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Exact formulas of diagonal conductivityσxx and Hall conductivityσxy are derived from the Kubo formula in hy-
bridized two-orbital systems with arbitrary band dispersions. On the basis of the theoretical framework for the Fermi
liquid based on these formulas, the ground-state properties of the periodic Anderson model with electron correlation
and weak impurity scattering are studied on the square lattice. It is shown that imbalance of the mass-renormalization
factors inσxx andσxy causes remarkable increase in the valence-fluctuation regime as the f level increases while the can-
cellation of the renormalization factors causes slight increase inσxx andσxy in the Kondo regime. The Hall coefficient
RH shows almost constant behavior in both the regimes. Near half filling,RH is expressed by the total hole density as
RH = 1/(n̄holee) while RH approaches zero near quarter filling, which reflects the curvature of the Fermi surface. These
results hold as far as the damping rate for f electrons is less than about 10 % of the renormalized hybridization gap. From
these results we discuss pressure dependence of residual resistivity and normal Hall effect in Ce- and Yb-based heavy
electron systems.

1. Introduction

The heavy-electron systems have attracted much attention
in condensed matter physics since the localized and itinerant
natures of strongly correlated electrons open up unexpected
phenomena, which leads to a break through the paradigm to
provide a new concept with universality. The emergence of
the heavy mass of quasiparticles, their condensation to the su-
perconductivity with essentially “high” transition temperature
compared to the renormalized Fermi temperature, and uncon-
ventional quantum critical phenomena1,2) are such examples.

To make experimental explorations, the measurements of
the conductivity and Hall effect have been performed ex-
tensively in the heavy-electron systems. Accumulated data
for the Ce-based heavy electron systems show that there ex-
ists a general tendency that the isothermal resistivity at the
measured lowest temperature, i.e., residual resistivity, in the
Fermi-liquid regime decreases as pressure increases.3–5) On
the other hand, in the Yb-based heavy-electron systems, there
exits a general tendency that the residual resistivity in the
Fermi-liquid regime increases as pressure increases.6–11) The
mechanism of the pressure dependence of the conductivity
and also the Hall conductivity in relation to the valence of
Ce and Yb as well as the shape of the Fermi surface has been
desired to be clarified theoretically.

Theoretically, the diagonal conductivity and the Hall con-
ductivity were formulated on the basis of the Boltzmann
transport theory.12–14) The formula of the diagonal conduc-
tivity in the system with Coulomb repulsion among electrons
was derived microscopically býEliashberg16) in the Fermi liq-
uid theory starting from the Kubo formula.15) The diagonal
conductivity in the periodic Anderson model which is the pro-
totypical model for the Ce- and Yb-based heavy electron sys-
tems was formulated on the basis of the Fermi liquid theory
by Yamada and Yosida.17)

The Hall conductivity was formulated by Fukuyama18,19)

in the gauge invariant manner starting from the Kubo for-
mula. Later,Éliashberg’s work was extended to the Hall con-

ductivity by Kohno and Yamada, who formulated the gen-
eral expression in the Femi liquid theory.20) Explicit calcu-
lation of the diagonal and Hall conductivities was performed
by using the conserving approximation21–23) in the Hubbard
model which contains a single orbital with electron transfer
and Coulomb repulsion by Kontaniet al.24)

So far, after the formulation of the diagonal conductivity
by Yamada and Yosida, systematic calculations for the diago-
nal and normal Hall conductivities have not been reported in
detail in the periodic Anderson model which contains the two
orbitals for f and conduction electrons.

In this paper, we clarify the basic properties of the diagonal
and Hall conductivities, and normal Hall effect in the periodic
Anderson model. On the basis of the theoretical framework
which describes the Fermi liquid correctly, the ground-state
properties of the diagonal and Hall conductivities and the Hall
coefficient are studied by taking into account the effects of the
electron correlation and the weak impurity scattering. By per-
forming the numerical calculation on the square lattice, the
dependence on parameters such as the f level, c-f hybridiza-
tion, the damping rate for f electrons, and the filling is clar-
ified. The relation to the shape of the Fermi surface and the
f-electron number per site, corresponding to the valence of
Ce and Yb, is also clarified.

The organization of this paper is as follows: In Sect. 2, we
review the formalism of conductivity in the periodic Ander-
son model based on the Fermi-liquid theory. In Sect. 3, exact
formulas of the diagonal conductivity and Hall conductivity
are derived in the periodic Anderson model forU = 0. In
Sect. 4, the ground-state properties of the conductivities and
the Hall coefficient in the periodic Anderson model with elec-
tron correlations and weak-impurity scattering are studied on
the basis of the exactly derived formulas. The paper is sum-
marized in Sect. 5.

We take the energy units as~ = 1, kB = 1, and the light ve-
locity c = 1. Note that we denotee as the elementary charge,
i.e.,e> 0.
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2. Formalism of conductivity based on the Fermi liquid
theory in the periodic Anderson model

As the simplest minimal model for the electronic state in
the Ce- and Yb-based heavy-electron systems, we consider
the periodic Anderson model

H =
∑
kσ

εkc†kσckσ +
∑
kσ

εfk f †kσ fkσ +
∑
kσ

Vk

(
f †kσckσ + c†kσ fkσ

)
+ U

∑
i

nf
i↑n

f
i↓, (1)

with nf
iσ ≡ f †iσ fiσ where fiσ ( f †iσ) is an annihilation (creation)

operator of an f electron at thei-th site with spinσ andckσ

(c†kσ) is an annihilation (creation) operator of a conduction
electron at the wave vectork with spinσ. The first term rep-
resents the energy band of conduction electrons with a dis-
persion,εk . The second term represents the energy of f elec-
trons allowed to have a dispersion,εfk , which we here con-
sider for generality. The third term represents the hybridiza-
tion between f and conduction electrons with realVk . The on-
site Coulomb repulsion for f electrons is expressed in the last
term.

Since 4f15d16s2 configuration is realized in the outermost
electrons’ shell of Ce, Ce+3 contains the 4f1 electron and Ce+4

contains the 4f0 electron. On the other hand, since 4f146s2

configuration is realized in the outermost electrons’ shell of
Yb, Yb3+ contains the 4f13 electrons and Yb2+ contains 4f14

electrons. Since 4f14 is the closed shell for the f orbital, by
taking the hole picture instead of the electron picture, Eq. (1)
can be applied to the Yb-based systems and the parallel dis-
cussion to the Ce-based systems in the electron picture can be
made.

The total fillingn̄ is defined as

n̄ ≡ nf + nc, (2)

wherenf andnc are f-electron number per site and the con-
duction electron number per site, respectively, defined as

nf =
1
N

∑
iσ

〈nf
iσ〉, (3)

nc =
1
N

∑
iσ

〈nc
iσ〉. (4)

Here,N is the number of the lattice sites andnc
iσ ≡ c†iσciσ.

Note thatn̄ = 2 is the half filling.
The diagonal conductivity in the periodic Anderson model

was formulated on the basis of the Fermi liquid theory by Ya-
mada and Yosida.17) In the following, we review the formal-
ism for the diagonal conductivity.

The retarded Green functions of f electrons and conduction
electrons are given by

Gff R
k (ε) =

ε + iδ − εfk − ΣR
k (ε) −

V2
k

ε + iδ − εk

−1

, (5)

Gcc R
k (ε) =

ε + iδ − εk −
V2

k

ε + iδ − εfk − ΣR
k (ε)

−1

, (6)

respectively, whereΣR
k (ε) is the retarded self energy of f elec-

trons, which arises from the Coulomb repulsionU, andδ is
the infinitesimal positive constant.

We consider the case where the Fermi level is located at the
lower hybridized band. In the vicinity of the Fermi energy, the
Green functions of f and conduction electrons are described
by quasiparticles as

GffR
k (ε) = aff−,kGff−R

k (ε), (7)

GccR
k (ε) = acc

−,kGff−R
k (ε), (8)

respectively, where the retarded Green function for the lower
hybridized band is given by

Gff−R
k (ε) =

1
ε − E−∗k + iΓ∗k

(9)

and the renormalization factors are given by

aff−,k =

1− ∂ReΣR
k (ε)

∂ε
+

V2
k

(ε − εk)2

−1
∣∣∣∣∣∣∣
ε=E−∗k

, (10)

acc
−,k =

(
Vk

E−∗k − εk

)2

aff−,k , (11)

respectively. Here, the renormalized lower hybridized band is
given by

E−∗k =
εk + ε̃

f
k

2
− 1

2

√(
εk − ε̃fk

)2
+ 4Ṽ2

k (12)

with the renormalized f level

ε̃fk ≡ zk

[
εfk + ReΣR

k (µ)
]
, (13)

and the renormalized hybridizatioñV2
k ≡ zkV2

k . Here,zk is
defined as

zk ≡
1− ∂ReΣR

k (ε)

∂ε

−1
∣∣∣∣∣∣∣
ε=µ

, (14)

andµ is the chemical potential. The renormalized damping
rate is given by

Γ∗k = aff−,k
(
−ImΣR

k (µ)
)
> 0. (15)

The diagonal conductivity is expressed as

σxx =
e2

V0

∑
k

∫ ∞

−∞

dε
π

(
−∂ f (ε)
∂ε

) {∣∣∣Gff R
k (ε)

∣∣∣2 vkx(ε)Jkx(ε)

−Re
[
Gff R

k
2
(ε)v2

kx(ε)
]}
, (16)

wheref (ε) is the Fermi distribution functionf (ε) = [e(ε−µ)/T+
1]−1 andGff R

k (ε) is the f-electron Green function for quasi-
particles given by Eq. (7). The second term in Eq. (16) was
not described in Ref. 17, but this term is necessary quantita-
tively.24) For example, the exact formula ofσxx derived for
U = 0 in Sect. 3 is correctly reproduced by Eq. (16) with the
second term in the brace when we setΣR

k (ε) = 0 [see Eq. (55)].
Here,vkx(ε) is the total velocity defined as

vkx(ε) = vf
kx(ε) +

(
Vk

ε − εk

)2

vc0
kx +

∂V2
k
∂kx

ε − εk
, (17)

where the velocity of f electrons and conduction electrons are
given by

vf
kx(ε) = vf0

kx +
∂ReΣR

k (ε)

∂kx
, (18)
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vf0
kx =

∂εfk
∂kx
, (19)

vc0
kx =

∂εk
∂kx
, (20)

respectively. The total currentJkx(ε) is given by

Jkx(ε) = vkx(ε) +
1
V0

∑
k′

∫ ∞

−∞

dε′

4πi
Tkk ′(µ, ε

′)
∣∣∣Gff R

k′ (ε′)
∣∣∣2 Jk′x(ε

′), (21)

whereTkk ′(µ, ε′) is the irreducible four-point vertex intro-
duced byÉliashberg.16) On the basis of the framework of the
conserving approximation21,22) where the general vertex cor-
rections for the total current are considered to be consistent
with the self-energy corrections. Yamada and Yosida pointed
out that the total currentJkx(ε) can be obtained as the cor-
rect solution of the Bethe-Salpeter equation (21) because of
the presence of the Umklapp processes on the periodic crystal
lattice.17) In other words, they stressed that the conductivity
due to electron interaction should diverge in the absence of
the Umklapp processes as the result of the momentum con-
servation.

In the case ofΓ∗ � T, theε integration in the first-term in
Eq. (16), which is denoted byσ(1)

xx , can be performed as

σ(1)
xx ≈ e2

V0

∑
k

(
−
∂ f (E−∗k )

∂E−∗k

)
aff−,kvkx(µ)

Jkx(µ)

−ImΣR
k (µ)
, (22)

=
e2

V0

∑
k

δ
(
µ − E−∗k

)
aff−,kvkx(µ)

Jkx(µ)

−ImΣR
k (µ)
, (23)

where the last equation is derived for sufficiently low tem-
peratures. Since the quasiparticle bandE−∗k neark ≈ kF is
renormalized by the factorzk , δ(µ − E−∗k ) is enhanced byz−1

k .
Namely, the mass-renormalization factorsz−1

k andaff−,k which
includeszk [see Eq. (10)] cancel out each other in Eq. (23).
This implies that inσxx, all renormalizations cancel out and
the resistivity is proportional to−ImΣk(µ). Since within the
Fermi liquid theory the imaginary part of the self energy is
proportional toT2 at low temperatures,−ImΣk(µ) ∝ T2, the
resistivityρxx = 1/σxx shows theT2 dependence.17)

As for the normal Hall conductivity, by applying the for-
malism by Kohno and Yamada20) to the periodic Anderson
model in the case where the single-band treatment is justified
with smallΓ∗k at sufficiently low temperatures, the Hall con-
ductivity for the lower-hybridized band is given by

σxy/H ≈ e3

V0

∑
k

∫ ∞

−∞

dε
π

(
−∂ f (ε)
∂ε

) ∣∣∣Gff R
k (ε)

∣∣∣2 Im
[
Gff R

k (ε)
]

×vkx

[
Jkx
∂Jky

∂ky
− Jky

∂Jkx

∂ky

]
, (24)

whereH is a weak magnetic field applied along thez axis.
Here, Jky is they component of the total current vectorJk ,
which is given by settingy instead ofx in Eq. (21).

In the case ofΓ∗k � T, theε integration can be performed
as

σxy/H ≈ − e3

V0

∑
k

(
−
∂ f (E−∗k )

∂E−∗k

) (
aff−,k

)3 1

2Γ∗2

×vkx

[
Jkx
∂Jky

∂ky
− Jky

∂Jkx

∂ky

]
, (25)

= − e3

2V0

∑
k

δ
(
µ − E−∗k

) aff−,k[
ImΣR

k (µ)
]2

×vkx

[
Jkx
∂Jky

∂ky
− Jky

∂Jkx

∂ky

]
, (26)

where the last equation is derived for sufficiently low tem-
peratures. Similarly to Eq. (23), enhancement of the density
of states of quasiparticles arises fromδ(µ − E−∗k ) by factor
z−1

k , which cancels out byaff−,k in Eq. (26). Hence, the mass-
enhancement factor does not appear in the expression of the
Hall conductivity.

As shown above, the formulas ofσxx andσxy/H are ob-
tained in the vicinity of the Fermi level located at the lower
hybridized band on the basis of the Fermi liquid theory. In
both expressions ofσxx andσxy/H, the renormalization fac-
tors of quasiparticles cancel out.

In the next Sect., we will derive the exact formula ofσxx

andσxy/H for U = 0 in Eq. (1), which give the general formu-
las in the two-orbital systems, not restricted to the single band
as treated in Eqs. (16) and (24). On the basis of the exactly-
derived formulas, we will perform the explicit calculation of
σxx andσxy/H in the periodic Anderson model with electron
correlations to clarify the ground-state properties in Sect.4.

3. Exact formulas ofσxx andσxy for U = 0

In the case ofU = 0, Eq. (1) is diagonalized as

H =
∑
kσ

[
E−k β

†
kσβkσ + E+k γ

†
kσγkσ

]
, (27)

whereE−k is the lower hybridized band andE+k is the upper
hybridized band, whose explicit form is given by

E∓k =
εk + ε

f
k

2
∓ ∆k

2
. (28)

Here,∆k is defined as

∆k =

√(
εk − εfk

)2
+ 4V2

k . (29)

Equation (27) is obtained by substitutingc†kσ = ukβ
†
kσ−wkγ

†
kσ

and f †kσ = wkβ
†
kσ + ukγ

†
kσ to Eq. (1), whereuk andwk satisfy

u2
k = acc

∓,k =
1
2

1∓ εk − εfk
∆k

 , (30)

w2
k = aff∓,k =

1
2

1± εk − εfk
∆k

 , (31)

respectively. Here,acc
−,k (acc

+,k) represents the weight factor of
the conduction electrons in the lower (upper) hybridized band
andaff−,k (aff

+,k) represents the weight factor of the f electrons
in the lower (upper) hybridized band. Note that in the case of
U = 0 in Eq. (1), i.e.,ΣR

k (ε) = 0, Eqs. (10) and (11) reproduce
Eqs. (31) and (30), respectively.

3.1 Derivation ofσxx andσxy

On the basis of the Kubo formula,15) the diagonal conduc-
tivity is given by

σxx = lim
ω→0

Φxx(ω + iδ) − Φxx(0+ iδ)
iω

. (32)

3
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Here, the kernelΦxx is expressed as

Φxx(iωm) = −e2 T
V0

∑
n

∑
kσ

Tr [Gkσ(iεn)VkxGkσ(iεn + iωm)Vkx] (33)

with ωm = 2πmT andεn = (2π + 1)nT (m, n are integers).
Here, the velocity matrix and the Green-function matrix are
given by

Vkη =

 vc0
kη

∂Vk
∂kη

∂Vk
∂kη

vf0
kη

 , (34)

Gkσ(iεn) =

(
Gcc

kσ(iεn) Gcf
kσ(iεn)

Gfc
kσ(iεn) Gffkσ(iεn)

)
, (35)

respectively, where

Gffkσ(iεn) =

iεn − εfk − V2
k

iεn − εk

−1

, (36)

Gcc
kσ(iεn) =

iεn − εk − V2
k

iεn − εfk

−1

, (37)

Gcf
kσ(iεn) =

Vk

(iεn − εfk)(iεn − εk) − V2
k

, (38)

andGfc
kσ(iεn) = Gcf

kσ(iεn).
By performing the analytic continuation, the conductivity

in the periodic Anderson model forU = 0 is derived as

σxx = σ−−xx + σ
++
xx + σ

−+
xx + σ

+−
xx , (39)

where

σ−−xx =
e2

V0

∫ ∞

−∞

dε
π

(
−∂ f (ε)
∂ε

)∑
kσ

(
v−−kx

)2 {
ImG−R

kσ(ε)
}2
,(40)

σ++xx =
e2

V0

∫ ∞

−∞

dε
π

(
−∂ f (ε)
∂ε

)∑
kσ

(
v++kx

)2 {
ImG+R

kσ(ε)
}2
,(41)

σ−+xx + σ
+−
xx =

e2

V0

∫ ∞

−∞

dε
π

(
−∂ f (ε)
∂ε

)∑
kσ

v−+kx v+−kx

×Re
[
G−R

kσ(ε)G+A
kσ (ε) −G−R

kσ(ε)G+R
kσ(ε)

]
. (42)

Here,V0 is a volume of the system. The velocity of the hy-
bridized bandvααkη ≡ ∂E

(α)
k /∂kη (η = x, y, z) is given by

vααkη = acc
α,kvc0

kη + affα,kvf0
kη + acf

α,k
∂Vk

∂kη
+ afc
α,k
∂Vk

∂kη
, (43)

whereacf
∓,k andafc

∓,k are defined as

acf
−,k = −Vk

∆k
, acf

+,k =
Vk

∆k
, (44)

afc
−,k = −Vk

∆k
, afc

+,k =
Vk

∆k
, (45)

respectively, which satisfiesaff∓,k + acc
∓,k = 1 andaffα,kacc

α,k =

acf
α,kafc

α,k . In Eq. (42), the off-diagonal velocity is defined as

vααkη =
√

acc
α,kacc

α,kvc0
kη +

√
affα,kaff

α,kvf0
kη

+

√
acc
α,kaff

α,k

∂Vk

∂kη
+

√
affα,kacc

α,k

∂Vk

∂kη
(46)

for α = −α.

The retarded Green functionGαRkσ(ε) is given by

GαRkσ(ε) =
1

ε − E(α)
k + iΓ(α)

k

. (47)

The advanced Green functionGαAkσ (ε) is obtained by the rela-

tion of GαAkσ (ε) =
[
GαRkσ(ε)

]∗
. Here, we introduce the imaginary

part of the self energyΓ(α)
k in Eq. (47). This term can arise

from the impurity scattering even in theU = 0 periodic An-
derson model. We discuss the general expression ofσxx and
σxy/H with the finite damping rate.

On the basis of the formalism in Refs. 18,19, the Hall con-
ductivity in the periodic Anderson model forU = 0 is derived.
Hereafter, we show the result forVk = V in Eq. (1).

The Hall conductivity is given by

σxy = lim
ω→0

lim
q→0

Φxy(q, ω + iδ) − Φxy(q, iδ)
iω

, (48)

where the kernelΦxy(q, iωm) is given by

Φxy(q, iωm) = (qxAqy − qyAqx)e
3 T
2V0

∑
n

∑
kσ

Tr [

Vkx

(
∂

∂kx
Gkσ(iεn)

) (
∂Vky

∂ky

)
Gkσ(iεn + iωm)

−VkxGkσ(iεn)

(
∂Vky

∂ky

)
∂

∂kx
Gkσ(iεn + iωm)

+
(
vkx ↔ vky

)]
. (49)

HereAqη is theη component of the vector potential by which
the magnetic field along thez axis is expressed asH =

i limq→0(qxAqy − qyAqx). By performing the analytic contin-
uation, the Hall conductivity is obtained as follows:

σxy =
∑
α=∓
σααxy +

∑
α=∓
σααxy + σ

extra
xy , (50)

where

σααxy = H
e3

2V0

∑
kσ

∫ ∞

−∞

dε
π

(
−∂ f (ε)
∂ε

) ∣∣∣GαRkσ(ε)
∣∣∣2 Im

[
GαRkσ(ε)

]
×vααkx

vααkx

∂vααky

∂ky
− vααky

∂vααkx

∂ky

 , (51)

σααxy = H
e3

2V0

∑
kσ

∫ ∞

−∞

dε
π

(
−∂ f (ε)
∂ε

)
Im

[{
GαRkσ(ε)

}2
GαAkσ (ε)

]

×vααkx

vααkx

∂vααky

∂ky
− vααky

∂vααkx

∂ky


− H

e3

2V0

∑
kσ

∫ ∞

−∞

dε
π

f (ε)Im
[
−2

{
GαRkσ(ε)

}3
GαRkσ(ε)

+
{
GαRkσ(ε)

}2 {
GαRkσ(ε)

}2
]
vααkx

vααkx

∂vααky

∂ky
− vααky

∂vααkx

∂ky

 ,(52)

σextra
xy = H

e3

2V0

∑
kσ

∫ ∞

−∞

dε
π

(
−∂ f (ε)
∂ε

)
Im

[
G−R

kσ(ε)G+A
kσ (ε)

]
Qkxy

− H
e3

2V0

∑
kσ

∫ ∞

−∞

dε
π

f (ε)Im
[
−

{
G−R

kσ(ε)
}2

G+R
kσ(ε)

4
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z

Imz=-ω

Imz=0
C1

C2
C3

C4
m

Fig. 1. Contours of integration in the complex-z plane. The dots on the
imaginary axis represent the Fermionic thermal frequenciesiεn = i(2n+1)πT
with n being integers.

+G−R
kσ(ε)

{
G+R

kσ(ε)
}2
]
Qkxy. (53)

Here,α = −α andQkxy is defined by

Qkxy = −2
vc0

kx − vf0
kx

∆k

V2

∆2
k

×
vc0

kx

∂vc0
ky

∂ky
− vc0

ky

∂vc0
kx

∂ky
+ vf0

kx

∂vf0
ky

∂ky
− vf0

ky

∂vf0
kx

∂ky

 .(54)

In deriving Eq. (39) and Eq. (50), the analytic continuation is
performed as shown in Fig. 1.16,18,20,25–28)Here,C1 (C2) is the
contour from−∞ to∞ (from∞ to −∞) at just above (below)
Imz = 0 andC3 (C4) is the contour from−∞ to ∞ (from
∞ to −∞) at just above (below) Imz = −ωm. In Eq. (39) and
Eq. (50), the term includingf ′(ε) term arises from theC2+C3

contours, which makes the main contribution come from the
vicinity of the Femi level. On the other hand, in Eq. (50), the
term includingf (ε) term arises from the contribution from the
C1 +C4 contours.

It is noted that even when the hybridization has the momen-
tum dependence,Vk , Eqs. (51) and (52) hold with the veloci-
ties defined in Eqs. (43) and (46). Equaions (39) and Eq. (50)
are the general expressions forσxx andσxy/H, respectively,
in the systems with the single-band as well as the two-bands
at the Fermi level, which are constituted of two orbitals.

To clarify the fundamental properties of the conductivity
and Hall coefficient in the periodic Anderson model, hereafter
we discuss the case of the flat dispersion of the f band,εfk = εf
in Eq. (1) as the simplest typical case of the heavy-electron
systems.

An important remark is that in Eqs. (39) and (50) the ve-
locities of the hybridized bandsvααkη appear, which give rise to
the velocity of the “large” Fermi surface which contains con-
tributions from both f and conduction electrons, but not of the
“small” Fermi surface for the conduction band.

3.2 The limit of small damping rate at low temperatures
When the total filling is less than the half-filling, i.e., ¯n < 2

and the Fermi level is located at the lower hybridized band,
σxx = σ

−−
xx holds in Eq. (39) at low temperatures for the small

Γ−k to satisfyµτ−k � 1, where the relaxation timeτ−k is defined

asτ−k ≡
1

2Γ−k
.

In this case, from Eq. (40), we have

σxx ≈ σ−−xx =
e2

V0

∑
kσ

(
−
∂ f (E−k )

∂E−k

) (
vc0

kx

)2 (
acc
−,k

)2

×
∫ ∞

−∞

dε
π

 Γ−k

(ε − E−k )2 + Γ−k
2

2

,

=
e2

V0

∑
kσ

(
−
∂ f (E−k )

∂E−k

) (
vc0

kx

)2 (
acc
−,k

)2 1
2Γ−k
,

=
e2

V0

∑
kσ

(
−
∂ f (E−k )

∂E−k

) (
vc0

kx

)2 (
acc
−,k

)2
τ−k . (55)

Note that Eq. (16) in the limit ofU = 0 reproduces the expres-

sion of Eq. (55). Since− ∂ f (E−k )
∂E−k

= δ(µ − E−k ) holds atT = 0,
we have

σxx =
e2

V0

∑
kσ

δ(µ − E−k )
(
vc0

kx

)2 (
acc
−,k

)2
τ−k , (56)

in the ground state.
As for the Hall conductivity, in the smallΓ−k limit at low

temperatures, the contribution from the lower hybridized band
σ−−xy in Eq. (51) is only the relevant term forσxy. Then we have

σxy ≈ H
e3

2V0

∑
kσ

(
−
∂ f (E−k )

∂E−k

) (
vc0

kx

)2
∂vc0

ky

∂ky

 (acc
−,k

)3

×
∫ ∞

−∞

dε
π

∣∣∣G−R
kσ(ε)

∣∣∣2 ImG−R
kσ(ε),

= −H
e3

2V0

∑
kσ

(
−
∂ f (E−k )

∂E−k

) (
vc0

kx

)2
∂vc0

ky

∂ky

 (acc
−,k

)3
2τ−k

2
.(57)

Note that Eq. (24) in the limit ofU = 0 reproduces the expres-

sion of Eq. (57). Since− ∂ f (E−k )
∂E−k

= δ(µ − E−k ) holds atT = 0,
we have

σxy = −H
e3

2V0

∑
kσ

δ(µ − E−k )
(
vc0

kx

)2
∂vc0

ky

∂ky

 (acc
−,k

)3
2τ−k

2
, (58)

in the ground state.

3.3 Isotropic free-electron system
To analyzeσxx andσxy explicitly, we consider the isotropic

free electron system. Namely, the conduction electrons have
the free dispersion asεk = k2

2mc
in the periodic Anderson

model in three spatial dimension. Here we assumeτ = τ−k
(Γ = Γ−k ) for simplicity of analysis. Equation (56) can be cal-
culated as

σxx =
2e2τ

(2π)3

∫
S(µ)

dS

(
vc0

kx

)2 (
acc
−,k

)2∣∣∣∇E−k
∣∣∣ , (59)

where the integral is taken as the surface integral over the
constant-energy-surfaceS(µ) whereµ = E−k is satisfied in
the k space.29) Since we have

∣∣∣∇E−k
∣∣∣ = acc

−,kvc0
k with vc0

k ≡√
(vc0

kx)
2 + (vc0

ky)
2 + (vc0

kz)
2 and

∫
S(µ)

dS = 4πk2
F with kF being

the Fermi wave number in the isotropic free-electron system,
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Eq. (59) leads to

σxx =
2e2τ

(2π)3
4πk2

F

(
vc0

kFx

)2
acc
−,kF

vc0
kF

, (60)

=
n̄e2τ

mc
acc
−,kF
, (61)

wherevc0
kF
= kF/mc, vc0

kFx = kFx/mc, andk2
Fx = k2

F/3 are used.
Here,n̄ is the total filling, which is defined by the total elec-
tron numberNe per the volume of the system:

n̄ =
Ne

V0
= 2

4π
(2π)3

∫ kF

0
dkk2 =

k3
F

3π2
. (62)

Note that the factorτacc
−,kF

appears in Eq. (61), which implies
that the ratio of the amplitude of conduction electrons to the
damping rate determines the nature ofσxx.

As for the Hall conductivity, Eq. (58) can be calculated as

σxy = −H
2e3τ2

(2π)3mc

∫
S(µ)

dS

(
vc0

kx

)2 (
acc
−,k

)3∣∣∣∇E−k
∣∣∣ , (63)

= −H
2e3τ2

(2π)3mc
4πk2

F

(
vc0

kFx

)2 (
acc
−,kF

)2

vkF

, (64)

= −ωcτσxxa
cc
−,kF
, (65)

whereωc is the cyclotron frequency defined asωc ≡ eH
mc

. Note

that in Eq. (64) the factor
(
τacc
−,kF

)2
appears, which implies

that the square of the ratio of the amplitude of conduction
electrons to the damping rate determines the nature ofσxy.

By using Eqs. (61) and (65), the Hall coefficientRH under
a weak magnetic fieldH applied along thez axis is obtained
as

RH =
σxy/H

σ2
xx
, (66)

= −
ωcτacc

−,kF

Hσxx
, (67)

= − 1
n̄e
. (68)

Note here that although bothσxx andσxy include the ratio of
the weight factoracc

−,kF
to the damping rate as Eqs. (61) and

(65), the factorsτacc
−,kF

in the Hall coefficient are cancelled so
that the resultantRH is expressed by the total electron filling ¯n.
This implies thatRH is only determined by the total filling ir-
respective of the weight of conduction electrons component at
the Fermi level. Namely, Eq. (68) reproduces the well-known
result in the single-orbital system.

Here, two remarks should be made. First, Eq. (68) shows
the negative sign and that the magnitude is expressed as in-
verse of the total filling. We note that Eq. (68) is obtained in
the free-electron system with the spherical Fermi surface. In
general,RH depends on the shape of the Fermi surface, more
precisely, the curvature of the Fermi surface. Hence, sign of
RH and the magnitude itself depend on the shape of the Fermi
surface even in the small-Γ−k limit at T = 0. This point will be
discussed in detail in Sect. 4.2.5.

Second, we note that Eq. (68) is obtained in the small-Γ−k
limit. If the damping rateΓ−k is not small, it is not guaran-
teed thatRH shows a constant behavior as Eq. (68) whenεf is

varied even atT = 0, as will be discussed in Sect. 4.2.6.

4. Ground-state properties ofσxx,σxy/H, and RH on the
square lattice

In Sect. 3, we derived exactly the general expressions of di-
agonal and Hall conductivities in hybridized two-orbital sys-
tems with arbitrary band dispersions for non-interacting case.
In this Sect. we study the ground-state properties of the di-
agonal conductivity and normal Hall effect in the periodic
Anderson model with onsite Coulomb repulsion between f
electrons. By employing the Fermi liquid theory discussed in
Sect. 2, we will discuss that the diagonal and Hall conductivi-
ties can be calculated by using the formulas derived in Sect. 3.
However, we make an approximation in which the Fermi liq-
uid correction for the current given by Eq. (21) is neglected.
Nevertheless, this approximation is considered to be valid for
the present purpose that we discuss a qualitative aspect of the
diagonal and Hall conductivities. To clarify the general prop-
erties realized in Ce- and Yb-based heavy-electron systems,
we concentrate on the Fermi-liquid ground state taking into
account the effect of weak impurity scatterings.

The imaginary part of the f-electron self energy around the
Fermi level is expressed as

ImΣR
k (ε) = ImΣU R

k (ε) + ImΣimp R, (69)

where ImΣU R
k (ε) is arising from the onsite Coulomb repul-

sion in Eq. (1) and ImΣimp R is from the impurity scattering.
In the Fermi-liquid regime, ImΣU R

k (ε) has the following form
at zero temperature:

ImΣU R
k (ε) = −CU(ε − µ)2, (70)

whereCU > 0 is a constant of the order of the inverse of the
effective Fermi energy.17,30) When f electrons are scattered
weakly by a small amount of local impurities, ImΣimp R is cal-
culated within the Born approximation30,31) as

ImΣimp R ≈ −πnimpu2〈aff−,kF
〉avN

∗(µ), (71)

wherenimp is the impurity concentration andu is the impurity
potential. Here,N∗(µ) is the density of states of the quasipar-
ticles at the Fermi level defined byN∗(ε) ≡ ∑

k δ(ε − E−∗k )/N
with N being the number of lattice sites and〈aff−,kF

〉av is aver-
aged value of the f-electron weight factor defined in Eq. (10)
over the Fermi level. AlthoughN∗(µ) is enhanced by the
renormalization factorz−1

kF
, the enhancement is canceled by

the factor〈aff−,k〉av [see Eq. (10)]. Hence,〈aff−,kF
〉avN∗(µ) is the

quantity in the order of (πV2NcF)−1, whereNcF is the density
of states of conduction electrons at the Fermi level.

As described in the formalism in Sect. 2, the diagonal
conductivity in Eq. (16) and Hall conductivity in Eq. (24)
are claculated by using the Green function for quasiparti-
cles. Here we consider the ImΣR

k (µ) in the form of Eq. (69)
as the self energy. Since the impurity concentrationnimp and
the strength of the impurity potentialu are parameters to be
given and the extra factor〈aff−,kF

〉avN∗(µ) in Eq. (71) can be
expressed essentially by bare quantities not including renor-
malization factor and has only weak dependence inεf , we
treat them as variable input parameters. Namely, we calculate
σxx andσxy/H by inputting

Γ ≡ −ImΣR
k (µ) = −ImΣimp R (72)
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into the quasiparticle Green function. As the simplest frame-
work to perform such a calculation, we employ the slave-
boson mean field theory32) since it has been established to
describe the fixed point of the Fermi-liquid ground state in
the periodic Anderson model correctly.

4.1 Slave-boson mean field theory
By applying the slave-boson mean field theory32) to Eq. (1),

the effective Hamiltonian is obtained as

H̃ =
∑
kσ

εkc†kσckσ +
∑
iσ

εf f †iσ fiσ

+ V
∑
iσ

(
ziσ f †iσciσ + c†iσ fiσz†iσ

)
+ U

∑
i

d†i di

+
∑

i

λ(1)
i

(
e†i ei + p↑iσpi↑ + p†i↓pi↓ + d†i di − 1

)
+

∑
iσ

λ(2)
iσ

(
f †iσ fiσ − p†iσpiσ − d†i di

)
. (73)

Here,e†i (ei) andd†i (di) are bose creation (annihilation) op-
erators for the empty and doubly-occupied state, respectively
andp†iσ (piσ) for the singly-occupied state on thei-th site. The
renormalization factor is defined as

ziσ ≡
(
1− d†i di − p†iσpiσ

)−1/2 (
e†i piσ + p†i−σdi

)
×

(
1− e†i ei − p†i−σpi−σ

)−1/2
. (74)

The last two terms with the Lagrange multipliersλ(1)
i andλ(2)

i
in Eq. (73) are introduced to require the constraint for the
completeness condition.

Here, we consider the case where f electrons are subject
to the impurity scattering in the form of Eq. (72) as an input
parameter.

By approximating the mean fields as uniform ones,e =
〈ei〉, pσ = 〈piσ〉, d = 〈di〉, and the Lagrange multipliers,λ(1) =

λ(1)
i andλ(2) = λ(2)

i , with zσ = 〈ziσ〉, the set of mean-field
equations is obtained by∂〈H̃〉/∂λ(1) = 0, ∂〈H̃〉/∂λ(2) = 0,
∂〈H̃〉/∂p↑ = 0,∂〈H̃〉/∂p↓ = 0,∂〈H̃〉/∂d = 0, and∂〈H̃〉/∂e=
0:

e2 + p2
↑ + p2

↓ + d2 = 1, (75)

1
N

∑
kσ

〈 f †kσ fkσ〉 = p2
↑ + p2

↓, (76)

V
N

∑
kσ

(
∂zσ
∂p↑

) (
〈 f †kσckσ〉 + h.c.

)
+2

∑
kσ

zσ

(
∂zσ
∂p↑

)
εf 〈 f †kσ fkσ〉 = −2

(
λ(1) − λ(2)

)
p↑,(77)

V
N

∑
kσ

(
∂zσ
∂p↓

) (
〈 f †kσckσ〉 + h.c.

)
+2

∑
kσ

zσ

(
∂zσ
∂p↓

)
εf 〈 f †kσ fkσ〉 = −2

(
λ(1) − λ(2)

)
p↓,(78)

V
N

∑
kσ

(
∂zσ
∂d

) (
〈 f †kσckσ〉 + h.c.

)

+2
∑
kσ

zσ

(
∂zσ
∂d

)
εf 〈 f †kσ fkσ〉 = −2

(
λ(1) − 2λ(2)

)
d,(79)

V
N

∑
kσ

(
∂zσ
∂e

) (
〈 f †kσckσ〉 + h.c.

)
+2

∑
kσ

zσ

(
∂zσ
∂e

)
εf 〈 f †kσ fkσ〉 = −2λ(1)e. (80)

In this paper we consider the paramagnetic state and hence
we assumep↑ = p↓ = p. The renormalization factor is then
expressed as

z↑ = z↓ = z=

√
1− 2p2

1− p2
. (81)

Hereafter, we consider the case forU = ∞ for simplicity of
analysis. Then we setd = 0. By using Eq. (75), the derivative
of the renormalization factor bypσ andecan be expressed by
only p, as follows:

∂zσ
∂pσ

=

√
1− 2p2

p
(
1− p2

)3/2
, (82)

∂zσ
∂p−σ

=

√
1− 2p2

p
√

1− p2
, (83)

∂zσ
∂e

=

√
1− p2

p2
. (84)

Then, we end up by solving the mean-field equations of
Eqs. (76), (77), and (79) forλ(1), λ(2), and p simultaneously
with Eq. (2) for the chemical potentialµ in the self-consistent
manner. In these equations, the following expectation values
are calculated as

1
N

∑
kσ

〈 f †kσ fkσ〉 = − 1
πN

∑
kσ

∫ ∞

−∞
dε f (ε)ImGff R

kσ (ε),(85)

1
N

∑
kσ

〈c†kσckσ〉 = − 1
πN

∑
kσ

∫ ∞

−∞
dε f (ε)ImGcc R

kσ (ε),(86)

1
N

∑
kσ

〈 f †kσckσ〉 = − 1
πN

∑
kσ

∫ ∞

−∞
dε f (ε)ImGfc R

kσ (ε).(87)

Here, Gff R
kσ (ε), Gcc R

kσ (ε), and Gfc R
kσ (ε) are the retarded f-

electron, conduction-electron, and off-diagonal green func-
tions, respectively, which are given by

Gff R
kσ (ε) = ãff−,kG̃−R

kσ(ε) + ãff+,kG̃+R
kσ(ε), (88)

Gcc R
kσ (ε) = ãcc

−,kG̃−R
kσ(ε) + ãcc

+,kG̃+R
kσ(ε), (89)

Gfc R
kσ (ε) = ãfc

−,kG̃−R
kσ(ε) + ãfc

+,kG̃+R
kσ(ε), (90)

respectively. In Eq. (88), ˜aff−,k (ãff
+,k) is the amplitude of the f-

electron component in the lower (upper)-hybridized band at
k. In Eq. (89),ãcc

−,k (ãcc
+,k) is the amplitude of the conduction-

electron component in the lower (upper)-hybridized band at
k. These are given by

ãff±,k = ãcc
∓,k =

1
2

(
1∓ εk − ε̃f

∆̃k

)
. (91)

The weight factor ˜afc
−,k (ãfc

+,k) in the lower (upper) hybridized

7
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band in Eq. (90) is given by

ãfc
−,k = − Ṽ

∆̃k
, (92)

ãfc
+,k =

Ṽ

∆̃k
. (93)

Here,∆̃k is given by

∆̃k =

√
(εk − ε̃f )2 + 4Ṽ2, (94)

whereε̃f ≡ εf + λ(2) and Ṽ ≡ Vz. We note that the relation
ãffα,k + ãcc

α,k = 1 holds. In Eqs. (91) and (94), the f levelεf
and the hybridization strengthV are replaced by ˜εf andṼ in
Eqs. (30) and (29), respectively. The retarded Green function
G̃αRkσ(ε) is given by

G̃αRkσ(ε) =
1

ε − Ẽ(α)
k + iΓ̃(α)

k

, (95)

whereẼ(α)
k is given by

Ẽ∓k =
εk + ε̃f

2
∓ ∆̃k

2
. (96)

Here we consider the finite imaginary part of the self energy,
Γ̃

(α)
k , in Eq. (95), as described in Eq. (72). In Sect. 2, Eq. (10)

is expressed as

affα,k = zk

[
1+

zkV2

(ε − εk)2

]−1
∣∣∣∣∣∣∣
ε=Eα∗k

. (97)

In the present mean-field framework, the renormalization fac-
tor is expressed asz and the quasiparticle band is expressed
asẼ(α)

k . Hence, by settingzk asz andEα∗k asẼ(α)
k in Eq. (97),

affα,k is expressed aszãffα,k . Then, from Eq. (15), the damping
rate of the quasiparticle is expressed as

Γ̃
(α)
k = zãffα,kΓ, (98)

whereΓ is defined asΓ ≡ −ImΣR
k (µ) > 0 in Eq. (72).

Hence, by using Eq. (95) as the Green function for quasi-
particles, the ground-state properties ofσxx, σxy/H, and the
Hall coefficient will be discussed in the next Sect. on the basis
of the exactly-derived formulas, Eq. (39) and Eq. (50).

As shown in Ref. 17, by calculating the vertex correction
in the self energy and the total current consistently for the
conductivity in the clean limit at finite temperatures, the total
current Jkη has a finite value without diverging because of
the presence of the Umklapp process in the periodic lattice in
Eq. (23). In the present framework for the ground state (T =
0), we consider the self energy with the impurity scattering
as in Eq. (69), which is consequently expressed as Eq. (72).
As for the total current, the present framework corresponds to
approximating the resultantJkη asvkη in Eq. (21).

The validity of this framework at least within approximat-
ing Jkη asvkη is confirmed by comparing it with the finite-U
result based on the Fermi-liquid theory in Sect. 2, which will
be shown below (see also Appendix).

4.2 Numerical Results
On the basis of the theoretical framework described in

the previous Sect., we calculate the conductivity in the pe-
riodic Anderson model on the square lattice. We consider

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

εf

n
f

-2 -1 0 1 2

10
-3
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-2

10
-1

εf

 ∆hyb
 TK

Fig. 2. (Color online) Theεf dependence of the f-electron number per site
for t = 1, V = 0.3, andU = ∞ at n̄ = 7/4 with Γ = 10−3 calculated in the
N = 1200× 1200 lattice sites. Inset: Theεf dependence of∆hyb (solid line)
andTK (dashed line).

the nearest-neighbor hopping for conduction electrons on
the square lattice and the energy band is given byεk =
−2t[cos(kx) + cos(ky)]. As a typical parameter for heavy elec-
trons, we sett = 1, V = 0.3, U = ∞ at the filling n̄ = 7/4.
Hereafter, the transfer of conduction electrons is taken to be
the energy unit of the parameters in the Hamiltonian, Eq. (73).
The imaginary part of the f-electron self energy is set to be
Γ = 10−3 in Eq. (98) as a typical value. We solve the mean-
field equations self-consistently atT = 0 in the several system
sizes forN = L2

x with Lx = 112, 800, 1200, 1600, 1920, and
2240. Below we will show the results calculated on the lattice
sites withLx = 1200 unless otherwise noted.

4.2.1 f-electron number per site and the characteristic en-
ergy

Figure 2 shows theεf dependence of the f-electron number
per site,nf . As εf increases, the crossover from the Kondo
regime with nf ≈ 1 in the deep-εf region to the valence-
fluctuation33) regime withnf < 1 in the shallow-εf region
occurs in the ground state.

The characteristic energy scale of the present system,
which is given by the hybridization gap∆hyb, is defined by the
energy gap between the bottom of the upper hybridized band
and the top of the lower hybridized band of quasiparticles:

∆hyb ≡ Ẽ+k=(0,0) − Ẽ−k=(π,π). (99)

Since we consider the filling of ¯n = 7/4 less than half fill-
ing, the Fermi level is located at the lower hybridized band.
The Kondo temperatureTK , which is the characteristic energy
scale of the heavy-electron system, is defined as the energy
difference between the renormalized f level and the Fermi
levelTK ≡ ε̃f −µ in the present mean-field framework. The in-
set of Fig. 2 shows that∆hyb (solid line) roughly corresponds
to TK (dashed line), both of which well scale forεf <∼ 0.

To visualize the Fermi surface at ¯n = 7/4, we plot the spec-
tral function Aα(k, ε) ≡ − 1

π
ImGαRk (ε) for α = − andε = µ

in Fig. 3. Here we show the contour plot forεf = −4.0 as a

8
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0
kx

π

π
k
y

Fig. 3. (Color online) The contour plot of the spectral functionA−(k, µ) =
−Im[G−R

k (µ)]/π at n̄ = 7/4 for t = 1, V = 0.3, εf = −4.0, andU = ∞ with
Γ = 10−3 calculated in theN = 112× 112 lattice sites.

typical case calculated in theN = 112× 112 lattice sites.

4.2.2 Diagonal conductivity
By using the mean-field solutions, the conductivity is cal-

culated on the basis of Eq. (39) atT = 0. Theεf dependence
of σxx is shown in Fig. 4. In the deep-εf region, asεf in-
creases,σxx shows a gradual increase which can be seen as
almost constant behavior, whileσxx shows a sharp increase in
the shallow-εf region forεf >∼ 0. The inset shows theεf -level
dependence of the resistivityρxx = 1/σxx.

To analyze the mechanism, we plotσ(0)
xx in Fig. 4, which is

defined by

σ(0)
xx =

2e2

(2π)2

∑
k=kF

(
vc0

kx

)2 (
ãcc
−,k

)2∣∣∣∇Ẽ−k
∣∣∣ τ̃−k |∆k| , (100)

with τ̃−k =
1

2Γ̃−k
. Here, the summation is taken over the Fermi

wave vectorkF and |∆k| is the length between each nextkF

point. This is the two-dimensional version of Eq. (59) in the
lattice system. We see that the result almost coincides with
σxx. This indicates thatσ−−xx in Eq. (40) gives the dominant
contribution toσxx in Eq. (39) and the analysis with the small
Γ−k in Eq. (55) is applicable to the parameter regime shown in
Fig. 4. Since the velocity of the lower hybridized bandṽ−−k ≡
∇Ẽ−k is given byv−−k = vc0

k ãcc
−,k [see Eq. (43)], Eq. (100) can

be expressed as

σ(0)
xx =

2e2

(2π)2

∑
k=kF

(
vc0

kx

)2
ãcc
−,k∣∣∣vc0

k

∣∣∣ 2Γ̃−k |∆k| . (101)

This implies that the ratio of the conduction-electron weight
factor ãcc

−,kF
and the damping ratẽΓ−kF

determines the behav-

ior of σ(0)
xx . This gives essentially the same form as Eq. (16),

which was formulated on the basis of the Fermi-liquid the-
ory,17) as shown in Appendix. This indicates the validity of
the present formalism.

In order to clarify theεf dependence of̃Γ−k from Eq. (98)
in detail, we plot in Fig. 5 theεf dependence of the renor-
malization factorz and the f-electron weight factor which is
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x
x

Fig. 4. (Color online) Theεf dependence of the conductivityσxx (solid
line) andσ(0)

xx (dashed line) fort = 1, V = 0.3, andU = ∞ at n̄ = 7/4 with
Γ = 10−3 is shown in the left axis, which is calculated in theN = 1200×1200
lattice sites. We sete = 1. Inset shows theεf -level dependence of resistivity
ρxx = 1/σxx.

averaged over the Fermi surface

〈ãff−,kF
〉av ≡

1
NkF

∑
k=kF

ãff−,k (102)

with NkF being the number of thekF points. Asεf increases,
〈ãff−,kF

〉av is kept to be almost 1 up toεf ∼ 1 and sharply de-
creases to zero forεf >∼ 1.

The renormalization factorz approaches zero in the deep-
εf limit due to strong correlation effect on f electrons with
nf → 1 (see Fig. 2). Asεf increases,z increases gradually.
The damping ratẽΓ−k given by the multiplication of ˜aff−,k andz
in Eq. (98) is averaged over the Fermi surface

〈Γ̃−kF
〉av =

1
NkF

∑
k=kF

Γ̃−k , (103)

which shows a peak structure aroundεf ∼ 2 as shown in
Fig. 5. An important result here is that〈Γ̃−kF

〉av is suppressed
compared toΓ = 10−3 in all the εf region since in both the
large-εf and small-εf limits Γ̃−kF

approaches zero and the peak
value is bounded by the smallΓ.

Figure 6 shows theεf dependence of the conduction-
electron weight factor averaged over the Fermi surface

〈ãcc
−,kF
〉av ≡

1
NkF

∑
k=kF

ãcc
−,k . (104)

In Fig. 6, 〈Γ̃−kF
〉av is also re-plotted for comparison. Asεf in-

creases,〈ãcc
−,kF
〉av increases gradually in the deep-εf region,

while it shows a sharp increase aroundεf ∼ 1. The gradual in-
crease in〈ãcc

−,kF
〉av and〈Γ̃−kF

〉av in the deep-εf region gives rise
to cancellation of the effect of the mass renormalization17) in
Eq. (101), which causes the almost constantεf dependence
of σ(0)

xx . However, asεf increases to reach the shallow-εf re-
gion,εf >∼ 0, i.e., so-called the “valence-fluctuation” regime,
the cancellation does not work, whereacc

−,kF
increases sharply

9
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Fig. 5. (Color online) Theεf dependence of the f-electron weight factor
〈ãff−,kF

〉av (dashed line) and the renormalization factorz (dash-dotted line) for

t = 1, V = 0.3, andU = ∞ at n̄ = 7/4 with Γ = 10−3 is shown in the
right axis, which is calculated in theN = 1200× 1200 lattice sites. Theεf
dependence of the imaginary part of the self energy〈Γ̃−kF

〉av is also plotted
(solid line) in the left axis.

while Γ̃−kF
remains small. This imbalance is the reason why

σxx shows a sharp increase in the valence-fluctuation regime
for εf >∼ 0 in Fig. 4. This gives a natural explanation for the
pressure dependence of the residual resistivity frequently ob-
served in the Ce-based compounds and Yb-based compounds.
The pressure dependence of the conductivity will be discussed
in detail in Sect. 4.2.7.

The above result is obtained by using constantΓ in Eq. (72).
As noted below Eq. (71),〈aff−,kF

〉avN∗(µ) can be expressed
essentially by the bare quantities, which is on the order of
O(πV2NcF)−1. Hence,Γ defined in Eq. (72) has only weak-
εf dependence. However, as shown in Fig. 5, the quanti-
ties related to renormalization factor,z and ãff−,k in Eq. (98),
have strongεf dependence, which give the main contribu-
tion to the remarkable change ofσxx when εf varies from
the Kondo regime to the valence-fluctuation regime. Hence,
present treatment using constantΓ is considered to capture
the essence of the transport phenomena. As for the hybridiza-
tion dependence, we have also performed the calculations of
theεf dependence ofσxx by inputting several values ofΓ and
confirmed that the main conclusion above does not change as
far as the renormalized damping rate is far smaller than the
hybridization gap. TheΓ dependence and theV dependence
will be discussed in Sect. 4.2.6 and Sect. 4.2.7, respectively.

4.2.3 Hall conductivity
The εf dependence of the Hall conductivity is shown in

Fig. 7. The Hall conductivityσxy/H is calculated by using
Eq. (50) atT = 0. Asεf increases, in the deep-εf regionσxy/H
gradually increases, which can be seen as almost constant be-
havior, while it shows a sharp increase in the shallow-εf re-
gion forεf >∼ 0.

To analyze the mechanism, we plotσ(0)
xy/H in Fig. 7, which

is defined by

σ(0)
xy

H
= − 2e3

(2π)2

∑
k=kF

(
vc0

kx

)2
(
∂vc0

ky

∂ky

) (
ãcc
−,k

)3∣∣∣∇Ẽ−k
∣∣∣ (

τ̃−k
)2 |∆k|(105)

with the same notation as Eq. (100). This is the two-
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Fig. 6. (Color online) The εf dependence of the conduction-electron
weight factor〈ãcc

−,kF
〉av (dashed line, right axis) and the imaginary part of

the selfenergy〈Γ̃−kF
〉av (solid line, left axis) is shown, which is calculated for

t = 1, V = 0.3, andU = ∞ at n̄ = 7/4 with Γ = 10−3 in theN = 1200× 1200
lattice sites.
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Fig. 7. (Color online) Theεf dependence of the conductivityσxy/H (solid

line) andσ(0)
xy /H (dashed line) fort = 1, V = 0.3, andU = ∞ at n̄ = 7/4 with

Γ = 10−3 is shown in the left axis, which is calculated in theN = 1200×1200
lattice sites. We sete= 1.

dimensional version of Eq. (63) in the lattice system. We see
that the result almost coincides withσxy/H. This indicates
thatσ−−xy /H in Eq. (51) dominantly contributes toσxy/H in
Eq. (50) and the analysis by the smallΓ̃−k =

1
2τ̃−k

in Eq. (58)
is applicable to the parameter regime shown in Fig. 7. By us-
ing the velocity of the lower hybridized band,ṽ−−k = ∇Ẽ−k =
vc0

k acc
−,k , Eq. (105) can be expressed as

σ(0)
xy

H
= − 2e3

(2π)2

∑
k=kF

(
vc0

kx

)2
(
∂vc0

ky

∂ky

) (
ãcc
−,k

)2

∣∣∣vc0
k

∣∣∣ (2Γ̃−k )2
|∆k| . (106)

In the right hand side, (˜acc
−,kF
/Γ̃−kF

)2 appears, which implies

that the ratio ˜acc
−,kF
/Γ̃−kF

determines the behavior ofσ(0)
xy/H.

As shown in Fig. 6, in the deep-εf region,ãcc
−,kF
/Γ̃−kF

increases
gradually, while it shows a sharp increase in the shallow-εf re-
gion forεf >∼ 0. Namely, cancellation of the effect of the mass

10
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Fig. 8. (Color online) Theεf dependence of the conductivityRH (solid
line) andR(0)

H (dashed line) fort = 1, V = 0.3, andU = ∞ at n̄ = 7/4 with
Γ = 10−3 is shown in the left axis, which is calculated in theN = 1200×1200
lattice sites. We sete= 1.

enhancement, i.e., ˜acc
−,kF
/Γ̃−kF

≈ 1, causes the almost constant
behavior ofσxy/H in the deep-εf region and the imbalance,
i.e., ãcc

−,kF
/Γ̃−kF

� 1, makes the sharp increase inσxy/H in the
valence-fluctuation regime forεf >∼ 0 in Fig. 7.

4.2.4 Hall coefficient
Theεf dependence of the Hall coefficient is shown in Fig. 8.

Here we sete = 1. The Hall coefficient RH = σxy/(Hσ2
xx)

(solid line) calculated by using Eqs. (39) and (50) shows a
slight decrease as a function ofεf , exhibiting almost constant
behavior. Namely, the sharp increase inσxx andσxy/H in the
valence-fluctuation regime forεf >∼ 0 in Fig. 4 and Fig. 7, re-
spectively, cancel out each other inRH. To analyze this can-
cellation which occurs even in the valence-fluctuation regime,

let us plot R(0)
H = σ(0)

xy/(Hσ
(0)
xx

2
) by the dashed line calcu-

lated by using Eqs. (100) and (105) in Fig. 8. We see that
R(0)

H also exhibits almost constant behavior. This is understood
from expressions Eq. (100) and Eq. (105) since the factors of
ãcc
−,kF
/Γ̃−kF

which appear in bothσ(0)
xx andσ(0)

xy/H cancel out in

R(0)
H . The close agreement betweenRH andR(0)

H indicates that
the cancellation of the factors of ˜acc

−,kF
/Γ̃−kF

actually occurs in
RH, as was shown for the isotropic free-electrons in Eq. (68).
However, in Fig. 8, the sign inRH is positive and the magni-
tude is not expressed by the total filling as 1/(n̄e) = 4/(7e),
which are in contrast to the result to Eq. (68). These points
will be analyzed below.

To figure out the filling dependence ofRH, we calculateσxx

andσxy/H for 1 ≤ n̄ < 2 plausible to the heavy-electron state
in several system sizes and extrapolateRH to the bulk limit,
N = L2

x → ∞. Figure 9 showsRH vs. 1/N for εf = −4.0 at
n̄ = 1, 6/5, 7/5, 8/5, 7/4, and 9/5. The system sizes used for
the extrapolation areN = L2

x with Lx = 1200, 1600, 1920, and
2240.

The n̄ dependence ofRH in the bulk limit is shown in
Fig. 10. Note that the error bar by the least-square fit done
for the system-size extrapolation is attached to each filled cir-
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Fig. 9. (Color online) The system-size dependence of the Hall coefficient
RH for t = 1, V = 0.3, εf = −4.0, andU = ∞ with Γ = 10−3 at n̄ = 1 (open
circle), 6/5 (filled diamond), 7/5 (filled inverted triangle), 8/5 (filled square),
7/4 (filled triangle), and 9/5 (filled circle). We sete= 1.
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Fig. 10. (Color online) The filling dependence of the Hall coefficient RH

for t = 1, V = 0.3, εf = −4.0, andU = ∞ with Γ = 10−3 in the bulk limit
(N→ ∞). The dashed line represents 1/((2− n̄)e). We sete= 1.

cle. The error bars are within the symbol sizes and invisible,
indicating that the system size dependence does not matter in
the N ≥ 1200 lattice sites. Here, we also plot the Hall co-
efficient expressed by the hole density asRhole

H = 1
n̄holee

with
n̄hole ≡ 2 − n̄ by a dashed line (Note that we sete = 1). We
can see thatRH approachesRhole

H asn̄ approaches half filling,
n̄ = 2. However,RH approaches zero as ¯n approaches 1, which
shows a clear deviation from the dashed line. These results in-
dicate that near the quarter filling, i.e., for 1≤ n̄ <∼ 1.6, RH is

not expressed simply by the hole density as1n̄holee
.

4.2.5 Curvature of the Fermi surface and Hall conductivity
and Hall coefficient

To understand the reason whyRH does not follow the sim-
ple relationRH = 1/(n̄holee), we analyzeσxy/H from the view-
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point of the curvature of the Fermi surface. In the single-band
system constituted of a single orbital, it has been shown that
σxy/H can be expressed by the angle between~vk and thekx

axis within the Boltzmann transport theory12–14) and the the-
ory considering the vertex corrections.24) In the present sys-
tem, there exist two orbitals of f and conduction electrons,
which form the lower and upper hybridized bands. Since the
Fermi level is located at the lower hybridized band, the system
is regarded as the single-band system atT = 0 in the small-̃Γ−k
limit.

At sufficiently low temperatures in the small damping
rate, σ−−xy /H in Eq. (51) dominantly contributes toσxy/H
in Eq. (50). Let us write Eq. (57) in the original form like
Eq. (50) as

σxy/H = − e3

2V0

∑
kσ

−∂ f (Ẽ−k )

∂Ẽ−k


×ṽ−kx

ṽ−kx

∂ṽ−ky

∂ky

 − ṽ−ky

(
∂ṽ−kx

∂ky

) 2

4(Γ̃−k )2
.(107)

Here, by Eq. (43), the velocity of the lower hybridized band
v−−k = ∇Ẽ−k in the present system for Eq. (73) is written as

v−−k = vc0
k ãcc
−,k ≡ ṽ−k . (108)

Now we apply the formalism shown in Ref. 24 to Eq. (107).
Here we describe it up to Eq. (116) below as the self-
contained explanation although it was originally published in
Ref. 24 [see Eq. (22) in Ref. 24].

For the subsequent discussion, we rewrite Eq. (107) as fol-
lows

σxy/H = −
e3

2V0

∑
kσ

−∂ f (Ẽ−k )

∂Ẽ−k

 A−xy(k)
2

4(Γ̃−k )2
, (109)

by introducing

A−xy(k) ≡ ṽ−kx

ṽ−kx

∂ṽ−ky

∂ky

 − ṽ−ky

(
∂ṽ−kx

∂ky

) . (110)

As shown in Ref. 20 [see Eq. (3.21) in Ref. 20], this can be
rewritten in a simpler form as

σxy/H = −
e3

4V0

∑
kσ

−∂ f (Ẽ−k )

∂Ẽ−k

 A−s (k)
2

4(Γ̃−k )2
, (111)

whereAs(k) is defined as

A−s (k) = A−xy(k) + A−yx(k). (112)

This can be expressed as24)

A−s (k) = ṽ−kx(~ez × ṽ−k )∇ṽ−ky − ṽ−ky(~ez × ṽ−k )∇ṽ−kx, (113)

=
∣∣∣ṽ−k ∣∣∣ (ṽ−k × ∂∂k‖ ṽ−k

)
z

, (114)

=
∣∣∣ṽ−k ∣∣∣ · ∣∣∣ṽ−k ∣∣∣2 (

dθṽ− (k)
dk‖

)
, (115)

wherek‖ is the component of~k along the vector~e‖(k) = (~ez ×
~̃v−k )/

∣∣∣ṽ−k ∣∣∣, and tangential to the Fermi surface atk sinceṽ−k is
perpendicular to the Fermi surface. In Eq. (115),θṽ−(k) is the
angle betweeñv−k and thekx axis.

By applying the similar derivation used in Eq. (63) to
Eq. (111),

∑
k can be expressed by the line integral along the
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Fig. 11. (Color online) The contour plot of the spectral functionA−(k, µ) =
−Im[G−R

k (µ)]/π at (a)n̄ = 1, (b) 6/5, (c) 7/5, (d) 8/5, and (e) 9/5 for t = 1,
V = 0.3, εf = −4.0, andU = ∞ with Γ = 10−3 calculated in theN =
112× 112 lattice sites. (f) The velocity of the lower hybridized bandṽk on
the Fermi surfacek = kF. (g) The relation amongkF, khole

F , andQ = (π, π),
kF = Q + khole

F . (h) The path for the line integral Eq. (117) along the Fermi
surface.

Fermi surface in the present two-dimensional system. Then
we have

σxy/H = −
e3

4
2

(2π)2

∮
FS

dk‖
∣∣∣ṽ−k ∣∣∣2 (

dθṽ− (k)
dk‖

)
2

4(Γ̃−k )2
, (116)

where thek point moves counterclockwise along the Fermi
surface in this line integral. Note that by Eq. (108) the mass
renormalization factors appear as (˜acc

−,k/Γ̃
−
k )2 in the integrand,

which cancel out in the deep-εf region as noted in Eq. (106).
To visualize the Fermi surface, we plot the spectral function

Aα(k, ε) ≡ −ImGαRk (ε)/π for α = − andε = µ at (a) n̄ = 1,
(b) 6/5, (c) 7/5, (d) 8/5, and (e) 9/5 in Fig. 11. Here, set of
parameters (t = 1,V = 0.3, εf = −4.0, andU = ∞ with Γ =
10−3) is the same as those in Fig. 9 and the results calculated
in theN = 112× 112 lattice sites are shown.

At quarter filling,n̄ = 1, we see thatθṽ−k (k) for example on
the first quadrant does not change, sinceṽ−kF

is perpendicular
to the Fermi surface, which makesθṽ− (kF) be kept to beπ/4.
This gives rise todθṽ−(k)/dk‖ = 0 in Eq. (116). Hence, it turns
out thatσxy/H andRH as well become zero at ¯n = 1 at least
for the small-̃Γ−k limit. Actually, RH at n̄ = 1 in Figs. 9 and 10
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is shown to be almost zero although the spectral function is
broaden neark = (0, π) and (π,0) in Fig. 11(a) because of the
finite damping ratẽΓ−k .

The reason why the sign ofσxy/H and the resultantRH be-
come positive for 1< n̄ < 2 can be also understood from
expression Eq. (116). As illustrated in Fig. 11(f), the angle
θṽ−(k) becomes smaller ask‖ moves along the Fermi surface.
Namely, dθṽ− (k)/dk‖ < 0 in Eq. (116) makes the sign of
σxy/H be positive, and hence the positive Hall coefficient ap-
pears,RH > 0.

Furthermore, the reason whyRH approaches 1/((2− n̄)e) as
n̄ approaches half filling, 2, in Fig. 10 can be also understood
on the basis of Eq. (116). As ¯n approaches ¯n = 2, the form
of the Fermi surface for holes approaches the circle around
k = (π, π) as shown in Fig. 11(e). Hence, it is convenient to
introduce the variable transformationkF = Q + khole

F with a
constant shiftQ = (π, π) in Eq. (116), as shown in Fig. 11(g).
Then, Eq. (116) is expressed as

σxy/H = −
e3

4
2

(2π)2

∮
FS

dkhole
‖

∣∣∣ṽ−k ∣∣∣2
dθṽ− (k)

dkhole
‖

 2

4(Γ̃−k )2
. (117)

When the Fermi surface is a circle, the integration can
be easily performed as follows: Since the line integral in
Fig. 11(h) is performed clockwise, the negative sign appears
asdθṽ− (k)/dkhole

‖ = −1/khole
F . By using

∮
FS

dkhole
‖ = 2πkF, we

obtain

σxy/H =
e3

4
1

(2π)2
2πkhole

F

(
ṽ−

khole
F

)2
 1

khole
F

 1

(Γ̃−kF
)2
. (118)

From Eq. (59) applied to the two-dimensional system, it can
be shown thatσxx for the hole Fermi surface with a circle
shape is expressed as

σxx =
e2

2π
khole

F ṽ−kF

1

2Γ̃−kF

. (119)

By Eqs. (118) and (119), the Hall coefficient is obtained as

RH =
σxy

Hσ2
xx
=

1
n̄holee

, (120)

where the hole density is given by ¯nhole = (khole
F )2/(2π) in the

two-dimensional system. Then it is understandable thatRH is
expressed by the hole density as 1/(n̄holee) with n̄hole ≡ 2− n̄
asn̄ approaches half filling, ¯n = 2, in Fig. 10.

4.2.6 Damping-rate dependence
So far, we have presented the results for the damping rate
Γ = 10−3 [see Eq. (72)] as a typical case. In this Subsect., we
discuss theΓ dependence.

Figure 12 shows theεf dependence of the conductivity
σxx for t = 1, V = 0.3, andU = ∞ at n̄ = 7/4 with
(a) Γ = 10−2, (b) 10−3, and (c) 10−4 calculated in theN =
1200× 1200 lattice sites. Almost constant behavior in the
deep-εf regime, i.e., Kondo regime, and sharp increase in the
shallow-εf regime, i.e., valence-fluctuation regime appears in
every case, although absolute value ofσxx increases. As an-
alyzed in Eq. (101),σxx is proportional toΓ−1, which can
be seen by comparing Fig. 12(b) with Fig. 12(c). However,
the relationσxx ∝ Γ−1 does not seem to hold simply be-
tween Fig. 12(a) and Fig. 12(b). This indicates that the case
of Fig. 12(a) cannot be regarded as the small-Γ regime where
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Fig. 12. (Color online) Theεf dependence of the conductivityσxx for t =
1, V = 0.3, andU = ∞ at n̄ = 7/4 with (a)Γ = 10−2, (b) 10−3, and (c) 10−4

calculated in theN = 1200× 1200 lattice sites.
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Fig. 13. (Color online) Theεf dependence of the Hall conductivityσxy/H
for t = 1, V = 0.3, andU = ∞ at n̄ = 7/4 with (a)Γ = 10−2, (b) 10−3, and
(c) 10−4 calculated in theN = 1200× 1200 lattice sites.

the analysis based on Eq. (101) is valid. This point will be
more clearly seen when we calculate the Hall coefficientRH,
which will be discussed in Fig. 14 below.

Figure 13 shows theεf dependence of the Hall conductivity
σxy/H for (a) Γ = 10−2, (b) 10−3, and (c) 10−4. Almost con-
stant behavior in the Kondo regime and sharp increase in the
valence-fluctuation regime appears in every case. The relation
σxy/H ∝ Γ−2, which is shown in Eq. (106), seems to hold be-
tween Figs. 13(b) and 13(c) but not between Figs. 13(a) and
13(b). As noted above, this is due to the fact thatΓ = 10−2

cannot be regarded as smallΓ.
Figure 14 shows theεf dependence of the Hall coefficient

RH for V = 0.3 atn̄ = 7/4 for a series of damping rates due to
impurity scattering;Γ = 10−4 (dashed line),Γ = 10−3 (solid
line), andΓ = 10−2 (dash-dotted line), which are calculated
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Fig. 14. (Color online) Theεf dependence of the Hall coefficient RH for
t = 1, V = 0.3, andU = ∞ at n̄ = 7/4 with Γ = 10−4 (dashed line), 10−3

(solid line), and 10−2 (dash-dotted line) calculated in theN = 1200× 1200
lattice sites. Inset: theεf dependence of〈Γ̃−kF

〉av/∆hyb. We sete= 1.

in the N = 1200× 1200 lattice sites. Almost constantεf de-
pendence,RH ≈ 1/(n̄holee) = 4/e, appears forΓ = 10−4 and
Γ = 10−3. However, forΓ = 10−2, RH shows a visible devia-
tion from the constant behavior.

To quantify the magnitude of the damping rate, in the in-
set of Fig. 14 we plot theεf dependence of the ratio of the
damping rate averaged over the Fermi surface〈Γ̃−kF

〉av defined
by Eq. (103) to∆hyb defined by Eq. (99). These results indi-
cate that when the damping rate becomes comparable to about
10 % of the hybridization gap, the treatment of the smallΓ̃−k
discussed in Sect. 3.2 and also using Eqs. (100) and (105)
are not justified. Namely, the contributions from the energies
distant from the Fermi energy in Eq. (40) and Eq. (51) be-
come relevant toσxx andσxy/H, respectively. For example,
the downward deviation ofRH with Γ = 10−2 seen in the deep-
εf region in Fig. 14 reflects the tendency that the electron-like
curvature of thek points in theε < µ region of the lower hy-
bridized band gives contributions with negative sign inσxy/H.

Hence, in the case that strong impurity scattering and/or
high impurity density as well as the extraordinarily-strong
correlation gives rise to a large damping rate which exceeds
10 % of the hybridization gap,RH is not expressed simply
by the hole density as 1/(n̄holee) even near the half filling at
T = 0. It is noted that not only the contributions distant from
the Fermi energy toσ−−xx in Eq. (40) andσ−−xy in Eq. (51) but
also the contributions other than the lower hybridized band are
considered to play a significant role inσxx andσxy in such a
case.

4.2.7 Hybridization dependence and pressure dependence
in Ce- and Yb-based compounds

When pressure is applied to the Ce-based compounds, the
anions surrounding the Ce+3+δ ion approach the tail of the
wavefunction of the 4f electron at the Ce site. This causes in-
crease in the crystalline-electronic-field (CEF) level, i.e.,εf
increases. When pressure is applied to the Yb-based com-
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Fig. 15. (Color online) Theεf dependence of the conductivity forV = 0.3
(solid line), 0.4 (dashed line) and 0.5 (dash-dotted line) att = 1, U = ∞,
n̄ = 7/4 with Γ = 10−3 calculated in theN = 1200× 1200 lattice.

pounds, the negative ions surrounding the Yb+3−δ ion ap-
proach, which also makes the 4f-electron level at the Yb site
increase. Since Yb+3 contains 4f13 electrons, the hole picture
is applied to the periodic Anderson model for the Yb-based
systems. Hence, applying pressure makes the 4f-hole levelεf
decrease in Eq. (1).

In both the Ce- and Yb-based systems, the hybridization
strength between f and conduction electrons is also expected
to increase in general. In this subSect., we examine the hy-
bridization dependence of the conductivity, the Hall conduc-
tivity, and the Hall coefficient.

In Fig. 15, we showεf dependence ofσxx for V = 0.3
(solid line), 0.4 (dashed line) and 0.5 (dash-dotted line) with
Γ = 10−3, which is calculated in theN = 1200× 1200 lattice
sites. We see thatσxx shifts to larger values asV increases.
As analyzed below Eq. (101), main contribution toσxx comes
from ãcc

−,k/Γ̃
−
k at the Fermi level. To clarify how hybridization

strength affects this quantity, we plot theεf dependence of
〈Γ̃−kF
〉av (solid line) and〈ãcc

kF
〉av (dashed line) forV = 0.3, 0.4

and 0.5 in Fig. 16. The result shows that the weight factor
of conduction electrons〈ãcc

kF
〉av shifts to larger values remark-

ably asV increases while the damping rate of quasiparticles
〈Γ̃−kF
〉av shows no marked enhancement. This can be under-

stood from Eq. (98). Since the renormalized damping rate is
expressed as multiplication of the renormalization factorzand
the f-electron weight factor ˜aff−,k , asV increases, increase inz
and decrease in ˜aff−,k causes cancellation, giving rise to no re-
markable enhancement of〈Γ̃−kF

〉av. On the other hand,〈ãcc
kF
〉av

increases asV increases since the weight of conduction elec-
trons at the Fermi level increases by c-f hybridization as un-
derstandable from Eq. (91). Hence, it turns out that hybridiza-
tion makes ˜acc

−,kF
/Γ̃−kF

increase, which results in increase inσxx

in Fig. 15.
As for the Hall conductivity, theεf dependence ofσxy/H

for V = 0.3 (solid line), 0.4 (dashed line), and 0.5 (dash-
dotted line) withΓ = 10−3 is shown in Fig. 17, which is cal-
culated in theN = 1200× 1200 lattice sites. AsV increases,
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Fig. 16. (Color online) Theεf dependence of the conduction-electron
weight factor〈ãcc

−,kF
〉av (dashed line, right axis) and the imaginary part of

the selfenergy〈Γ̃−kF
〉av (solid line, left axis) forV = 0.3, 0.4 and 0.5 att = 1,

U = ∞, n̄ = 7/4 with Γ = 10−3 calculated in theN = 1200× 1200 lattice.
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Fig. 17. (Color online) Theεf dependence of the Hall conductivity forV =
0.3 (solid line), 0.4 (dashed line) and 0.5 (dash-dotted line) att = 1, U = ∞,
n̄ = 7/4 with Γ = 10−3 calculated in theN = 1200× 1200 lattice.

σxy/H shifts to larger values, similarly to the case ofσxx.
This can be understood from Eq. (106). As analyzed below
Eq. (106), main contribution toσxy/H comes from (˜acc

−,k/Γ̃
−
k )2

at the Fermi level. As shown in Fig. 16, ˜acc
−,kF
/Γ̃−kF

increases as
V increases, which causes increase inσxy/H.

In Fig. 18, we plot theεf dependence of the Hall coefficient
RH for a series of hybridization strength;V = 0.3 (solid line),
V = 0.4 (dashed line), andV = 0.5 (dash-dotted line) with
Γ = 10−3, which are calculated in theN = 1200× 1200 lat-
tice sites. The result shows that even in the cases ofV = 0.4
andV = 0.5 with increased hybridizations, theεf dependence
of RH remains almost the same as that forV = 0.3. This is
because the factors ˜acc

−,kF
/Γ̃−kF

in σxx andσxy/H are canceled

out each other in the expression ofRH =
σxy

Hσ2
xx

, as discussed
in Sect. 4.2.4. This can be also understood from the results
shown in Fig. 14. WhenV increases, the hybridization gap
∆hyb increases while〈Γ̃−kF

〉av shows minor change as shown
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Fig. 18. (Color online) Theεf dependence of the Hall coefficient RH for
t = 1 andU = ∞ at n̄ = 7/4 withΓ = 10−3 calculated in theN = 1200×1200
lattice sites. The results forV = 0.3 (solid line), 0.4 (dashed line), and 0.5
(dash-dotted line) are shown. We sete= 1.

in Fig. 16. Hence, the ratio〈Γ̃−kF
〉av/∆hyb decreases. Then, the

largerV makes the treatment of the smallΓ̃−k works better in
the calculations ofσxx, σxy/H, andRH, which reproduces the
almost constantεf dependence ofRH.

In the Ce-based compounds, applying pressure makesεf
andV increase in general. From the results shown in Figs. 4
and 13, and Figs. 7 and 15,σxx andσxy/H show gradual in-
crease in the Kondo (deep-εf ) regime and sharp increase in the
valence-fluctuation (shallow-εf ) regime as pressure increases.
On the other hand, from the results shown in Figs. 8 and 16,
almost unchangedRH appears irrespective of the Kondo or
valence-fluctuation regime under pressure as far as the system
stays in the Fermi liquid. Hence, frequently observed behav-
ior in the Ce-based compounds where the residual resistivity
decreases gradually in the Kondo regime and drops sharply in
the valence-fluctuation regime as pressure increases is natu-
rally explained by the mechanism shown here.

In the Yb-based compounds, on the other hand, applying
pressure makesV increase whileεf in the hole picture de-
crease in general. Hence, pressure dependence ofσxx and
σxy/H depends on which factor is more effective. In case
that the residual resistivity increases sharply in the valence-
fluctuation regime and changes to the monotonic increase in
the Kondo regime as pressure increases, it indicates that the
effect of theεf dependence gives major contribution. In case
that both effects of decreasingεf and increasingV are can-
celed each other, almost unchangedσxx andσxy/H as well as
RH are expected to appear under pressure.

5. Summary

We have derived exact formulas forσxx andσxy in the pe-
riodic Anderson model forU = 0, which give general ex-
pressions of the conductivities in the two-orbital systems with
arbitrary band dispersions forT = 0 as well as finite tempera-
tures. On the basis of the theoretical framework for the Fermi
liquid based on these formulas, we have studied the ground-
state properties of the diagonal and Hall conductivities and

15



J. Phys. Soc. Jpn.

the Hall coefficient in the periodic Anderson model with elec-
tron correlations on the square lattice, taking into account the
effect of the weak local impurity scattering. The results ob-
tained for the typical case where the Fermi level is located at
the lower-hybridized band for the filling of 1≤ n̄ < 2 with the
small damping rate are summarized as follows:

In the deep-εf region wherenf >∼ 0.8, i.e., the Kondo
regime, almost constant-εf dependence ofσxx andσxy/H ap-
pears as a result of the cancellation of the mass renormaliza-
tion factors. On the other hand, in the shallow-εf region, i.e.,
the valence-fluctuation regime withnf <∼ 0.8, a sharp increase
in σxx andσxy/H appears asεf increases. This is because the
cancellation of the renormalization factors does not occur in
the valence-fluctuation regime where the conduction-electron
weight factor rapidly increases asεf increases while the f-
electron damping rate remains to be suppressed.

On the contrary, the Hall coefficient RH shows an almost
constantεf dependence in the shallow-εf region as well as in
the deep-εf region. This is because the renormalization factors
expressed as the ratio of the conduction-electron weight factor
to the damping rate for f electrons completely cancel out in
the expression ofRH. It is shown thatRH is expressed as1

n̄holee
with n̄hole ≡ 2 − n̄ as n̄ approaches the half filling, ¯n = 2,
while RH approaches zero as ¯n approaches the quarter filling,
n̄ = 1. The reason is shown to be naturally understood from
the curvatures of the Fermi surface.

We confirmed that the above conclusions hold at least for
the small damping rate for f electrons where it is less than
about 10 % of the hybridization gap, which roughly corre-
sponds to the Kondo temperature. It is also confirmed that for
the small damping rate the c-f hybridization dependence gives
minor effects on theεf dependence ofRH.

In this paper, we have concentrated on the ground-state
properties of the typical periodic Anderson model for the
Fermi liquid. Theoretically, it has been shown that the mag-
netically ordered phase generally appears in the deep-εf re-
gion with nf being close to 1 in Eq. (1) if the counter effects
such as the magnetic frustration are irrelevant.34) In the sys-
tems where the inter-orbital Coulomb repulsion between the
f electron and the conduction electron which contributes to
the energy band located at the Fermi level has a certain mag-
nitude, the quantum critical point (QCP) of the valence tran-
sition appears in the ground-state phase diagram.1,2) As the
magnitude of the c-f hybridization decreases, the QCP of the
magnetic transition approaches the QCP of the valence transi-
tion and finally coincide each other where the enhanced crit-
ical valence fluctuation suppresses the magnetic order giving
rise to the first-order magnetic transition.34,35)

When we discuss the transport properties near the QCP of
the phase transition such as the magnetic transition and the va-
lence transition, the magnetic fluctuation24,25) and the critical
valence fluctuation1,36) should be taken into account. Indeed,
it was shown theoretically that near the QCP of the valence
transition in the dirty system, the residual resistivity is en-
hanced considerably,36) which explains the measurements in
the CeCu2Ge2,37) CeCu2Si2,38) and CeCu2(Si1−xGex)2

39) sys-
tems. Hence, when the system approaches the QCP, such ef-
fects of the critical fluctuations give rise to additional effects
on the results presented in this paper.
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Appendix: Renormalization factors in conductivity

In this Appendix, we show that the theoretical framework
in Sect. 4.1 gives essentially the same analytic structure of
the conductivity formulated on the basis of the Fermi-liquid
theory in Sect. 2. Here we consider the case ofεfk = εf and
Vk = V in Eq. (1) as discussed in Sect. 4.1. Let us start with
the first line of Eq. (16):

σ(1)
xx =

e2

V0

∑
k

∫ ∞

−∞

dε
π

(
−∂ f (ε)
∂ε

) ∣∣∣Gff R
k (ε)

∣∣∣2 vkx(ε)Jkx(ε).(A·1)

ForΓ∗k � T,
∣∣∣Gff R

k (ε)
∣∣∣2 is evaluated as16)

∣∣∣Gff R
k (ε)

∣∣∣2 ≈ 2πi
(
aff−,k

)2 δ(ε − E−∗k )

i2Γ∗k
. (A·2)

When the vertex correction in the total current is ignored
in Eq. (21), the current is given byJkx(ε) = vkx(ε). Then
Eq. (A·1) leads to

σ(1)
xx =

e2

V0

∑
k

(
−
∂ f (E−∗k )

∂E−∗k

) (
aff−,k

)2

{
vkx(E−∗k )

}2

Γ∗k
. (A·3)

By using Eq. (11) and Eq. (17), the relation(
aff−,k

)2 {
vkx(E−∗k )

}2
=

(
acc
−,k

)2
vc0

kx
2

holds. Hence, at sufficiently-
low temperatures,T ≈ 0, Eq. (A·3) is expressed as

σ(1)
xx =

e2

V0

∑
k

δ
(
E−∗k − µ

) (
acc
−,k

)2
vc0

kx
2

Γ∗k
. (A·4)

Since the factor
(
acc
−,k

)−1
arises from the delta function,

δ(E−∗k − µ) [see Eq. (101)], the factoracc
−,k/Γ

∗
k finally appears

in Eq. (A·4). This is the same as Eq. (101). This confirms the
validity of the framework described in Sect. 4.1.
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