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Abstract

A new type of scaling observed in heavy-electron metal β-YbAlB4, where
the magnetic susceptibility is expressed as a single scaling function of the
ratio of temperature T and magnetic field B over four decades, is examined
theoretically. We develope the mode-coupling theory for critical Yb-valence
fluctuations under a magnetic field, verifying that the T/B scaling behavior
appears near the QCP of the valence transition. Emergence of the T/B
scaling indicates the presence of the small characteristic temperature of the
critical Yb-valence fluctuation due to the strong local correlation effect. It
is discussed that the T/B scaling as well as the unconventional criticality is
explained from the viewpoint of the quantum valence criticality in a unified
way.

Keywords: quantum criticality, β-YbAlB4, T/B scaling, critical valence
fluctuation

1. Introduction

Quantum critical phenomena not following the conventional spin-fluctuation
theory in itinerant-electron systems have attracted much attention in the
condensed-matter physics. The heavy-electron metal β-YbAlB4 has recently
attracted great interest since it exhibits not only unconventional quantum
criticality in physical quantities such as the magnetic susceptibility χ(T ), the
resistivity ρ(T ), and the specific heat C(T ) (1), but also anomalous scaling
behavior in the magnetization data (2). Namely, the magnetic susceptibility
is expressed as a single scaling function of the ratio of the temperature T and
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the magnetic field B over four decades in the form like

1

χ
= (µBB)1/2ϕ

(
kBT

µBB

)
, (1)

where µB is the Bohr magneton and kB is the Boltzmann constant. Here, ϕ
is the scaling function ϕ(x) = Λ(Γ2 + x2)1/4 where Λ and Γ are constants.

To account for this scaling behavior, Eq. (1), a theoretical proposal based
on a lattice model with anisotropic hybridization has been put forth, so
far (3). However, this theory requires a fine tuning of the f level at the hy-
bridized band edge and it is unclear whether the quantum criticality observed
in the resistivity and the specific heat can be explained by this scenario. Al-
though a theoretical proposal based on the impurity Anderson model with
a pseudo-gapped density of states was also reported (4), it has not been
shown whether the T/B scaling as well as the unconventional criticality can
be explained in the lattice model.

Recently, we have shown theoretically that a new type of quantum critical-
ity emerges near the quantum critical point (QCP) of the first-order valence
transition, giving rise to unconventional quantum criticality in the physi-
cal quantities such as χ(T ), ρ(T ), and C(T ) as observed in β-YbAlB4 (5).
Hence, it is interesting to examine whether the theory of critical Yb-valence
fluctuations can explain the T/B-scaling behavior in Eq. (1). It turns out
that the T/B scaling as well as the unconventional quantum criticality in
β-YbAlB4 can be naturally understood from the viewpoint of the quantum
valence criticality in a unified way (12).

2. Mode-coupling theory based on the extended periodic Anderson
model

We start from the extended periodic Anderson model as the simplest
minimal model for the Yb- and Ce-based heavy-electron systems.

H = HPAM + HUfc
+ HZeeman, (2)

where

HPAM =
∑
kσ

εkc
†
kσckσ + εf

∑
iσ

nf
iσ +

∑
kσ

(
Vkf

†
kσckσ + h.c.

)
+ U

∑
i

nf
i↑n

f
i↓,(3)

HUfc
= Ufc

∑
iσσ′

nf
iσniσ′ , (4)
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HZeeman = −h
∑

i

Sfz
i , (5)

with na
iσ ≡ a†

iσaiσ. HPAM is the so-called periodic Anderson model. The first
and second terms represent the conduction electron’s energy band and the f
level, respectively. The third term is the hybridization between f and con-
duction electrons. The fourth term is the onsite Coulomb repulsion between
f electrons.

HUfc
is the inter-orbital Coulomb repulsion, which plays an important role

for the valence transition (6; 7). The first-order valence transition (FOVT)
where the f-electron number shows a discontinuous change as a function of
parameters such as εf , Vk, and temperature is caused by large Ufc (8; 9) since
large Ufc forces electrons to pour out of the f level into the conduction band
or vise versa. As Ufc decreases, the magnitude of the jump in the f-electron
number decreases at the FOVT and finally disappears at the quantum critical
end point of the FOVT at zero temperature, which is defined as the QCP of
the valence transition. At the QCP, valence fluctuation diverges, giving rise
to unconventional superconductivity (10) and even unconventional quantum
criticality (5). As Ufc further decreases, the valence crossover occurs. The
global phase diagram and the properties are summarized in Ref. (11).

HZeeman is the Zeeman term with Sfz
i = (nf

i↑ − nf
i↓)/2.

We extend the theory for critical valence fluctuations developed in Ref. (5)
so as to describe the effect of a magnetic field. To discuss the quantum
criticality of the valence fluctuations, first we should take into account the
effect of the Coulomb repulsion for f electrons as the strongest interaction
in Eq. (2). After that, we should construct the mode-coupling theory for
the critical valence fluctuations caused by the HUfc

term. To construct such
a framework, we employ the slave-boson large-N expansion scheme, which
enables us to describe the heavy-electron state for U → ∞ by introducing
the slave-boson operator

√
Nbi under the constraint

∑
σ nf

iσ +2b†ibi = 1 (10).
Here we set N = 2 since the Kramers-doublet ground state is realized in
β-YbAlB4 (13). The Lagrangian is written as L = L0 + L′, where L0 is the

Lagrangian for HPAM + HZeeman with the term −
∑

i λi

(∑
σ nf

iσ + 2b†ibi − 1
)

with λi being the Lagrange multiplier and L′ is the Lagrangian for HUfc
.

For exp(−S0) with the action S0 =
∫ β

0
dτL0(τ), the saddle-point solution

is employed through the stationary condition δS0 = 0 by approximating the
spatially uniform and time independent solutions, λq = λδq=0 and bq =

bδq=0. For exp(−S ′) with the action S ′ =
∫ β

0
dτL′(τ), we introduce the
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identity through a Stratonovich-Hubbard transformation

e−S′
=

∫
Dϕ exp

[∑
iσ

∫ β

0

dτ

{
−Ufc

2
ϕiσ(τ)2 + i

Ufc√
2
(ciσf

†
iσ − fiσc

†
iσ)ϕiσ(τ)

}]
. (6)

By executing the Grassmann number integration for cc† and ff †, the
partition function is expressed as Z =

∫
Dϕ exp(−S[ϕ]) with S = S0 + S ′

where S is expanded as

S[ϕ] =
∑

σ

[
1

2

∑
q̄

Ω2σ(q̄)ϕσ(q̄)ϕσ(−q̄) +
∑

q̄1,q̄2,q̄3

Ω3σ(q̄1, q̄2, q̄3)

×ϕσ(q̄1)ϕσ(q̄2)ϕσ(q̄3)δ

(
3∑

i=1

q̄i

)
+

∑
q̄1,q̄2,q̄3,q̄4

Ω4σ(q̄1, q̄2, q̄3, q̄4)

×ϕσ(q̄1)ϕσ(q̄2)ϕσ(q̄3)ϕσ(q̄4)δ

(
4∑

i=1

q̄i

)
+ · · ·

]
, (7)

where the abbreviation q̄ ≡ (q, iω`) with ω` = 2`πT is used.
By applying the renormalization-group analysis to the action in Eq. (7),

it can be shown that the higher order terms than the Gaussian term are irrel-
evant for the 3-spatial dimensional system (5). Then we construct the action
for the Gaussian fixed point. Taking account of the mode-coupling terms
up to the 4th-order in S[ϕ] in Eq. (7), we use the Feynman inequality for
the free energy: F ≤ Feff + T 〈S − Seff〉eff ≡ F̃ (η), where Seff is the effective
action for the best Gaussian, Seff [ϕ] = 1

2

∑
σ

∑
q,l χvσ(q, iω`)

−1|ϕσ(q, iω`)|2

with χvσ(q, iω`) = [η + Aσq
2 + Cσ|ωl|/q]−1

. The self-consistent renormaliza-
tion (SCR) equation for critical valence fluctuations is derived by optimizing
the free energy dF̃ (η)/dη = 0, as follows.

∑
σ

Aσq
4
Bσ

T0σ

T 2
Aσ

(
1 +

v4σq
3
Bσ

π2

T0σ

T 2
Aσ

) C2σ +
x3

c

3

tσ
ỹ2

σ

∫ xc

0

x4(
x + tσ

6ỹσ

)2dx


×

[
y0σ − ỹσ +

3

2
y1σtσ

{
x3

c

6ỹσ

− 1

2ỹσ

∫ xc

0

x3

x + tσ
6ỹσ

dx

}]
= 0, (8)

where ỹσ = y A
Aσ

(
qB

qBσ

)2

, y ≡ η
Aq2

B
, T0σ =

Aσq3
Bσ

2πCσ
, and TAσ =

Aσq2
Bσ

2
with

qBσ being the Brillouin zone for spin σ. Here, A and qB are the zero-field
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values of Aσ and qBσ, respectively. The characteristic temperature of the
critical valence fluctuation for the spin σ is T0σ and the scaled temperature
is expressed as tσ = T/T0σ. Here, v4σ is the mode-coupling constant for the
4th order given by Ω4σ ≈ v4σ/(βNs) in Eq. (7). The integral variable and its
cutoff are defined as x ≡ q/qB and xc ≡ qc/qB, respectively. The parameters
y0σ and y1σ are given by

y0σ =

η0σ

Aσq2
Bσ

+ v4σ
T0σ

T 2
Aσ

q3
Bσ

π2 C1σ

1 + v4σ
T0σ

T 2
Aσ

q3
Bσ

π2 C2σ

, (9)

y1σ =
v4σ

T0σ

T 2
Aσ

4q3
Bσ

3π2

1 + v4σ
T0σ

T 2
Aσ

q3
Bσ

π2 C2σ

, (10)

respectively, where C1σ and C2σ are constants characterizing the frequency
dependence of χv(q, iω`).

The calculation procedure in the present framework is summarized as
follows. First, we input the parameters of the Hamiltonian Eq. (3) and
a magnetic field: εk, εf , Vk, filling n ≡

∑
iσ(〈nf

iσ〉 + 〈nc
iσ〉)/(2Ns), and h.

Then, the parameters y0σ and y1σ are obtained by calculating Eq. (9) and
Eq. (10), respectively. Then, by solving the valence SCR equation [Eq. (8)],
the solution y is finally obtained.

As shown in Ref. (5), the Gaussian fixed point ensures that the dynam-
ical f-spin susceptibility χ(q, iω`) has the common structure to the valence
susceptibility χv(q, iω`) near the QCP of the valence transition. Hence, the
uniform f-spin susceptibility diverges simultaneously with the valence sus-
ceptibility, i.e., χ(0, 0) ∝ χv(0, 0) ∝ y−1 at the QCP. Indeed, the divergence
of the uniform magnetic susceptibility at the QCP of the valence transition
was confirmed by the DMRG calculation in the extended periodic Anderson
model, Eq. (3) with Eq. (4) (14).

In β-YbAlB4, the crystalline electronic Field (CEF) analysis which repro-
duces the anisotropic behavior of the magnetic susceptibility has suggested
an existence of the hybridization node along the c direction (13). Here we
consider the anisotropic hybridization in the form of Vk = V (1 − k̂2

z) with
k̂ ≡ k/|k| (15) to simulate β-YbAlB4 most simply.

The result for y/h1/2 vs. T/h at the QCP of valence transition is shown
in Fig. 1. Here, the QCP is identified to be D = 1, V = 0.65, εf = −0.7, and
Ufc = 0.700328652 at n = 0.8, where D is the half band width of conduction
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Figure 1: (color online) The solution of the valence SCR equation at the QCP of valence
transition is plotted as in the scaled form as y/h1/2 vs T/h. The inset shows the data
used in the main panel are plotted in the T -h phase diagram.

electrons given by εk = k2/(2m0)−D. Here, the mass m0 is set such that the
integration from −D to D of the density of states of conduction electrons
per spin and site is equal to 1. We note that the energy unit is D and
the Kondo temperature within the saddle point solution by usual evaluation
manner (e.g., see Ref. (10)) is TK = 0.02437, which corresponds to the large
characteristic energy scale ≈ 200 K observed in β-YbAlB4 (1). In Fig. 1, we
find that all the data for T ≤ 3.0×10−4 and h ≤ 10−4 (see inset) fall down to
a single scaling function. The dashed line represents a function ϕ(x) = ax1/2

obtained by the least-square fit for the large T/h range of 101 ≤ T/h ≤ 104.
This indicates that the quantum valence criticality dominates in this T/h
regime, giving rise to the non-Fermi liquid (NFL) regime. On the other hand,
as T/h further decreases, the upward deviation from the dashed line starts
to appear around T/h ≈ 10−2. This reflects suppression of the valence and
magnetic susceptibility for a large magnetic field, indicating the crossover to
the Fermi-liquid (FL) regime. These results imply that the general tendency
of the T/B scaling observed in β-YbAlB4 can be reproduced by the solutions
of the valence SCR equation, Eq. (8).

To analyze how the T/h scaling behavior appears in the present frame-
work, we expressed Eq. (8) in the scaled form as y/h1/2 and t/h (12). Then
we realized that most terms can be expressed as the scaled forms, except
for the denominators of the x integrands. This indicates that the T/h scal-
ing does not hold exactly. However, it turned out that in case of large t/y,
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the denominators become large, which makes the terms of the x integration
themselves negligibly small (12).

Our analysis shows that this is the case when the characteristic temper-
ature of the critical valence fluctuation T0 is below or at least comparable
to the measured temperature. In the calculation for Fig. 1, T0 is given by
T0 = 3× 10−6 and the lowest temperature of the data is T = 6× 10−6. Then
the T/B scaling appears. Hence, emergence of the T/B scaling behavior
indicates the presence of the small characteristic temperature T0.

Note that the energy unit of our theory is taken as D, which is a half
band width of conduction electrons. This value is estimated to be in the
order of 1 eV, corresponding to the order of 10000 K. Hence, T0 = 3×10−6 is
estimated to be in the order of 10 mK. Since the measured lowest temperature
is 30 mK in β-YbAlB4, T0 is considered to be around the lowest temperature.

Here, three points should be remarked. As shown in Ref. (14), the location
of the QCP of the valence transition is moved in the ground-state phase dia-
gram of the εf-Ufc-V space by applying a magnetic field to HPAM+HUfc

(14).
In the present calculation, we neglected this effect for simplicity of analysis.
If we take into account this effect, the suppression of the magnetic suscep-
tibility is expected to be more prominent, which makes the crossover T/h
between the FL and NFL regimes be shifted to the larger direction in Fig. 1.
Such a calculation is left for an interesting future study.

The second point is on the experimental data. For the small-T/B regime,
a few sets of the data of greatly suppressed susceptibility at 1 ∼ 2 Tesla
(at not the lowest temperature) are used to conclude the scaling function
in Eq. (1). Namely, the scaling form in the FL regime is proposed to be
χ = ΛΓ1/2(µBB)−1/2 in Ref. (2), which was concluded from the middle-T
and large-B data, but not the T → 0 limit and small-B data. Hence, the
FL regime seems to reflect just the suppression of the magnetic susceptibility
under a large magnetic field and it seems unclear whether the scaling form
for T/B ¿ 1 holds in Eq. (1) in the T → 0 limit experimentally.

The third point is on diverging uniform magnetic susceptibility. As men-
tioned above, q = 0 spin fluctuation diverges at the QCP of the valence
transition. The present theory focuses on the vicinity of the QCP in the
paramagnetic metal. It is noted that in reality, competition to the other in-
stabilities, such as the antiferromagnetic order (16) and ferromagnetic order
by the RKKY interaction, and superconducting order, exists (11). Actually,
in β-YbAlB4, presence of the antiferromagnetic correlation is suggested by
the negative Weiss temperature and undergoes the superconducting transi-
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tion at below 80 mK at zero field (1). The present theory provides a natural
explanation for the large Wilson ratio as well as diverging uniform magnetic
susceptibility toward zero temperature measured in β-YbAlB4 from the view-
point of the enhanced q = 0 spin fluctuation due to the proximity to the QCP
of the valence transition.

As shown in Ref. (5), almost dispersionless critical valence fluctuation
mode appears near q = 0 in the extended periodic Anderson model HPAM+HUfc

because of the strong local correlation effect originating from the onsite-
Coulomb repulsion of f electrons. This causes extremely small coefficient A
in the valence susceptibility χv, giving rise to the small characteristic tem-

perature of the critical valence fluctuation, T0 =
Aq2

B

2πC
. Namely, the origin of

the small T0, which is greatly reduced from TK, is due to the locality of the
critical valence-fluctuation mode arising from the strong local correlations.

Hence, even at the low-enough temperature than the Kondo temperature
TK of the system, the scaled temperature by T0, t = T/T0, can be “high”
temperature. It should be noted that the new type of quantum criticality
appears in the t >∼ 1 regime in the physical quantities such as the resistivity

ρ(t), the magnetic susceptibility χ(t), the specific-heat coefficient Ce(t)/t,
and the NMR/NQR spin-lattice relaxation rate (T1T )−1, which explains the
measured unconventional criticality in β-YbAlB4 (5). Therefore, our result
shows that the T/B scaling as well as the unconventional criticality in β-
YbAlB4 can be explained from the viewpoint of the Yb-valence fluctuations in
a unified way. It is stressed that although we take into account the anisotropic
hybridization to simulate β-YbAlB4 realistically, our theory does not require
the pinning of the f-level position at the hybridized band edge as assumed in
Ref. (3).

To examine the presence of the small characteristic temperature of the
critical valence fluctuation T0 experimentally, the observation of the dynami-
cal valence susceptibility χv(q, ω) is desirable as a direct measurement. ESR
and Mössbauer measurements are considered to be such possible probes to
detect T0, which are interesting future subjects.

3. Summary

We have developed the mode-coupling theory for critical valence fluctu-
ations under a magnetic field starting from the extended periodic Anderson
model, and solved the valence SCR equation by inputting the parameters of
the Hamiltonian. This framework describes the hierarchy of energy scales
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of the system (D À TK À T0), which makes it possible to compare the
theoretical and experimental T -B phase diagram quantitatively. By analyz-
ing the solutions of the valence SCR equation derived under consideration
of the anisotropic c-f hybridization for β-YbAlB4, we have shown that the
T -B scaling behavior appears in the magnetic susceptibility as well as the
valence susceptibility near the QCP of the valence transition. The emergence
of the T -B scaling behavior indicates the presence of the characteristic en-
ergy scale of the critical Yb-valence fluctuation, which is smaller than (or at
least comparable to) the measured lowest temperature.

This work was supported by Grants-in-Aid for Scientific Research (No.
24540378, No. 25400369, and No. 15K05177) from Japan Society for the
Promotion of Science. One of us (S.W.) was supported by JASRI (Proposal
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