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Exact formulas of diagonal conductivity,, and Hall conductivityo,, are derived from the Kubo formula in hy-
bridized two-orbital systems with arbitrary band dispersions. On the basis of the theoretical framework for the Fermi
liquid based on these formulas, the ground-state properties of the periodic Anderson model with electron correlation
and weak impurity scattering are studied on the square lattice. It is shown that imbalance of the mass-renormalization
factors inoy, andor,y causes remarkable increase in the valence-fluctuation regime as the f level increases while the can-
cellation of the renormalization factors causes slight increasg,imndo,y, in the Kondo regime. The Hall cégcient
Ry shows almost constant behavior in both the regimes. Near half fiRpds expressed by the total hole density as
Ry = 1/(nhoe€) While Ry approaches zero near quarter filling, which reflects the curvature of the Fermi surface. These
results hold as far as the damping rate for f electrons is less than about 10 % of the renormalized hybridization gap. From
these results we discuss pressure dependence of residual resistivity and normékktath €e- and Yb-based heavy
electron systems.

1. Introduction ductivity by Kohno and Yamada, who formulated the gen-

The heavy-electron systems have attracted much attentiBf! €xpression in the Femi liquid thediy.Explicit calcu-
in condensed matter physics since the localized and itinerdftion of the diagonal and Hall cgndu?gﬂ;/gl_es was performed
natures of strongly correlated electrons open up unexpect®y USing the conserving approximatiorr=in the Hubbard
phenomena, which leads to a break through the paradigm%)del which contains a single orbital with electron transfer

, : 24
provide a new concept with universality. The emergence &nd Coulomb repulsion by Kontae al )_ o
the heavy mass of quasiparticles, their condensation to the su>0 far. after the formulation of the diagonal conductivity
perconductivity with essentially “high” transition temperatureby Yamada and Yosida, syst(_amgtm calculations for the dlag_o §
compared to the renormalized Fermi temperature, and uncdig! and normal Hall conductivities have not been reported in
ventional quantum critical phenomér@are such examples. detail in the periodic Anderson model which contains the two

To make experimental explorations, the measurements @fPitals for f and conduction electrons. _
the conductivity and Hall féect have been performed ex- [N thiS paper, we clarify the basic properties of the diagonal
tensively in the heavy-electron systems. Accumulated daf4d Hall conductivities, and normal Halffect in the periodic
for the Ce-based heavy electron systems show that there &fderson model. On the basis of the theoretical framework
ists a general tendency that the isothermal resistivity at tifdhich describes the Fermi liquid correctly, the ground-state
measured lowest temperature, i.e., residual resistivity, in tisOPerties of the diagonal and Hall conductivities and the Hall
Fermi-liquid regime decreases as pressure incréa9esn codficient are stl_Jd|ed by taking |nt_o accgunt th’f‘eej[s of the
the other hand, in the Yb-based heavy-electron systems, th&/gCtron correlation and the weak impurity scattering. By per-
exits a general tendency that the residual resistivity in tH@rMing the numerical calculation on the square lattice, the
Fermi-liquid regime increases as pressure incretd®sthe  dependence on parameters such as the f level, c-f hybridiza-
mechanism of the pressure dependence of the conductivi{§n: the damping rate for f electrons, and the filling is clar-
and also the Hall conductivity in relation to the valence offi€d- The relation to the shape of the Fermi surface and the
Ce and Yb as well as the shape of the Fermi surface has bdg{€ctron number per site, corresponding to the valence of
desired to be clarified theoretically. Ce and Yb, is also clarified. _ _

Theoretically, the diagonal conductivity and the Hall con- The organization of this paper Is as follows: I.n Sect. 2, we
ductivity were formulated on the basis of the BoltzmanfeView the formalism of conductivity in the periodic Ander-
transport theory?14 The formula of the diagonal conduc- SON model based on the Fermi-liquid theory. In Sect. 3, exact
tivity in the system with Coulomb repulsion among electronformulas of the diagonal conductivity and Hall conductivity
was derived microscopically Hliashberd® in the Fermilig- '€ derived in the periodic Anderson model for= 0. In
uid theory starting from the Kubo formutd The diagonal Sect. 4, the grpun_d—state properties of the conduct!vmes and
conductivity in the periodic Anderson model which is the pro:[he Hall coéﬁuent in the per!odlc Anderson model with glec-
totypical model for the Ce- and Yb-based heavy electron Sygpn cor_relatlons and weak-l_mpurlty scattering are stU(_1|ed on
tems was formulated on the basis of the Fermi liquid theo’® basis of the exactly derived formulas. The paper is sum-
by Yamada and Yosid&) marized in Sect. 5. . .

The Hall conductivity was formulated by Fukuyatha®  We take the energy units &s= 1, kg = 1, and the light ve-
in the gauge invariant manner starting from the Kubo forlCity ¢ = 1. Note that we denoteas the elementary charge,

mula. LaterEIiashberg’s work was extended to the Hall con

ie.,e>0.
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2. Formalism of conductivity based on the Fermi liquid We consider the case where the Fermi level is located at the
theory in the periodic Anderson model lower hybridized band. In the vicinity of the Fermi energy, the
(Green functions of f and conduction electrons are described

As the simplest minimal model for the electronic state i X .
quasiparticles as

the Ce- and Yb-based heavy-electron systems, we consid®¥

the periodic Anderson model GlRe) = a,GIR(), @)
H = > &, O+ ) ahi fo+ > Vic(fly G + G, o) G¥Re) = aGiR(e), ®)
ko ko ko ’
.y respectively, where the retarded Green function for the lower
+ U Z Mir Ny (Fybridized band is given by
..I - ff-R 1
with nf = £ fi, wherefi, (') is an annihilation (creation) G () = e E+im, )

operator of an f electron at theth site with spino- and ¢, o )

(c,,) is an annihilation (creation) operator of a conductioi@nd the renormalization factors are given by
electron at the wave vectarwith spino. The first term rep- OREER(g) vz 1t
resents the energy band of conduction electrons with a dis- afk 1- Ky k 2}
persion.ex. The second term represents the energy of f elec- ’ de (e -2
trons allowed to have a dispersiag,, which we here con- 2

sider for generality. The third term represents the hybridiza- %, = ( 7Vk ) af_fk, (11)
tion between f and conduction electrons with réal The on- | B - ek ’

site Coulomb repulsion for f electrons is expressed in the lagéspectively. Here, the renormalized lower hybridized band is

. (10)

_E-*
e=E,

term. given by

Since 4#5d'6s* configuration is realized in the outermost y
electrons’ shell of Ce, Cé contains the 4felectron and C¢ E = 2K te 1 (Sk _ )2 + A2 (12)
contains the #f electron. On the other hand, since"$& k 2 2 K k

configuration is realized in the outermost electrons’ shell qfith the renormalized f level
Yb, Yb*" contains the 4f electrons and Y8 contains 4% o . R

electrons. Since 4t is the closed shell for the f orbital, by &k = & [sk + Rexy (.u)], (13)
taking the hole picture instead of the electron picture, Ed. (L}, the renormalized hybridizaticfb’]f = 7V2. Here,z is
can be applied to the Yb-based systems and the parallel difstined as K
cussion to the Ce-based systems in the electron picture can be

made. Z=|1- Rex(e) N (14)
The total fillingnis defined as - de ’
e=p
N=ng + N, (2)  andy is the chemical potential. The renormalized damping
wheren; andn. are f-electron number per site and the conlate IS given by
duction electron number per site, respectively, defined as Iy = aﬁ"k (_|sz(,u)) > 0. (15)
n = % Z(n{(r), (3) The diagonal conductivity is expressed as
i
3 f‘x’ds( Bf(s)) R, A2
1 Oxx = — | {|Gk (8)| Viex(€) Jx(€)
e = YN, (4) %;—wr Oe
i
_ ff R2
Here, N is the number of the lattice sites anfl = ¢ . Re[G" (8)V§X(8)]}’ (16)

Note thatn = 2 is the half filling. o wheref () is the Fermi distribution functiofi(s) = [e®)/T+
The diagonal conductivity in the periodic Anderson modei]_l and G R(g) is the f-electron Green function for quasi-
was formulateq og)the basis of the Fermi quuid theory by Yaf)articles given by Eg. (7). The second term in Eq. (16) was
mada and YQS'dé- In the following, we review the formal- o jescribed in Ref. 17, but this term is necessary quantita-
ism for the diagonal conductivity. _tively.?¥) For example, the exact formula ofyy derived for
The retarded Green functions of f electrons and conducth@ = 0in Sect. 3 is correctly reproduced by Eq. (16) with the
electrons are given by second term in the brace when weSgte) = 0 [see Eq. (55)].

. f < Vlf -1 Here,vi«(€) is the total velocity defined as
G = +io—el —ZR(Ee) - —F—|
k() € o~ %(®) s+|6—8k] ©) Ve \2 3_\5
] Vio(8) = Voe(2) + | = | Vi + ==, (17)
Vlf 1 X £— & X e —g
GERe) = |e+id—ex— - ; , (6) i .
e+i6 — g —IR(e) where the velocity of f electrons and conduction electrons are
. R/ N given by
respectively, wher&/(e) is the retarded self energy of f elec-
trons, which arises from the Coulomb repulsidnands is ¢ o  ORER(e)
AR " Vi(e) = v, +——m (18)
the infinitesimal positive constant. kx kx oky
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el el a_
w oo % (19) = o D S(u-E)———
X Okx 2Vo Zk: [ImZE(,u)]2
Oey
Vo= = 20 0J
kx Oky (20) XVkx kaa_kky - Jkya;lfx] ) (26)
y y

respectively. The total currediy(e) is given by o _ _
1 © e’ , where the last equation is derived forfistiently low tem-
Jix(€) = Vix(e) + — Zf — T (1, €) Jex(€), Remtures. Similarly to Eq. (23), enhancement of the density
Vo ko Vo 4ni of states of quasiparticles arises fraifu — E,*) by factor
. . . . . 1 whi foj i
where Tie (u, &') is the irreducible four-point vertex intro- % » Which cancels out by, in Eq. (26). Hence, the mass
duced byEIiashberd6) On the basis of the framework of the enhancemer_lt _factor does not appear in the expression of the
conserving approximatiéh 22 where the general vertex cor- Hall conductivity.
rections for the total current are considered to be consistent®S Shown above, the formulas of. andoxy/H are ob-
with the self-energy corrections. Yamada and Yosida pointd@in€d in the vicinity of the Fermi level located at the lower
out that the total curreni(e) can be obtained as the cor- hybridized ba_md on the basis of the Fermi I|qL_J|d _theory. In
rect solution of the Bethe-Salpeter equation (21) because pth expressions afyxx andoxy/H, the renormalization fac-
the presence of the Umklapp processes on the periodic crydi@iiS of quasiparticles cancel out.
lattice1?) In other words, they stressed that the conductivity N the next Sect., we will derive the exact formulacofy
due to electron interaction should diverge in the absence 8fdoxy/H forU = 0inEq. (1), which give the general formu-

the Umklapp processes as the result of the momentum cd@s in the two-orbital systems, not restricted to the single band
servation. as treated in Egs. (16) and (24). On the basis of the exactly-

In the case of* < T, thes integration in the first-term in derived formulas, we will perform the explicit calculation of

Eq. (16), which is denoted hy&lx) can be performed as oxx andoyy/H in the periodic Anderson model with electron
2 S E ] correlations to clarify the ground-state properties in Sect.4.
o~ N (— . )aif,kvkxm)_l“—("),(za

GE’ R(g/)

¢

\70 g OE" mZE(ﬂ) 3. Exact formulas ofaxy and oy, for U = 0
In the case o) = 0, Eq. (1) is diagonalized as
= f Z §(u—-E)al ka(,u)JkX—(ﬂ) (23) _at i
Vo 4 KTk —ImER(w)’ H= Z | BB + B Vi | @7)
ko

where the last equation is derived forfistiently low tem-
peratures. Since the quasiparticle bdfd neark ~ kg is
renormalized by the facta, 6(u — E,*) is enhanced by;l.
Namely, the mass-renormalization factas anda’ , which
includesz [see Eq. (10)] cancel out each other in Eq. (23).
This implies that inoyy, all renormalizations cancel out and Here A, is defined as
the resistivity is proportional te-ImXZy(«). Since within the
Fermi liquid theory the imaginary part of the self energy is _ £12 2
proportional toT? at low temperatures;ImX(u) « T?, the B = (Sk - Sk) Wi (29)
resistivity pxx = 1/0xx shows theT 2 dependencé”)

As for the normal Hall conductivity, by applying the for-
malism by Kohno and Yamad3 to the periodic Anderson

whereE, is the lower hybridized band arigl} is the upper
hybridized band, whose explicit form is given by

8k+8{( Ak
—_— F =

EF =
k 2 2

(28)

Equation (27) is obtained by substitutiog, = us;  —wiy;
andf] =wgl _+uy, to Eq. (1), wherey andw satisfy

model in the case where the single-band treatment is justified 5 w 1 ek — 8{(
with smallT;; at suficiently low temperatures, the Hall con- U = &k=3 (147 A—k) (30)
ductivity for the lower-hybridized band is given by
. 1 & — &f
63 Oodc‘:: 6f(£) R 2 fR W2 = a_ﬁ :—(1i k), (31)
oo/ = Zk: f o (- o )|Gk (@) Im[G{ R(2)] k L A

respectively. Herea™, (a5 ) represents the weight factor of
Joxo = Jyoy ok (24) the conduction electrons in the lower (upper) hybridized band
oky oky anda”, (af,) represents the weight factor of the f electrons
whereH is a weak magnetic field applied along thaxis. N the lower (upper) hybridized band. Note that in the case of
Here, Jyy, is they component of the total current vectdy, U =0inEq. (1), i.e.Z¥(¢) = 0, Egs. (10) and (11) reproduce

0J J
Viex ky 0Jkx

>

which is given by setting instead ofx in Eq. (21). Egs. (31) and (30), respectively.
In the case of; < T, thee integration can be performed o

as 3.1 Derivation ofoxx andoyy

&3 of (E;") 31 On the basis of the Kubo formul& the diagonal conduc-

oy/H ~ —— Z (_ * )(aﬁ k) — tivity is given by
Vo K BEk ’ 2F*2 . .
. Oy(w +16) — Oy(0 +i6)
Oy 0Jkx Txx = L@o iw ‘ (32)
XVicx | Ikex—=— — Jky s (25)
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Here, the kernebyy is expressed as
Dyxliwm) =

with wy = 2rmT ande, = (27 + 1)nT (m, n are integers).

Here, the velocity matrix and the Green-function matrix ar

given by
v gk
Vg = ( 6_53 \ifko J (34)
ok, Vkp
. G (ien) G (ien) )
- = o 35
Gk (lgn) ( Gc (Ien) Gfk}(r(lgn) ( )
respectively, where
. vz ot
Gl (ien) = [ien—gfk—_ K ] , (36)
len — &k
vz ot
¢ (ien) = [ien—sk—, X f] : (37)
len — &
. Vi
GY (in) : (38)

(ien — sfk)(isn — &) — Vf’

andG® (is,) = GZ' (ien).

By performing the analytic continuation, the conductivity

in the periodic Anderson model foaf = O is derived as
(39)

_ —— ++ —+ +—
T xx = O-XX+0-XX+O-XX+O-XX’

where

T H . .
—ezv—o Zn: kZl Tr [Gro(ien) VixGko (ign + iwm) Vil (33)

The retarded Green functi@ﬁ(‘f(s) is given by
1

aR _
G () = — E@ 4 1@

(47)

The advanced Green functlﬁg’*(e) is obtained by the rela-

fion of G*A(¢) = [GeR(e)|". Here, we introduce the imaginary
ko ko

part of the self energyff) in Eq. (47). This term can arise
from the impurity scattering even in thé = 0 periodic An-
derson model. We discuss the general expressiarnpénd
oxy/H with the finite damping rate.

On the basis of the formalism in Refs. 18, 19, the Hall con-
ductivity in the periodic Anderson model fof = 0 is derived.
Hereafter, we show the result fofx = V in Eq. (1).

The Hall conductivity is given by

,w+10) — Dy(q,id
Oyy = lim lim Px( .) (0 ),
w—0qg—-0 lw

(48)
where the kerneb,y(q, iwm) is given by

. T
Dyy(Q, iwm) = (QxAqy — QVAqx)esﬁ

ZTr[

(ka( gk(r(|3n))( Wiy )Qka(lé‘n + iwm)

0

3k ——Gkeo(ien + iwm)

~VixGko(ien) ( (;K )

+ (ka Cd ka)] . (49)
HereAy, is then component of the vector potential by which

- ffoo %(—af(g))Z(ka) {ImGkR(sﬂﬂQ)the magnetic field along the axis is expressed ad =

Vo oe

ko

i = o [ E(-09) Y ) (meisefy
ko

i limg_o(axAgy — GyAgx). By performing the analytic contin-
uation, the Hall conductivity is obtained as follows:

Vo Vs Oe Oxy = Z o+ Z 0";3 n o.i;tra’ (50)
iron = f = ( a;(e)) ViV where
0 T &€ ko O—“a _ Zf dS ( af(s)) lG ( )'2 Im I:GQR(S)]
xRe[GREGH(E) - GREGRE]. (42 7 " “
Here,V, is a volume of the system. The velocity of the hy- . aav‘"' Lo
bridized bandf = OE™ 13k, (n = x,y,2) is given by XViex | Viex ok, —Viy o, )’ (51)
OV Vi _ d of
o _ 0, ff f f
Vcklﬂ aa kvﬁlz +a kvkn + afx k% aac,ka_kn’ (43) a'(;g = 2V0 Z f i ( (8)) m [{ ”R( )} aA(s)
cf fc :
whereaiyk andaLtk are defined as y [Va 8\/‘“ Va,avfm
Vk Vi XVig | Vix 7 — Vky
a(if’k = _A_k’ aif,k = A_k’ (44) [)k Bky
3
d = g Y 45) - Z [ Ztem|-2(eme) o
’ k ’ k

respectively, which satisfiea] | + a = 1 anda], a% =

af . In Eq. (42), the 6-diagonal velocity is defined as
Yy = i aSCch aj,an k"fg,
oV
ace alf acc — 46
+ a.k "o,k ak a,k @k 8kr, ( )
fora = —a.

ORI ]vﬁz( e

extra _ eB dS
O-th - H 2—\/0 % J_‘Oo 7 (—
- H 2iv0 kz f : % f(£)im [— {G;f:(g)}z GR(e)

ot (e)

22 im [Ga?(e)ezé(a] Qo
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Lz
ast, = 2%
In this case, from Eqg. (40), we have
- & OF(ED)\ / oon2/ ce 12
Oxx ¥ Oxx = V_o ; (_ (9E£ )(vckx) (a—,k)
G Imz=0 2
- — - -
k ¢ J e
,,,,,,,, G ,,,,,,a,,,,,,,,lmz:_mm o T e-B) + T
4 € 6f(Ek)) 2 2 1
— ~ _ ch ac —
Vo ;( IE, ()" (%) 2r,
e? ot (Ey) N2/ cc \2
- 2 (_ = )(vﬁx) (2% 7. (55)
Fig. 1. Contours of integration in the complexplane. The dots on the Note that Eq. (16) in the limit of) = O reproduces the expres-
imaginary axis represent the Fermionic thermal frequenejes i(2n+1)xT . ) . ot (Ey) B
with n being integers. sion of Eq. (55). Since- E = o(u — E;) holds atT = 0,
we have
& _ 2 2
2 = e D0 = B () (25) i (56)
+GE§(‘9) {G;(F:(e)} ] Quxy- (53) ke
in the ground state.
Here,a = —a andQyyy is defined by As for the Hall conductivity, in the small} limit at low
VEO _ 0 2 temperatures, the contribution from the lower hybridized band
Quy = _2%p oy INEQ. (51) is only the relevant term for,y. Then we have
k k
& At (EY) 2( OV 3
MO a0 A oy =~ H= Y (_ ) (P | S (a2,)
0_ky  c0%Vx , f0 Ky f0 “Vkx xy 2V OE- kx/) | "ok -k
X (Vckx 0ky ky (9ky +ka aky ka aky (54) 0 ko k Yy
- . . L “d
In deriving Eq. (39) and Eq. (50), the analytic continuation is xf had |G;ff(s)|2 ImGR(s),
performed as shown in Fig.'$.18.20.25-28Here C, (C,) is the —oo 7T
contour from—oco to co (from oo to —co) at just above (below) &3 Af(Ey) 2(0Vy 3
Imz = 0 andCj3 (Cy) is the contour from-co to oo (from = _H2_Vo Z (— aE,k )( k?() (a_ky](ac?k) Zﬁ%-)
oo t0 —o0) at just above (below) lm= —wp,. In Eq. (39) and ke K Y
Eq. (50), the term includind’ () term arises fromth€,+Cz  Note that Eq. (24) in the limit d) = O reproduces the expres-
contours, which makes the main contribution come from thgion of Eq. (57). Sinceﬁgg) = 6(u - E;) holds atT = 0,

vicinity of the Femi level. On the other hand, in Eq. (50), thgye nhave
term includingf (&) term arises from the contribution from the o V0 ,
C; + C4 contours. T ey (1002 | kY | ace -2
Itis noted that even when the hybridization has the momen-" ; 2Vo kzvl =B (vﬁx) { ky )(a"’k) 2nc (8)
tum dependencé/x, Egs. (51) and (52) hold with the veloci- .
ties defined in Egs. (43) and (46). Equaions (39) and Eq. (56} the ground state.
are the general expressions teg andoy/H, respectively,
in the systems with the single-band as well as the two-ban
at the Fermi level, which are constituted of two orbitals. .
To clarify the fundamental properties of the conductivityT€€ €lectron system. Namely, the conduction electrons have
and Hall codficient in the periodic Anderson model, hereaftefh® frée dispersion asq = z’kﬁ in the periodic Anderson
we discuss the case of the flat dispersion of the f bejnet, & model in three spatial dimension. Here we assume 7
in Eq. (1) as the simplest typical case of the heavy-electrdh = I'c) for simplicity of analysis. Equation (56) can be cal-

353 Isotropic free-electron system
To analyzeryy andoyy explicitly, we consider the isotropic

systems. culated as

An important remark is that in Egs. (39) and (50) the ve- o2 (vco)2 (acc )2
locities of the hybridized bandg;; appear, which give rise to Oxx = —2 f dsu, (59)
the velocity of the “large” Fermi surface which contains con- (27)° s IVEL|

“small” Fermi surface for the conduction band. constant-energy-surfac®(u) wherey = E; is satisfied in

o , the k space?® Since we havgVE,| = a% v with v&° =
3.2 The limit of small damping rate at low temperatures ’

When the total filing s less than the half-filling, ie <2 (42 + (42 + (9?2 and [, dS = 4rk? with ke being
and the Fermi level is located at the lower hybridized bandhe Fermi wave number in the isotropic free-electron system,
oxx = 0xx holds in Eq. (39) at low temperatures for the small
I, to satisfyur, > 1, where the relaxation timg is defined




J. Phys. Soc. Jpn.

Eqg. (59) leads to varied even al = 0, as will be discussed in Sect. 4.2.6.
_ 2¢°t ., (Vﬁfx) aEko 4. Ground-stgte properties ofoxy, oxy/H, and Ry on the
R Arks o (60) square lattice
_ e In Sect. 3, we derived exactly the general expressions of di-
_ nezTacc (61) agonal and Hall conductivities in hybridized two-orbital sys-
me tems with arbitrary band dispersions for non-interacting case.

wherevﬁf = ke/Me, Vﬁi’x = Key/Me, andkﬁx _ k§/3 are used. N this Sect. we study the ground-state properties of the di-

Here, s the total filling, which is defined by the total elec-290nal conductivity and normal Hallfect in the periodic
tron numbeiN, per the volume of the system: Anderson model Wlth onsite Cou_lo_mb_ repuIS|on_ between_f
electrons. By employing the Fermi liquid theory discussed in
=_ Ne _5 Ar ko dki@ = E’ (62) Sect. 2, we will discuss that the diagonal and Hall conductivi-
Vo (2n)® Jo 3n?’ ties can be calculated by using the formulas derived in Sect. 3.
Note that the faCtOfaSCkF appears in Eq. (61), which implies However, we make an approximation in which the Fermi lig-

that the ratio of the amplitude of conduction electrons to thiid correction for the current given by Eq. (21) is neglected.
damping rate determines the naturerg. Nevertheless, this approximation is considered to be valid for

As for the Hall conductivity, Eq. (58) can be calculated ast"® Present purpose that we discuss a qualitative aspect of the
diagonal and Hall conductivities. To clarify the general prop-
26372 (vﬁ?()z (agfk)s erties realized in Ce- and Yb-based heavy-electron systems,
- 20°m f |VE‘| , (63) we concentrate on the Fgrmi-li_quid grou_nd state taking into
St K account the fiect of weak impurity scatterings.

0-)(y =

3.2 <VCO )2 (acc )2 The imaginary part of the f-electron self energy around the
_ _p2eT gy ted el (64) Fermilevel is expressed as
(27)3me Vie R UR imp R
IMZZ(e) = ImZ; "(g) + Imz"™P %, (69)
= —wcTox@ (65)

_ . " where Im:kJ R(e) is arising from the onsite Coulomb repul-
wherew is the cyclotron frequency definedag = . Note  sjon in Eq. (1) and IlB™ R is from the impurity scattering.
that in Eq. (64) the factofra®, 2 appears, which implies In the Fermi-liquid regime, I8 R(¢) has the following form
that the square of the ratio of the amplitude of conductiofit ZET0 temperature:

electrons to the damping rate determines the natuogof |m2t1 R(e) = —Cu(e — )% (70)

By using Eqs. (61) and (65), the Hall dieientRy under ) )
a weak magnetic fielth applied along the axis is obtained WhereCy > 0 is a constant of the order of the inverse of the

as effective Fermi energy’ -3 When f electrons are scattered
oo/H weakly by a small amount of local impurities, BiP R is cal-
Ry = xy2 , (66) culated within the Born approximatiéh3Y as
O%x .
wera®, IME™ R~ —nimpu®(@l aN*(u), (71)
= - Ha‘x;( ’ (67) wherenin, is the impurity concentration andis the impurity
1 potential. HereN*(u) is the density of states of the quasipar-

= = (68) ticles at the Fermi level defined BY(e) = Xk d(e — E.*)/N
ne _ _ with N being the number of lattice sites ataf’ | )y is aver-

Note here that although both, andoyy include the ratio of - aged value of the f-electron weight factor defined in Eq. (10)
the weight factor™,_ to the damping rate as Eqgs. (61) ancover the Fermi level. AlthougtN*(u) is enhanced by the
(65), the factorsa®_in the Hall codficient are cancelled so renormalization factog, ', the enhancement is canceled by
that the resultarR is expressed by the total electronfilling ¢ fact0r<affk>av [see Eq. (10)]. Hencqaffk YauN* () is the
This implies thaRy is only determined by the total filling ir- uantity in t_He order ofV2Nge)~ where_N FF is the density
respective of the weight of conduction electrons component states of conduction eIections,at the Fecrmi level
the Fermi level. Namely, Eq. (68) reproduces the well-known As described in the formalism in Sect. 2, the diagonal

result in the single-orbital system. A L
. conductivity in Eq. (16) and Hall conductivity in Eq. (24)
Here, two re_marks should be mad_e. F'r.St’ Eq. (68) Sho"\éﬁe claculated by using the Green function for quasiparti-
the negative sign and that the magnitude is expressed as 5s. Here we consider the Eﬁ(,u) in the form of Eq. (69)
verse of the total filling. We_ note that Eq. (68) is qbtained i s the self energy. Since the impurity concentratigg and
the free-electron system with the spherical Fgrm| surface. e strength of the impurity potentialare parameters to be
general Ry depends on the shape of the Fermi surface, morg en and the extra factqlaffk yaN* () in Eq. (71) can be

preC|sdeIt¥; the cur_\t/a;ur(_et oflftge Fer(rjm Sl::aci' Hen??r,] S'gn pressed essentially by bare quantities not including renor-
Ry and the magnitude itself depend on the shape of the eM4lization factor and has only weak dependence;inwe

csjgrface e(\j/(_en ('jn tth.? .ngdft-t"?g ?St T = 0. This point will be treat them as variable input parameters. Namely, we calculate
iscussed in detail in Sect. 4.2.5. o4 andoryy/H by inputting

Second, we note that Eq. (68) is obtained in the sifiall- _
limit. If the damping ratel’, is not small, it is not guaran- [ = -ImZf() = —-Imz™P R (72)
teed thaRy shows a constant behavior as Eq. (68) whkeis
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into the quasiparticle Green function. As the simplest frame- +ZZ z(,( 7 )8f<fko' fio) = _2(/1(1) _ 2,1(2)) dy79)
work to perform such a calculation, we employ the slave- ko

boson mean field theoty since it has been established to 9z,

describe the fixed point of the Fermi-liquid ground state in N Z( ) (f #Ckor) + hC)

the periodic Anderson model correctly.
4.1 Slave-boson mean field theory

By applying the slave-boson mean field theBtyo Eq. (1),
the dfective Hamiltonian is obtained as

H = Z Ek C;(,.Cka + Z &t fl(lr fi(,-
i

ko
VY (@it + 6, fuz,) + U Y dd
i i

+
+ Z/li(l) (e.*a +pl pip + pﬁ piy +ddi - 1)
s Y A2 (f 6 - bl P - dld). (73)

i

Here,e' (6) andd, (d;) are bose creation (annihilation) op-
erators for the empty and doubly-occupied state, respectively

and pitr (pis-) for the singly-occupied state on théh site. The
renormalization factor is defined as

Zo = (1 - ddei - pf(,pig)_l/z (er Pic + pr—adi)

>—1/2

x(1-e'e - p,po (74)

The last two terms with the Lagrange multiplieh@ and/l 1)

+2Zz(,( )sf<f fo) = -—2aWe (80)

ko

In this paper we consider the paramagnetic state and hence
we assume, = p; = p. The renormalization factor is then
expressed as

\1-2p?

_. 81
T (81)

Hereafter, we consider the case for= co for simplicity of

analysis. Then we set= 0. By using Eq. (75), the derivative

of the renormalization factor by, ande can be expressed by
only p, as follows:

0z, \1-2p? 82
Po p(1-p2)*% 2
0z, Vi-2p2 (@3)
- pV1-p?

0z, 1-p?
% - o (84)

ZT:Zi:Z:

Then, we end up by solving the mean-field equations of
Egs. (76), (77), and (79) fot, 1@ and p simultaneously

in Eq. (73) are introduced to require the constraint for thGith Eq. (2) for the chemical potentialin the self-consistent

completeness condition.

manner. In these equations, the following expectation values

Here, we consider the case where f electrons are subjegt, calculated as

to the impurity scattering in the form of Eq. (72) as an input

parameter.

By approximating the mean fields as uniform oness
(&), pr = {pic), d = (d), and the Lagrange multipliers(!) =
A and 1@ =A@, with z, = (z,), the set of mean-field
equations is obtained b¥7)/8AY = 0, d(H)/d1® = 0,
HH)Y/0py = 0,0(H)/dp, = 0,0(H)/dd = 0, andd(H)/oe =
0:

E+pi+pi+d® = 1, (75)
1 +
N kZ<fk‘(, fir) = PI+ph (76)
V 0z,
N Z( e )((fko.ck(r> +h. C)
ko
+2 Z z, (g )Sf< fifey = -2 (/l(l) - /1(2)) p77)
N Z( )((fko-ck(r>+ hC)
+2 Z p (2 )8f< i fey = -2 (/1(1) - /1(2)) Pi78)

<fk(,-Ck(r> +h. C)

Z|
M
—_
QJ
%“
~——
—_

~ Z< £ o)
ko

% Z«:lgckg)
Z(f Ceor)

Here, G R(¢), G R(e), and G{ff(s) are the retarded f-
electron, conduction-electron, andf-diagonal green func-
tions, respectively, which are given by

Z f def (£)ImGH R(c)(85)

f def (£)ImGE R(e)(86)

f def(£)ImGI R(£)(87)

ko) = a,GRe)+a,GRe),  (88)
G Re) = &SGR+ acckek(, (e), (89)
GlERe) = a°GR(e) + 8GR (e), (90)

respectively. In Eq. (88)3@1( € k) is the amplitude of the f-
electron component in the Iower (upper)-hybridized band at
k. In Eq. (89),a"§fk (éi‘fk) is the amplitude of the conduction-
electron component in the lower (upper)-hybridized band at
k. These are given by

~ 1 & —5f)
= aSC = 1= = . 91
k +,k 2( Ak ( )

=

The weight factonafjk (aka) in the lower (upper) hybridized
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1 T
band in Eq. (90) is given by
\Y;
g, = -, (92) 0.8 T
5 Ak
~ v
a, = i 93)  _0.6F10"'y—T—1T—T3
< 2 <3
Here,Ay is given by ot ]
0.4107% .
Ak = \[(Sk - éf)z + 4V2, (94) | 35_ - Ahyb_E
wheres; = & + 1@ andV = Vz We note that the relation 0210 F '":" 7le 3
al, + &S = 1holds. In Egs. (91) and (94), the f leval 5 ' 1 ' 0 ' 1 ' >
and the hybridization strengi¥ are replaced by;andV in | | € | |
Egs. (30) and (29), respectively. The retarded Green function 0 ) ' 1 ' 0 ' 1 >
GgR(¢) is given by B B Ec
~ 1
GRe) = ——=F—~ (95 _ . .
o e — E@ L if@ Fig. 2. (Color online) Thest dependence of the f-electron number per site
k k fort = 1,V = 0.3, andU = oo atn = 7/4 with ' = 1073 calculated in the
WhereE(k”) is given by N = 1200x 1200 lattice sites. Inset: The dependence afinyp (solid line)

~ andTk (dashed line).
=r &+ & _ %
Ek = 2 =+ 2 .
Here we consider the finite imaginary part of the self energy,
f(k"), in Eq. (95), as described in Eq. (72). In Sect. 2, Eq. (10))e nearest-neighbor hopping for conduction electrons on
is expressed as the square lattice and the energy band is givenspy=
, -1 —2t[cos(ky) + cosky)]. As a typical paramete_r for h_eavy elec-
+ VvV } (97) trons, we set = 1,V = 0.3,U = oo at the fillingn = 7/4.
(e — &x)? Hereafter, the transfer of conduction electrons is taken to be
) o the energy unit of the parameters in the Hamiltonian, Eq. (73).
In the present mean-field framework, the renormalization fagg imaginary part of the f-electron self energy is set to be
torj? )expressed asand the quasiparticle p(a?d is expresseg¢ _ 103 in Eq. (98) as a typical value. We solve the mean-
aI?Ek" - Hence, by 592'”@ aszandEy” asE” in Eq. (97),  fie|q equations self-consistentlyBt= 0 in the several system
a, Is expressed az, . Then, from Eq. (15), the damping gjzes forN = L2 with L = 112, 800, 1200, 1600, 1920, and

(96)

ff

a(t,k =% |1

_Eox
e=Ey

rate of the quasiparticle is expressed as 2240. Below we will show the results calculated on the lattice
f(ka) =" T, (98) sites withL, = 1200 unless otherwise noted.
wherel is defined ag" = —ImZ(y) > 0in Eq. (72). 4.2.1 f-electron number per site and the characteristic en-
Hence, by using Eq. (95) as the Green function for quasi- ergy

particles, the ground-state propertiesogk, oxy/H, and the  gigyre 2 shows the; dependence of the f-electron number
Hall codficient will be discussed in the next Sect. on the basger site,n;. As & increases, the crossover from the Kondo

of the exactly-derived formulas, Eqg. (39) and Eg. (50). regime withny ~ 1 in the deeps region to the valence-
As shown in Ref. 17, by calculating the vertex correction|,ctyatiors? regime withny < 1 in the shallows; region

in the self energy and the total current consistently for thg.curs in the ground state.

conductivity in the clean limit at finite temperatures, the total The characteristic energy scale of the present system

currentJy, has a finite value without .dlverglng'be.caus.e Of_/vhich is given by the hybridization gajs, is defined by the

the presence of the Umklapp process in the periodic lattice Ehergy gap between the bottom of the upper hybridized band

Eq. (23). In the present framework for the ground state=( g the top of the lower hybridized band of quasiparticles:
0), we consider the self energy with the impurity scattering

as in Eq. (69), which is consequently expressed as Eq. (72). Anyb = Bé_(00) = Eiccrny (99)

As for the total current, the present framework corresponds yce we consider the filling af = 7/4 less than half fill-

approximating the resultadk, asvk, in Eq. (21). _ ing, the Fermi level is located at the lower hybridized band.
The validity of this framework at least within approximat-the Kondo temperatur, which is the characteristic energy

ing Jk; asVi, is confirmed by comparing it with the finitd-  scale of the heavy-electron system, is defined as the energy
result based on the Fermi-liquid theory in Sect. 2, which willierence between the renormalized f level and the Fermi

be shown below (see also Appendix). level Tk = & —u in the present mean-field framework. The in-
) set of Fig. 2 shows thatyy;, (solid line) roughly corresponds
4.2 Numerical Results to Tk (dashed line), both of which well scale far < 0.
On the basis of the theoretical framework described in To visualize the Fermi surface at= 7/4, we plot the spec-
the previous Sect., we calculate the conductivity in the pggy function A, (k, &) = _%lmGER(S) for @ = — ande = u

riodic Anderson model on the square lattice. We considegy Fig. 3. Here we show the contour plot fer = —4.0 as a

8
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Fig. 3. (Color online) The contour plot of the spectral functidn(k, u) =
-IM[GRW)]/ratn'= 7/4fort = 1,V = 0.3, & = -4.0, andU = oo with
I' = 1073 calculated in theN = 112x 112 lattice sites.

typical case calculated in thé = 112x 112 lattice sites.

4.2.2 Diagonal conductivity

30 T T T T T T T
—o0,
c,ﬁ? '
0.5 t :
20 0.4 y :'—
5 55 0.3 § /
© 0.2 i
0.1 1/
10 olb— w1y /T
2 -1 0 1 2/
Er 7
N .
-2 -1 0 1 2
er

Fig. 4. (Color online) Theg; dependence of the conductivitykx (solid
line) ando'Y (dashed line) fot = 1,V = 0.3, andU = co ati = 7/4 with
I' = 10-3is shown in the left axis, which is calculated in tRe= 1200x 1200
lattice sites. We set = 1. Inset shows thes-level dependence of resistivity

Pxx = L/oxx-

By using the mean-field solutions, the conductivity is cal-

culated on the basis of Eq. (39) &t= 0. Theg dependence

of oy is shown in Fig. 4. In the deeg-region, ase; in-

creasesgyyx shows a gradual increase which can be seen as
almost constant behavior, whitgx shows a sharp increase in

the shallowe; region forer > 0. The inset shows theg-level
dependence of the resistivityy, = 1/0xx.

To analyze the mechanism, we pln@ in Fig. 4, which is
defined by
~cc )2

<x°x>=(2ﬂ)22

T, |AK], (100)

with 7, = 2r
wave vectorkp and|AK| is the length between each ndegt

averaged over the Fermi surface

A (102)
Nkp ka:F K

=ff —
@y Jav =

with Ny, being the number of thieg points. Ase; increases,
(éfkp>a\, is kept to be almost 1 up tg ~ 1 and sharply de-
creases to zero fag > 1.

The renormalization factar approaches zero in the deep-
g limit due to strong correlationfiect on f electrons with
nr — 1 (see Fig. 2). Asy increasesz increases gradually.
The damping ratEk given by the multiplication oa‘* andz

. Here, the summation is taken over the Fermin Eq. (98) is averaged over the Fermi surface

(103)

2T
F k=ke

point. This is the two-dimensional version of Eq. (59) in the Tpdav = N_
lattice system. We see that the result almost coincides with
oxx- This indicates thatr;; in Eq. (40) gives the dominant which shows a peak structure arousd ~ 2 as shown in
contribution too«x in Eg. (39) and the analysis with the smallFig. 5. An important result here is th(aff;F)a\, is suppressed
I, in Eq. (55) is applicable to the parameter regime shown ifompared td” = 1073 in all the & region since in both the
F|g 4. Since the velocity of the lower hybridized band = Jargesr and smalle limits T, approaches zero and the peak
VE, is given byv,~ = v, [see Eq. (43)], Eq. (100) can value is bounded by the smill

be expressed as Figure 6 shows thes; dependence of the conduction-

electron weight factor averaged over the Fermi surface
5O _ 2¢? Z
XX - (27_1_)2

This implies that the ratio of the conduction-electron weight

factor &, and the damping ratE determines the behav- N Fig. 6, <£: )av is also re-plotted for comparison. As in-
ior of aﬁg() creases{a® ke Yav increases gradually in the deep+egion,

which was?c])lr;%?;etcsadezie?r:? Igag:: csnf1 ?12 flger:]m?flqi?d (ti?Nh”e it ShOWS a sharp increase around- 1. The gradual in-
CC
ory,}”) as shown in Appendix. This indicates the validity of frease IN&C} av and(f’ Pav In the deepe; region gives rise
' to cancellatlon of theféect of the mass renormalizatithin

the present formalism.
In order to clarify thes; dependence d~F* from Eq. (98) Eq. (0101) which causes the almost constgntiependence
of a'XX However, ag; increases to reach the shall@wre—

in detail, we plot in Fig. 5 the dependence of the renor- 0, lled th | fluctuati
malization factorz and the f-electron weight factor which is gion, & 2 0, i.e., so-called the “valence- .uc uation” regime,
the cancellation does not work, whea®, _ increases sharply

"’CC

X |AK]. (101)

0|2F (& k,:>av = N o A (104)
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Fig. 6. (Color online) Theeg; dependence of the conduction-electron
weight factor(éfko>a\, (dashed line, right axis) and the imaginary part of

the seIfenergy{f‘;F)a\, (solid line, left axis) is shown, which is calculated for
t=1,V=03,andU = w0 atn = 7/4 with T = 10-3 in theN = 1200x 1200

Fig. 5. (Color online) Thes; dependence of the f-electron weight factor
(é‘fikp>a\, (dashed line) and the renormalization fact¢dash-dotted line) for
t=1,V =03 andU =  atn = 7/4 with ' = 1073 is shown in the
right axis, which is calculated in thd = 1200x 1200 lattice sites. They ) ;
dependence of the imaginary part of the self eant@é}a\, is also plotted  lattice sites.
(solid line) in the left axis.

3000 .
. : . . —o,/H
while I remains small. This imbalance is the reason why i WO
oxx Shows a sharp increase in the valence-fluctuation regime G)Ey)/H
for & > 0 in Fig. 4. This gives a natural explanation for the

) o E 2000
pressure dependence of the residual resistivity frequently oBs
served in the Ce-based compounds and Yb-based compounds:
The pressure dependence of the conductivity will be discussed
in detail in Sect. 4.2.7.

The above result is obtained by using constaimtEq. (72). 1000 - /]
As noted below Eq. (71)(ako>a\,N*(u) can be expressed ’,.‘
essentially by the bare quantities, which is on the order of [ /
O(rV?Ngp)~t. Hence,I" defined in Eq. (72) has only weak-

& dependence. However, as shown in Fig. 5, the quanti- 0 J2 = '1 '6 i ‘ )

ties related to renormalization factarand é‘fgk in Eq. (98),
have strongs; dependence, which give the main contribu-
tion to the remarkable change of;x when g varies from
the Kondo regime to the valence-fluctuation regime. HencE&ig- 7. (Coloronline) Thest dependence of the conductivity,y/H (solid

: : line) ando"®)/H (dashed line) fot = 1,V = 0.3, andU = co ati = 7/4 with
present treatment using constdhts considered to capture Xy _ _ L .
th fthe t t bh As for the hvbridi I' = 102 is shown in the left axis, which is calculated in tRe= 1200x 1200
he essence of the transport phenomena. As for the hybridizgs . cies we sat- 1.
tion dependence, we have also performed the calculations of
thegr dependence afyx by inputting several values éfand
confirmed that the main conclusion above does not change as
far as the renormalized damping rate is far smaller than thgyensional version of Eq. (63) in the lattice system. We see
hybridization gap. Thé" dependence and thé dependence 5 the result almost coincides with,,/H. This indicates
will be discussed in Sect. 4.2.6 and Sect. 4.2.7, respectively, o5 /H in Eq. (51) dominantly contributes @,y/H in

Eq. (50) and the analysis by the smBjl = % in Eq. (58)

4.2.3 Hall conductivit
Y is applicable to the parameter regime shown in Fig. 7. By us-

The & dependence of the Hall conductivity is shown Inmg the velocity of the lower hybridized bani,~ = VE; _

Fig. 7. The Hall conductivityryy/H is calculated by using 5 ..
Eq. (50) afl = 0. Asg; increases, in the deep+regionoyy/H Vic e Ea. (105) can be expressed as

gradually increases, which can be seen as almost constant be- 0 V0 M (xcc \2
havior, while it shows a sharp increase in the shalipwe- Ty 2e? ( kx) (6ky )( —,k) IAK]. (106)
gion forg; > 0. H ()2 o0 (o7 )2 ’
=~ kke Ve |(2Fk)
To analyze the mechanism, we pdrﬁ)y)/H in Fig. 7, which

In the right hand side,z—ko/f“;F)2 appears, which implies

is defined by
o OV (P (e \P that the ratioa™, /I determines the behavior of$)/H.
oSy 3 2€? ( kx) (ﬁ_ky)(a,,k) -\ | AKLOS As shown in Fig. 6, in the deeg-region, & /T, increases
H (02 ka: IVE(| (T)"14k105) gradually, while it shows a sharp increase in the shalipve-

gion fores > 0. Namely, cancellation of thefect of the mass
with the same notation as Eqg. (100). This is the two-

10
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Sf Fig. 9. (Color online) The system-size dependence of the Halffaent

Ry fort=1,V =03,& = -4.0,andU = cowith T = 103 atn = 1 (open
circle), 6/5 (filled diamond), 75 (filled inverted triangle), & (filled square),
Fig. 8. (Color online) Thes; dependence of the conductiviiy (solid 7,4 (filled triangle), and 85 (filled circle). We see = 1.
line) andR® (dashed line) fot = 1,V = 0.3, andU = e atin = 7/4 with
I' = 103 is shown in the left axis, which is calculated in tNe= 1200x 1200
lattice sites. We set= 1.
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A /o

4.2.4 Hall cogficient 7

Theegs dependence of the Hall cfieeient is shown in Fig. 8.
Here we see = 1. The Hall cofficient Ry = O'xy/(H0'>2(X)
(solid line) calculated by using Egs. (39) and (50) shows a
slight decrease as a functionaf exhibiting almost constant
behavior. Namely, the sharp increaserig andoyy/H in the
valence-fluctuation regime fef > O in Fig. 4 and Fig. 7, re- T N N
spectively, cancel out each otherRy. To analyze this can- 1 1.2 14 1.6 1.8 2
cellation which occurs even in the valence-fluctuation regime, n

let us plot R,(f) = )/(Ho-(o) ) by the dashed line calcu-
lated by using EqS (100) and (105) in Fig. 8. We see thatlg. 10. (Color online) The filling dependence of the Hall dbeient Ry
RY also exhibits almost constant behavior. This is understodel t = 1,V = 03, & = ~40, andU = o with T = 10" in the bulk limit
from expressions Eq. (100) and Eq. (105) since the factors Of ~ ©)- The dashed line representg(2 - ne). We sete = 1.

&, /T}, which appear in boterly) andog)/H cancel out in
RS) The close agreement betwelgn and Rff) indicates that
the cancellation of the factors afc“ /F . actually occurs in
R4, as was shown for the |sotrop|c free electrons in Eq. (68
However, in Fig. 8, the sign iRy is positive and the magni-
tude is not expressed by the total filling agrie) = 4/(7e),

hich i trast to th It to Eq. (68). Th ne
willl(t:)ezrnea;;z(e?jnbﬁzwo e result to Eq. (68) ese pom Nhole = 2 — N by a dashed line (Note that we set:l) We

ole
To figure out the filling dependence Bf;, we calculateryy can see thaRH approacheRﬂ asn approaches half filling,

ando-xy/H for 1 < n < 2 plausible to the heavy-electron state” <h lear d tion f the dashed line. Th it
in several system sizes and extrapolBteto the bulk limit, ows a clear deviation from the dashed line. These resuits in-

N = L2 - co. Figure 9 showsR, vs. IN for & = —4.0 at dicate that near the quarter filling, i.e., foxIln < 1.6, Ry is

n=1, 6’5 7/5, §5, 7/4, and 95. The system sizes used fornot expressed simply by the hole density.gs;.

the extrapolation arl = L2 with Ly = 1200, 1600, 1920, and

2240. 4.2.,5 Curvature of the Fermi surface and Hall conductivity
The n dependence oRy in the bulk limit is shown in and Hall cogficient

Fig. 10. Note that the error bar by the least-square fit done To understand the reason wRy; does not follow the sim-

for the system-size extrapolation is attached to each filled ciple relationRy = 1/(Nhoi€), we analyzery,/H from the view-

AN
!

enhancement, iea,“; /f“‘ ~ 1, causes the almost constant
behavior of(rxy/H in the deepef region and the imbalance,
i.e., &€ /F > 1, makes the sharp increaseotn,/H in the
valence quctuatlon regime fex > 0in Fig. 7. o)

e

le. The error bars are within the symbol sizes and invisible,
ndicating that the system size dependence does not matter in
the N > 1200 lattice sites. Here, we also plot the Hall co-
gﬁuent expressed by the hole densityRis'® = with

= 2. HoweverRy approaches zero asapproaches 1, which

11
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Y
point of the curvature of the Fermi surface. In the single-band
system constituted of a single orbital, it has been shown that
oxy/H can be expressed by the angle betwdeand thek, <
axis within the Boltzmann transport thedfy* and the the-
ory considering the vertex correctioff.In the present sys-
tem, there exist two orbitals of f and conduction electrons,
which form the lower and upper hybridized bands. Since the
Fermi level is located at the lower hybridized band, the systent
is regarded as the single-band systefh at 0 in the smallf;
limit.

At sufficiently low temperatures in the small damping™’
rate, o, /H in Eq. (51) dominantly contributes toy/H
in Eqg. (50). Let us write Eq. (57) in the original form like
Eqg. (50) as

0

-

)
ky T

e ( of (B )] T
owy/H — ) |-—=
ol 2Vo ; OB,
G oY, 2 >
o o y ~— kx
XV Vi | =— |-V, ——107
K kx( ky ) ky( Ky )] A(T,)? )
Here, by Eq. (43), the velocity of the lower hybridized band i
v, = VE, in the present system for Eq. (73) is written as 0 ke i i 0 k T
(8 ' - (h)
Vi = vt = . (108) T 2 3
Now we apply the formalism shown in Ref. 24 to Eq. (107). /1y |
Here we describe it up to Eq. (116) below as the self-. 0 P DU @ ,,,,,,,
contained explanation although it was originally published in %
Ref. 24 [see Eq. (22) in Ref. 24].
For the subsequent discussion, we rewrite Eq. (107) as fol- 1
lows 0 k. b8 0 I 270 kx
ox/H = _i Z _Gf(NE;) A (k) ~2 (109) Fig. 11. (Coloronline) The contour plot of the spectral functibn(k, u) =
y 2Vp £ = i 4(1"@2’ ~Im[GR()]/x at (@)A = 1, (b) &5, (c) 7/5, (d) &5, and (e) 95 fort = 1,
_ _ o V = 03,5 = -4.0, andU = o with T = 1073 calculated in theN =
by introducing 112x 112 lattice sites. (f) The velocity of the lower hybridized bamdon
Py - the Fermi surfac& = kr. (g) The relation amongr, k'®®, andQ = (r, 7),
AL (K) = Ve, | ﬂ o ey (110) ke = Q + k9. (h) The path for the line integral Eq. (117) along the Fermi
XY\ = Tk | Tkx Ky ky oky )|’ surface.

As shown in Ref. 20 [see Eq. (3.21) in Ref. 20], this can b
rewritten in a simpler form as

e

e af(E;) ~ 2 Fermi surface in the present two-dimensional system. Then
oxy/H = A % (— oE )As(k)m, (111)  we have
. ' e 2 ~_12(d6- (k) 2
whereAg(k) is defined as oxy/H = ———56 dk; |V, (—)N— 116
AS( ) Xy. 4 (27()2 s IQ|| k| dlﬂ‘ 4(1_;)2 ( )
As(k) = Ay(k) + A(k). 112

This can be expressed®ds
ASK) = T8 x U V¥ — Ty (& X ) Vi, (113)

e D
= |vk|(vkxa—k“vk), (114)
= |v;|-|v;|2(dgghﬁk)), (115)

wherek; is the component df along the vectog(K) = (& x
)/ [V|. and tangential to the Fermi surfacekasince? is
perpendicular to the Fermi surface. In Eq. (1¥g) is the
angle betweefi, and thek, axis.

By applying the similar derivation used in Eqg. (63) to
Eq. (111),>« can be expressed by the line integral along th

12

where thek point moves counterclockwise along the Fermi
surface in this line integral. Note that by Eq. (108) the mass
renormalization factors appear aa§_‘f(7f;)2 in the integrand,
which cancel out in the deep-region as noted in Eq. (106).
To visualize the Fermi surface, we plot the spectral function
A.k,&) = —ImGR(e)/n for @ = — ande = p at (a)n = 1,
(b) /5, (c) 75, (d) 85, and (e) % in Fig. 11. Here, set of
parameterst(= 1,V = 0.3, = -4.0, andU = co With T =
107%) is the same as those in Fig. 9 and the results calculated
intheN = 112x 112 lattice sites are shown.
At quarter filling,n = 1, we see thafy (k) for example on
the first quadrant does not change, siﬁpFeis perpendicular
to the Fermi surface, which makés (kg) be kept to ber/4.
This gives rise taldy- (k)/dk, = 0in Eq. (116). Hence, it turns
out thatoxy/H andRy as well become zero at= 1 at least
for the smallE, limit. Actually, Ry atn = 1 in Figs. 9 and 10
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; ; ;
is shown to be almost zero although the spectral function is " (a) =102

broaden neak = (0, 7) and (, 0) in Fig. 11(a) because of the & -
finite damping ratef“;. ©

The reason why the sign ofy,/H and the resultarfe, be-

come positive for 1< n < 2 can be also understood from ; ;
expression Eqg. (116). As illustrated in Fig. 11(f), the angle i (b)I'=1 0-3
6y (k) becomes smaller dg moves along the Fermi surface. & 0 [
Namely, d6y-(k)/dk; < O in Eq. (116) makes the sign of o 10k
oxy/H be positive, and hence the positive Hall fiagent ap- 0 - .

pearsRy > 0. 300 _ . : p .
(c)I=10"

(O8]
SO~ N W K n
|

Furthermore, the reason wRy, approaches/{(2-n)e) as
n approaches half filling, 2, in Fig. 10 can be also understood » 200 |-
on the basis of Eq. (116). As approaches = 2, the form b I

of the Fermi surface for holes approaches the circle around 100 i
k = (7,7) as shown in Fig. 11(e). Hence, it is convenient to 0 ' '
introduce the variable transformatiti = Q + k[ with a -2 -1

constant shifQ = (r, 7) in Eq. (116), as shown in Fig. 11(g).
Then, Eq. (116) is expressed as

Fig. 12. (Color online) Thes; dependence of the conductivity for t =
e 2 9§ dk1h0|e|‘7_|2 déy- (k) 2 (117) 1,V =03, andU = oo atn = 7/4 with ()T = 1072, (b) 103, and (c) 10*
4 (271)2 - \ k dlﬁTme 4(1102- calculated in théN = 1200x 1200 lattice sites.

When the Fermi surface is a circle, the integration can

oxy/H =

be easily performed as follows: Since the line integral in N
. _ . e 601 (a)Ir=10
Fig. 11(h) is performed clockwise, the negative sign appears I a0l 1
asddy- (k)/dK™e = —1/K", By using d k' = 27ke, we =T ]
obtain o 20| 7
e 1 2(1) 1 3, 0 —
Oy/H = — 27kRo® (T [—)~— 118) [x107] 3F ' ' '
/M= 7 ( ke ) ko) (F7)? . 5[ ()T=107
From Eq. (59) applied to the two-dimensional system, it can = i
be shown thatry for the hole Fermi surface with a circle o) 1 0
shape is expressed as 5. 0 : . .
& 1 AT 3E S e
O = Zki'go'e%zf_;' (119) E o[ (c)I'=10
i &
By Egs. (118) and (119), the Hall cfiieient is obtained as o 1r
O | |
Ry = Oxy 1 (120) -2 -1 0

HO_)2(X ﬁh0|ee’

where the hole density is given Iyoe = (k19€)?/(27) inthe or online) Thes: deend e Hall conductiv

two-dimensional system. Then it is understandable Rhas f'g‘ 13 (Color online) Thex dependence of the Hall conductivity.y/H
. o — ort=1,V =03, andU = oo atn = 7/4 with ()" = 1074, (b) 10°°, and

exp_ressed by the hole denS|_ty d§rhoie€) With Nhole = 2—n (c) 107 calculated in théN = 1200x 1200 lattice sites.

asn approaches half fillingy = 2, in Fig. 10.

4.2.6 Damping-rate dependence

So far, we have presented the results for the damping rajgs analysis based on Eq. (101) is valid. This point will be
I' =107 [see Eq. (72)] as a typical case. In this Subsect., Waore clearly seen when we calculate the Hallfiont Ry,
discuss thé” dependence. ~ which will be discussed in Fig. 14 below.

Figure 12 shows the; dependence of the conductivity  Figyre 13 shows ther dependence of the Hall conductivity
ox fort =1,V = 03, andU = coatn = 7/4 with /4 for (a)I" = 102, (b) 103, and (c) 10%. Almost con-
@r =102 (b) 103{ and (c) 10* calculated in theN = stant behavior in the Kondo regime and sharp increase in the
1200 1200 lattice sites. Almost constant behavior in thgajence-fluctuation regime appears in every case. The relation
deepe; regime, i.e., Kondo regime, and sharp increase in th‘?xy/H o T2, which is shown in Eq. (106), seems to hold be-
shallows regime, i.e., valence-fluctuation regime appears igyeen Figs. 13(b) and 13(c) but not between Figs. 13(a) and
every case, although absolute valuesgf increases. As an- 13(b). As noted above, this is due to the fact that 102
alyzed in Eq. (101)g is proportional tol' ™%, which can  .annot be regarded as smill
be seen by comparing Fig. 12(b) with Fig. 12(c). However, Figure 14 shows the; dependence of the Hall cfigient
the relationoy, o« I'* does not seem to hold simply be-g,, for v = 0.3 atn = 7/4 for a series of damping rates due to
twegn Fig. 12(a) and Fig. 12(b). This indicates_ that the Caj@purity scatteringl” = 104 (dashed line)I" = 10°3 (solid
of Fig. 12(a) cannot be regarded as the siakigime where  jine) andr = 102 (dash-dotted line), which are calculated

13
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Fig. 14. (Color online) Thes; dependence of the Hall cigient Ry for  Fig. 15. (Color online) Thes; dependence of the conductivity far= 0.3
t=1,V=03andU = «atn = 7/4 with T = 10°* (dashed line), 1  (solid line), 0.4 (dashed line) and 0.5 (dash-dotted linet) at1, U = oo,
(solid line), and 10? (dash-dotted line) calculated in thé = 1200x 1200 = 7/4 with T = 10-2 calculated in thé\ = 1200x 1200 lattice.

lattice sites. Inset: ther dependence (:(f;F>a\,/Ahyb. We sete = 1.

pounds, the negative ions surrounding the*¥b ion ap-

in the N = 1200x 1200 lattice sites. Almost constasttde- proach, which also makes the 4f-electron level at the Yb site
pendenceRy ~ 1/(Mo€) = 4/e, appears fol’ = 10% and increase. Since Y8 contains 4% electrons, the hole picture
I' = 10°3. However, forT" = 1072, Ry shows a visible devia- is applied to the periodic Anderson model for the Yb-based
tion from the constant behavior. systems. Hence, applying pressure makes the 4f-holedevel

To quantify the magnitude of the damping rate, in the indecrease in Eq. (1).
set of Fig. 14 we plot the; dependence of the ratio of the In both the Ce- and Yb-based systems, the hybridization
damping rate averaged over the Fermi surﬁﬁ?‘;g)a\, defined strength between f and conduction electrons is also expected
by Eq. (103) toAny, defined by Eq. (99). These results indi-to increase in general. In this subSect., we examine the hy-
cate that when the damping rate becomes comparable to abbritlization dependence of the conductivity, the Hall conduc-
10 % of the hybridization gap, the treatment of the srﬁgll tivity, and the Hall coéficient.
discussed in Sect. 3.2 and also using Egs. (100) and (105)in Fig. 15, we shows; dependence ofyy for V. = 0.3
are not justified. Namely, the contributions from the energie&olid line), 0.4 (dashed line) and 0.5 (dash-dotted line) with
distant from the Fermi energy in Eq. (40) and Eq. (51) beF = 103, which is calculated in thél = 1200x 1200 lattice
come relevant taryx andoyy/H, respectively. For example, sites. We see thatyy shifts to larger values a¢ increases.
the downward deviation &®; with T" = 1072 seen in the deep- As analyzed below Eq. (101), main contributiorotg, comes
& region in Fig. 14 reflects the tendency that the electron-likieom éﬁfk/f"; at the Fermi level. To clarify how hybridization
curvature of thek points in thes < y region of the lower hy- strength &ects this quantity, we plot ther dependence of
bridized band gives contributions with negative sigorig/H. (fgp)a\, (solid line) and(éﬁ‘;)a\, (dashed line) fov = 0.3, 0.4

Hence, in the case that strong impurity scattering/@nd and 0.5 in Fig. 16. The result shows that the weight factor
high impurity density as well as the extraordinarily-strongf conduction electronéﬁ;‘pa\, shifts to larger values remark-
correlation gives rise to a large damping rate which exceeadbly asV increases while the damping rate of quasiparticles
10 % of the hybridization gapRy is not expressed simply (f;F)aV shows no marked enhancement. This can be under-
by the hole density as/ln,.€) even near the half filling at stood from Eqg. (98). Since the renormalized damping rate is
T = 0. Itis noted that not only the contributions distant fromexpressed as multiplication of the renormalization faztd
the Fermi energy to~; in Eq. (40) andrs; in Eq. (51) but  the f-electron weight factcmf_ff , asV increases, increase in
also the contributions other than the lower hybridized band agg\d decrease iaf_f]( causes cancellation, giving rise to no re-

considered to play a significant role dry andoyy in such a  arkable enhancement (ff; Yav. ON the other handa®)a,
case. increases a¥ increases since the weight of conduction elec-
o trons at the Fermi level increases by c-f hybridization as un-
4.2.7 Hybridization dependence and pressure dependenggrsiandable from Eq. (91). Hence, it turns out that hybridiza-
in Ce- and Yb-based compounds tion makes™, /T, _increase, which results in increasevig
When pressure is applied to the Ce-based compounds, {Rerig. 15. e

anions surrounding the C¥&° ion approach the tail of the  As for the Hall conductivity, thex dependence afy/H
wavefunction of the 4f electron at the Ce site. This causes ifyr v = 0.3 (solid line), 0.4 (dashed line), and 0.5 (dash-

crease in the crystalline-electronic-field (CEF) level, ie¢., dotted line) withl' = 1073 is shown in Fig. 17, which is cal-
increases. When pressure is applied to the Yb-based cogifated in theN = 1200x 1200 lattice sites. AY increases,

14
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Fig. 16. (Color online) Thee; dependence of the conduction-electron -2 -1 0 1 2
weight factor(éfko>a\, (dashed line, right axis) and the imaginary part of Sf
the selfenergyfgph\, (solid line, left axis) forV = 0.3, 0.4 and 0.5 at = 1,
U =0, M= 7/4withT = 103 calculated in the\ = 1200x 1200 lattice. Fig. 18. (Color online) Thess dependence of the Hall ctigient Ry for

t=1andU = co atn = 7/4 withT" = 1073 calculated in thél = 1200x 1200
lattice sites. The results for = 0.3 (solid line), 04 (dashed line), and.D
(dash-dotted line) are shown. We set 1.

3000

in Fig. 16. Hence, the ratid:;F>av/Ahyb decreases. Then, the

largerV makes the treatment of the smBjl works better in
the calculations oy, oxy/H, andRy, which reproduces the
almost constant; dependence dry.

In the Ce-based compounds, applying pressure makes
andV increase in general. From the results shown in Figs. 4
and 13, and Figs. 7 and 15,y andoyy/H show gradual in-
crease in the Kondo (deep} regime and sharp increase in the
valence-fluctuation (shallowr) regime as pressure increases.
On the other hand, from the results shown in Figs. 8 and 16,
almost unchange®y appears irrespective of the Kondo or
valence-fluctuation regime under pressure as far as the system
stays in the Fermi liquid. Hence, frequently observed behav-
Fig. 17. (Color online) Thesr dependence of the Hall conductivity far=  i0r in the Ce-based compounds where the residual resistivity
0.3 (solid line), 0.4 (dashed line) and 0.5 (dash-dotted lin¢)}afl, U = 0o,  decreases gradually in the Kondo regime and drops sharply in
M=7/4withT" = 10" calculated in thé\ = 1200x 1200 lattice. the valence-fluctuation regime as pressure increases is natu-

rally explained by the mechanism shown here.

In the Yb-based compounds, on the other hand, applying

pressure make¥ increase whiless in the hole picture de-
oxy/H shifts to larger values, similarly to the case®fx. crease in general. Hence, pressure dependencs,oénd
This can be understood from Eq. (106). As analyzed below,,/H depends on which factor is mordfective. In case
Eq. (106), main contribution to,/H comes from &, /T})>  that the residual resistivity increases sharply in the valence-
at the Fermi level. As shown in Fig. 1633:; /f;F increases as fluctuation regime and changes to the monotonic increase in
V increases, which causes increase-jf/ H. the Kondo regime as pressure increases, it indicates that the

In Fig. 18, we plot the dependence of the Hall ciwient  effect of thes; dependence gives major contribution. In case

Ry for a series of hybridization strengtif;= 0.3 (solid line), that both &ects of decreasing: and increasing/ are can-

V = 0.4 (dashed line), an&¥ = 0.5 (dash-dotted line) with celed each other, almost unchangsg andoy/H as well as

I' = 1073, which are calculated in thd = 1200x 1200 lat- Ry are expected to appear under pressure.

tice sites. The result shows that even in the casas ©f0.4
andV = 0.5 with increased hybridizations, tle dependence
of Ry remains almost the same as that Yor= 0.3. This is We have derived exact formulas fox, andoy in the pe-
because the factoaﬁp/f"gp in oxx andoyy/H are canceled riodic Anderson model fotJ = 0, which give general ex-
out each other in the expressionRf = 2%, as discussed Pressions of the conductivities in the two-orbital systems with

5. Summary

2

in Sect. 4.2.4. This can be also understood from the resufiPitrary band dispersions far = 0 as well as finite tempera-
shown in Fig. 14. Whe® increases, the hybridization gaptures. On the basis of the theoretical framework for the Fermi

Anyo increases whilel_)a, shows minor change as shownliauid based on these formulas, we have studied the ground-
F state properties of the diagonal and Hall conductivities and
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wit_h Nhole = 2 — N as rTapproa_ches the half fillingy :062 FR AR e \20(e—E)

while Ry approaches zero asapproaches the quarter filling, G R(e)|” ~ 2n (a—,k) o (A-2)

n = 1. The reason is shown to be naturally understood from k

the curvatures of the Fermi surface. When the vertex correction in the total current is ignored

We confirmed that the above conclusions hold at least féf EQ. (21), the current is given bykx(g) = Vix(e). Then
the small damping rate for f electrons where it is less thakd. (A1) leads to
about 10 % of the hybridization gap, which roughly corre- B 2
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