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Abstract

This dissertation consists of two independent chapters on pricing and consumer demand

in the retail sector. In chapter 1 develop an empirical model of Consumer Supermarket

Choice that enables identification of heterogeneous consumer travel costs and is suitable

for a wide range of policy experiments and the study of local competition. Chapter 2

is a theoretical investigation on pricing patterns in multi-product retail markets, when

boundedly rational consumers’ choice of a store is based on the price and valuation of a

subset of goods.

Estimation of demand systems in spatially differentiated retail markets is fundamental

for understanding local competition and the impact of policy changes. It is also challenging,

because shopping decisions consist of multiple dimensions: when to shop, where to shop and

what to buy. In chapter 1 I develop an empirically tractable model of store choice in the

supermarket industry and provide a way to identify consumers’ heterogeneous travel costs

without imposing restrictions on bundle choice. Using micro level data on a small market in

New England, I estimate demand for stores using both a moment inequality approach and

standard discrete choice techniques. I specify utility as a function of both store and bundle

characteristics, and control for the endogeneity of expenditure on the bundle. I use the

estimates of the discrete choice model to evaluate the welfare impact of 1) the closing of each

individual store in the market and 2) the relocation of one of the stores. I find that travel

costs are heterogeneous and marginally decreasing; that people like to shop at stores that are

close, but also like to shop at multiple stores. Furthermore, people value stores differently

(across consumers and shopping occasion) and trade off additional travel time for better

store characteristics; utility differentials in preference for stores correspond to a distance

ranging between zero and up to 3.3 miles. Variation in demand and substitution patterns

across stores are explained by differences in store characteristics and by the shopping habits



and geographic distribution of heterogenous consumers. Changes in market structure, like

store entry and exit can have significant impact on consumer welfare. For example, removal

on one of the stores results in a loss in CS that ranges between 8% and 44%.

The assumption of rationality in retail shopping decisions appears very problematic

when stores sell thousands of products and frequently vary their assortments and prices.

Consumers are typically uncertain about prices at different stores and for a consumer to

consider the entire distribution of bundles and prices might be a far too complex decision

process. Furthermore, models with rational consumers are incapable of fully explaining

important features of retail markets such as price dispersion, advertising and leader pric-

ing. In chapter 2 I attempt to characterize optimal pricing by multi-product retailers when

imperfectly informed consumers buy more than one product. The distinctive feature of the

model is that there are two relevant moments to all purchase decisions. First, the choice of

a store to visit, and second, the choice of the items to purchase. While consumers might

rationally choose a store to best meet their specific needs and desires, the choice of the

items to purchase is made only once in a store. Whether guided by impulse, contingent

and unforeseen needs or in-store learning about a product, consumers often end up buying

additional products which can generate higher profits for the stores. To examine the impli-

cations on retail pricing of this kind of behavior, I depart from a standard rational setup

and introduce the concept of attractor goods. Using an an approach similar to that found

in Osborne and Rubinstein (1998) and Spiegler (2006) I consider boundedly rational con-

sumers whose choice between stores is based solely and entirely on the price and valuation

of a subset of goods, the attractors. I show that retailer’s pricing decisions have to take into

account not only the direct effect of prices on a product’s demand but also the effect on

the demand for the other products sold in the store. The optimal pricing schedule will be

a decreasing function of the goods’ attractiveness, and pricing below marginal cost might

be optimal for some goods. The model provides a rationale for the strategy of loss leader

pricing and offers an intuitive explanation to countercyclical markups.
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Chapter 1

Store Choice in Spatially

Differentiated Markets

1.1 Introduction

Retail markets are a major part of the US economy, with total sales of $3.8 trillion

and over 14 million people employed in 2010. At the final stage of the distribution

channel, these markets provide consumers access to a large number of final prod-

ucts. The spatial dimension of the industry makes stores inherently differentiated,

and consumers choose stores based both on the price of available products and travel

costs. Estimation of demand systems in these markets needs to account for the multi-

dimensional nature of consumers’ choice in order to accurately predict substitution

patterns and price elasticities. These, in turn, are fundamental for understanding

store location decisions, the effect of mergers, and the welfare impact of zoning regu-

lations and counterfactual industry structures.

In this paper I develop and estimate an empirically tractable model of store choice

in the supermarket industry that accounts for the spatial dimension of the market

1



by explicitly modeling consumers’ heterogeneous travel costs of driving to the stores.

The choice of the supermarket industry is particularly relevant, as consumers visit

supermarkets frequently, on average more than twice a week, and spend a large portion

of their income on groceries and other household supplies. Frequency of trips and

persistency of behavior make the supermarket industry an ideal context for the study

of consumer store choice, as individuals, at least on average, will tend to make more

informed decisions once they have to repeat them over time.

The choice of a store (location) is only one dimension of a more complex shopping

decision (timing-location-bundle), and most of the difficulties in the study of store

choice arise from having to deal with the other dimensions as well. The agents’ choice

set can be very large and complex, as supermarkets carry thousands of products, and

retail outlets differentiate by location, so that the choice set will be different for differ-

ent consumers. Shopping decisions are inter-temporally dependent, as bundle choices

depend on previous purchases as well as current and future stocks, and consumers

have imperfect information about prices at different stores.

The empirical approach I take is to study the consumers’ choice of a store in a way

that allows to abstract from the choice of a bundle. This requires some restrictions on

the nature of consumers utility, but is very general in terms of how consumers choose

what to buy and where to buy it. The motivating assumption of such an approach

is that, although consumers have imperfect information about the exact bundle they

will end up buying, specific needs guide their decisions, and they ultimately make

their store choice based on a bundle they are planning to buy. Under this assumption

store choice is essentially a discrete choice problem, and I can identify how location,

store characteristics and bundle characteristics affect consumers’ decisions.

Starting from a very general model of consumer supermarket choice, I introduce

two sets of assumptions that allow me to estimate demand for supermarkets without
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imposing restrictions on the choice of the bundle. I start by considering a multinomial

logit specification that allows for a flexible model of consumers’ heterogeneity in

travel costs. I construct trip specific price indices and control for endogeneity of

price and expenditure to address the potential biases that could arise in presence

of expectational and measurement errors. To further support my results, I then

introduce a less restrictive moment inequality approach, first introduced in the context

of supermarket choice by Katz (2007).1 The inequality estimator does not require

a parametric distribution of the disturbances, and is robust against certain types

of measurement errors and consumers’ expectational errors. However, my focus on

travel costs ultimately stems from the desire to understand the welfare effects of policy

decisions such as land use regulations. Addressing these questions requires choice

probabilities under counterfactual market conditions, which require a distribution of

the disturbance.2 Therefore, I primarily focus on a discrete choice setup where a

few reasonable assumptions allow me to exploit point identification and the ability to

compute choice probabilities.

Using detailed micro-level data on trips and purchases made by a panel of house-

holds in a small market in New England, I estimate demand for supermarkets under

the two methodologies. While both inequalities and discrete choice agree on how

consumers trade off their travel costs for better store characteristics, I find that in

my application, where only a limited number of alternatives (i.e. stores) can be used

to construct the moments, the inequality approach fails to characterize the hetero-

geneity in consumers’ travel costs, and provides too little information about how

1Results from this unpublished job market paper are reported in Pakes (2010); Katz’s work is
there presented as a motivating example to the methodology.

2A number of studies using inequality conditions have run counterfactual analysis. These studies
however, use the methodology to estimate cost and supply side parameters which are then combined
to estimates of a demand system. See, for example, Ishii (2005) Crawford and Yurukoglu (2011) and
Ho, Ho, and Mortimer (2012).
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people value the individual stores. Conversely, the discrete choice approach allows to

identify consumers’ heterogeneity in travel costs, and does not require any restrictive

assumptions on the choice set of stores when data are available on all stores visited

by a household.

I specify utility as additively separable in travel costs, store characteristics and

utility from the bundle. I note that both differences in the shopping experience and

availability of substitute products might result in utility from the bundle being differ-

ent at different stores, so that people might “select” into particular stores depending

on the bundle. To address this issue I propose a control function approach, where

I allow the value of a purchase to vary by store and bundle characteristics. The

approach exploits significant variation in bundle characteristics, and in the market I

study it allows me to control for endogeneity of the expenditure coefficient.

In contrast to differentiated product markets, where the price of a product enters a

consumer’s utility as a product characteristic, the price level at a supermarket affects

a consumer’s utility in two ways: as a store characteristic, affecting a consumer’s

mean utility at a store, and as a bundle characteristic, affecting the expenditure on

the bundle. While the issue of endogenous prices has been extensively addressed in

the literature, to the best of my knowledge, this is the first paper to directly address

endogeneity of expenditure. If unobservable store characteristics are correlated with

price, then they are also correlated with expenditure; if the difference in utility from a

purchased bundle varies across store and bundle characteristics, then expenditure will

be endogenous as well. In the market I study variation over time in (relative) prices

is very limited, and the inclusion of store fixed effects alleviates much of the issue of

price endogeneity. Conversely, I note that price and store size are positively correlated.

Thus a major concern arises if households prefer larger stores for larger bundles. By

including an interaction between store size and “real quantity” purchased, I estimate
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the coefficient on expenditure controlling for bundle size.

The model predictions match very closely both the number of trips and the overall

revenue at the stores. Implied substitution patterns are fairly rich, as they depend

on the relative distribution of household locations and travel costs across different

demographic segments, and on the relative shopping habits within these segments.3

Distance plays a major role in a household’s decision about which store to shop at,

as people tend to concentrate their trips to stores that are close to their residence.

Furthermore, people value stores differently and trade off additional travel time for

better store characteristics. Individual store fixed effects reflect how consumers value

both the location and the attributes of a store. Differentials in preference for stores

correspond to a distance of up to 3.3 miles, or equivalently a driving time of 19.5

minutes, between the most and least preferred store in the market. Limited variation

in store characteristics and relative prices hampers my ability to estimate the effect

of price on the mean utility from a store. A small negative coefficient on bundle

expenditure suggests that consumers are sensitive to price in proportion to their

anticipated bundle. At the same time, selection is important, as consumers show a

strong preference for variety and assortment, and tend to shop at larger stores for

larger bundles.

The model’s specification enables the study of the welfare consequences of various

policy changes across different groups of consumers. I use the estimates of the multi-

nomial logit specification to study the welfare impact, as well as the effect on trip and

expenditure shares, of 1) the closing of each one of the stores and 2) the relocation of

one of the stores in the market. These two counterfactuals exemplify a large number

of questions that can be answered within this framework. As the welfare measures I

3Note that the IIA property holds only at the individual trip level, as both the bundle and the
household’s location and travel costs affect a consumer’s decision.
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construct are based on the assumption that consumers do not adjust to the change in

the set of alternatives by changing their shopping habits, they should be considered

an upper bound to the welfare loss, or alternatively a lower bound to the welfare gain.

These measures should also be considered as short run, as I assume no response by

stores.4

I find that the removal of a store produces significant welfare losses across all

segments of consumers, ranging from 8.2% to 44.4% reduction in consumer surplus

depending on the store considered. The impact however is extremely different across

consumer segments, depending on differences in travel costs, geographic distribution,

and distribution of bundle characteristics across consumer segments. The replace-

ment of one of the stores has more subtle effects then its simple removal: not only

will the original location affect how people substitute away from the store, but also

the new location will affect people substituting to the store from different locations.

By computing trip-specific choice probabilities and expected expenditures, I construct

predicted expenditures and trips at different stores under the alternative counterfac-

tuals. As the IIA property holds only at a trip level, substitution patterns across

stores reflect the geographic distribution of consumers as well as the distribution of

their bundle choices. Competition among stores as implied by the model fully cap-

tures the spatial dimension of the market and the observed heterogeneity in consumer

habits.

This paper contributes to the large literature on retail markets and spatial compe-

tition by proposing a model of consumer store choice in the supermarket industry that

allows to identify consumers travel costs and is suitable for policy analysis. Previous

4This might be a justifiable restriction in the industry: physical limitations prevent stores to
change most of their characteristics in the short run, and pricing strategies in the supermarket
industry are typically set at a higher level than the individual store, so that a supermarket’s reaction
to a change in local competition is very unlikely to radically alter its pricing strategies.
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studies of consumer store choice have generally used various reduced-form approaches

or have reduced the dimensionality of the problem by simplifying the choice of bun-

dles. In the marketing literature the main focus is on retailers, usually considering

segments of consumers, aggregate effects of choice and broad strategy questions.5

Furthermore, the use of probabilistic models does not allow for policy analysis under

counterfactual market conditions. 6

Industrial organization studies of the supermarket industry have often limited

their attention to how the spatial dimension affects market structure. Smith (2004),

for example, measures the extent to which cross-elasticities between stores enhance

market power by chain stores. Beresteanu and Ellickson (2006) analyze competition

in the industry using a dynamic model of chain level competition. Ellickson (2007)

studies the role of endogenous fixed costs. Griffith and Harmgart (2008) evaluate the

effect on market structure and consumers’ surplus of restrictive land use regulations

without accounting for consumer travel costs. Supermarket choice has also been

considered in a number of papers aimed at measuring the biases of standard consumer

price indices. Hausman and Leibtag (2009) for example, study the choice across

different formats to measure the outlet substitution bias of the CPI. Griffith, Leibtag,

Leicester, and Nevo (2008) instead, look at the “timing” and “quantity” biases that

arise from ignoring consumers’ choice of how much and when to buy.

A few papers in the empirical literature on spatial competition have considered

5For example, Carpenter and Moore (2006) study the effects of consumer demographics on retail
format choice; always in the context of store format, Reutterer and Teller (2009) study the role of
the shopping occasion, operationalized by different trip types; Rhee and Bell (2002) consider cherry-
picking and main store allegiance using transition probabilities. Ellickson and Misra (2008) estimate
a discrete game of firms pricing strategy to explain how local market conditions and competitors’
choices affect supermarket chains’ pricing strategies.

6Applications of the Dirichlet and Negative Binomial models include Wrigley and Dunn (1984),
Wrigley and Dunn (1985), Keng and Ehrenberg (1984); the Dynamic Markov model was introduced
in Burnett (1973). Leszczyc, Sinha, and Timmermans (2000) propose a dynamic hazard model that
accounts for timing and location using a factor analytic structure of store attributes and location.
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consumer store choice, generally in contexts where the bundle of products to choose

from is small. Davis (2006), for example, studies spatial competition and market

power in the movie theater market. Using aggregate data on shares and the observed

geographic distribution of consumers he extends the random coefficients model by

Berry, Levinsohn, and Pakes (1995) to account for consumers’ preferences for geo-

graphic proximity. Most closely related to the current work, Katz (2007) was the

first to integrate micro-level data with driving time, and estimates consumer travel

costs using a moment inequality approach. The model, however, does not allow to

study consumer behavior under counterfactual conditions and is not suitable for pol-

icy analysis.

The remainder of the paper is organized as follows. I first provide a brief descrip-

tion of the industry in section 2. In section 3 I describe the data, provide descriptive

statistics for the sample and discuss some of the patterns observed in the data. In

sections 4 and 5, respectively, I introduce the general model and discuss the empirical

implementation. I discuss the results in section 6. Section 7 presents the counterfac-

tuals and section 8 concludes. Appendices A.1 and A.2 present the GMS procedure by

Andrews and Soares (2010) as adapted here for inference using moment inequalities,

and discuss construction of the price indices used in the paper.

1.2 The Industry

The supermarket industry is a multi-billion dollar business with sales of over $584

billion and 3.4 million employees in 2011. According to the Annual Retail Trade

Report from the U.S. Census Bureau, sales at grocery stores accounted for 13.6% of

total retail sales in 2010 (12.9% supermarkets only). This value was third behind

the total retail sales of motor vehicle and parts dealers and general merchandisers,
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respectively accounting for 19.4%, and 15.8% of the market.

The Food Marketing Institute, the industry trade organization for food distri-

bution and retail, defines a traditional supermarket as a store offering a full line of

groceries, meat, and produce with at least $2 million in annual sales and up to 15%

of their sales in general merchandise. In 2010, there were 36,569 supermarkets in the

US carrying an average of 38,718 items. The median size of a store was 46,000 sq. ft.,

in a slightly decreasing trend since the peak of 48,750 sq. ft. in 2006. According to

USDA estimates, Americans spent 5.5% of their disposable income on food-at-home

in 2011. The average transaction expenditure in a supermarket was 26.78$, and con-

sumers made an average of 2.2 trips per week to a supermarket.7 Outside of the

supermarket category fall convenience stores, the other main grocery store category,

offering a limited line of high convenience items and accounting for sales lower than

$2 million.

In the last decades innovations in the industry have brought to the emergence

of a wide variety of (supermarket) formats including superstores, “fresh stores” and

limited-assortment stores. Superstores are large supermarkets, with at least 30,000

sq. ft., generating annually $12 million or more in revenues, and offering an expanded

selection of non-food items as well as specialty departments and extensive services.

Fresh stores emphasize perishables and offer center-store assortments that differ from

those of traditional retailers, especially in the areas of ethnic, natural and organic

(Whole Foods, Publix GreenWise, The Fresh Market). Limited-assortment stores are

low-priced grocery stores with limited assortment of center-store and perishable items

(Aldi, Trader Joes, and Save-A-Lot).

Over the last few decades other types of retailers have started to offer food and

grocery items. These non-traditional grocery retailers include mass merchandisers

7Source: http://www.fmi.org/research-resources/supermarket-facts.
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and wholesale clubs. Mass merchandisers like Walmart, Kmart, and Target, are stores

selling primarily hardlines, clothing, electronics, and sporting goods but also grocery

and non-edible grocery items. Wholesale clubs are membership based retail/wholesale

stores with a varied selection and limited variety of products presented in a warehouse-

type environment usually carrying a grocery line dedicated to large sizes and bulk

sales (Sams Club, Costco, BJs).

The supermarket industry today works on high-volume low-margins, with net

profits of 1.09% in 2010, and is characterized by intense competition in price and

services offered across and within a wide range of store formats. Modeling super-

market choice can be very hard, and requires a good understanding of the structure

of local geographic markets and substitution across formats. The emergence of non-

traditional grocery stores has made the task even more complicated, as multipurpose

shopping makes it very difficult to identify what caused a consumer to choose a store.

1.3 The Data

I use the IRI Marketing Dataset (see Bronnenberg, Kruger, and Mela (2008))

which contains data on store sales and individual consumer purchases for 31 packaged

goods categories for the years 2001 through 2007. The store sales data contains

product sales, pricing, and promotion data for items sold in 50 U.S. markets. In two

U.S. markets (Eau Claire, Wisconsin and Pittsfield, Massachusetts), the store level

data are supplemented with panel-level purchase data and cover the entire population

of stores. Further information is available regarding store characteristics such as

location, type and estimated activity, as well as detailed household level information

and market demographics.

As data on trips are available only for the micro level data, I restrict my attention

10



to a panel of households in Pittsfield, Massachusetts. Using the longitude and latitude

data for households residence and store location, I integrate the data by calculating

distance and driving time to the stores using Google API (Application Programmable

Interface). The dataset records all trips made by the households to the entire pop-

ulation of stores, including traditional supermarkets, convenience and drug stores,

department stores and mass merchandisers. Due to confidentiality agreements, stores

cannot be identified by chain name; however, each store is assigned with unique store

and chain identifiers that allow to detect chain membership of a store.

Data on trips made by the panelists are separate form the category data, and

include a store identifier, the time and day of the purchase and the total dollar

amount spent. In some cases, trip files have multiple records very close in time for

the same panelist at a given store; this could be for a variety of reasons, not necessarily

indicating separate trips. As a rule of thumb I consider consecutive records within

two hours as being one trip only. Panel data from the category files contain a product

identifier, the quantity, price and store of purchase for all products sold within the

categories at the weekly level. I recover the bundle of products purchased in a given

trip to a store by aggregating all items bought by a household at the store in a given

week; if a household visits a specific store more than once in a given week, I split

the weekly expenditure across categories proportionally to the trip totals; that is,

if a household bought a box of Cheerios for three dollars in one of two trips to a

given store, the three dollars will accrue to the “cold cereals” category expenditure

in the two trips proportionally to their relative totals. Fortunately a vast majority of

household/week observations involve only one trip per week to a specific store.

In the national sample of store sales data 17604 items were sold in 31 categories

and 50 markets. Of these, 4851 were sold in Pittsfield supermarkets, of which 4054

were sold in more than one store, and 3162 in more than one chain. Items sold in
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more than one store account for almost 96% of transactions and more than 99% of

expenditures; items sold in more than one chain account for over 86% of transactions

and almost 96% of expenditures. I use the aggregate sales data to construct individual

trip specific price indices as a weighted average of category specific indices using as

weights the trip share of expenditures in the categories. A separate appendix discusses

the construction of price indices in more detail.

1.3.1 The Sample

By considering only panelists who are consistently active every month of a given

year, and for which I possess detailed geographic and demographic information, I

get a sample of 2362 households, making 285,309 trips in 2003. I focus on 2003

because it is the year in which the largest number of households are consistently

active throughout the year. In the context of moment inequalities I further restrict

the sample to a subset of 1213 households active for the entire seven years of the

dataset to ensure a larger number of observations for each household. Although the

number of observations and the variability in consumer demographics is different, the

two samples are very similar in terms of the descriptive statistics and data patterns

I now present for the larger sample.

Out of the 285,309 trips made in 2003, 259,460 were made to traditional super-

markets. Substitution to other retail formats is extremely low, especially to mass

merchandiser stores, accounting for only 666 trips.8 Department stores typically of-

fer a combination of grocery products and general merchandise making analysis of

store choice a lot more complicated; however, in the market analyzed most of gro-

cery shopping is concentrated at traditional supermarkets, making it safe to exclude

8Note that the actual number of trips to department stores might well be larger than the number
observed; trips to department stores, and other stores not in the national IRI sample of stores, are
included in the sample only if they involve purchases within the 31 product categories.
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department stores from the analysis. I also exclude the 25,091 trips were made to

drug and convenience stores, accounting for below 3% of expenditure. Drug stores

are not close substitutes to supermarkets; they are smaller and less assorted, and

households planning purchase of a specific bundle rarely view a drug store as a viable

option. Additionally, people visit drug stores for alternative reasons to that of buying

groceries, and a large number of the trips observed might be driven by the need of

prescription drugs or other contingencies.

A possible concern that might be raised is that of sample selection. In general, one

might expect over-participation of price sensitive consumers seeking the benefits of

participating into the program,9 and under-participation of time sensitive consumers.

If selection is based on unobservables, the magnitude and importance of the selection

problem, and its impact on a model’s estimates, are very hard to assess. Collection of

the panel data by IRI is based on either showing a card at a participating retailer, or

self reporting by means of a scanner. While participation in the sample can be time

consuming for scanner panelists, making that of sample selection a possible concern,

this is not the case for consumers using a card. Given the lower compliance rate of

scanner panelists, IRI increased the use of cards over the years, and all the households

in my sample were card panelists. Very similar to the use of a loyalty card, the use

of the card is very simple, and the issue of sample selection, if present at all, is going

to be marginal.

In the final dataset I observe 259,415 trips made by 2362 households to the seven

supermarkets in Pittsfield. Throughout the paper I label the supermarkets with the

letters A to G for confidentiality purposes; the alphabetical ordering chosen reflects

the stores’ estimated revenues, store A having the highest revenues. The seven stores

9Although I do not possess details about the IRI program, consumers participating in such
programs are typically rewarded by the data collecting agency with reward points to be redeemed
in merchandizing.
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belong to four chains and are all participating stores in the IRI’s national sample.

Table 1.1 provides descriptive demographic information as well as information on

expenditure, number of weekly visits, distance and driving time to the store visited.

The sample is fairly representative, with an average income of $48,000 and a median of

$40,000; the median family size is 2, and the average size is 2.53; 21% of the household

are composed of one person; 63% of the heads of a household are married, 51% are

over 55 years of age, 5% is under 35; 26% of the households have young children.

On average people drive 8.5 minutes and 3.1 miles to visit a supermarket. Average

expenditure on a trip is $44.6, the median is $27.1. Households visit a supermarket

on average 2.11 times a week, a their median and mean weekly expenditure are

respectively $79.1 and $94.2. Figure 1 shows the geographic distribution of households

and stores. Households in the sample are well representative of the relative population

in Pittsfield census blocks, and the variability in households’ driving time to the stores

is extremely high.

1.3.2 Data Patterns

I now present some of the patterns observed in the data driving the results of my

empirical implementation. Distance is a major factor in households’ decision about

which store to shop at, as people tend to concentrate their trips to stores that are

close to their residence. This can be seen in panel (a) of Figure 2, which shows

the distribution of driving time to a supermarket; a large portion of trips involve

driving less than 10 minutes, and very few trips involve driving more than 20. This

information however, does not clarify whether people actually drive to the closest

stores. Panel (b) shows the distribution of the number of supermarkets visited by a

household within a year; a vast majority of people shop at multiple stores, with only

5% of the households shopping in less the three stores, and over 80% at more than
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three stores; only 83 people in the sample, representing 3.5 percent of the sample,

shop at only one store.

As the number of stores visited does not provide us with information about how

people actually distribute their trips across different stores, panels (c) and (d) of

Figure 2 look at the concentration of household trips across stores. Households seem

to substitute between stores across different occasions and most households do not

exhibit loyalty to a single store. Panel (c) shows the distribution of ranking of the

trips in terms of driving time from a household’s residence, rank 1 denoting a trip

to the closest store. The mode of the distribution is 1, and households concentrate

over 45% of their trips to the two closest stores. More informative about differences

across individuals is panel (d), which shows the distribution of the household level

Herfindahl Index of stores visited.10 Not only do people shop at different stores, they

also concentrate their visits at multiple stores. Over 60% of the households have an

index value lower than 0.5, representing a consumer splitting trips evenly between two

stores, and 33% have an index lower than 0.36, representing a 40-40-20 split across

three stores.

Figure 3 looks at trips and expenditures in some more detail. Panels (a) and

(b) show respectively the distribution of trip and weekly expenditure. Expenditures

vary significantly across households and shopping occasions. This variation can help

explain why people substitute between stores at different occasions: larger bundles

might be associated to a stronger preference for variety and/or lower prices. Peo-

ple’s decisions will reflect the trade-offs they face between prices, driving time and

assortment, and people might spit their shopping needs across multiple stores. Panel

(c) shows the distribution of the number of weekly visits to a supermarket. While

10I calculate the household level Herfindahl-Hirschman index as HHI =
∑
i s

2
j , where sj denotes

the share of visits made to store j out of all visits made by the household.
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the mode of the distribution is one, a majority of household-weeks involves multiple

trips. Panel (d) of Figure 3 presents how average expenditures differ across stores and

income groups. Average expenditure appears to be increasing in income at all stores

and varies significantly across stores. For all income classes average expenditure is

highest at store A and lowest at stores F and G; for stores B through E the average

expenditure is comparable.

Consumers are extremely heterogeneous in their shopping habits, in how often

they visit a store and in how much they spend. These differences depend in part on

consumers demographics, such as income and family size, in part on the choice set of

stores, in terms of their relative location with respect to the households residence, and

in part in heterogeneity in preference for shopping. Assessing whether the variation in

household’s habits depends on demographic factors rather than location or difference

in preferences can be very important when analyzing the impact of a policy or other

decision that affects the consumers’ choice set. I here investigate the issue by means

of reduced form regressions of average expenditure and average number of weekly

trips on a number of observable demographics and a measure that captures how close

(in terms of driving time) to the stores is a household location.

As a measure of a household’s proximity to supermarkets I consider an index that:

1. decreases in a store’s distance and 2. increases in the number of stores. Let dhs

denote driving time for household h to store s = 1, ..., S; I use

Lh =
∑
s

1

rs
d−1/2
s ,

where rhs denotes the rank of store s in terms of distance, and a higher value indicates

a better location.11

11I also considered the more general specification Lh =
∑
s

1
rs
d−αs . However, convex specification

of travel costs (α ≥ 1) could not explain the observed variation in behavior. Conversely, the concave
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Table 1.2 shows the results of the two regressions. A larger average expenditure

is associated with higher income, larger families, home owners, married couples, well

educated people and people with longer working hours. Larger bundles are generally

associated with a lower number of trips, although large families and married couples

tend to both spend more and more often. Higher values of the index on location (that

is, a better location) are associated to more frequent trips and lower expenditure.

Although the coefficients on income, family size, working hours and location are

significant, the overall fit of the regressions is rather poor, suggesting that a major

determinant of households shopping habits is heterogeneity in preferences.

1.4 The Choice Model

I now introduce a general model of consumers’ shopping decision that makes some

simplifying assumptions on the nature of consumers’ utility, but is otherwise general

in terms of how consumers choose what to buy and where to buy it. The model allows

to analyze the determinants of store choice without making restrictive assumptions

on the choice of the bundle. Throughout the rest of the paper I interchangeably use

the words individual, consumer and household and denote individuals (households)

by h to avoid confusion between observations and individuals.

Assume that only stores within a reasonable distance are in a consumers choice

set and utility is additively separable in utility from bundle and store characteristics,

expenditure on the bundle and driving time. What a reasonable distance is will be

different for different households, and will typically depend on the transportation

means available to them, as well as on other market and household characteristics.

Characteristics that affect consumers’ utility might be the size and assortment of a

specification chosen(α = 1/2) produces results that are very close in terms of fitting the data, to the
use of a set of dummies with actual distances.
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store, availability of parking space, number of employees, number of checkouts, an

overall price level at the store.

Households periodically decide to visit a store to buy food, groceries and other

household supplies. Whether they visit a store at all, and what they eventually buy

depends on their preferences and on what they currently stock and plan to stock at

their homes. In each period the consumer makes a choice whether to visit a store,

which groceries to buy and where to buy them. Let the utility an individual h gets

from buying bundle b at store s in time t be equal to:

uhsbt = vhsbt + αhe(b, phst) + γh(dhs) +Xhsβ + ξhs + εhst. (1.1)

Total utility depends on utility from the bundle vhsbt, which is different for different

households and can vary across stores and shopping occasion. Xhs and ξhs represent

respectively observed store characteristics and an unobserved component that affect

the utility of a consumer. Utility depends also on expenditure on the bundle e(b, phst)

and the time it takes to drive to the store dhs. In a given time period, the utility of

not visiting a store is a function of past purchases:

uh0t =
∑
j

fj(bt−j) + εh0t (1.2)

The utility specification in (1.1) puts no restriction on utility from the bundle;

bundle choice can be dependent across shopping occasions, as bundles bought in

the past and available stocks might affect current choice, and consumers can split

their shopping needs across multiple stores. In general, the choice set will not be

the same for all consumers, as it depends on the consumers location and market

characteristics. All else equal, consumers will prefer stores that are closer, cheaper
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and have better characteristics. Consumers might go to a more expensive closer store

if the saving in travel time outweighs the increase in expenditure. Consumers might

go to a more distant store for a larger bundle if the store is cheaper or better assorted.

Consumers are heterogeneous in their preferences over stores and over bundles, and

their preferences can vary over time.

Consumers are typically uncertain about prices at different stores and about the

bundle they will end up buying. While in principle one could define expectation

over all possible bundles and assume that the consumer bases his choice on that

expected utility, this alternative is infeasible in practice, and ultimately unrealistic.

Considering the entire distribution of bundles they might buy when visiting a store

might be a far too complex decision process. Furthermore, estimating the choice

of a store simultaneously with the choice of a bundle would require restrictive and

unrealistic assumptions, so that misspecification of bundle choice is bound to happen

and might result in severe biases of the estimates of travel costs and preferences for

stores.

Assume instead that consumers make their choice based on a planned bundle.

Although product prices and availability, stock-outs and promotions can lead con-

sumers to buy substitute goods which were not used to formulate their store choice,

specific needs will most likely guide their decision. If consumers make their choice of a

store based on a bundle they are planning to buy, store choice is essentially a discrete

choice problem, and the researcher can study this “conditional” choice using standard

discrete choice techniques without imposing unrealistic restrictions on bundle choice.

The assumption that consumers base their store choice on a planned bundle might

seem somewhat restrictive; however, we should think about the planned bundle as

a “shopping list”, indicating the products in a household’s needs, but not specifying

the individual brands. To the extent that stores in the market considered are fairly
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homogeneous, the approach naturally addresses issues of product availability, since

even if a bundle observed was not available for purchase at another store, supermar-

kets will generally carry substitutes to the specific brand, so that a similar bundle

will be available at the alternative store. As in any other discrete choice model, only

differences in utility affect consumers’ decisions, and to consistently estimate the de-

terminants of store choice all that matters is to correctly pick up the differences in

utility across stores: to the extent that observable bundle and stores characteristics

allow us to capture this difference in utility, the estimates of mean utility from store

characteristics and disutility from driving time will not be affected by the assumption

of a planned bundle.

A commonly used assumption here would be to assume that utility from a given

bundle is the same whether you buy it at a store or another. In this case the determi-

nants of store choice would be independent of the bundle considered, and no further

assumption would be necessary. I note, however, that utility from a given bundle

might be different at different stores, either because of difference in the shopping

experience (e.g. people prefer a larger store for a larger bundle), or because of the

availability of substitute products. Therefore, people “select” into particular stores

depending on the bundle they are planning to buy, and estimating a model without

taking into account how different bundles affect consumers’ decisions might result in

biased estimates. To address this issue I propose a control function approach, where

I allow the utility of a purchase to vary by store and bundle characteristics. The

approach exploits significant variation in bundle characteristics, and in the market I

study allows me to control for the endogeneity of the expenditure coefficient.12

Optimality of choice requires that a consumer planning to buy bundle b at time t

12The approach can be easily generalized to address additional selection biases arising in markets
with less homogeneous competitors.
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will choose to visit store s if and only if

uhsbt ≥ uhs′bt for all s′, and uhsbt ≥ uh0t (1.3)

Alternatively, a consumer will choose not to visit a store whenever

uh0t ≥ uhsbt for all s. (1.4)

In the following section I introduce two alternative methodologies that, by adding

assumptions to the general model, allow us to study how location, store characteristics

and (eventually) bundle characteristics affect consumers choice of a store.

1.5 Empirical Implementation

The choice model presented above helps us understand the nature of consumers’

decision process when they choose where to shop. However, the bundles and prices

the consumers used to make their store choice are not the bundles and prices they

end up buying and paying, which are what the econometrician observes, and further

assumptions will be necessary. To make the model suitable for estimation, we need

to specify how utility from a bundle differs across stores, and a relation between the

bundle the consumer used to formulate his store choice and the bundle he actually

purchased.

Specifying how utility from a bundle differs across stores is important to avoid the

selection biases that might arise if either the shopping experience or the availability

of substitute brands make differences in utility across stores vary in bundle char-

acteristics. The appropriate assumption to use will typically depend on the specific

application. In the market I study supermarkets are extremely homogeneous in terms
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of the product they sell, and I only need to worry about the shopping experience. In

particular, as I discuss below in more detail, I observe that consumers show a strong

preference for variety and assortment, and tend to shop at larger stores for larger

bundles. Conversely, specifying a relation between the planned bundle and the bun-

dle actually purchased allows us to include observable bundle characteristics in the

analysis and to construct expenditure at the alternative stores. Note, however, that

even assuming that the planned bundle and the bundle actually purchased coincide

(i.e. no expectational error) only imposes conditions on those characteristics that

affect a consumer’s decision (e.g. total quantity, within categories purchases, etc.).

I now consider the empirical implementation under both standard discrete choice

techniques and a less restrictive moment inequality approach. Both methodologies

will use optimality conditions (1.3) and (1.4) to estimate demand for stores in a way

that the bundle choice will not be part of the econometric implementation. I first

consider a discrete choice specification that allows for a flexible model of consumers

heterogeneity in travel costs and is suitable for policy analysis. As the model does not

directly allow for measurement and expectational errors, I construct trip specific price

indices and control for endogeneity of price and expenditure. To further support my

results, I then introduce a less restrictive moment inequality approach that does not

require a parametric distribution of the disturbances, and is robust against certain

types of measurement errors and consumers expectational errors.

1.5.1 Discrete Choice

The discrete choice specification uses the necessary conditions of optimal store

choice as a basis for estimation. The model requires the we specify a parametric dis-

tribution for the random part of the utility, and does not directly include measurement

and expectational errors. I partially deal with these potential biases by constructing
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trip specific price indices and controlling for endogeneity of price and expenditure.

The model additionally requires that we specify the utility of the outside option and

the choice set of stores. Estimation involves finding the value of parameters for which

the likelihood function is maximized. The ability to compute choice probabilities in

turn, allows to use the estimates of the model to compute the choice probabilities

under counterfactual market conditions, and evaluate the welfare impact of changes

in the market structure.

By optimality conditions (1.3)-(1.4), a consumer planning to buy bundle b at time

t will choose to visit store s if and only if

uhsbt ≥ uhs′bt for all s′, and uhsbt ≥ uh0t

They will alternatively choose not to visit a store whenever

uh0t ≥ uhsbt for all s.

To make the model suitable for estimation I require the following additional assump-

tions:

DC1 Difference in utility from the bundle across stores depends only on observable

store and bundle characteristics. That is

vhsbt = vhbt + f(b,Xs), (1.5)

DC2 The utility of not visiting a store is a function of past purchases of a “real”

grocery unit:

uh0t =
∑
j

bjqt−j + εh0t (1.6)
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DC4 The distribution of εhst belongs to the GEV class.

Under assumption DC1 I restrict difference in utility across stores to depend on on

observable store and bundle characteristics. Assumptions DC2 and DC3 specify, re-

spectively, the utility of the outside option and the distribution of the disturbances.

As the model does not directly include measurement and expectational errors, con-

sumers have no uncertainty, and the prices and bundles the econometrician observes

are the prices and bundles consumers used to guide their choices. Note, however,

that under assumption DC1, this is only imposing that bundle characteristics affect-

ing consumers’ decision are “observable” via the bundle purchased. On the other

hand, the assumption that consumers make no expectational errors can be relaxed

by imposing an orthogonality condition.

Let εht denote the vector of disturbances εhst for s ∈ Sh, with joint distribution

f(εht). Under assumptions DC1-DC5, the probability consumer h planning to buy

bundle b will visit store s is equal to:

Phsbt =

∫
εht

I(uhsbt > uhs′bt∀s′ 6= s)f(εht)dεht (1.7)

Estimation By assuming that the structural error εhst is distributed extreme value,

type I, the discrete choice model reduces to a multinomial logit which I estimate via

Maximum Likelihood.13 As a time unit I use a week, and construct an observation

for weeks in which a household has not visited a store. As I do not observe a planned

bundle for these weeks, I use a household-specific “average bundle” to construct utility

in the stores in weeks with no visits. I also construct a variable specifying whether a

trip is the first or a subsequent trip during the week and set the choice probability of

13I also considered nesting choices of a store separately from the outside option. The data however
rejected this nesting structure with estimated λs of 1.
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choosing the outside option to zero for subsequent trips within a week.14 To specify

the utility and choice probability of the outside option, I use store level price indices

to construct quantities purchased of a real grocery unit in previous weeks.

The number of stores in the market is too low for consistent estimation of util-

ity from store characteristics. Store dummies thus capture mean utility from both

observable and unobservable characteristics. This limitation in the data inhibits my

ability to infer a price elasticity and model the supply side. The model specification

however is easily applied to larger markets where larger variability in store character-

istics would allow to identify their effect on consumer utility.

I model consumers’ heterogeneity as a function of observables. Heterogeneity en-

ters the model in several ways. First, consumers are heterogeneous in their propensity

to visit a supermarket. I specify utility from the outside option as linear in the real

quantity purchased in previous weeks relative to the average quantity purchased by

the household. Similarly, I use a household-specific average bundle to construct utility

in the stores in weeks with no visits. Finally, and most importantly, consumers are

heterogeneous in their disutility from driving to a store, not only because of differences

in preferences, but also because of differences in location: in my actual specification

I model disutility from driving time as quadratic,15 with an household specific slope

that varies with observable consumer demographics, that is:

γh(dhs, zh) = γ0dhs + γ1d
2
hs + γ′zzhdhs.

The model in principle allows for unobserved consumer heterogeneity and the

14The procedure used here is equivalent to that used in case of product availability, where choice
probability for a product which is not available is set to zero by specifying a price equal to infinity.

15The choice of a quadratic specification was driven by the data. I tried other functional forms
like the square root and the log, but these specifications did not fit the data better than a simple
linear specification. Conversely, the fit including a quadratic term improves significantly, and the
estimate of the coefficient on the quadratic term is robust to the model’s specification.
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use of random coefficients. Note, however, that unobserved heterogeneity in travel

costs and preference for stores cannot be separately identified, and a model includ-

ing heterogeneity in consumers’ preferences for stores might well be over-specified.

Furthermore, availability of detailed micro data allows me to directly model hetero-

geneity in travel costs as a function of observable consumer characteristics and as

a robustness check that unobserved heterogeneity in preference for stores does not

affect my estimates, I estimate a model in which I introduce a dummy to account for

an individual’s experience at the store; as I will discuss later when commenting the

results, the inclusion of such a dummy does not affect my estimates.

For each bundle b bought at store s in week t, I observe products purchased and

expenditure ej(b, pst) within 31 packaged goods categories, plus a residual expenditure

equal to the difference e(b, pst)−
∑

j ej(b, pst). Goods purchased in individual trips are

extremely different both in the category expenditure mix and in the within category

product mix: different households not only allocate their spending differently across

categories, but also choose different products within a given category. To construct

expenditure at alternative stores in a way to better reflect a trip/bundle specific

difference in expenditure, the construction of trip and household specific price indices

seems most appropriate. In my main model specification I construct expenditure at

the alternative stores for bundle b using category price indices p̃jst, so that, for all

s′ 6= s

ẽbs′t =
∑
j

ej(b, pst)
(
p̃js′t/p̃jst

)
.

To the extent that categories are sufficiently small and relative within category prices

do not significantly vary across stores, the use of category level price indices is almost

equivalent to the use of individual specific price indices. Even if this were not the

case, category specific price indices should be preferred for the likely better quality
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of the data used in their construction. Individual households buy only a limited

number of products, and are subject to continuous promotions making it very hard

for the researcher to construct an index based on that limited information. Finally,

the values for expenditure at alternative stores implied by different indices are very

close, and the estimates are robust to the way I construct the indices. Details on the

construction of price indices are presented in Appendix A.2.

A typical concern estimating demand in differentiated markets is that of price

endogeneity when unobservable characteristics are correlated with price. A way to

address this issue is the inclusion of store fixed effects capturing mean utility from

store observed and unobserved characteristics. In the presence of time variation in

unobservables and prices, however, fixed effects do not solve the endogeneity problem.

Nevertheless, the time variation both in store level and store-category level price in-

dices is very limited in the sample, and mainly due to trend and seasonal components.

As a robustness check I also consider a model specification with time varying store

effects, but the results are too similar to the more restrictive model to justify the

extra computational burden.

The price level of a store affects the way consumers decide which store to visit

in two ways: as a store characteristic, affecting a consumers mean utility at a store,

and as a bundle characteristic, affecting the expenditure on the bundle. While in

the absence of significant variation in price over time, the inclusion of store fixed

effects addresses the endogeneity of price, expenditure might be endogenous as well.

A major concern arises if households prefer more expensive stores for larger bundles;

as counterintuitive as this might seem, if households prefer larger stores (more as-

sortment) for their major shopping trips (higher expenditure) and larger stores are

pricier than smaller stores, then the estimated coefficient on expenditure will result to

be positive. As in the market I consider price and store size are positively correlated,
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I take a control function approach by including an interaction between store size and

“real quantity” purchased to estimate the coefficient on expenditure controlling for

bundle size.

Given all of the above, a consumers’ utility of visiting store s at time t is given

by:

uhsbt = αebst + ξs + βqqbtszs + γ0dhs + γ1d
2
hs + γ′zzhdhs + εhst.

where szs denotes the size of store s. The utility of the outside option is set equal to

uh0bt =


∑

j bj q̃t−j + εh0t first trip of the week

−∞ otherwise

I normalize the scale of the utility by setting equal to zero the constant term in the

utility from the outside option. Under the assumption of an extreme value, type

I, distribution for the error terms εist, the choice probabilities have the closed form

expression:

Phsbt =
exp[ûhsbt]

exp[ûh0bt] +
∑S

s′=1 exp[ûhs′bt]

As utility is linear in the parameters the log-likelihood function is globally concave

and attains a unique global maximum.

1.5.2 Moment Inequalities

The use of discrete choice techniques have been recently criticized because ex-

pectational and measurement errors typically result in downward-biased estimates of

price elasticities and over-prediction the impact of driving time.16 To further sup-

16This might be the case, for example, if individuals shop at stores that are cheaper for the goods
they are interested in- the presence and severity of the bias, however, depends on how one constructs
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port the validity of the discrete choice specification, I introduce here a less restrictive

moment inequality approach, first introduced in the context of supermarket choice

by Katz (2007). The inequality estimator does not require a parametric distribution

of the disturbances and is robust against certain types of measurement errors and

consumers’ expectational errors. Although the inequality approach does not allow

to analyze the welfare impact of changes in the market structure, the methodology

is a natural starting point to study the impact of driving time on store choice, and

comparing its results to those of the more restrictive discrete choice specification will

help us understand the implications of the assumptions used.

The idea behind the use of Moment Inequalities is that choice models generate

inequalities which can be used as a basis for estimation. The typical advantages of

such a methodology are that it does not require to restrict the agents’ choice sets, as

the researcher needs only to focus on a subset of reasonable alternatives, and it does

not require a parametric distribution of the disturbances. Furthermore, by looking

only at averages in differences in utility, the model can allow for expectational and

measurement errors. The generality of this approach, however, comes at the cost of

partial identification: while the actual estimates of the identified set can often be a

singleton, inference consists in finding the boundaries of the identified region. I here

present a model that is similar to Katz (2007) in terms of the optimality conditions

used for estimation, but differs from it in the assumptions made on consumer choice.17

The inequalities model moves from the necessary conditions of optimal store choice

to generate inequalities that are true for any store chosen and any alternative store

no matter what the bundle chosen is. Focusing on the determinants of the store

the price index. See also Pakes (2010).
17While Katz’s focus was the identification of consumers’ travel costs, the focus of this paper is

how these travel cost relate to consumers’ preference for stores, and how this relation is affected by
the nature of the bundle considered. As a result, my model allows the utility from a purchase to
vary in bundle and store characteristics.
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choice made by a consumer planning a particular bundle, the bundle choice will not

be part of the econometric implementation. The researcher will need to consider only

a small number of plausible alternatives rather then the entire set of stores. In fact,

the choice set can be very large and will typically be different for different consumers,

and having to specify for each consumer the choice set of stores, as well as the outside

option can be problematic when data are unavailable for all the relevant stores.

As the model allows for expectational and measurement errors, I need to introduce

some additional notation. Denote respectively Eh[·] and Ih the consumer’s expecta-

tion operator and information set. We can rewrite optimality conditions (1.3) and

(1.4) in terms of consumers’ expectations. A consumer planning to buy bundle b at

time t, will decide to visit store s if and only if

Eh[uhsbt|Ih] ≥ Eh[uhs′bt|Ih] for all s′, and Eh[uhsbt|Ih] ≥ Eh[uh0t|Ih]

Consider the difference operator ∆ and define ∆fdd′z ≡ f(d, z) − f(d′, z); then the

inequality can be written as:

Eh[∆uhss′bt|Ih] ≥ 0 (1.8)

Denote (h, s, b, t) a trip made by consumer h to store s planning to buy bundle b

in time t. For each observation in the data one can construct alternatives (h, s′, b, t)

given a rule for selecting s′, and for every such rule one can construct a moment whose

expectation is positive.

As product availability, pricing and promotions, will typically lead consumers to

buy substitute goods which were not used to formulate their store choice, the planned

bundle will typically be different from the bundle observed. However, consumers

build into their expectations pricing and availability of products, so that difference
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between the planned bundle and the bundle observed is the result of an expectational

error. Additionally, the econometrician only observes the prices actually paid by the

consumer, possibly with some measurement error, and not the prices the consumer

used to form his expectations.

Suppose now that the consumer was planning b∗ but once in the store bought b;

then consumer’s optimal choice generates the following inequality conditions:

Eh[∆uhss′b∗t|Ih] ≥ 0.

Denote respectively εehst, and εmhst the consumer’s expectational error and the econo-

metrician’s measurement errors; we have that

∆uhss′bt = Eh[∆uhss′b∗t|Ih] + εehst (1.9)

and

∆ẽss′bt = ∆ess′bt + εmhst (1.10)

where ∆ẽss′bt denotes the observable difference in expenditure. To construct the mo-

ments using an observable version of inequality conditions (8) I require the following

assumptions:

MI1 Difference in utility from the bundle across stores depends only on observable

store and bundle characteristics. That is

vhsbt = vhbt + f(b,Xs)

MI2 Consumer have idiosyncratic preferences for unobserved store characteristics
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around a time and consumer invariant mean. That is

ξhst = ξs + εhst

MI3 The expectational error has mean zero conditional on the consumer’s informa-

tion set Ih. That is

Eh[ε
e
hst|Ih] = 0

MI4 The measurement error on prices has mean zero and is uncorrelated with any

positive function g(·) of (instrumental) variables wh in the consumers informa-

tion set. That is

E[εmhst|g(wh)] = 0

Under assumption MI1 I restrict the difference in utility from the bundle across

stores to depend on store and bundle observable characteristics. Assumption MI2 sim-

ply gives an interpretation to the idiosyncratic component in ( 1.1), without though

specifying a distribution for it. Assumptions MI3 and MI4 impose conditions on the

conditional mean respectively of the expectational error εehst and of the measurement

error εmhst. Under assumptions MI1-4 we can rewrite the utility in (1.1) as follows:

uhsbt = vhbt + f(b,Xs) + αhe(b, phst) +Xhsβ + γh(dhs) + ξs + εhst.

Inequality condition (1.8) is then

Eh[∆uhss′bt|Ih] = Eh[αh∆ess′bt|Ih]+∆f(b,Xss′)+∆Xss′β+∆γh(dhss′)+∆ξss′+∆εhss′ ≥ 0

32



Denote ∆ũhss′bt the difference in utility observable by the econometrician; then

E[∆ũhss′bt|g(wh)] = E[∆uhss′bt|g(wh)] + αhE[εmhst|g(wh)]

= Eh[∆uhss′b∗t|Ih] + Eh[ε
e
hst|Ih]

= Eh[∆uhss′b∗t|Ih] ≥ 0.

As ∆ũhss′bt and wh are observable, our moment for estimation is

E[∆ũhss′bt|g(wh)] ≥ 0. (1.11)

Estimation The model is partially identified and estimation focuses on finding the

boundaries of the identifiable set. If the model is also linear, the identifiable set

will be convex. Suppose f(b,Xs) is linear in parameters denoted by λ. Estimation

involves finding values of the parameters (αh, λ, β, γh) along with mean utility from

unobservables (ξs) such that the moment conditions are satisfied. If no such value

of the parameters exists, similarly to a GMM setup, one picks the value of θ =

(αh, λ, β, γh, ξs) that is ”closest” to satisfying all the moments. For estimation of the

identified set I follow Pakes, Porter, Ho, and Ishii (2011), whereas for specification

testing and construction of the confidence sets I use one of the moment selection

criteria considered in Andrews and Soares (2010). The idea behind moment selection

is that we require that only the binding moments are considered for inference (note

that at the boundary points of the identified set a subset of moments will be binding).

An observation in the dataset (h, s, b, t) is a trip made by household h (h =

1, .., nh), at store s (s = 1, .., S), buying a basket of goods b at time t. For each obser-

vation (h, s, b, t), one can construct alternatives (h, s′, b, t) given a rule for selecting s′.

Every rule thus generates a moment to be used for estimation. In general, depending
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on the rules used to construct the moments, the number of observations will vary

across different moment conditions, and the researcher has to take this into account

for inferential procedures.

I considered several sets of rules for constructing the moments, and I considered

moments both at the population level and at the household level, similarly to a panel

setup in a GMM context. To increase the number of trips observed at the household

level I consider only households who are consistently active during the entire seven

years of the dataset, so that in the final sample used for inequalities I observe 1213

households making over one million trips over seven years.

Let i denote an observation (h, s, b, t) in the data, and let yi denote the measurable

difference in utility ∆ũhss′bt. Consider rules j = 1, ..., p for selecting alternatives

(s′): the choice model implies that, for any positive functions g(·) of (instrumental)

variables wi

Emj(yi, θ0)⊗ g(wi) ≥ 0 for j = 1, ..., p and i = 1, ..., N (1.12)

Let nj denote the number of observations for moment j, and consider the empirical

moment functions:

mj(y, θ) =
1

nj

nj∑
i

mj(yi, θ) (1.13)

where

mj(yi, θ) = αh∆ẽss′bt + ∆f(b,Xss′|λ) + ∆Xss′β + ∆dhss′γh + ∆ξss′ .

If there exist a set of values of θ = (αh, λs, β, γh, ξs) such that the moment conditions

are satisfied, the estimate of the identified set will consist of those values; formally,
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one picks

Θ̂ = {θ : m(y, θ) ≥ 0} (1.14)

If no such value of the parameters exists, similarly to a GMM setup, one picks the

value of θ that is ”closest” to satisfying all the moments. Let DF (θ) denote the

matrix of diagonal elements of the covariance matrix of the moments. Also, let

(·)− = min{·, 0} and consider a consistent estimate D̂ of DF (θ). Estimation consists

in finding (one dimension at the time) either

Θ̂ = arg min
θ∈Θ
||(D̂−1/2m(y, θ)−|| (1.15)

or

Θ̂ = arg min
θ∈Θ
||(m(y, θ)−|| (1.16)

Household level moments are constructed similarly. Let nh denote the number of

trips made by household h. For each trip i made by household h we have that

Emh,j(y
h
i , θ0) ≥ 0 for j = 1, ..., p, h = 1, ..., nh. (1.17)

where j denotes one of the alternatives above. The empirical moment functions in

this case are:

mh,j(y
h, θ) =

1

nh

nh∑
i

mh,j(y
h
i , θ) (1.18)

While Pakes, Porter, Ho, and Ishii (2011) show that both estimation procedures

in (1.15) and (1.16) lead to consistent estimates, the construction of confidence sets

in inequalities setups can be computationally demanding and is still under debate

in the literature.18 Andrews and Soares (2010) introduced a generalized moment

18Numerous papers have considered inference and confidence sets for inequality models. A non-
comprehensive list of theoretical papers in this area includes Andrews and Soares (2010), Andrews,
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selection (GMS) procedure which provides confidence sets that are not asymptotically

conservative. I adapt one of the selection criteria suggested by the authors to the case

in which moments have a different number of observations, and introduce a way to

characterize a 1−α confidence interval by means of a grid search around the vertices

of the estimated set. Appendix A.1 describes the procedure in more detail.

1.6 Results

I now present the results from the two alternative methodologies. I report the

estimates of the multinomial logit model first and then compare them to those of the

inequality approach.

1.6.1 Multinomial Logit

Table 1.3 presents the estimates from a variety of multinomial logit specifications.

The table reports standard errors in parentheses to the right of the coefficient esti-

mates. Under all model specifications I tried, the utility from the outside option is

decreasing in the “real” purchases from previous weeks, as expressed by the negative

estimates of b1 − b4. While ex-ante agnostic about the sign of these coefficients, the

negative sign suggests that people are persistent in their habits. The probability that

a household visits a store in a given week is increasing in previous weeks purchases.

This is true even after controlling for individual characteristics.19

Mean utility from store characteristics is estimated very precisely, and moving

from one specification to another only changes the scale, keeping the relative differ-

ence in mean utility between two stores, and thus the respective choice probabilities,

Berry, and Jia (2004), Andrews and Shi (2012), Beresteanu and Molinari (2008), Chernozhukov,
Hong, and Tamer (2007).

19Models (1)-(5) use the relative quantity purchased by the household. Results using the absolute
quantity (not reported here) were very similar.
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unchanged. The estimates highly conform to my expectations, reflecting both the lo-

cation of a store (in terms of the amenities close to it) and the value of its attributes.

The model predictions match very closely both the number of trips and the model

overall revenue at the stores (see tables 1.6 and 1.7).

Disutility from driving time is estimated to be negative in all specifications, and

the quadratic term in models (2) through (5) is significantly positive, suggesting de-

creasing marginal travel costs consistently with Davis (2006). Consumers are signifi-

cantly heterogeneous in their value of driving time. Travel costs decrease in income.

as expressed by a negative estimate of γY , entering the model interacting distance d

with the inverse of income. Disutility from driving time is higher for larger families,

families with no children, senior households, families with a high working load and

families with a higher education level. Families with one or more children, young

households, families with a low or medium work load and married couples have lower

disutility. Identification comes from observed household behavior rather than from

the differential effect on demand of the nearby population and the estimates are all

significant and robust to the model specification.20

Driving time is expressed in minutes to go and come back from a store, and

estimates of travel costs and utility at a store appear very reasonable. The average

household would be willing to drive between 23.6 minutes for model (1), and 19.5

minutes for models (3) and (4), to visit store A rather than store G. As stores G and

A are respectively the most and least preferred stores in the market, these numbers

imply that differentials in preference for stores in the market correspond to a distance

ranging between zero and up to 3.3 miles.21 The numbers reported in the last row

20The only coefficient not estimated precisely is γEDU2, involving a residual group of households,
not reporting their educational attainment, which I didn’t want to include in the reference group
(low education).

21The distance is based on the average trip made by the average household driving at a speed of
20 miles per hour.
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of table 1.3 are constructed using store G as a starting location, so that the actual

values will be smaller moving away from that location because of decreasing marginal

travel costs.

Most problematic is the estimation of the coefficient on expenditure on the bun-

dle. As consumers should consider the relative expenditure across stores for a given

bundle, a positive α cannot be explained in economic terms. Conversely, consumers

persistently shop at different supermarkets, so that a valid model of store choice

should yield a small but negative estimate of α. The issue here might be one of endo-

geneity of expenditure; as in the market I consider price and store size are positively

correlated, the positive estimate of α in models (1) and (2) likely arises from omission

of a “taste for assortment” when buying larger bundles. In model (3) I include an

interaction between store size and “real quantity” purchased to estimate the coef-

ficient on expenditure controlling for the size of a bundle.22 The negative estimate

of α when controlling for bundle size is robust to the model specification, and all

coefficient estimates are robust to the choice of the price index.23

The effect of the price level of a store is fully captured by the store fixed effects, ξs.

An endogeneity issue arises if variation in the price level over time is correlated with

a store’s unobservable characteristics; time variation in price however, is very limited

in the sample, and is uncorrelated with households’ characteristics and driving time

to the stores (which are time invariant). As a robustness check, model (4) reports

the estimates of a model with time varying store effects. The model is identical to

model (3), but I now spit the sample in ten 5-weeks periods and allow store effects

to vary over these time periods. The resulting estimates are almost identical to those

22I could have used here alternative functional forms. However, in the market analyzed variability
in store size is very limited, and the use of an interaction term produces results equivalent to the
use of dummies for size categories, provided monotonicity in their coefficients.

23This is not surprising, since households persistently shop at different stores and different indices
results in very small changes in relative expenditures.
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of model (3). For model (4), the table reports the mean values of store effects over

time; variation in the individual values (not reported here) is very limited, and does

not suggest any systematic change (over time) in the relative utility from the stores.

A final issue regards households’ heterogeneity in preference for the stores. The

model allows for heterogeneity both over time and across household via the i.i.d. error

term εhst (note that ξsh = ξs + εhst), but violation of the i.i.d. assumption might bias

the estimates of the driving time coefficients. A natural way to address this issue

would be the use of random coefficients; while feasible in principle, the inclusion of

random coefficients would be computationally burdensome, and the model might well

be under-identified. Instead, as a robustness check, model (5) presents the estimates

of a model in which I include a very specific form of heterogeneity; I introduce a

dummy to account for an individuals experience at the store, taking the value of

one if an individual has visited the store at least ten times. Overall estimates of

such a model should be disregarded because of dependence of the right hand side

variable (the dummy) on the dependent variable (the store choice). However, the signs

and magnitudes of coefficients closely match the estimates from the other models,

suggesting that, if there is indeed unobserved heterogeneity in consumers’ preference

for stores, it ultimately does not affect the other coefficients24.

1.6.2 Inequalities

Table 1.4 presents the estimates from a parsimonious model specification in which

households are homogenous in both their travel costs (that is γh = γ), and decide to

24Not surprisingly the value of the likelihood function increases significantly, and the coefficient
on experience “outweighs” the store fixed effects. This specification however, cannot be used in
counterfactual analysis because of the endogeneity of the experience coefficient; if a store for which
an individual has experience is removed or moved to another location it is unreasonable to assume
that the individual will not gain experience in another alternative place, and/or “reset” his experience
at the store that is being moved.
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shop at differentiated stores where mean utility from store characteristics, captured

by store fixed effects ξs, for s ∈ {A,B, ..., G}, is the same across households.25 Given

the limited number of alternatives which could be used to construct the moments,

it was only by comparing store pairs that I was able to identify store fixed effects.

Under this specification I use all the visits made to each individual store s to construct

7-by-6, 42 moments, using as alternative stores s′, for each store s′ 6= s. Under this

model specification the estimate of the identified set turned out to be a set.

Table 1.4 reports the highest and lowest values in the identified set for each of

the parameters, and 95% confidence bounds are reported in parenthesis. The last

row of the table further reports the implied additional time a person would drive

to visit store A rather than store G. As a level normalization I set the utility from

visiting store A equal to zero, and as a scale normalization I set the coefficient on

expenditures α to -1.26 A more detailed description of the identified set and more

details on the characterization of confidence bounds for set estimates are discussed in

Appendix A.3 and Table A.1.

The estimates of the model conform to expectations, with a significantly negative

utility from driving time, and a magnitude that seems reasonable in relation to mean

utility from store characteristics. These values are very similar to those found with

the multinomial logit specification, and the two models agree on how consumers trade

off their travel costs for better store characteristics. In particular, the estimates of

the inequality model suggest that a household would be willing to drive between

8 to 19 additional minutes to visit store A rather than store G. The upper bound

25I also considered alternative rules to construct the moments, heterogeneous households, con-
sumer types, and individual household coefficients. I tried to instrument moments using a constant,
income, family size, children, working hours, marital status, age, education level and positive trans-
formations of them. Flexible specifications however, resulted in unbounded estimates or rejection of
the model.

26This form of scale normalization is necessary because, differently from discrete choice techniques,
there is no variance of the error term scaling the utility.
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of 19 minutes is extremely close to the value of 19.5 minutes from the multinomial

logit. Furthermore, the quadratic specification of travel costs in the multinomial logit

implies that the value from a household’s residence would be lower, and the inequality

model both scales the utility by normalizing the coefficient on expenditure and does

not control for bundle size, which could result in overestimation of travel costs and,

therefore, underestimation of the store G to A value.

The estimates of store fixed effects capture some aspects of the data. Recall that

the labeling of stores A-G corresponds to the estimated overall revenue at the stores.

Revenue at a store is determined both by its characteristics and its location; we expect

values of mean utility from a store to reflect revenues, even if not monotonically.

Consistently, we observe that stores A, C, D and E are preferred to stores F and G

everywhere in the set. These estimates however, provide too little information on

how people value these stores, and the assumption of homogeneous consumers seems

too restrictive. I further considered weighting observations by a household’s number

of trips, or using instruments to further restrict the estimate of the identified set, but

both directions resulted in no parameter value satisfying the moment conditions and

rejection of the model.

1.7 Counterfactuals

The multinomial logit model can be used for a wide range of policy analysis

regarding zoning regulations, and can also be applied to the study of local competition

and store location decisions. I use the estimates of model (3) (reported in table 1.3)

to evaluate the welfare impact, as well as the effect on trip and expenditure shares,

of 1) the closing of each individual store in the market and 2) the relocation of store

B to a likely new location 6 miles away north-east of the original location. These two
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counterfactuals exemplify a large number of questions that can be answered within

this framework.

Denote by i a trip (h, s, b, t). Under a multinomial specification the expected

consumer surplus takes the convenient closed form

E(CSi) =
1

αYh
log
( ∑
s∈S∪0

exp[ûhsbt]
)

+ c,

where αYh is the marginal utility of income of household h,
∑

s∈S∪0 exp[ûhsbt] is the

denominator of the logit choice probability, and ûhsbt for s = 0 denotes the expected

utility of the outside option.27

Under the logit specification it is straightforward to analyze the impact on con-

sumer surplus of a change in the set of alternatives, or in one of the attributes of one

of the alternatives. Let the superscripts 0 and 1 denote respectively before and after

a change; then, for any trip i, the percentage change in consumer surplus is given by:

%∆E(CSi) = log
[( ∑

s∈S∪0

exp[û1
hsbt]

)
/
( ∑
s∈S∪0

exp[û0
hsbt]

)]
− 1 (1.19)

For each trip I construct after-the-change choice probabilities and expected expen-

ditures at each of the alternatives s = A, ..., G by using the standard logit formulas:

P 1
i,s = exp[û1

hsbt]/
( ∑
s′∈S∪0

exp[û1
hs′bt]

)
(1.20)

and

E1(e(b, pst)) = ẽbstP
1
i,s (1.21)

27Rosen and Small (1981) show the result when the error terms are iid extreme value and utility
is linear in income (details can also be found in Train (2009)). All results that follow measure
percentage changes in consumer surplus that are independent of income elasticity.
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where P 1
i,s denotes the probability that household h visits store s after the change.

Using (1.19)-(1.21), I construct aggregate measures of consumers welfare change

as well as change in the number and share of trips and change in expenditure shares.

I do so by summing expected consumer surplus, choice probabilities and expected

expenditures over the trips I observe keeping the bundles fixed. I evaluate the welfare

change overall, and by household types defined by income, family size, number of

children,working hours code, age, education and marital status.

The welfare measures I construct are based on the assumption that consumers

do not adjust to the change in the set of alternatives by changing their shopping

habits, such as the frequency of their trips and their average expenditure. As long as

individuals react to a change in the set of alternatives the measures I provide should

be considered an upper bound to the welfare loss (or alternatively a lower bound to

the welfare gain) due the removal of (each) one of the stores, or the replacement of

store B.

These measures should also be considered as “short run”, as I assume no response

on part of the stores. While physical limitations do not allow stores to change most of

their characteristics at least in the short run (a store for example cannot significantly

change its size), it is possible that a store would reconsider its pricing strategies in

response to a major change in the number of visitors. Although the model I estimate

could be used to model the supply side of the industry, for example by adding a

pricing equilibrium condition, the limited variation in store characteristics in my

sample hampered my ability to estimate price elasticities. Note however, that pricing

strategies in the supermarket industry are typically set at a higher level than the

single store and for wider areas than the small town of Pittsfield. Additionally, a

supermarket’s response to a change in local competition is very unlikely to radically

alter its pricing strategies.
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Table 1.5 presents the welfare impact overall and on different segments of con-

sumers under both counterfactuals. Columns labeling A through G refers to which

store has been removed, column B-B’ refers to the replacement of store B to a new

location. The removal of a particular store affects households differently; households

who live closer, shop more frequently and spend more in a given store will suffer more

than those who live further away and shop there less frequently. As households are

otherwise homogeneous in their preference for stores, difference in the welfare loss

from store removal across groups is fully explained by one or more of the following

reasons: 1) difference in travel costs; 2) difference in location; 3) difference in size of

the planned bundles.

The last row of table 1.5 shows the overall welfare impact of store removal on the

population considered. Removal of store B produces the largest welfare loss (44.4%),

followed by removal of stores A (43.9%) and C (40.3%); removal of the other stores

produces a much smaller loss. The overall loss is determined mainly by the number

of trips at the stores, being stores B, A and C respectively the most visited stores.

The welfare effects however, vary significantly across household groups.

The first three rows of table 1.5 show the effect on households who’s income is

below 25,000$ (low), between 25,000$ and 65,000$ (medium), and over 65,000$ (high).

Wealthier families are more affected than low income households from the removal of

store A (51.4% vs. 37.3%), while the opposite goes for store B (38.7 vs. 48.9). This

difference is due to the combination of two factors: first, wealthier families buy larger

bundles (and preference for store A is stronger for larger bundles); second, wealthier

families are located relatively closer to store A.

Differences across households grouped by family size and age groups are mainly

driven by travel costs. With a few exceptions from the removal of stores C, E and G,

welfare losses are higher for larger families; similarly, young households have a lower
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welfare loss under all the counterfactuals relative to adult and senior households.

While families with children have generally lower travel costs, relative welfare effects

differ significantly depending on the store removed, because of location and shopping

habits. Families with children, married couples, households of higher income and with

higher education suffer relatively more from the removal of store A and relatively

less from the removal of stores F and G; these differences are driven by the relative

shopping habits of these groups, rather than their travel costs.

Replacement of store B to a new location produces significantly lower welfare

losses than its removal. The overall welfare loss from its replacement to a new less

convenient location is 26.9% versus the 44.4% loss from its removal. The distribution

of these losses across households however, does not match that of the removal of the

store. Changes in the ranks of losses are due to the distribution of household location

and on how the additional (or reduced) distance differently affects the households.

Tables 1.6 and 1.7 report observed and predicted expenditures and trips, both

before and after the removal of one of the stores. The first two rows of both tables

report respectively the actual and predicted measures. Although the logit specifi-

cation matches choice probabilities, and not expenditures, predicted expenditures in

the baseline match pretty closely observed expenditure in the data; as expected, the

match is extremely precise for trips.

Rows indexed A through G report counterfactual trips and expenditures predicted

after removal of the corresponding store. Note that the IIA property here holds only

at the household level and for a given bundle, as both planned bundle size and location

affect a consumer’s decision. Reading the numbers along the columns highlights the

gains for each store from the removal of one of the competitors. Store A benefits more

from the removal of store C than B, and has a very small benefit from the removal of

the other stores. Store B benefits almost equally from the removal of stores A and C
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in terms of trips, but the increased expenditure from people substituting away from

store A is much larger. For stores D through G the removal of store B is way more

beneficial than that of store A.

These results appear even more clear in tables 1.8 and 1.9. Table 1.8 reports the

change in the share of trips under the different counterfactuals. Reading along a row

will express how the trips originally made to one store are substituted to other stores;

reading along a column expresses how the removal of a competitor affects a particular

store. Similarly, table 1.9 reports effects on the overall revenue shares.

Table 1.10 summarizes for the effect of the replacement of store B to a new lo-

cation. The replacement of a store has more subtle effects then its simple removal:

not only will the original location affect how people substitute away from the store,

but also the new location will affect people substituting to the store from different

locations. Again, both location and bundle size contribute to the results in table

1.10. Looking at the change in the share of trips, we see that stores C and D have the

highest gains followed by store A, store B looses a big portion of its original share,

and all other stores have a substantial gain. The effect on expenditures share however

is (not) surprisingly different; store C, who had the highest increase in trips, gains

less than stores A and D.

I finally compare the welfare measures and the counterfactual visits and expendi-

tures reported above for the full model with heterogeneous consumer travel costs, to

those implied by a simpler model with homogeneous consumers and no control for the

size of the bundle. The comparison helps to better understand how the inclusion of

heterogeneity, and controlling for bundle size, both yield a significantly richer welfare

analysis and provide more realistic substitution patterns.

Tables 1.11 compares the welfare impacts under the two counterfactuals using the

estimates of models (1) and (3) from table 1.3. Looking at the overall impact, we find
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that the welfare losses implied by model (1) are significantly lower than those implied

by model (3). The difference is presumably due to linear specification of travel costs

in model (1), ignoring the decreasing nature of marginal travel costs, and the omission

of a control for the bundle size, that in the larger model allows consumers to “select”

to a more suitable store depending on their planned bundle.

Table 1.11 also looks at welfare differentials between the two models across income

classes and family size. Not surprisingly, differentials implied by model (2) are signif-

icantly smaller in most cases. For example, the welfare loss from the removal of store

A ranges from -35.7% to -46.5% for model (1) and from -37.3% to -51.4% for model

(3); as the estimates from latter model suggest travel costs which are decreasing in

income (that alone would imply a smaller gap), the wider gap in the welfare losses is

entirely due to the inclusion of the control for bundle size. Conversely, when we look

at family size, it is the inclusion of heterogeneity that leads to the larger gap in model

(3) predictions. For example, the welfare loss from the removal of store A increases in

family size from -38.1% to -41.9% for model (1) and from -36.6% to -51.7% for model

(3); this is because not only larger families do buy larger bundles, but also experience

higher travel costs according to model (3) estimates.

Table 1.12 looks instead at the fit of the two models and their implied substitution

patterns. Both models are very accurate in matching the number of trips observed

in the data, but produce significantly different predictions for expenditure shares. In

particular, model (1) does a very bad job at matching expenditures at store A, as

the model cannot explain why people buying larger bundles select to that store from

longer distances. The second part of table 1.12 reports the “normalized” change in the

share to make possible comparisons between the two models. Substitution patterns

appear significantly different between the two specifications; for example, both models

suggest that after the removal of store A, 72% of expenditure at that store would be
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substituted to stores B and C, but the two models disagree in how this expenditure

will be substituted to the two stores. As model (1) ignores the heterogeneity in

consumer travel costs and shopping habits, the richer specification of model (3) is

able to capture more features of the market and should thus be preferred as long as

these features produce significantly different substitution patterns.

1.8 Conclusions

Policy oriented empirical analysis of retail markets requires understanding how

travel costs affect consumers’ decisions. Empirical challenges in the context of super-

market choice make the use of standard techniques infeasible or require restrictive

assumptions on bundle choice. This paper examines two alternative methodologies

that allow to abstract from bundle choice, and develops a multinomial logit specifi-

cation that allows for a flexible model of consumers’ heterogeneity in travel costs.

Adding to the existing literature on spatial competition, variation in demand and

substitution patterns across stores are explained not only by differences in store char-

acteristics and the geographic distribution of consumers, but also by the shopping

habits and relative geographic distribution of household demographic types. Using

micro level data on store and household locations, consumers’ heterogeneity in travel

costs is directly identified as a function of observable consumer characteristics. By

specifying utility as a function of both store and bundle characteristics, I control for

the endogeneity of expenditure on the bundle, and this flexible specification can be

generalized to address additional selection biases arising in markets with less homo-

geneous competitors.

Consistently with Davis (2006) I find that travel costs are quadratic and marginally

decreasing. Both the quadratic term and heterogeneity parameters are robust to a
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variety of model specifications. Identification however, comes from the observed dif-

ferences in behavior across geographically dispersed household types, rather than from

the differential effect on demand of the nearby population. Store fixed effects reflect

how consumers value both the location and the attributes of a store. Households are

sensitive to price in proportion to their anticipated bundle. However, they seem to

substitute between stores across different shopping occasions, and show a strong taste

for variety and assortment, as they tend to shop at larger stores for larger bundles.

The model is suitable for a wide range of policy experiments, and allows to assess

the welfare effects of a change in the choice set across different groups of consumers.

The model can also be applied to the study of local competition and store location

decisions, as it allows to study the effect on store revenues and customer visits un-

der realistic substitution patterns. The two counterfactual experiments conducted

exemplify a large number of questions that can be answered within this framework.

Supply side considerations could be added to the model in the study of larger mar-

kets. Higher variation in store characteristics allows estimation of price elasticity of

demand at a store, leading to a better understanding of competition between (chain)

stores and of the effect of mergers in local spatially differentiated markets.
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Tables and Figures

Figure 1.1: Distribution of Households and Stores

Figure 1.2: Distribution of Driving Time
to a store (a), Number (b), Rank (c) and
Herfindahl Index (d) of Stores visited by
households in a year

Figure 1.3: Distribution of Trip (a) and
Weekly (b) Expenditures, Weekly Trips
(c) and Average bundle expenditure (d)
at stores by Income (low, medium, high)
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Table 1.1: Pittsfield Sample Descriptive Statistics

Obs Median Mean S.d. Min Max

Weekly Trips 122,824 2 2.11 1.67 0 19
Weekly Expenditure 122,824 79.12 94.27 81.30 0 1268.73
Trip Expenditure 259,415 27.07 44.63 48.76 0.5 982.02
Distance (miles) 259,415 2.76 3.07 2.07 0 20.30
Driving (minutes) 259,415 7.88 8.59 4.55 0 41.55

Family Size* 2362 2 2.53 1.26 1 6
Income** 2362 40 48.78 31.19 5 125
Married 2362 1 0.63 0.48 0 1
Children 2362 0 0.26 0.44 0 1
Over 55 2362 1 0.51 0.5 0 1
Under 35 2362 0 0.05 0.21 0 1
Alone 2362 0 0.21 0.41 0 1

Notes: The table provides descriptive statistics for the larger sample of 2,362
households.
* Family Size takes value of 6 when there are 6 or more members in the family.
** Households report an income band they belong to; while bands are “tight”
for low income, the highest income band reports all households with an income
higher than 100,000 dollars. To compute the values reported here I use the mean
value of a band and 125 thousand dollars for the highest band.
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Table 1.2: Reduced Form Regressions

Dep. Variable
(Avg. Expenditure) (Avg. Trips)

Constant 34.323** 1.958**
(4.63) (0.19)

Income 0.120** -0.002
(0.02 ) 0

Family Size 4.966** 0.104**
(0.67 ) (0.03 )

Child 1.756 -0.333**
(1.84 ) (0.08 )

House 3.804* -0.144*
(1.6) (0.07 )

Married 3.166* 0.176**
(1.47) (0.06)

Over55 -4.472** 0.086
(1.62 ) (0.07 )

Under35 -5.651* -0.059
(2.77 ) (0.12 )

Edu 1 0.711 -0.098
(1.22 ) (0.05 )

Edu 2 11.097* -0.359
(4.47 ) (0.19 )

Work 1 6.015** -0.191**
(1.66 ) (0.07 )

Work 2 6.469** -0.266**
(1.69 ) (0.07 )

Work 3 -7.644 0.527
(7.54 ) (0.32 )

Location Index -11.340** 0.358**
(2.59 ) (0.11)

R-squared 0.2 0.05
N 2362

Notes: results from reduced form the reduced form regres-
sion of household average trip expenditure and number of
weekly trips on consumer demographics and a Location
Index. Income and Family Size are numerical variables.
The other demographic variables are dummies that take
value of 1 if a household belongs to the specific class. Edu
refers to a households education (0=low, 1=high, 2=un-
kown); Work refers to a household’s workload (0=low, 1-
med, 2=high, 3=unknown). The Location index used is

Lh =
P
s 1/rsd

−1/2
s and denotes a household’s proximity

to supermarkets, a higher value indicating a better loca-
tion.
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Table 1.3: Estimation Results: Multinomial Logit Models (1)-(5)

model (1) (2) (3) (4)a (5)

b1 -0.002 (0.000) -0.002 (0.000) -0.002 (0.000) -0.002 (0.000) -0.001 (0.000)
b2 -0.003 (0.000) -0.003 (0.000) -0.003 (0.000) -0.003 (0.000) -0.002 (0.000)
b3 -0.002 (0.000) -0.002 (0.000) -0.002 (0.000) -0.002 (0.000) -0.002 (0.000)
b4 -0.002 (0.000) -0.002 (0.000) -0.002 (0.000) -0.002 (0.000) -0.002 (0.000)

ξA 1.050 (0.025) 1.399 (0.026) 1.274 (0.026) 1.282 (0.040) -2.371 (0.028)
ξB 0.480 (0.024) 0.774 (0.025) 0.737 (0.025) 0.748 (0.039) -2.409 (0.026)
ξC 0.529 (0.024) 0.850 (0.025) 1.011 (0.025) 1.022 (0.039) -2.193 (0.026)
ξD 0.240 (0.025) 0.574 (0.026) 0.549 (0.026) 0.559 (0.043) -2.403 (0.027)
ξE -0.446 (0.026) -0.118 (0.027) 0.089 (0.027) 0.099 (0.047) -2.437 (0.028)
ξF -0.755 (0.025) -0.497 (0.025) -0.272 (0.025) -0.261 (0.043) -2.620 (0.026)
ξG -1.001 (0.025) -0.742 (0.025) -0.540 (0.025) -0.528 (0.046) -2.750 (0.026)

γ0 (d) -0.091 (0.000) -0.119 (0.001) -0.117 (0.001) -0.117 (0.001) -0.041 (0.001)
γ1 (d2) 0.001 (0.000) 0.001 (0.000) 0.001 (0.000) 0.000 (0.000)

γY -0.064 (0.007) -0.062 (0.007) -0.062 (0.007) -0.047 (0.008)
γFS -0.006 (0.000) -0.006 (0.000) -0.009 (0.001) -0.004 (0.000)
γCH1 0.009 (0.001) 0.009 (0.001) 0.009 (0.001) 0.003 (0.001)
γCH2 0.009 (0.001) 0.010 (0.001) 0.010 (0.001) 0.004 (0.001)
γAGE1 0.014 (0.001) 0.014 (0.001) 0.014 (0.001) 0.001 (0.001)
γAGE2 -0.006 (0.001) -0.006 (0.001) -0.006 (0.001) -0.002 (0.001)
γWR1 0.003 (0.001) 0.002 (0.001) 0.002 (0.001) 0.003 (0.001)
γWR2 0.004 (0.001) 0.003 (0.001) 0.003 (0.001) 0.004 (0.001)
γWR3 -0.013 (0.003) -0.012 (0.003) -0.012 (0.003) -0.020 (0.003)
γEDU1 -0.001 (0.001) -0.001 (0.001) -0.001 (0.001) -0.000 (0.001)
γEDU2 -0.000 (0.002) -0.002 (0.002) -0.002 (0.002) 0.004 (0.002)
γMRD1 0.005 (0.001) 0.005 (0.001) 0.005 (0.001) 0.003 (0.001)

βq(×1000) 0.150 (0.002) 0.150 (0.002) 0.158 (0.002)

α 0.005 (0.000) 0.004 (0.000) -0.004 (0.000) -0.004 (0.000) -0.005 (0.000)
Experience 2.930 (0.008)

Loglikelihood -454974 -452932 -450453 -449,741 -349509
N 274254

store G to A (minutes)b 23.6 18.8 19.5 19.5 -

Notes: MNL models (1)-(5). γs are the driving time parameters, interacted with the inverse of Income (γY ),
family size (γFS) and a set of demographic dummies. CH1 denotes having one young child, CH2 having two or
more children. ξs denote store fixed effects. βq interacts real quantity of the bundle with size of a store; coefficient
and standard error are multiplied by 1000. b1−4 reflect the effect of normalized previous weeks purchases on utility
from the outside option. Experience is the parameter on a dummy taking value of 1 if a households has visited
the store at least 10 times. α is the coefficient on expenditure.
a In model (8) store effects are time varying. Mean Values are reported here.
b “store G to A” is the average additional time a person would drive to visit store A rather than store G. When a
quadratic term is included the value is reported using store G as a starting location (moving away from it would
decrease the measure).
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Table 1.4: Estimation Results: Moment Inequalities

lb. ub.

α -1 - -1 -

γ -1.85 (-1.87) –1.75 (-1.74)

ξA 0 - 0 -
ξB -25.56 (-25.64) –8.60 (-8.52)
ξC -13.70 (-13.73) –13.08 (-13.04)
ξD -7.39 (-7.44) 7.06 (7.11)
ξE -9.80 (-9.86) 4.64 (4.69)
ξF -29.07 (-29.24) –19.27 (-19.14)
ξG -34.35 (-34.53) –13.87 (-13.72)

Avg. n 142,873

store G to A (minutes)a 19 8

Notes: Estimation results from the Inequality model. I construct
moments by comparing to each store all alternative stores, for a
total of 7-by-6, 42 moments. γ is the travel cost parameter. ξs
denote store fixed effects. Disutility from expenditure, α, is nor-
malized to -1. Avg. n denotes the average number of observations
per moment.
a “store G to A” (= (ξA − ξG)/γ) is the implied additional time a
person would drive to visit store A rather than store G.
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Table 1.5: Welfare Change from (a) Store Removal and (b) Replacement

Counterfactual: (a) (b)
store removed/replaced A B C D E F G B-B’

Income
low -37.3 -48.9 -40.3 -12.1 -7.2 -13.3 -9.5 -35.0
medium -43.8 -44.7 -40.3 -14.2 -8.0 -12.7 -8.3 -27.1
high -51.4 -38.7 -40.3 -14.6 -7.8 -11.9 -6.3 -17.6

Family Size
1 -36.6 -42.7 -38.3 -12.1 -7.1 -12.5 -7.9 -27.7
2 -43.0 -43.3 -41.4 -13.5 -7.8 -13.0 -8.2 -26.9
3 -45.5 -44.9 -40.3 -14.5 -7.8 -12.3 -8.2 -26.1
>3 -51.7 -47.9 -40.2 -15.2 -8.0 -12.5 -8.4 -26.9

Children
no children -43.8 -46.9 -42.4 -14.2 -8.2 -13.6 -8.8 -29.6
1 child -40.5 -37.2 -32.8 -12.0 -6.1 -9.8 -6.0 -21.1
more than 1 child -56.3 -38.6 -40.9 -13.2 -7.1 -10.9 -7.4 -14.1

Age
adult -43.7 -41.0 -36.2 -12.7 -6.6 -11.0 -7.2 -22.8
young -30.2 -28.3 -26.6 -9.9 -4.9 -8.3 -5.4 -16.5
senior -45.9 -49.7 -45.9 -15.2 -9.0 -14.8 -9.4 -32.2

Work
low -43.1 -49.4 -45.6 -14.2 -8.5 -14.6 -10.3 -33.4
medium -46.4 -45.3 -38.2 -15.2 -8.2 -12.4 -7.1 -26.0
high -42.3 -38.7 -36.5 -12.1 -6.4 -10.8 -6.7 -21.5

Education
low -39.7 -44.8 -39.3 -12.5 -7.0 -12.1 -8.8 -29.5
high -48.6 -43.7 -41.1 -15.3 -8.5 -13.4 -7.1 -23.9

Married
not married -37.4 -46.1 -38.4 -12.6 -7.2 -12.9 -8.9 -31.3
married -47.7 -43.4 -41.4 -14.4 -8.0 -12.5 -7.7 -24.4

Overall -43.9 -44.4 -40.3 -13.7 -7.7 -12.7 -8.2 -26.9

Notes: Summary table of the welfare changes from (a) store removal and (b) replacement. The
welfare change is measured as the percentage change in expected consumer surplus. Columns A
through G report the effect of the removal of the respective store. Column B-B’ the effect of the
re-location of store B to a new location. Measures are reported for the overall population and for
demographic groups.
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Table 1.6: Expenditures

A B C D E F G

Expenditures
Actual 3,882,571 2,895,632 2,606,166 1,150,249 545,196 405,906 533,707
Model 3,774,935 3,135,673 2,355,431 1,053,234 504,803 734,383 460,945

Counterfactuals
A 0 4,138,630 3,666,426 1,389,507 651,077 978,652 594,977
B 4,769,574 0 3,015,069 1,534,446 717,272 1,023,389 669,636
C 4,887,552 3,742,639 0 1,248,218 606,098 913,454 567,639
D 4,048,936 3,503,647 2,530,655 0 585,752 812,856 503,828
E 3,884,236 3,279,722 2,435,344 1,121,004 0 772,713 480,051
F 3,972,293 3,356,660 2,508,124 1,128,919 547,215 0 494,993
G 3,893,646 3,301,146 2,452,067 1,097,917 527,292 770,874 0

Notes: The table reports observed (actual) expenditure and model predicted expenditure at stores A through G
in the first two rows. Rows labeled A through G report counterfactual predicted expenditures after the removal
of the respective store.

Table 1.7: Trips

A B C D E F G Total

Trips
Actual 63,649 64,672 60,537 22,643 13,052 21,157 13,705 259,415
Model 63,648 64,671 60,536 22,643 13,052 21,157 13,704 259,411

Counterfactuals
A 0 80,103 86,763 28,116 16,088 26,816 16,929 254,816
B 79,542 0 76,784 32,312 18,273 29,062 19,593 255,566
C 88,037 79,744 0 27,693 16,081 27,127 17,361 256,043
D 68,128 71,883 64,889 0 15,049 23,308 14,928 258,184
E 66,063 68,389 63,030 24,479 0 22,459 14,375 258,795
F 68,241 70,627 65,522 24,758 14,405 0 14,940 258,493
G 66,299 68,963 63,537 23,845 13,742 22,390 0 258,776

Notes: The table reports observed (actual) visits and model predicted visits at stores A through G in the
first two rows. Rows labeled A through G report counterfactual predicted visits after the removal of the
respective store.
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Table 1.8: Change in trips share

A B C D E F G

Trips Share
actual 24.5 24.9 23.3 8.7 5.0 8.2 5.3
model 24.5 24.9 23.3 8.7 5.0 8.2 5.3

∆ in Trips Share
A -24.5 6.5 10.7 2.3 1.3 2.4 1.4
B 6.6 -24.9 6.7 3.9 2.1 3.2 2.4
C 9.8 6.2 -23.3 2.1 1.2 2.4 1.5
D 1.9 2.9 1.8 -8.7 0.8 0.9 0.5
E 1.0 1.5 1.0 0.7 -5.0 0.5 0.3
F 1.9 2.4 2.0 0.8 0.5 -8.2 0.5
G 1.1 1.7 1.2 0.5 0.3 0.5 -5.3

Notes: The table reports the change in the share of visits under the different
counterfactuals. Observed (actual) shares and model predicted shares by stores A
through G are reported in the first two rows. Rows A through G under counter-
factuals denote the store that is being removed. Reading along a row will express
how a store’s share is substituted to other stores; reading along a column expresses
how the removal of a competitor affects the share of a particular store.

Table 1.9: Change in Expenditures Share

A B C D E F G

Expenditure Share
actual 32.3 24.1 21.7 9.6 4.5 3.4 4.4
model 31.4 26.1 19.6 8.8 4.2 6.1 3.8

∆ in Expenditure Share
A -31.4 10.2 12.5 3.4 1.5 2.5 1.4
B 9.3 -26.1 6.1 4.3 1.9 2.6 1.9
C 9.4 5.2 -19.6 1.7 0.9 1.5 0.9
D 2.4 3.1 1.5 -8.8 0.7 0.7 0.4
E 1.0 1.3 0.7 0.6 -4.2 0.3 0.2
F 1.7 1.9 1.3 0.6 0.4 -6.1 0.3
G 0.9 1.3 0.8 0.4 0.2 0.3 -3.8

Notes: The table reports the change in the revenue share of stores under different coun-
terfactuals. Observed (actual) shares and model predicted shares by stores A through
G are reported in the first two rows. Rows A through G under counterfactuals denote
the store that is being removed. Reading along a row will express how a store’s revenue
share is substituted to other stores; reading along a column expresses how the removal of
a competitor affects the share of a particular store.
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Table 1.10: Store B re-placement: Trips, Expenditures and Shares

A B(B’) C D E F G

Trips∗

Actual 636 647 605 226 131 212 137
Model 636 647 605 226 131 212 137
Counterfactual 693 272 685 301 170 270 183

Expenditures∗∗

Actual 3883 2896 2606 1150 545 406 534
Model 3775 3136 2355 1053 505 734 461
Counterfactual 4084 1484 2654 1413 663 943 619

Share
of Trips

Actual 24.5 24.9 23.3 8.7 5.0 8.2 5.3
Model 24.5 24.9 23.3 8.7 5.0 8.2 5.3
Counterfactual 26.9 10.6 26.6 11.7 6.6 10.5 7.1
Change 2.4 -14.4 3.3 2.9 1.6 2.3 1.8

Share
of Expenditure

Actual 32.3 24.1 21.7 9.6 4.5 3.4 4.4
Model 31.4 26.1 19.6 8.8 4.2 6.1 3.8
Counterfactual 34.4 12.5 22.4 11.9 5.6 8.0 5.2
Change 3.0 -13.6 2.8 3.2 1.4 1.8 1.4

Notes: summary table of the effect on visits and expenditures at stores after the replace-
ment of store B to a new location. Values are reported for actual, model and counterfactual
number of trips, expenditure, share of trips and revenue shares at stores A through G.
Change in the share of trips and revenues are also reported.
* Trips in hundreds of trips.
** Expenditures in thousands of dollars.
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Table 1.11: Model Comparison: Welfare Change from store removal

A B C D E F G B-B’

1. Overall

Model (1) -40.8 -41.1 -37.3 -12.9 -7.2 -11.8 -7.6 -25.4
Model (3) -43.9 -44.4 -40.3 -13.7 -7.7 -12.7 -8.2 -26.9

2. By Income

low -35.7 -42.2 -34.3 -11.5 -6.3 -11.2 -7.9 -29.5
Model (1) medium -41.1 -42.4 -37.9 -13.4 -7.5 -12.0 -7.9 -26.6

high -46.5 -37.1 -39.9 -13.4 -7.6 -11.9 -6.5 -18.0

low -37.3 -48.9 -40.3 -12.1 -7.2 -13.3 -9.5 -35.0
Model (3) medium -43.8 -44.7 -40.3 -14.2 -8.0 -12.7 -8.3 -27.1

high -51.4 -38.7 -40.3 -14.6 -7.8 -11.9 -6.3 -17.6

3. By Family Size

1.0 -38.1 -41.9 -35.7 -12.2 -6.7 -11.6 -7.5 -27.5
Model (1) 2.0 -41.4 -41.4 -38.1 -12.9 -7.3 -12.1 -7.7 -26.4

3.0 -41.1 -41.1 -38.0 -13.5 -7.3 -11.7 -7.7 -24.3
>3 -41.9 -39.8 -36.7 -13.0 -7.2 -11.3 -7.3 -22.6

1.0 -36.6 -42.7 -38.3 -12.1 -7.1 -12.5 -7.9 -27.7
Model (3) 2.0 -43.0 -43.3 -41.4 -13.5 -7.8 -13.0 -8.2 -26.9

3.0 -45.5 -44.9 -40.3 -14.5 -7.8 -12.3 -8.2 -26.1
>3 -51.7 -47.9 -40.2 -15.2 -8.0 -12.5 -8.4 -26.9

Notes: Model comparison table, comparing the welfare changes from store removal
and replacement using the estimates of MNL specifications (1) and (3) from table 5.
Model (1) assumes homogeneous linear travel costs, model (3) assumes heterogeneous
consumer travel costs and includes a quadratic term in the disutility from driving time
as well as a control for the bundle size (i.e. βq).ps. The welfare change is measured as
the percentage change in expected consumer surplus.
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Table 1.12: Model Comparison: Model’s Fit and Substitution Patterns

A B C D E F G

Trip Shares

Actual 24.5 24.9 23.3 8.7 5.0 8.2 5.3
Model (1) 24.5 24.9 23.3 8.7 5.0 8.2 5.3
Model (3) 24.5 24.9 23.3 8.7 5.0 8.2 5.3

Expenditure Shares
Actual 32.3 24.1 21.7 9.6 4.5 3.4 4.4
Model (1) 27.1 24.5 22.8 8.2 5.1 7.6 4.6
Model (3) 31.4 26.1 19.6 8.8 4.2 6.1 3.8

∆ Expenditure Sharesa

Model (1)
A -1 0.27 0.45 0.08 0.05 0.10 0.05
B 0.28 -1 0.27 0.15 0.09 0.12 0.08
C 0.46 0.26 -1 0.08 0.05 0.09 0.05
D 0.21 0.35 0.20 -1 0.10 0.10 0.05
E 0.21 0.31 0.19 0.14 -1 0.10 0.05
F 0.26 0.29 0.23 0.10 0.07 -1 0.05
G 0.23 0.33 0.22 0.09 0.05 0.09 -1

Model (3)
A -1 0.32 0.40 0.11 0.05 0.08 0.04
B 0.35 -1 0.23 0.17 0.07 0.10 0.07
C 0.48 0.26 -1 0.09 0.04 0.08 0.05
D 0.27 0.36 0.17 -1 0.08 0.08 0.04
E 0.25 0.31 0.18 0.14 -1 0.08 0.04
F 0.27 0.31 0.21 0.10 0.06 -1 0.05
G 0.24 0.34 0.20 0.09 0.05 0.08 -1

Notes: Model comparison table, comparing MNL specifications (1) and (3) from table
5 in terms the fit of trip and expenditure shares at different stores, and substitution
patterns in expenditure shares under counterfactual store removal. Model (1) assumes
homogeneous linear travel costs, model (3) assumes heterogeneous consumer travel costs
and includes a quadratic term in the disutility from driving time as well as a control
for the bundle size (i.e. βq).ps. Rows labeling A through G refers to the removal of the
respective store.
a The change in expenditure share, ∆ Expenditure Sharesa, has been normalized to
allow comparison between the two models. Normalization was done by dividing the
percentage change in expenditure share at a store by the model’s predicted share at the
store being removed.
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Chapter 2

Retail Pricing with Attractor

Goods

2.1 Introduction

When going on a shopping trip, consumers are most often interested in buying

a specific subset of goods and specific needs will likely guide their decision. More-

over, once in a store, consumers often end up buying substitute and complementary

products, or even additional products which were not used to formulate their store

choice. The assumption of rationality in retail shopping decisions appears very prob-

lematic when stores sell thousands of products and frequently vary their assortments

and prices. Consumers are typically uncertain about prices at different stores and

for a consumer to consider the entire distribution of bundles and prices might be a

far too complex decision process. Furthermore, models with rational consumers are

incapable of fully explaining important features of retail markets such as price dis-

persion, advertising and leader pricing. Conversely, acknowledging the limited ability

of consumers to make such complicated decisions might improve our understanding
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of retail pricing and competition.

In this paper I attempt to characterize optimal pricing by multi-product retailers

when imperfectly informed consumers buy more than one product. The distinctive

feature of the model is that there are two relevant moments to all purchase decisions.

First, the choice to go on a shopping trip and of the store to visit, and second, the

choice of the items to purchase. These two moments are separated in time, and while

consumers might rationally choose a store to best meet their specific needs and desires,

the choice of the items to purchase is made only once in a store. Whether guided

by impulse, contingent and unforeseen needs or in-store learning about a product,

consumers often end up buying additional products which can generate higher profits

for the stores. In this sense consumers are not fully rational, because they do not

anticipate the surplus they will get from buying additional products.

To examine the implications on retail pricing of this kind of behavior, I depart from

a standard rational setup and introduce the concept of attractor goods. Using an an

approach similar to that found in Osborne and Rubinstein (1998) and Spiegler (2006)

I consider boundedly rational consumers whose choice between stores is based solely

and entirely on the price and valuation of a subset of goods, the attractors, while the

decision about what goods to purchase is made only once a consumer is in the store

and is driven by a standard willingness to pay approach. The notion of attractor

good captures perhaps several concepts found in the literature. For example, Hess

and Gerstner (1987) use the notion of shopping good (as opposed to impulse goods)

to address the retailing strategy of Loss Leader Pricing : people visit a store to buy

the shopping good and end up buying also impulse goods.1

1Hess and Gerstner though, and most of the literature on Loss Leader Pricing, fail to recognize
why a particular good is a leader in the first place, focusing only on whether a profit maximizing firm
will price that good below marginal cost. The notion of attractor good generalizes that of shopping
good in that consumers are heterogeneous in what good(s) attract them, and the distinction between
goods is continuous rather than dichotomous (leader/non leader).
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I build a three-stage game in which stores sells K products to a continuum of

consumers with heterogeneous tastes over goods. Each consumer makes her decision

whether to go on a shopping trip based only on the price of an attractor which

assigned by nature according to a distribution that is known to the stores. Once in

a store a consumer will purchase all the items for which her valuation is higher than

the price. As spatial differentiation in traditional retail markets implies that stores

possess some degree of market power in the presence of consumers travel cost, I first

consider the optimal pricing by a multi-product monopolist. The monopoly case can

be a useful benchmark to assess the implications for retail margins and profits even

in competitive markets. I then extend the framework to the case of two duopolists at

the endpoints of a segment competing over consumers with linear travel costs.

The notion of attractor goods improves on the existing literature in that it shows

a pattern of prices that cannot be explained only in terms of price elasticities and

positioning. By giving up a fully rational consumer, using the notion of attractor

goods, I am able to characterize a very important aspect of retail pricing: a good’s

price exerts a market size externality on the rest of the goods (by enlarging the pool

of customers), and the relative strength of such externality depends on the relative

attractiveness of a good; stores are typically more informed (on aggregate) about

consumer tastes and needs and their pricing strategies must take into account such

externality to be optimal. The optimal pricing schedule will be a decreasing function

of the goods’ attractiveness, and pricing below marginal cost might be optimal for

some goods. The model provides a rationale for the strategy of loss leader pricing

and offers an intuitive explanation to countercyclical markups.

The remainder of the paper is organized as follows. In section 2.2 I discuss some

of the existing literature. In section 2.3 I describe the model. In section 2.4 I discuss

the results in connection with empirical evidence found in the literature. In section
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2.5 I conclude.

2.2 Background

Modeling multi-product stores and store choice by consumers is essential to the

analysis of retail competition and pricing strategies. Not surprisingly, a large number

of papers in the fields of Marketing and Industrial Organization have focused their

attention to the analysis of pricing decisions by multi-product stores. Unfortunately

though, analyzing market equilibrium and price competition with multi-product firms

is intrinsically difficult,2 and no unified treatment of market equilibrium exists in

such an environment. Researchers have instead used distinct approaches to analyze

different features of retail pricing.

As Varian (1980) clearly stated in an early paper, economists have long recognized

that “the law of one price is no law at all.” Retail stores compete along multiple di-

mensions, including price, quality, services and location, and enact a large number of

strategies to increase their profitability. The theoretical prediction that all transac-

tions will take place at marginal cost rested on the underlying assumptions of identical

firms, perfect information and no travel costs, and economist have tried to explain

the conflicting empirical evidence by relaxing these assumptions.

Large part of the literature on sales and price dispersion has focused on imperfect

information on prices. Varian (1980), for example, shows that in the presence of

search costs firms might use sales to discriminate between informed and uninformed

consumers. Sobel (1984) however, notes that sales are sometimes so “traditional and

2As Anderson and De Palma (2006) point out, “to characterize profit-maximizing prices for a
firm selling m products requires simultaneously solving m first-order conditions, [...] (and) to find
the profit-maximizing product range for a firm necessitates finding not only the direct effect on profit
from an additional product, but also the equilibrium pricing response of all other firms for all other
products.”
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well publicized” that it is unlikely for them to occur in order to discriminate between

informed and uninformed consumers. The author instead suggests that sales might

occur to inter-temporally discriminate between high and low value customers. In their

rationalization of loss leader pricing, the strategy of setting a price below marginal

cost to increase store traffic and earn higher profits on other goods, Lal and Matutes

(1994) show that in the presence of travel costs, if consumers are uninformed about

the firms’ prices unless advertised, firms might advertise loss leaders to compete for

store traffic. As the authors suggest, the result holds even when consumers are allowed

to visit more than one store and when consumers correctly anticipate higher prices

on the other goods.

While numerous papers have shown how imperfect information, product differenti-

ation, travel costs and search costs can help explain many of the strategies practiced

by retailers in the presence of rational consumers, their results often have limited

scope in their application, and are incapable of fully explaining important features

of retail markets such as price dispersion and leader pricing. For example, Baye

and Morgan (2004) note that price dispersion for identical products occurs even on

internet price-search engines, where it is implausible for high search costs to exist.

Similarly, low markups and loss leader pricing sometimes occur even on the regular

price of a product and without extensive advertisement, making implausible the as-

sumption that consumers are uninformed unless advertised. Furthermore, Weinstein

and Ambrus (2006) show that loss leader pricing cannot occur with rational informed

consumers even if they are constrained to purchase from a single store.

Unease with the assumption of consumer rationality has led many researchers to

explore alternative explanations to retail strategies, often specifying simple rules for

consumer behavior. Examples closely related to the current work include Feichtinger,

Luhmer, and Sorger (1988), who argue that consumers’ store choice is governed by
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aggregate information on price levels without much stress on comparison and choice,

or Hess and Gerstner (1987), who explain loss leader pricing by distinguishing between

impulse goods, goods bought on sight without price comparison across stores, and

shopping goods, those used to determine which store to visit. Furthermore, as Ellison

(2006) points out, even papers will fully rational agents could be easily revisited as

an instance of bounded rationality.3

The notion of attractor goods in retail shopping decisions introduces a form of

bounded rationality very similar to that found in Spiegler (2006) and Osborne and

Rubinstein (1998). Spiegler (2006) considers markets in which products have multiple

dimensions (a bank account, an insurance policy, ecc.), and firms set a price along

each of these dimensions. Consumers, who are limited in their ability to understand

such complicated pricing schemes use a sampling procedure to choose a product:

they randomly pick one dimension and choose according to the firms’ prices along

that dimension. Firms on the other hand are rational, and randomize their prices

to make their product really attractive along certain dimensions and more profitable

in others. The sampling procedure was first developed in Osborne and Rubinstein

(1998) who introduced a class of games with procedurally rational agents.

2.3 The model

Consider a three-stage game in which stores sells K products to a continuum of

consumers with heterogeneous tastes over goods. At the beginning of the game, each

consumer is assigned by nature with an attractor, and her decision whether to visit a

store, and eventually which store to visit, will rely solely and entirely on the price and

3For example, Ellison (2006) notes that the high search cost consumers who choose at random
in Varian (1980), or the infinitely impatient consumers in Sobel (1984), could be cast as boundedly
rational consumers, and that for both papers sales could be interpreted as an attempt to price
discriminate between more and less sophisticated consumers.
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valuation of the attractor. Once in a store a consumer observes the prices and learns

her valuations for the remaining products, and purchases all products for which her

willingness to pay is higher than the price.

The peculiar assumption that consumers decision to go on a shopping trip only

involves the price and valuation for the attractor is grounded on a few considerations.

Stores sell a very large number of products, and consumers are typically imperfectly

informed about both products and prices. While it is plausible that consumers ratio-

nally anticipate prices, or otherwise form expectations on the potential surplus from a

shopping trip, these prices are totally uninformative when consumers are unaware of

the existence of a product, or when the actual valuation for a product can be observed

only once in the store. Furthermore, consumers shopping decisions are often guided

by specific needs and desires. By assuming perfect information on the attractor’s

value and price, the attractor can be interpreted as the set of goods the consumer is

both aware of and plans to buy (with respect to which he is indeed rational). The ac-

tual purchase decisions, however, are made only once in a store, and, whether guided

by impulse, unforeseen needs or in-store learning about a product, consumers often

end up buying more than originally planned.

In the following section I first introduce the case of a monopolist facing a mass

one of heterogeneous consumers. As in the presence of consumers travel cost and

spatial differentiation retail stores possess some degree of market power, a model of

monopoly can be a useful benchmark to assess the implications for retail margins and

profits even in competitive markets. In this case, the choice of a consumer in the

second stage reduces to the choice between visiting or not visiting the store. I then

extend the framework to the case of two competing duopolist at the endpoints of a

segment.
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2.3.1 The Monopolist Case

Assume that a Monopolist sells K products, and that the marginal cost is equal

zero for all the goods. Further assume that consumers’ preferences are identically and

independently distributed across goods, and their willingness to pay are a draw from

the uniform (0,1). The setup of the game is the following. In stage 0, nature assigns

to each consumer a vector of valuations v = (v1, ..., vK), were vk ∼ U(0, 1) for k =

1, .., K, and an attractor j ∈ {1, 2, ..., K} according to a distribution f(j) = qj. The

distribution f(·) is known to the monopolist. In stage 1 the monopolist sets the prices

to maximize expected profits given f(·). In stage 2 consumers learn their attractor j,

their valuation for it vj, and its price pj, and decide to go on a shopping trip whenever

vj ≥ pj. In stage 3 consumers who visit the store make their consumption decision in

order to maximize their surplus: they will purchase any product k for which vk ≥ pk.

Consider a consumer who’s attractor is good j; since her valuation vj is a draw

from a uniform (0,1), the probability she will visit the store is equal to

P (vj ≥ pj) =


0 for pj > 1

1− pj for 0 ≤ pj ≤ 1

1 otherwise

Similarly, once in the store, the consumer will buy good l 6= j with probability 1− pl

when 0 ≤ pl ≤ 1, and, respectively, with probability 1 or 0 for pl smaller than 0 or

greater than 1.

In my setup, the lower bound for the willingness to pay coincides with the marginal

cost and is set equal to zero; this makes it trivial to show that setting a negative price

is never convenient for the monopolist, as setting a negative price has no beneficial
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effect on the number of consumers who visit the store4. Moreover, for any price

pj ≥ 1, the demand for good j will be equal zero. Given these considerations, we can

restrict the domain of prices to the compact set [0, 1]K .

As the total mass of consumers is equal to 1, the mass of consumers for which

good j is the attractor is exactly equal to qj. Given that the relevant domain of prices

is the compact set [0, 1]K , I can express the profit function for the monopolist as a

weighted sum of revenues, over the distribution of attractors, from people who decide

to go to the store; formally,

Π(p) =
K∑
j=1

qj(1− pj) ·

(
pj +

∑
l 6=j

pl(1− pl)

)
. (2.1)

Note that Π is a continuous function in p ∈ RK , and thus attains a global maximum

in [0, 1]K , compact subset of RK .

For the characterization of the maximum we can start considering the K first order

conditions (FOCs) of the problem:

∂Π(p)

∂pj
≤ 0 and pj

∂Π(p)

∂pj
= 0 (2.2)

for j = 1, ..., K, where

∂Π(p)

∂pj
= (1− 2pj)

(
qj +

∑
l 6=j

ql(1− pl)
)
− qj

∑
l 6=j

pl(1− pl) (2.3)

The following propositions further restrict the relevant domain to the interval [0, 1/2]K .

Proposition 2.3.1. Assume 1 > qj > 0 for some j ∈ {1, .., K}. A monopolist selling

K goods will never set a price pj ≥ 1/2 for any p−j, where p−j denotes the price of

all other commodities.
4Note that this is not necessarily the case when there is more than one firm.

69



Proof. For all values of p−j ≥ 0 the derivative of the profit function w.r.t. pj

∂Π(p)

∂pj

∣∣∣∣
pj≥1/2

= (1− 2pj)

(
qj +

∑
l 6=j

ql(1− pl)
)
− qj

∑
l 6=j

pl(1− pl) ≤ 0

since both the first and second term are smaller or equal to zero. Moreover, if for

some l 6= j, pl > 0 then the disequality is strict.

Now, consider the case where p = (pj, p−j) = (1/2, 0). Since 1 > qj > 0, there

exists k 6= j such that qk > 0; but

∂Π(p)

∂pk

∣∣∣∣
p

=
(
qk +

∑
l 6=j

ql(1− pl)
)
− qkpj(1− pj) > 0.

Proposition 2.3.2. A monopolist selling K goods will set a price pj = 1/2 whenever

qj = 0 for some j ∈ {1, .., K}.

Proof. Given qj = 0, for any p−j, pj = 1/2 is the only solution to the FOCs

∂Π(p)

∂pj
= (1− 2pj)

∑
l 6=j

ql(1− pl) = 0.

Propositions 2.3.1 and 2.3.2 restrict the domain of the profit maximizing price

vector to the [0, 1/2] interval. A price equal to 1/2 is the price that a single product

monopoly store would set; with attractor goods the multi-product monopolist has to

take into account the market size externality of setting a lower price; he will set price

equal to 1/2 only on those goods for which this externality is equal to zero, those

which never attract customers in the store. On the other hand, we cannot rule out
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that, setting a price equal to zero is optimal for some goods5; in fact the sign of the

derivative of Π at pj = 0 can be either positive or negative, depending on the weights

qi for i = 1, .., k:

∂Π(p)

∂pj

∣∣∣∣
pj=0

= qj

(
1−

∑
l 6=j

pl(1− pl)
)

+
∑
l 6=j

ql(1− pl).

For the solution to the FOCs to be a global maximum one possibility is to prove

is concavity of the profit function. A sufficient condition for concavity of Π is for the

Hessian of Π, HΠ, to be negative definite in (0, 1/2)K . Unfortunately, as we will see,

the result is not necessarily true for K > 2.

Consider the second own and cross partial derivatives of Πi with respect to pi, pj.

We have that, for all i, j, and for all pi, pj ∈ (0, 1/2),

∂2Πi(p)

∂pi∂pi
= −2

(
qi +

∑
l 6=i

ql(1− pl)
)
< −2

(
qi +

∑
l 6=i

1

2
ql
)
< −1 (2.4)

∂2Πi(p)

∂pi∂pj
= −

(
qi(1− 2pj) + qj(1− 2pi)

)
> −(qi + qj > −1. (2.5)

By equations (2.4) and (2.5) we have that the diagonal elements of HΠ are strictly

greater than one in modulus, while the off diagonal elements are strictly smaller.

Proposition 2.3.3. For K = 2, the profit function Π(p) is concave in p in the

interval (0, 1/2)2 ⊂ R2.

Proof. For K = 2, as the diagonal elements are strictly greater than the off diagonal

elements, H11 < 0 and H11H22 −H2
12 > 0; therefore HΠ is negative definite, and Π is

concave.

5In the present setup a corner solution at which price for good j is set equal to zero implies that
pricing below marginal cost can be optimal when marginal cost is greater than zero.
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Unfortunately, matters get more complicated when K ≥ 3. Concavity of HΠ

would require that, for all x = (x1, x2, .., xK)

x′Hx ≤ 0

−2
∑
i

x2
i

(
qi +

∑
l 6=i

ql(1− pl)
)
− 2

∑
i,j>i

xixj
(
qi(1− 2pj) + qj(1− 2pi)

)
≤ 0. (2.6)

While an explicit closed form solution the the FOCs cannot be found, and we are

not guaranteed that such a solution would imply a global maximum, I can characterize

an optimal pricing scheme in terms of the probabilities qjs. By proposition 2.3.4, the

optimal pricing schedule is a decreasing function of goods attractiveness. This is due

to the market size externality of setting a low price: the more attractive a good the

larger this externality and thus the lower the price. A useful corollary to proposition

2.3.4 is that goods with the same probability of being an attractor must be priced

symmetrically.

Proposition 2.3.4. Let q1 ≤ q2 ≤ · · · ≤ qK. Suppose p = (p1, p2, .., pK) maximizes

Πp; then it must be that p1 ≥ p2 ≥ .. ≥ pK ≥ 0. Moreover, if pj > 0 and qj 6= qj+1 it

must be that pj > pj+1 (Price Decreasing in q), and whenever qi = qj for some i, j,

it must be that pi = pj, and if (Symmetry Within Groups).

Proof. See Appendix A.3.

In now analyze two particular cases and provide some numerical solutions. I first

illustrate the “symmetric” case in which all goods have the same probability of being

an attractor; using symmetry, I explicitly solve for the optimal price as a function

of the number of products K. I then consider the more general case of two sets of

goods, and numerically solve some examples.
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The Symmetric Case

Assume that for all j, qj = 1/K. The profit function for the monopolist simplifies

to

Π(p) =
1

K

K∑
j=1

(1− pj)

(
pj +

∑
l 6=j

pl(1− pl)

)
.

Consider the first order conditions:

∂Π(p)

∂pj
=

1

K
·
(

(1− 2pj)
(
1 +

∑
l 6=j

(1− pl)
)
−
∑
l 6=j

pl(1− pl)
)

= 0 for j = 1, ..., K.

Assuming symmetry, we can solve for the optimal price p∗ as a function of K:

p∗ =
2K − 1−

√
(2K − 1)2 − 3K(K − 1)

3(K − 1)

By proposition 2.3.4 (Symmetry Within Groups), p∗ is a global maximizer since it is

the unique symmetric solution to the set of first order conditions.

The relevant result here is that as K gets larger the monopolist will charge lower

prices6 (see Figure 2.1). While in a standard setup the monopolist would charge

monopoly price for all products, our behavioral setup introduces a market size ex-

ternality on prices. An increase (decrease) in the price of commodity j, besides the

direct effect on the market for product j, will decrease (increase) the market size for

all the other products.

A surprising result is that, a K gets large, the limK→∞ p
∗ = 1/3. The intuition

behind this is that, at optimum, the marginal benefit (cost) in the market for j

of increasing (lowering) pj, must equal to the marginal cost (benefit) caused in the

market for the other goods. More formally, if we move pj away from p∗, keeping

all other prices fixed at p∗, as K gets large, the marginal effect in the market for j

6In fact ∂p∗/∂K < 0
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Figure 2.1: The Symmetric Case: Profit Maximizing Price as a Function of the
Number of Goods

will be equal to 2/3(1 − 2pj), while that on the market for other goods is equal to

p∗(1− p∗) = 2/9; for the two effects to be equal we need pj = 1/3. Alternatively you

can consider the limit as K gets large of the profit function restricted to symmetric

prices; we have that

lim
K→∞

ΠK = (1− p)2p,

which indeed attains a maximum at p = 1/3.

Two Sets of Goods

Consider now the more general case where qi 6= qj for some i, j. As no general

closed form solution exists even in the two goods case, I explore a specific setup

to offer some qualitative insights on the pattern of optimal prices as the number of

products and the relative probabilities change.

Assume there are two sets of goods, K1 and K2, such that for all i ∈ {1, .., k1},
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qi = q1, and for all j ∈ {k1 + 1, .., K}, qj = q2; also, k2 = K−k1, and 0 < k1 < K. By

proposition 2.3.4 (symmetry within groups) we know that if p is maximizes Π, then

all goods in one group must have the same price. I consider two simple cases.

Only Two Goods Suppose K1 = K2 = 1. The FOCs in this case are equal to:

(1− 2pj)
(
qj + qi(1− pi)

)
− qjpi(1− pi) = 0 for i, j = 1, 2, i 6= j.

By concavity of Π(p1, p2) (proposition 2.3.3), the unique solution to the FOCs p∗ =

(p∗1, p
∗
2) is a global maximum. I numerically solve the maximization problem for

different values of q and plot the results in Figure The black (blu) line represents p∗1

(p∗2) as a function of q1 (q2); note that p∗1 = 1/2 when q1 = 0, as we already know

by proposition 2.3.1, and decreases smoothly to 0.375 when q = 1. The two lines

intersect when q1 = q2 = 1/2 at p = 0.422. 2.2.
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p1 p2
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Figure 2.2: Profit Maximizing Prices with Two Goods as a function of q1 and q2
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Few Attractors, Many Goods Consider now the special case in which K1 ·q1 = 1,

that is, only one subset of goods K1 can be attractors with probability q1 = 1/K1.

By proposition 3.2 we know that for all other goods the price will be set to 1/2. I

consider the optimal price p1 as a function of both K1 and K2.
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Figure 2.3: Few Attractors, Many Goods: the optimal price p1 as a function of K2

Let’s start considering the case were K1 = 1; in this case q1 = 1, and given that

all other prices will be set equal to 1/2, we can express the profit for the monopolist

as a function of p1 only:

Π̂(p1) = (1− p1)

(
p1 +

K2

4

)
.

It is easy to verify that

p∗1 =


4−K2

8
for K2 ≤ 4

0 for K2 > 4

.
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In words price decreases from 1/2 to 0 in steps of 1/8 by adding one product at the

time.

Now let K1 vary; again, we know that all goods in the second set will have a price

equal to 1/2. So consider the monopolist’s profit:

Π̂(p1) = (1− p1)

(
p1 + (K1 − 1)p1(1− p1) +

K2

4

)
.

It is easy to verify that

p∗1 =


(2K1−1)−

q
(2K1−1)2−3(k1−1)(k1−K2

4
)

3(K1−1)
for K2 ≤ 4K1

0 for K2 > 4K1

.

In Figure 2.3 I plot the optimal price p1 as a function of K2 for K1 = 1, 2, ..., 10.

2.3.2 The Duopoly Case

Consider now competition between two stores selling K products, A and B, lo-

cated at the endpoints of a segment of length 1. As for the monopolist case, I assume

that the marginal cost of supplying the products is equal zero. I further assume that

a mass one of consumers is distributed uniformly along the segment, and consumers’

willingness to pay νij for good j ∈ {1, ..., K} is i.i.d. across both consumers and

goods. Consumers face linear travel costs of visiting a store; if we denote by xi the

distance of consumer i from store A, where xi ∼ U(0, 1), the cost of visiting store A

is thus equal to xi.

The setup of the game is very similar to the monopolist setup. In stage 0, nature

assigns to each consumer i a vector of valuations vi = (vi1, ..., viK), were vik ∼ U(0, 1)

for k = 1, .., K, and an attractor j ∈ {1, 2, ..., K} according to a distribution f(j) = qj.
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The distribution f(·) is known to the stores. In stage 1 the two stores simultaneously

set prices to maximize expected profits given f(·). In stage 2 consumers learn their

attractor j, their valuation for it vij, and its price pj and decide to visit a store A

whenever vij ≥ pAj + xi and pAj + xi ≥ pBj + 1 − xi. Alternatively they decide to

visit store B if vij ≥ pBj + (1− xi) and pBj + 1− xi ≥ pAj + xi, or decide not to visit

a store if vij ≤ min{pAj + xi , pBj + (1− xi)}. In stage 3 consumers, once in a store,

learn their valuations for the other products and purchase any product k for which

vik ≥ pSk.

Let pAj, pBj for j = 1, ..., K denote the prices charged by the two firms, and let

k1 ≤ K denote the (sub-)set of attractors (i.e. {j : qj > 0}). The profit function

of firm A is a weighted sum of revenues, over the distribution of attractors j, from

people who decide to visit the store. Note that both firms will never charge a price

greater than one for any of the products, as in this case demand would be zero.

Conversely, it is possible for prices to be negative, as pricing below marginal cost can

be supported in equilibrium when the higher revenues due to the increased traffic at

a store outweigh the loss deriving from such a low price. The profit of store A is thus

equal to

ΠA(pA, pB) =

k1∑
j=1

qj

(
pAj +

∑
l 6=j

pl(1−max{0, pl})
)
DAj(pAj, pBj), (2.7)

where DAj(pAj, pBj) denotes the fraction of consumers who’s attractor is j that decide

to fit store A, and (1−max{0, pl}) denotes the probability a consumer will buy good

l once in a store.

Denote dj the distance for which a consumer who’s attractor good is j would be
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indifferent between visiting the two stores, that is

dj = {x : pAj + x = pBj + (1− x)} = max

{
1− pAj + pBj

2
, 0

}
.

The probability that a consumer will visit store A will thus be positive if and only

if xi ≤ min{dj , 1 − pAj}. The fraction of consumers DAj that will visit store A is

therefore equal to:

DAj(pAj, pBj) =



∫ dj
0
Pr(νij ≥ pAj + x)dx if pAj ≤ 1− pBj and pAj ≤ 1 + pBj∫ 1−pAj

0
Pr(νij ≥ pAj + x)dx if 1 + pBj ≥ pAj ≥ 1− pBj

0 if pAj ≥ 1 + pBj

Propositions 2.3.5 and 2.3.6 further restrict prices to be smaller or equal to 1/2.

Proposition 2.3.5. A duopolist will set a price pSj = 1/2 whenever qj = 0 for some

j ∈ 1, ..., K

Proof. W.l.g. consider, pAj. Given qj = 0, for any (pA, pB)−j, pAj = 1/2 is the only

solution to the FOCs ∂ΠA/∂pAj = 0, where

∂ΠA

∂pAj
=


1 for pAj ≤ 0

(1− 2pAj)
∑

l 6=j qlDl(pAl, pBl) otherwise

Proposition 2.3.6. Assume 1 > qj > 0 for some j. A duopolist S will never charge

a price pSj ≥ 1/2 for any prices pSk, k 6= j and any prices offered by the competitor

pS′.

Proof. See Appendix A.4.
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The case of One Attractor

In the simplest version of the model the duopolists compete over consumers when

only one good is an attractor and k additional products are sold. Under these as-

sumptions the model is very similar to a Hoteling model with the complication that

consumers are heterogeneous in their willingness to pay.

Let pA, pB denote the price charged by the two stores for the attractor. By

proposition 2.3.5 we know that the k non attractors will be charged a price equal to

1/2, and by propositions 2.3.6 we know that pS ≤ 1/2 for S = A,B. Furthermore,

the following proposition holds:

Proposition 2.3.7. A set of prices (pA, pB) such that, either pA−pB > 1 or pB−pA >

1 will never support an equilibrium.

Proof. Suppose pA − pB > 1 (pB − pA > 1); then nobody is visiting store A (B) and

store B (A) can strictly increase profits by setting a higher price.

Under propositions 2.3.5-2.3.7 we can write the profit of firm A as be equal to:

ΠA(pA) = (pA + k/4)

∫ d̂

0

Pr(νi ≥ pA + x)dx

=
1

8
(pA + k/4)(1− pA + pB)(3− 3pA − pB)

Now consider the FOCs of the problem for firm A:

∂ΠA(pA)

∂pA
= 9p2

A− (12 + 4pB)pA + (−p2
B + 2pB + 3) +K/4(6pA− 6− 2pB) = 0 (2.8)

The following proposition shows that there exist a unique symmetric equilibrium

pA = pB = p∗, that is decreasing in k.
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Proposition 2.3.8. There exist a unique symmetric Nash equilibrium in which both

stores charge the same prices. Furthermore, the symmetric equilibrium price is de-

creasing in K and will be negative for k > 2.

Proof. ΠA(pA, pB) is a third order polynomial in pA. If we have an interior solution

the maximum of ΠA(·) corresponds to the smallest solution of the FOC, so that the

best response of store A is continuous in pB. Once we impose symmetry, a symmetric

equilibrium price is found at the smallest solution to the FOC

4p2 − (10 +K)p+ (3− 3K/2) = 0,

that is

p∗ =
(10−K)−

√
(10−K)2 − 16(3− 3/2K)

8
(2.9)

Furthermore, the largest solution is always found at p > 1, so that the symmetric

equilibrium is unique. If we totally differentiate the expression above, by the implicit

function theorem we have that

dp

dK
= − 3/2− p

10− 8p− k
< 0,

as the numerator is positive by proposition 2.3.6, and, by (2.9) a) for K = 2, p∗ = 0

and b) for K 6= 2, p∗ < (10−K)/8 .

Figure 2.4 plots the symmetric equilibrium price as a function of k.

The case of Two Attractors

I now consider the more general case in which the two stores compete over con-

sumers with two attractor goods and sell k additional goods. By propositions 2.3.5

Profits of firm A are given by:
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Figure 2.4: The Duopoly Case with linear Travel Costs, 1 attractor and K non at-
tractors: symmetric equilibrium prices p∗ as a function of K

ΠA(pA, pB) =
∑
j=1,2

qj(pAj + pA−j(1−max{0, pAj})) + k/4)

∫ dj

0

Pr(νi ≥ pAj + x)dx

where j,−j = {1, 2} and dj = (1− pAj + pBj)/2. Suppose firms set prices such that

they attract a strictly positive mass of consumers for each of the two goods, then the

profit of firm A is equal to

ΠA =
q1

8

[
(pA1 + pA2(1−max{0, pA2}) + k/4

][
1− pA1 + pB1

][
3− 3pA1 − pB1

]
+

q2

8

[
(pA2 + pA1(1−max{0, pA1}) + k/4

][
1− pA2 + pB2

][
3− 3pA2 − pB2

]
For ease of notation, consider the case in which prices are non-negative (it is

straightforward to consider the case when prices are negative). Consider the set of

first order conditions for the two firms. A set of equilibrium prices at an interior
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solution must satisfy the following set of four quadratic equations in four unknowns:

∂ΠS

∂pj
= qj

[
9p2
Sj − (12 + 4pS′j)pSj + (−p2

S′j + 2pS′j + 3) +

(
6pSj − (6 + 2pS′j)

)(
pSl(1− pSl) +K/4

)]
+

ql(1− 2pSj)
[
3p2
Sl − (6 + 2pS′l)pSl + (−p2

S′l + 2pS′l + 3)
]

= 0

for S, S ′ = A,B and j, l = 1, 2.

I focus here on symmetric equilibria. As the profit function is a truncated third

order polynomial in pSj for S = A,B and j = 1, 2, the maximum at an interior

solution is found at the smallest solution of the quadratic first order conditions; for

a given value of (q1, q2) the symmetric equilibrium is therefore the unique solution to

the following set of two equations in the two unknowns p1, p2:

qj

[(
4p2

j − 10pj + 3
)

+ (4pj − 6)
(
pk(1− pk) + k/4

)]
+ qk(1− 2pj)

[
− 4pk + 3

]
= 0

for j = 1, 2. In figure 2.5 I plot the symmetric equilibrium prices when k = 0, 1, 2. The

plot was constructed by numerically solving the set of equations. As it appears clear

from the figure price is a decreasing function a good’s attractiveness, and negative

pricing can be supported in equilibrium. Conversely, given a distribution qj, for

j = 1, 2, the symmetric equilibrium prices are not always decreasing in K. The latter

however holds for the good with the highest probability of being an attractor.

83



 

 

q2=1

p1 p2

.50.50

q1=1

.18 .18

.31K=0

K=1

K=2

1/2

-.25 -.25

.31

0 0

Figure 2.5: The Duopoly Case with linear Travel Costs, 2 Attractors and K Goods:
symmetric equilibrium prices p1 and p2 as a function of q1 and q2

2.4 Attractor Goods: Model Predictions and Em-

pirical Evidence

Retail stores typically sell a large number of products and frequently vary their

assortments and prices. Consumers are typically uncertain about prices at different

stores and for a consumer to consider the entire distribution of bundles and prices

might be a far too complex decision process. While it is plausible that consumers

rationally anticipate prices when planning a shopping trip, or otherwise form expec-

tations on the potential surplus from a shopping trip, consumers make their purchase

decision only once in a store and often end up buying substitute and complementary

products, or even additional products which were not used to formulate their store

choice. Attractor goods can so be interpreted as the set of goods the consumer is both

aware of and rationally plans to buy, and by introducing this form form of bounded
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rationality I can characterize the effect on prices of consumers tendency to buy more

than originally planned.

According to the model, the optimal pricing involves pricing goods lower and lower

the higher the probability of being an attractor. This result naturally follows from the

market size externality of setting a low price: the more attractive a good the larger

this externality. In particular, goods which are never attractors should be priced as in

a standard single-product monopoly case by equating a product’s marginal revenue

to marginal cost, while attractor goods should be priced taking into account also the

marginal revenue on the other goods, and might be priced below marginal cost when

the latter effect is large. The examples below suggest that the model’s predictions

are consistent with the empirical evidence.

Barsky, Bergen, Dutta, and Levy (2001) focus on marginal cost and the estimation

of markups; using the price gap between branded and private label products they

estimate markups on selected product categories in the groceries industry using data

from a major Chicago supermarket chain. In particular the build three measures

of markup: the full markup, the retailer markup on the national brand, and the

retailer markup on the private label. To the extent that national brands attract

more than private labels, and given that the national brand manufacturer does not

internalize the externality for the retailer, the attractor good hypothesis would imply

lower retail margins on national brands than on private labels. Conversely, we would

expect higher markups on products that do not fall in the main categories sold at

the store. Consistently with the model, Barsky et al. find that in all of the 19

categories analyzed markups are significantly higher on private labels than on national

brands. Furthermore, the highest markups are found in categories of products for

which consumers only seldomly anticipate a purchase.7

7The five categories with the highest markups are toothbrush, soft drinks, crackers, grooming

85



A second inference that can originate from the model has to do with the cycli-

cality of demand for certain goods. Using the terminology of the paper, some goods

attractiveness peaks in different times of the year: a perfect example would be turkey

for thanksgiving. According to the model we expect very low prices and margins dur-

ing demand peaks in order to attract a larger pool of customers. Empirical evidence

points in this prediction as Chevalier, Kashyap, and Rossi (2003) showed in a recent

paper. The authors compare three theories of imperfect competition which can pro-

duce countercyclical prices; by examining retail and wholesale prices they show that

prices and margins for specific goods fall during demand peaks, even if these periods

do not coincide with aggregate demand peaks for the retailer; they suggest their find-

ings are consistent with loss leader models rather than cyclical demand elasticities or

cyclical firm conduct. The attractor good hypothesis generalizes model of loss leader

pricing in that low markups and loss leaders can arise even on the regular price of a

product and without extensive advertisement when a good’s probability of being an

attractor is high.

While the examples above are limited to the supermarket industry, the notion

of attractor goods should not be confined to, nor is most important in, the analysis

of supermarkets. It can provide a powerful explanation to a large amount of price

dispersion where the assumption of rationality fails, and to the extent that consumers

tend to purchase more than what they plan before visiting a store, the qualitative

predictions of the model should be observed in the pricing strategies of retailers.

products and analgesics.
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2.5 Conclusions

Retailers’ pricing decisions have to take into account not only the direct effect of

prices on a product’s demand but also the effect on the demand for the other products

sold in the store. A low price on some goods will attract more traffic into the store,

which turns into higher profits if the other goods are sold at higher margins. Pricing

strategies by retailers typically involve varying margins and markups across products

and over time and several models give different explanations to such differences. Loss

leader models, for example, show that it is sometimes convenient to advertise low

prices on some goods to attract uninformed consumers who, once in the store, and

because of transportation costs, will decide to shop also other goods on which retailers

set higher margins.

While numerous papers have explained many retail strategies within a rational

framework, their results often have limited scope in their application, and unease

with the assumption of consumer rationality has led many researchers to explore

alternative explanations. By giving up a fully rational consumer, using the notion of

attractor goods, I am able to characterize a very important aspect of retail pricing: a

goods price exerts a market size externality on the rest of the goods, and the relative

strength of such externality depends on the relative attractiveness of a good. If

stores take into account such externality in their pricing decisions markups will be a

decreasing function of the goods’ attractiveness. The model provides a generalization

to the strategy of loss leader pricing as low markups can arise even on the regular

price of a product and without extensive advertisement. Furthermore, the attractor

goods hypothesis offers an intuitive explanation to countercyclical markups that is

consistent with the empirical evidence.
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Appendix A

Appendices

A.1 Calculation of GMS tests and confidence in-

tervals for Moment Inequalities

Andrews and Soares (2010) introduced a generalized moment selection (GMS)

procedure which provides confidence sets (CS) that have correct asymptotic size in a

uniform sense and are not asymptotically conservative. For the inequalities models in

the present paper I adapt one of selection criteria suggested by the authors to the case

in which moments have a different number of observations, and introduce a way to

characterize a 1−α confidence interval by means of a grid search around the vertices

of the estimated set. I here describe how I proceed with the actual calculations; more

details on the GMS procedure can be found in Andrews and Soares (2010).

Consider the moment inequality model. The value of the true parameters θ0 ∈ Rd

satisfies the moment conditions:

EF0mj(yi, θ0) ≥ 0 for j = 1, ..., p (A.1)
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where {mj(·, θ) : j = 1, ..., p} are p known real-valued functions and {yi : i ≥ 1} are

i.i.d random vectors with distribution F0. Let Tn(θ) denote a test statistic for testing

H0 : θ = θ0; Andrews and Soares (2010) propose we construct CS by inversion of the

test, that is finding

CSn = {θ ∈ Θ : Tn(θ) ≤ c1−α(θ)} (A.2)

where c1−α(θ) is a critical value that depends on the value of θ.

The observed sample is a subset of {yi : i ≤ n}, where for each moments we have

observations ij = 1, ..., nj, nj ≤ n. Consider the empirical moment functions:

mj(y, θ) =
1

nj

Nj∑
i

mj(yi, θ) (A.3)

Denote mn(θ) = (m1(θ), ...,mp(θ))
′ and let Σ denote the asymptotic covariance of

n1/2mn(θ). The test statistic Tn(θ) is defined to be

Tn(θ) = S(n1/2mn(θ), Σ̂n(θ))

where S is one of the real functions suggested in Andrews and Soares (2010), and

Σ̂n(θ) is a consistent estimator of Σ.

As in my setup moments have a different number of observations, I consistently

estimate Σ, the asymptotic covariance of n1/2mn(θ), by bootstrapping 1000 times the

means n
1/2
j mj(θ) for j = 1, ..., p. I then compute Tn using n1/2mn = (n

1/2
1 m1, ..., n

1/2
p mp)

As a choice of S I consider S = S1 defined by

S1 =

p∑
j=1

(mj/σj)
2
−,

where σ2
j is the j-th diagonal element of Σ.
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Now consider the asymptotic null distribution of Tn(θ). By central limit theory

this is given by

S(Ω
1/2
0 Z∗ + h,Ω0)

where Z∗ ∼ Np(0, I), and the p-vector h ∈ Rp
+∞ is the limit of n1/2EFn(m(yi, θ0)).

As h cannot be consistently estimated, Andrews and Soares (2010) propose using a

data-dependent version of S(Ω
1/2
0 Z∗ + h,Ω0) that replaces h with with a vector φ(·)

that depends on the “slackness” of the moment inequalities. As a measure of the

degree of slackness for moment j, the authors suggest using

ξjn(θ) = κ−1
nj
n

1/2
j σ̂−1

j (θ)mj(θ),

for a divergent sequence of constants {κn : n ≥ 1}. The desired replacement for h

then will be zero when ξjn(θ) is zero or close to zero, it will +∞ when ξnj(θ) is large.

My choice for the constant is κn = (lnn)1/2, and as a replacement for h is use

φj(ξ
j,Ω) =


0, if ξj ≤ 1

+∞, if ξj > 1

Given a choice of φ(ξ,Ω), the GMS critical value cn(θ0, 1−α) is the 1−α quantile

of

Ln(θ0, Z
∗) = S(Ω̂1/2

n (θ0)Z∗ + φn(ξn(θ0)), Ω̂n(θ0)) (A.4)

where Z∗ ∼ Np(0, I). That is

cn(θ0, 1− α) = inf{x ∈ R : P (Ln(θ0, Z
∗) < x) ≥ 1− α} (A.5)

Construction of CS by inverting the test can be very demanding computationally,
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if feasible at all; the search of points in the CS over the parameter space Θ involves

estimating Σ and constructing cn at any parameter value. Additionally, characteri-

zation of the CS can be very hard when the estimates are a set. For these reasons I

take a simple approach to characterize the CS around the vertices of the set estimate

by means of a grid search.

When the model is linear, the identified set is a d−dimensional polytope, and

minima and maxima for each of the parameters are found at (some of) the vertices

of the set. Minima (and maxima) are readily found by solving one dimension at the

time the linear programming problem

min θl (max θl) subject to mn(y, θ) ≥ 0

Let θ = (θl, θ−l), and denote θ̂ one of the bounds solving the linear programming

problem. To characterize the CS I proceed as follows:

1. Estimate Σ̂θ̂ = Σ̂(θ̂)

2. For dimensions l = 1, ..., d, for an increasing sequence δn, let

θ̂n =


(θ̂l − δn, θ̂−l) if θ̂ is a lower bound

(θ̂l + δn, θ̂−l) if θ̂ is an upper bound

3. Start from n = 1; construct Tn(θ̂n) and cn(θ̂n). Continue while Tn < cn.

4. Repeat 1-3 at all vertices of the identified set.

Table 13 provides an example for the set estimates of inequality model (2). The

upper-left block of the table reports the highest and lowest values for each of the

parameters as well as a 95% confidence bounds moving away from the vertex. The
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other blocks report the value of the other parameters at the specific vertices, as well as

a 95% confidence bounds moving away from the vertex along each of the parameters’

dimension.
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Table A.1: Characterizing CS for set estimates using GMS

Vertex All γ0 ξB ξC
of serch lb. ub. lb. ub. lb. ub. lb. ub.

γ0 -1.85 –1.75 -1.85 –1.75 -1.85 -1.85 -1.85 -1.74
-1.87 -1.74 -1.87 -1.74 -1.87 -1.84 -1.87 -1.74

ξA 0 0 0 0 0 0 0 0

ξB -25.56 –8.60 -16.57 -16.32 -25.56 –8.60 -18.86 -16.51
-25.64 -8.52 -19.91 -12.63 -25.64 -8.52 -21.81 -12.75

ξC -13.70 –13.08 -13.70 -13.08 -13.68 -13.64 -13.70 –13.08
-13.73 -13.04 -13.74 -13.04 -13.75 -13.59 -13.73 -13.04

ξD -7.39 7.06 1.29 0.66 -5.56 6.38 -0.92 0.51
-7.44 7.11 1.24 0.72 -5.62 6.42 -0.96 0.56

ξE -9.80 4.64 -1.13 -1.49 -7.98 3.96 -3.34 -1.67
-9.86 4.69 -1.19 -1.45 -8.03 4.01 -3.38 -1.59

ξF -29.07 –19.27 -23.35 -22.82 -29.07 -19.70 -25.26 -22.95
-29.24 -19.14 -25.59 -20.07 -29.21 -19.59 -27.76 -20.20

ξG -34.35 –13.87 -22.22 -22.10 -30.22 -17.23 -25.04 -22.36
-34.53 -13.72 -28.00 -17.89 -34.53 -13.76 -30.30 -18.08

Vertax ξD ξE ξF ξG
of search lb. ub. lb. ub. lb. ub. lb. ub.

γ0 -1.85 -1.85 -1.85 -1.85 -1.85 -1.74 -1.85 -1.85
-1.87 -1.84 -1.87 -1.84 -1.87 -1.74 -1.87 -1.84

ξA 0 0 0 0 0 0 0 0

ξB -23.56 -12.66 -23.61 -12.56 -22.33 -13.09 -23.92 -12.32
-25.63 -8.50 -25.63 -8.51 -25.65 -9.15 -24.68 -9.49

ξC -13.70 -13.63 -13.69 -13.67 -13.66 -13.08 -13.70 -13.65
-13.75 -13.59 -13.74 -13.59 -13.75 -13.04 -13.73 -13.58

ξD -7.39 -7.06 -7.39 7.06 -4.55 4.13 -4.67 4.51
-7.44 7.11 -7.44 7.11 -4.61 4.19 -4.72 4.56

ξE -9.80 -4.64 -9.80 -4.64 -6.97 1.96 -7.09 2.09
-9.87 4.68 -9.86 4.69 -7.02 2.02 -7.15 2.14

ξF -29.07 -19.70 -29.07 -19.70 -29.07 –19.27 -28.13 -20.68
-29.28 -19.58 -29.21 -19.58 -29.24 -19.14 -29.22 -19.58

ξG -29.04 -19.86 -29.20 -19.66 -28.28 -19.68 -34.35 –13.87
-34.58 -13.92 -34.55 -13.82 -33.77 -14.66 -34.53 -13.72

Avg. n 142,873

Notes: Characterization of the Confidence Set (CS) for the set estimates from the inequality
model. I use the GMS procedure and perform a grid search around the vertices of the set estimate.
γ0 denotes disutility from driving time and ξs denote store fixed effects. α, disutility from
expenditure is normalized to -1. The upper-left block of the table reports the highest and lowest
values as well as a 95% confidence bounds moving away from the vertex of the identified set
where they are located. The other blocks of table (5) report the value of the other parameters
at the specific vertices, as well as a 95% confidence bounds moving away from the vertex along
each of the parameters’ dimension.
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A.2 Price Indices

In the present paper price indices are used in the determination of expenditure on a

bundle at an alternative store. As expenditure on the specific bundle affects the utility

of a consumer on top and beyond the “price level” at a store, key in the construction

of indices is to capture the consumer’s expected difference in expenditure for each

specific bundle. In general households are extremely different both in the category

expenditure mix and in the within category product mix, and the construction of

trip and household specific price indices seems most appropriate. The adequacy of

one particular index ultimately depends on the nature of the stores in the market,

whether they are close substitutes, whether they carry the same or entirely different

sets of product, and the degree of price variation across stores and over time.

In the market I analyze supermarkets are fairly homogeneous, and products ac-

counting for over 95% of expenditure are sold in more than one chain. I observe both

aggregate and consumer level data on purchases in 31 packaged goods categories for

the years 2001-2007. In my main model specifications I use category level price in-

dices using aggregate data on sales. I consider aggregation both at a weekly level

and at a larger period of aggregation; as my aim is to capture expected difference in

expenditure I use periods of 5 weeks (for a total of 73 periods in 365 weeks). The

use of a larger time span is convenient in that it smooths out the effect of temporary

promotional sales; this is important because a weekly index would make the store

offering a promotional sale relatively cheaper than another, even when the consumers

expect it to be more expensive. Additionally, as not all items available in a store are

sold in a given week, a larger time period increases significantly the number of items

effectively observed.

I construct category price indices as a weighted average of log-deviations of items’
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prices at the store from a reference average price. To avoid that an average price is

influenced by own price at the store, I construct average prices using national data

from the 50 markets. For each store, I construct category indices including 1) all items

sold at the store, 2) only items that are sold in more than one store and 3) only items

that are sold in more than one chain. Although conceptually very different, the three

indices are very similar in their values. When I construct alternative expenditures

on trip bundles using the three indices, not only is the relative ranking of stores in

terms of price the same for almost all of the trips, but also the resulting difference in

expenditure is very close. This should not come to a surprise, as products available

in more than one chain cover over 95% of expenditure.

The actual construction of the indices is as follows. Consider all the products i

sold in category j at time t in the market, and construct market expenditure weights

wijt. For all items i construct average price pijt; similarly, if the item is sold at time

t in supermarket s, construct average price at store s, psijt. Let sj denote the set of

products sold at time t at store s. The price index for catagory j in time t at store s

is given by

psjt =

∑
i 1(i ∈ sj)wijt(1 + log(psijt/pijt))∑

i 1(i ∈ sj)wijt

I further construct an overall index pst for the price level at the store as a category-

expenditure weighted average of category price indices, that is

pst =
∑
j

wjtpsjt,

where wjt are market expenditure weights for category j. As I do not observe products

and prices in for the residual category, I use the overall price level at the store pst.

Consider a trip (h, s, b, t) and let ej(b, pst) denote the observed expenditure in category
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j for bindle b; for all alternative stores s′ 6= s I construct expenditure ebs′t as

ẽbs′t =
∑
j

ej(b, pst)
(
pjs′t/pjst

)
.

Results are presented using 5-week indices based only on items that are sold in more

than one chain.

A.3 Proof of Proposition 2.3.4

By Proposition 2.3.2, pj = 1/2 whenever qj = 0. Let i = min
j
{j : qj > 0}; by

Proposition 2.3.1 pi < 1/2. Let j ≥ i.

• Suppose pj > 0; then it must be the case that

∂Π(p)

∂pj
= 0 and

∂Π(p)

∂pj+1

≤ 0 (A.6)

Let qj+1 = qj + ∆q, and pj+1 = pj + ∆p; substitute qj+1 and pj+1 in (3). We

get:

∂Π(p)

∂pj+1

= C1 − 2∆p

(
qj(2− pj) + ∆q + C2

)
+ ∆q

(
1− 2pj + C3 − pj(1− pj)

)

∂Π(p)

∂pj
= C1 + ∆p

(
−2qj(1−2pj) + qjpj

)
+ (∆p)2qj + ∆q

(
1−pj−∆p

)
(1−2pj)

where C2 and C3 are positive functions of prices independent from pj, pj+1, qj

and qj+1.
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We need to show that ∆p ≤ 0.

– Suppose ∆q > 0; for (A.6) to hold we have that

∂Π(p)

∂pj+1

− ∂Π(p)

∂pj
≤ 0 (A.7)

Rearranging terms we get

∂Π(p)

∂pj+1

− ∂Π(p)

∂pj
= (∆p)2 qj︸︷︷︸

>0

+∆p∆q (3− 2pj)︸ ︷︷ ︸
>0

+∆q (p2
j + C3)︸ ︷︷ ︸
>0

+∆p (2C2 + 2qj(1 + pj))︸ ︷︷ ︸
>0

≤ 0;

therefore ∆p < 0.

– Suppose instead ∆q = 0. Let p′ = (p1, ..., pj−1, 0, 0, pj+2, ...); since qj =

qj+1 and ∂Π(p)/∂pj and ∂Π(p)/∂pj+1 are decreasing in all prices, and the

optimal pj is positive, it must be the case that

∂Π(p)

∂pj+1

∣∣∣∣
p′
> 0,

and therefore, ∂Π(p)/∂pj+1 must equal zero at optimum. But then equa-

tion (A.7) must hold with equality, and since ∆q = 0 it reduces to

∂Π(p)

∂pj+1

− ∂Π(p)

∂pj
= (∆p)2 qj︸︷︷︸

>0

+∆p (2C2 + 2qj(1 + pj))︸ ︷︷ ︸
>0

= 0;

so pj = pj+1.

• Suppose pj = 0; it must be that

∂Π(p)

∂pj
=
(
qj + qj+1(1− pj+1) + C2)

)
− qjpj+1(1− pj+1)− qjC3 ≤ 0,
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where C2 and C3 are defined as before. Now consider the FOC for pj+1:

∂Π(p)

∂pj+1

= (1− 2pj)
(
qj + qj+1 + C2)

)
− qj+1C3

=
∂Π(p)

∂pj
− qj(pj+1 + p2

j+1)︸ ︷︷ ︸
≥0

−∆qC3︸ ︷︷ ︸
≥0

− pj+1(qj+1 + 2C2)︸ ︷︷ ︸
≥0

≤ ∂Π(p)

∂pj
.

If either ∆q > 0 or pj+1 > 0 the disequality will be strict,, hence pj+1 = 0.

A.4 Proof of Proposition 2.3.6

W.l.g. consider the case of firm A. Suppose for some qj > 0, pAj ≥ 1/2. The

proposition holds if ∂ΠA/∂pAj ≤ 0 for all pAj ≥ 1/2 and all pBj.

• Suppose pAj > 1− pBj. Then

∂ΠA

∂pAj
= qj

∂

∂pAj

(
pAjDj

)
+ (1− 2pAj)

∑
l 6=j

qlDl

≤ qj
(
3p2

Aj − 4pAj + 1) ≤ 0

• Suppose instead pAj ≤ 1− pBj. Then pBj ≤ 1/2

– If pAj ≥ 1/2 and pBj ≥ −1/2

∂ΠA

∂pAj
= qj

∂

∂pAj

(
pAjDj

)
+ (1− 2pAj)

∑
l 6=j

qlDl

≤ 9p2
Aj − 12pAj − 4pAjpBj + 3 + 2pBj − p2

Bj

≤ 0
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– If pAj ≥ 1/2 and pBj ≤ −1/2

∂ΠA

∂pAj
= (1− 2pAj)

∑
l 6=j

qlDl < 0.

99



Bibliography

Anderson, S. P., and A. De Palma (2006): “Market Performance with Multi-

product Firms,” Journal of Industrial Economics, 54(1), 95–124.

Andrews, D., S. Berry, and P. Jia (2004): “Confidence regions for parameters

in discrete games with multiple equilibria, with an application to discount chain

store location,” Discussion paper, Cowles Foundation, Yale University.

Andrews, D., and X. Shi (2012): “Inference Based on Conditional Moment In-

equalities,” Discussion paper, Cowles Foundation, Yale University.

Andrews, D. W. K., and G. Soares (2010): “Inference for Parameters Defined by

Moment Inequalities Using Generalized Moment Selection,” Econometrica, 78(1),

119–157.

Barsky, R., M. Bergen, S. Dutta, and D. Levy (2001): “What Can the

Price Gap between Branded and Private Label Products Tell Us about Markups?,”

NBER Working Papers 8426, National Bureau of Economic Research, Inc.

Baye, M. R., and J. Morgan (2004): “Price Dispersion in the Lab and on the

Internet: Theory and Evidence,” RAND Journal of Economics, pp. 449–466.

Beresteanu, A., and P. Ellickson (2006): “The Dynamics of Retail Oligopoly,”

Duke University.

100



Beresteanu, A., and F. Molinari (2008): “Asymptotic Properties for a Class of

Partially Identified Models,” Econometrica, 76(4), 763–814.

Berry, S., J. Levinsohn, and A. Pakes (1995): “Automobile Prices in Market

Equilibrium,” Econometrica, 63(4), 841–90.

Bronnenberg, B. J., M. W. Kruger, and C. F. Mela (2008): “Database

Paper—The IRI Marketing Data Set,” Marketing Science, 27, 745–748.

Burnett, P. (1973): “The Dimensions of Alternatives in Spatial Choice Processes,”

Geographical Analysis, 5(3), 181–204.

Carpenter, J. M., and M. Moore (2006): “Consumer demographics, store at-

tributes, and retail format choice in the US grocery market,” International Journal

of Retail and Distribution Management, 34(6), 434–452.

Chernozhukov, V., H. Hong, and E. Tamer (2007): “Estimation and Confi-

dence Regions for Parameter Sets in Econometric Models,” Econometrica, 75(5),

1243–1284.

Chevalier, J. A., A. K. Kashyap, and P. E. Rossi (2003): “Why Don’t Prices

Rise During Periods of Peak Demand? Evidence from Scanner Data,” American

Economic Review, 93(1), 15–37.

Crawford, G., and A. Yurukoglu (2011): “The welfare effects of bundling in

multichannel television markets,” .

Davis, P. (2006): “Spatial competition in retail markets: movie theaters,” The

RAND Journal of Economics, 37(4), 964–982.

Ellickson, P. B. (2007): “Does Sutton apply to supermarkets?,” The RAND Jour-

nal of Economics, 38(1), 43–59.

101



Ellickson, P. B., and S. Misra (2008): “Supermarket Pricing Strategies,” Mar-

keting Science, 27(5), 811–828.

Ellison, G. (2006): “Bounded rationality in industrial organization,” Econometric

Society Monographs.

Feichtinger, G., A. Luhmer, and G. Sorger (1988): “Optimal Price and Ad-

vertising Policy for a Convenience Goods Retailer,” Marketing Science, 7(2), pp.

187–201.

Griffith, R., and H. Harmgart (2008): “Supermarkets and Planning Regula-

tion,” Discussion Paper 6713, C.E.P.R. Discussion Papers.

Griffith, R., E. Leibtag, A. Leicester, and A. Nevo (2008): “Timing and

Quantity of Consumer Purchases and the Consumer Price Index,” NBER Working

Papers 14433, National Bureau of Economic Research, Inc.

Hausman, J., and E. Leibtag (2009): “CPI Bias from Supercenters: Does the

BLS Know that Wal-Mart Exists?,” in Price Index Concepts and Measurement,

NBER Chapters, pp. 203–231. National Bureau of Economic Research, Inc.

Hess, J. D., and E. Gerstner (1987): “Loss Leader Pricing and Rain Check

Policy,” Marketing Science, 6(4), pp. 358–374.

Ho, K., J. Ho, and J. H. Mortimer (2012): “The Use of Full-Line Forcing

Contracts in the Video Rental Industry,” American Economic Review, 102(2), 686–

719.

Ishii, J. (2005): “Compatibility, competition, and investment in network industries:

ATM networks in the banking industry,” Unpublished working paper.

102



Katz, M. (2007): “Estimating supermarket choice using moment inequalities,” Har-

vard University, Mimeo.

Keng, K. A., and A. S. C. Ehrenberg (1984): “Patterns of Store Choice,”

Journal of Marketing Research, 21(4), pp. 399–409.

Lal, R., and C. Matutes (1994): “Retail Pricing and Advertising Strategies,” The

Journal of Business, 67(3), pp. 345–370.

Leszczyc, P. T. L. P., A. Sinha, and H. J. P. Timmermans (2000): “Consumer

store choice dynamics: an analysis of the competitive market structure for grocery

stores,” Journal of Retailing, 76(3), 323 – 345.

Osborne, M. J., and A. Rubinstein (1998): “Games with Procedurally Rational

Players,” The American Economic Review, 88(4), pp. 834–847.

Pakes, A. (2010): “Alternative Models for Moment Inequalities,” Econometrica,

78(6), 1783–1822.

Pakes, A., J. Porter, K. Ho, and J. Ishii (2011): “Moment inequalities and

their application,” Cemmap working papers.

Reutterer, T., and C. Teller (2009): “Store format choice and shopping trip

types,” International Journal of Retail and Distribution Management, 37(8), 695 –

710.

Rhee, H., and D. R. Bell (2002): “The inter-store mobility of supermarket shop-

pers,” Journal of Retailing, 78, 225–237.

Rosen, H. S., and K. A. Small (1981): “Applied Welfare Economics with Dis-

crete Choice Models,” NBER Working Papers 0319, National Bureau of Economic

Research, Inc.

103



Smith, H. (2004): “Supermarket Choice and Supermarket Competition in Market

Equilibrium,” Review of Economic Studies, 71(1), 235–263.

Sobel, J. (1984): “The Timing of Sales,” The Review of Economic Studies, 51(3),

353–368.

Spiegler, R. (2006): “Competition over agents with boundedly rational

expectations,” Open Access publications from University College London

http://discovery.ucl.ac.u, University College London.

Train, K. (2009): Discrete Choice Methods with Simulation. Cambridge University

Press.

Varian, H. R. (1980): “A model of sales,” The American Economic Review, 70(4),

651–659.

Weinstein, J., and A. Ambrus (2006): “Price Dispersion and Loss Leaders,”

Theoretical Economics.

Wrigley, N., and R. Dunn (1984): “Stochastic panel-data models of urban shop-

ping behaviour: 2. Mulistore purchasing patterns and the Dirichlet model,” Envi-

ronment and Planning A, 16(6), 759–778.

Wrigley, N., and R. Dunn (1985): “Stochastic panel-data models of urban shop-

ping behaviour: 4. Incorporting independent variables into the NBD and Dirichlet

models,” Environment and Planning A, 17(3), 319–331.

104


