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Abstract 

Individuals infected with Human Immunodeficiency Virus (HIV) are susceptible to 

pathological abnormalities due to the infiltration of virus into different anatomical 

compartments. Monocytes are a heterogeneous population that undergoes changes in 

phenotype with HIV infection. It is hypothesized that changes in monocyte subsets 

observed through the course of infection will correlate with the development of SIV-

Encephalitis (SIVE). 14 CD8+ T cell depleted rhesus macaques were infected with 

SIVmac251 and changes in 3 monocyte subsets, defined by their CD14 and CD16 surface 

expression as CD14+CD16-, CD14+CD16+, and CD14-CD16+, were tracked through 

the course of disease. The CD14+CD16- subset increased in the absolute number of cells 

and decreased in percentage of the total monocyte population. The CD14+CD16+ and 

CD14-CD16+ subsets increased in both absolute number and percentage. These changes 

have a biphasic dynamic that occurs during early infection and is pronounced in 

encephalitic animals. Several markers showed differential expression with infection and 

between subsets. Mac387, an early monocyte-macrophage marker, demonstrated a 

considerable decrease in expression. Concomitant with this change, CD68, CD163, 

CD44v6, CCR2, and CD64 increased expression in the total monocyte population, with 

the magnitude of these changes occurring in a subset-specific manner. In conclusion, 

monocyte subsets undergo changes with SIV infection that correspond to the 

development of encephalitis, highlighting the contribution of monocytes in neuroAIDS. 
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INTRODUCTION 

 

 

Monocytes: A heterogeneous population of innate immune cells  

Monocytes are a population of bone marrow derived cells that serve as both progenitors 

to tissue macrophages and immune effector cells that represent one arm of the 

mononuclear phagocyte system. Monocytes are found in the blood, where they remain in 

circulation until they extravasate and enter tissues in a chemokine and adhesion receptor 

mediated fashion. Once in the tissues, monocytes undergo maturation into resident tissue 

macrophages. Monocytes are essential in the defense against pathogens and foreign 

entities, playing an important role in antigen-presentation, phagocytosis of foreign matter 

and debris, and as mediators of immune responses through the production of cytokines. 

In order to recognize microorganisms, monocytes possess a number of different 

scavenger receptors and pathogen-associated molecular pattern (PAMP) receptors [1], as 

well as a number of different chemokine receptors. The heterogeneous nature of this cell 

population is illustrated in the differential distribution of these receptors amongst the 

subsets.  

 

Developmentally, monocytes result from successive commitment steps beginning with 

the differentiation of hematopoietic stem cells (HSC) into common myeloid progenitors 

(CMP), granulocyte-macrophage precursors (GMP), and then macrophage/DC 

progenitors (MDP) [2]. While monocytes are thought to develop from the 
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macrophage/DC progenitors in bone marrow, the heterogeneity of circulating monocytes 

and the developmental path that produces this diversity is not well understood. Currently, 

commitment of myeloid progenitors to a monocyte/macrophage/DC lineage is associated 

with presence of CX3CR1, the fractalkine receptor, as it is only first detected on MDPs 

[3]. The commitment to monocyte development is restricted by the transcription factors 

participating in differentiation. PU.1 has been identified as a crucial transcription factor 

and is required for early commitment of a cell to CMP [4] by acting in an antagonistic 

manner against other transcription factors that would lead to non-monocyte 

developmental programming. Additionally, PU.1 activates monocyte/macrophages 

transcription factors.  

 

Monocytes in human and rhesus blood can be broadly divided into subsets based upon 

their differential expression of surface markers CD14 and CD16. While nomenclature 

and delineation of the monocyte subsets varies, for the purposes of this report, the 3 main 

subsets of interest will be referred to as CD14+CD16-, CD14+CD16+, and CD14-

CD16+. In a healthy individual, the “classical” CD14+CD16- subset comprises 80-90% 

of the total monocyte population. The non-classical, or “inflammatory” monocytes, 

defined by their relatively increased expression of CD16, CD14+CD16+ cells, comprise 

10-20% of the total monocyte population, and have been shown to increase in frequency 

of the total monocyte population and in absolute cell number. These cells also more 

resemble mature tissue macrophage, suggesting that they are of a more mature phenotype 

than the CD14+CD16- subset. The CD14+CD16- and CD14+CD16+ populations can 
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also be differentiated by their differential expression of other surface makers. 

CD14+CD16- cells express chemokine receptors CCR2, CX3CR1, and the Fc-gamma 

receptor 1, CD64, unlike the CD14+CD16+ subset, which expresses lower CCR2 levels, 

but has higher expression of CX3CR1, CCR5, CD86. Functionally, the CD14+CD16- 

monocytes exhibit high phagocytic activity, produce IL-10 in response to LPS in-vitro 

[5], and have lower cytokine production than the CD14+CD16+ subset. In contrast, the 

CD14+CD16+ monocytes produce TNF-α and IL-1 in response to LPS stimulation [6], 

but also show high phagocytic capabilities. CD14-CD16+ monocytes remain the least 

characterized of the three subsets. Previous reports have shown that compared to the 

CD14+ monocytes, the CD14-CD16+ subset is weakly phagocytic, and does not produce 

TNF-α and IL-1 in response to LPS [7]. Understanding the diversity within the monocyte 

population, both in steady-state homeostatic conditions and in times of duress, will 

provide insight into factors influencing disease progression.  

 

Attempts to characterize differences between the monocyte subsets using gene array data 

have provided interesting insights into the potential roles of these cells. Genes involved in 

FcgammaR mediated activity, B cell receptor signaling, and apoptosis signaling were 

preferentially up-regulated in the CD16+ monocytes, whereas genes involved in 

antimicrobial processes were up-regulated in CD14+CD16- monocytes [8]. Ancuta et al. 

have shown with transcriptional profiling a developmental relationship between the 

CD16- and CD16+ subsets, indicating that the different monocyte subsets originate from 

a common myeloid progenitor, but have distinct developmental paths. The CD16+ subset 
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was distinguished by upregulation of transcripts for dendritic cell and macrophage 

markers. Contrastingly, CD16- subsets showed upregulation of transcripts for myeloid 

and granulocyte markers. The authors conclude that these subsets are likely to give rise to 

dendritic cell and macrophage subpopulations with distinct roles in immunity and disease 

pathogenesis [9]. Kim et al. have reported differences in gene expression between 

monocyte subsets in uninfected rhesus macaques. Of particular note, the CD16+ subsets 

exhibited upregulation in genes involved in monocyte-to-macrophage differentiation. 

Examples cited included monocyte/macrophage phenotype markers, adhesion molecules, 

macrophage specific enzymes, and transcription factors driving monocyte-to-macrophage 

differentiation. A comparatively small number of genes involved in lymphotoxic activity 

distinguished the CD14+CD16+ and CD14-CD16+ subsets [10].  

 

Human Immunodeficiency Virus (HIV) and Simian Immunodeficiency Virus (SIV) 

Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) are 

closely related retroviruses that are the underlying cause of the Acquired Immune 

Deficiency Syndrome (AIDS). AIDS is characterized by a severe defect in cell-mediated 

immunity as a result of the infection and eventual ablation of CD4+ T cells in the host 

that eventually leads to immune system failure. Upon primary infection, a drop in CD4+ 

T cells can be observed, along with a concomitant rise in HIV and SIV RNA detected in 

plasma, indicative of active replication of the virus during this acute stage of infection. 

Followed by the activation of CD8+ T cells and the ramping up of a humoral response 

against the virus, CD4+ T cells make a recovery and the host’s viral load is decreased, 
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resulting in a period of clinical latency. Eventually, however, the CD4+ T cell population 

is compromised to the point where cell-mediated immunity is no longer effective, viral 

load increases, and opportunistic infections take hold [11]. 

 

Most individuals who develop AIDS that do not receive retroviral therapy die from 

opportunistic infections or malignancies associated with compromised immune systems. 

While the CD4+ T cell compartment is the most compromised through the course of 

AIDS pathogenesis, HIV and SIV strains can infect many different cell types. The 

interaction of CD4 with the viral envelope protein gp120 causes a conformation change 

that exposes its co-receptor binding site. CCR5 and CXCR4 are the major co receptors 

identified; virus will infect T cells expressing CXCR4 and macrophage-tropic HIV and 

SIV strains can gain entrance into macrophages through the engagement of the CD4 

receptor and its co-receptor CCR5. The ability of HIV to infect multiple cell types within 

a host allows for its dissemination through different tissue compartments and in varying 

states of replication and latency [12]. In addition to the use of different co-receptors, viral 

replication within macrophages differs from that which occurs in T cells. Upon gaining 

entry into the host T cell, HIV and SIV will form preintegration complexes that enter the 

nuclear envelope. Integration and transcription of the viral genome is followed by 

assembly and budding of virions into the extracellular space. In the case of macrophages, 

budding and accumulation of viral particles can occur into cytoplasmic vacuoles defined 

as late endosomes/multivesicular bodies (LE/MVBs). Virus in LE/MVBs may be more 

stable and are better capable of escaping degradation and evading immune system 
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recognition, which becomes especially important in the context of central nervous system 

infiltration by infected monocyte/macrophages acting as viral reservoirs of infectious 

disease [13].  

 

HIV and SIV infection pertaining to the Central Nervous System 

In addition to susceptibility to opportunistic organisms, HIV and SIV infections result in 

a number of pathological abnormalities due to the infiltration of many anatomical 

compartments in addition to peripheral blood [14]. HIV and SIV devastate the immune 

system and results in significant neurological dysfunction in a significant portion of 

affected individuals. One of the earliest events of HIV infection involves the penetration 

and infiltration of the CNS, occurring on the scale of hours to days post-infection. Even 

at this early juncture, virus is detectable in the brain [15]. Neurological complications are 

common amongst HIV infected individuals, resulting in behavioral, motor, and cognitive 

perturbances. Approximately 20-40% of infected individuals develop significant 

cognitive dysfunction [16,17], and postmortem neuropathological abnormalities have 

been detected in 80% of patient autopsies [18]. Neurological damage can manifest itself 

at any point during the course of infection, although most develop with more advanced 

disease.  

 

In the advent of highly active antiretroviral therapy (HAART), the prevalence of HIV-

associated dementia (HAD), the clinical correlate to HIVE, has decreased, although 

milder forms of cognitive impairment are still observed amongst infected individuals. 
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While there has been a decrease in the incidences of HAD, because of the inability of 

some retroviral drugs to cross the blood-brain barrier (BBB), and as patients live longer 

with the disease [19], the overall prevalence of this condition is on the rise. The ability of 

HAART to attenuate, but not eradicate, HIV-associated disease in the brain indicates 

events occurring outside of the CNS play a substantial role in neuropathogenesis.  

 

HIV-Encephalitis (HIVE) and SIV-Encephalitis (SIVE) are pathologically defined by 

lesions consisting of gliosis (the proliferation of astrocytes), microglial nodules, 

detectable virus in the CNS, perivascular macrophage accumulation, and the presence of 

activated macrophages, neuronal loss, and multinucleated giant cells (MNGC) [20]. 

Macrophage-tropic SIV is the predominant virus found in the CNS of macaques with 

SIVE [21,22]. HIVE is unlike most viral encephalitis in that HIV does not productively 

infect neurons. Rather, productive replication has only been observed in perivascular 

macrophages and microglia [23,24,25]. Viral infection also does not appear to be the best 

predictor of HIVE or SIVE, but rather the number of infected mononuclear phagocytes 

and their degree of activation are better correlates to disease [26]. It has been shown that 

both infected and uninfected cells in the CNS produce increased amounts of chemotactic 

and inflammatory mediators that further recruitment of monocyte macrophage. 

Concomitantly, immune activation in the periphery leads to the activation of monocytes, 

both infected and uninfected, causing an increased response to chemokines.  
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Myeloid lineage cells and HIV/SIV infection  

Peripheral blood monocytes and resident tissue macrophages are cellular targets of HIV 

and may serve as a viral reservoir during the apparent latency period of infection. Both 

infected and uninfected monocyte/macrophages can extravasate from the blood and cross 

the blood brain barrier. Initial viral infection of the CNS as well as continuous reseeding 

with virus from the periphery occurs, and previously uninfected lymphocytes can 

encounter HIV/SIV at this juncture. Monocytes that remain in the brain and differentiate 

into resident tissue macrophages, specifically those that become perivascular 

macrophages, are the major cell type infected in the brain [27,28]. Monocytes have a 

lower susceptibility to infection compared to more mature macrophage, presumably due 

to the lower expression levels of coreceptors used for viral entry [29]. This is supported 

by the upregulation of CCR5, the major coreceptor for the entry of HIV strains into 

myeloid cells [13], in the more phenotypically mature CD14+CD16+ monocyte subset. 

When infected, monocytes can support a continuous low-level of virus production 

throughout their lifetime, and have been found to harbor latent proviral DNA through the 

course of disease. Additionally, because of their immune privilege status these cells are 

capable of crossing the blood brain barrier and carrying virus to the brain in a Trojan 

horse-type manner [27]. These cells serve as immunoregulatory cells through the 

production of cytokines and chemokines in response to HIV and SIV. After the initial 

introduction of SIV and HIV in the CNS, viral RNA or proteins are not detected during 

the asymptomatic period of infection [25,30,31,32], and HIV and SIV DNA is not 

detected or found in very small amounts during this same period of time[33]. In HIV and 
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SIV, it has been shown that the virus re-emerges from latency to productive infection 

with the development of AIDS [34].  

 

Peripheral blood monocyte subsets and SIV-Encephalitis.  

The activation and expansion of monocyte/macrophage subsets with HIV and SIV 

infection is recognized as a critical parameter of AIDS pathogenesis and possibly a 

marker for the development of neuropathogenesis [35,36]. Bone marrow derived 

lymphocytes and monocyte subpopulations show dynamic changes and phenotypic shifts 

with lentiviral infection and the development of AIDS. The CD16+ subset has an 

increased susceptibility to HIV infection [37], and CNS perivascular macrophages are 

similar to this subset in both phenotype and HIV and SIV infection. Macrophages derived 

from the CD14+CD16+ subset are especially efficient at promoting T-cell activation, 

virus transfer, and HIV-1 replication [38,39]. It has been demonstrated that with HIV and 

SIV infection, monocytes exhibit an increase in both the percentage and absolute number 

of cells expressing CD16+ [40]. It is not fully understood whether this increase in 

circulating CD14+CD16+ cells is due to increased release from the bone marrow or 

recirculation of cells leaving other tissue compartments. It is unknown whether the 

recently characterized monocytes originating from the spleen have a contributing role in 

this phenomenon [41]. 

 

This expansion in the CD14+CD16+ monocyte subset has been correlated with the 

development of NeuroAIDS. It has been shown previously in one longitudinal study 
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assessing the mechanisms of neuronal injury in the rhesus macaque model that monocyte 

activation outside the CNS appears to play a central role [42]. Using the thymidine 

analog BrdU, it has been shown that with infection there is an increase in bone marrow 

derived monocyte turnover with AIDS progression in macaques [43]. There still remain 

questions concerning the definitive roles of the different monocyte subsets and the roles 

they play in HIV and SIV driven neuropathogenesis.  

 

See Figure 1.  

 

Peripheral blood monocytes are subject to both peripheral immune activation “push” and 

chemokine gradient “pull” forces that direct them towards the CNS [44]. During 

infection, the activated monocyte populations will show an increase in CD16 as well as 

chemokine and cytokine receptors, allowing for an increased responsiveness to 

chemokines such as monocyte chemoattractant protein 1 (MCP-1) and fractalkine 

(CX3CL1) [45]. CD16+ cells have an increase in CD163, a hemoglobin/haptogloin 

scavenger molecule. It has been suggested that CD163 may play a role in perivascular 

macrophage protection from blood brain barrier (BBB) breakdown and leakage [46], 

further substantiating a “push” force that draws activated blood monocytes to the brain. 

These activated monocytes are recruited to the CNS by increased levels of chemokines 

such as MCP-1, Stromal cell-derived factor-1α (SDF-1α, or CXCL12), and fractalkine. 

Increases in MCP-1 have also been shown to disrupt the BBB, leading to increased 

permeability and reduction in tight junction proteins between endothelial cells [47]. SDF-
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1α engagement of its receptor, CXCR4, on monocytes has also been shown to initiate the 

disengagement of monocytes from inflamed brain microvascular endothelial cells 

(BMVEC) mediated by β2-integrin/intercellular adhesion molecule-1 (ICAM). In 

addition, monocytes move toward the SDF-1 gradient and cross the BBB. Within the 

context of heightened activation and signaling that occurs with HIV/SIV infection, the 

continuous entry of monocytes into the CNS provides a source of replenishment of 

resident macrophages that can accumulate in response to increasingly deregulated and 

damaged neuronal tissue. 

 

Breakdown of the BBB plays an important role in the progression of HIVE and SIVE, as 

BBB dysfunction is greater in HIV+ patients with dementia than in HIV+ patients 

without dementia or seronegative controls [48,49]. In addition to exposure to the 

aforementioned chemokines, viral proteins secreted by infected cells have also been 

implicated in BBB compromise. Gp120-mediated cytotoxicity has been shown to down-

regulate and compromise the tight junction proteins that hold the BMVEC together 

[50,51], resulting in greater permeability. Without an intact BBB, factors such as 

endotoxins, free virus and virus particles, activated monocytes, and other lymphoid cells 

can contribute to CNS damage with greater ease.  

 
Rhesus macaque models of disease 

Many aspects of HIV neuropathogenesis cannot be addressed in humans and so are 

studied in animal models. It is accepted that HIV originated from the transmission of SIV 

to humans, as is evidenced by the high homology between HIV-1 strains and 
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chimpanzee-infecting SIV [52]. Unlike HIV, SIV strains can be transmitted between 

monkeys but not result in the immune system devastation observed in humans[53]. It was 

recognized that geographically isolated populations of monkeys, however, could transmit 

virus to one another and develop conditions similar to AIDS [54], resulting in the 

development of monkey models that could closely recapitulate phenomena observed in 

humans. Simian models, in particular the rhesus macaque (Macaca mulatta), serves as an 

excellent model for neuropathological studies. SIV strains have high sequence homology, 

genomic organization and biological properties similar to HIV-1 and HIV-2 [55]. SIV 

infection in macaques results in 30-40% of animals developing encephalitis, mimicking 

HIV infection in humans [56]. The CD8 T cell depleted model uses a CD8-depleting 

monoclonal antibody administered intravenously to the monkeys [57]. This model results 

in increased levels of plasma virus and recapitulates AIDS onset on a much shorter time 

frame. Of monkeys that are treated with CD8-depleting antibody, most remain 

consistently depleted of CD8+ T cells for greater than 28 days, and of these animals 80% 

develop encephalitis [58].  
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MATERIALS AND METHODS 
 
 

 

Animals, viral infections and CD8+ T lymphocyte depletion 

Fourteen rhesus macaques (Macaca mulatta) were utilized in this study. Five were housed 

at Harvard University’s New England Primate Research Center (NEPRC) and nine were 

housed at the Tulane University’s National Primate Research Center (TNPRC) in 

accordance with standards of the American Association for Accreditation of Laboratory 

Animal Care. The animals were intravenously inoculated with SIVmac251 (20 ng of SIV 

p27), kindly provided by Ronald Desrosiers. Blood samples were taken prior to, on the 

day of infection, and weekly thereafter. CD8+ T lymphocyte depletion was achieved with 

subcutaneous administration (10 mg/kg) of human anti-CD8 antibody cM-T807 at 6 days 

post-infection (DPI), proceeded by intravenous administration (5 mg/kg) at 8 and 12 DPI 

CD8+ T lymphocyte depletion was monitored by flow cytometry prior to antibody 

treatment and weekly thereafter as previously described [42]. Four of the animals were 

long-term depleted (>28 days), whereas one animal was short-term depleted (<21 days). 

Upon development of AIDS, animals were anesthetized with ketamine-HCl and 

euthanized with intravenous pentobarbital overdose and exsanguinated. 

 

Flow Cytometry 

Flow cytometric analyses were conducted on 100 ul aliquots of peripheral whole blood. 

Erythrocyte lysis was performed (ImmunoPrep Reagent System, Beckman Coulter), 
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followed by 2 washes with PBS, and incubation with fluorochrome-conjugated antibodies 

including anti-CCR2-APC (clone: 48607, R&D Systems), anti-CD14-APC (clone: 

M5E2, BD Pharmingen), CD14-FITC (clone: M5E2, BD Pharmingen), anti-CD163 

(clone: MAC2-158, Trillium Diagnostics), anti-CD16-PE (clone: 3G8, BD Pharmingen), 

anti-CD16-PECy7 (clone: 3G8, BD Pharmingen), anti-CD20-APC (clone: 2H7, BD 

Pharmingen), anti-CD3-APC (clone: SP34-2, BD Pharmingen), anti-CD44v6-biotin 

(clone: VFF-7, Invitrogen), anti-CD68-FITC (clone: KP1, Dako), anti-CD8-APC (clone: 

RPA-T8, BD Pharmingen), anti-CX3CR1 (Torrey Pines), anti-HLA-DR-PerCP-Cy5.5 

(clone: L243, BD Pharmingen), and anti-MRP8/14-biotin (clone: 27E10, Bachem). 

Intracellular staining was achieved by permeabilization of lymphocytes with 

Cytofix/CytopermTM buffer for 15 minutes (BD Biosciences) at room temperature. Cells 

were washed with BD Perm WashTM buffer and incubated for 30 minutes with 

antibodies including anti-Mac387-FITC (clone:MAC387, Serotec), IgG1 isotype control 

(clone: MOPC-21, BD Pharmingen), anti-CD68-FITC (clone: KP1, Dako), and anti-

MRP-8-biotin (clone: 8-5C2, Bachem). Biotinylated antibodies were subsequently treated 

with Strepavidin-APC (SAV-APC) (Invitrogen), and anti-CX3CR1 conjugated samples 

were incubated with secondary antibody goat anti-rabbit-APC (Invitrogen). All samples 

were fixed in 2% paraformaldehyde, and data acquired on a BD FACS Aria (BD 

Biosciences). Analysis was performed using FloJo version 8.7 (Tree Star). 
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Statistical analysis 

Statistical and graphical analyses were performed using Prism version 5.0a (GraphPad 

Software, Inc., San Diego, CA) software and Microsoft Excel for Mac version 11.3.6.  

 

Viral load determination 

Plasma SIV RNA was determined using RT-PCR as previously described [59]. SIV 

virions were centrifuged from 0.5 ml EDTA plasma at 20,000g for 1 hour. The 

fluorescently labeled, RT-PCR probe employed contained a non-fluorescent quencher, 

BHQ-1, at its 3' end. The threshold of sensitivity was 100 copy Eq/ml, with an average 

interassay coefficient of variation of less than 25%. 

 

Absolute cell count determination 

Absolute counts of monocytes and monocyte subsets were calculated by multiplying the 

percentage of each monocyte subpopulation gate within blood by the number of 

monocytes per µl of blood as determined by complete blood cell counts (CBC). 
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RESULTS 

 

 

Monocyte subsets are defined in SIVmac251 infected animals 

Animals enrolled in this study came from three separate cohorts, 5 from the New England 

Primate Research Center (NEPRC), 4 from one Tulane University cohort (Tulane I), and 

another 5 from Tulane (Tulane II), for a total of 14 animals. All animals except for one 

animal (#186-05) maintained long term CD8+ T lymphocyte depletion status, defined as 

no repopulation of the CD8+ T lymphocytes before 28 DPI. Of the 14 animals, four 

animals developed SIVE, as determined upon necropsy. Two animals, 288-07 and FD05, 

were found to be infected with cytomegalovirus (CMV). Survival post-infection ranged 

from 56 DPI to 92 DPI for animals that developed SIVE, whereas the non-encephalitic 

animals all lived past 56 DPI, with 6 of these animals living past 118 DPI (Table 1). 

 

Blood was drawn prior to infection and on a weekly basis post-infection. Cells from 

whole blood were first defined by flow cytometric analysis of forward scatter versus side 

scatter properties, gating for myeloid cells at the exclusion of lymphocytes and cells of 

high granularity. We further defined the monocyte phenotype by drawing a gate for 

HLA-DR positive cells. These cells were delineated into distinct subpopulations as 

defined by CD14 and CD16 expression. The three major subpopulations were 

characterized by high CD14 and no CD16 expression (CD14+CD16-); high CD14 and 
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high CD16 (CD14+CD16+); and little to no CD14 and high CD16 (CD14-CD16+) 

(Figure 2). 

 

Monocyte subsets show differential marker expression that changes with AIDS 

In order to characterize the changes in different monocyte subsets with SIV infection, the 

expression levels of monocyte-associated markers were examined. Cells were stained for 

flow cytometric analysis of Mac387, CD68, CD163, CD44v6, CCR2, CX3CR1, CD64, 

and CCR8 throughout the course of SIV pathogenesis. The average median fluorescence 

intensity (MFI) for monocytes was calculated for time points prior to infection and also at 

death. 

 

Prior to infection, the relative expression of the different markers between the subsets 

varied considerably. The median fluorescence intensities (MFI) of all animals were 

averaged to determine the expression of each marker. CD163 showed the highest 

expression on the CD14+CD16- and CD14+CD16+ subsets, with a decrease on CD14-

CD16+ monocytes. CD44v6 exhibited a similar pattern of increased expression on the 

CD14+ subsets with decreased expression on CD14-CD16+ subsets. CX3CR1 followed a 

different distribution of expression between the monocyte subsets, where the highest 

relative MFI amongst the three subsets was found on the CD14+CD16+ and CD14-

CD16+ monocytes. CD64 had the greatest expression on the CD14+CD16+ subset, with 

relatively lower expression on the CD14-CD16+ monocytes. The expression on this 

subset, however, was still considerably higher than that found on the CD14+CD16- 
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monocytes. CD68 was expressed at increasing levels from CD14+CD16-, CD14+CD16+, 

to the CD14-CD16+ subsets. Mac387 demonstrated the highest expression on the 

CD14+CD16+ subset, with decreased expression on the CD14+CD16- monocytes, 

followed by relatively low expression within the CD14-CD16+ subset (Figure 3A). 

 

At death, virtually all markers exhibited an increase in average MFI relative to the 

uninfected time point, with the exception of Mac387, which decreased, and CX3CR1, 

which remained fairly constant (Table 2). CD163 showed an increase in all three subsets 

from pre-infection time points to death. Expression levels prior to infection and at death 

were highest in the CD14+CD16- and CD14+CD16+ subsets, and CD14+CD16+ 

monocytes showed almost a 3-fold increase in CD163 surface expression. Slight 

increases in CCR2 occurred in the CD14+ subsets, with the strongest fluorescence 

observed for CD14+CD16-. CD44v6 showed considerable increases for all three 

monocyte subsets, in particular for the CD14-CD16+ subset. CX3CR1 expression 

remained relatively stable when comparing MFI from death to pre-infection time points. 

There even appeared to be a slight decrease in the average MFI of CD14+CD16+ 

monocytes at death compared to pre-infection, however this falls well within the 

calculated standard error. CD64 expression on monocytes increased in all three subsets 

with the greatest relative increase in the CD14-CD16+ subset. Expression in the 

CD14+CD16- subset was relatively small both pre- and post-infection as compared to the 

other two subsets. CCR8 showed little change in expression with disease (Table 2). 

Overall, surface marker expression increases for all three monocyte subsets, but with 
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differential degrees of increase from pre-infection time points to time of death. The 

CD14+CD16+ subset shows considerable increase in CX3CR1 and CD64, whereas the 

greatest changes in surface marker expression for the CD14-CD16+ subset occur with 

CD163 and CD44v6 (Figure 3b).  

 

Differences in relative expression of markers through the course of pathogenesis  

In the NEPRC cohort, there are trends indicative of differential CD163 expression across 

the monocyte subsets when comparing SIVE and non-encephalitic animals. CD163 

expression is greatest for the CD14+CD16+ monocyte subset, followed by relatively 

lower expression in the CD14+CD16- monocytes, and the lowest expression levels found 

on the CD14-CD16+ cells (Figure 4A). Similar to the NEPRC cohort, overall expression 

of CD163 was higher in the CD14+ monocyte subsets relative to the CD14-CD16+ 

subset. However, the Tulane I SIVE animals did not exhibit increased CD163 expression 

in the CD14+ subsets like that found in NEPRC animals, and in fact demonstrated a 

decreased expression in the CD14-CD16+ subset relative to non-encephalitic animals. 

There were no significant differences in CD163 MFI between disease states in the CD14-

CD16+ monocytes (Figure 4B). Of the Tulane II animals, none developed encephalitis. 

The expression of the different surface markers, however, showed some recapitulation of 

trends observed in the previous two animal groups. CD163 was expressed highest in the 

CD14-CD16+ group, followed by a modestly lower expression in the CD14+CD16- 

subset. Lowest expression was found in the CD14-CD16+ subset (Figure 4C). 
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CD44v6 exhibits the highest levels of expression on the CD14-CD16+ monocytes, but no 

differences were observed between SIVE and non-encephalitic animals in the NEPRC 

animals (Figure 5A). The lack of distinct CD44v6 expression patterns between the SIVE 

and non-encephalitic animals was recapitulated in the Tulane I cohort. However, unlike 

the NEPRC animals, monocytes from the Tulane I cohort showed the greatest expression 

in the CD14-CD16+ subset, with similarly low levels of expression in the two CD14+ 

subsets (Figure 5B). CD44v6 expression across the subsets in the Tulane II animals was 

similar to that found in the NEPRC animals, with relatively higher levels of expression 

on the CD14+CD16+ subset, with similarly low expression found in the CD14+CD16- 

and CD14-CD16+ subsets (Figure 5C). 

 

Due to CX3CR1 antibody titration issues, data for this marker is not available for 

NEPRC cohort. However, some patterns in expression could be observed in both the 

Tulane cohorts. For both the Tulane I and Tulane II animals, there was virtually no 

expression of CX3CR1 in the CD14+CD16- subset (Figure 6A and 6B). Additionally, 

CX3CR1 in this subset did not distinguish SIVE animals from non-SIVE animals. 

CD14+CD16+ monocytes had the highest levels of CX3CR1 expression. In contrast to 

the CD14+CD16- subset, it is interesting to note that the SIVE animals had higher 

expression of CX3CR1 in the CD14+CD16+ monocytes (Figure 6A). The CD14-CD16+ 

monocytes exhibited intermediate expression of CX3CR1 compared to that of the 

CD14+CD16+ and CD14+CD16- subsets, but unlike the CD14+CD16+ monocytes, 

SIVE and non-encephalitic animals were indistinguishable based on this parameter. 
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Overall, relative CCR2 expression levels between the subsets was consistent across the 

three cohorts, with the highest expression observed with the CD14+CD16- subset, 

followed by an intermediate phenotype in the CD14+CD16+ subset, and virtually no 

expression on CD14-CD16+ monocytes. For the NEPRC animals, CCR2 expression 

appeared to differentiate SIVE animals from those that did not develop neuroAIDS in the 

CD14+CD16- subset, but no significant differences were found between the different 

disease stages in the other monocyte subsets (Figure 7A). The Tulane I study cohort 

demonstrated similar trends but did not fully recapitulate what was found in the NEPRC 

animals. Differences between disease states were not found in any of the monocyte 

subsets from the Tulane I animals.  

 

 

Monocyte subsets undergo dynamic changes in both absolute number and 

percentage of total monocytes.  

With infection, monocyte subsets undergo changes in the relative distribution within the 

total monocyte population, as well as in the absolute number that are circulating in the 

periphery. The average frequency and absolute number of monocyte subsets at 

uninfected, peak viremia, and at terminal AIDS were determined (Figure 8). Prior to 

infection, the CD14+CD16- subset is dominant in both absolute number and frequency, 

accounting for about 78% of the total monocyte population. At peak viremia (DPI 12), 

there is a decrease in both the absolute number and frequency of the CD14+CD16- 
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monocyte subset, where the frequency of this subset decreases from an average 77.9% 

prior to infection to 64.7%. The CD14+CD16+ expands to account for an increased 

percentage of the total monocyte population from an average of 8.2% to 24.1%. The 

absolute number of CD14+CD16+ cells also increases from 22 cells/ul blood to about 32 

cells/ul. The CD14-CD16+ subset remains stable and does not show considerable change 

from pre-infection time points to peak viremia.  At death, all three monocyte subsets 

maintain similar frequencies as observed at peak viremia, but exhibit an increase in the 

absolute number of cells present, particularly in the CD14+CD16- and CD14+CD16+ 

subsets, demonstrating a total increase in monocytes circulating through the periphery.  

 

A longitudinal analysis was performed for both the frequency and absolute numbers of 

the different monocyte subsets for each animal through the course of infection. Prior to 

infection, the CD14+CD16- subset is dominant, accounting for 70-90% of total 

monocytes, as defined by HLA-DR+ cells from the original FSC SSC monocyte gate 

(Figure 9A-C). CD14+CD16+ cells are relatively fewer in absolute cell number and 

percentage, accounting for less than 20% of the total monocyte population prior to 

infection (Figure 9D-F). The CD14-CD16+ subset has a frequency of less than 10% of 

total monocytes prior to infection for all nine animals (Figure 9G-I). Upon infection, The 

CD14+CD16- monocytes undergo a decrease in frequency followed by brief periods of 

recovery. However, the CD14+CD16- subset maintains reduced frequencies in all 

animals except for animal FB92 (Figure 9E). The relative decrease in frequency is more 

pronounced in encephalitic animals. Both the CD14+CD16+ and CD14-CD16+ subset 
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increase in frequency immediately after infection during peak viremia (Figure 9D-I). As 

early as DPI 5, the degree of change in frequency for all subsets distinguishes animals 

that develop SIVE from those that do not (Figure 9A, B, D, E, G, H).  

 

The different monocyte subsets exhibit differential expansion in the absolute number of 

cells. At DPI 12, there is a decrease in the absolute number of CD14+CD16- monocytes 

for all animals except for Animal #288-07, and 186-05, for which there is a small 

increase (Figure 10A, D). Despite fluctuations in absolute number through the course of 

infection, 11 of the 14 animals exhibit an increase in absolute number when compared to 

the average absolute number of CD14+CD16- cells prior to infection (Figure 10A-C). 

The CD14+CD16+ subset shows increases in absolute number immediately following 

infection in all animals (Figure 10D-F). Animal 244-96 in particular exhibits a 

considerable expansion of CD14+CD16+ cells relative other animals. CD14-CD16+ 

monocytes exhibit changes in absolute number that are especially pronounced in the 

severely encephalitic animals 244-96 and DB79 (Figure 10G-I). Interestingly, despite 

none of the animals from the Tulane II cohort developing SIVE, there is a considerable 

expansion of the CD14-CD16+ cells.  

 

A biphasic change in monocyte subset frequency and absolute cell number is 

pronounced in SIVE animals. 

Animals infected with SIV exhibit dynamic shifts in monocyte subset frequency and 

absolute number. These changes follow a biphasic pattern, and are particularly 
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pronounced in animals that develop encephalitis (Figure 11). The CD14+CD16- subsets 

demonstrate an initial decrease, a period of recovery, and then another decrease in 

frequency (Figure 11A). This is reflected in the absolute number of cells in this subset, 

where there is an initial decrease followed by a surge in cell number (Figure 11B). The 

CD14+CD16+ monocytes also exhibit biphasic changes, where initial surges in 

frequency are observed immediately following infection, are followed by a decrease and 

another increase (Figure 11C). A similar dynamic is observed in the CD14-CD16+ 

subset, except for in the mildly encephalitic animal CM07, which undergoes a slight 

decrease in frequency at DPI 12 (Figure 11E). The CD16-expressing monocyte subsets 

undergo a slight expansion immediately following infection for all encephalitic animals. 

The absolute number then decreases, and is followed by a relatively greater expansion 

than that which occurred during peak viremia (Figure 11D, F). 
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DISCUSSION 

 

 

In this report, the longitudinal analysis of peripheral blood monocyte subsets through the 

course of AIDS pathogenesis in the CD8-T lymphocyte depleted rhesus macaque model 

demonstrates previously uncharacterized temporal, phenotypic, and distribution changes. 

When comparing time points prior to infection and at necropsy, the average MFIs of 

different markers on the three monocyte subsets showed a global increase in expression, 

with the exception of Mac387, which at death had decreased across subsets. Prior to 

infection, the CD14+CD16- and CD14+CD16+ populations could be differentiated by 

their differential expression of these surface makers. CD14+CD16- cells express CCR2, 

CX3CR1, and CD64, but differs from the CD14+CD16+ subset, which expresses lower 

CCR2 levels, but more CX3CR1, CCR5, and CD64 is detected.  

 

With infection, the chemokine receptor CCR2 increased but maintained the 

aforementioned expression patterns. These increases in CCR2 allows for an increased 

responsiveness to its ligand, MCP-1. With previously reported increases in MCP-1 in the 

CNS, chemokine gradients established in the periphery lead to increased trafficking of 

monocytes. The differing affinities and abilities to respond to these gradients, in 

conjunction with the knowledge that the CD16+ subset has shown preferential 

susceptibility to HIV infection [37], underscores the importance of such phenotypic 

changes as they can influence virus-induced CNS pathologies. Interestingly, CX3CR1 did 
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not exhibit similar increases from pre-infection to terminal disease, although it has been 

shown that in previous reports its ligand, fractalkine (CX3CL1), has a comparable 

presence to that of MCP-1. It should be noted that there were certainly fluctuations in the 

expression of this marker through the course of infection (data not shown). Because the 

primary cohorts used for analysis of CX3CR1 were those from Tulane, the issue of 

experimental constraints plays a role; the ability of monocytes to maintain CX3CR1 

expression after a questionable period ex-vivo may have some impact on our ability to 

detect for our target antigen. 

 

CD163 expression is robust on the CD14+CD16- and CD14+CD16+ monocytes prior to 

infection. With infection, all three monocyte subsets exhibit considerable increases in 

CD163 expression, but the CD14+CD16+ subset shows the highest relative levels. 

Accumulation of CD163, a scavenger receptor for the hemoglobulin-haptoglobin 

complex, on macrophages has been shown to correlate with HIV-1 and SIVE [60,61]. 

Interestingly, SIVE animals from both the NEPRC and Tulane I cohorts appeared to have 

higher levels of CD163 in the CD14+CD16- subset when compared to the non-

encephalitic animals. This trend was not observed in the CD14+CD16+ subset, although 

the CD14+CD16+ subset maintained the highest relative levels of expression regardless 

of disease severity across all three study cohorts. Higher CD163 expression on the 

CD14+CD16+ subset through the course of infection may contribute to the presence of 

perivascular macrophages located in brain lesions via reseeding of the resident cells.  
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The osteopontin receptor, CD44v6, has been reported as a potential marker for SIVE 

[19]. Marcondes et al. report significant differences in MFI and percent monocytes 

expressing CD44v6 expression between SIVE and non-encephalitic animals. However, 

this phenomenon was not recapitulated in our current study. When comparing the average 

MFI of SIVE and non-encephalitic animals, CD44v6 expression was virtually 

indistinguishable for all monocyte subsets. Current studies in our group looking at 

monocytes from HIV-infected individuals have also not supported this published finding 

(data not shown). This discrepancy between the previously published literature and data 

generated in our lab may in large part be due to differences in gating strategy and 

calculation of percent expression that increase the perceived significance of CD44v6 

expression. Osteopontin has been implicated in SIVE-associated macrophage 

accumulation in the brain via the prevention of monocyte/macrophage egress from the 

brain and prevention of cell death [62]. While the increased presence of its ligand in the 

brain implicates CD44v6 in the development of NeuroAIDS and the maintenance of viral 

reservoirs, osteopontin does not behave like other classical chemokines, such as CCL2. 

Because of its esoteric nature, CD44v6 and its ligand may contribute to the development 

of neurological disease, but the data presented in this study suggests that this contribution 

would be secondary to other mediators involved in the recruitment of 

monocyte/macrophages.  

 

Maturation from monocyte to macrophage is thought of as a phenomenon restricted to the 

time proceeding extravasation into tissue, and that in homeostatic conditions, monocytes 
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do not mature when residing in the peripheral blood. This study does not address the 

phenotypic changes that individual monocytes undergo from bone marrow release to 

establishment as resident macrophage. However, while observing global and subset-

specific changes with disease, it is interesting to note that certain sub-populations 

developed phenotypes similar to those of maturing or mature macrophages. Mac387, a 

monocyte marker which is lost during macrophage differentiation, and CD68, which has 

been used as a marker for differentiated tissue macrophages and blood monocytes [63] 

were included in our cytometric flow analysis. CD68 showed increases in expression 

when comparing time points prior to infection and at death, which was concomitant to a 

decrease in Mac387 (Table 2). These changes in marker expression, when juxtaposed 

with the increase in CD14+CD16+ cells and simultaneous decrease in CD14+CD16- 

cells, suggests a possible link between disease severity and monocyte development and 

differentiation prior to tissue invasion. This possible shift in maturation further 

underscores the changes that different cell populations undergo, and indicate a change in 

the role of these subsets through the course of pathogenesis.  

 

While previous studies have characterized the relative contributions of different subsets 

that comprise the total monocyte population with HIV infection [42,64], the relative 

frequencies and absolute numbers of the different subsets, and the dynamic changes they 

undergo through the course of SIV pathogenesis had not been addressed. Almost 

immediately after infection, there is a decrease in the percentage of CD14+CD16- 

monocytes that occurs concomitantly with a sharp increase in the CD16+ subsets. This 
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shift in relative abundance between the two monocyte subsets lends credence to the 

notion that, with infection, there is a differentiation of the CD14+CD16- subset into the 

more macrophage-like CD14+CD16+ subset. Using BrDU labeling of proliferating cells, 

it has been shown that the increase in CD14+CD16+ monocytes is also influenced by the 

trafficking of CD14+CD16+ cells from the bone marrow [65]. The magnitude of changes 

in frequency is pronounced in the animals that develop SIVE. This is especially robust in 

the Tulane I cohort, where clearly the SIVE animals have distinctly different frequencies 

of CD14-CD16+ monocytes than those found in non-encephalitic animals. This 

difference is observed very early on during the course of infection, and suggests the 

importance of early immune activation and deregulation in disease severity.  

 

Our lab has shown previously that perivascular macrophages are the primary reservoirs of 

active virus in the brain and undergo a high rate of turnover as peripheral monocytes 

migrate to the brain and differentiate into resident macrophages [25]. Han et al. report the 

CD14+CD16+ subset of monocytes as the key subset involved in AIDS progression [64]. 

Because of the increased susceptibility of this subset to infection and its ability to enter 

tissues, CD14+CD16+ monocytes are of particular interest as potential viral reservoirs 

that persist within the host despite extensive ART. In animals that develop SIVE, the 

pronounced increase in both frequency and absolute number of CD14+CD16+ offers one 

explanation to the observed disease severity. This subset’s increased activation and 

sensitivity to chemokines and other signaling molecules suggests that the expansion of 

these cells contributes to the reseeding of perivascular macrophages. Also, the 
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deregulation of inflammatory cytokine production and breakdown of the BBB may 

become more pronounced, thus accelerating the development of lesions and neuronal 

damage observed in sicker animals.  

 

All three subsets demonstrate an increase in absolute number, resulting in the total 

increase of absolute number of monocytes that appear to circulate in the periphery. This 

increase does not distinguish animals that develop SIVE from those that do not as 

robustly as the measure of frequency, but it is indicative of a trend in monocyte 

expansion that may have implications in the development of virus-associated 

encephalitis. Certainly, the increase in the absolute number of monocytes in the blood 

could contribute to the inflammatory milieu of and HIV-infected animal through 

increased cytokine production, as well as turnover and trafficking of newly differentiated 

macrophages in tissue. Clearance and presentation of foreign matter and cellular debris 

resultant of leakiness in the gut, from the blood, also becomes an increasingly important 

role for monocytes [66].  

 

The expansion of the monocyte population exhibited temporal patterns of change that 

contribute to the overall understanding of AIDS progression and CNS damage. Of the 14 

animals enrolled in this study, the four that developed SIVE showed fluctuations within 

the different subsets that were more pronounced than in the non-encephalitic animals 

(Figure 10). The biphasic changes observed show an initial shift in the different 

monocyte populations in response to the initial viral infection. This is followed by an 
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attenuation of this response where the monocyte population as a whole reverts back to a 

state similar to that observed before infection. This reversion does not last, however, but 

is followed by a secondary shift and expansion of the different monocyte subsets. The 

initial robust response to viral infection is expected and understandable within the context 

of our understanding of the immune response to HIV and SIV infection. In our CD8+T 

cell depleted disease model, however, we see that with the introduction of SIV into the 

animal, there is a sharp increase in virus, and consistently high levels of virus are 

maintained through the course of infection, suggesting that the monocyte subsets appear 

to shift and change independent of plasma virus load. 

 

It should be noted that although our CD8 T cell depletion model allows for an excellent 

recapitulation of neurological pathologies observed in HIV-infected individuals, inherent 

in this model are limitations in depicting the total immune system response to infection 

and the environment in which innate immune cells perform their functions. It has been 

suggested that the monoclonal anti-CD8 antibody used for CD3+CD8+ T cell depletion 

partially compromises the natural killer cell population in rhesus macaques [67]. The 

production of cytokines and cross-talk between different immune cell populations has 

been shown in other inflammatory diseases to provide critical regulatory functions [68] 

that may have an influence on the phenotype and functionality of monocyte subsets that 

remain undetermined in the context of this model.  
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Data from our marker expression analysis shows disparities between the different study 

cohorts, where observations made in one study cohort were not consistently duplicated in 

another. Working with monkeys from two different primate center locations situated in 

different parts of the country quickly became a source of concern, especially with blood 

samples shipped from Tulane. Differences in shipping conditions and uncontrollable and 

unknown factors that may influence the blood, as well as the length of time taken to 

process the samples, all could have contributed do some of the observed disparities 

between study groups.  

 

For future studies, analysis of the different monocyte subset phenotypes may include a 

further elucidation of monocyte subset lineages. One study, analyzing the differential 

expression of genes in human CD16- and CD16+ monocyte subsets, demonstrated 

distinct differences in transcriptional profiles that suggested different stages of myeloid 

differentiation as well as unique roles in immune responses and inflammatory disease [9]. 

The biological functions of analyzed genes showed that in the CD14+CD16+ subset 

compared to the CD14+CD16- subset, there was an upregulation in adhesion molecule, 

chemokine, and chemokine receptor genes, indicating recruitment of the different 

monocyte subsets into tissues via distinct mechanisms. The location of where these 

changes occur can also become a point of exploration; bone marrow studies may provide 

some insight into where this differentiation step occurs and whether this changes through 

the course of infection. Expansion and exploration of other chemokine, cytokine, and 

scavenger receptors on the monocyte subsets can also be pursued. Clarification of the 
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development of monocytes, their phenotypes, and role within the context of HIV and SIV 

infection will prove critical in understanding the damage observed in the CNS. 
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Table 1: Summary of animals enrolled in study. Fourteen rhesus macaques from three 
different study cohorts were CD8+T cell depleted and infected with SIVmac251. 2 
animals, 288-07 and FD05, had cytomegalovirus (CMV) at death. 5 animals were from 
the New England Primate Research Center (NEPRC), 4 from one Tulane University 
cohort (Tulane I), and another 5 from a separate Tulane study (Tulane II). 

ANIMAL

STUDY 

COHORT

CD8+ T LYMPHOCYTE 

DEPLETION STATUS PATHOLOGY

SURVIVAL 

DPI

55-05 NEPRC Long-Term Mild SIVE 56

168-05 NEPRC Long-Term AIDS no E 89

186-05 NEPRC Short-Term AIDS no E 296

244-96 NEPRC Long-Term Severe SIVE 77

288-07 NEPRC Long-Term AIDS/CMV 131

CM07 Tulane I Long-Term Mild SIVE 75

DB79 Tulane I Long-Term Severe SIVE 92

FB92 Tulane I Long-Term AIDS no E 118

FD05 Tulane I Long-Term AIDS/CMV 89

FD80 Tulane II Long-Term AIDS no E 56

FT73 Tulane II Long-Term AIDS no E 56

FC42 Tulane II Long-Term AIDS no E 132

FR56 Tulane II Long-Term AIDS no E 141

FD37 Tulane II Long-Term AIDS no E 142
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Marker Time CD14+CD16- CD14+CD16+ CD14-CD16+ 
CD163 pre-infection 2440 ± 430 2620 ± 430 520 ± 120 
 terminal 5020 ± 1110 7506 ± 1970 3050 ± 1270 
     
CCR2 pre-infection 740 ± 120 240 ± 60 10 ±10 
 terminal 1270 ± 350 690 ± 250 120 ± 40 
     
CD44v6 pre-infection 500 ± 120 900 ± 260 230 ± 40 
 terminal 2200 ± 720 5500 ± 2110 2720 ± 1000 
     
CX3CR1 pre-infection 530 ± 250 5140 ± 2400 3120 ± 1040 
 terminal 520 ± 260 4203 ± 1170 3940 ± 1450 
     
CD64 pre-infection 590 ± 30 5550 ± 410 3020 ± 270 
 terminal 1950 ± 400 9990 ± 2150 6110 ± 1450 
     
CCR8 pre-infection 50 ± 50 0 0 
 terminal 220 ± 70 370 ± 200 100 ± 40 
     
CD68 pre-infection 2330 ± 150 2960 ± 230 5850 ± 440 
 terminal 4720 ± 870 5610 ± 730 8210 ± 1630 
     
Mac387 pre-infection 40000 ± 13570 75310 ± 32680 8670 ± 2720 
  terminal 21530 ± 8540 35256 ± 19610 4720 ± 2180 

 
Table 2: Differential expression and changes of markers on monocyte subsets. 
Median Fluorescence Intensity (MFI) was used to measure the expression of markers on 
each monocyte subset. Values derived from the average MFI and standard error for 
animals from NEPRC and Tulane II cohorts calculated for time points prior to infection 
and at death (n= 10). CD68 values include the Tulane I cohort (n= 14). CX3CR1 values 
derived from the Tulane II cohort only (n= 5).  
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Figure 1: Schematic representation of monocyte/macrophage involvement in HIV-

induced neuronal damage. Modified from [44]. 
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Figure 6: Comparison of CX3CR1 expression on monocyte subsets from SIVE and 
non-encephalitic animals through the course of infection. Dot plots represent animals 
grouped according to disease state, and measurements were taken throughout the course 
of infection. Red dots represent measurements taken from SIVE animals. Blue dots 
represent measurements taken from non-encephalitic animals. Error bars represent 
standard error. MFI= Median Fluorescence Intensity; isotype control values were 
subtracted out to account for background signal. (6A) NEPRC cohort (6B) Tulane I 
cohort.
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