelated with the model 

error e . Second, Z must also be uncorrelated with the measurement error v . And 

third, Z must be correlated with the true variable Ẋ . 

The IV technique is often implemented by the two-stage least-squares method. In 

the first stage, we regress the endogenous X on the instrument Z and other 

exogenous independent variables if there are any. Let the fitted values from this 
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regression be denoted as X . In the second stage, model (3.5) is estimated, except that 

the values of X are replaced by X . The slope coefficients thus estimated will be 

consistent for the true coefficients. A proof of this consistency can be found in 

Wooldridge (2002). In this process, only a minor correction needs to be made on the sum 

of squared residuals in the second stage model for the estimation of the standard errors of 

the parameter estimates. 

Ladd and Walsh (2002) provide a good example of adopting the IV method to 

adjust for measurement error contained in test scores. In their value-added model, 

students' fifth grade scores are predicted from their fourth grade scores, and the third 

grade scores from the same subjects are used as an instrumental variable for the error-

contaminated fourth grade scores. This  choice of IV, according to the authors, fulfills the 

conditions mentioned above, since the third grade scores are clearly correlated with the 

fourth grade scores, but are presumably independent of the measurement errors contained 

in the fourth grade scores. It is not demonstrated in the paper, however, whether 3rd grade 

scores are uncorrelated with the errors of the original model. It could be argued that 3rd 

grade scores do not provide any information about 5th grade score that 4th grade scores 

have not already provided, but this claim remains to be tested.

In our dataset, the only possible choice of instrumental variable is scores from 

earlier grades as in Ladd and Walsh (2002). The problem with this approach is that 

students with only two waves of scores will be dropped from the models. Considering 

that our goal is to make diagnosis for every individual student for whom we have more 

than one measurement, this is not an ideal method. Moreover, there is evidence in our 
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data that scores from non-consecutive grades are still correlated with each other, which 

means that scores from earlier grades may not fulfill the requirements for instrumental 

variable. Later in this section, we introduce a method to adjust for covariate measurement 

error that works for both OLS and QR models and does not create any more missing 

value problems than we already have.

3.3.5 Measurement Error in Quantile Regression

Compared with ordinary regression and generalized linear models, the effects of 

measurement error on QRM are much more poorly understood. Since the estimates of 

QRM parameters do not have closed form expressions, it is hard to derive inconsistency 

results due to measurement error in an analytic form. Chesher (2001) provides some 

insight into this problem by working out a second order Taylor expansion of the error 

contaminated conditional quantiles around the error-free conditional quantiles, and thus 

approximating the bias of parameter estimation. He shows that when the quantile 

regression model contains only one covariate, the slope estimate tends to be flattened by 

the covariate measurement error. In other words, the attenuation effect is also present in 

single-predictor quantile regression. In the case that quantile regression function is 

nonlinear, covariate measurement error would dampen the curvature of the error 

contaminated regression function relative to the error free function. Covariate 

measurement error also tends to interact with the preselected quantiles  ,∈[0,1] so 

that the error contaminated conditional quantile functions may not be parallel to each 

other even if the error free quantile functions are parallel. 

To our knowledge, studies of the methods of correcting for measurement-error-
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induced bias in QRM are scant. Chesher (2001) develops a method which greatly reduces 

estimation inconsistency for error contaminated linear quantile regression models based 

on his results of the approximation of the measurement-error-induced bias. But the 

method only works for regressions with a single covariate and parallel slopes across 

quantiles (i.e. the residuals of the model are homoscedastic). Schennach (2008) 

introduces the instrumental variable method for dealing with covariate measurement error 

in QRM. The author proves consistency for the IV estimators which follow the same 

rationale as for IV for OLS models. 

3.3.6 Adjusting for Covariate Measurement Error—The SIMEX Method

Cook and Stefanski (1994) proposed a simulation-based method of estimating and 

reducing bias due to measurement error. The method, which is called simulation 

extrapolation (SIMEX), has since gained much popularity among statisticians and 

biostatisticians for its simplicity and generality (see, for example, Carroll et al., 2006; 

Carroll et al., 1999; Kuchenhoff, et al., 2006). It is ideally suited to models with additive 

measurement error in the covariates when the measurement error variance is known or 

can be reasonably well estimated. 

The basic idea of the method is to add simulated additional measurement error with 

increasing variance to the original data in a resampling-like stage, identify a trend of 

measurement error-induced bias versus the variance of the added measurement error, and 

extrapolate the trend back to the point with no measurement error. This algorithm does 

not help us to derive an analytic form of the measurement error-induced bias, which is 

perhaps one of its drawbacks. But what makes the method powerful is its wide 
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applicability. The technique lends itself easily to measurement error models of the 

simplest form, and “because the method is completely general, it is also useful in 

applications when the particular model under consideration is novel and conventional 

approaches to estimation with the model have not been thoroughly studied and 

developed” (Cook and Stefanski, 1994). Considering that conditional standard errors of 

measurement are well estimated and routinely reported for standardized tests used in 

educational accountability systems, the SIMEX method seems to be a good fit for our 

data and our methodology.

3.3.6.1 Basic rationale and algorithm of the SIMEX method

 To illustrate the SIMEX algorithm in detail we again consider model (3.5) where 

the observed covariate X is error-contaminated, and the measurement error variance is

v
2 . Let  denote the vector of the coefficients in the error-prone model, and let

true denote the vector of the true parameters in the error-free model, i.e. =0 ,1 , 

and true=̇0 , ̇1 . The estimate of  is denoted naive , and the final result of the 

SIMEX algorithm, which is an estimate of true , is denoted simex . 

The procedure starts from the simulation stage where additional data sets are 

created with the predictor containing increasingly larger measurement error 1v
2 , 

where λ usually ranges between 0 and 2. Within each simulated data set, a naive is 

produced ignoring the existence of measurement errors. Theoretically, the bigger the 

measurement errors are, the farther away naive is from true . In fact, naive should be 

a function of λ. If we could extrapolate the value of this function to the point where
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=−1 , this value would correspond to the measurement error variance

1v
2=0 , and thus we obtain simex which is our estimate of the true parameters.

The implementation of the SIMEX algorithm is straightforward. First, choose a 

set of λ values. In our case, we choose =1/4, 2/4, ,8 /4 . For each value of  , 

create B datasets each of which contains a new error-prone predictor: X =XU

, where U is a randomly-generated variable from the distribution N 0, v
2 , or

N 0,  v
2 when the variance of the measurement error is not known but estimated. For 

expositional ease, we only consider the case when v
2 is known. It can be shown that 

the variance of X  conditional on the true values Ẋ would be 1v
2 . The 

new variable X  is called a remeasurement of X, and the newly-created datasets with 

inflated measurement errors are called remeasured data. 

With each of the B remeasured data sets, a naive  ,b b=1, , B is 

estimated from model  (3.5) ignoring the measurement error, and for each value of  , a

naive  is obtained which is the sample mean of the B naive  ,b values. The 

purpose of using the sample mean for extrapolation instead of the individual naïve 

estimates is to reduce the sampling variation in the simulation process which may 

compound the measurement error variance and mask the bias trend.

At this point we have a series of values for naive  which is a function of λ. 

Figure 3.3 (a) and (b) presents the dependence of naive  on λ for a simple OLS 

regression and a simple quantile regression respectively. The average estimate at each λ 

value is generated with B=200 . The naive intercept and slope estimates in both OLS 
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and QR models appear to have a strong relationship with λ.

Theoretically, an asymptotic true function   of  exists which can be 

directly extrapolated back to the true parameters (Stefanski and Cook, 1995). In reality, 

this true function usually remains unknown and has to be approximated. There are many 

possible choices for the extrapolation function. The usual candidates include the linear 

extrapolant, the quadratic extrapolant, and the rational extrapolant (Carroll et al., 2006). 

The linear extrapolant function is defined as:            

                               lin=12                      (3.7) 

The simple quadratic extrapolant function is:

                                Q =123
2                       (3.8) 

And the rational extrapolant function is:

                                RL =1
2

3
                             (3.9) 

where 1 , 2 and 3 are the function parameters to be estimated. Functions (3.7) 

to (3.9) can be estimated as the usual linear and non-linear least-square models with the 

values of  and  being dependent and independent variables respectively. And 

the conventional tools of model diagnostics can be applied to assess model fit. Results 

from applications and simulations as well as theoretical analysis suggest that the SIMEX 

estimator derived from (3.9) usually contains less bias than those derived from (3.7) and 

(3.8), but the linear and quadratic extrapolants, being more conservative in correction for 

bias, may have less variability (Carroll et al., 2006). 

Figure 3.4 plots naive  against λ for the slope coefficient in a QR model at
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=0.25, 0.5,0.75 . As in figure 3.3, the average estimate at each λ value is generated 

with B=200 . The “naive est” dot in each plot that lies at λ = 0 is the original naïve 

estimate of the slope before applying simulation and extrapolation. The straight line in 

each plot represents the linear extrapolation, and the “simex lin” dot that lies at λ = -1 is 

the SIMEX estimate of the slope based on linear extrapolation. Similarly, the curve in 

each plot represents the quadratic extrapolation, and the “simex quad” dot that lies at λ = 

-1 is the SIMEX estimate of the slope based on quadratic extrapolation. The true slope in 

all three plots is equal to 1. Figure 3.4 shows that the SIMEX estimate based on either 

linear or quadratic extrapolation is much closer to the true value than the original naïve 

estimate, and the quadratic extrapolation produces a less biased estimate than the linear 

extrapolation in each of the three cases. 

3.3.6.2 The SIMEX method in some special cases—heteroscedastic measurement error 

and multiple error-prone predictors

The algorithm described above can easily accommodate heteroscedastic 

measurement error. Figure 3.2 shows that the standard errors of measurement in our data 

are not constant over different test score values, which means that instead of using v
2

to denote the measurement error variance, we should denote the measurement error 

variance corresponding to each xi by v i

2 . The estimate of this quantity, v i

2 , is 

reported for the test at each grade level at a grid of xi values as mentioned earlier. To 

accommodate this heterogeneity, a variable ui is randomly-generated from the 

distribution N 0, v i

2  corresponding to each xi , and thus the remeasurement of X,
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X =XU , is created where U is a vector of ui i=1, ,n . The rest of the 

procedures stay the same as in the case of homogeneous measurement errors. 

In figure 3.5, we simulate a data set with heteroscedastic measurement error in the 

predictor. The measurement error variance corresponding to each predictor value is equal 

to its absolute true value  v i

2=∣x.truei∣ . The left graph in figure 3.5 plots Y against the 

error-free predictor with quantile regression lines at 3 different quantile values, and the 

right graph plots Y against the predictor containing heteroscedastic measurement error 

with quantile regression lines. The data points in the graph containing measurement error 

appear to be much more dispersed, especially at the lower and higher ends of X, and the 

quantile regression lines are all attenuated toward zero. Figure 3.6 shows the SIMEX 

correction for slope estimates using the same data as figure 3.5. The three plots 

correspond to quantiles =0.25, 0.5,0.75 . In each plot, the straight line represents the 

linear extrapolation and the red curve represents the quadratic extrapolation. The “simex 

lin” dot and the “simex quad” dot mark the SIMEX estimates of the slope based on the 

respective extrapolation method, while the “naive est” dot marks the naïve estimate. The 

figure shows that both SIMEX estimates are closer to the true value than the naïve 

estimate, and the quadratic extrapolation leads to the least biased estimate. 

The SIMEX method is also applicable when more than one regressors are error-

prone. In this case, the computer-generated errors U would have multivariate normal 

distribution with zero mean and the same variance-covariance matrix as that of the 

measurement errors contained in the regressors. The number of remeasured datasets 

needs to be greatly increased to match the increase of dimensions of the simulation. The 
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extrapolation procedures would remain the same. 

3.3.6.3 Estimating the variance of the SIMEX estimators

Asymptotic results are hard to derive for the SIMEX estimators. Simulation 

studies have been presented to show that they are nearly asymptotically unbiased and 

efficient for logistic regressions and different types of nonparametric regressions (Cook 

and Stefanski, 1994; Carroll et al., 1999). 

Resampling techniques such as bootstrapping (i.e. drawing randomly with 

replacement from the current sample) or Jackknifing (i.e. using subsets of available data) 

can be implemented to estimate the standard errors of the SIMEX estimator at the price 

of some additional computational burden (Stefanski and Cook, 1995; Carroll et al., 2006, 

p. 110). For the study in this thesis, however, bootstrapping is impractical. In order to 

achieve sufficient accuracy in estimating student growth percentiles, we estimate the 

quantile regressions at 99 different quantiles. Due to the large sample sizes of our data 

and to the computationally intensive simulation stage, applying the SIMEX method to the 

QR models at each grade level takes a few weeks. Bootstrapping the SIMEX method 

would then entail months of computation time. As a result, we choose to rely on the 

theoretical results for estimating the variances of the SIMEX estimates. 

Two quantities are important in the variance estimation. The first is v 2 , 

which denotes the mean of variances of naive  ,b b=1, , B averaged over a 

large B. The second quantity is s
2  , which denotes the sample variance of

{naive  ,b}b=1
B . Stefanski and Cook (1995) show that, under a mild smoothness 

condition and when B is very large, extrapolation of the difference, v 2−s
2  to λ = 
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-1, provide an unbiased estimator of the variance of the SIMEX estimate. While this 

variance estimation is developed in the context of homoscedastic measurement errors, 

Carroll et. al. (1996) argue that it can also be used as an approximation of the SIMEX 

estimator variance when measurement errors are heteroscedastic, and it is precisely what 

will be done in the next chapter.

3.4 Random Effect

As mentioned in section 2.5.3, residuals are assumed to be independently distributed 

in QR models although they are not required to be identically distributed. The 

independence assumption is almost certainly violated with our dataset due to its nested 

structure, a well-known characteristic of educational assessment data. Individual students 

are nested within classrooms and schools, and academic achievement and growth of 

students in the same classrooms and schools are likely to be correlated due to the effects 

of teachers, schools, neighborhoods, and peers. In order to take this clustering into 

account, a random effect of classrooms or schools can be added to model (3.2).

For student i at grade t and school j, the 100 th conditional quantile of her score 

given past score(s) is estimated by:

QY i , t , j∣Y i , t−1=t
t

Y i , t−1u t , j , i=1, , n t=8,9,10 j=1, , m  

(3.10)            where u t , j is the random effect for school j. The distribution of this 

random term is generally assumed to be N 0,u , t
2  . It can also be assumed to have 

other distributional forms if evidences are available. The reason why u t , j does not have 

a superscript τ is because it is considered to be a random draw from a distribution 

assumed to be known, which is not τ-specific. All other terms are defined the same as in 
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(3.2). 

Koenker (2005) regards fixed and random effects QR model as the “twilight zone of 

quantile regression”, not because the idea is new. What makes model (3.10) challenging 

is its estimation. The fundamental dilemma is that the estimation of regular QRM is not 

based on distributional assumptions but the estimation of random effects has to be 

achieved through such assumptions.

Progress in the likelihood approach to quantile regression was made in the field of 

Bayesian QR. Yu and Moyeed (2001) showed that, irrespective of the actual distribution 

of the data, the Bayesian estimation of QR parameters can proceed based on the 

likelihood function of  the asymmetric Laplace distribution (ALD) (also see Koenker and 

Bassett, 1978). A random variable U is said to follow the ALD if its probability density is 

given by  

                                      f u =
1−


exp − 
u−

                (3.11) 

where u is a specific value of U, 01 ,  is the location parameter of the ALD 

function, σ is the scale parameter, and  is defined in equation (2.8). It can be shown 

that the minimization of the loss function (2.8) with respect to ξ is exactly equivalent to 

the maximization of (3.11) with respect to μ. Therefore the estimation of the  th 

quantile of the outcome in QR is equivalent to the estimation of the location parameter

 of a τ-specific ALD density function.

Based on this conclusion, regardless of the error distribution of the QR model, the 

likelihood function of the data for a given  can be written as
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P y i , t , j∣t
 ,t

 ,t , u t , j , y i , t−1=
1−
t

exp −
y i , t , j−t

−t
 y i , t−1−u t , j

 t
  

where  t is the standard deviation of the residual, and the other parameters are 

explained in (3.6). The posterior distribution of the model parameters given the data is 

proportional to the above likelihood function:

Pt
 ,t

 ,t ,u t , j∣y i , t , j , y i , t−1∝
1−
t

exp − 
yi , t , j−t

−t
 y i , t−1−u t , j

t
  

                                                              (3.12)   

A Metropolis-Hastings algorithm can be implemented to sample from this joint 

distribution and estimate the full posterior distributions for each of the parameters. 

Geraci and Bottai (2007) also utilized the ALD and proposed a quasi-Bayesian 

Monte Carlo EM algorithm to estimate quantile regression with random effects. Assume 

that the outcome Y ij conditional on all the model parameters  plus the random effect

u j has the distribution f Y ij∣ , u j which is an ALD, and assume that

u j~N 0,u
2 . It can be shown that the posterior distribution of the random effect

u j conditional on the model parameters and Y ij has the core:

                            f u j∣Y ij ,= f Y ij∣ ,u j f u j∣ u
2              (3.13) 

Setting an initial values to η and u
2 , a Markov Chain Monte Carlo sampling technique 

can be used to sample from the distribution of (3.13). The likelihood f Y ij∣ , u j can 

then be updated substituting u j with the samples. After that the maximum likelihood 

estimates of η is obtained which maximilze the updated f Y ij∣ , u j . The next 

iteration will start with sampling from f u j∣Y ij , again with the updated η. The 
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iterations go on until the parameters reach convergence. The authors' simulation study 

shows that their estimates have good properties and have much lower mean squared error 

than the estimates from regular QR models without random or fixed effects when the data 

is nested.

In order to explore the estimation of the QR models with random effects, we adopt 

the full Bayesian approach1. Non-informative normal priors are chosen for the model 

intercept and slope, and non-informative uniform priors are chosen for the standard 

deviations of the model residual and the random effect. Starting values of these 

parameters are decided by a random draw from their prior distributions. A Metropolis-

Hastings algorithm is implemented with 5,000 iterations and 2,500 burn-in. We conduct a 

simulation study to evaluate the performance of the Bayesian estimators. Data is 

simulated from the model y ij=13⋅x iju jij . We fix the distribution of the random 

effect u j at N(0,1), and let the distribution of the model residual ij vary between a 

standard normal distribution and a t-distribution with degrees of freedom of 3. The model 

is estimated at =0.25, 0.5,0.75 . Table 3.2 presents the results from the simulation 

study. In table 3.2, 0 and 1 referring to the intercept and slope respectively, QR 

refers to the QR model which ignores the nested structure of the data and does not 

include a random effect, and QRRE refers to the QR model with random effect.

The simulation is conducted with 500 replications in each scenario. Bias is 

calculated with

1 Geraci and Bottai (2007) produced their results with a C program. A new program is written in R based 
on their algorithm for this thesis. Unfortunately, the program is extremely inefficient in computation. As 
a result, we choose the full Bayesian approach as the only practical alternative.
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                   bias  k=
1

500∑r=1

500

 k
r −k for k = 0,1, where k is the true value2 for 

the parameter. Mean squared error (MSE) is calculated with

      mse k =S 2  k [ bias  k ]
2= 1

500∑r=1

500

 k
r − k

2[ bias k]
2 where

k=
1

500∑r=1

500
k
r   and S 2 k is the Monte Carlo variance of the estimates. 

Results in table 3.2 show that the nested structure of the data does not seem to 

produce large amount of bias in the simple QR models in the first place. The bias of the 

intercept estimates are smaller than 2 percent of the true values, and the bias of the slope 

estimates are still smaller than that. Table 3.2 also shows that QRRE leads to slight 

improvement in the MSE of the slope estimates in comparison to QR, and, in a few cases, 

the QRRE slope estimate has smaller bias than the QR estimate as well. When estimating 

the intercepts, however, QRRE invariably leads to greater bias and higher MSE than QR. 

The exact reason for this result is not clear. We hypothesize that using more informative 

priors for the parameters and increasing the number of replications will lead to better 

results of the QRRE method. This hypothesis warrant future investigation. For the present 

analysis, since the simulation study does not show disturbing effect of data clustering on 

the estimation of QR models, and since the available QRRE method does not have a clear 

advantage over the simple QR models, we choose not to apply the QRRE method to the 

analysis of student academic growth.

2 The true value for the slope is always one. The true value for the intercept, however, changes at 
different quantiles. For example, when τ = 0.25, the true value is equal to 1 plus the 0.25th quantile of 
the total error, u jij . Similar calculations are extended to other quantiles. This way of choosing 
the true values is confirmed through correspondence with Matteo Bottai.   
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3.5 Summary

In this chapter we have summarized the characteristics of the state testing program 

and the cohort of longitudinal test scores obtained from it. We introduced the QR model 

to estimate student growth percentiles, and also discussed model specifications including 

the choice of predictors and linearity. The impact of measurement error contained in the 

test scores on the estimation of the QR models is then analyzed in detail. Several methods 

of adjusting for measurement error-induced bias are briefly reviewed, and the SIMEX 

method is proposed to be used in combination with the QR model for data analysis in this 

thesis. Several graphs with simulated data are presented to explain and demonstrate the 

performance of the SIMEX estimators with QR models. Lastly, we discuss the nesting 

structure of the data, its possible consequences on the QR model estimation, and two 

options of dealing with this problem. After a small-scale simulation study with the 

Bayesian QR model with random effects, we decide not to apply this method to analyze 

student academic growth in the next chapter.

Chapter 4 Results

In this chapter we present the results of the QR models combined with the SIMEX 

method and discuss their methodological significance and practical implications. In the 

first section, we present results from the basic QR models, interpret the results and 
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explore their implications for students' growth patterns. We also analyze the goodness-of-

fit of the models and present results from two QR models with different specifications. 

The second section is devoted to the results of the SIMEX method. The section starts 

with a simulation study which demonstrates the performance of the SIMEX method 

applied to QR models relative to the naive QR models ignoring measurement error in the 

predictor(s). Next we present the results of the SIMEX method applied to the QR models 

with the longitudinal testing data, and compare the results before and after the SIMEX 

correction. We also explain the practical meaning of the SIMEX method results. In the 

third section, we present the conditional growth charts based on the QR and SIMEX 

models. The growth percentiles estimated for each student using these models are also 

analyzed. The final section of this chapter shows some examples of using the conditional 

growth chart method to diagnose student and school growth. 

4.1 The QR Models ignoring measurement error

4.1.1 The Lag-1 Models—Results and Interpretation

Table 4.1 summarizes the results for the lag-1 QR models specified in equation 3.1. 

The table includes intercepts α, slope coefficients β, and goodness-of-fit statistics R1

for seven different quantiles =0.03,0.1,0.25,0.5, 0.75,0.9,0.97 . Sample sizes in 

each of the three models and results from tests of equality of slopes are also presented.

In these models, the values of the independent variables are centered about their 

means for ease of model interpretation. Thus the τ-specific intercept α is the predicted 

scale score for students who got the average score in the previous year and grew at 

growth percentile τ in the current grade. The slope coefficient  is interpreted as the 
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change in the τth quantile of the response variable corresponding to a unit change in the 

predictor. If the β's across all quantiles were equal to each other in a particular model, it 

would mean that the conditional distributions of the outcome change their locations but 

preserve their shapes as the predictor value changes, which is one of the central 

assumptions of OLS regression—homoscedasticity. We test the equality of slopes using 

the test proposed in Koenker and Bassett (1982). Results from the joint tests of equality 

of slopes, presented in Table 4.1, show that the seven slopes are not equal to each other in 

any of the three models. In fact, further tests show that each pair of slopes in a given 

model differ significantly from each other (the results are not presented). It means that 

changes in the predictor is associated with not only location shifts but also shape 

alterations in the response distributions. 

Several patterns are notable in Table 4.1. First, all the coefficients are significantly 

above zero, as the coefficient estimates are orders of magnitude greater than their 

standard errors. It means that past scores are significant predictors of current scores at all 

seven conditional quantiles. Second, the intercepts are increasing functions of τ, since, 

among all students who obtained the average score in the previous year, those who grew 

at higher growth percentiles should naturally have higher fitted outcome values. 

The third pattern is that the slopes decrease as τ increases in all three models. To 

understand the implications of this pattern, suppose the interquartile range of grade 8 

scores (i.e. score at the 75th percentile minus score at the 25th percentile) is r given that 

grade 7 score equals x. When the grade 7 score increases to x + 1, the estimated 75th 

percentile in grade 8 increases by 0.81 unit while the estimated 25th percentile increases 
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by 0.87 unit according to the slope estimates at τ equals 0.75 and 0.25 in the model of 

grade 8 scores regressed on grade 7 scores. Thus the interquartile range becomes (r + 

0.81 – 0.87) = (r – 0.06). This example shows that, when the slope at the .25th quantile is 

steeper than that at the .75th quantile, the interquartile range of the outcome reduces when 

predictor value increases. Since this statement holds true for other quantiles as well, and 

since slopes at lower quantiles are always steeper than those at higher quantiles, we can 

conclude that the variability of the conditional distributions of the outcome decreases as 

the predictor value increases. The data and quantile regression lines in Table 4.1 are 

plotted in Figure 4.1 (a), (b), and (c), and the shape change of the response distributions 

are apparent—the scatter plots become narrower at the higher ends of the predictors.

In order to analyze the location and shape shifts of the response distributions in more 

details, we examine QR coefficients of the lag-1 models for a more dense sequence of 

quantile values. Specifically, coefficients are estimated at 97 quantile values

=0.02,0.03, ,0.97,0.98 . Figure 4.2 provides a graphical view for the intercept 

and slope estimates as functions of τ. The 95% confidence envelopes around each curve 

of coefficients are also drawn, which are very thin relative to the ranges of the graphs. 

The horizontal line in each plot marks the coefficient of OLS regression for the particular 

model, also with 95% confidence intervals. 

The plots in Figure 4.2 show that summarizing the data with OLS regressions alone 

would lead to the loss of much information regarding shape shifts. The plots repeat the 

patterns in Table 4.1 that the intercepts are monotonically increasing with τ while the 

slopes are monotonically decreasing with τ, with their confidence envelopes far above 
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zero. It confirms our conclusion that students with higher past scores are less varied in 

their current scores than those with lower past scores. Figure 4.1 shows that most of the 

outliers occur in the lower ends of the predictor values, which is perhaps one of the major 

factors that contribute to the difference of variability, but why do outliers mostly occur 

among low-achieving students? What are the reasons behind the difference of variability 

in both achievement and growth between low-scoring and high-scoring students?

We provide several possible explanations for the above-mentioned phenomenon. 

The first one is that the difference of variability is mostly an artifact of test design. As 

figure 3.2 suggests, measurement errors in the lower end of score distribution are much 

larger than those in the higher end. This may be the reason why the conditional growth 

distributions of the low-achieving students are more dispersed than those of the high-

achieving students. 

To evaluate the plausibility of this hypothesis, we choose a group of low-scoring 

students in grade 7 with a fixed variance and a group of high-scoring students in grade 7 

with similar variance. We follow the variance change of these two groups through grade 

10, and also observe the reported standard errors of measurement associated with their 

scores in each grade. Specifically, the groups chosen are students who scored between 

709 and 719 in grade 7 (709 is the 90th unconditional percentile in grade 7 in this cohort), 

and those who scored between 541 and 551 in grade 7 (551 is the 10th unconditional 

percentile in grade 7 in this cohort). Table 4.2 (a) reports the sample sizes, sample 

standard deviations of scores, and range of standard errors of measurement (SEM) of the 

two groups in grades 7, 8, 9, and 10. Both groups have some attrition. The attrition rate of 
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the low-achieving group is much higher than that of the high-achieving group. In section 

3.1.2, we noted the high attrition rate in the whole cohort—by the end of grade 10, the 

cohort loses almost 1/5 of its population size in grade 7, and only about 10 percent of this 

loss is due to retention. We also noted the demographic change of the cohort—the 

percentages of White and Asian students increase from grade 7 to grade 10, while the 

percentages of Black and Hispanic students decrease during the same period. Sample 

sizes reported in Table 4.2 (a) provide a piece of evidence that the student loss mostly 

occurred in the low-achieving end. While we do not have sufficient data to study the 

causes and consequences of the attrition, it remains a very important research topic for 

anyone interested in understanding the true educational achievement and growth in the 

state. 

The two groups chosen in Table 4.2 (a) have similar sample variances in grade 7, 

since a range of 11 is imposed on the scores of both groups. After grade 7, the variance of 

the low-achieving group in any given grade is much greater than that of the high-

achieving group, but the SEM ranges of the low-achieving group are also much larger. 

We check the distributions of SEM and find that in each grade, there is a small number of 

students in the low-achieving group with unusually large SEM. Many of these students 

have the lowest obtainable scale scores which, as discussed earlier, are especially error-

prone. We exclude the students with large SEM from the low-achieving group so that the 

upper bound of SEM in this group is no larger than the upper bound of SEM in the high-

achieving group. Table 4.2 (b) reports sample sizes, standard deviations, and SEM ranges 

for the same two groups after the exclusion. The distributions of SEM in the two groups 
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are now alike judging from histograms (which are not presented). Variances of scores in 

the low-achieving group excluding outliers are much smaller than those with outliers, and 

yet they are still consistently larger than variances of the high-achieving group over the 

years. Tables 4.2 (a) and (b) show that larger measurement errors in the lower end of 

score distributions explains part but not all of the variance difference between low and 

high achievers, and measurement error does not explain why most of the outliers occur 

among low-achievers, either.  

A second candidate for the explanation of the variance difference is that it is a 

selection/accumulation effect. Since academic achievement is accumulative, and since 

becoming a high-achiever by grade 7 requires long-term consistent effort, it is likely that 

high-achievers have more stable and similar growth histories, and tend to continue 

growing stably as well. Low achievement, on the other hand, may be a result of unsteady 

levels of effort in many cases, and will predict heterogeneous growth paths in the future, 

too. 

The best way to back up this argument would be to follow the same cohort from the 

3rd grade to 10th grade. Third graders supposedly have not established their growth 

patterns, thus both high-achievers and low-achievers in the 3rd grade may follow quite 

diverse growth paths in the next year. After several years of selection process, high-

achievers become a more and more uniform group and their courses of growth should 

also be less varied. In short, if the selection/accumulation effect exists, the variance 

difference in conditional growth distributions between high-achievers and low-achievers 

should become more pronounced along the years. Since we only have four years' worth 
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of data, this analysis cannot be done. In Figure 4.2, we do see that the downward curve in 

(f) is steeper than the curves in (b) and (d), which means that shape shift is more 

substantial in that year than those in the earlier years. Nevertheless, there is no noticeable 

pattern along the years, and the data we have do not provide strong support for the above-

mentioned argument. 

For a third possible explanation, we hypothesize that there are some 

social/behavioral factors that make high-achievers resemble one another and low 

achievers each grow in his own way. Suppose high academic achievement requires the 

assembly of adequate family socio-economic status, parental guidance, instruction, 

personal ability, personal motivation, and peer influence, and the breaking-down of any 

of these factors may lead the student astray, then naturally the high-achievers form a 

more homogeneous group than other students. Again, we do not have enough data to test 

this theory. 

Besides the above-mentioned hypotheses, the ceiling effect among the high-

achievers also appears to be a possible explanation of the shape shift in the conditional 

distributions. However, if ceiling effect exists among the high-achievers, then floor effect 

should also exist among the low-achievers, and it is not clear why the the former should 

be more influential to lead to smaller variability among the high-achievers. Since this 

topic is not the central focus of this thesis, we leave these questions for future 

investigation. 

4.1.2 Goodness-of-fit

The goodness-of-fit statistics R1 presented in Table 4.1 is defined in equation 
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2.11. It stands for the magnitude of residuals in an intercept-only model that is reduced 

by including the predictors, and ranges from 0 to 1 as the familiar R square in OLS 

regression. According to the results in Table 4.1, adding the previous year's scores as 

predictor reduce about half of the sum of weighted absolute residuals for each model and 

at each quantile. The .97th quantile appears to have the worst fit among all seven quantiles 

in the three models, yet its R1 value is still quite high (around 0.4). 

Buuren (2007) introduces a worm plot to diagnose fit in quantile regression. The 

worm plot is essentially a Q-Q plot. The rationale is that, if the model has good fit, the 

empirical cumulative probability of the estimated conditional percentiles must be close to 

the τ's. The difference between worm plot and R1 in assessing goodness-of-fit is that 

the former assesses model fit across quantiles and at fixed predictor values, while the 

latter is across predictor values, but τ-specific. 

To construct the worm plots we estimate the QR models at 99 quantile values 

=0.01,0.02, ,0.98,0.99 . Let xi denote a specific predictor value, let 

denote the estimated model coefficients at a particular τ, and let F y  x i ' 
 denote the 

empirical quantile corresponding to the predicted value xi ' 
 . It is straightforward to 

obtain the value of F y  x i ' 
 —among all the students who have the same predictor 

value as xi , calculate the proportion of them whose outcomes are below xi ' 
 . The 

last step is to simply plot the difference between F y  x i ' 
 and τ for selected 

predictor values. If the model has perfect fit, the worm plot should be a straight 

horizontal line at zero.   

                                                                                                                                      93



Figure 4.3 (a), (b), and (c) are worm plots for the lag-1 QR models. The x-

coordinates of the points in the worm plots are the standard normal z-scores 

corresponding to the τ's. We convert the quantiles to z-scores simply to make the units on 

the axis larger and more understandable. Similarly, the y-coordinates are the z-scores 

corresponding to the difference between F y  x i ' 
 and τ. Each subplot in each page 

contains goodness-of-fit results aggregated over a range of predictor values. The subplots 

are ordered from the lower-left panel to the upper-right panel corresponding to increasing 

predictor values. Below each 4 by 5 worm plot, there is a 4 by 5 table that presents the 

predictor range and sample size for each subplot. For example, in figure 4.3 (a), the cell 

in the 4th row and 1st column of the accompanying table is “320-519 [2422]”. It means 

that the subplot in the 4th row and 1st column of the worm plot depicts model fit for the 

predictor values ranging from 320 to 519, which covers 2,422 students. 

 Although the predictors are centered in table 4.1, the predictor values in the tables 

of the worm plots are non-centered scale scores. Typically, standardized deviations 

between F y  x i ' 
 and τ that are below 0.2 are considered small3 following the rules 

of thumbs of regular effect sizes (e.g. Cohen's d). The plots show that, for all three 

models, except for the extreme predictor values and at the extreme quantiles, there are 

generally quite decent fit between the models and the data. 

4.1.3 Model results with other specifications 

Table 4.3 summarizes the results for the lag-2 models defined in equation (3.3). 

Table 4.4 summarizes the results for the “common condition” models defined in equation 

3 According to my correspondence with Stef van Buuren
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(3.4). The predictors in both models are centered about their means. The tables include 

estimates of intercepts, slope coefficients, and goodness-of-fit statistics R1 for seven 

different quantiles. 

Table 4.3 shows some similar patterns as those in table 4.1. First, the intercepts are 

increasing functions of τ, which means that for students who got the mean scores in both 

grades (t – 1) and (t – 2), their predicted scores in grade t increase as their growth 

percentiles increase. Second, 1 is a decreasing function of τ in each model, which 

means that, when holding scores from grade (t – 2) constant, as scores in grade (t – 1) 

increase, the variability of the conditional distributions of grade t scores decreases. The 

same pattern does not repeat for 2 , i.e. when holding scores from grade (t – 1) 

constant, scores in grade (t – 2) do not have a linear relationship with the variability of 

the conditional distributions of grade t scores. Moreover, 2 is always smaller than

1 for any given grade or any given τ value, which means that grade (t – 2) scores are 

not as closely related to grade t scores as grade (t – 1) scores do. Table 4.4 demonstrates 

all the patterns in table 4.1, and share similar interpretations. Results from the models in 

tables 4.3 and 4.4 are used in the analysis of student and school growth in later sections. 

In terms of model fit, the R1 statistics show that the common condition models in 

table 4.4 have worse fit than their corresponding models4 in table 4.1, due to the longer 

distance in time between the outcomes and the predictors in the former models. The lag-2 

models have better fit than both the lag-1 models and the common condition models. The 

4 By “corresponding models” we mean models that have the same outcome, e.g. the model of grade 9 
scores regressed on grade 7 scores in table 4.4 corresponds to the model of grade 9 scores regressed on 
grade 8 scores in table 4.1.
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differences in R1 between the lag-2 and the lag-1 models are small (around 0.03) at 

lower quantiles and become greater (around 0.05-0.07) at higher quantiles (i.e. for τ > 

0.75). All the differences, including the smallest ones, are significant according to the F 

test results in analysis of deviance (which are not presented in the table)5. The test is not 

done for any other pair of models because they are not nested.  

The worm plots show that the lag-1 linear models have lack-of-fit in the tails of the 

predictors. Figure 4.1 also suggests that there may be non-linearity, especially in the 

lower tails of the predictors. We choose to focus on linear lag-1 models in this thesis, 

again, because they are easier to interpret and provide a starting point for understanding 

the growth chart method. 

4.2 Applying the SIMEX Method

4.2.1 Simulation Study

We conducted two simulation studies to evaluate the performance of the SIMEX 

method with respect to models with one and two error-prone predictors. In each study, we 

used sample sizes of 400 at three different quantiles, 0.25, 0.5, and 0.75. To generate the 

data for the first study, we used the model

                              Y=1X.true  and X=X.truev             (4.2.1)

where X.true is the true value of X, the observed predictor, v is measurement error 

and is drawn from a standard normal distribution, and  is the model residual. We 

consider two different probability distributions for  : the standard normal, N(0,1), and 

the chi-square with 2 degrees of freedom, 2
2 , which is highly skewed. With each 

5 The test is done between the lag-1 model of grade 9 scores regressed on grade 8 scores and the lag-2 
model of grade 9 scores regressed on grade 8 and 7 scores across all τ values. Similarly, the test is also 
done between the lag-1 and lag-2 models with grade 10 scores as outcomes. 
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distribution of  we also let the variance of X.true change from 4 to 96. When

X.true has a variance of 4, measurement error accounts for 20 percent (1/5) of X's total 

variance. When X.true has a variance of 9, 10 percent of the predictor's total variance 

is due to measurement error.    

We simulated 2000 replications from each combination of the model residual and 

X.true distributions. In each replication, a quantile regression of Y on X is estimated 

ignoring the measurement error, and SIMEX estimates of intercepts and slopes are also 

obtained based on linear and quadratic extrapolants respectively. Table 4.5 presents the 

estimated bias averaged over the simulations for each k , k=0,1 ,

                                                bias  k=
1

2000∑r=1

2000

 k
r −k                     (4.2.2) 

where k is the true value for the parameter. According to equation (4.2.1), the true 

value for the slope is always one. The true value for the intercept, however, changes at 

different quantiles. It is equal to 1 plus the 25th, 50th, or 75th percentile of the model 

residual  respectively. 

We also reported the estimated mean squared error (MSE):

         mse k =S 2  k [ bias  k ]
2= 1

2000∑r=1

2000

 k
r − k 

2[ bias  k ]
2               (4.2.3)

where k=
1

2000∑r=1

2000
k
r  . With equation (4.2.3) we are only calculating the 

approximation of MSE, since we use the Monte Carlo variance of the estimates. Still, it is 

6 The 400 values of X.true are generated from a normal distribution with a fixed mean and a variance of 4 
or 9. In this simulation study we let the variance of X.true change, because we believe that the extent of 
bias in the naïve estimation and the performance of the SIMEX estimators depend ultimately on the 
ratio of variances between the predictor and its measurement error, not the variance of the measurement 
error alone. 
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meaningful to compare this MSE for different estimators to judge their relative 

performance in efficiency and bias. For a more intuitive understanding of the results, 

Figure 4.4 plots the density of the 2000 naïve and SIMEX estimates for each scenario 

with normally distributed model residuals. The scenarios for model residuals with chi-

square distributions look quite similar to Figure 4.4, and are not presented.  

To generate the data for the second study, we used the model

Y=1X 1.trueX 2.true , X 1=X 1.truev1 , and X 2=X 2.truev2 , where

X 1.true~N 1,9 , and v1~N 0,1 . We let the distributions of X 2.true vary from 

N(1,4) to N(1,16), corresponding to v 2~N 0,1 and v 2~N 0,2 respectively. The 

model residual  is drawn from the standard normal distribution. Like in the first study, 

we simulated 2000 replications from each scenario, and in each replication, a quantile 

regression of Y on X 1 and X 2 is estimated ignoring the measurement error, and 

SIMEX estimates of intercepts and slopes are also obtained based on linear and quadratic 

extrapolants. Table 4.6 presents the estimated average bias and MSE calculated with 

equations (4.2.2) and (4.2.3).

Table 4.5 shows that, first of all, regressing the dependent variable on error-

contaminated predictors does cause considerable amount of bias. When measurement 

error accounts for 20 percent of the observed predictor's total variance, average bias in 

the slope is about 20 percent of the slope's true value at any given quantile. When 

measurement error accounts for 10 percent of the observed predictor's total variance, 

average slope biases are about 10 percent of their true values across quantiles. The slope 

biases are all negative, meaning that the slopes are biased toward zero. This is the 

                                                                                                                                      98



attenuation effect discussed in the previous chapter. The intercept biases are negative at .

25th quantile in all cases, but monotonically increase at higher quantiles and become 

relatively large positive numbers at .75th quantile. The difference between intercept at .

75th quantile and .25th quantile is the interquartile range of the conditional distribution of 

the outcome when the predictor is equal to zero. Thus we see that the interquartile range 

is overestimated when measurement error is present in the predictor and ignored in the 

model estimation. Also since the slopes at different quantiles are almost parallel to each 

other, this overestimation of interquartile ranges (and possibly variances) is extended to 

other predictor values as well. These patterns of biases in the intercepts and slopes do not 

seem to vary significantly when the model residuals change from a normal distribution to 

a highly skewed chi-square distribution.

The results in Table 4.5 also show that the SIMEX estimators perform much 

better than the naïve estimators in terms of bias and MSE across the simulated scenarios 

except in the intercepts at the 0.25th quantile. The SIMEX estimates of slopes are still 

attenuated, and the intercept estimates show that the interquartile ranges (and possibly the 

variances) of the outcome conditional distributions are still overestimated, but the amount 

of these biases are greatly reduced. For example, in the case where measurement error 

accounts for 20 percent of the observed predictor variance, the quadratic SIMEX 

estimator reduce the slope biases from 20 percent to about 3 percent of their true values 

across quantiles. 

We see in Figure 4.4 that the SIMEX estimates have larger variability than the 

naïve estimates, but they still reduce MSE in most cases due to their effective reduction 
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of the biases. More specifically, Figure 4.4 shows that the SIMEX estimates based on 

quadratic extrapolations (SIM.q) have larger variability than the SIMEX estimates based 

on linear extrapolations (SIM.lin), and the naïve estimates have smaller variability than 

the SIMEX ones. In terms of bias, both Table 4.5 and Figure 4.4 show that the SIM.q 

estimators are generally more effective in reducing bias than the SIM.lin estimators, but 

the former does not necessarily have smaller MSE than the latter. When the variance of 

measurement error is 10 percent that of the observed predictor, the SIM.lin estimators 

generally have similar MSE as the SIM.q estimators, and the former perform better than 

the latter in a few cases. When the measurement error variance is 20 percent that of the 

observed predictor, however, the MSE of the SIM.lin estimators are usually larger than 

those of the SIM.q estimators. 

Table 4.6 shows similar results. First, the naïve estimates of slopes are attenuated 

for both error-prone predictors, and the attenuation effect is smaller for the predictor 

which contains a smaller proportion of measurement error. Biases in the intercept 

estimates show that the interquartile range of the outcome conditional distribution is 

overestimated, just like in the single-predictor models. Second, the SIMEX estimators 

perform better than the naïve estimators in bias and MSE except for the intercept at .25th 

quantile in the first scenario. The SIM.q estimator is more effective than the SIM.lin 

estimator in reducing biases in all cases, but neither estimator show a clear advantage 

over the other in terms of MSE.

 4.2.2 Applying the SIMEX Method to the State Assessment Data

We now apply the SIMEX method to the lag-1 QR models with the state assessment 
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data. We adopt methods discussed in section 3.3.6 to accommodate heteroscedastic 

measurement error and to compute the standard errors of the SIMEX estimates. The latter 

task requires that a large number of remeasured data sets are simulated at each value of λ 

(i.e. B is large). In this application, we let B = 500, which leads to about 400 hours 

computing time on a 2.10 GHz processor for each of the 3 lag-1 models at

=0.01,0 .02, ,0.99 . The SIMEX estimates of the intercepts and slopes of the 

models are obtained, again, at =0.01,0 .02, ,0.99 , but their standard errors are only 

estimated at =0.04,0 .05, , 0.96 , due to the computational instability of variance 

estimation at extreme quantile values. Quadratic extrapolations are used to obtain both 

the SIMEX estimates and their standard errors.

Figure 4.5 presents a comparison of the SIMEX estimates to the naïve estimates of 

QR lines. The seven blue lines represent the SIMEX estimates, and the red lines are the 

naïve QR estimates plotted in Figure 4.1. Each set of lines corresponds to seven different 

quantiles from low to high =0.03,0.1,0.25,0.5, 0.75,0.9,0.97 . The vertical and 

horizontal green lines in each plot mark the cut scores that differentiate “non-proficient” 

from “partially proficient” in the corresponding grades. 

The plots in Figure 4.5 show that the blue lines preserve the pattern of the red lines, 

i.e. there appears to be smaller variability of the conditional outcome distribution at the 

higher end of the predictor than at the lower end of the predictor in each model, which is 

the phenomenon discussed in section 4.1.1, even though the blue lines appear to be less 

spread out than the red ones across the predictor values.

It is also clear in the plots that all the SIMEX regression lines have steeper slopes 

                                                                                                                                      101



than the lines without correction, which indicates that the SIMEX method has probably 

corrected for attenuation to a certain extent. In short, the comparison of SIMEX estimates 

and naïve estimates with the reading assessment data generally resembles the comparison 

with simulated data—the SIMEX correction leads to lower estimates of intercepts, higher 

estimates of slopes, and smaller variability of the conditional outcome distribution at any 

given value of the predictor.

The practical consequence of the SIMEX corrections is quite complex. We now 

illustrate an aspect of this change by the dashed and dotted lines in Figure 4.5. In the plot 

of grade 8 scores against grade 7 scores, there are two vertical dashed lines and two 

vertical dotted lines. The dashed line in the left marks the crossing point of the .97th red 

QR line and the horizontal green line. Any student who scored below this dashed line in 

grade 7 needed to grow at a rate higher than the 97th conditional percentile to reach partial 

proficiency in grade 8. Thus the left dashed line define the group at high risk based on the 

simple QR model—most of this group stay non-proficient for the two years. The dashed 

line in the right marks the crossing point of the .03th red QR line and the horizontal green 

line. Any student who scored above this dashed line in grade 7 needed to grow at a rate 

lower than the 3rd conditional percentile to drop to non-proficiency in grade 8. Thus the 

right dashed line define the “secure” group based on the simple QR model—most of this 

group stay at least partially proficient for the two years. The left dotted line marks the 

crossing point of the .97th blue QR line and the horizontal green line and define the high-

risk group based on the QR model with SIMEX correction. The right dotted line marks 

the crossing point of the .03th blue QR line and the horizontal green line, and define the 
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“secure” group based on the QR model with SIMEX correction.

The SIMEX estimates define a larger high-risk group and a larger not-at-risk group 

compared to those defined by the simple QR model (i.e. the low-achieving are more 

likely to stay low-achieving, and the high-achieving are more likely to stay high-

achievers). The group in between, i.e. the group that had a moderate chance of changing 

their status through growth (whether it is to grow from non-proficient to partially 

proficient or the other way around), has a smaller size based on the SIMEX estimates 

compared with that based on naïve estimates. In short, students' trajectories seem to be 

more strongly determined by their achievement histories and have relatively less chance 

of changing classifications according to the SIMEX estimates in comparison to the 

conclusions based on the naïve estimates.

The SIMEX method leads to slightly different estimates of individual student's 

growth percentiles, but it does not change students' relative positions in the conditional 

distributions. In other words, a student who appears to grow faster than another student 

will remain the faster grower after we adjust for measurement errors. What the SIMEX 

method changes is the difference between the two students' growth rate (i.e. how much 

faster one is than the other). For example, student A scored 585 in grade 9 (just above the 

partially proficiency cut score in grade 9) and 607 in grade 10 (just above the partially 

proficiency cut score in grade 10). Student B scored 585 in grade 9 and 673 (above the 

proficiency cut score in grade 10). Based on the naïve QR estimates we conclude that 

student A grew at the 45th conditional percentile, and student B grew at the 97th 

conditional percentile in grade 10. However, after applying the SIMEX method we 
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estimate that student A grew at the 54th conditional percentile, and student B grew at the 

98th conditional percentile. After the SIMEX correction, reaching partial proficiency in 

grade 10 is estimated to be a more difficult task for those starting at 585 in grade 9 than 

before. The difference between the two students' growth is still big, but not as big as that 

estimated previously. In general, the SIMEX correction may play a role in how individual 

students are diagnosed and how challenging and attainable objectives are set. We will 

explore this further later in the chapter.

4.3 Analysis of Growth

In the previous sections, we have examined the simple QR models and QR models 

combined with the SIMEX method. In this section, we will study the results of these 

models as measures of student academic growth. In the first part of this section, a 

conditional growth chart is presented and explained. In the second part, we focus on the 

estimated growth percentiles of the students and analyze their patterns. 

4.3.1 The Conditional Growth Chart 

Figure 4.6 presents conditional growth charts based on fitted values of the lag-1 

models. The left subplot is drawn based on the simple QR results, while the right subplot 

is based on the SIMEX results. The starting points in both subplots are chosen to be the 

scale score of 597, which is the 25th unconditional percentile of grade 7 reading scores in 

2003. Three different growth paths at the 25th, 50th, and 75th conditional percentiles are 

drawn from the starting point in each subplot. The blue lines mark the proficiency cut 

scores in grades 7-10, while the red lines mark the partial proficiency cut scores in these 

grades. 
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The gray areas around the growth paths represent confidence bands. For example, in 

each subplot, the gray band around the lowest growth path at year 2004, or grade 8, is the 

95% confidence interval of the projected value7 for a student who started from the score 

of 597 in grade 7 and grew at the 25th conditional percentile. The same band at year 2005 

has a slightly different interpretation. It marks the range of the 95% confidence intervals 

of the fitted values for students who scored within the band in 2004 and grew at the 25th 

conditional percentile. The band at year 2006, similarly, represent the range of 95% 

confidence intervals of the projected values for those who scored within the band in 2005 

and grew at the 25th conditional percentile. For a student who started in grade 7 at the 

score of 597 and followed the 25th conditional growth path every year, the probability of 

falling within the lowest gray band in grade 10 is obviously smaller than 0.95. The exact 

probability is hard to determine, but 0.953 serves as a very conservative lower bound. 

In other words, for a student who started in grade 7 at the score of 597 and grew 

consistently at the 25th conditional percentile for three years, the probability of falling 

within the lowest gray band in grade 10 is higher than 0.86.  The other confidence bands 

7 To estimate the variance of the fitted/projected values in QR, we simply bootstrap the lag-1 QR models 
with 2000 bootstrap samples. To calculate the fitted value variance based on the SIMEX results, the 
CPU time required for bootstrapping is beyond the limit of our resource, and an approximation based on 
theoretical results is adopted. Let Y  denote the fitted values at the τth conditional quantile, and let 
X denote the predictor:                     since

Var  Y  ∣X=xi =Var  0
1

  xi∣X=x i=Var  0
∣X=xi  xi

2 Var  1
∣X= xi2xi Cov  0

 , 1
∣X= xi  

and since Var  0
 ∣X= xi and Var  1

 ∣X= xi are estimated during the SIMEX computation as 
explained in section 3.3.6, we only need to calculate Cov  0

 , 1
 ∣X= xi to get an estimation of the 

fitted value variance. Stefanski and Cook (1995) point out that the variance-covariance matrix of all 
parameters can be estimated using the simulation-extrapolation method. In the process of our SIMEX 
computation, however, the extrapolation of the remeasurements of the covariance between the 
parameters seem to be quite problematic. We therefore use the Cov  0

 , 1
 ∣X= xi estimated in the 

naïve lag-1 QR models as an approximation. Since the covariance is always negative, and since its 
absolute value in the naïve models is usually slightly smaller than that for the SIMEX results (as shown 
in our simulation study, but not presented), this approximation probably leads to an overestimation of 
the variance and the confidence intervals. Also because the covariance is very small in all cases (<0.01), 
the extent of the overestimation is likely to be small.
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around the 50th and the 75th conditional growth paths follow the same interpretations. 

The most noticeable difference between the two subplots lies in the width of the 

confidence bands. It is reasonable that the width of the bands should increase along the 

years since it accounts for the accumulation of projection standard errors in the series of 

lag-1 models. This trend is much more obvious in the SIMEX plot than in the naïve QR 

plot, because all the parameters in the former model have larger standard errors than 

those in the latter. In a sense, the SIMEX method acknowledges the uncertainties 

represented by the measurement errors and incorporate them into the uncertainties of its 

projections, whereas the naïve QR model does not take these types of uncertainties into 

account. The point projections of the two methods, however, hardly differ from each 

other in figure 4.6, although it appears that students who follow the 50th conditional 

percentile growth paths consistently are projected to be barely above proficiency in the 

left plot and slightly below proficiency in the right plot. 

Both subplots show the benefit of constant effort. For a student who started from 

well below proficiency in grade 7, three years of consistent growth at the 50th or the 75th 

conditional percentiles carries her very close to or well above proficiency in grade 10. On 

the other hand, the plots also demonstrate the attainability of the standards. As mentioned 

in chapter 3, the state in question uses the cut score of partial proficiency as the sole 

standard in its definition of AYP. Considering that, for a student who started from the 25th 

unconditional percentile in the state, even three years of consistent low growth at the 25th 

conditional percentiles ensures her to be comfortably above partial proficiency by grade 

10, this standard is not unreasonably challenging for most students in the state. 
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Of course, numerous different conditional growth charts can be drawn with different 

starting points and different growth percentiles. Figure 4.6 is just one of them. These 

charts can be used to evaluate the difficulty of reaching certain objectives for people 

starting at certain levels. But for diagnosis of individual students' growth, it is better to 

estimate growth percentiles for each student.

4.3.2 Student's Growth Percentiles

Growth percentiles are estimated for every student based on the lag-1 QR models 

with and without the SIMEX correction. The specific estimation algorithm is explained in 

chapter 3. With the estimated growth percentiles, we first seek to answer the following 

question—how typical are the growth paths depicted in Figure 4.6? 

Let P g8∣g7 , P g9∣g8 , and P g10∣g9 denote the estimated growth percentiles of 

grades 8, 9, and 10 conditioning on scores of grade 7, 8, and 9 respectively. If the growth 

percentiles from different years are independent of each other, it is easy to calculate the 

joint probability of several years' growth paths. For example, the probability of growing 

at or below the 75th growth percentile for three years is 0.753 , and the probability of 

growing at or above the 75th percentile for three years is 1−0.753 . Table 4.7 presents 

the probabilities of growing at or above the 25th, 50th, and 75th conditional percentiles for 

one year, two years, and three years. The probabilities are calculated theoretically 

assuming independence, empirically based on naïve QR results, and empirically based on 

SIMEX results. The empirical results are consistently lower than the theoretical ones 

when it comes to two or three years of joint probabilities, indicating dependence between 

growth percentiles from different years. We find from this table that at least two growth 
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paths depicted in Figure 4.6 are quite atypical. According to the SIMEX results, slightly 

over a quarter of students grew at or above the 25th conditional percentile for three years 

continuously; only about 6 percent of students grew at or above the median rate for three 

years continuously; and growing at or above the 75th conditional percentile consistently 

for three years indicate some truly extraordinary effort—only one student out of every 

200 could do it. 

In fact, the growth percentiles from two consecutive years are negatively correlated, 

which explains why consistent growth is so unusual. The correlation between P g8∣g7

and P g9∣g8 is -0.324 based on naïve QR results, and -0.382 based on SIMEX results. 

The correlation between P g9∣g8 and P g10∣g9 is -0.267 based on naïve QR results, and 

-0.318 based on SIMEX results. The correlation between P g8∣g7 and P g10∣g9 is positive 

but quite small, below 0.06 for both methods. 

In order to visualize the relationships between growth percentiles in different years, 

we plot the conditional density of growth percentiles in Figure 4.7. Specifically, students 

are divided into four groups based on their growth percentiles in grade 8 ( P g8∣g7 ), 

below 25, between 25 and 50, between 50 and 75, and at or above 75. Density of growth 

percentiles in grade 9 ( P g9∣g8 ) is then plotted for each of these groups, and these 

density plots make up the first row of plots in figure 4.7. Similarly, the second row of 

plots depict the density of grade 10 growth percentiles ( P g10∣g9 ) for four groups of 

students whose grade 9 growth percentiles ( P g9∣g8 ) range from [1, 25), [25, 50), [50, 

75), and [75, 99] respectively. The third row consists of density plots of P g10∣g9
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similarly conditioning on P g8∣g7 . 

Figure 4.7 shows that students who grow at below the 25th conditional percentile one 

year tend to grow at very high conditional percentiles (the mode is above 90) the next 

year, whereas those who grow at above the 75th conditional percentile one year tend to 

grow at very low conditional percentiles (the mode is close to 10) the next year. Among 

students who have moderate growth percentiles (between 25 and 75), the distributions of 

next year's growth percentiles are almost uniform. The distributions of P g10∣g9

conditioning on P g8∣g7 also look uniform, since growth percentiles from non-

consecutive years have very small correlation. In other words, figure 4.7 shows that there 

is a group of noticeable size who tends to alternate between very low and very high 

growth percentiles from one year to the next. For convenience's sake, we call this group 

of students the “radical growers”. Their growth pattern appears to be a regression to the 

mean effect. 

Several questions need to be answered to understand the alternation between radical 

growths. First, how many percent of students belong to the group of “radical growers”? 

Second, does the phenomenon of fluctuating growth persist if growth percentiles are 

estimated based on lag-2 models or the “common base” models instead of the lag-1 

models? Lastly, do fluctuating growth lead to completely different results compared with 

stable moderate growth?

We answer the first question with Table 4.8, which presents the percentages of 

students whose growth percentiles from consecutive years differ by less than 25, between 

25 and 50, between 50 and 75, and above 75. The left part of Table 4.8 is about the 
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difference between growth percentiles in grade 8 and grade 9, and the right part is about 

the difference between growth percentiles in grade 9 and grade 10. According to the 

results from the simple QR models, about 1/3 of the students who have complete data 

from grades 7-9 have highly fluctuating growth percentiles in grades 8 and 9, i.e. the 

difference between P g9∣g8 and P g8∣g7  is at or above 50. Based on the SIMEX results, 

the percentage of this group is even higher, above 40 percent. Similar conclusions can be 

drawn for growth percentiles in grades 9 and 10. 

By the second question we try to probe the true story behind the swinging growth 

percentiles. We again observe highly fluctuating growth percentiles when the growth 

percentiles are estimated based on lag-2 models instead of lag-1 models, i.e. the 

difference between P g10∣g8 , g9 and P g9∣g7 , g8 is still large for a sizable group. However, 

fluctuations of growth largely disappeared after growth percentiles are estimated based 

on the “common condition” models. Recall that in this type of models, scores in grades 8-

10 are all regressed on grade 7 scores, and the growth percentiles produced from these 

models are therefore all conditioning on the grade 7 scores  Pg8∣g7 , Pg9∣g7 , Pg10∣g7  . 

Figure 4.8 plots the conditional density of the growth percentiles estimated from the 

“common condition” models. Plots in the first row present the density of P g9∣g7 for four 

groups of students—those whose P g8∣g7 is below 25, between 25 and 50, between 50 

and 75, and at or above 75. The second row of plots depict the density of P g10∣g7

conditioning on P g9∣g7 for the same four groups, and the third row consists of density 

plots of P g10∣g7 conditioning on P g8∣g7 . These plots form sharp contrasts to those in 
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figure 4.7. They show that, among students who scored the same in grade 7, those who 

grew at lower percentiles in grade 8 tend to stay in lower percentiles in grade 9 and 10. 

The same pattern is found in students who had higher growth percentiles. 

Figure 4.8 is an evidence that the fluctuations of lag-1 growth percentiles are at least 

partly due to the change of conditioning variables. In Figure 4.9, we specifically choose 

students whose lag-1 growth percentiles are highly fluctuating. The two groups of 

students presented in the two plots in Figure 4.9 fulfill the standards

∣Pg9∣g8− Pg8∣g7∣≥50 and ∣Pg10∣g9− Pg9∣g8∣≥50 , respectively. We draw the distribution 

of difference between P g9∣g7 and P g8∣g7 for the first group in the left plot, and the 

distribution of difference between P g10∣g7 and P g9∣g7 for the second group in the right 

plot. If change of conditioning variables is the only major reason for the lag-1 growth 

percentile fluctuation, both the distributions in Figure 4.9 should have their modes around 

zero. Instead, figure 4.9 shows that both distributions are bimodal with one mode 

between 0 and 50 and the other model between 0 and -50. It means that growth 

fluctuations still subsist, only on a smaller scale, after common conditioning variables are 

used. 

A second conditional growth chart is plotted in Figure 4.10 to help answer the third 

question—whether the “radical growers” and the stable moderate growers end up with 

similar achievements. Three different growth paths starting from the same score in grade 

7 are depicted in the chart. The middle line represents consistent growth at the 50th 

conditional percentile in grades 8, 9, and 10. The lower line represents a growth path that 

alternate between the 25th, 75th, and 25th conditional percentiles, and the higher line 
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alternates between the 75th, 25th, and 75th conditional percentiles in grades 8, 9, and 10 

respectively. The confidence bands around the growth lines are drawn in the same way as 

those in figure 4.6. The plot shows that swinging growth does not necessarily lead to 

different results than stable growth, and that, ultimately, a student's academic 

achievement after several years seems to depend on the sum of growth percentiles across 

the years. For example, in the year of 2005, the three hypothetical students following 

different growth paths had the same sum of growth percentiles for the past two years and 

therefore obtained very similar scores. In the year of 2006, however, their achievement 

diverged. The one who had the highest sum of growth percentiles (i.e. the one who 

follows the 75th-25th-75th growth percentiles) obtained the highest score, and the one who 

had the lowest sum of growth percentiles got the lowest score. 

4.3.3 Summary

In this section, we plot the conditional growth chart and analyzed student growth 

percentiles. We find that a considerable proportion of students (at least 1/3) grow at 

drastically different conditional percentiles (i.e. conditional percentiles that differ by 

more than 50) from one year to the next. This fluctuation of growth demonstrates an 

regression-to-the-mean effect which is not completely gone when the growth percentiles 

are estimated with models of different specifications (such as the lag-2 model and the 

“common condition” model). Moreover, the fluctuating growth could lead to similar 

outcomes as the consistent moderate growth, provided that the ups and the downs are 

balanced. We have gone through analyses of growth percentiles in order to develop a 

diagnosis rule for student academic growth. As we see, low growth percentile in any year 
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should raise alarm but does not necessarily mean that the student is slipping away from 

her original level—she may belong to the “radical growers” that tends to leap forward 

with pauses in between. Two years of continuous low growth percentiles, however, is a 

sign of real risk. Similarly, one year of high growth percentiles should not be the basis of 

reward for individual students or schools, but two years of consistent high growth rates 

indicate truly outstanding merit. 

4.4 Using the Conditional Growth Chart Method to Diagnose Student and School  

Growth

We have discussed the construction and interpretation of the conditional growth 

charts. The patterns of longitudinal growth percentiles have also been examined. In this 

section, we use some real examples of students and schools to demonstrate the diagnosis 

of student and school growth. 

4.4.1 Student Examples

Student 251337 remained below partial proficiency from grade 7 to 10, but made 

tremendous progress during those years. Figure 4.11 depicts an unconditional and a 

conditional growth chart to screen this student's growth. The left plot is an unconditional 

growth chart with 7 different quantile curves at the 0.03th, 0.1th, o.25th, 0.5th, 0.75th, 0.9th, 

and 0.97th unconditional quantiles for this cohort. The proficiency and partial proficiency 

cut scores for each year are also marked by two curves. The four black dots in the plot 

correspond to student 251337's scale scores in the four years. We see in this plot that the 

student made his way from below the 0.03th quantile to somewhere below the 0.1th 

quantile, which does not seem very impressive. And if we evaluate him by his 
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achievement level alone, he has made no progress during the years since he never made 

partial proficiency. With the conditional growth chart on the right, however, we are able 

to reach a completely different conclusion. We plot three different growth paths from 

where the student started in 2003. The three black lines follow steady growths at the 

0.25th, 0.5th, and 0.75th conditional percentiles each year. The student's growth is above 

the confidence band of the highest growth curve. Recall that only 0.5 percent of students 

are able to keep their growth percentiles above 75 for three years continuously, as 

calculated in Table 4.7. This particular student, who is estimated to have grown at the 

84th, 88th, and 91th conditional percentiles in grades 8, 9, and 10, has made an 

extraordinary amount of progress, and should be recognized even though he remained 

non-proficient by the end of grade 10.

Figure 4.12 depicts the growth story for student 561315. He remain proficient from 

grades 7 to 9, and dropped slightly below proficiency in grade 10. Again, we present the 

unconditional growth chart on the left and the conditional growth chart on the right. The 

student got almost identical scores for the four years, therefore his growth path measured 

by the scale scores look undramatic. Even though he dropped from above the 50th 

unconditional percentile in grade 7 to the 25th percentile in grade 10, his parents and 

teachers may not be able to see, from his scale scores or the unconditional chart alone, 

how extremely inadequate his progress has been. In the conditional growth chart, we see 

that the student grew steadily at the 25th conditional percentile each year. There is, in fact, 

about the same proportion of people (0.5 percent) who grew continuously at or below the 

25th conditional percentile as those who grew steadily at or above the 75th conditional 
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percentile. In short, the student's growth path is very rare and indicates serious problems 

in his academic development.

4.4.2 School Comparisons

A school's academic growth can be evaluated using a suitable summary of students' 

growth percentiles, such as the median, the mean, or the whole distribution. Figure 4.13 

presents the boxplots of students' growth percentiles for several schools. We include 10 

high schools in Figure 4.13 (a), with their school numbers at the horizontal axis. The 

boxplots represent the distributions  of the growth percentiles in grade 9 conditioning on 

grade 8 scores. The short horizontal bar in the middle of each box designates the median 

growth percentile8 in the school, and the upper and lower limit of the box are the 75th and 

25th percentiles of the growth percentiles in the school. The highest and lowest bars in the 

plot correspond to the highest and lowest growth percentiles in the schools respectively. 

The notches around each median represent a rough 95% confidence interval of the 

median, calculated based on the asymptotic normality of the median (Chambers et al., 

1983, p.62). So if the notches of two boxes do not overlap it is strong evidence that the 

two medians differ. Smaller schools tend to have wider notches. For example, school 209 

has 6 students in grade 9 and 26 students in grade 10, therefore in plot (a), the notches of 

school 209 are wider than the box itself, and in plot (b), the notches are almost as wide as 

the box. The wide notches are signs that the school sizes are small and results are more 

dependent on sampling fluctuations. 

In Figure 4.13 (b), we plot the growth percentiles of grade 10 conditioning on grade 

8 The median growth percentile in a school is found empirically, i.e. we simply aggregate all the 
conditional growth percentiles in the school in one list, sort them by their values, and find the median. 
The 75th and the 25th percentiles of the growth percentiles are found the same way.
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9 scores for the same 10 schools plus a school 3105. The latter does not have grade 9 and 

cannot be included in plot (a). Comparing (a) and (b), we notice the differences in the 

distributions of the growth percentiles in some of the schools. For example, the 

distribution of growth percentiles in school 24 is positively skewed in (a) and negatively 

skewed in (b). School 1402 and school 8050 demonstrate noticeable change of skewness 

in their distributions of growth percentiles as well. 

We choose school 10 and 3105 for further comparisons. Figure 4.13 (b) shows that 

school 10's distribution of growth percentiles has a much higher median than that of 

school 3105's distribution with non-overlapping notches, and the 25th and 75th percentiles 

of the former are higher than those of the latter as well. School 10 has 196 students with 

10th grade scores, 170 of whom are Hispanic, and 8 are White. State accountability report 

card shows that this school repeatedly fails the AYP reading and math targets (including 

the safe harbor targets) during the years of 2003-06, and is put under corrective action. 

School 3105 has 265 students with 10th grade scores, 245 of whom are White. The school 

was newly opened in the summer of 2004 and has never failed any AYP target in 2005 

and 06. We plot the 9th grade and the 10th grade scores of the students in the two schools 

in Figure 4.14. The seven black lines in the plot are the SIMEX quantile regression lines 

estimated with the whole cohort's data—exactly the same as the blue lines in the third 

plot of figure 4.5. It is clear in the scatter plot that students in school 3105 generally have 

higher academic achievements than those in school 10 in both grades 9 and 10. There 

were also 35 students in school 10 who were retained in the 9th grade in 2006. Figure 4.14 

plots the 9th grade scores in 2006 against the 9th grade scores in 2005 for 33 of them. The 
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other 2 repeaters have missing scores. School 3105 has no repeaters in 2006.

Judging from student achievement or school's AYP targets, school 3105 is a far 

more superior school than school 10, but if the overall student growth in the schools are 

considered, we will reach different conclusions. Figure 4.15 plots the distributions of 

student growth percentiles for the two schools. Plot (a) is the density of growth 

percentiles in grade 10 conditioning on grade 9 scores for the two schools without the 

repeaters. In plot (b), the repeaters of grade 9 are included, i.e. we calculate their 

percentiles of grade 9 scores in 2006 conditioning on their grade 9 scores in 2005, and 

include these conditional percentiles in Figure 4.15 (b). Figure 4.15 (c) plots the growth 

percentiles of the two schools without repeaters based on the lag-2 models, and plot (d) 

present the same growth percentiles with the repeaters by calculating their 9th grade 

percentiles in 2006 conditioning on their 8th and 9th grade scores in 2004 and 05. In other 

words, the grade 9 repeaters are treated as 10th graders in this plot. We are theoretically 

allowed to do this because test scores from different grades are vertically equated in this 

particular state. As discussed in the last chapter, the repeaters should be dropped from the 

present cohort and treated as members of the younger cohort. Here, we include the 

repeaters in the present cohort to obtain a more conservative evaluation of school 10's 

growth. Figure 4.15 shows that, whether the repeaters are included or not, and whether 

the growth percentiles are estimated with the lag-1 or lag-2 models, school 10 has larger 

proportion of students with higher growth rates and smaller proportion with lower growth 

rates compared with school 3105. 

Of course, test score growth should not be the only standard in evaluating a school. 

                                                                                                                                      117



Other factors such as graduation/drop-out rates are equally important. In fact, we have 

also found that 37 students who were in school 10 in the year of 2005 disappeared from 

the data system in 2006. One possible explanation is that they have transferred to schools 

outside of the state, but given that a considerable proportion of them have a record of low 

achievement and low growth rates (three quarters of them are below the 17th 

unconditional percentile in their grade 9 scores, the median of their growth percentile

P g8∣g7 is 26, and their median of P g9∣g8 is 33), it is also highly likely that some of 

them have dropped out from school. The potentially high drop-out rate should be a factor 

in school evaluation, but it does not mean that the particular school is necessarily at fault. 

For example, we notice that the missing group generally has low growth percentile in 

grade 8 before their enrollment in high school 10, which suggest that some of the drop-

out students may be already at high risk when they enter the school.

To sum up, Figure 4.15 shows an example that schools that fulfill the AYP 

requirements are not necessarily demonstrating satisfactory student growth, while schools 

that repeatedly fail the AYP targets are not necessarily demonstrating poor student 

growth, either. Note that our models and results are not causal ones, therefore it is not 

justifiable to conclude that the relatively slow growth of school 3105 students, the 

relatively fast growth of school 10 students, or the potential high drop-out rate of school 

10 students in 2006 are “school effects”. We believe that the growth percentiles estimated 

based on QR models and the SIMEX method proposed in this thesis is a useful tool in 

diagnosing student growth, is an improvement over the AYP or the Safe Habor 

provisions in diagnosing school growth, and provides a good starting point for causal 
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investigations of school effects. 

Chapter 5 Summary and Discussions

5.1 The significance of student growth measurement 

The objective of this thesis is to develop a method to measure student academic 

growth that is sensitive enough to capture small changes, accurate in terms of accounting 

for test measurement errors, and easily interpretable to all stakeholders. As explained in 

the first chapter, the significance of student growth measurement in the educational 

accountability system lies in the following aspects. 

First, teachers, parents, and students themselves need growth measurement to 

diagnose student academic progress in the past and to inform future practices. The 

improvement of instructional and learning strategies and effort relies heavily on 

interpretable, sensitive, and accurate individual diagnoses. 

Second, student growth measurement is the basis of teacher and school 

accountability. Individual growth measurement is a necessary condition for the growth 

measurement at the class or school level, since the latter is simply an aggregation of the 
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former. Class or school growth measurement, again, is a necessary condition for the 

estimation of teacher or school effect. If student growth cannot be measured with 

sensitivity and accuracy, teachers and schools cannot be held accountable on any 

meaningful basis. 

Third, student growth measurement is used in evaluating the achievability of an 

academic goal for different students and schools. There is no doubt that the same 

academic expectation should be held for students across different schools, geographic 

regions, and demographic groups. However, the same expectation entails different 

amount of effort for different students. Proper evaluations must be conducted to assess 

different schools and student groups' probabilities of achieving the goals, and adequate 

assistance must be provided accordingly, otherwise the accountability system can easily 

turn counterproductive by assigning more punishment than assistance to the 

disadvantaged schools/student groups. To estimate the probability of reaching proficiency 

in the 10th grade for a 7th grader, for example, it is necessary to project the student's 

academic achievement to 3 years later. The projection process, described in chapter 2, is 

dependent on the measurement of growth for an older cohort of students who have their 

full longitudinal records available. 

5.2 Conditional percentile as a measure of student growth

Measuring student academic growth is not an easy task. Chapter 2 summarizes 

and discusses some of the usual methods of growth measurement, such as using the 

change of achievement levels (e.g. from “nonproficient” to “proficient”) to measure 

growth, and using the difference of scale scores to measure growth. The former method 
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lacks sensitivity, while the latter is not interpretable and has poor psychometric properties 

(such as low reliability). Based on a long tradition of pediatric practices (Cole, 1988 & 

1994) and recent educational research (Betebenner, 2008), we proposed the concept of 

“conditional percentile” (or “growth percentile”) as a measure of academic growth. The 

conditional percentile is interpretable for all stakeholders as diagnosis of student's 

academic progress (or the lack of it), it can be aggregated at the class or school level to 

form sensitive measurement of class or school growth, and it can be conveniently used to 

project students' future achievement and to estimate the probability of achieving a certain 

goal for a given individual. One of the most attractive properties of conditional percentile 

is that it does not require test scores at different grade levels to be vertically linked.

5.3 Methodological significance

Conditional percentiles are estimated using quantile regression in this thesis 

following the recent breakthrough in the research on the conditional growth chart method 

(Wei, 2004). Compared with the OLS regression, quantile regression makes less 

distributional assumptions about the data. The QR model also estimates the conditional 

percentiles directly, unlike the OLS regression which estimates the conditional mean and 

variance. 

The major methodological contribution of this thesis is the combination of the 

SIMEX method with the QR model to improve the accuracy in estimating conditional 

percentiles. Since conditional percentiles are estimated with standardized test scores, and 

since test scores contain measurement errors, the accuracy of the estimated conditional 

percentiles is compromised, especially for those with very high or very low test scores. 
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Previous research has shown the effect of covariate measurement error on the estimation 

of quantile regression (Chesher, 2001), but few methods have been proposed to correct 

for measurement error-induced bias in QR. We adopt the simulation-extrapolation 

method of Cook and Stefanski (1994) to approach this problem. Results of our simulation 

study show that the SIMEX correction significantly reduce the amount of bias and the 

magnitude of the mean squared errors in the QR estimators resulted from covariate 

measurement errors in most scenarios. 

5.4 Major findings

The fourth chapter is based on the longitudinal data of a specific student cohort 

(i.e. those who were in grades 7 to 10 in the years 2003-06) from a state assessment 

program. We analyzed the results of the simple QR models, QR models with SIMEX 

corrections, and the conditional percentiles produced from these models. There are the 

following major findings.

First, the distributions of growth in any given year are heteroscedastic. We define 

the distributions of growth in a given year as the conditional distributions of the test 

scores in that year given the test scores in the previous year. Heteroscedasticity refers to 

the fact that the distributions of growth have different variances corresponding to 

different test scores in the previous year. Specifically, for the students who scored at the 

lower end in the previous year, the variances of their distributions of growth are larger 

than those of the students who scored at the higher end. By the tests of slope equality in 

the QR models, this difference in variances is shown to be statistically significant. We 

have shown that the heteroscedasticity in the distributions of growth is not completely 
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explained by the heteroscedasticity in measurement errors. The practical implications of 

the heteroscedasticity is that low-achievers tend to follow more heterogeneous growth 

paths than high-achievers do. 

Second, the SIMEX method corrects for attenuation in the QR model due to 

covariate measurement errors. Thus the SIMEX correction leads to steeper slopes and 

lower intercepts, and the estimated inter-quartile ranges of the distributions of growth 

also decreases. The practical consequence is that the number of people who have very 

high estimated conditional percentiles and the number of those with very low conditional 

percentiles both increase, while the number of students with moderate growth percentiles 

decrease. In terms of projection for a younger cohort, the SIMEX correction will lead to 

more students being classified in the “high-risk” group (meaning those who need to grow 

at extremely high conditional percentiles to reach partial proficiency), more in the “low-

risk” group (i.e. those who can reach partial proficiency even with very low conditional 

percentiles), and less in the “moderate-risk” group. Aside from the change in point 

estimation, the SIMEX method also leads to wider confidence intervals in the model 

parameters and predicted values. In other words, the uncertainties of model projections 

increase after taking the measurement errors into account.

Third, a considerable proportion of students (about one third based on the simple 

QR results and more than one third based on the SIMEX results) grow at highly 

fluctuating conditional percentiles from one year to the next. Part of this phenomenon is a 

regression-to-the-mean effect, and part of it is due to model specification. For instance, 

after changing from the lag-1 QR models to the “common condition” QR models for the 
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estimation of the conditional percentiles, the degrees of the fluctuations lessen noticeably.

Finally, we use examples to illustrate the use of the conditional growth chart 

method in diagnosing student growth. The student and school examples show that the 

conditional percentiles contain immediately interpretable information about student 

academic progress, and when aggregated to the school level, they also provide valuable 

information about school growth. This type of diagnostic information is not easily 

obtainable from other sources of growth measurement, such as the change of scale scores, 

achievement levels, and unconditional percentiles. 

Besides diagnosis, the conditional growth chart can also be used for projection. 

Consider a present seventh grader who got the same score as the student in figure 4.11 

did in grade 7. If we are willing to assume that the cohort of the former does not differ 

significantly from the cohort of the latter, the three growth paths in the right plot of figure 

4.11 project the present seventh grader's position in grade 10 based on different levels of 

effort. The projection shows that the student needs to make an exceptional amount of 

consistent effort in order to reach partial proficiency in three years. For a particular 

school that has a large number of students with similar scores, the projection suggests 

that the state needs to provide tremendous amount of instructional support and tutorial 

assistance to the school in question before expecting the school to reach the state 

standards. 

5.5 Policy Implications

To sum up, the conditional percentile as measure of student academic growth 

effectively serves the purpose of diagnosis and projection for educators and policy 
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makers. Based on the analysis of this thesis, the following cautions should be taken when 

adopting this concept in the educational accountability system. First, for each student, it 

is advisable to estimate several conditional percentiles based on different model 

specifications (such as the lag-1, lag-2, and the “common condition” models etc.). The 

different quantities carry different estimation advantages, disadvantages, and slightly 

different information, and will supplement each other to provide more comprehensive 

diagnostic pictures. Second, conditional percentiles from a single year can be used for 

diagnosis but not for accountability. As we have shown, growth fluctuations are 

prevalent. Slow growth during a single year for a student or a school does not necessarily 

mean that the student or school has failed the growth expectations. Longitudinal data 

from several years should be used when judging the growth of a school. Third, the 

accuracy of conditional percentiles is affected by the measurement errors in the test 

scores. Besides improving the reliability of the tests, the SIMEX method can be used in 

combination with the QR models to produce more accurate results.

5.6 Limitations and directions for future studies

The study done for this thesis has many limitations. One of the major 

methodological limitations lies in the fact that we were not able to build a QR model with 

random effects to account for the nested structure of the data. The simulation study 

presented in chapter 3 shows that the Bayesian QR model with random effects does not 

perform well with nested data, the reasons for which are not completely understood. 

More research also needs to be done to understand the exact consequences of nested data 

on the QR model estimation. 
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Another methodological limitation lies in the variance estimation of the fitted 

values of the QR models with SIMEX corrections. As explained in note 7 in chapter 4, 

the estimation of the fitted value's variance relies on the variance estimation of the 

intercept and the slope, and the estimation of the covariance between the intercept and the 

slope. The variance estimation is explained in chapter 3, but the covariance estimation is 

problematic. We used the estimated covariance between the intercept and the slope in the 

naïve QR model to substitute for that in the SIMEX model, which results in an 

overestimation of the fitted value variance. That is to say, the confidence bands in figures 

4.6, 4.10, 4.11, and 4.12 are slightly wider than they should be. More study is needed to 

attain a more accurate and feasible method of estimating the variance of the SIMEX fitted 

values.

With respect to the application of the methodology of this thesis in educational 

accountability, one interesting topic for future research is test score projection using the 

QR model combined with the SIMEX method. We have mentioned that, when projecting 

the current cohort's test scores into the future using results from a previous cohort, an 

important assumption is that the two cohorts have similar distributions of growth. The 

validity of this assumption needs to be studied with more cohorts of testing data. We also 

discussed the linearity assumption of the QR model in chapter 3. While nonparametric 

QR will surely demonstrate better model fit than linear QR when applied to the testing 

data, it is not clear which model is more generalizable and more suitable for projection 

purposes, and this question should be answered in future studies.

Finally, it is emphasized repeatedly in this thesis that the QR models in this thesis 
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do not support causal inferences. The estimated growth percentiles are measures of 

student and school academic growth but do not provide any information about the factors 

contributing to that growth. Is it possible to incorporate the ideas of the value-added 

models in quantile regression and separate school effects from the effects of families and 

neighborhoods? The answer to this question is contingent on the success of building a QR 

model with random effects, but extends further than that. It is a topic for long-term 

investigation in the future. 
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Chapter 2

Figure 2.1  Unconditional Growth Charts of Height and Weight
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Figure 2.2 Comparison of Simple OLS regression and QR

Data simulated in Figure 2.2 (a) and (b):

X~N 1, 4 , e~N 0,1 , Y=1X10.2Xe

Four hundred data points are randomly generated for X and e according to the 

distributional specification.
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Chapter 3

Table 3.1 Descriptive Statistics of the State Assessment Data

Table 3.2 Results from the simulation study to evaluate the performance of the full 
Bayesian estimators of QR models with random effects.
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2003 (G 7) 2004 2005 2006

Number of Students with Non-missing Scores 53210 53225 48788 43352

Percent Male 51.11 51.01 50.77 50.00

Percent Native American 1.07 1.10 1.06 0.94

Percent Asian 2.79 2.82 2.88 3.02

Percent Hispanic 22.70 22.95 22.51 20.49

Percent Black 5.85 5.83 5.61 5.31

Percent White 67.58 67.30 67.95 70.25

Percent Proficient 63.55 65.62 70.04 72.26

Percent Partial Proficient 86.18 88.17 93.07 92.27

402 250 1097

6 9

Number of 1st time repeaters

Number of 2nd time repeaters

Model

QR -0.005 0.041 0.001 0.0006 -0.009 0.062 0.0004 0.0010
QRRE 0.263 0.601 0.0007 0.0003 0.336 2.702 0.001 0.0006

QR 0.021 0.042 -0.0030 0.0005 0.016 0.045 -0.001 0.0006
QRRE -0.036 0.353 -0.0020 0.0003 0.068 0.910 -0.001 0.0004

QR 0.0003 0.046 -0.0002 0.0006 -0.002 0.057 0.002 0.0009
QRRE -0.290 0.512 0.0004 0.0005 -0.272 0.830 0.003 0.0006

τ = 0.25

τ = 0.5

τ = 0.75

bias
0

1

u~N 0,1 ~N 0,1

mse

u~N 0,1 ~t 3
0

1
bias bias biasmse mse mse



Figure 3.1 Distribution of reading scores in grades 7-10 during the years of 2003-06

Figure 3.2 Conditional standard errors of measurement plotted against the scale scores for 
each grade.
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Figure 3.3 (a)  The dependence of  on  for a simple OLS regression

Figure 3.3 (b) The dependence of  on  for a simple QR model at =0.5

Simulated Data: 

Y=01 Ẋ e X= Ẋv   Ẋ~N 1, 9  e~N 0,1    v~N 0,1

0=0 1=1

Four hundred data points are randomly generated for X, v, and e according to the 

distributional specification.
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Figure 3.4 The SIMEX estimates of quantile regression slopes at three different quantiles 
based on linear and quadratic extrapolations compared with the naïve estimate. The true 
slope is 1 for all quantiles. (The average estimate at each λ value is generated with

B=200 . The “naive est” dot in each plot that lies at λ = 0 is the original naïve 
estimate of the slope before applying simulation and extrapolation. The “simex lin” dot 
that lies at λ = -1 is the SIMEX estimate of the slope based on linear extrapolation, and 
the “simex quad” dot that lies at λ = -1 is the SIMEX estimate of the slope based on 
quadratic extrapolation.)

Simulated Data: 

Y=01 Ẋ e X= Ẋv   Ẋ~N 1, 9  e~N 0,1    v~N 0,1

0=0 1=1

Four hundred data points are randomly generated for X, v, and e according to the 

distributional specification.
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Figure 3.5 Quantile regression slopes with error-free predictor and with error-prone 
predictor which contains heterogeneous measurement errors. 

Simulated Data: 
y i=01 x.trueie i , i=1, ,400  , x.truei~N 1,9 , e i~N 0,1 ,
0=0 , 1=1 , x.observed i=x.trueiv i , v i~N 0,∣x.truei∣
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Figure 3.6 The SIMEX estimates of quantile regression slopes at three different quantiles 
with heteroscedastic measurement error in the predictor. The data used is generated in 
Figure 3.5. The true slope is 1 for all quantiles. (The average estimate at each λ value is 
generated with B=200 . The “naive est” dot in each plot that lies at λ = 0 is the original 
naïve estimate of the slope before applying simulation and extrapolation. The “simex lin” 
dot that lies at λ = -1 is the SIMEX estimate of the slope based on linear extrapolation, 
and the “simex quad” dot that lies at λ = -1 is the SIMEX estimate of the slope based on 
quadratic extrapolation.)
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Chapter 4

Table 4.1 Results of the Quantile Regressions of reading scores in grades 8, 9, and 10 
regressed on scores one year earlier (standard errors in brackets)

*** P < 0.001
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τ Sample Sizes N &
Model 0.03 0.1 0.25 0.5 0.75 0.9 0.97  Tests of Equality 

 of Slopes F
α 591.58 615.59 633.91 651.54 668.56 684.78 703.21 N = 52471

Grade [.61] [.27] [.17] [.14] [.15] [.21] [.41]
8~7 β 1 0.91 0.87 0.84 0.81 0.78 0.72 F = 169.8 ***

[0.01] [0.004] [0.002] [0.002] [0.002] [0.003] [0.01] DF = 6
0.52 0.54 0.55 0.54 0.51 0.47 0.41

α 612.45 632.66 647.67 661.79 675.54 688.64 704.07 N = 48312
Grade    [.56] [.22] [.14] [.12] [.13] [.18] [.38]
9~8 β 0.85 0.78 0.74 0.71 0.68 0.64 0.57 F = 262.28 ***

[0.01] [0.003] [0.002] [0.002] [0.002] [0.002] [0.01] DF = 6
0.48 0.52 0.54 0.53 0.51 0.47 0.4

α 621.94 650.07 668.29 685.41 701.76 717.39 736.48 N = 42796
Grade [.99] [.30] [.20] [.15] [.18] [.24] [.52]
10~9 β 1.28 1.09 1.02 0.97 0.94 0.89 0.8 F = 151.7 ***

[0.02] [0.01] [0.004] [0.003] [0.003] [0.01] [0.01] DF = 6
0.43 0.48 0.5 0.49 0.46 0.43 0.37

   
 

 

   
     
 

   
     
 

   
     

R1

R1

R1



Table 4.2 (a) Sample sizes, sample standard deviations, and range of standard errors of 
measurement (SEM) of two groups in each grade. The first group scored between 541 
and 551 in grade 7, and the second group scored between 709 and 719 in grade 7. 

(b) Results from the same groups in (a) after deletion of outliers

Table 4.3 Results of the lag-2 QR models of grade 9 and 10 reading scores regressed on 
two previous scores respectively (standard errors in brackets)
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N sd SEM N sd SEM
grade 7 1046 3.17 15 1882 3.18 [17,20]
grade 8 1015 42.26 [13,134] 1871 25.44 [13,47]
grade 9 878 36.6 [11,189] 1784 21.94 [11,26]

grade 10 684 50.46 [12,158] 1721 29.05 [18,37]

Grade 7 score є [541,551] Grade 7 score є [709,719]

N sd SEM N sd SEM
grade 7 1046 3.17 15 1882 3.18 [17,20]
grade 8 1002 33.45 [12,44] 1871 25.44 [13,47]
grade 9 852 25.33 [11,20] 1784 21.94 [11,26]

grade 10 659 35.14 [10,34] 1721 29.05 [18,37]

Grade 7 score є [541,551] Grade 7 score є [709,719]

τ
Model 0.03 0.1 0.25 0.5 0.75 0.9 0.97

α 616.24 635.32 649.06 662.15 674.49 686.24 699.01
Grade    [.51] [.19] [.12] [.11] [.12] [.15] [.29]
9~8+7 0.53 0.48 0.45 0.42 0.39 0.36 0.33

[.01] [.01] [.004] [.003] [.004] [.004] [.01]
(N=47748) 0.37 0.33 0.31 0.31 0.31 0.31 0.30

[.01] [.01] [.004] [.003] [.003] [.004] [.01]
0.51 0.55 0.57 0.57 0.55 0.52 0.47

α 624.63 651.21 668.77 684.89 700.37 714.65 731.02
Grade [.84] [.29] [.18] [.14] [.16] [.21] [.40]
10~9+8 0.84 0.71 0.65 0.61 0.58 0.53 0.46

[.03] [.01] [.01] [.01] [.01] [.01] [.02]
(N=42481) 0.39 0.34 0.33 0.32 0.32 0.35 0.37

[.02] [.01] [.01] [.004] [.01] [.01] [.01]
0.45 0.50 0.52 0.52 0.50 0.47 0.43

   
 

 

   

   
 

   

   

1

2

1

R1

R1

2



Table 4.4 Results of the Quantile Regressions of reading scores in grades 8, 9, and 10 
regressed on grade 7 scores (standard errors in brackets)
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τ Sample Sizes &
Model 0.03 0.1 0.25 0.5 0.75 0.9 0.97  Tests of Equality 

 of Slopes 
α 609.67 631.50 647.51 662.71 677.31 690.50 705.11 N = 48072

Grade    [0.59] [0.23] [0.16] [0.12] [0.14] [0.17] [0.32]
9~7 β 0.81 0.74 0.70 0.67 0.64 0.61 0.56 F = 411.06 ***

[0.005] [0.004] [0.003] [0.002] [0.002] [0.003] [0.003] DF = 6
0.45 0.49 0.51 0.50 0.48 0.45 0.40

α 612.76 645.51 666.90 686.16 704.66 721.33 740.26 N = 42744
Grade [1.02] [0.38] [0.21] [0.17] [0.18] [0.25] [0.46]
10~7 β 0.93 0.80 0.75 0.71 0.68 0.66 0.62 F = 102.86 ***

[0.01] [0.01] [0.003] [0.003] [0.003] [0.004] [0.01] DF = 6
0.35 0.40 0.43 0.42 0.41 0.38 0.34

   
 

 

   
     
 

   
     

R1

R1



Table 4.5 Estimated bias and mean squared error for different combinations of quantiles, 
residual distributions, and covariate variances: QR refers to naïve QR estimates that 
ignores the existence of measurement errors; SIM.lin refers to SIMEX estimates based on 
linear extrapolants; SIM.q refers to SIMEX estimates based on quadratic extrapolants;
 refers to the quantile values; v is  measurement error contained in the independent 

variable X;  is the model residual; X=X.truev ; Y=1X.true  
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Model

Var (X.true) = 4
QR -0.031 0.011 -0.199 0.041 -0.040 0.010 -0.200 0.042

SIM.lin -0.045 0.012 -0.099 0.012 0.018 0.009 -0.100 0.012
SIM.q -0.033 0.021 -0.029 0.005 0.061 0.020 -0.030 0.005

QR 0.196 0.047 -0.200 0.041 0.170 0.041 -0.201 0.043
SIM.lin 0.096 0.018 -0.099 0.012 0.136 0.030 -0.101 0.013
SIM.q 0.025 0.018 -0.030 0.005 0.086 0.028 -0.032 0.007

QR 0.433 0.197 -0.201 0.042 0.202 0.071 -0.201 0.047

SIM.lin 0.247 0.072 -0.101 0.012 0.110 0.045 -0.101 0.018
SIM.q 0.100 0.031 -0.034 0.005 0.037 0.053 -0.033 0.014

Var (X.true) = 9
QR -0.156 0.034 -0.099 0.011 -0.056 0.012 -0.100 0.011

SIM.lin -0.100 0.020 -0.029 0.002 0.036 0.010 -0.030 0.002
SIM.q -0.045 0.022 -0.003 0.002 0.075 0.023 -0.004 0.002

QR 0.101 0.019 -0.100 0.011 0.184 0.046 -0.101 0.011
SIM.lin 0.031 0.009 -0.029 0.002 0.140 0.032 -0.031 0.002
SIM.q 0.008 0.016 -0.005 0.002 0.084 0.029 -0.006 0.003

QR 0.357 0.138 -0.102 0.011 0.224 0.081 -0.100 0.013
SIM.lin 0.161 0.036 -0.031 0.002 0.089 0.041 -0.030 0.004
SIM.q 0.057 0.024 -0.007 0.002 0.013 0.056 -0.006 0.006

τ = 0.25

τ = 0.5

τ = 0.75

τ = 0.25

τ = 0.5

τ = 0.75

bias

0 1

v~N 0,1 ~N 0,1

mse

v~N 0,1 ~2 2
0

1

bias bias biasmse mse mse



Table 4.6 Estimated bias and mean squared error for different combinations of quantiles, 
residual distributions, and covariate variances: QR refers to naïve QR estimates that 
ignores the existence of measurement errors; SIM.lin refers to SIMEX estimates based on 
linear extrapolants; SIM.q refers to SIMEX estimates based on quadratic extrapolants;

Y=1X 1.trueX 2.true , X 1=X 1.truev1 , and X 2=X 2.truev2  

Table 4.7 Probabilities of growing at or above the 25th, 50th, and 75th conditional 
percentiles for one year, two years, and three years. 
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Model

QR -0.132 0.034 -0.100 0.011 -0.201 0.043
SIM.lin -0.136 0.035 -0.030 0.002 -0.100 0.013
SIM.q -0.088 0.044 -0.006 0.003 -0.033 0.007

QR 0.298 0.103 -0.101 0.011 -0.199 0.042
SIM.lin 0.128 0.031 -0.030 0.002 -0.099 0.012
SIM.q 0.033 0.031 -0.006 0.002 -0.028 0.006

QR 0.729 0.548 -0.100 0.011 -0.199 0.042
SIM.lin 0.391 0.170 -0.029 0.002 -0.099 0.013
SIM.q 0.161 0.063 -0.005 0.003 -0.030 0.007

QR -0.400 0.180 -0.101 0.012 -0.112 0.013
SIM.lin -0.305 0.112 -0.031 0.003 -0.036 0.002
SIM.q -0.166 0.069 -0.007 0.004 -0.008 0.002

QR 0.212 0.061 -0.100 0.011 -0.111 0.013
SIM.lin 0.065 0.021 -0.029 0.002 -0.035 0.002
SIM.q 0.012 0.034 -0.005 0.003 -0.005 0.002

QR 0.830 0.709 -0.099 0.011 -0.111 0.013
SIM.lin 0.442 0.215 -0.028 0.003 -0.036 0.002
SIM.q 0.200 0.083 -0.003 0.004 -0.006 0.002

τ = 0.25

τ = 0.5

τ = 0.75

τ = 0.25

τ = 0.5

τ = 0.75

v 1~N 0,1

0

X 1.true~N 1,9 X 2.true~N 1,4 v 2~N 0,1

X 1.true~N 1,9 v 1~N 0,1 X 2.true~N 1,16 v 2~N 0,2

1
2

bias bias biasmse mse mse

  

Theoretical Empirical Empirical Theoretical Empirical Empirical Theoretical Empirical Empirical
p (Simple QR) (SIMEX) (Simple QR) (SIMEX) (Simple QR) (SIMEX)

25 0.758 0.755 0.717 0.575 0.515 0.447 0.436 0.349 0.275

50 0.505 0.505 0.502 0.255 0.192 0.177 0.129 0.075 0.059

75 0.253 0.255 0.287 0.064 0.032 0.037 0.016 0.005 0.005

P g8∣g7≥ p  P g8∣g7≥ p∩ P g9∣g8≥ p   P g8∣g7≥ p∩ P g9∣g8≥ p ∩ P g10∣g9≥ p 



Table 4.8  Percentages of students whose growth rates from consecutive years are 
different by less than 25, between 25 and 50, between 50 and 75, and above 75
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Percentage Percentage

Simple QR 36.31 Simple QR 37.20
SIMEX 31.86 SIMEX 33.41

Simple QR 29.94 Simple QR 30.43
SIMEX 27.11 SIMEX 27.84

Simple QR 21.69 Simple QR 21.53
SIMEX 23.06 SIMEX 22.78

Simple QR 12.07 Simple QR 10.84
SIMEX 17.97 SIMEX 15.97

∣P g9∣g8− P g8∣g7∣25 ∣P g10∣g9− P g9∣g8∣25

25≤∣P g10∣g9− P g9∣g8∣50

50≤∣P g10∣g9− P g9∣g8∣75

∣P g10∣g9− P g9∣g8∣≥75

25≤∣P g9∣g8− P g8∣g7∣50

50≤∣P g9∣g8− P g8∣g7∣75

∣P g9∣g8− P g8∣g7∣≥75



Figure 4.1 (a) Scatter plot of grade 8 reading scores against grade 7 reading scores with 
seven quantile regression lines at =0.03,0.1,0.25,0.5, 0.75,0.9,0.97 (b) grade 9 
reading scores plotted against grade 8 reading scores with quantile regression lines at the 
same quantiles (c) grade 10 reading scores plotted against grade 9 scores with seven 
quantile regression lines. The vertical and horizontal green lines mark the proficiency cut 
scores in the corresponding grades.
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Figure 4.2 Estimated parameters and 95% confidence intervals of the lag-1 Quantile 
Regressions plotted against the quantile values. The horizontal lines are estimated 
parameters from OLS models with 95% confidence intervals.

                                                                                                                                      152

0.0 0.2 0.4 0.6 0.8 1.0

60
0

65
0

70
0

75
0

(a)

τ

In
te

rc
ep

t (
G

ra
de

 8
~7

)

0.0 0.2 0.4 0.6 0.8 1.0

60
0

65
0

70
0

75
0

(c)

τ
In

te
rc

ep
t (

G
ra

de
 9

~8
)

0.0 0.2 0.4 0.6 0.8 1.0

60
0

65
0

70
0

75
0

(e)

τ

In
te

rc
ep

t (
G

ra
de

 1
0~

9)

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

(b)

τ

Sl
op

e 
(G

ra
de

 8
~7

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

(d)

τ

Sl
op

e 
(G

ra
de

 9
~8

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

(f)

τ

Sl
op

e 
(G

ra
de

 1
0~

9)



Figure 4.3
(a) Diagnostic plot for goodness-of-fit of the Quantile Regression of grade 8 reading scores on 
grade 7 reading scores 
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Worm Plot X Range  for figure (a) (sample sizes in brackets)
678-686 [2691] 687-696 [2753] 697-707 [2502] 708-724 [2703] 725-930 [2803]
640-646 [2526] 647-654 [2870] 655-661 [2579] 662-669 [2788] 670-677 [2598]
597-607 [2725] 608-616 [2541] 617-624 [2520] 625-632 [2686] 633-639 [2506]
320-519 [2422] 520-549 [2299] 550-569 [2577] 570-584 [2622] 585-596 [2580]



(b) Diagnostic plot for goodness-of-fit of the Quantile Regression of grade 9 reading scores on 

grade 8 reading scores 
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Worm Plot X Range  for figure (b) (sample sizes in brackets)
698-705 [2316] 706-715 [2525] 716-727 [2415] 728-745 [2397] 746-889 [2586]
661-667 [2323] 668-674 [2299] 675-681 [2339] 682-689 [2580] 690-697 [2532]
618-627 [2567] 628-636 [2541] 637-645 [2655] 646-653 [2489] 654-660 [2359]
344-549 [2586] 550-576 [2370] 577-593 [2364] 594-606 [2347] 607-617 [2420]



(c) Diagnostic plot for goodness-of-fit of the Quantile Regression of grade 10 reading scores on 

grade 9 reading scores 
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Worm Plot X Range  for figure c (sample sizes in brackets)
703-709 [2205] 710-717 [2210] 718-727 [2122] 728-744 [2226] 745-824 [1251]
673-678 [2242] 679-684 [2282] 685-690 [2267] 691-696 [2221] 697-702 [2144]
641-648 [2278] 649-655 [2284] 656-661 [2048] 662-667 [2266] 668-672 [1928]
362-584 [2106] 585-607 [2192] 608-621 [2161] 622-631 [2006] 632-640 [2258]



Figure 4.4 Density plots of the 2000 naïve and SIMEX estimates for different quantile 
models and covariate variances for ~N 0,1 : the black vertical line in each plot 
represents the true value of the corresponding parameter.
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Figure 4.5  Comparison of the SIMEX estimates to the naïve estimates of lag-1 QR lines
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Figure 4.6 Conditional growth charts based on fitted values of the simple QR and SIMEX 
models. Each plot has the starting point at the 25th unconditional percentiles of grade 7 
scores in 2003, and follows the growth paths at the 25th, 50th, and 75th conditional 
percentiles consistently for three years.

Figure 4.7  Density of lag-1 growth percentiles 
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Figure 4.8 Density of growth percentiles conditioning on grade 7 scores

Figure 4.9  The two groups of students presented in the two plots fulfill the standards
∣Pg9∣g8− Pg8∣g7∣≥50 and ∣Pg10∣g9− Pg9∣g8∣≥50 , respectively. The distribution of 

difference between P g9∣g7 and P g8∣g7 for the first group is drawn in the left plot, and 
the distribution of difference between P g10∣g7 and P g9∣g7 for the second group is drawn 
in the right plot.

                                                                                                                                      159

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0
P̂( g9|g7)|[P̂( g8|g7)<25]

N = 11359   Bandwidth = 3

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g9|g7)|[25 ≤ P̂( g8|g7)<50]

N = 11924   Bandwidth = 3

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g9|g7)|[50 ≤ P̂( g8|g7)<75]

N = 12070   Bandwidth = 3

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g9|g7)|[P̂( g8|g7) ≥ 75]

N = 12395   Bandwidth = 3

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g10|g7)|[P̂( g9|g7)<25]

N = 9557   Bandwidth = 3

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g10|g7)|[25 ≤ P̂( g9|g7)<50]

N = 10562   Bandwidth = 3

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g10|g7)|[50 ≤ P̂( g9|g7)<75]

N = 10868   Bandwidth = 3

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g10|g7)|[P̂( g9|g7) ≥ 75]

N = 11300   Bandwidth = 3

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g10|g7)|[P̂( g8|g7)<25]

N = 9719   Bandwidth = 3

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g10|g7)|[25 ≤ P̂( g8|g7)<50]

N = 10566   Bandwidth = 3

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g10|g7)|[50 ≤ P̂( g8|g7)<75]

N = 10890   Bandwidth = 3
D

en
si

ty
0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

P̂( g10|g7)|[P̂( g8|g7) ≥ 75]

N = 11322   Bandwidth = 3

D
en

si
ty

-100 -50 0 50 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

(P̂( g9|g7) − P̂( g8|g7) )|(P̂(g9|g8) − P̂( g8|g7) ≥ 50)

N = 19589   Bandwidth = 3

D
en

si
ty

-100 -50 0 50 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

(P̂( g10|g7) − P̂( g9|g7) )|(P̂( g10|g9) − P̂( g9|g8) ≥ 50)

N = 16287   Bandwidth = 3

D
en

si
ty



Figure 4.10
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Conditional Growth Curves for Reading 
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Figure 4.11 Unconditional and conditional growth chart to screen the academic growth of 
student 251337

Figure 4.12 Unconditional and conditional growth chart to screen the academic growth of 
student 561315
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Figure 4.13  Boxplots of students' growth percentiles for a sample of schools

Figure 4.14  Scatter plot of the 9th grade and the 10th grade scores of the students in 
schools 3105 and 10. The seven black lines in the plot are the SIMEX quantile regression 
lines estimated with the whole cohort's data—exactly the same as the blue lines in the 
third plot of figure 4.5
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Figure 4.15 Distribution of lag-1 and lag-2 growth percentiles of the students in schools 
3105 and 10.
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