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Abstract

Discovery and interpretation of genetic variation with next-generation sequencing
technologies

Aaron Ryan Quinlan

Dissertation advisor: Gabor T. Marth

Improvements in molecular and computational technologies have driven and
will continue to drive advances in our understanding of genetic variation and its
relationship to phenotypic diversity. Over the last three years, several new DNA
sequencing technologies have been developed that greatly improve upon the cost
and throughput of the capillary DNA sequencing technologies that were used to
sequence the first human genome. The economy of these so-called “next-
generation” technologies has enabled researchers to conduct genome-wide

studies in genetic variation that were previously intractable or too expensive.

However, because the new technologies employ novel molecular techniques, the
resulting sequence data is quite different from the capillary sequences to which
the genomics field is accustomed. Moreover, the vast amounts of sequence data

that these technologies produce present novel statistical and computational



challenges in order to make even the simplest observations. The focus of my
dissertation has been the development of novel computational and analytical
methods that facilitate genome-wide studies in genetic variation with traditional
capillary sequencers and with new sequencing technologies. I present a novel
method that produces more accurate error estimates for sequence data from one
of these next-generation sequencing technologies. I also present two studies that
illustrate the utility of two such technologies for genome-wide polymorphism
discovery studies in Drosophila melanogaster and Caenorhabditis elegans. These
studies accurately estimate the degree of genetic diversity in the fruitfly and
nematode, respectively. I later describe how new sequencing approaches can be
used to accelerate the mapping of causal genetic mutations in forward genetic
screens. Lastly, I remark on where I believe these technologies will lead future
studies in human genetic variation and describe their relevance to several of my

future research interests.
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There is something fascinating about science. One gets such wholesale returns of
conjecture out of such a trifling investment of fact.

-Mark Twain

1. Introduction

The 19% century saw both Darwin and Wallace posit the then-novel theory of
evolution, describing the forces that cause speciation via the creation and
elimination of genetic traits. Separately, but during the same period, Gregor
Mendel’s work with pea plants established a mathematical framework for
understanding the relative frequencies of unlinked genetic traits. Collectively,
the work of Darwin, Wallace and Mendel established a foundation for future
research investigating the evolution of species, the causes and degree of genetic
diversity within populations, and the genetic profiles that predispose individuals

to disease.

The one hundred and fifty years since have been host to hundreds of
groundbreaking experiments that have formed our current understanding of
genetic diversity. Using the fruitfly Drosophila melanogaster as a model, T.H.
Morgan demonstrated that genes are found on chromosomes, providing a

molecular mechanism for inheritance. Avery, McCarty and MacLeod later



established that DNA, not proteins, carries genetic information. Soon after,
Watson, Crick, Wilkins and Franklin deciphered the structure of DNA, and in so
doing, elucidated the mechanism of DNA replication and inheritance. By 1977,
both Frederick Sanger and Walter Gilbert had developed reliable, albeit
painstaking, methods for sequencing DNA. These methods led to discovery of
the first known gene sequences and the first sequenced genome: Sanger’s

laborious sequencing of the bacteriophage ®X174 genome.

Subsequent technological advances such as the miniaturization of
electrophoresis, the use of fluorescently-labeled nucleotides in the Sanger
reaction, and Kary Mullins” ingenious vision of the polymerase chain reaction,
enabled research departments and smaller laboratories to reliably sequence large
sections of DNA from human and model genetic organisms with increasing
economy. Ultimately, DNA sequencing technology progressed to the point
where the complete genome sequencing of well-studied model organisms
(Adams et al. 2000; The C. elegans Sequencing Consortium 1998) and the
completion of a high-quality draft of the human genome were possible by the
turn of the millennium (Lander et al. 2001; Venter et al. 2001). These complete

genome sequences provide a point of reference to which one can compare



genetic information from other individuals of the same species. In principle,
comparisons of this sort can, when performed among many individuals from the
same species, describe the landscape of genetic variation within that species and
potentially identify those variations that predispose certain individuals to

disease.

The Human Genome Project and the research that has followed have estimated
that the genomes of any two humans are at least 99.5% identical (Lander et al.
2001; Levy et al. 2007; The International HapMap Consortium 2005; Venter et al.
2001). Moreover, comparative estimates resulting from the same studies place
the similarity of any human and any chimpanzee genome at roughly 99%. While
such similarity may possibly seem high, even a 0.1% ditference allows for over
three million genetic differences between any two humans. Clearly, this degree
of genetic diversity has the potential to explain, in large part, the breadth of
phenotypic diversity present in the human population. A major impetus behind
the Human Genome Project was the assumption that one could correlate
observed genetic differences with disease phenotypes and thus facilitate and
expedite the understanding and treatment of disease. As part of the comparative

analyses conducted during the Human Genome Project, over 1.4 million human



single-nucleotide polymorphisms (SNPs) were discovered (Sachidanandam et al.
2001). These variations provided the initial foundation for several preliminary
investigations into disease predisposition and catalyzed subsequent research to

describe the extent of human genetic variation.

Single-nucleotide polymorphisms

Single-nucleotide polymorphisms have been by far the most widely studied type
of genetic variation (Altshuler et al. 2000; Braverman et al. 1995; Collins et al.
1998a; Collins et al. 1998b; Freedman et al. 2004; Fu 1995; Gibbs 2003; Goldstein
and Weale 2001; Ke et al. 2004; Kwok and Chen 1998; Kwok and Gu 1999;
Marnellos 2003; Marth et al. 2001; Marth et al. 1999; Mullikin et al. 2000;
Sachidanandam et al. 2001; Sherry et al. 1999; Sunyaev et al. 2000; Tajima 1989;
Weber 1990). SNPs are of such broad interest for several reasons. First, there are
several diseases such as sickle-cell anemia where specific polymorphic alleles are
highly-correlated or directly causal for the disease phenotype (O'Donald 1967;
Packard et al. 2007). Second, they are quite common in the human genome,
where even conservative estimates place the pair-wise SNP rate between any two

humans at approximately one SNP per every thousand base pairs, on average



(Chakravarti 1999). Third, they are comparatively simple to identify and
experimentally validate (Marth et al. 1999; Stephens et al. 2006; Zhang et al.
2005). Finally, they serve as a genetic landmark with which to track the evolution

of species (Marth et al. 2003).

We typically classify SNPs by type as transitions: nucleotide changes from
purines to purines or pyrimidines to pyrimidines, and transversions: nucleotide
changes from purines to pyrimidines or vice versa. While transitions
theoretically represent only one-third of all possible polymorphisms, they have
been observed to represent two-thirds of all actual polymorphisms (Petrov and
Hartl 1999; Zhang and Gerstein 2003; Zhao and Boerwinkle 2002). This
phenomenon is attributable to the high rate of mutation from 5-methyl cytosine
to thymine through deamination. SNPs are often further classified by function,
according to how they affect the function of protein-coding genes. Whereas
“synonymous” SNPs do not alter the encoded amino acid despite the nucleotide
change, “non-synonymous” SNPs do. Moreover, “nonsense” mutations cause the
codon to become a stop codon, thus introducing a premature end to the encoded
protein. SNPs that do not occur in gene coding sequences have typically not been

classified by function. However, recent studies have illustrated that the canonical



“beads on a string” paradigm of genome organization may oversimplify the
complexity of genome expression (Birney et al. 2007). Consequently, it is likely
that polymorphisms lying outside of gene coding regions may in fact alter the
regulatory function of small inhibitory RNAs, as well as the promoters, introns,
and untranslated exons of protein-coding genes (He et al. 2007; Ibarra et al. 2007;

Kim et al. 2007).

SNPs have been shown to be non-randomly distributed throughout the human
genome (Altshuler et al. 2000; Mullikin et al. 2000; Sachidanandam et al. 2001;
Venter et al. 2001) (Figure 1.1). This is perhaps not surprising, given our
understanding of the forces of selection and the mechanisms of recombination.
One expects that highly conserved genes would be under purifying selective
pressure that would reduce novel alleles (and thus polymorphism) in genes that
are crucial to, for example, cell function (i.e., cell structure genes, ribosomal
genes, etc.). A corollary of this hypothesis is that genes that benefit from allelic
diversity (e.g., genes involved in immune system response) would be under
positive selection to allow for the creation of beneficial alleles. Of equal interest is
the variability of regional SNP density in non-protein coding DNA in the

genome, as such estimates provide a proxy for the degree of linkage



disequilibrium (and thus recombination) throughout a genome. Studies to date
have shown that SNP densities vary substantially across the genome and that
increased SNP density is correlated with increased recombination rates (The
International HapMap Consortium 2005). Similarly, it has also been observed
that the human genome is defined by frequent and often large haplotype blocks
where the same SNP alleles are observed to be in linkage disequilibrium (LD)
(Daly et al. 2001; Reich et al. 2001). In other words, in regions of high LD, SNP
alleles are not randomly assorted as they would be were there no local linkage.
Thus, the allele present for one SNP in a given haplotype block is predictive of
another SNP allele in the same haplotype block (Figure 1.2). This means that one
can theoretically use SNPs as markers that predict the local haplotype of an

individual and can thus help to reduce the complexity of determining their

genotype.

For these reasons, the seven years following the completion of the human
genome sequence have seen substantial efforts to catalog all of the common
polymorphisms in the human genome. As part of this process, there has been a
concerted effort to improve the molecular and computational methods used to

discover and genotype SNPs.



Insertion-deletion polymorphisms

Insertion-deletion polymorphisms (so called INDELs) are small insertions or
deletions in the DNA of one individual or chromosome relative to the DNA of
another individual or chromosome. INDELs are traditionally restricted to short
(less than or equal to twenty base pairs) insertions or deletions and have recently
been found to occur much more frequently in the human genome than
previously thought (Levy et al. 2007). In coding regions, INDELs with lengths
that are not a multiple of three cause frameshift mutations in the DNA and thus
may alter the resulting protein. INDELS that are multiples of three can either add
or remove entire codons, which also alter the coding sequence. One such famous
mutation is the deletion of a TTT codon (phenylalanine) in the CFTR gene in
humans, which, if homozygous, is a primary cause of cystic fibrosis (Audrezet et
al. 2004). Short INDEL polymorphisms of one or two nucleotides are
traditionally very difficult to identify because of a lack of sufficient nucleotide
resolution in Sanger capillary sequences. Therefore, previous studies have been
fraught with high false discovery rates (Weber et al. 2002). Given that short

(length less than or equal to four) INDELs occur substantially more frequently



than longer INDELS (Figure 1.3) and that such polymorphisms are the second
most frequent polymorphism in the human genome (representing roughly half
as many nucleotide differences as SNPs) (Clark et al. 2007), there is great interest
in the development of reliable methods for short INDEL detection. Moreover,
INDELs and SNPs are similarly distributed throughout the human genome;
therefore, they could theoretically be used as genetic markers in a manner similar
to SNPs. The advent of several new sequencing technologies with improved
nucleotide resolution have illustrated that improved INDEL discovery is

possible. The results achieved with such technologies are discussed in Chapter 5.

Copy-number and structural variation

Copy-number and structural variations include small to large insertions and
deletions in one or both chromosomes, as well as chromosomal rearrangements
such as translocations and inversions. Prior to two seminal studies reported in
2004, the frequency and complexity of copy-number variation (CNV) and
structural variation (SV) in the human genome was drastically under-
appreciated (lafrate et al. 2004; Sebat et al. 2004). This is somewhat surprising
given that, for many years, it was known that large-scale genomic deletions,

duplications, and inversions were observed in many diseases such as cancers,



trisomy syndromes, and Prader-Willi syndrome. However, previous studies of
so called ‘genomic disorders” were limited to what could be detected with very
low-resolution methods such as microscopy, karyotyping and fluorescent in situ
hybridization (FISH). As Figure 1.4 illustrates, the size range of CNVs is
extremely broad, and therefore, the methods used to detect them must ideally be

suitable across the same spectrum.

The advent of higher resolution technologies such as array-CGH (comparative
genomic hybridization), representational oligonucleotide microarray analysis
(ROMA) and dense SNP genotyping chips have allowed researchers to detect
CNVs (henceforth referred to solely as CNV) at a minimum of ten kilobases.
Collectively, studies using these technologies have provided substantial evidence
that CNVs amount to at least 4 Mb of genetic difference between any two
humans (Carter 2007; Conrad et al. 2006; Fiegler et al. 2006; Redon et al. 2006).
Other, less conservative studies place this estimate somewhere between 5 and 24
Mb (Redon et al. 2006). Thus using even the most conservative estimates, CNV
likely accounts for at least as much overall genetic variation in the human

genome as SNPs.
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Given the extent of CNV observed with predominantly chip-based methods, it is
likely that we will observe even more such variation with higher resolution
methods such as high-throughput sequencing. A recent study with the 454 Life
Sciences sequencing technology suggests that despite existing methodological
challenges, the new, high-throughput sequencing technologies are well-suited to
large-scale CNV discovery (Korbel et al. 2007). In 2007, Jonathan Sebat and
colleagues suggested that autism is highly correlated with frequent de novo CNV
(that is, occurring in one or both parental gametes) changes (Sebat et al. 2007).
This observation further illustrates the need for efficient and comprehensive
CNV detection technologies in order to discern any potentially systematic
character of de novo CNV mutations in such diseases. Moreover, this and other
studies indicate that the impact of CNV on human disease has been

underappreciated.

Genetic variation: why should we care?
A primary motivation behind the study of genetic variation is the assumption
that most phenotypes, disease-related or otherwise, can be attributed either to a

single, rare allele (i.e., Mendelian traits) or to the combined effects of multiple
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alleles. Indeed, many researchers assume that there are sets of common alleles
that are highly correlated with various common diseases: the so-called
“common-disease, common-variant” hypothesis. If this hypothesis is valid,
correlated variations can be used as markers for disease detection. It is also
assumed that either such variations must themselves be the causal variations or
they must be linked to the causal variations. If so, they can therefore be used to

understand disease etiology and drive the development of appropriate therapies.

Large-scale studies founded upon these assumptions require dense variation
maps of the entire human genome in order to compare the genetic profiles of
healthy and diseased individuals. By 2001, there were nearly 1.5 million known
SNPs in the human genome, yielding, on average, one marker every 2,000 base
pairs (Sachidanandam et al. 2001). Because of linkage, we know that the closer
any two markers are to one another, the less likely it is that recombination will
occur between the two markers. Thus, the alleles observed at any two unlinked
markers should be random, whereas the alleles observed at linked loci should be
relatively consistent. As previously mentioned, the degree of this consistency is
known as linkage disequilibrium. SNP markers that are “in LD” can serve as

proxies for one another (that is, the allele of one marker is highly predictive of
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the allele of a second marker) while ostensibly still elucidating relationship
between disease phenotype and the underlying genotype (Daly et al. 2001; Reich

et al. 2001).

These were the motivations behind The International HapMap Project (Frazer et
al. 2007; The International HapMap Consortium 2003; The International HapMap
Consortium 2005), which sought to describe the structure and degree of linkage
disequilibrium in the human genome among four representative human sub-
populations (Utah residents with ancestry from Northern and Western Europe,
Yorubans from Nigeria, Japanese in Tokyo and Han Chinese from Beijing)
totaling 270 presumably healthy individuals. Owing to the high cost of complete
human genome resequencing and the comparatively low cost of chip-based SNP
genotyping experiments, it was thought that researchers could exploit the
haplotype block structure of the human genome to reduce the complexity (and
cost) of large-scale disease association studies. It was believed that one could use
the genotype for a smaller set of SNPs to extrapolate the genotype of nearly the
entire genome, given the extent of linkage disequilibrium observed.
Hypothetically, such a reduction in complexity would enable the statistical

comparison of the genotypes of large panels of individuals with a disease
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(“cases”) and those without the disease (“controls”) in order to elucidate those
alleles that are highly correlated with a given disease of interest. This hypothesis
assumes that: a) the disease in question is largely caused by a combination of
common polymorphisms, and b) nearly all of the genetic causes of a given
disease are detectable by SNP alleles. To date, few disease association studies
have identified sets of alleles that describe more than 5% of the risk for a given

disease.

Several factors are likely involved in the relative lack of success of most
association studies thus far. One likely problem is that association studies that
use SNP markers from the HapMap are limited by the fact that the HapMap is
restricted to common polymorphisms having a minor allele frequency (that is,
the frequency of the less common SNP allele among observed chromosomes) of
at least 5%. Therefore, the ability to detect any disease associations with
combinations of less common alleles is diminished in these studies. For this
reason, beginning in 2008, a new international effort known as “The 1000
Genomes Project” will seek to uncover all SNPs with a minor allele frequency as
low as 1% in the entire genome and as low as 0.1% in protein coding regions.

Current association studies may also be limited in power by the fact that only

14



SNP markers are used to detect disease correlations. The HapMap project
accurately described the patterns of linkage disequilibrium among SNPs in the
genomes of the 270 individuals studied. However, it is unclear to what degree
SNPs are in LD with other polymorphisms. If there is less LD between SNPs and
INDELSs or other structural variations, then association studies that focus solely
on SNP markers may be blind to existing associations to non-SNP markers.
Lastly, poorly defined qualitative phenotypes or quantitative phenotypes that
are classified by highly variable assays may also perturb disease association
studies. For example, imagine an association study that seeks to uncover alleles
that are associated with hypercholestoremia in a cohort of 500 cases and controls.
Existing associations could potentially be weakened by variability in the
classification of hypercholestoremia, and the assays used to measure cholesterol
levels, as well as environmental contributions to the disease phenotype. For these
reasons, accurate and quantitative patient records will likely improve the power

of association studies.

A more complete understanding of the degree and types of genetic variation
among healthy and diseased humans will undoubtedly improve our

understanding of the genetic mechanisms of disease predisposition. As DNA
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sequencing and probe-based technologies improve and their costs continue to
decline, more and more investigators will be able exploit the technologies for
large scale studies of genetic variation. Yet as the throughput and economy of
these technologies increase, so does the burden placed upon reliable
computational methods for the analysis and discovery of genetic variation. While
it is feasible to manually inspect and validate polymorphisms discovered in a
handful of loci, it is impossible to confirm manually the thousands of variations
that will inevitably come out of large-scale, whole genome studies in the near
tuture. Thus, the development of highly-accurate computational methods must

keep in step with the molecular methods they are designed to analyze.

Methods for polymorphism discovery with capillary sequencing
technologies

The complete (or nearly so) genome sequences of humans and other model
organisms provide frames of reference to which sequences from individuals of
the same species can be compared. Such comparisons facilitate the identification
of single-nucleotide and insertion-deletion polymorphisms relative to the
reference genome sequences (Figure 1.5). This is the basic approach employed by

the majority of the commonly used polymorphism discovery methods (Marth et
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al. 1999; Stephens et al. 2006; Zhang et al. 2005). These methods typically differ
in the way they attempt to segregate variation caused by sequencing error from
bona fide genetic variation. The accuracy of differentiating sequencing errors from
true variation is highly dependent on the accuracy of the “base calling program”.
Base calling programs such as Phred (Ewing and Green 1998; Ewing et al. 1998)
interpret the raw sequencing read output from capillary DNA sequencing
machines (e.g.,, Applied Biosystems 3730) and convert them into a called
nucleotide sequence (e.g., 5-AACTGGCATT-3’). In addition, base calling
programs estimate, for each of the bases they call, the likelihood that the call was,
in fact, wrong. These estimates are generally referred to as base quality values
and typically conform to the Phred base quality paradigm defined by Phil Green
and colleagues. In this framework, a quality value (Q) is defined as Q =-10 * logio
(P), where P is the probability that the given base was called in error. For
example, if a base calling program estimates that the error likelihood for a called
base is 0.1, then the base quality value Q would be 10. Similarly, if the error
likelihood were estimated to be 0.01, the base quality value would be 20. Thus,
higher base quality values indicate bases that were called with greater

confidence. Accurate base calls and base quality values are essential for
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polymorphism discovery, as they are the usually the only means to distinguish

true polymorphism from sequencing error.

Earlier polymorphism discovery projects screened for polymorphisms among
protein-coding sequences by creating ¢cDNA libraries from mature mRNA
sequences. These cDNA clones (which are inherently from a single chromosome)
were sequenced with capillary sequencing technologies and the sequencing
reads were base-called with Phred. The sequence reads were then aligned to a
reference genome sequence and screened for polymorphisms by software such as
PolyBayes (Marth et al. 1999). Because the aligned alleles are from a single
chromosome, the polymorphism discovery software seeks to determine whether
or not there is sufficient evidence of polymorphism among the aligned alleles
and quality values. Similarly, the vast majority of SNPs known today were
discovered via whole genome shotgun sequencing protocols, which compared
haploid sequence reads to the human reference sequence and to each other for

detecting alternate alleles.

However, more recent studies aimed toward discerning the complete genotype

of an individual in a genomic region of interest (e.g., a gene) involve the targeted
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sequencing of such regions via PCR. In such cases, PCR primer-pairs are
designed to amplify the region of interest, and the resulting amplicons are
sequenced on capillary sequencing machines. Since PCR inherently amplifies the
DNA on both chromosomes (in a diploid organism), the resulting sequencing
reads reflect the alleles present on both chromosomes. Therefore, homozygous
base pairs appear as a single peak, which reflects the fact that the individual has
the same allele on both chromosomes. In contrast, heterozygotes should ideally
manifest as two peaks for the same base pair, where each peak is roughly the
same height (assuming unbiased PCR amplification) and each peak is
approximately 50% of the height of a homozygous base pair. Because of the
limitations of capillary sequencing machines, it is often difficult to determine
whether two observed sequencing peaks at a given locus reflect true
heterozygosity or whether they are merely a sequencing artifact. Consequently,
early attempts at identifying heterozygotes in such sequence reads were fraught
with high error rates. Chapter 2 discusses my research into an improved method

for detecting heterozygotes in these reads using a machine learning approach.

The reliable discovery of heterozygotes using PCR amplicon sequencing is

further impeded by previously unknown heterozygosity within chromosomal
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sequences homologous to the PCR primers. In such cases, the chromosome that
exactly-matches the PCR primer will be preferentially amplified relative to the
imperfectlymatched chromosome. As a result, the expected 50/50 ratio for the
two heterozygous alleles is frequently affected (more specifically, it is greatly
skewed in favor of the preferentially amplified allele), which in turn, often
prevents the heterozygote from being detected by SNP discovery software
(Quinlan and Marth 2007). This dilemma often affects so-called “medical re-
sequencing” projects in which researchers sequence a large genomic region (e.g.,
100 Kb) among many individuals with and without a disease. In these studies,
the goal is to uncover all of the polymorphisms that exist among the cohort.
Therefore, attempts to avoid existing SNPs during PCR primer design are often
in vain because inherently little is known about the extent of variation within the
studied region. In Chapter 2, I describe the under-appreciated effects of this
problem in medical resequencing projects and propose a rational approach to

mitigating the effects of heterozygosity within PCR primers.

Despite this limitation, many polymorphism discovery studies with capillary
sequences using these methods have been conducted over the past ten years with

relatively high accuracy. Existing polymorphism discovery methods, while not
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perfect, have become reliable enough to facilitate genome-wide polymorphism
discovery in organisms with smaller (<= 15Mb) genomes. The major limitation to
such studies have been the high cost and relatively low throughput of the
capillary sequencing technologies, relative to the next-generation sequencing

technologies that have recently been developed.

Next-generation sequencing technologies

Until three years ago, capillary sequencers such as those made by Applied
Biosystems were the only realistic option for large sequencing projects. Since
then, the genomics field has seen the development of several novel sequencing
technologies that have greatly improved the economy of large-scale sequencing
projects. The staggering throughput of these technologies relative to traditional
capillary sequencing technologies has enabled rapid, cost effective
polymorphism discovery projects spanning the entire genome of several model
organisms (Hillier et al. 2008). Similarly, the dramatically increased throughput
has led to the use of sequence-based methods in lieu of, or in addition to, chip-
based methods for epigenetic, gene expression and structural variation studies.

As of 2007, three such next-generation sequencing platforms are available from

21



454 Life Sciences, Illumina, and Applied Biosystems. Other technologies are
expected to become available over the next few years (e.g., Helicos BioSciences,

Pacific Biosciences, and Visigen Biosciences among others).

The 454 Life Sciences DNA sequencing machine employs a “sequencing-by-
synthesis” chemistry, using a pyrosequencing method which cyclically tests for
the incorporation of the four DNA nucleotides (Margulies et al. 2005; Ronaghi et
al. 1996). The light emitted by luciferase in the subsequent reaction is recorded
and is used to detect nucleotide incorporation. Multiple bases in homopolymer
runs are incorporated in a single nucleotide test; therefore the number of
incorporated bases must be determined from a single scalar intensity
measurement (Figure 1.6). This causes the 454 sequencing reads to be
characterized by nucleotide over-calls (that is, deciding there were too many
bases incorporated from the observed signal) and under-calls (that is, deciding
there were too few bases incorporated from the observed signal). Consequently,
insertions and deletions are the dominant error types in 454 reads (Huse et al.

2007; Margulies et al. 2005; Quinlan et al. 2008).
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Because of the variable number of nucleotides that are incorporated in each
successive test, the resulting sequencing reads have variable lengths. The first
sequencer model (known as the G520) produces, on average, 100-base reads. The
more recent FLX model generates on average, 250 bp reads. The total throughput
per machine run is ca. 125 Mb. A 500 bp read-length model is awaiting release
and paired-end read protocols are now available. Paired-end sequencing refers to
the sequencing of short stretches of DNA on either end of a much longer DNA
fragment of a known length (e.g. the sequencing of 25 bp on either end of a 1 Kb

DNA fragment).

The Illumina 1G short-read sequencer, which is based on Solexa technology, also
employs “sequencing-by-synthesis” chemistry, but unlike the 454 technology, it
uses a modification of the Sanger dideoxy method (Sanger et al. 1977) to allow
for the addition of a single complementary nucleotide analog in each sequencing
cycle (Figure 1.7). Since the nucleotides are fluorescently labeled with different
color dyes, it is possible to determine which of the four nucleotides was
incorporated in a given cycle. The Illumina sequencer currently produces
approximately 1 Gb per run from 25-50 bp, fixed-length reads. Paired-end read

protocols are available for short fragment sizes (up to 2000 bp).

23



The SOLiD technology from Applied Biosystems employs a ”sequencing-by-
ligation” chemistry, which serially tests for the ligation of fluorescently-labeled,
di-base encoding, oligonucleotide probes. Consequently, each probe detects
dinucleotides, as opposed to individual bases. The machine reads a degenerate
“color-space” alphabet that can be translated into actual nucleotide sequence
through the first known base in the read. The SOLiD machine currently produces
over 4Gb of raw sequence per machine run with 25-70 bp fixed-length reads.
Paired-end read protocols are available for the 1-10 kb DNA fragment size range
with ~2.5 kb fragment length representing the best compromise between library

complexity and fragment length.

In addition, there are several other companies that are in various stages of
developing even higher-throughput sequencing technologies. Two of the most
promising companies are Helicos Biosciences and Pacific Biosciences. Both
companies seek to develop sequencing technologies that are capable of
sequencing single molecules of DNA —thus obviating the need to amplify the
starting material. As of February 2008, Helicos sold its first instrument whose

throughput appears to be roughly 30 Gb per sequencing run. However, the
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accuracy of the sequencing reads is still unclear, and the reads remain quite short
(<= 30 bp on average). Pacific Biosciences presented preliminary sequencing
results at the 2008 Advances in Genome Biology and Technology Meeting on
Marco Island, Florida. Because of the imaging and chemical approach, this
technology seems extremely promising. They anticipate the ability to sequence a
human genome in less than an hour for $1000. However, the technology will

likely not be available until 2010.

Owing to the sheer volume, shorter read length and different error profiles of
these new technologies, traditional sequence analysis methods (e.g., base-calling,
sequence mapping and sequence alignment) have proven to be inadequate for
large-scale studies employing these new data. In addition, the sequencing
technologies themselves continue to evolve as throughput and read lengths
increase and library preparation methods improve. Therefore continued
development of novel computational and experimental methods for complex

genomic studies using these new technologies will be required.

Studying genetic variation with new sequencing technologies
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The unprecedented throughput and economy of the new sequencing
technologies has allowed several large-scale studies investigating genome-wide
variation (Hillier et al. 2008; Korbel et al. 2007, Owen-Hughes and Engeholm
2007; Sebat et al. 2007).

However, because of the novel sequencing chemistries employed by the new
technologies, the error profiles of the sequence reads differ substantially from
those of traditional capillary sequence reads. As a result, the base quality values
assigned by the base calling programs that are used in conjunction with these
sequencing machines fail to accurately reflect the true accuracy of the called
bases. This poses a problem for polymorphism discovery programs such as
PolyBayes, because they rely on accurate base quality values to identify true
polymorphisms. Unreliable base quality values will lead to high false positive
(that is, spurious polymorphism calls) and false negative (that is, true
polymorphisms that are missed) rates. Earlier polymorphism discovery projects
using the new sequencing technologies have relied on either deep sequence

coverage or specialized error estimates to overcome this problem.

Yet single-end sequence protocols from both the Illumina and 454 technologies

have recently been shown to be suitable for accurate SNP discovery, even with
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shallow sequence coverage (Hillier et al. 2008; Quinlan et al. 2008). While the 454
technology faces inherent limitations for small INDEL discovery because of the
frequency of nucleotide over- and under-calls, it appears that the Illumina
technology enables accurate small INDEL discovery because of its low insertion-

deletion error rate.

The major limitation in studying genetic variation with the next-generation
technologies is that the relatively short sequence reads they produce are
susceptible to improper genomic mapping. However, as mentioned, all of the
extant technologies have developed paired-end sequencing technologies that
reflect short sequences from the ends of much larger DNA fragments. Paired-end
sequences therefore serve as a proxy for much longer DNA sequences that are
much less susceptible to improper genome mapping because of sequence
paralogy. Moreover, because of the much larger fragment length, paired-end
reads are suitable for identifying copy number and structural variations in the
genome. Assuming that the standard deviation of the paired-end fragment
distribution is relatively small, insertions and deletions that are significantly
larger or smaller than the tails of the fragment distribution can be confidently

identified in a given genome. Several studies employing this approach are
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currently underway and seek to describe the landscape of structural and copy

number variation in healthy and disease-correlated genomes.

Summary of dissertation

My research in the Marth laboratory has focused on the development of
computational and experimental methods to facilitate discovery and
characterization of genetic variation. Chapter 2 describes a systematic bias in
traditional, PCR-based resequencing studies that hinders the discovery of
medically important rare alleles. We illustrate that this bias is caused by cryptic
heterozygosity in PCR primer binding sites and describe a rationale and effective
resolution to the problem. Chapter 3 describes the novel base calling algorithm,
Pyrobayes, that I developed in order to assign base quality values that more
precisely reflect the accuracy of the called bases in pyrosequences from 454 Life
Sciences sequencing machines. We show that the quality values assigned by
Pyrobayes are more accurate than those produced by the manufacturer-supplied
software. As described in Chapters 3 and 4, the improved base quality values
produced by Pyrobayes enable sensitive SNP calling even among single 454

sequence read coverage. Chapters 4, 5 and 6 describe large-scale, whole genome
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polymorphism discovery projects in D. melanogaster, C. elegans and P. stipitis.
These studies required the development of an improved sequence alignment
method (Mosaik, Michael Stromberg) and an efficient version of the PolyBayes
polymorphism discovery algorithm (developed by Gabor Marth) that is suited to
the vast throughput of the new sequencing technologies. These studies involved
each of the three primary next-generation sequencing technologies and
illustrated their respective strengths and weaknesses for studying genetic
variation. Collectively, these studies have established a framework for whole-
genome polymorphism discovery in human and for the rapid mutational
profiling of model organisms using next-generation sequencing technologies.
Chapter 7 discusses some of the pitfalls of next-generation sequencing
technologies, makes predictions about where the genomics field is heading in the
next five years, and describes several new lines of research that I would like to
undertake that build upon the experience I have gained during my dissertation

work.
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Chapter 1 Figures
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Figure 1.1. Recombination rates and SNP density on human chromosome 6 (modified from The
International HapMap Consortium, 2005). The magnitude of recombination rates (red columns)
and the density of SNPs (blue triangles) vary across the genome, and their rates are correlated.
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Figure 1.2. The haplotype structure of human chromosomes (modified from Cardon et al, 2002).
(a) Hypothetical chromosomes from a population are shown with common alleles in red and
alternate alleles in blue. (b) The haplotype variation in (a) can be summarized by two sets of
haplotype blocks. Each set has three haplotypes that show no evidence of recombining. Each
haplotype block can be inferred by genotyping two SNPs (marked with a “T”). (c) However,
when considering the variation observed in each block in the population, only three SNPs are
needed to determine the entire haplotype instead of four.
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Figure 1.3. Length distribution of INDELs in human pseudogenes. (Modified from Zhang et al,
2003). The frequency of deletions (gray) and insertions (white) are shown as a function of their
length in human pseudogenes. The vast majority of INDEL polymorphisms are <=3 bp in length.
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Figure 1.4. The spectrum of genetic variation (modified from Scherer et al, 2007). The various
types of genetic variation are shown from top to bottom in increasing size. The smallest variation
types (SNP and INDELSs) are the most frequent yet the larger structural variations account for a
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more genetic variation in terms of the number of base pairs that vary between any two
individuals.
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Figure 1.5. Polymorphism discovery via resequencing strategies. Sequence reads (blue) are
aligned to the reference genome (black) of the same species. Polymorphisms are identified by
screening for aligned alleles that differ (red asterisks) from the reference sequence.
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Figure 1.6. Pyrosequencing reads from the 454 Life Sciences technology. The pyrosequencing
reads from the 454 Life Sciences technology are the result of cyclical tests (x-axis) for the
incorporation of adenine, cytosine, guanine and thymine. The light observed in each test (y-axis)
is theoretically proportional to the number of incorporated nucleotides. However, because of
ambiguous signals, it is often difficult to determine exactly how many nucleotides were

incorporated. Consequently, insertion (black arrow) and deletion (red arrow) errors are
common.
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Figure 1.7. The Illumina sequencing-by-synthesis process (adopted from Rusk et al, Nature
Methods 2007). Single-stranded DNA fragments are clonally-amplified on a solid chip surface.
The colonies are sequenced by the addition of polymerase and fluorescently-labeled nucleotides
that, using a reversible terminator, allow exactly one nucleotide to be added to the
complementary strand in each sequencing cycle. Fluorescence is detected in each cycle in order to
determine which nucleotide was incorporated.
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I want to stay as close to the edge as I can without going over. Out on the edge you see all
kinds of things you can’t see from the center.

-Kurt Vonnegut

2. The negative impact of heterozygosity within PCR primer
binding sites on SNP discovery

Abstract

Despite recent advances in sequencing technology, Sanger-principle capillary
sequencing of custom PCR amplicons from diploid genomic DNA remains the
standard medical resequencing method for individual mutation detection
targeting specific genome regions. In this chapter, we describe a systematic
error caused by heterozygosity within the PCR primer hybridization sites.
Such heterozygosity causes disproportionate amplification between the
matched and mismatched chromosomes and leads to missed heterozygotes in
the sequence traces. Although this phenomenon has been known for some
time, its magnitude has not been estimated or appreciated. This analysis of ten
deeply-resequenced ENCODE regions reveals that nearly one in six amplicons
contains a SNP in its primers. In such amplicons, one quarter of heterozygotes

are miscalled and many existing rare mutations are completely missed. This
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phenomenon affects the amplified DNA template directly and therefore
neither mate-pair sequencing nor manual trace review reveals it. Moreover,
avoiding known SNPs during primer design does not account for novel SNPs
in the resequenced individuals. We show that sequencing every nucleotide
from more than a single amplicon dramatically reduces the rate of missed
heterozygotes and SNPs. We suggest that this strategy should therefore be

immediately adopted into PCR-based resequencing protocols.

Introduction

As part of my effort to extend the Marth laboratory’s SNP discovery program
PolyBayes (Marth et al. 1999) for the detection of heterozygotes in capillary
sequence traces, we analyzed the deep resequencing data produced by the
HapMap project in ten ENCODE (ENCyclopedia Of DNA Elements) regions
(Birney et al. 2007; The ENCODE (ENCyclopedia Of DNA Elements) Project
Consortium 2004; The ENCODE Project Consortium 2003). Each ENCODE
region was sequenced in 48 individuals from roughly a thousand partially
overlapping PCR amplicons, resulting in over 761,000 sequence traces (see Table

2.1 for a detailed description of the data). This extensive dataset is appropriate
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for method development because it was produced using the same molecular
strategy that is the standard for medical resequencing (Mackelprang et al. 2006;
Sjoblom et al. 2006). It is ideal for software testing because highly accurate, chip-
based genotypes (Hinds et al. 2005; Matsuzaki et al. 2004) are available for 39 of
the 48 individuals from the HapMap data. These HapMap genotypes serve as a
reference to which we can compare trace-based genotype calls. When making
these comparisons, we found SNPs at which many heterozygous individuals in
the HapMap appeared as homozygous in the traces from a given amplicon
(Figure 2.1a). Often, the same SNP was also sequenced from a second
overlapping amplicon, where the same individuals appeared as heterozygotes in
the traces (Figure. 2.1b). The only systematic difference that we could find
between such overlapping amplicons was that those in which the HapMap
heterozygotes were absent typically contained one or more SNPs in their PCR
primers. On the other hand, those amplicons in which the heterozygotes were

present rarely had SNPs in their primers.

Results
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In order to investigate whether the presence of SNPs in the PCR primer accounts
for the homozygote/heterozygote discrepancy, we first identified the amplicons
that contained at least one SNP in their primers (we will now refer to this as a
primer SNP) (Methods). We found that 15.4% of the amplicons (1,440 of 9,347)
had a primer SNP. To ensure that missed heterozygotes were not artifacts of our
new software we employed a validated heterozygote detection method,
PolyPhred (Stephens et al. 2006). We evaluated traces on a per-amplicon basis and
tabulated candidate SNPs and the genotype call for every individual with
sufficient trace quality. We considered each HapMap SNP in every amplicon in
which it appeared (that is, possibly multiple times): we tabulated 19,009 such
SNP positions at which there were a total of 132,638 heterozygous HapMap
genotypes. PolyPhred detected 14,604 of the SNPs and made a genotype call for

78,340 of the heterozygotes (Table 2.2).

Missed heterozygote rates in amplicons with and without primer SNPs.

PolyPhred missed 7,057 of the 78,340 heterozygotes, which results in a missed
heterozygote rate (MHR) of 9.1%. We then recalculated these rates for the
amplicons with primer SNP(s) and those without. The MHR was much higher,
22.2% (3,155 of 14,186), in the amplicons with primer SNP(s) and much lower,

6.1% (3902 of 64154), in the amplicons without. This means that 44.6% of all
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missed heterozygotes occurred in the 15.4% of the amplicons containing primer
SNPs, indicating that SNPs inside PCR primers are strongly correlated with
missed heterozygotes. We also calculated the rate of miscalled homozygotes in
the same two sets of amplicons, and found no significant difference between
amplicons with primer SNPs (1.4%) and amplicons without (1.5%). The fact that
heterozygotes are missed much more frequently in amplicons where the PCR
primer site is polymorphic led us to hypothesize that the higher MHR is driven
by unequal PCR amplification in individuals heterozygous at the primer SNP
(Figure 2.2). We found that the MHR was 58.4% (1,830 of 3,132) in individuals
with a heterozygous HapMap genotype at the primer SNP. In contrast, the rate
was 6.1% (516 of 8,499) in individuals with a homozygous HapMap genotype at
the primer SNP. This means that in amplicons with a primer SNP as much as
78.0% of missed heterozygotes were found in the 26.9% of individuals who were

heterozygous at that primer SNP.

Haplotype prediction experiments.
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When the SNP detection algorithm miscalls a heterozygote at the SNP inside the
amplicon (the amplicon SNP), it makes a homozygous call for one or the other
allele. If these errors are random with respect to the primer SNP genotype, one
allele is just as likely to be called as the other (the null model). If, however, the
PCR primers preferentially amplify the chromosome that has the matching
primer sequence, it should (incorrectly) call the allele on that same chromosome.
Therefore if we have the phased haplotypes of individuals heterozygous both at
the primer SNP and at the amplicon SNP and we know which allele matches the
primer sequence, we should be able to predict the identity of the erroneous
homozygous call at the amplicon SNP. This procedure made the correct
prediction 93.1% of the time, which is statistically significant when compared to
the null model (p-value 2.3E-220 based on the Pearson’s chi-squared test,

n=1,354).

The effect on rare genetic variants.

Rare genetic variants are typically discovered as a very small number of
heterozygous individuals among a larger cohort (e.g. one or two heterozygotes
among 100 individuals). We find that such SNPs are missed at a high overall
rate: 14.5% (463 of 3,193) of single-heterozygote SNPs, and 8.7% (117 of 1,340) of

double-heterozygote SNPs were missed entirely in one amplicon. Unequal
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amplification caused by heterozygosity in the PCR primer should exacerbate
these rates. Indeed, single-heterozygote HapMap SNPs were missed 24.5% of the
time (109 of 444) within such amplicons, as compared to 12.9% of the time (354 of
2,749) in amplicons without primer SNPs. Similarly, SNPs with two
heterozygotes were missed 15.0% of the time (27 of 180) in amplicons with
primer SNPs, as compared to only 7.8% of the time (90 of 1,160) in amplicons

without.

The impact of primer SNP location and heterozygote frequency.

Resequencing protocols with provisions to avoid SNPs during primer design
focus on the 3’ end of the primer sequence (Ikegawa et al. 2002), presumably
because this is where imperfect annealing due to allelic mismatch would be most
likely to inhibit polymerase binding. We find that biased amplification occurs
without regard to the position of the primer SNP relative to the 3’ end (Figure
2.3). SNPs in the primer can cause a departure from Hardy-Weinberg
Equilibrium (HWE) by reducing the fraction of heterozygotes from what is
expected based on the allele frequencies (Balding 2006; Ikegawa et al. 2002). We
have quantified this phenomenon by measuring the reduction of heterozygote
frequency at amplicon SNPs as a function of heterozygote frequency at the

primer SNP (Figure 2.4). This reduction is most pronounced at higher primer
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SNP heterozygote frequencies, where the reduction is nearly 50%. At a
minimum, this skews the allele frequency estimate. At worst, departure from
Hardy-Weinberg equilibrium forces quality control procedures to discard the
SNP as the potential result of paralogous amplification.

Sequencing a region from an additional amplicon reduces the MHR
dramatically.

The MHR for SNPs that were sequenced in a single amplicon with primer SNP(s)
is 20.9%. This rate drops five-fold, to 3.7%, for SNPs sequenced both in an
amplicon with primer SNP(s) and an additional amplicon without (Figure 2.5).
Double amplicon coverage also reduces the overall MHR by four-fold (from 8.9%
to 2.2%), and triple coverage reduces it by nearly twenty-fold (to below 0.5%).
The genotyped HapMap SNPs do not represent a full catalog of all single-
nucleotide variation in the ENCODE regions, because of incomplete
ascertainment caused by failed or low quality traces, SNPs that were discovered
but for which no genotyping assay could be designed, and genotyping failures
(The International HapMap Consortium 2005). Therefore one cannot accurately
calculate the fraction of missed SNPs in the traces. However, one can estimate the
fraction of SNPs that were discovered in two overlapping amplicons but would

have been missed in a single amplicon (Methods). This rate is 28.7% in
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amplicons with a primer SNP (264 of 921) and 13.1% (471 of 3,608) in amplicons

with no primer SNP(s).

Discussion

We have demonstrated that heterozygosity within the primer hybridization site
is an important systematic cause of missed heterozygotes. Disproportionate
amplification due to primer SNP(s) increases the overall MHR by as much as
50%. In affected amplicons, one misses 22% of heterozygotes and over 20% of
rare SNPs. Allele frequency estimates for SNPs in these amplicons will be
miscalculated and can appear to deviate from HWE. Missed heterozygotes and
rare SNPs cluster in amplicons with primer SNPs, potentially in exonic DNA. For
example, in the ten ENCODE regions we found 20 exons (a total of 3,847 bp) in
15 distinct genes that were only sequenced from amplicons with primer SNPs
(Methods). Specifically, HOXA1, HOXA2 and HOXA6 each had such an exon.
An additional 36 exons (15,115 bp) in 18 unique genes were sequenced mainly
(but not exclusively) from amplicons with primer SNPs. The impact of potential
missed SNPs will be even greater on medical resequencing projects that

exclusively target coding and regulatory regions of important candidate genes.

46



Our results indicate that multi-amplicon coverage dramatically reduces both the
rate of missed heterozygotes and missed SNPs, and suggests that it not only
mitigates the systematic bias due to unequal PCR amplification but also remedies
missed heterozygotes from software errors (Stephens et al. 2006; The
International HapMap Consortium 2005; Zhang et al. 2005) and other sequencing
artifacts not addressed herein. Therefore we recommend that resequencing
projects adopt an amplicon design strategy that, in addition to avoiding primers
that overlap known SNPs, requires that each nucleotide position within the
region is sequenced from at least two amplicons. This strategy necessitates the
comparison of genotype calls from overlapping amplicons and the resolution of
genotype discrepancies. This is best accomplished by informatics techniques that
align the traces to the reference genome sequence. Although additional coverage
increases project costs, it ensures much more accurate genotypes and near-
complete discovery of rare mutations. At the cost of increasing amplicon
coverage to three-fold, the accuracy of sequence-based genotyping approaches
the accuracy of chip-based platforms, offering an economical alternative for

genotype confirmation.
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Methods

Data acquisition.

We downloaded all resequencing traces and the associated trace information
(e.g. PCR primer pair and HapMap individual identifier) from the Trace Archive
at the NCBI. We downloaded the HapMap genotypes for each ENCODE region,
and for the 39 individuals shared between the genotyping and the resequencing
project from the International HapMap Project website
(http://hapmap.org/genotypes/2005-10/non-redundant/, October 2005, Phase II
release, non-redundant set). We also downloaded the phased haplotypes for the
39 individuals (http://hapmap.org/downloads/phasing/2005-

03_phasel/ENCODE)/).

Trace alignment and SNP discovery.

We mapped traces and primers to their appropriate amplicon and aligned to the
corresponding genome reference sequence (build 34) from the NCBI
(ttp://ftp.ncbi.nlm.nih.gov) using the anchored multiple alignment algorithm

implemented in the PolyBayes SNP discovery program, one amplicon at a time.
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We ran the heterozygote detection software PolyPhred (version 5) on each
assembled amplicon. To reduce the number of falsely discovered SNPs and
genotypes, we only accepted PolyPhred SNP candidates with a score >= 70. (-
score 70). We used the option that instructs PolyPhred to include the reference
sequence in the SNP detection as a separate allele (-refcomp). We also provided
PolyPhred with information to integrate multiple traces from the same individual

(—source option), and used the resultant individual genotype calls.

Comparing HapMap genotypes and trace-based genotype calls.

The alignment of the traces to the reference genome sequence placed discovered
SNPs in reference chromosome coordinates. This allowed us to compare
PolyPhred calls directly to the HapMap genotypes. We could only compare such
genotypes where, on one hand, traces were aligned and analyzable (as
determined by PolyPhred), and, on the other hand, conclusive HapMap
genotypes were available. To avoid SNP calls in amplicons that may have
amplified multiple paralogous regions, we excluded amplicons where PolyPhred
called 20 or more SNPs. We calculated missed heterozygote rate (MHR) as the
fraction of HapMap heterozygotes that PolyPhred miscalled as a homozygote.

Haplotype comparisons.
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The HapMap provides phased haplotypes (Stephens and Donnelly 2003;
Stephens et al. 2001) for each ENCODE individual at each SNP in the ENCODE
regions. For individuals that were heterozygous at a primer SNP, we compared
both haplotypes at the primer SNP to the allele present in the primer sequence.
We used the haplotype that exactly matched the primer sequence allele to predict

the identity of the allele that PolyPhred erroneously called as a homozygote.

Integrating gene annotations.

Gene annotations consisting of gene and exon coordinates were downloaded
from the NCBI ftp site:

(ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ ARCHIVE/BUILD.34.3/mapview/seq_
gene.md.gz). We determined regions of overlap between gene features and

amplicons with custom scripts.
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Chapter 2 Tables

Average
Number
of
Number of Reads
ENCODE  Amplicons Per
Region Analyzed Amplicon
ENr113 993 98.0
ENmO014 1083 94.9
ENr112 1079 95.5
ENr131 989 85.3
ENmO013 1040 96.8
ENmO010 829 69.7
ENr123 818 51.1
ENr213 864 81.6
ENr232 820 53.0
ENr321 832 71.8
Average 934.7 79.8

Average
Amplicon
Length

857.6
749.9
750.0
747.5
748.4
932.0
752.8
781.2
746.6
767.7

785.4

Fraction of
Nucleotides
Sequenced
From 1
Amplicon

0.505
0.455
0.460
0.492
0.478
0.638
0.530
0.710
0.826
0.787

0.588

Fraction
of
Fraction of ~ Amplicons Number of
Nucleotides With >=1 Number of HapMap
Sequenced HapMap Polymorphic  Heterozygotes
From >=2 Primer HapMap Across
Amplicons SNP SNPs Amplicons
0.495 0.224 1753 17743
0.545 0.172 2321 15946
0.540 0.139 1316 16603
0.508 0.133 1251 14931
0.522 0.180 2194 13817
0.362 0.115 958 8615
0.470 0.145 1465 15418
0.290 0.142 1186 10128
0.174 0.115 999 8209
0.213 0.159 1271 11228
0.412 0.154 1471 13264

Number of
POLYPHRED
Genotype
Calls For
HapMap
Heterozygotes

12463
11938
11913
9200
10025
3927
4183
5860
3661
5170

7834

Fraction of
Missed
Heterozygotes
In Amplicons
With a Primer
SNP

0.491
0.407
0.529
0.379
0.379
0.423
0.395
0.442
0.341
0.584

0.446

Table 2.1. Summary of data used from each ENCODE region for genotype comparisons.
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Region
ENri13
ENmO014
ENri12
ENri3i
ENmO013
ENmO010
ENri23
ENr213
ENr232
ENr321

Total

Number of
Polymorphic
HapMap
Genotyped
SNPs

1753
2321
1316
1251
2194
958
1465
1186
999
1271

14714

Number of
Polymorphic
HM SNPs Counted
Multiply Across
Amplicons

2639
2493
2088
1862
2200
1323
2151
1518
1182
1553

19009

Number of
Polymorphic
HapMap SNPs
Discovered by
POLYPHRED Across
Amplicons

2181
2048
1748
1535
1805
929
1175
1297
757
1129

14604

Number of
HapMap

Heterozygotes

Counted

Multiply Across

Amplicons
17743
15946
16603
14931
13817
8615
15418
10128
8209
11228

132638

Number of
POLYPHRED
Genotype
Calls for the
HapMap
Heterozygotes
Across Amplicons

12463
11938
11913
9200
10025
3927
4183
5860
3661
5170

78340

Table 2.2. Summary of HapMap SNPs and heterozygotes compared to SNPs discovered and

genotyped by PolyPhred.
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Chapter 2 Figures
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Figure 2.1. Sequence trace-based individual genotypes that disagree between amplicons.
Sequence traces from individual NA12006 are displayed from two overlapping amplicons. (a)
The homozygous PolyPhred genotype calls (blue tags) from amplicon 80863 disagree with the
heterozygous HapMap genotypes. (b) The heterozygous PolyPhred genotype calls (pink tags)
from amplicon 80864 agree with the heterozygous HapMap genotypes. The relative color
intensities in each traces support the respective PolyPhred genotype calls. The middle SNP
location (rs17865995) was not genotyped by the HapMap and therefore was not addressed here.
(Yellow tag: insufficient trace quality. Lower-case alleles: low quality sequence. Upper-case
alleles: high quality sequence.)
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Primer Sequence: TTCGAAACACGCARA

(a) SNP within prim?r site SNP within amplicon
e A e (T TCGAAACACGCAR. e AGAAR) \/
( rTCGAAACGCGCAA..................... AGCRE)
Indivic]ual is Individual is Allele from less efficiently-
heterozygous heterozygous  gmpjified chromosome shows

within primer site within amplicon greatly reduced signal.

(b) SNP within primer site SNP within amplicon
! !
Equally Amplified ( TTCGAAACACGCAA....cwwiririin AGAAR)
Chromosomes ("7 7CGAAACACGCAA. ..o, AGCAR)
Individual is Individual is

Alleles are amplified equally.
homozygous heterozygous

within primer site within amplicon

Figure 2.2. Disproportionate chromosomal amplification due to heterozygosity at a SNP in the
PCR primer. (a) For an individual heterozygous at a primer SNP the chromosome matching the
primer sequence is amplified more efficiently than the chromosome containing the mismatched
allele. Sequencing results in reduced color intensity for the allele on the mismatched

chromosome. (b) For an individual homozygous at the primer SNP amplification and allele-
specific color intensities are balanced.
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Figure 2.3. SNP location within the primer does not significantly affect MHR. MHR at
amplicon SNPs is shown as a function of primer SNP distance from the 3’ end of the PCR binding
site. The number of missed heterozygotes is shown above each column.

55



0.25

0.20

0.15

0.10

0.05

Amplicon SNP Heterozygote Frequency

0.00

0.0 0.1 0.2 0.3 0.4 0.5

Primer SNP Heterozygote Frequency

Figure 2.4. As the heterozygote frequency at the primer SNP increases, so does the fraction of
missed heterozygotes at the amplicon SNP. Amplicon SNP heterozygote frequency as a function
of primer SNP heterozygote frequency. Blue: PolyPhred calls. Red: HapMap genotypes.
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Figure 2.5. Increasing amplicon coverage decreases missed heterozygote rate. Missed
heterozygote rates as a function of amplicon coverage are shown. Red: amplicons with primer
SNP(s); green: all amplicons.
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You can't have a light without a dark to stick it in.
-Arlo Guthrie
I do not mind lying, but I hate inaccuracy.

-Samuel Butler

3. Pyrobayes: An improved base caller for SNP discovery in
pyrosequences

Abstract

There are now several next-generation sequencing technologies with greatly
improved economy and sequence throughput relative to traditional Sanger-
based capillary methods (Bentley 2006; Margulies et al. 2005; Shendure et al.
2004). These machines will likely replace capillary sequencers for
resequencing and de novo sequencing, and will facilitate other high-
throughput biology applications (Barski et al. 2007; Mikkelsen et al. 2007; Ng
et al. 2006). However, utilizing sequencing reads from the new technologies is
not trivial because they are generally shorter and their sequencing error
profiles are different from that of traditional capillary reads. Pyrosequences

from 454 Life Sciences are prone to errors caused by base number over- and
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under-calls, resulting in apparent insertion and deletion errors in the reads. To
date, reported applications of this technology have relied upon deep sequence
coverage to resolve these errors. However, such over-sampling comes at a cost,
and it is clearly advantageous to use the available sequence data economically.
Here we report the development of Pyrobayes, a novel base-caller for
pyrosequences from the 454 Life Sciences machines. Pyrobayes generates base
quality values that correspond to the actual base accuracy significantly better
than those produced by the native base caller. As a result, a larger fraction of
the bases are assigned high base quality values. We illustrate that Pyrobayes
permits accurate SNP calling in resequencing applications, even in shallow,

single-read coverage.

Introduction

Despite its lower throughput relative to other new sequencing technologies, the
454 Life Sciences pyrosequencer is now in wide use because of its comparatively
longer read length (producing 100-250 bp medium-length reads as opposed to
25-50 bp short reads). The reads produced by these machines are the result of

cyclical nucleotide incorporation tests. If the tested nucleotide is incorporated,
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the intensity of the light emitted from subsequent chemical reactions is recorded.
This technology is unique in that all nucleotides within a homopolymer run (e.g.
AAA) are incorporated in a single test. Thus, the intensity signal produced is
proportional to the number of incorporated bases. Moreover, a nonzero signal is
typically observed even when no base is incorporated (i.e. “noise”). For these
reasons, the biggest challenges for 454 base-callers are determining the correct
number of bases, and deciding whether a base needs to be called at all in a given
nucleotide test. As a result, 454 reads are characterized by nucleotide over-calls
and under-calls that appear as insertion or deletion type errors (Girard et al.
2006; Thomas et al. 2006; Velicer et al. 2006) when compared to a reference
sequence of the organism. True substitution errors in the sequence reads are rare
because they must result from failing to call the correct base in one nucleotide
test and then calling an extra base in a separate nucleotide test. Given the
preponderance of insertion/deletion type sequencing errors, it is challenging to
describe 454 base accuracy with Phred base quality values (Ewing and Green
1998; Ewing et al. 1998), which were developed for slab gel and capillary reads
where the majority of errors stem from calling the wrong nucleotide. In contrast,
for 454 reads, the base quality value represents the likelihood that the called base

is, in fact, part of the sequenced DNA template, as opposed to a base overcall.
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Yet the use of accurate Phred-like quality estimates is important as most existing
sequence analysis software was designed to work with such quality values

(Marth et al. 1999; Stephens et al. 2006; Zhang et al. 2005).

Results

The necessity of accurate base quality estimates.

Accurate base quality values are especially important for re-sequencing
applications where we must decide whether apparent sequence differences
between the resequenced DNA and the reference genome sequence is true allelic
variation or sequencing error. To achieve a low false positive SNP calling rate,
the sequencing error rate must be substantially lower than the expected
polymorphism rate. This means that e.g. for human polymorphism detection no
SNP calls should be made from bases with a base quality value lower than 30 (1
in 1,000 bp error rate). If, on the other hand, the majority of bases in resequencing
reads are of sufficiently high quality for SNP detection, it is possible to conduct
economical genome surveys at low sequence coverage, because SNPs can then be
detected with high confidence between singly-aligned reads and the reference

genome. Unfortunately, the majority of the native 454 base quality values are not
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sufficiently high for SNP calling: we find that only 24% of the native 454 base
calls are above 30, and no base calls are assigned base quality values above 40
(Figure 3.1a). Our assessment (Methods) shows, however, that the reason for this
is not that 454 reads cannot be called accurately but that the native base quality
values grossly underestimate the actual base accuracy (Figure 3.1b). We
developed a new base-calling program for 454 pyrosequences, Pyrobayes, which
produces more accurate base quality values and as a result, calls more high-
quality bases. We demonstrate that the higher-quality base-calls produced by our
new software make SNP calling in low read coverage possible, thereby
enhancing the utility of 454 reads for resequencing, the main application area for

next-generation DNA sequencers.

The Bayesian base-calling strategy.

Since the main source of sequencing error in 454 sequences is nucleotide over-
and under-calls, our base-calling strategy is to estimate the correct number of
bases incorporated in each nucleotide test. Our Bayesian strategy (Methods)
requires data likelihoods i.e. the distribution of the incorporation signal for each
known homo-polymer length (Figure 3.2a, Figure 3.3). We estimated these

distributions by collecting shotgun resequencing data with the 454 Life Sciences
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GS20 instrument from a mouse BAC (bacterial artificial chromosome) clone, and
aligning the resulting 661,481 reads (a total of 65,875,710 bases) to the finished
reference sequence of the same BAC clone (Methods). It also requires the prior
expectations for how often we see homo-polymeric runs of different lengths
(Figure 3.2b). We determined these prior expectations for several genomes and
found that the relative frequencies of nucleotide runs of length n are
substantially different from the theoretical expectation that they are proportional
to 1/4". However, the actual frequency distributions were similar enough across
the genomes we analyzed not to warrant organism-specific priors for our
software. Using the data likelihoods and the prior distributions we calculated the
Bayesian posterior probability for each possible homo-polymer length as a
function of the observed nucleotide incorporation signal (Figure 3.2c). The most
likely number of bases is the homo-polymer length with the highest posterior

probability.

Pyrobayes produces the called base sequence by concatenating the most likely
number of bases for every consecutive incorporation test (adding no base if the
most likely base number is zero). The base quality value assigned to each base is

the probability that the base in question is not an over-call relative to the true
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DNA sequence (see Methods, Figure 3.2d for details). We found it also useful to
call one extra base, in addition to the most likely number of bases, as long as the
presence of that base is above a minimum probability (see Discussion for the

merits of this approach).

Utility for SNP calling in low sequence coverage.

To evaluate base-calling accuracy with our method we collected 299,654 454
reads (GS20 model) from the inbred reference (iso-1) strain of Drosophila
melanogaster. We re-called these reads with Pyrobayes. We aligned both the
original and the re-called sequences to the reference genome sequence
(Methods). Only counting reads that could be uniquely aligned with our
stringent alignment criteria, over 20Mb of sequence was aligned for each
method. The overall base accuracy (Methods) is quite high both for Pyrobayes
and the native 454 base caller (99.60% vs. 99.61% base calling accuracy,
respectively). As Figure 3.4a shows, the Pyrobayes insertion error rate is higher
(0.29%) than that of the native base caller (0.24%), but the Pyrobayes deletion rate
is lower (0.09% vs. 0.10%). Most importantly for SNP discovery, the Pyrobayes
substitution error rate is 60% lower (0.017% vs. 0.042%) than that of the native

base caller.
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Comparison to the native base caller.

Moreover, the base quality values assigned by Pyrobayes represent the true
accuracy of the 454 reads more closely than the native base quality values (Figure
3.1b). As a result, Pyrobayes base quality values are, in general, higher (Figure
3.1c). For example, 56% of the Pyrobayes bases are assigned base quality values of
30 or higher, as compared to 24% of the native calls (Figure 3.1a). Additionally,
Pyrobayes produces quality values up to 50 (1 in 100,000 bp error rate), whereas
the native base caller does not produce quality values above 40 (1 in 10,000 bp

error rate).

We investigated the effect of Pyrobayes’s reduced substitution error rate and
higher overall base quality values on SNP (single-nucleotide polymorphism)
detection. We searched for single base pair differences between the 454-
sequenced iso-1 reads and the iso-1 Drosophila reference sequence (Methods).
Since these sequences are from the same inbred melanogaster strain, and the
overall accuracy of the Drosophila genome sequence is high, we expect few, if
any, true polymorphisms. SNPs discovered in this comparison therefore estimate

the false SNP discovery rate. This rate was 1.22 per 10,000 base pairs using the
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native base calls, but only 0.97 per 10,000 base pairs using the Pyrobayes base
calls. It is important to consider that the actual false positive SNP rate depends
on the polymorphism rate in the resequenced organism. For example in
Drosophila, where the pair-wise polymorphism rate has been observed to be as
high as ~ 1/200 base pairs (Hoskins et al. 2001), our estimated false SNP discovery

rate would correspond to a false positive SNP rate of roughly 1.9%.

To compare the missed SNP rate with the respective base callers and estimate the
false positive SNP rate directly, we analyzed a 454 dataset from a genome survey
of inbred geographic isolates of Drosophila melanogaster. For our tests we used a
single 454 run from an isolate from Malawi for which experimental SNP
validation data was available. Using the Pyrobayes base calls we found 1,118 SNP
candidates with a PolyBayes SNP probability (Marth et al. 1999) cutoff value of 0.7
or higher (Methods). The validation rate for these candidates was 93% (1,036 of
1,118). The corresponding 7% false positive SNP rate is a composite effect of
incorrectly called SNPs and the usual artifacts associated with capillary sequence
validation experiments (Quinlan and Marth 2007). The fraction of SNPs missed
in the 454 reads at this cutoff was 14.8% (Methods). Using the native base calls,

the validation rate remained unchanged but 30.0% of the SNPs were missed.
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A new, higher throughput version of the 454 pyrosequencing machine (model
FLX) has recently been released. Operating under the same sequencing principles
as the GS20, this machine produces 250 bp reads. We tested Pyrobayes’s
performance on two sequencing runs from E. coli K12. As shown in Figure 3.5,
the overall accuracy of the FLX machine is higher than that of the GS20.
Therefore, since Pyrobayes was calibrated using the GS20 machine, the Pyrobayes
base quality values underestimate the actual FLX accuracy. Nevertheless, they
are clearly more accurate than the native 454 base quality values, even without
specific retraining for the FLX model. This suggests that our training method is
robust. Yet to get the best performance possible, we will have to repeat our

calibration for the FLX and for all subsequent 454 models.

Discussion

We demonstrate that the dominant errors in 454 reads are insertions and
deletions, as opposed to substitutions (Figure 3.4a). This is because
pyrosequencing reads often require that multiple bases and quality values be
derived from a single incorporation signal. As a result, the Phred base quality

value assigned to a base reflects the likelihood that the base in question is, in fact,
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part of the true DNA sequence, as opposed to an insertion error. Therefore, the
most certain base-calls are the first bases in a homopolymer run (Figure 3.6). The
least certain base calls, on the other hand, are often the last bases in long runs,
where the lower quality value reflects the uncertainty about the existence of the
last bases. An alternate approach is to assign an average quality value for each
base in the homopolymer run (Brockman et al. 2008). The consequence of this
method is that all the bases in a homopolymer run are penalized with a lower
quality score. Consequently, such approaches are likely to be less sensitive for
SNP calling while the Pyrobayes approach is more likely to be less specific,

especially in shallow sequence coverage.

A decision any base-caller must make is the minimum evidence required before
it calls a base. A higher threshold increases the deletion rate and a lower
threshold increases the insertion rate. In our experience, the primary source of
substitution errors is misalignment. This is most often the result of nucleotide
under-calls in the 454 sequence (for an example see the upper alignment in
Figure 3.4b). Erring towards calling more bases in homopolymer runs often

allows us to correct the alignment (lower alignment, Figure 3.4b) and
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substantially reduce substitution errors at the cost of an increased insertion error

rate (Figure 3.4a). For SNP calling applications this is clearly the logical choice.

We were able to call SNP candidates in our low-coverage 454 Drosophila
sequences with a high true SNP rate, while missing only 15% of the SNPs in the
regions covered by 454 reads. This is half the missed SNP rate that would have
been possible with the native 454 quality values, and is attributable to the higher
base quality values that Pyrobayes assigned to the true polymorphic alleles. On
the other hand, higher base quality values nearly always result in a confident
SNP call for spurious mismatches caused by misalignments. That is to say, a
misaligned base with a lower native 454 base quality value would not be
assigned as confident a SNP probability as the same base with the higher
Pyrobayes base quality. This may explain why we observed only a 21% drop in
the rate of spurious SNP calls in our non-polymorphic iso-1 reads, despite a 60%
reduction of the substitution rate (which was calculated without regard to
quality value). Although we show that single-read 454 data is useful for SNP
discovery, it is unclear if such low-coverage sequences are similarly suitable for

short-INDEL discovery.
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Given that the native 454 quality values consistently underestimate actual base
accuracy (Figure 3.1a) one might argue that an alternative to our approach
would be to simply re-assign the base quality values according to the higher,
measured base accuracy. We tested this and found that although the re-assigned
base quality values improve upon the original values, the fraction of high-quality
bases remains substantially below those called by Pyrobayes, especially in the 20-
40 quality range (Figure 3.1d). Furthermore, simply reassigning base quality
values does not affect how many bases are called, and therefore does not allow

one to fine-tune the base caller to minimize misalignments.

The increased accuracy of our base calls and base quality values will likely
permit more sensitive biological studies using the 454 machines. We illustrate
this for low-coverage, survey-type applications. Even in deeper overall coverage,
statistical fluctuations (Lander and Waterman 1988) will result in regions of
shallow read depth. The ability to analyze such regions without a loss in
accuracy will permit more complete analyses of whole-genome alignments.
Pyrobayes processes a single run of G520 reads in less than 40 seconds, and a run

of FLX reads in under 120 seconds using minimal computer resources.
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Methods

454 sequencing.

Genomic DNA from mouse and chimp BAC clones as well as the iso-1 strain of
Drosophila melanogaster was sequenced by Elaine Mardis and Vincent Magrini at
The Washington University Genome Sequencing Center. The Drosophila
melanogaster DNA was obtained by Chuck Langley (UC Davis) and Andy Clark

(Cornell University). Standard 454 sequencing protocols were used.

Determination of base number probabilities (data likelihoods).

We determined the frequency that, given an observed signal from a nucleotide
test, the actual number of incorporated bases was 1,2,3..etc. by aligning 454
reads from a mouse BAC to the known BAC reference sequence. Since we are
able to conclude that any observed mismatch between a 454 read and the BAC
reference was a sequencing error, the observed frequencies serve as estimates for
the data probabilities, in our Bayesian framework--where s is the observed
nucleotide incorporation signal and 7 is the homopolymer length. The 454 reads

were aligned to the BAC reference sequence with our novel, reference-sequence
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guided alignment software, Mosaik (Michael Stromberg, manuscript in

preparation).

Estimating the prior homopolymer probabilities.

According to a model of random aggregation of consecutive bases in a DNA
sequence, the expectation for the frequency of homopolymers of length n is
proportional to 1/4". To check the validity of this expectation we computed the
frequency of observed homoploymers in the genomes of seven species (Influenza
Type B, Escherichia coli K12, Pichia stipitis, Caenorhabditis elegans, Drosophila
melanogaster, Mus musculus, Homo sapiens). As Figure 3.2b shows this random
expectation grossly underestimates the actual frequency of longer
homopolymers in the genomes we analyzed. For the prior probability values, we
used the average frequency of the eukaryote homopolymer frequencies. The
prior probability for a homopolymer of length zero (i.e. the prior likelihood that
no base is incorporated in a flow) was tabulated by counting what fraction of the
nucleotide tests do not correspond to an actual base in a single run of 454 reads

from a mouse BAC shotgun library.

Determination of the most likely number of bases.
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Using the data likelihoods and the prior probabilities, we determined , i.e. the
base number probabilities, for every possible (up to a rational limit of #=100) base

number, according to the following formula:

Pr(s|n)- Prior(n)
Zevery possible n; Pr(s | ni) : Prior(ni)

Pr(n|s) = . The number n for which this posterior

probability is highest is the most likely number of bases.

Parent Distribution Fitting.

Longer homopolymeric runs are inherently less frequent than short runs.
Regardless of the amount of available testing data, the number of examples for
long homopolymeric runs will always be too small for reliable frequency
estimation. In the case of our own test data set, there was not sufficient data to
estimate the frequency of homopolymers longer than seven-nucleotides. In order
to both extend base calling to longer homopolymeric runs and to improve
runtime, we replaced the observed data likelihoods with appropriate parent
distributions. For this purpose we used non-central Student’s t distributions. The
non-central ¢ fit parameters for shorter homopolymers were extrapolated to

longer homopolymer distributions.
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Base quality assignment.

The base quality value assigned to each base represents the probability that the
base is question was, in fact, incorporated within the test. For example, if the
most likely number of nucleotides for an observed signal is three, then the base
quality value for the first nucleotide in the run of three reflects the probability
that, based on the signal, at least one nucleotide was incorporated. Similarly, the
second base reflects the probability that there were at least two nucleotides
incorporated, and so forth. Consequently, the bases with the highest assigned
base qualities come from the first bases in longer homopolymer runs (Figure
3.2d, Figure 3.4). The highest base quality value that Pyrobayes assigns is 50,
which represents an expected error rate of 1 in 100,000. Nominal base quality

values above this value are truncated back to 50.

Sequence alignment.

To align next-generation sequencer reads to entire reference genome sequences
efficiently and accurately, we developed a new re-alignment and assembly
algorithm, Mosaik. Mosaik uses a hash-based approach (Altschul et al. 1990;
Altschul et al. 1997; Kent 2002) for a fast initial read placement, followed by an

exhaustive local Smith-Waterman-Gotoh (Smith and Waterman 1981) pair-wise
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alignment. Each read was placed at the location where it best aligned, as long as
minimum alignment criteria were met (> 95% aligned length; > 95% sequence
identity). To avoid misalignment due to paralogy, however, if the read can be
mapped to another location with a Smith-Waterman alignment score that is at
least 80% of the best alignment score, the read is rejected from the alignment

altogether.

Overall sequence error rates.

We aligned the Drosophila melanogaster iso-1 reads base called by both Pyrobayes
and the native 454 base-caller to the Drosophila reference genome sequence. The
sequence differences between every aligned read and the reference sequence
were tabulated and used to compute the overall, insertion, deletion and

substitution error rates for each method.

Measured base quality value calculation.

Using the same Drosophila melanogaster iso-1 reads aligned to the reference
genome, the measured (i.e. actual) base quality for each assigned base quality
was derived by tabulating the number of correct and incorrect base calls made

with a given assigned base quality. We then computed an actual base quality for
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the assigned base quality, according to the following formula:
Q=-10elogu(:- ")

SNP calling and validation.

SNPs were called among base-called sequences from an African isolate of
Drosophila melanogaster by both Pyrobayes and the native 454 base caller. The
resulting sequences from each method were aligned to the Drosophila genome
reference sequence. We then used the PolyBayes SNP discovery program to call
SNP candidates among the aligned sequences from each base caller. PolyBayes
used the base quality values from the respective base caller to assign a SNP
likelihood to all observed mismatches between the aligned read and the
reference sequence.

We submitted the SNPs identified from the sequences called by Pyrobayes to
experimental validation by PCR-based capillary sequencing. We computed the
validation rate from the fraction of SNPs that we identified by Pyrobayes but not
confirmed by the capillary validation sequences. Ginger Fewell at The
Washington University Genome Sequencing Center performed the validation

experiments for polymorphism candidates.
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Missed SNP rate calculation.

We estimated the missed SNP rate using the capillary sequences produced for
candidate SNP validation. First, we used the PolyPhred program (Stephens et al.
2006) to call SNPs in the capillary validation traces from the 46-2 isolate. Second,
we manually inspected these SNPs and excluded obvious false positives. We
treated the remaining PolyPhred calls as “true” SNPs. Third, for each “true” SNP,
we determined if it was also covered by a base-called read from the same isolate.
We counted cases where there was coverage by a base-called read but the SNP
was not discovered by PolyBayes as missed SNPs. We calculated the missed SNP
rate as the number of missed SNPs divided by the number of “true” SNPs for

which there was coverage by a base-called read.
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Figure 3.1. Comparison of the base qualities assigned by Pyrobayes and the native 454 base
caller. a, The cumulative distribution of base quality values assigned by Pyrobayes (red) and the
native 454 base caller (gray). b, Comparison between assigned base quality value and the base

quality calculated from the actual base accuracy for Pyrobayes (red) and the native 454 base caller
#correct

(gray). Actual base quality (Q) is calculated as: Q = —-10e logw»(1 - (*—--=)) : a value of 50 was

total
assigned when no errors were found. ¢, The distribution of base calls that are assigned a given
base quality value by Pyrobayes (red) and the native base caller (gray). d, The cumulative
distribution of the actual quality of the base calls made by Pyrobayes (red) and the native 454 base
caller (gray). Actual quality is calculated as above.
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Figure 3.2. The Pyrobayes Bayesian base calling approach. a, The frequencies that the actual
number of nucleotides is n given a nucleotide incorporation signal s are used as data likelihoods.
These observed frequencies help to resolve the most likely number of nucleotides for ambiguous
signals. b, The observed frequencies of homopolymers of varying lengths are show in seven
different organisms. For comparison, the expectation of exponential decay is also included. ¢,
Using the data likelihoods (panel a) and the prior probabilities (panel b), the posterior
probabilities of homopolymers lengths 0 — 5 are shown. d, The most likely number of bases is
shown for eight consecutive nucleotide tests. The base quality value assigned to each called base
is the likelihood that the base in question was part of the DNA sequence.
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Figure 3.4. Comparison of the error profiles of Pyrobayes and the native base caller. a, The
overall, the insertion, the deletion and the substitution error rates are shown for Pyrobayes (red)
and for the native 454 base caller (gray). The relative contribution of each error type is also
shown in a pie chart (for Pyrobayes calls). b, Illustration of the effects of calling too few or too
many bases on the alignment of a read (gray) to the reference sequence (black). Top panel: too
few thymines (Ts) were called, resulting in two spurious mismatches (arrows) by mis-aligning
the correctly called C and the inserted G (red) in the 454 read. Middle panel: the correct number
of Ts were called resulting in the correct read alignment of the single insertion error (red) in the
454 read. Bottom panel: too many Ts were called resulting in the correct read alignment of the
two base insertion errors (red) in the 454 read.
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Figure 3.5. Pyrobayes base quality accuracy for the 454 Life Sciences FLX model. A comparison
between assigned base quality value and the base quality calculated from the actual base
accuracy for Pyrobayes (red) and the native 454 base caller (gray) is shown for the FLX model.
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Figure 3.6. Distribution of base quality scores. The average quality score assigned by Pyrobayes
is shown for each base position in homopolymers up to a length of five bases. For example, on
average, the second base in a run of four identical nucleotides is assigned a quality value of 43.
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My motto is: Contented with little, yet wishing for more.

-Charles Lamb

4. Whole-genome polymorphism discovery in ten Drosophila
melanogaster isolates using 454 pyrosequences

Abstract

The recent development of novel, high-throughput sequencing technologies
promises faster, more economical approaches to genomic studies (Bentley
2006; Margulies et al. 2005; Shendure et al. 2004). The pyrosequencing
technology from 454 Life Sciences (Margulies et al. 2005) currently produces
hundreds of thousands of 100-250 base pair sequences from whole-genome
shotgun libraries. Although other, short-read sequencing machines produce
more bases per run, the longer 454 sequence reads are easier to assemble and
align to a reference genome. Individual re-sequencing studies seek to uncover
polymorphisms in the most economical way (i.e. at the lowest possible
sequence coverage). However, this has not been successful in low-coverage 454
sequences to date because of the difficulty in determining the number of

actual bases in homopolymer runs (Ahmadian et al. 2006; Margulies et al. 2005;
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Ronaghi et al. 1996). Here we report improved algorithms for basecalling,
alignment and SNP calling using a refined error model, and apply these tools
to a genome-wide SNP discovery project based on light-shotgun 454
pyrosequences from ten Drosophila melanogaster isolates. This study
demonstrates that even single-coverage 454 reads are suitable for accurate
polymorphism discovery, with an independent experimental validation rate of
93%, while missing only 2% of the existing variation. This approach represents
an economical approach to genome-wide polymorphism surveys, significantly
increases the rate and economy of SNP discovery, and facilitates rapid marker
generation for genotyping chips. The accuracy achieved in single 454 reads
suggests that, with increased overall sequence coverage, this approach will be

suitable for complete mutational profiling of model organisms.

Introduction

The recently developed next-generation sequencing technologies produce
hundreds of megabases to gigabases of short (less than 50 bp) and medium-
length (100-250 bp) reads (Bentley 2006; Shendure et al. 2004). Although the

short-read technologies (e.g. Illumina, AB/SOLiD) have much higher throughput,
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the sequencing instruments with medium-length reads (e.g. 454 Life Sciences) are
more suitable for de novo sequencing and less susceptible to mis-alignment
owing to paralogy. The 454 machines have been used successfully for genome
sequencing (Margulies et al. 2005), microRNA discovery (Girard et al. 2006),
individual mutation detection (Thomas et al. 2006) and bacterial resequencing
(Velicer et al. 2006). These applications required deep read coverage which,
despite the higher throughput of this technology, is still costly for large genomes.
Therefore it is imperative that informatics tools extract the most information
from the lowest possible sequence coverage. A typical low-coverage sequencing
application is a genome survey for the estimation of nucleotide diversity among
individuals or strains. To assess whether or not the 454 technology is suitable for
such low-coverage re-sequencing projects we undertook a genome-wide survey
of ten inbred Drosophila melanogaster isolates, using the high-quality Drosophila

reference genome sequence as a template for read alignment.

In low coverage resequencing applications, the vast majority of reads align to the
reference as singletons, and thus polymorphism discovery is only possible if the
base quality of the reads (and of the reference sequence) is high enough to

distinguish true polymorphisms from sequencing errors (Marth et al. 1999). As
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described in Chapter 4, we see that the majority (76%) of bases called by the 454
base caller have base quality values lower than 30 (i.e. they are reported to have
more than a 1 in 1,000 bp error rate), and none of the called bases have a quality
value over 40. Given that this error rate is comparable to typical pair-wise
polymorphism rates, SNP discovery with such quality values comes at the cost of

frequent false positive SNP predictions.

Results

The sequenced Drosophila isolates.

We sequenced the ten inbred Drosophila isolates, four from Malawi and six from
North Carolina, each with a single run of the 454 G520 pyrosequencer (Table 4.1)
from whole-genome shotgun libraries (Methods). For each isolate, an average of
337,989 reads were produced, providing a 0.195-fold coverage of the 180 Mb
genome (Adams et al. 2000) (see Table 4.1 for details). The sequenced isolates
were derived from North America and Africa and there was ample prior
information on these populations to expect several nucleotide differences per

kilobase (Hoskins et al. 2001). In order to develop an empirical error model for
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the basecalling algorithm, we also collected one 454 GS20 run of the iso-1
reference strain (Adams et al. 2000), providing nearly 30 Mbp of sequence calls

for which the correct sequence was known.

Basecalling, alignment and SNP discovery.

We basecalled the reads with Pyrobayes and aligned them to the euchromatin of
the reference genome sequence with our new reference sequence-guided
assembly program, Mosaik (see Methods, manuscript in preparation). We
aggressively discarded sequences that mapped to multiple locations in the
reference genome to avoid misalignments that could lead to spurious SNP calls.
Additionally, we required that 95% of the entire length of each sequence was
aligned and we allowed very few mismatches relative to the genome (Methods).
On average 57.4% of the reads were aligned from each isolate (see Table 4.1).
This seemingly low fraction is largely a consequence of the fact that we only
aligned sequence reads to the Drosophila euchromatin which is roughly two-
thirds of the total genomic sequence (120Mb of 180Mb). In other words, given
that the sequenced DNA is from the entire genome, we would expect at most
67% of the reads to align. 70.2% of the euchromatin was covered by a read from
at least one isolate (see Figure 4.2) and 36.9% was covered by at least two reads.

We scanned the alignments for SNPs with an improved version of our SNP

88



discovery program, PolyBayes, allowing us to efficiently process the 1.9 million
aligned sequences. PolyBayes assigned a SNP probability to each candidate SNP
(see Methods and Figure 4.1). We identified every candidate with a SNP
probability greater than 0.01, yielding 593,315 candidate SNPs. The vast majority
of these candidates (92.7%) had a posterior probability above 0.5 and over half

(54.3%) were above 0.9.

To assess if such high SNP probability values are justified, we subjected 1,338
randomly chosen candidates from one of the ten isolates to experimental
verification with PCR-based capillary sequencing (see Methods, Figure 4.1).
Assays were successful for 1,317 candidates, and we confirmed 1,220 SNPs. This
represents a 92.6% validation rate (i.e. the number of true SNPs divided by the
number of candidates that could be conclusively assayed) and a 91.2%
conversion rate (i.e. the number of true SNPs divided by all candidates
submitted for validation). We also quantified the rate of missed SNPs by
tabulating all SNPs in the capillary validation traces for which there was also
coverage by at least one 454 read (Methods). Of 1,183 such SNPs only 92 were
missed; a 7.8% missed SNP rate. Many of the SNPs that were missed were

heterozygotes where the 454 read(s) only contributed the reference allele.
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Clearly, without a 454 read with the alternate allele, it is impossible to identify
these heterozygous polymorphisms. Excluding such heterozygotes, only 26
(2.3%) of 1,117 SNPs were missed. As expected, raising the SNP probability
cutoff increases specificity (the validation rate is higher) but decreases sensitivity

(more SNPs are missed), and vice versa (Figure 4.3a, b).

Pair-wise nucleotide diversity estimates.

Although a single sequencing run was insufficient to resequence each isolate’s
entire genome, there was sufficient overlap between isolates to estimate the inter-
isolate pair-wise nucleotide diversity values (Table 4.2). The average value, 5.5 x
10-3, or 1 SNP per 181 bp, agrees with previous estimates (Hoskins et al. 2001).
The nucleotide diversity was higher among the African isolates (1 SNP per 183
bp) than among North Carolina isolates (1 SNP per 214 bp), and highest across
the two geographic cohorts (1 in 165 bp). Because of the large amount of read
overlap between isolates, the diversity estimates are accurate within 1%

(maximum standard error is 6.6 x 10-5).

Given the low sequence coverage in this study we expected that many of the

SNPs would be singletons (i.e. the alternate allele is only present in one isolate).
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Nevertheless, 18.4% (108,872) were polymorphic in two or more of the ten

sequenced isolates (Figure 4.4).

Discussion

The high validation and low missed SNP rates we report in this study suggest
that 454 pyrosequences are suitable for accurate and exhaustive SNP discovery
even in single-read coverage, and therefore this technology is an economical yet
informative alternative to traditional genome survey sequencing. The validation
rates we observed were higher than would be predicted by the SNP probabilities
calculated from the base quality values in the 454 reads. This is the result of the
fact that these base quality values, by necessity, agglomerate sequencing error
rates from insertions and substitutions, whereas insertion errors are the
dominant error type in 454 reads (Huse et al. 2007; Margulies et al. 2005) (Figure
4.5a). However, once a base is aligned to the reference sequence as a mismatch it
is de facto confirmed not to be an insertion, and the error rate calculated from the
quality value is now an overestimation of the substitution rate. This illustrates
the difficulty of representing the 454 sequencing error rate with a single Phred

quality value, which was developed to describe substitution-type error in Sanger
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sequences. To remedy the overestimation of the substitution error rate, we are
extending Pyrobayes to produce separate quality values for insertion and
substitution errors. However, such effort is only useful if downstream software is

able to interpret and use such separate quality values sequences.

In Figure 4.3a, the validation rate for SNP candidates with a probability of 0.9 or
greater declined relative to the validation rate of slightly less probable
candidates. In the majority of these cases, the alternative allele is an extra base in
a homopolymer in the 454 read, aligned to a nucleotide of another kind in the
reference sequence. Depending on whether the read is from the same or the
opposite strand compared to the reference sequence, the extra base is the first
base in the run (and assigned high base quality value) or the last base (and
assigned low base quality value); see Figure 4.5b. The validation rate of such
candidates represents an aggregate of these two situations. This phenomenon
explains the decrease in the validation rate for SNP candidates with a probability
of 0.9 (Figure 4.3a). We are currently extending our methods to make the SNP
calling software aware of the alignment orientation which, in turn, would allow

us to produce more accurate SNP probabilities for this class of candidates.
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Additionally, we often find that spurious SNP calls arise in situations where the
alternate allele is found in multiple reads having identical start and end sites
(Figure 4.5c¢). It is highly unlikely that such reads represent two different DNA
fragments, especially in low shotgun read coverage. It is much more likely that
such reads are the result of emulsion PCR amplification errors incurred on a
single template that was subsequently sequenced in multiple sequencing wells.
One potential remedy is to exclude sequences with identical alignment start and

end positions from the analysis, although this approach may be wasteful.

Genetic and comparative genomic studies of organisms whose genome has been
sequenced are further empowered by dense marker maps and SNP genotyping
chips requiring markers that segregate in the population. Nearly 20% of our SNP
candidates were polymorphic in two or more isolates, representing an average
density of 1 SNP per 1,100 base pairs of the melanogaster euchromatin. Clearly,
these SNPs comprise a dense Drosophila melanogaster genetic marker map, and a

useful candidate pool for a fruit-fly genotyping chip.

Based on the low missed SNP rate in this low-coverage genome survey, we

anticipate that our tools will be able to find every SNP if complete genome
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coverage is available, as would be required for complete mutational profiling or
individual resequencing. For applications where false negatives are easily
tolerated, shallow coverage 454 resequencing and the algorithms described here

provide a much cheaper solution for genome-wide SNP surveys.

Methods

454 sequencing.

Elaine Mardis and Vincent Magrini at The Washington University Genome
Sequencing Center sequenced genomic DNA from the iso-1 strain as well as the
10 geographic isolates of Drosophila melanogaster. The Drosophila melanogaster
DNA was obtained by Chuck Langley (UC Davis) and Andy Clark (Cornell

University). Standard 454 sequencing protocols were used.

Whole-genome DNA library preparation for each isolate

A whole-genome shotgun library was created for each isolate from genomic
DNA obtained from Charles Langley at the University of California, Davis. We
fragmented the genomic DNA by nebulization according to standard 454

protocols. Nebulized DNA was analyzed by agarose gel electrophoresis, and we
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collected fragments within a size range of 500 bp. The collected fragments were
linker ligated with a mixture of the two 454-specific linkers, one species of which
is biotinylated. We then performed an enrichment step to remove fragments with
the same species of un-biotinylated linker at both ends, by capturing those with

biotinylated linkers on streptavidin magnetic beads.

Next, the fragments on the beads were denatured, allowing us to reclaim the
non-biotinylated strand from a supernatant that is further utilized. First, the
released single-stranded DNA fragments were run on the Agilent Bioanalyzer to
calculate yield, then coupled to Sepharose beads that carried covalently linked
oligonucleotides complementary to the linkers ligated onto the nebulized DNA
fragments. Here, we adjusted the input concentration of DNA fragments to give,
on average, a 1:1 association between beads and DNA fragments. The mixture
was then emulsified in an oil suspension containing aqueous PCR reactants, and
emulsion PCR enabled the amplification of millions of unique fragment-bead
combinations in a large-batch PCR format. After combining the emulsion PCR
(emPCR) reactions for the library, we enriched for Sepharose beads that
contained amplified DNA, by the use of streptavidin magnetic beads to capture

the biotinylated ends of amplified fragments complexed to Sepharose beads.
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Following enrichment, the biotinylated strand is melted away by the addition of

NaOH, and sequencing primers were annealed to the bead-bound amplicons.

Primer- and polymerase-bound Sepharose beads were loaded into a
PicoTiterPlate (PTP) device that is essentially composed of hundreds of
thousands of fused fiber optic strands, the ends of which are hollowed out to a
diameter sufficient to contain a single Sepharose bead. Smaller magnetic beads,
to which pyrosequencing (sulfurylase and luciferase) enzymes are covalently
attached, were pipetted into the PTP subsequently, and a centrifugation step
packed them in around each Sepharose bead. The PTP fits into a flow-cell device
that positions it against a high-sensitivity CCD camera in the 454 GS-20
sequencing instrument. Pyrosequencing follows, whereby sequential flows of
each dNTP, separated by an imaging step and a wash step take place. At each
well address in the PTP, the incorporation of one or more nucleotides into the
synthesized strand on each bead was captured by the CCD camera, which
records positional information about each well address that reports a signal
during the initial flow cycles and then monitors all addresses throughout the

sequencing process.
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Sequence alignment and assembly

Using Mosaik, each sequencing read was placed at the location where it best
aligned, as long as minimum alignment criteria were met (>=95% aligned length;
>=95% sequence identity). To avoid misalignment due to paralogy, however, if
the read can be mapped to another location with a Smith-Waterman alignment
score that is at least 80% of the best alignment score, the read is rejected from the
alignment. 744,955 (22%) of the reads from the ten isolates were rejected in this
manner. We aligned all 10 runs of 454 reads simultaneously. We used the
reference-guided assembly functionality of Mosaik to create multiple alignments

of reads from each isolate.

SNP calling

Using a new version of the PolyBayes SNP discovery algorithm that was rewritten
and optimized for millions of short and medium-length sequences, we scanned
the 454 read alignments for SNPs between the ten isolates and the iso-1 reference
genome. PolyBayes screens for single-nucleotide mismatches between aligned 454
reads and the reference sequence. The base quality values for the reference
sequence and for all aligned alleles are used to calculate a SNP probability score

(Figure 4.1). Figure 4.6 illustrates that when an alternate allele from a single 454
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read is aligned to the reference sequence, the SNP probability score increases as a
function of the base quality value of the alternate allele. When reads from
multiple isolates were aligned at the same genomic position, PolyBayes uses the
alleles and quality values from each aligned read to calculate the likelihood that
the locus is polymorphic among the aligned isolates.

Given that it is a highly accurate, finished genome, we assigned a quality value
of 40 (1 error in 10,000 bp) to each base in the Drosophila reference sequence.
Based on previous diversity estimates, we used a prior pair-wise polymorphism
rate of .005 and we identified all SNP candidates for which the PolyBayes SNP

probability score exceeded 0.01.

SNP validation

We chose 10,000 sequences at random from the African isolate 46-2, and
submitted the 1,483 SNP candidates found in these reads to validation by PCR-
based capillary sequencing. We were able to design PCR amplicons containing
the candidate site for 1,466 of the candidates. These were amplified with
universal primer-tailed oligo-nucleotides, and sequenced with two reads on each
strand using ABI capillary machines. We then aligned the capillary traces to the

candidate SNP site and manually examined whether the alternate allele found in
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the 454 read was confirmed in the corresponding capillary traces. Ginger Fewell
at The Washington University Genome Sequencing Center performed the

validation experiments for polymorphism candidates.

Missed SNP rate calculation

We estimated the missed SNP rate using the capillary sequences produced for
candidate SNP validation. First, we used the PolyPhred program to call SNPs in
the capillary validation traces from the 46-2 isolate. Second, we manually
inspected these SNPs and excluded obvious false positives. We treated the
remaining PolyPhred calls as “true” SNPs. Third, for each “true” SNP, we
determined if it was also covered by a 454 read from the same isolate. We
counted cases where there was 454 coverage but the SNP was not discovered by
PolyBayes as missed SNPs. We calculated the missed SNP rate as the number of
missed SNPs divided by the number of “true” SNPs for which there was 454

coverage.
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Chapter 4 Tables

Num.
sequence
reads
Avg. aligned
Num. of sequence  Nominal passing Fraction of
sequence Total read genome  alignment sequence reads
Isolate Origin reads sequence length coverage criteria aligned

28-5 Malawi 264,107 27,259,496 103.2 0.151 145,344 0.550
46-2 Malawi 341,600 35,051,630 102.6 0.195 197,055 0.577
56-4 Malawi 383,430 40,456,875 105.5 0.225 207,620 0.541
63-5 Malawi 325,694 33,583,151 103.1 0.187 174,748 0.537
301 N.C. 436,406 45,555,185 104.4 0.253 240,344 0.551
303 N.C. 333,418 34,686,165 104.0 0.193 194,066 0.582
306 N.C. 311,569 32,497,974 104.3 0.181 177,709 0.570
358 N.C. 360,650 37,531,671 104.1 0.209 231,878 0.643
375 N.C. 346,835 35,418,959 102.1 0.197 203,587 0.587
732 N.C. 276,176 28,711,855 104.0 0.160 167,185 0.605

Total 3,379,885 350,752,961 1,939,536

Avg./

isolate 337,989 35,075,296 103.8 0.195 193,954 0.574

Table 4.1. Summary statistics for the sequenced D. melanogaster isolates.
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28-5
46-2
56-4
63-5
301
303
306
358
375
732

Table 4.2. Pair-wise polymorphism rates between each D.

28-5

46-2
0.00575

56-4
0.00532
0.00583

63-5
0.00476
0.00568
0.00537

301
0.00582
0.00620
0.00596
0.00580

303
0.00617
0.00630
0.00602
0.00600
0.00479

101

306
0.00595
0.00614
0.00618
0.00590
0.00466
0.00344

358
0.00599
0.00624
0.00621
0.00580
0.00453
0.00484
0.00480

375
0.00606
0.00635
0.00616
0.00611
0.00471
0.00480
0.00462
0.00477

melanogaster isolate.

732
0.00601
0.00624
0.00611
0.00603
0.00487
0.00479
0.00449
0.00503
0.00488



Chapter 4 Figures
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Figure 4.1. Using base qualities in SNP discovery. A SNP candidate and a corresponding
validation trace are shown. The SNP probability reflects the quality of the alternate allele. The

SNP is confirmed in the capillary validation trace.
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Figure 4.2. Depth of isolate-specific read coverage. The average fraction of the genome with
aligned reads from 0, 1, 2, ..., etc. isolates are shown. Error bars indicate the standard deviation
among the melanogaster chromosomes.
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Figure 4.3. Validation and missed SNP rates in single sequence coverage. a, The SNP
probability is compared to the experimental validation rate (black). The blue columns indicate the
fraction of SNP candidates in each SNP probability bin. b, The missed SNP rate is shown as a
function of the SNP probability cutoff.
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Figure 4.4. The fraction of SNP candidates identified in one or more Drosophila lines.
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Figure 4.5. Common factors that affect the SNP validation rate. a, The contribution of each
source of base calling error is shown for base calls made by Pyrobayes. b, Putative SNP candidates
and their associated quality values and PolyBayes SNP probabilities (P(SNP)) are shown when a
454 read is aligned in the same orientation as the reference sequence (left pane) and in the
opposite orientation as the reference sequence (right pane). ¢, An example of a spurious SNP
candidate potentially arising from an error during emulsion PCR amplification.
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Progress in science depends on new techniques, new discoveries, and new ideas, probably
in that order.

-Sydney Brenner

5. Whole Genome Sequencing and SNP Discovery for C.
elegans using massively parallel sequencing-by-synthesis.

Abstract

Next-generation sequencing instruments enable rapid and inexpensive DNA
sequencing at unprecedented levels. Because these instruments are so new,
their sequence data require characterization (read error profiles, base quality
values, coverage models, and general utility). We resequenced the Bristol (N2)
strain with the Illumina/Solexa sequencing technology in order to understand
it’s inherent error types and error rates. An immediate application of this
technology is individual or strain resequencing in order to discover genome-
wide sequence differences. Since this technology produces relatively short
sequences, we developed a novel approach to assess the fraction of a genome
that can be resequenced with short reads. We additionally compared
Illumina/Solexa reads from the CB4858 strain of C. elegans to the N2 reference

sequence using a novel sequence alignment program and screened for single
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nucleotide polymorphisms (SNPs) and small INDELs with a vastly more
efficient version of PolyBayes. This study is the first to broadly characterize
the error profile of the Illumina/Solexa technology and to demonstrate the
utility of massively parallel short read sequencing for whole genome

resequencing and for accurate discovery of genome-wide polymorphisms.

Introduction

In 1998, a special issue of Science celebrated a landmark in biology; the decoding
of the first animal genome sequence, that of the model organism Caenorhabditis
elegans (Stein et al. 2003). First suggested as a model organism in the 1960’s by
Sydney Brenner, and due to the pioneering work of John Sulston, Alan Coulson
and Robert Waterston to produce a physical map of its genome, the C. elegans
genome sequencing project formed the cornerstone of efforts ultimately aimed at
decoding the human genome (Lander et al. 2001). The entire C. elegans biology
community has benefited enormously from the availability of the genome
sequence and its ever-improving genome annotation (Chen et al. 2005; Harris et
al. 2004; Harris et al. 2003), not to mention the comparative power of sequenced

close relatives such as C. briggsae (Stein et al. 2003).
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The emerging availability of massively parallel sequencing instrumentation is
providing the capability to resequence genomes in a fraction of the time, effort
and expense than ever before. Compared to capillary sequencing, these
instruments produce relatively short read length sequences, using a combination
of novel sequencing chemistry and fragment libraries that do not utilize a
bacterial intermediate. Because of these differences, important aspects of
resequencing remain uncharacterized, including read error profiles, base quality
values, coverage models, approaches for read mapping to reference genomes,
and the general utility of short read sequences. To address these, we revisited the
C. elegans genome sequence, using the Illumina/Solexa 1G Sequence Analyzer to
resequence a laboratory isolate of the C. elegans N2 Bristol strain. Our analyses of
N2 Bristol sequences included a thorough description of the Solexa read error
model and an evaluation of sequence differences between the resequenced N2
isolate and the N2 reference genome sequence. We revealed both possible
sequencing errors in the original C. elegans reference genome, and putative
sequence variants that had occurred in our passaged N2 Bristol strain since the

reference genome was sequenced.
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An immediate application of massively parallel sequencing is the comparison of
an individual or strain to that species’s reference genome sequence in order to
reveal genome-wide sequence differences either for comparative and
evolutionary studies or for discovering genetic variants. Given the short read
length of the Illumina/Solexa technology (32 bp/read in this study), such studies
require the assessment of what fraction of a genome can be resequenced with
short read sequences. This is because short reads are more susceptible to multiple
genome mapping locations than are sequences of 500+ bases from capillary
instruments. Computational identification of these short repeats (we term them
‘microrepeats’) is therefore an important consideration for accurate short read
characterization and analysis, and must include an allowance for mismatches
due to sequencing errors or polymorphism. Here, Solexa sequence reads from
the CB4858 strain of C. elegans (originally isolated in Pasadena, CA) were aligned
to the microrepeat-masked N2 Bristol reference sequence using the Mosaik
aligner/assembler. The aligned reads were then screened for single nucleotide
polymorphisms (SNPs) and small INDELs with PolyBayes. Our results
demonstrate the utility of massively parallel sequencing for whole genome

resequencing and for accurate discovery of both single nucleotide and small
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insertion-deletion polymorphisms. This work establishes a framework for human

genome resequencing toward similar purposes.

Results

Metrics of single end Solexa sequencing.

We completed a total of five Illumina/Solexa sequencing runs (Methods)
yielding 3.5 runs of sequence for the resequenced N2 strain and 1.5 runs of
sequence for the CB4858 strain from Pasadena. As described in Table 5.1, the five
sequencing runs produced nearly 100 million sequence reads, which corresponds

to over 3 Gb of raw sequence.

Illumina/Solexa Error profile.

At the time of this study, the error rates and error profile (that is, the patterns
and systemic nature of sequencing errors) of the Illumina/Solexa sequencing
technology had not been exhaustively quantified. Sequencing errors are a
primary cause of spurious polymorphism calls and therefore we sought to
understand the mechanisms of error in hopes of accounting for them as part of

our variation discovery analysis.
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Since the N2 Illumina reads were obtained from the same isolate as the reference
genome sequence, we expected few true sequence variations between the two.
Thus the N2 Illumina reads are an ideal dataset with which to assess true
sequence error rates. By carefully aligning (Methods) the N2 Illumina reads to
the C. elegans reference sequence, Derek Barnett and Weichun Huang were able
to quantify the overall error rate and to assess the distribution of errors among
the reads. Overall, the accuracy of the Illumina/Solexa reads is quite high. As
shown in Figure 5.1, 57.2% of the reads contained zero mismatches, and 79.9% of
the reads had 0 or 1 mismatch. These findings indicate that because nearly half of
the sequencing reads have at least one error, one must account for sequence

errors when determining the proper genome mapping location for a given read.

Not surprisingly, given the nature of the sequencing chemistry employed, we
found that the error rate within the sequencing reads increases as the sequencing
cycles proceed. Figure 5.2 shows the decrease in accuracy depending upon a
base’s position within the sequence read (results collected by Derek Barnett and

Weichun Huang).
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Resequenceability of the C. elegans genome with the Illumina/Solexa technology.
The short (32 bp) sequence reads used in this study are much more susceptible to
non-unique genome mapping than the longer sequence reads produced by
capillary sequencing machines. Traditionally, ambiguous capillary read mapping
is prevented by aligning the reads to a reference genome where repetitive
sequences have by “masked” by software such as RepeatMasker (Smit). However,
RepeatMasker uses previously-known, organism-specific repetitive sequences that
are typically much longer than potential repeats at the 32 bp level. Therefore
even genome sequences that have been masked by RepeatMasker cannot prevent
ambiguous read mapping. Proper read mapping is imperative in sequence-
based polymorphism discovery projects as incorrect mapping will lead to

spurious SNP and INDEL calls that arise merely from paralogy.

In order to assess the error profile of the Illumina/Solexa technology and to
uncover sequence variations between the both the resequenced N2 and CB4858
strains relative to the N2 reference genome, we developed a novel method to
identify genomic repeats at the 32 bp level. This ‘resequenceability’ analysis
sought to identify regions of the reference genome with a significant potential for

ambiguous read alignment. First, we identified all unique 32mers in the reference
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sequence, but since our error rate analysis (Figure 5.1) indicated a drop-off in the
error rate beyond 2 errors per read, we defined a putative repeat region as a
32mer that appears in the genome more than once with 0-2 mismatched bases
(either substitutions, insertions, or deletions). We called these repeat regions
"microrepeats" to distinguish them from the repeat regions marked by the widely
used RepeatMasker program. Based on this definition, we identified microrepeats
with 1 or 2 mismatches using by BLAT (Methods) and determined that 19.8% of
the genome is comprised of perfect and near-perfect microrepeats. RepeatMasker
masks 14.5% of the bases in the genome. The relationship between RepeatMasker-
masked bases and microrepeat bases identified by our methods is shown in
Figure 5.3 (results collected by Dr. Chip Stewart). Although there is a significant
overlap (11.11% of the genome) between the regions masked by these two
methods, 8.7% of the genome that we identify as microrepeats is not masked by
RepeatMasker. On the other hand, 3.4% of the genome was masked by
RepeatMasker only, indicating that some fraction of C. elegans-specific repeat
elements can in principle be uniquely sequenced with 32 bp reads. Taken

together, RepeatMasker and hash-based micro-repeats cover 23.2% the genome.

SNP and INDEL discovery in the CB4858 strain.
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Of the total 37.9 million CB4858 Solexa reads, we were able to align 29.8 (78.6%)
to the C. elegans reference genome with Mosaik (Table 5.1). Once aligned, we
applied our combined microrepeat plus RepeatMasker masking to exclude
potential paralogous alignments. We then used PolyBayes to identify high quality
sequence variations (e.g. Figure 5.4) and finalized a set of 45,539 SNPs and 7,353
single base-pair indels. This yields a rate of 1 SNP per 1,629.81 bp. That is, the
pair-wise nucleotide diversity (0) between the CB4858 nd the N2 Bristol strain is
6.136 x 10*. This agrees with the ~1:1,500 rate posited in a previous description of
CB4858 (Denver et al. 2003). The corresponding INDEL rate was 1 per 9894.99 bp.

All discovered CB4858 sequence variants have been submitted to Wormbase.

Roughly 1,000 candidate SNPs and INDELs were selected for PCR-based
capillary sequence validation. Following sequencing and evaluation, we
determined a SNP validation rate of 96.3% (438/455) and an 89.0% conversion
rate (438/492) for the candidates identified by PolyBayes. We also sequenced 239
of our putative single base INDELs, finding they validated (93.8%) and
converted (87.7%) at practically the same rate as SNPs. This INDEL validation
rate is much higher than has been achieved with capillary sequencing

technologies and is indicative of the fidelity of Solexa sequencing terminator
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chemistry. Insertions and deletions relative to the reference genome sequence
were nearly equally represented (insertions: 2,948 or 47.1%, and deletions: 3,316
or 52.9%). Many of the INDELs were variable numbers of bases in mono-
nucleotide repeats e.g. 5 A’s vs. 4 A’s. These are traditionally very difficult areas
for INDEL detection. Our high validation rate indicates that Solexa reads resolve
base numbers in mononucleotide runs very well. Table 5.2 summarizes the SNPs
and INDEL candidates in the CB4858 strain, and illustrates the significant impact
of microrepeat masking on accurate SNP discovery to eliminate spurious SNPs

and INDELSs due to paralogous read mapping.

We estimated false negative rates of our PolyBayes SNP calling pipeline by
assessing what fraction of additional SNPs found in the capillary validation
traces were missed. We ran PolyPhred (version 5.0) on these validation traces and
found that 26 of 693 SNPs were missed by PolyBayes when there was sufficient
Solexa read coverage to find the SNP. This equates to a false negative (that is,

missed SNP) rate of 4.4%.

In 2000, Koch illustrated in C. elegans that, as expected, the non-synonymous

substitution rate was much higher in the first and second codon positions than in
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the third (Koch et al. 2000). As illustrated in Figure 5.5, our study confirms these
earlier results and provides a detailed, genome-wide estimate of coding
polymorphisms in the CB4858 strain. In total, we found 6,255 SNPs positioned
within an exon, of which 3,275 putatively introduce an amino acid change.
Through our experimental validation, 100 of 119 (84%) non-synonymous
mutations were confirmed, indicating that our methods provide an important
tirst step in describing the complete mutational profile in a strain-to-reference
paradigm. Furthermore, we evaluated SNP positioning on a chromosome-by-
chromosome basis, as shown in Figure 5.6. We found that the polymorphism
density is much higher on Chromosomes II, III and X. The densities on
Chromosomes IV and V suggest a very low variation rate for much of the
chromosome, yet a comparatively high mutation rate on the right half of each

chromosome.

Sequence differences between the resequenced N2 strain and the reference N2
genome.

We unambiguously aligned 79.4% of nearly 62 million N2 sequencing reads to
the reference genome with Mosaik. Using these alignments combined with the

CB4858 alignments, we scanned for sequence differences in order to uncover
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possible errors in the reference genome sequence. We ignored sequence
differences that solely existed in the N2 sequence reads, as these likely reflect
genetic differences in the passaged N2 strain relative to the N2 strain that was
sequenced for the C. elegans genome. Instead, we focused on sequence differences
that were found in both the N2 and CB4858 strains relative to the reference
genome. Because they exist in both strains, they are more likely to be true errors
in the reference genome. In total, we found 617 such differences. This is
indicative of the high quality of the C. elegans reference genome as this reflects an

overall error rate of approximately 6 errors per Mb of genome sequence.

Discussion

The application of the Illumina/Solexa massively parallel sequencing technology
to investigate and characterize genome-wide variation is a compelling paradigm
because of the apparent increases in throughput and economy. Yet because this
is a nascent technology, it poses significant bioinformatics-based hurdles for
proper use and interpretation. In our study, the Illumina/Solexa platform was
used to successfully re-sequence the genomes of the nematode C. elegans N2 and

CB4858 strains. This study required 3 weeks to produce a library and generate

119



>20X genome coverage. Subsequent analytic efforts provided novel insights into
proper methods for reference genome masking and elucidated aspects of
[llumina/Solexa sequencing error profile. Our read mapping results indicated
that large stretches of the unique genome could be successfully covered with
short reads, and that both isolate-specific variants and reference genome errors
could be identified. We find that short sequence reads also provide a powerful
capability for genome-wide SNP and small INDEL discovery. This is a promising
result as capillary sequencing technologies are typically not an accurate substrate
for small INDEL discovery. We find that proper masking of “microrepeat”
sequences is required to yield high confidence alignments and to eliminate non-
paralogous alignments that can falsely indicate sequence variants. Aside from
SNP/INDEL discovery, whole genome resequencing also could be utilized
following a random mutagenesis approach, to identify and characterize each
mutagenized location in the genome. Our analytical approaches provide a
valuable baseline toward using Illumina/Solexa technology for resequencing

human genomes.

Methods
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Illumina/Solexa sequencing.
Elaine Mardis and Vincent Magrini at The Washington University Genome
Sequencing Center sequenced genomic DNA from the N2 and CB4858 strains of

C. elegans. Standard Illumina protocols were used and are described below.

Preparation of Solexa fragment libraries.

Genomic DNA (5 ug) was nebulized for 2 minutes at 45 psi of compressed air, to
obtain an average fragment size of 500 bp, then further purified and concentrated
with Qiaquick PCR purification spin columns (Qiagen Inc.,, Valencia CA).
Treatment to remove 3’ overhangs and fill in 5 overhangs resulted in blunt
ended genomic fragments. An A residue was added by terminal transferase to
the 3" end and the resulting fragments were ligated with Solexa adapters.
Adapter-modified DNA fragments were enriched by an 18 cycle PCR using 50 ng
of the ligation reaction and Solexa universal adapter primers. The resulting PCR
products were separated by agarose gel electrophoresis and the band between
150-200 bp was excised from the gel. The DNA fragments were extracted from
the agarose slice using a Qiaquick Gel Extraction Kit (Qiagen Inc.), and further
purified by drop dialysis using a 0.025um/25mm filter (Millipore Inc., Billerica

MA) and tissue culture-grade water (Sigma Chemical, St. Louis MO). The DNA
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fragment library was quantitated, then diluted to a 10 nM working stock,

appropriate for cluster generation.

Sequencing cluster generation.

Adapter-ligated fragments (2 nM)were denatured in 0.IN NaOH for 5 minutes,
then were further diluted to a final 9 pM concentration in 1 ml of pre-chilled
hybridization buffer, and introduced onto the Solexa flow cell using the Cluster
Station, an automated device supplied by Solexa. On this apparatus, the oligo-
derived flow cell surfaces hybridize to library fragments by adapter-to-oligo
pairing. “Clusters”, representing discrete populations of unique single-stranded
library fragments amplified in situ, are generated by isothermal amplification
using a proprietary process. In practice, each cluster produces a single Solexa
read. Our experiments aimed for an average cluster density of 30,000 (+/- 5,000)

clusters per flow cell lane.

Illumina/Solexa sequencing process.
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The Illumina/Solexa 1G Analyzer provides up to 32 sequential flows of
fluorescently labeled, 3’-OH blocked nucleotides and polymerase to the surface
of the flow cell. After each base incorporation step, the flow cell surface is
washed to remove reactants and then imaged by microscope objective. Our
experiments collected 200 tiled images (“tiles”) per flow cell lane, each
containing on average 30,000 clusters. Solexa single end reads were generated for
N2 Bristol and CB4858 strains using a 30 base read length for the titration run
(used to determine the correct input library DNA amount), and a 32 base read

length for standard runs

Sequence accuracy of Solexa N2 Bristol reads.

In order to isolate sequencing errors from simple alignment errors, we used a
version of the Smith-Waterman-based global alignment algorithm that reports all
optimal and sub-optimal alighments above a pre-specified alignment score.
Although time-intensive, this algorithm identifies all alignable positions in the C.
elegans genome for every read. Here, we generated three random sample sets of
20,000 Solexa N2 Bristol reads, and aligned each read set to the unmasked

reference genome, allowing up to 4 mismatches (substitution, insertion or
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deletion). We kept only reads for further consideration of accuracy that aligned

at a single locus in the genome.

Mosaik alignment of Illumina/Solexa reads.

Accurate mapping of short resequencing reads to their exact place of origin
necessitates the identification and masking of microrepeated sequences that
correspond to the short read lengths, prior to read mapping. Here, we identified
both perfect microrepeats and microrepeats with up to two mismatches
(substitutions, deletions or insertions) in order to encompass the possibility of
sequencing errors in the reads (due either to nucleotide mis-incorporation or
base calling error) or of polymorphism in the genomes being compared. Our
approach used two fundamental methods: (1) hash-based, and (2) sequence
alignment-based. Our hash-based method enumerated every 32-mer in the C.
elegans reference genome sequence, and recorded its map location. If the same 32-
mer occurred in multiple locations (either strand), it was marked as a
microrepeat. Near-perfect microrepeats were identified by asking whether each
specific 32-mer, or any of the other 32-mers obtained by introducing “mutations”
up to a pre-specified number of mismatches, appeared at any other genomic

location. The sequence alignment-based method used the BLAT algorithm with
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the following parameters: -stepSize=8 -tileSize=16 -minMatch=1 -minScore=28 -
oneOff=1 to enumerate every 32-mer in the reference genome, and then to search
the rest of the genome for a perfect or near-perfect match, up to a pre-specified
number of mismatches. Custom scripts identified hits that had up to 2
mismatches (any combination of substitutions, insertions, or deletions), and
combined the results of our hash-based and sequence alignment-based methods

to produce a microrepeat-masked reference genome.

We next aligned the Illumina/Solexa reads to the microrepeat masked C. elegans
reference genome with Mosaik. In this analysis, we allowed a maximum of two
mismatches (including substitutions and indels), a decision motivated by the fact
that over 79% of the Solexa reads had either one or zero error. Allowing a single
polymorphic difference in such reads would bring the maximum number of
mismatches to two. The assembler algorithm first registers every gap induced by
any of the aligned reads on the reference sequence, then introduces alignment
gaps into all aligned reads to preserve the positions of all pair-wise aligned bases
in every pair-wise read alignment. The resulting multiple alignments are then
reported either in ACE (Gordon et al. 1998a) or in binary formats used by other

downstream analysis software.
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SNP and INDEL discovery in strain CB4858.

Starting with the multiple read alignments produced by the Mosaik aligner, we
performed an analysis with a version of PolyBayes that was completely re-
engineered to enable efficient analyses of millions of short read sequences at
once. The program evaluates each aligned base and its base quality value at each
position, to indicate putative SNPs and small (1-3 bp) putative INDELs, and their
corresponding SNP probability values. Base quality values are converted to base
probabilities corresponding to every one of the four possible nucleotides (and to
the probability that the nucleotide in question is, in fact, an insertion error in the
sequence). Using a Bayesian formulation, a SNP (or INDEL, as appropriate)
probability value is calculated as the likelihood that multiple different alleles are
present between the reference genome sequence and the reads aligned at that
position. If the SNP probability value exceeds a pre-specified threshold, the SNP
candidate is reported in the output. For the collection of bases contributed by
such reads, a single “consensus” base call and its base quality value are
computed. The corresponding base probabilities are then used in the Bayesian
SNP probability value calculation. In this study, we used a PSNP cutoff value of

0.7.
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Validation of suspected sequence differences.

A subset of candidate insertion, deletion, and polymorphic sites from the above
analyses were submitted for orthologous validation using PCR-based sequencing
and variant analysis. For each type of variant, we validated 50% of the
candidates identified in coding and 50% in non-coding sequences. We designed
primers with 300 bp of sequence both to the left and to the right of the target site,

using Primer3 (http://primer3.sourceforge.net/). A 5 universal M13 forward or

reverse sequence was added to each primer pair to allow processing of the
resulting PCR products in our high-throughput sequencing pipeline. Ginger
Fewell at The Washington University Genome Sequencing Center performed the

validation experiments for polymorphism candidates.

Evaluation of validation reads.

We aligned validation reads to the reference sequence using PolyPhred,
determining by manual inspection whether a Solexa variant was confirmed in
the 3730 trace. Both a validation rate (defined as the number of confirmed

variants divided by the number of successful sequencing reactions) and a
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conversion rate (defined as the number of confirmed variants divided by the

number of variants submitted for validation) were calculated.

Evaluating variants for exonic disruption.

We investigated SNP candidates in CB4858 that introduced amino acid changes
relative to Bristol. Conceivably, such differences might suggest subtle
chemosensory or other adaptations specific to CB4858. Using the Wormbase gene
annotations, we characterized all SNPs that lie within exons by their codon
position and whether the variant caused a synonymous or non-synonymous

amino acid change.
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Chapter 5 Tables

Number of
Number of sequence
Number of sequence reads
Illumina/Solexa reads aligned Fraction
Strain sequencing runs (in millions) (in millions) aligned
N2 3.5 61.8 49.1 79.4%
CB4858 1.5 37.9 29.8 78.6%

Table 5.1. Illumina/Solexa sequencing statistics.
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No.

Submitted No. No.
Mask type to Assay candidate Validation
Variation applied validation successful confirmed rate (%)
Known
SNP repeats 598 582 482 86.5
Exact
SNP microrepeats 579 559 475 91.7
Near-exact
SNP microrepeats 492 482 438 96.3
Known
Indel repeats 239 228 202 91
Exact
Indel microrepeats 232 223 201 92.6
Near-exact
Indel microrepeats 220 213 193 93.8

Table 5.2. Validation rates for PolyBayes SNP and single base INDEL candidates. The
validation rates for both SNPs and INDELs increased as more specific masking methods were
employed in order to detect microrepeats.
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Chapter 5 Figures
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Figure 5.1. Distribution of errors among Illumina/Solexa reads. The fraction of reads (y-axis)
with zero or more errors (x-axis) is shown.
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Figure 5.2. The position-dependent accuracy of Illumina/Solexa reads. For all 2 base pair
INlumina reads, we examined the actual accuracy of all bases that were assigned a quality score of
30 (i.e. estimated to have a 1/1000 error rate). The plot shows the actual accuracy (y-axis) of these
called bases as a function of the position in the Illumina read. The first 10-15 bases are two orders
more accurate than the last 10 bases. This indicates that the native quality values assigned by the
Illumina software show be re-calibrated to reflect their actual accuracy.
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Genome:
100,281,244 bp

micro-repeats:
19.8%

RepeatMasker:

14.5%

Figure 5.3. Concordance of microrepeats with the repeats identified by Repeatmasker. The
repetitive fractions of the C. elegans genome (build wsl70) are shown as identified by
RepeatMasker (green) and by our custom method for identifying micro-repeats (blue). As
expected, the micro-repeat method identifies short repetitive sequences that are missed by
RepeatMasker.
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Figure 5.4. Example SNP and INDEL candidates discovered by PolyBayes. We show an
example of a SNP (a), insertion (b) and a deletion (c) in the Pasadena strain, relative to the N2
reference strain. Red arrows indicate the Pasadena alleles. Unmarked alleles are from the N2
reference strain.
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Figure 5.5. Distribution of SNPs according to codon position. The fraction of synonymous
(white) and non-synonymous polymorphisms are shown according to their codon positions.
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Figure 5.6. Polymorphism density in the CB4858 genome. The density of SNPs (red dots) and
INDELSs (blue dots) is shown for each of the six C. elegans chromosomes.
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Efficiency is intelligent laziness.

-Anonymous

6. Rapid whole-genome mutational profiling of Pichia
stipitis using next-generation sequencing technologies

Abstract

Adaptive evolution, forward genetic mutational studies and phenotypic
screening are powerful tools for mutant strain development that complement
molecular genetic approaches in metabolic engineering. However, mutations
generated in the process cannot be easily identified with traditional genetic
tools. We show that using new high-throughput, massively parallel
sequencing technologies one can completely and accurately characterize the
mutant genome relative to a previously sequenced parental strain. We studied
a mutant strain of Pichia stipitis, a yeast capable of converting xylose to
ethanol. This unusually efficient mutant strain was developed through
repeated rounds of chemical mutagenesis, strain selection, transformation and
genetic manipulation over a period of seven years. We resequenced this strain

on three different sequencing platforms. Surprisingly, this study revealed
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fewer than a dozen mutations in open reading frames. Only one lesion could
have been predicted prior to the resequencing study. All three platforms we
used were able to identify each single nucleotide mutation given at least 10-15
fold nominal sequence coverage. This represents a rapid and efficient
alternative to traditional mutation mapping techniques used in reverse genetic

screens.

Introduction

Pichia stipitis (Pignal) is a haploid yeast related to endosymbionts of beetles that
degrade rotting wood (Suh et al. 2003). It is an important organism for bioenergy
production from lignocellulosic materials because of its high capacity to ferment
xylose and cellobiose to ethanol. Jeffries et al previously sequenced the reference
strain, Pichia stipitis CBS 6054, resulting in a completely characterized 15.4 Mb
genome of eight chromosomes (Jeffries et al. 2007). Prior to sequencing, this
strain had been subjected to chemical mutagenesis, phenotypic selection, genetic
engineering and adaptive evolution to improve ethanol production. Mutation
and selection resulted in small advances attributable in part to carbon catabolite

derepression (Figure 6.1). Disruption of CYC1 to create strain Shi21 increased the
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specific ethanol production rate by 50% and the ethanol yield by 10%, however
the nature of mutational events preceding this phenotype were unknown.
Traditional methods for identifying mutations are labor and time intensive, so
we wanted to test the ability of next generation sequencing technologies to
determine the differences in this improved strain’s entire genome relative to the
reference strain. We generated high-coverage, whole genome data sets using
three next generation sequencing platforms (454/Roche; Solexa/Illumina; and
SOLiD/ABI). This allowed us to determine the effect of coverage on the accuracy
of mutation detection, the lowest levels of coverage required for effective and
exhaustive detection of the mutations, and to compare the efficiency of the three

platforms for this application.

Results

Sequencing and alignment strategy.

Genomic DNA from P. stipitis (Shi21) was sequenced using the Roche, Illumina,
and Applied Biosystems advanced sequencing platforms. We processed the
sequence reads from each technology with the manufacturer-supplied base

calling software. We additionally re-called the 454 pyrosequences with Pyrobayes
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because, as described in Chapter 4, it produces a lower number of substitution
errors and more accurate base quality values than the native base-calling
program (Methods) (Quinlan et al. 2008). We first identified all repetitive
elements within the P. stipitis genome that would interfere with unique read
alignments, including short genomic repeats as well as NUMTs (Richly and
Leister 2004), sequences of mitochondrial origin inserted into the nuclear genome
(Methods, Table 6.1). Due to the nature of the unpaired short reads produced by
these methods, this repeat masking resulted in 93.2%-94.7% of the reference
genome accessible to unique placement of the reads (Methods). The total number
of aligned reads passing alignment quality filters and the corresponding aligned
read coverage are shown in Table 6.2. Alignment of reads from each technology
to the repeat-masked reference sequence, resulted in 11-175X coverage of the

genome depending on the type of platform and number of runs (Table 6.2).

Mutation discovery.

Multiple read alignments from the 454 and Illumina platforms were screened for
mutations using a new version of the PolyBayes SNP discovery program
(Methods). Color-space alignments of the SOLiD data were similarly screened

using software supplied by Applied Biosystems. The 17 candidate mutations
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discovered among the three sequencing technologies were re-sequenced in CBS
6054 and in each of the four derived strains with a capillary sequencing machine
and were all confirmed (Table 6.3). However, three of the changes appear to be
the consequence of sequencing errors in the original reference sequence, as the
alternate base is not only present in the validation traces from all sequenced
mutants but also in the parent strain. This is to be expected in a typical
sequencing project, and 3 errors in over 15 Mb of finished sequence is, in fact, a
very low error rate. Given that the mutations were discovered in very deep
datasets and independently confirmed by four different sequencing methods, it
is unlikely that we missed any additional mutations in the Pichia strains. We
therefore believe that the remaining 14 mutations comprise the complete set of
single nucleotide polymorphisms between the mutant and the parent (i.e.
reference) Pichia strains. Since the Pichia genome is haploid during vegetative
growth, all mutations are expected to be homozygous. An apparent
heterozygous change at position 358,358 on chromosome 8 is a result of the
intentional gene disruption of CYC1 with a URA3 selection cassette, which
resulted in an URA3 duplication. This variation represents a paralogous
difference in a duplicated gene and thus cannot be considered a true point

mutation. Given the nature of the short unpaired reads produced by these
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technologies, it was not possible to positively identify large insertion/deletion
events. No small INDEL polymorphisms were found, and this is not surprising
considering that the alkylating agents (Methods) used in mutagenesis principally

induce base substitutions.

Comparing the accuracy of various sequencing technologies.

A primary focus of this study was to evaluate the utility of next-generation
sequencing technologies for mutational profiling. Therefore, we compared the
capabilities of the three platforms for the identification of the 14 confirmed point
mutations in the Pichia mutant. I evaluated the accuracy of the Illumina and 454
technologies while Heather Peckham from Applied Biosystems evualted the
performance of the SOLID sequencing platform. Each of the three sequencing
technologies was able to correctly identify all 14 variations with essentially no
false positives when all available reads generated on the platform were used
(Table 6.2, Figure 6.2). We observed a single false positive prediction in the
complete 454 FLX data that produced lower overall coverage than the other
platforms, and was most likely the result of a PCR error during sequence library
construction (data not shown). The complete Illumina and AB alignments
afforded perfect accuracy: all 14 mutations were found and no false positive

predictions were made. The accuracy we observed is encouraging given that low
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false discovery (i.e. that is, the fraction of erroneously identified mutations) and
false negative (i.e. the fraction of true mutations that were missed) rates are
critical considerations for the application of these technologies to rapid forward
genetic mutational profiles. These results show that all three technologies are

suitable for highly accurate mutation screening.

What is the minimum sequence required for reasonable accuracy?

Another important consideration is the depth of sequence coverage required to
achieve the sensitivity and specificity we observed. To determine how the error
rate changes as fewer reads are used, we assembled subsets of reads of varying
size from each of the three full datasets and subjected the resulting lower-
coverage assemblies to our mutation discovery analysis. As shown in Table 6.2,
if we limit the combined missed mutation (false negative) and erroneously called
mutation (false positive) error rate to 50%, we were able to reduce to 1.5 454 FLX
machine runs (8.15-fold aligned read coverage), yielding 6 FP and 1 FN errors. A
single lane of Illumina reads (6.32-fold aligned read coverage), resulted in 2 FP
and 2 FN errors. Similarly, 6-fold coverage of AB SOLiD reads yielded 0 FP and 6
EN errors. These results indicate that genome coverage of 10-15X is optimal and
should be targeted given the constraints of plate configurations and run

conditions on the different platforms.
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Discussion

The distribution of mutations in open reading frames as opposed to non-coding
regions (78%) was slightly higher than the average gene density (56%) (Jeffries et
al. 2007). In the absence of selection, about two-thirds of the base changes should
have resulted in silent mutations at the amino acid level, due to redundancy in
the genetic code. Surprisingly, none of the induced or spontaneous mutations
were silent. All mutations retained in open reading frames resulted in amino acid
changes (Table 6.3). Selection identified strains growing faster under restrictive
conditions. Selection of FPL-061 involved repeated mutagenesis and selection on
poorly used carbon sources. Selection of FPL-DX26 involved serial selection of
strains showing more rapid growth on D-xylose in the presence of 2-
deoxyglucose, which normally suppresses xylose utilization in wild-type cells. In
the case of the cycl disruption, the mutant grows substantially slower than the
parental strain, and it is possible that a number of compensating mutations
conferring faster growth might have arisen. Relatively little is known about the
physiological effects of the various genes or mutational events. Only URA3 and

ALD?7 have been characterized (Table 6.3). The former is widely used as an
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auxotrophic selectable marker (Boeke et al. 1984). The latter is an NADP-specific
secondary alcohol dehydrogenase. One spontaneous mutational event
apparently occurred following isolation of the Shi21 cyclD in MDM34, which is
involved in determining the shape of the mitochondrial outer membrane.
Mutational events obtained in the screening and selection process were possibly
lost if the original forward mutation conferred disadvantages to the cell once the
selective pressure was released. This could have been true of the selection for 2-
deoxyglucose resistance or resistance to respiration inhibitors, however the
sequencing data do not show signs of this occurring. Further characterization of
the identified mutational events through physiological and genetic studies will

be necessary to determine how they affect cell phenotype.

Overall, our results demonstrate that the new sequencing technologies tested are
well suited for mutational analysis of novel yeast strains derived from multistep
mutagenesis procedures. The approach is expected to be equally suitable for the
analysis of bacterial, fungal and larger organisms derived by directed evolution
and natural variation, which could help accelerate the development of novel

organisms for bioenergy and biotechnology applications.
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Methods

Derivation of the mutagenized SHI-21 strain.

In an attempt to produce a P. stipitis strain that was more efficient at ethanol
production, a series of directed and random mutagenic steps were undertaken.
Starting from the parental wild-type strain, P. stipitis CBS 6054, four generations
of mutants were created. The first, P. stipitis FPL-061, was derived from CBS 6054
by mutagenesis with N-methyl N’-nitro-N-nitrosoguanidine (MNNG) followed
by selection for rapid growth on L-xylose or D-arabinose in the presence of the
respiration inhibitors salicylhydroxamic acid and antimycin A. The second, P.
stipitis FPL-DX26 (NRRL Y-21304) was derived from FPL-061 by mutagenesis
with ethyl methanesulfonate (EMS) and selection for growth on D-xylose in the
presence of 1.0 g/l 2’-deoxyglucose6. The third, P. stipitis FPL-UC7 (ura3-3), a
spontaneous URA3 mutant was derived from FPL-DX26 by selection for
resistance to 5-fluoroorotic acid7. Finally, targeted disruption of CYC1 with
URAS3 then created P. stipitis SHI21 (cycl::URA3)( NRRL Y-21971). Both
alkylating agents used (MNNG and EMS) act principally on guanine resulting in
mismatch mutations (Shi et al. 1999). Following isolation, each strain was
suspended in 15% glycerol and stored at -80°C or lyophilized until shortly before

genomic analysis.
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Sequencing.

Genomic DNA from P. stipitis SHI21 was sequenced on the Illumina platform by
Paul Richardson’s group at The Joint Genome Institute. Doug Smith at
Agencourt sequenced this strain on the 454 technology and Heather Peckham
and Joel Malek sequenced SHI21 on the AB SOLiD platform. The specifics of the

454 and SOLIiD protocols are described below.

Chromosomal DNA from P. stipitis SHI21 was prepared, sheared to the
recommended size range and ligated to adapters according to the manufacturer’s
protocols for each of the sequencing platforms. The DNA fragments were then
clonally amplified onto microbeads (454 and SOLiD) or onto the surface of a flow
cell (Illumina), sequenced, and the resulting data were processed according to
the manufacturer’s protocols. For confirmation sequencing, PCR products were
generated from genomic DNA of each strain using M13-tailed primer pairs, the
products were sequenced on ABI3730xl instruments, variants were identified

using PolyPhred and confirmed using Consed.

Repeat identification and masking in the Pichia genome.
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Prior to sequence alignment, we identified and masked short repeats in the Pichia
stipitis reference sequence in order to prevent spurious alignments. Given the
dramatically different read lengths produced by the Illumina (32 base pair) and
454 Life Sciences (avg. of 225 base pair) technologies, we generated two repeat-
masked reference sequences based on the expected read lengths of each

technology.

Micro-repeat masking was performed using the Mosaik resequenceability
analysis tool (Mosaik-RA). Mosaik-RA extracts all possible k-mers from a target
genome and then aligns them to the genome. All k-mers that align to multiple
regions in the genome within a specified edit distance are masked as repetitive
regions. The chosen Mosaik-RA parameters guarantee that all repetitive regions
within the edit distance are found. Masked genomes were generated for the
fixed-length Illumina datasets (32 bp reads) and for the variable-length 454 FLX
reads, where the lower end of the 95 % confidence interval of read lengths was
used. The 454 FLX masked genome was generated using 134 bp k-mers (u=224
bp, 0=44.7 bp). 6.8% and 5.3% of the Pichia genome was masked based on the 32
bp Illumina (allowing an edit distance of 2 or less) and ~225 bp 454 FLX reads

(allowing an edit distance of 5 or less), respectively.
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BLAT (Kent 2002) and BLAST (Altschul et al. 1990; Altschul et al. 1997) was used
to identify NUMTs in the Pichia stipitis reference genome. Using the Pichia stipitis
mitochondrial genome as the query all BLAST high-scoring segment pairs with
an expectation value lower than le-4 were recorded. All BLAT hits with a blastz
score over 2200 were recorded. In total, six genomic regions were masked as
NUMT candidates and were added to the Illumina and 454 masked genomes

described above.

Illumina and 454 sequence alignment.

We used our general reference sequence-guided alignment and assembly tool,
Mosaik, to process the Illumina and 454 datasets. Mosaik uses a hashing scheme to
seed full Smith-Waterman gapped alignments against the concatenated Pichia
stipitis genome. The resulting pairwise alignments are then consolidated into a
multiple sequence alignment (assembly) and saved as an ACE assembly file.
These assemblies can be viewed by programs such as Consed (Gordon et al.
1998b) or EagleView (Weichun Huang et al, manuscript in preparation). To correct
for 454 INDEL alignment errors, the Smith-Waterman scoring algorithm has

been augmented to use an alternate gap open penalty when a homopolymer
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region is detected. For both the Illumina and the 454 reads, we required that at
least 95% of each read align to the reference sequence. In order to ensure that we
only aligned high quality reads from each technology, we also required that the
reads from each technology had few sequence differences (i.e. mismatches,
insertions or deletions) relative to the reference genome sequence. Thus, we
allowed Illumina reads to have at most one sequence difference. Since the 454
reads were much longer than the Illumina reads, we allowed a maximum of two

mismatches for each 454 read.

SOLiD sequence alignment.

The AB SOLiD alignment tool translates the reference sequence to 2-base
encoding and aligns the reads in color space. The program guarantees finding all
alignments between a read and the reference sequence with up to M mismatches
for a user specified parameter M. The alignment tool uses multiple spaced seeds
(discontinuous word patterns) to achieve a rapid running time. Position specific
matrices are implemented in the aligning stage to allow flexibility so that quality
values, masking of positions in the reads and wuser specified reference

background SNP rates may be input.
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I1lumina and 454 mutation discovery.

We scanned the reference-guided 454 and Illumina sequence alignments
produced by the Mosaik program using a new version of the PolyBayes SNP
discovery program completely re-engineered for the efficient analysis of millions
of next-generation sequence reads. This program sequentially evaluates aligned
reads at every position of the reference genome sequence by considering the
aligned base and the corresponding base quality value contributed by each
aligned read. Given that Pichia stipitis has a haploid genome mutations were
expected only between the mutant and the parent strain. In other words, every
aligned read from the mutant genome is expected to carry an identical allele
which (at mutant positions) may differ from the reference allele at that position.
The Bayesian mathematical formulation implemented in the PolyBayes program
is capable of dealing with situations where there is disagreement among the
aligned reads from the mutant strain. Based on the aligned reads a “strain
consensus” base is determined, and an associated “consensus” base quality value
is calculated. The strain consensus allele and corresponding base quality value
determined for the mutant strain is used in the comparison to the parent strain.
PolyBayes then calculates the probability that apparent sequence differences

between the mutant and the parent strain represent true mutations as opposed to
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sequencing errors. We reported every genome position where the probability of
such a polymorphism event was above a pre-specified threshold (in this study
0.5i.e. a 50% likelihood). We used identical parameters for SNP discovery among
the Illumina and the 454 alignments. In each case, we assigned a quality value of
40 (i.e. an assumed 1 in 10,000 error rate) to each base in the reference genome

sequence.

SOLiD mutation discovery.

All SOLiD beads are basecalled and evaluated. Currently there is no keypass
tilter or intensity filter to remove empty beads or beads with 2 templates. As a
result this presents an artificially deflated percentage of beads matching the
genome. Consensus calling on the AB 2-base encoded data was performed with
AB developed software. 2-Base encoding is uniquely enabled by the ligation-
based sequencing protocol used in the SOLiD system (a massively parallel
sequencing technology based on ligation of oligonucleotides). Sequencing is
carried out via sequential rounds of ligation with high fidelity and high read
quality. In this system there are 16 dinucleotide combinations with 4 fluorescent
dyes, each dye corresponding to a probe pool of 4 dinucleotides per pool. Using

this dinucleotide, 4-dye encoding scheme in conjunction with a sequencing assay

152



that samples every base, each base is effectively probed in two different
reactions. The double interrogation of each base causes a SNP to result in a two-
color change while a measurement error results in a single color change. In
addition, only one-third of all possible two-color combinations are considered
valid and result in a base change. Single nucleotide polymorphisms were
identified by a consensus of valid adjacent 2-base encoded mismatches. The
confidence of each base call was determined by the position in the read as well as
the 6-mer base space context in which the base call occurred and this confidence
was used to weight the contribution of each set of adjacent base calls to the

consensus call.
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Chapter 6 Tables

Chromosome Begin Pos. End Pos.
3 1458286 1458416
5 702694 702738
6 1034827 1034863
7 31488 31530
7 539614 539641
8 196567 196664

Table 6.1. Locations of identified NUMT repeats in the Pichia stipitis genome. The beginning
and ending chromosome coordinates for each identified NUMT repeat are reported.
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Average

sequence False False

Total Total sequence  coverage positive negative
Sequencing number of (bp, in from aligned  (spurious) (missed)
Technology reads millions) reads mutations  mutations
454 FLX (2 runs) 887,123 199.35 10.78X 1 0
454 FLX (1.5 runs) 669,783 150.64 8.15X 6 1
454 FLX (1 run) 459,563 103.38 5.62X 17 1
[llumina (7 lanes) 25,818,266 826.18 44.24X 0 0
[llumina (3 lanes) 11,281,705 361.01 19.40X 0 0
Illumina (2 lanes) 7,548,407 241.55 13.00X 2 0
Illumina (1 lane) 3,674,253 117.58 6.32X 2 2
AB (2 flow cells) 228,191,758 7,986.71 175.09X 0 0
AB (30x) 39,111,512** 1,368.90 30.01X 0 0
AB (20x) 26,065,653%* 912.30 20.00X 0 0
AB (10x) 13,045,859** 456.61 10.01X 0 0
AB (8x) 10,426,261** 364.92 8.00X 0 4
AB (6x) 7,819,696** 273.69 6.00X 0 5

Table 6.2. Sequencing and mutation discovery statistics. The overall and aligned sequence
throughput is shown for each sequencing technology used in the study. We also report the
number of spurious and missed mutations observed from each experiment. * % matching is a
result of the Poisson nature of emulsion PCR. No filtering was performed to remove empty
beads, beads with two templates and beads with dim templates. ** Estimated number of reads

based on in silico degradation of coverage.
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Nucleotide Amino acid

Chrom. Location change* change Functional description of mutation
2 1,339,463 T>C V>A Error in reference sequence
2 2,598,869 C>A - Error in reference sequence
3 1,769,576 C>T G>S Error in reference sequence
1 1,143,120 C>T G>S YHNS8 (predicted GPCR)
2 746,465 C>T D>N IFI3 (hypothetical protein; ID 29635)
2 1,102,664 G>T - Upstream of RAD15
3 104,338 T>G - Non-coding interval
4 1,499,156 T>A K>N VSP36 (vaculoar sorting protein)
7 930,181 A>T W>R FBX1 (Leucine rich repeat protein, contains F-box)
8 36,439 A>G D>G POT11 (3-ketoacyl-CoA thiolase B)
1 839,170 C>T V>l SEC31 (component of the COPII coat of ER-golgi vesicles)
2 617,666 G>A S>F SLX8 (Zn finger RING domain protein; ID 54919)
1 670,317 G>A R>K ALD7 (aldehyde dehydrogenase)
8 358,358 T>A D>V URA3 (orotidine-5'-phosphate decarboxylase)
1 947,086 C>G L>V MDM34 (mito. outer membrane protein involved in mitochondrial shape
3 885,477 G>C - Intergenic region between LEU3 and YXE1
6 1,088,427 G>C - Upstream of TSC11 (TOR binding protein; ID 84674)

Table 6.3. Summary of discovered point mutations relative to the Pichia reference
genome.*Color coding indicates which strain each mutation first appeared in relative to the
parent, CBS-6054. Orange: FPL-061 (rapid growth on L-xylose in the presence of the respiration
inhibitors); Yellow: FPL-DX26 (2-deoxyglucose resistance); Green: FPL-UC7 (FOA resistance);
Blue: Shi21 (CYCl:ura3 targeted gene disruption).
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Chapter 6 Figures

Pichia stipitis CBS 6054 Reference strain; ethanol yield = 0.34

Nitrosoguanidine mutagenesis
Selection for rapid growth on L-xylose with respiration inhibitors
Mutations in YHNS, IFI3, VSP36, FBX1, POT11, 2 non-coding

FPL-061

EMS mutagenesis
Selection for growth on p-xylose in presence of 2-deoxy glucose
Mutations in SEC31, SLX8

FPL-DX26

Selection for resistance to 5-fluoroorotic acid
Spontaneous mutations in URA3, ALD7

FPL-UC7 (ura3-3) ethanol yield = 0.38

Disruption of CYCL1 (insertion of URA3)
Spontaneous mutations in MDM34, 2 non-coding

Shi21 (cycl::URA3) sequenced strain; ethanol yield = 0.46

Figure 6.1. Diagram of strain evolution. CBS 6054 is the reference strain originally sequenced by
the JGI. Shi2l is the mutant strain that was sequenced using the SOLiD, 454 and Illumina
technologies. The intermediate strains, mutagenesis and selection conditions are indicated along
with the new mutations that were observed relative to the previous strains at each step. The

ethanol yield is also provided in units of g ethanol / g xylose.
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Figure 6.2. The effect of sequence coverage on mutation discovery accuracy. The total number
of mutation discovery errors are shown for the three sequencing technologies at various levels of
aligned sequence coverage.
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Prediction is very difficult, especially about the future.

-Niels Bohr

7. Discussion

Research summary and context

Progress in the field of genomics has been and will continue to be driven by
technological, computational, and methodological advances. This has never been
more evident than in the last three years, during which time we have seen the
development of several radically-different sequencing technologies. While these
technologies have undoubtedly changed the way we think about solving open
questions in genetic variation, they have also presented a myriad of
computational difficulties. These challenges range from the mundane, such as
storing and interpreting unprecedented amounts of sequence data to more
interesting questions of how to align and quantify the accuracy of sequence
reads, and how detect and compare the entire range of genetic variation among

individuals.

My dissertation research has shown that these technologies are suitable for the

accurate and sensitive discovery of genetic variation. When the first such
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technology, 454 Life Sciences, was released in 2005 there was skepticism in the
genomics community regarding the accuracy and utility of these new data. The
subsequent technologies from Illumina/Solexa and Applied Biosystems have
faced similar doubts. Therefore, early studies have focused on characterizing the
error rates and general utility of the technologies for studies in genetic variation

and gene expression.

Pyrobayes, my basecalling algorithm for pyrosequences from 454 Life Sciences,
more accurately estimates the error likelihoods associated with each sequence
read than the native 454 software. This facilitates more sensitive and economical
polymorphism discovery projects by supporting accurate polymorphism calls
even at the lowest possible sequence coverage. As of this writing, Pyrobayes has
been downloaded by over 120 laboratories worldwide. The increased sensitivity
afforded by Pyrobayes allowed us to discover nearly 600,000 SNPs among 10
inbred isolates of Drosophila melanogaster. Despite very low sequence coverage
per isolate, twenty percent of these SNPs were shared in at least two isolates.
These implicitly-validated polymorphisms represent an average SNP density of
roughly one SNP per 1000 base pairs of the Drosophila euchromatin and they can

therefore be used as a dense marker map for population genetic comparisons in
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the fruitfly community. Furthermore, this study refutes previous estimates made
even by 454 Life Sciences which predicted that at least 20X coverage was
necessary for accurate polymorphic discovery with pyrosequences. Therefore,
this study informs other researchers that accurate studies in genetic variation can

be conducted with this technology at a fraction of previous cost estimates.

Similarly, our genome-wide polymorphism study in C. elegans was the first to
illustrate that despite the very short read length, the sequence reads from the
[Nlumina/Solexa technology are a sufficient substrate for accurate SNP and
INDEL discovery on a whole-genome scale. Given the relatively high sequence
coverage, the nearly 97% SNP validation rate we observed was expected.
However, the similarly high (~94%) validation rate for short (1-2 bp) insertion-
deletion polymorphism was extremely encouraging given the high false positive
rate observed in previous studies. This is a welcome finding especially since a
primary focus of the nascent 1000 Genomes Project is to develop an extensive
catalogue of INDEL polymorphisms in the genomes of presumably healthy
individuals. Furthermore, this study was the first to illustrate that sophisticated
genome masking methods are necessary in order to prevent improper sequence

mapping with short read technologies such as Illumina. We found that the
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accuracy of polymorphism discovery accuracy dramatically by masking all
regions of the C. elegans genome that were predisposed to ambiguous sequence
mapping. Similar approaches will undoubtedly be used in human resequencing
studies with this technology since the human genome is much more repetitive

than the worm genome.

We compared the accuracy and required sequence coverage of the three major
next-generation sequencing technologies (454, Illumina, AB SOLiD) for
discerning the complete mutational profile of a mutant strain of Pichia stipitis. In
this study, we found that at roughly 10X overall genome sequence coverage, each
of the technologies were accurate enough to discover each true point mutation in
the mutant strain’s genome with very few spurious discoveries. Because of the
differences in throughput and cost, 10X sequence coverage is substantially more
expensive with the 454 Life Sciences technology than with the Illumina or AB
SOLiD technologies. Regardless, all of the technologies are inexpensive enough
for smaller laboratories to achieve such coverage for prokaryotes and many
model eukaryotes. Accordingly, this study illustrates that the new sequencing
technologies can be used as a high-throughput means to discern the causal

genotype in traditional reverse genetic screens.
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Where is the field headed? What are the next challenges ?

Collectively, these studies illustrate to the larger genomics community that the
new sequencing technologies can be used for large-scale studies in genetic
variation with similar accuracy and greatly reduced cost relative to traditional
sequencing technologies. Moreover, until a few years ago, there was a growing
sentiment in the genomics field that “sequencing is dead” as more and more
genome-wide association studies were based on chip-based genotyping
platforms. Ironically, the current sentiment now seems to be that given the near-
exponential throughput growth that the new technologies have seen, it is likely
that chip-based technologies may soon be supplanted to similar techniques using

sequencing technologies.

Whether or not sequencing technologies replace others, it is clear that as they
mature and become ever more economical, they will likely be used to address
increasingly sophisticated biological questions and to uncover more subtle
genetic variation. As of the February 2008 Advances in Genome Biology and

Technology conference, there are four next-generation sequencing technologies
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that manufactured and sold at least one sequencing machine. A fifth, Pacific
Biosciences, appears to be on the cusp of releasing a new sequencing technology
which they claim is capable of sequencing the human genome in less than a day
for hundreds of dollars. While these claims may never come to fruition, it is quite
likely that as more and more technologies compete for business, the costs will
eventually reduce to the point that the sequencing of multiple human genomes is
possible with funding on the scale of a typical NIH R01 grant. In fact, I believe
that within the next ten years, the genomes of thousands of healthy and diseased
individuals will have been sequenced. Were the cost of genome sequencing to
drop substantially enough to allow this, it would be inevitable that next-
generation sequencing machines would become as ubiquitous in molecular

biology and genetics laboratories as thermal cyclers for PCR reactions.

However I believe that the potential boon of reduced sequencing costs will
quickly be limited by the dearth of appropriate computational and statistical
approaches for the interpretation of the vast amounts of genomic data that these
technologies will inevitably produce. For example, imagine if a researcher
studying genetic predisposition to Type I diabetes could sequence the genomes

of thousands of cases and controls quickly and cheaply. What would this

164



researcher do with these data? There are existing statistical techniques for
detecting single-nucleotide variants that are associated with a disease phenotype
yet there are no such methods for integrating all other types of genetic and
epigenetic variation into such an analysis. Moreover, it is unclear whether
healthy and diseased genome sequences should be compared to one another
directly or whether they should be indirectly compared via comparisons to the
human reference genome sequence. I believe the latter approach will bias such
comparisons especially when comparing the patterns of structural variations in
cohort genomes because segmental duplications and repetitive DNA are
ironically the portions that are missing from the reference genome. Thus as more
and more human genomes are sequenced to greater completion than the
reference genome, it is likely that there will be several reference sequences based

on population history and disease predisposition.

Open problems with the extant next-generation sequencing

technologies

Longer sequence lengths will improve utility.
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An obvious limitation of the existing sequencing technologies is their relatively
short read length as compared to traditional capillary sequences. As mentioned,
a direct consequence of a shorter read length is the frequent inability to
unambiguously determine the origin of a given DNA fragment in the genome.
This difficulty is especially troublesome when resequencing the human genome,
given the high frequency of repetitive elements such as microsatellites, LINEs
and SINEs (Lander et al. 2001). In fact, even assuming a technology were to be
developed that made no sequencing errors, only about 91% of the human
genome could be resequenced with 50 bp reads (Figure 7.1) (Whiteford et al.
2005). Therefore the current read lengths from the Illumina and Applied
Biosystems technologies (30-40 bp/read) are insufficient for complete human
resequencing studies even with the necessary raw sequence throughput. In
contrast, the 400 bp or greater read lengths that are expected from the newest
version of the 454 Life Sciences machines are theoretically sufficient to
resequence over 99% of the human genome. Unfortunately, the overall
throughput from this new machine is expected to be on the order of 500 Mb per
machine run. Therefore, based on the current reagent costs, human resequencing

with this technology will still likely cost over $100,000.
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In order to mitigate the inherent limitations of shorter read lengths, all three
current technologies (i.e. 454 Life Sciences, Illumina and AB SOLiD) are working
to develop reliable protocols to produce ‘paired-end” sequences. Such sequences
represent the nucleotide sequences of the two extreme ends of a large fragment
of DNA. Ideally, the DNA fragments that are sequenced are uniform in size so
that the two sequenced ends (i.e. the ‘paired-ends’) can be inferred to be a
consistent distance apart. This allows one to map the two paired-ends to the
genome and assume that the physical distance between the two ends should fall
within an expected length distribution. If the paired-end protocols produce
reliable DNA fragments, then such methods can be used as a proxy for longer
DNA sequences, as the sequence pairs represent the extremities of a much longer
original DNA fragment. Unfortunately, the use of current protocols is perturbed

by highly-variable and undesirably short DNA fragments.

Representational biases in the DNA sequence libraries.

Ideally, every fragment of DNA in a DNA library will have an equal chance of
being sequenced by the next-generation sequencing machines. If this were the
case, it would be relative simple to develop probabilistic models that detect when

certain regions of the genome are statistically under- (deletions) or over-
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(insertions) represented relative to normal statistical fluctuations in sequence
coverage (Lander and Waterman 1988). Unfortunately, we have found that each
DNA fragment does not have an equal chance of being sequenced by the new
technologies. Therefore the resulting representational biases in the sequenced
DNA make it difficult to determine whether unexpected sequence coverage is
evidence of a true difference in the resequenced genome or whether the
difference is merely the result of an inherent bias in the DNA library. Were there
no biases, a Poisson distribution would accurately model the expected sequence
coverage. As shown in Figure 7.2, we find that the observed sequence coverage
distribution of the C. elegans genome is substantially different from the expected
Poisson distribution (results collected by Dr. Chip Stewart). We believe that these
biases are a consequence of the whole-genome amplification protocols that are
used to increase the amount of total DNA in the library prior to sequencing on
the respective sequence machines. The amplification protocols require that
genomic DNA be sheared into fragments with either sonication or nebulization
methods. We see that A-T rich DNA fragments are underrepresented in the
resulting libraries: this is a logical consequence of the DNA fragmentation

methods, as G-C rich fragments are more likely to remain as larger fragments
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because of the extra hydrogen bonds in such regions. Other biases likely exist

during the amplification of the resulting fragments prior to sequencing.

Current technologies are still too expensive.

While the next-generation sequencing technologies produce vastly more raw
sequence per machine run than traditional capillary sequencers, the cost per
sequenced nucleotide is still prohibitively high for the routine sequencing of
human genomes. This prevents the application of the new technologies to
genome-wide disease association studies. The power of such studies would
likely improve dramatically if one compared all the genetic variation among the
sequenced cohorts. Yet based on current reagent costs, 10X diploid coverage of
the genomes of 1000 human case samples and 1000 human control samples (the
typical size of a sufficiently large association study) would cost over 360 million

dollars.

Until costs reduce by at least an order of magnitude, such exorbitance will
restrict sequence-based variation discovery and association studies to the realm
of large international consortia. As of January 2008, the only such large scale

study, the ambitious 1000 Genomes Project’ is being funded by the NIH and the
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Wellcome Trust. Given that the first new sequencing technology (454 Life
Sciences) has been available for barely three years, it is likely that increased
competition and technological improvements will make large-scale studies more

economical.

Once such economy is realized and sequence-based association studies will be
feasible with typical NIH funding, it is likely that smaller laboratories will
pursue their own genetic association studies that integrate data produced by the
larger consortia. This will clearly require standardized methods with which to
collect, store and interpret results from these studies. As such, it is imperative
that the associated computational methods stay in stride with the increased

application of these new technologies.

Informatics and computational methods are immature.

The tools developed for these nascent sequencing technologies have not been
subjected to the years of rigorous use placed on analogous tools for traditional
capillary sequences. In addition, the sequencing technologies themselves
continue to evolve as throughput and read lengths continue to increase,

chemistries change and library preparation methods improve. Several open

170



questions therefore remain. For instance, extant tools can align next-generation
sequences to organismal reference genome sequences. Yet it is not clear, for any
given sequencing technology, how much redundant coverage is needed for
exhaustive variation discovery and mutational profiling. In addition, given that
the genomes of individuals and strains are often greatly diverged from canonical
reference sequences, standard resequencing approaches will often provide
incomplete answers. The error profiles of the new sequencing technologies vary
rather dramatically. Must we therefore develop computational methods that
account for each specific error model? Lastly, methods are now being developed
and applied to the discovery of genetic sequence variants; yet other, epigenetic
variations have been demonstrated to be of medical importance. The discovery of
such variations comes with special informatics challenges: for example, how do
we align short-read sequences from bisulfite-treated (and therefore greatly

mutated) DNA?

It is clear that the continued development of efficient and accurate computational
methods will be necessary to support the increased use of the new sequencing

technologies. Additionally, as the analytic methods improve, similar
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advancements will be required to standardize the storage and interpretation of

results based on such methods.

Future studies

My research thus far has focused on the development of accurate methods for
polymorphism discovery with the new sequencing technologies. As the accuracy,
throughput, and economy of sequencing technologies improve, they will rapidly
become amenable to many more research areas. I have expertise in the analysis
of these data and wish to extend this knowledge to the improvement of
traditional genetic and genomic methods such as de novo genome assembly and
genetic screens. In addition, I would like to develop novel methods for the
detection of DNA methylation and rare genetic variants. The primary focus of
each future research goal outlined below is the development of reliable
computational methods that extend the wutility of the next-generation

technologies and that can be easily used by other researchers in the field.

Develop efficient methods for the rapid mutational profiling of model
organisms.

Once a desired phenotype has been observed in a mutant strain, traditional

forward genetic screens are hindered by the time and labor required to map the
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specific mutation(s) responsible for the phenotype. However, since the mutant
strains are typically generated through successive rounds of chemical
mutagenesis, the mutant and the parental strain usually only differ by a small
number of single-nucleotide, point mutations. The cost and throughput of the
new sequencing technologies are sufficient to economically generate deep
coverage of many model organisms (e.g. E. coli, S. cerevisiae). Therefore, as
described in Chapter 6, it is possible to generate complete mutational profiles by
comparing the resequenced mutant to the reference sequence for the same
species. Thus, a laborious step in forward genetic screens can be substantially

simplified.

I believe that this study is indicative of the power and economy of the new
sequencing technologies. I would like to further develop the experimental and
computational technologies involved in this study and expand them for use in
reverse genetic studies where other genetic variations such as small INDELSs,
copy number changes and structural variations must be discovered. Further
advances in the throughput and parallelization of the new sequencing
technologies will undoubtedly facilitate the generation of rapid mutational

profiles for many mutant strains at a time. For example, the 454 Life Sciences and
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[llumina sequencing technologies can physically separate DNA from 16 and 8
samples, respectively. Yet for many pathogens such parallelization still produces
too much redundant sequence. As “barcoding” (that is, using short, sample-
specific DNA tags to identify sequence reads from individual samples)
technology advances, further parallelization will allow the economical profiling

of tens to hundreds of samples with a single machine run.

I plan to continue my collaboration with Gabor Marth in order to further refine
the computational approaches to this research. I anticipate that single-end
sequencing reads from either the Illumina or AB SOLiID platforms would
provide a sufficient substrate for mutation discovery in microbial and yeast
genomes. I initially expect this research to result in streamlined mutational
profiling software for prokaryotes and lower eukaryotes and I expect to
collaborate with others to define reliable protocols for discerning mutational

profiles from similar studies in higher eukaryotes.

Develop reliable methods to discover rare variants.
As a result of the extensive research in human genetic variation (e.g. The

International HapMap Consortium and The SNP Consortium) since the
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completion of the human genome sequence, it is widely believed that the vast
majority of SNPs with a minor allele frequency (MAF) of at least 5% are known.
However it is unclear to what degree these so-called “common” SNPs (Figure
7.3) represent the landscape of less common single-nucleotide polymorphism in
the human genome. Therefore, a primary focus of the 1000 Genomes Project is to
discover the majority of SNPs in the entire genome with a MAF of at least 1%. An
additional goal is to uncover all SNPs in gene coding regions with a MAF of at

least 0.1%.

The accurate discovery of such rare variants with next-generation technologies
presents an intriguing statistical challenge. Since the sequencing reads produced
by these technologies are clonally-amplified with various chemical approaches,
each sequencing read inherently represents a fragment of DNA from a single
chromosome of a chromosome pair. However, rare polymorphic alleles manifest
in a diploid population as infrequent heterozygotes or even more infrequent
homozygotes for the alternate allele. Thus, one must typically detect rare
polymorphisms from infrequent heterozygous individuals among a much larger

resequenced cohort (Figure 7.3). The detection of such a rare heterozygote with
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next-generation sequences therefore requires that DNA fragments from each

allele are sequenced.

Assuming no biases for one chromosome in a chromosome pair for a given
individual, there is a binomial likelihood that the sequence reads at a given locus
were sampled from both chromosomes. Thus deeper sequence coverage at a
heterozygous locus increases the likelihood that both heterozygous alleles were
sampled. For example, if two reads are present at a heterozygous locus, there is a
50% chance that the two reads came from the two alleles (i.e. one read from each
allele). While this is an unacceptably low likelihood, with ten reads, the
likelihood jumps to 99.8%. Unfortunately, DNA library construction protocols
cannot enforce that all loci are covered by ten sequence reads. Instead, there are
always statistical fluctuations in coverage throughout the genome. With no
representational bias in the sequence library, these fluctuations in depth of
coverage follow a Poisson distribution. This means that if we intended to have an
average depth of ten reads per loci (10X coverage), then according to a Poisson
distribution, 15% of the loci would have exactly 10X coverage while nearly 100%

of the loci would have at least 2X coverage (Figure 7.4).
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Thus the detection of rare alleles in a large cohort of individuals will require
rather sophisticated methods that account for the likelihood the full genotype
was sampled given aligned reads at a given locus. Such methods become more
difficult to develop when one accounts for the fact that depth of coverage has
been observed to not follow a Poisson distribution owing to representational bias
(see above). In addition, one must account for the fact that the new sequencing
technologies make sequencing errors and therefore, the observed alleles in a
given sequencing read will not always reflect the actual DNA that was
sequenced. Clearly such problems are mitigated by deep sequence coverage, but
since the new technologies are still relatively expensive, deep sequence coverage
for each individual in a large study will be too costly. Accordingly, I intend to
develop a new method for the discovery of common and rare alleles that
incorporates a) the likelihood that both alleles were sampled for each individual,
b) the likelihood that the reads were correctly aligned to the locus in question
and c) local haplotype information that may corroborate the allele based on

linkage disequilibrium with other local alleles.
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Develop statistical and computational methods to integrate all types of genetic
and epigenetic variation into disease association studies.

Nearly all genome-wide association studies seeking to uncover genetic variants
that are statistically correlated to a given disease phenotype solely interrogate
SNP markers to detect phenotype associations. There are several reasons that
SNPs have remained the primary if not sole type of genetic variation studied in
such research. First, SNPs are by far the most widely-characterized type of
genetic variation in the human genome. Second, several inexpensive chip-based
technologies (e.g. Illumina, Affymetrix, Nimblegen, etc.) have been developed to
interrogate hundreds of thousands of SNPs in a single experiment. Finally, SNPs
are predominantly di-allelic and as such are amenable to many standard

statistical tests.

However, despite finding SNP markers that are correlated with the disease
phenotype, most association studies thus far have failed to identify the causal
functional allele(s). One reason for this may be that the phenotypes of the study
cohorts have been poorly characterized and therefore weaken the power of the
study. Yet another plausible reason is that other possibly causal types of genetic

variation such as INDELs, copy number variations and epigenetic variation are
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ignored in current association study methods. While there is evidence that
INDELs are often in linkage disequilibrium with regional SNPs, it is unclear to
what degree copy number and structural variations (i.e. inversions and
translocation) remain linked with nearby SNPs. If there is generally weak linkage
disequilibrium between SNPs and nearby structural variation, then SNP markers
are likely a weak proxy for detecting association between structural variations
and disease. Moreover, it is unlikely that there is any linkage between SNP

alleles and epigenetic variations such as CpG methylation.

Therefore it is conceivable that interrogating additional types of genetic variation
in disease association studies will both increase the power of such studies and
facilitate the identification of functional alleles. Yet the nature of such additional
types of genetic variation will undoubtedly complicate the statistical methods
used in association studies. For example, unlike di-allelic SNPs which nearly
always have just three possible states (i.e. heterozygotes and the two possible
homozygotes), the genotypes of INDEL polymorphisms are potentially more
variable and difficult to conclusively assay. Copy number variations face the
same difficulty as they inherently vary in degree (e.g. 1 copy, 2 copies, 3 copies,

..., n copies), size (e.g. length of the deletion or insertion) and structure (e.g.
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insertions and deletions occur in cis, while translocations occur in trans). Clearly,
it is difficult to merely genotype such variations among a large number of
individuals. In addition, correlating such plastic genetic variation with disease
phenotypes will necessitate advanced statistical methods in order to integrate

them into future genome-wide association studies.

Create novel methods for de novo genome assembly guided by known reference
genomes.

De novo genome assembly traditionally involves the coalescence of whole-
genome shotgun sequences into contigs by searching for substantial overlaps
between pairs of sequence fragments. This process is computationally expensive
and usually results in thousands of shorter contigs for repetitive genomes.
Several new methods have been developed for the assembly of reads from next-
generation sequencing technologies (e.g. SHARCGS and SSAKE) (Dohm et al.
2007; Warren et al. 2007). However, they require massive amounts of computer
memory and as of this writing, they only produce reasonable results with the
longer 454 Life Sciences reads. The rapid assembly of viral and microbial
genomes is crucial in order to ascertain the genetic origins of particularly virulent

strains and to develop therapies to combat them.
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Finished reference sequences are available for hundreds of species. Since the
primary bottleneck in traditional de novo genome assemblies is the pair-wise
comparison of millions of sequence fragments, I intend to develop a hybrid
approach that exploits known reference genome sequences to facilitate assembly
and reduce computational expense. This approach, termed “guided de novo
assembly” (Figure 7.5), is particularly attractive for assembling the genomes of
pathogens, as there are currently over 2,000 finished viral and microbial
genomes. Specifically, for a given un-sequenced species, one would need at least
one reference genome sequence from a closely related species. Sequences from
whole-genome libraries of the species in question would be aligned to the known
reference genome of the similar species. In so doing, a substantial fraction of
genome sequence of the unknown species should be ascertained. This fraction is
clearly a function of the evolutionary distance between the two species. All
unaligned reads could then be assembled into contigs using traditional methods
or the novel approaches mentioned above. The resulting contigs could then be
combined with the alignments to the reference genome to provide a reasonable

draft genome sequence.
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This approach is also attractive for de novo human genome assembly. Recent
research indicates that structural variation accounts for anywhere between 4 and
25 Mb of genetic difference between any two individuals (Iafrate et al. 2004;
Sebat et al. 2007; Sebat et al. 2004). Therefore, canonical resequencing approaches
that merely align sequence to the human reference sequence are inherently
limited in their ability to detect larger insertions, deletions, copy-number changes
and structural rearrangements. Continued improvement of paired-end libraries
for the new sequencing technologies will also increase the utility of guided de

novo assembly methods for use in human assemblies.

I have developed prototypes for this methodology using a reference-guided
alignment algorithm (Mosaik) developed by Michael Stromberg in our laboratory,
as well as SHARGCS for the de novo assembly of the remaining unaligned
sequences. In collaboration with a colleague at Washington University, I have
begun to test this approach on three different Enterohaemorrhagic Escherichia
coli (EHEC) strains, which have diverged rather substantially from the reference
K12 strain. Previous studies have shown that reasonable assemblies of bacteria
are possible with the longer reads produced by the 454 Life Sciences

technologies. For this reason, I would advocate the use of either the single-end
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454 libraries or paired-end libraries from the AB SOLiD technology, as they
produce paired-end libraries with longer, less variable insert fragments.
Important control experiments clearly must be performed on already finished
microbial genomes where one could directly compare the accuracy and
completeness of the newly-assembled genome with the finished genome. My
goal is to produce a robust software package for guided de novo assembly that

will be freely available for non-profit use.

Investigate the landscape of promoter CpG methylation in diverse, healthy
tissues and among individuals.

Abnormal DNA methylation is a primary epigenetic hallmark of many types of
cancer. Specifically, various cancers have been shown to exhibit both
hypomethylation and hypermethylation in certain promoter regions. CpG
cytosine methylation in promoter regions has been shown to inhibit the binding
of transcription factors, which in turn, prevents the subsequent transcription of
the associated gene (Eckhardt et al. 2004; Murrell et al. 2005). Excessive promoter
hypermethylation (thus increased suppression) in various cancers has been
shown in tumor suppressor genes, whereas hypomethylation (thus reduced

suppression) has been shown in cell growth genes such as IGF (Cho et al. 2007;
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Kim et al. 2008; Song et al. 2007; Yoo and Jones 2006). It is therefore crucial that
we understand the landscape of normal DNA methylation in many healthy cell
types so we can more precisely understand the mechanisms and extent of
aberrant methylation in cancers. It is similarly important that we understand the
variability of “normal” methylation profiles among cell types and individuals so

that informative comparisons can be made between healthy and neoplastic cells.

Towards this goal, I would like to combine the throughput of the new
sequencing platforms with probe-based, targeted genomic capture methods to
investigate the methylation profile of all known promoters in the human
genome. Several new probe-based methods have recently been developed which
use custom designed probes tiling thousands of specific genomic regions and
allow for the targeted capture of genomic DNA by hybridization. Such a chip
could be designed to tile all of the known promoters in the human genome. The
captured genomic DNA from the targeted promoters could subsequently be
subjected to bisulfite treatment (which converts unmethylated cytosines to uracil
while methylated cytosines remain unchanged) and then sequenced to deep

coverage with any of the new sequencing technologies (Figure 7.6). Current
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capture methods are capable of interrogating ca. 30,000 distinct genomic regions

with overlapping probes ranging from 60-90 nucleotides (Hodges et al. 2007).

While bisulfite sequencing remains the “gold standard” for detecting DNA
methylation, a consequence of this approach is that after bisulfite treatment and
PCR amplification, all unmethylated cytosines are converted to thymines. This
conversion reduces the complexity of the sequence read, especially in DNA
fragments that are largely unmethylated and cytosine-rich. Because of the
reduced sequence complexity, it becomes more difficult to map the resulting
sequence reads to their promoter of origin. A plausible approach to this dilemma
is to perform an in silico bisulfite conversion of the human genome while
assuming that all CpG cytosines are unmethylated. The bisulfite-converted
sequence reads could then be aligned to the converted reference genome while
employing a reduced C/T mismatch penalty to account for the proper alignment
of unmethylated cytosines (which are now thymines). The 250-400 bp sequence
reads produced by the 454 Life Sciences technologies are much more suitable for
this experiment than the shorter-read (25-50 bp) technologies because the overall
reduction in complexity caused by bisulfite conversion is mitigated by longer

sequence fragments.
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Once reliable alignment methods have been established, it becomes tractable to
compare the methylation states of different cell types (see bottom alignment of
Figure 7.6) and different individuals. Yet one must also account for the fact that
variable “epigenetic haplotypes” may exist in different cell types and
individuals. That is, a given CpG dinucleotide may have a different methylation
state on each DNA strand and/or chromosome and there may be variable
methylation states among cell types from the same individual. The development
of sophisticated software for alignment and for the detection of epigenetic

variation is therefore crucial to the success of this research.

The aim of this research is to discern whether consistent methylation patterns
exist among the same cell type from different individuals. If so, further
investigation into whether or not these patterns are correlated with consistent
expression profiles would hopefully provide a baseline with which to compare
cancerous cells of the same type. If such patterns exist, further studies would be
required to investigate the mechanisms that drive the drastic change in

methylation in the cell. This research would ideally define specific protocols and
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data analysis software for the accurate detection of differential CpG methylation

among many cell types and individuals.

Summary

My dissertation work has been focused on the development of accurate methods
for polymorphism discovery with the next-generation sequencing technologies. I
have developed substantial expertise in the analysis of these data and hope to
use this experience in a clinical research environment. I believe that as
technologies continue to improve, the complexities of biological research will
shift to computational and statistical interpretation of the vast amounts of data
that these technologies will inevitably produce. As of this writing, computational
biology is still considered somewhat of a niche research area in the larger field of
biology. Yet many high-throughput sub-fields such as genomics and proteomics
have already become inexorably reliant upon sophisticated computational

methods.

It seems that at the current pace of technological advancement (the current pace
is greater than Moore’s Law), it will soon be possible for typical academic

laboratories to cheaply and accurately sequence complex genomes. Additionally,
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these technologies will also enable sensitive studies in transcript expression,
DNA methylation and chromatin modifications. When taken together, such
experiments will undoubtedly provide a more detailed picture of the
relationship between genotype (and/or “epigenotype”) and phenotype. The hope
is that such advancements will further our understanding of disease
predisposition and etiology and translate into improved therapies for human

diseases.

The computer software and ancillary methods that were written as part of this
dissertation will be archived on physical media (e.g.,, DVDs) and will be placed

in the care of the Marth laboratory for future reference.
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Chapter 7 Figures
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Figure 7.1. Percentage of unique sub-sequences in the human genome. (modified from
Whiteford et al, 2005). As the theoretical sequence read length increases (x-axis), so does the
fraction of human chromosome 1 (dashed line) and the entire human genome (solid line). Longer

reads clearly enable more complete genome resequencing.
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Figure 7.2. Representational biases in the depth of sequence coverage (Donald Stewart,
personal communication). Overall depth of coverage is shown for Illumina (top) and 454 Life
Sciences (bottom) sequencing runs of the Pichia stipitis genome. The expected Poisson
distribution of sequence coverage (pink) is shown in comparison to the observed distribution of
sequence coverage (blue). The degree of difference in these distributions varies between the
sequencing technologies and reflects sequence-biases in the DNA library fragmentation and
amplification steps prior to sequencing.
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Figure 7.3. Examples of polymorphisms with varying minor allele frequencies in a human
population. Cartoons indicating “common” polymorphisms (left; minor allele frequency of 40%,
middle; minor allele frequency of 5%) and a “rare” polymorphism (right; minor allele frequency
of less than 1%) are shown. The cumulative contribution of rare alleles to phenotype is unknown.
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Figure 7.5. Guided de novo genome assembly. Shotgun sequences from a yet-unsequenced
species (a) are aligned to a known reference genome from a closely-related species (b). The
unaligned reads (c) are assembled into contigs (d) using short-read assembly methods. The
resulting contigs are then mapped to the original reference genome sequence to produce a draft
genome sequence for the species in question (e). However, not all contigs can be unambiguously
oriented in the new draft sequence.

193



Cell A - methylated CpG Cell B - unmethylated CpG

CHa

.+ . TCCATCGCT. . .ACTCCACGG, .. + « « TCCATCGCT. . .ACTCCACGG.

l Treat with bisulfite l

. . TUUATUGUT. . . AUTUUACGG. .. « « « TUUATOGUT. . .AUTUUADGG. ..

l Whole-genome amplification l
.TTTATTGTT. . .ATTTTACGS. .. + s+ TTTATTGTT. . .ATTTTATGG. . .

| l
L =

Cell A ««  TTTATTGTT. . .ATTTTACGG. ..
Cell B « « « ITTTATTGTT. . .ATTTTATGG. ..

Figure 7.6. High-throughput bisulfite sequencing with new sequencing technologies. Bisulfite
treatment converts all unmethylated cytosines to uracil yet leaves methylated CpG cytosines
unchanged. After PCR amplification, uracils are converted to thymine. After conversion, the
relative methylation states of different cells or individuals can be compared via sequence
alignment.
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