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Abstract: This study implemented the pyrosequencing technique and real-time quantitative PCR to 

determine the prevalence of foodborne pathogenic bacteria (FPB) and as well as the ecological 

correlations of background biota and FPB present on restaurant cutting boards (CBs) collected in 

Seri Kembangan, Malaysia. The prevalence of FPB in high background biota (HBB) was lower 

(0.24%) compared to that of low background biota (LBB) (0.54%). In addition, a multiple linear 

regression analysis indicated that only HBB had a significant ecological correlation with FPB. 

Furthermore, statistical analysis revealed that the combinations of Clostridiales, Flavobacteriales, 

and Lactobacillales orders in HBB had significant negative associations with FPB, suggesting that 

these bacteria may interact to ensure survivability and impair the growth of pathogenic bacteria.  
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1. Introduction 

Foodborne pathogenic bacteria (FPB) are carried by food and can cause infections in the 

gastrointestinal system [1,2]. Most FPB and bacteria indicator of fecal contamination belong to the 

Enterobacteriaceae family, under the Proteobacteria phylum, and are usually associated with 

bacteria such as Listeria monocytogenes, Escherichia coli, Salmonella, Campylobacter, Yersinia 

enterocolitica, Cronobacter spp. and Shigella [3]. Foodborne diseases have always been a concern in 

food service establishments such as restaurants, canteen, cafeteria and food stalls. Additionally, to 

trigger an illness in humans, FPB must exceed the infectious dose level, which differs among species. 

Examples of infectious doses are 10
5
 organisms of Salmonella and E. coli [4], 700 organisms of E. 

coli O157:H7 [5], 10
4
 to 10

5
 CFU/ml of Bacillus cereus [6], 10 CFU/g of Cronobacter sakazakii [7] 

and 10
5
 to 10

6 
cells of Yersinia enterocolitica [8]. This indicates that the bacterial number, and not 

the percentage of FPB in an environment, can determine the potential risk of developing foodborne 

illnesses.  

Moreover, dirty conditions or low-grades food premises, do not necessarily harm consumers, 

because of the protective effect of the human immune system and microflora in the gut [9,10]. 

Various studies have documented the ability of indigenous microflora to affect the growth of 

pathogens [11], which also have a greater antagonistic effect in a mixed culture of bacteria [12]. 

Previous studies have also reported that certain bacteria can impair the growth of pathogenic bacteria, 

such as the ability of lactic acid bacteria (LAB) and Pseudomonas to produce antimicrobial 

compounds that eliminate competing bacteria [13–17]  

Pyrosequencing analysis has been widely used to identify bacteria from food and food-related 

samples [18–21]. In the present report, an extended and enhanced analysis from a previous study by 

Abdul-Mutalib et al. [22] was implemented. Our initial observations indicated that the level of 

cleanliness of food premises was not significantly associated with the number of FPB on CBs. The 

previous study also found that some high-grade food premises harboured a high number of total 

bacteria. Therefore, the present study determined whether the total bacteria and background biota 

could influence FPB populations. The total bacteria were divided into two groups: high background 

biota (HBB) and low background biota (LBB). The aim of this study was to determine the prevalence 

of FPB in high and low background biota and the ecological relationship between FPB and other 

bacteria present in the CB samples, through pyrosequencing analysis.  

2. Methods  

2.1. DNA isolation 

Methods in this study were identical to a previous study by Abdul-Mutalib et al. [22]. In brief, 

26 CBs were obtained from various food premises around Seri Kembangan, Malaysia. The CBs were 

requested from the food handlers who work in the premises. All CBs made of wood or plastic were 
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accepted as were and brought to the laboratory for analysis. For the bacterial DNA extraction, an 

approximately 10 cm
2
 centre of the CB was swabbed using wet sterile sponges 3.8 × 7.6 cm (3M

TM
, 

USA) using 40-vertical S-strokes, followed by immersion in 90 mL of sterile buffered peptone water 

(Difco, USA) prior to homogenization for 10 minutes. DNA extraction was performed using 

UltraClean Microbial DNA Isolation Kit (MO Bio Laboratories, USA) from 1.8 mL of samples 

according to the manufacturer’s instructions. Concentrations and quality of DNA were determined 

using Nanodrop 2000 (Thermo Scientific, USA) [23]. 

2.2. Pyrosequencing and real-time PCR 

Table 1. Tag sequences inserted for pyrosequencing. 

Samples name Tag sequences DNA concentration 

(ng/µl) 

cb1 CAGTACGTACT 26.8 

cb2 CGATACTACGT 33.4 

cb3 CTACTCGTAGT 22.9 

cb5 ACGATGAGTGT 14.1 

cb6 ACGTCTAGCAT 8.1 

cb7 ACTCACACTGT 50.6 

cb8 ACTCACTAGCT 36.6 

cb9 ACTGATCTCGT 23.4 

cb10 ACTGCTGTACT 12.3 

cb11 AGACACTCACT 74.4 

cb12 AGACGTGATCT 33.0 

cb13 AGATACGCTGT 53.0 

cb14 AGTATGCACGT 42.5 

cb15 AGTCTGTCTGT 15.0 

cb16 ATCGTCAGTCT 19.6 

cb17 ATCTGAGACGT 14.5 

cb18 ATGCTACGTCT 82.0 

cb19 CACTACGATGT 30.3 

cb20 CAGTCTCTAGT 43.9 

cb21 CGAGACACTAT 46.5 

cb22 CGTATAGTGCT 35.5 

cb23 CTAGACAGACT 36.5 

cb24 CTATCGACACT 30.1 

cb25 CTCACGTACAT 56.4 

cb26 AGTACGAGAGT 27.2 

cb27 AGTAGACGTCT 46.3 
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Samples were amplified using a forward primer, F357 (5’-CCTACGGGAGGCAGCAG-3’) and 

a reverse primer, R926 (5’-CCGTCAATTCCTTTRAGTTT-3’). Short tag sequences (2.5 µL) 

specific for each sample, were also inserted for analysis (Table 1). PCR amplifications were 

performed in a total volume of 50 µL containing 25 µL of Premix Ex Taq (Takara Bio, Japan), 2.5 

µL of forward and reverse primer (10 µM), 2.0 µL of the template and 18 µL of dH2O. The 

following conditions of the thermal cycler (Takara, Japan) were set: 94 °C for 5 minutes; 30 cycles 

of 94 °C for 40 seconds; 50 °C for 40 seconds; and 72 °C for 1 minute; followed by 72 °C for 5 

minutes, and finally, holding temperature at 4 °C. Pyrosequencing analysis was performed by 454 

GS FLX Titanium XL+ Platform (Roche, Switzerland).  

Real-time quantitative PCR (qPCR) was used to determine total bacterial population. The 16S 

rDNA was amplified using TaqMan probe (5’-CGTATTACCGCGGCTGCTGGCAC-3’), forward 

primer, 340f (5’-TCCTACGGGAGGCAGCAGT-3’) and reverse primer, 781r (5’-

GGACTACCAGGGTATCTAATCCTGTT-3’). A total volume of 20 µL of the reaction mixture 

consisted of 10 µL of TaqMan Fast Advanced Master Mix (Applied Biosystems, USA), 0.72 µL of 

each forward and reverse primer (25 µM), 0.34 µL of TaqMan probe, 6.22 µL of nuclease-free water 

and 2 µL of DNA template (1 pg to 100 ng) was used for amplification. The qPCR was performed in 

a Real-Time PCR System (Applied Biosystems, USA) using the following thermal profiles: 50 °C 

for the first 2 minutes, 95 °C for the next 20 minutes, followed by 40 cycles of 95 °C for 1 second, 

and at 60 °C for 20 seconds. 

2.3. Analysis of the pyrosequencing data 

Raw sequence data were processed through demultiplexing, chimera detection, as well as 

deletion of low quality and barcoded sequences. Operational taxonomy unit (OTU) picking and 

diversity analysis was completed using Quantitative Insights into Microbial Ecology (QIIME) 

software [24]. Finally, using the Ribosomal Database Project (RDP) Classifier 

(http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp) all bacterial DNA sequences were confirmed. 

Using statistical analysis, multiple regressions were used to evaluate the ecological correlation of 

FPB and different bacterial phyla, classes, orders, and families. Additionally, correlation analysis 

was performed to determine the relationship between FPB and bacterial orders as well as bacterial 

genera.  

The number of bacteria was divided into two groups of high and low background biota. This is 

to study the effect of their number towards the prevalence of FPB and E. coli. The separation value 

for the statistical analysis of HBB and LBB was 5.0 × 10
6
 bacteria cell/cm

2
. The boundary was 

determined through a trial and error method by entering values of 1.0 × 10
5
 to 1.0 × 10

7
. Values that 

were lower or higher than this resulted in an unevenness of the variable numbers in each category. 

For example, the sample number for HBB would be very low, and the sample number for LBB 

would be very high for a separation value of 1.0 × 10
7 

bacteria cell/cm
2
, and could not be analysed 

statistically. This value of 5.0 × 10
6
 bacteria cell/cm

2 
was also chosen because it allowed for high R

2 

value in the correlation analysis. 
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3. Results and Discussion 

3.1. Classification of bacteria into high and low background biota and their impact on FPB growth 

Pyrosequencing analysis has been widely used to study microbial communities in various 

samples such as abomasal ulcers [25], blood cultures [26], drinking water distribution systems [27] 

and refrigerators [18]. The present work is one of the studies that applied pyrosequencing analysis to 

characterize microbial communities on CB samples collected from food service establishments. The 

bacterial DNA obtained from the extraction was enough and suitable for the pyrosequencing analysis. 

DNA concentration for all samples are shown in Table 1. The pyrosequencing result can be referred 

to the previous study by Abdul-Mutalib et al. [22] that include the taxonomy summary of bacterial 

phyla and genera as well as alpha and beta diversity of all CB samples. 

In this study, 13 samples were classified as HBB, and 13 samples were classified as LBB. As 

mentioned earlier, for LBB, a total bacteria number of less than 5.0 × 10
6 

bacterial
 
cells/cm

2 
was 

selected, and for HBB, total background biota of 5.0 × 10
6 

bacterial
 
cells/cm

2 
or more was chosen. 

Foodborne pathogenic bacteria and bacteria indicator of fecal contamination identified in this study 

were Bacillus cereus, Cronobacter sakazakii, Cronobacter turicensis, Escherichia coli and E. coli 

O157:H7, Salmonella spp., and Yersinia enterocolitica. Foodborne pathogenic bacteria were 

dominated by Cronobacter sakazakii and Salmonella enterica, with few samples contained a high 

number of Escherichia coli. Low and high bacteria group were dominated by Enterobacteriales, 

Flavobacteriales and Pseudomonadales with an addition of Lactobacillales, in high bacteria group 

(Figure 1). 

 

Figure 1. Comparison of the number of FPB and orders of bacteria in LBB (A) and HBB 

(B). Note that the values of the x-axis are not the same. 

A

 
B 

 
Comparison of the number of FBB and few orders of bacteria (A and B for low and bacteria group respectively). Note 
that the values of the x-axis are not the same 

A

B
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The bacterial populations from each sample differ from one sample to another (Table 2): the 

average number of FPB in HBB was higher than in LBB, which had more than 2.4 × 10
7 

differences. 

Although this was the case, the prevalence of FPB in HBB was lower (0.24%) compared to the LBB 

group (0.54%), with more than 5.6 × 10
4 

differences. This indicates that the total number of 

background biota could influence pathogenic bacteria numbers, as well as influence the interactions 

between background biota and pathogenic bacteria. Additionally, the finding was in agreement with 

Jay [28] who observed that the high population of background biota could result in insignificant 

numbers of pathogenic bacteria. This study also identified the possible interaction of background 

biota that suppressed pathogenic bacteria growth. Because bacteria grow in complex communities 

comprising other species of bacteria, they might produce antimicrobial component to suppress the 

growth of FPB and E. coli. This is based on the fact that bacteria interact with each other in the 

human body, especially in the intestines, to ensure health and reduce the number of harmful 

microorganisms [29,30].  

Table 2. Prevalence of FPB in high and low background biota. 

 
Mean total bacteria number per cm

2
 (SD) Mean FPB number per cm

2 
(SD) [%]

 

Low background biota 1.1 × 10
6 
(1.0 × 10

6
) 6.0 × 10

3 
(7.8 × 10

3
)

 
[0.54] 

High background biota 2.6 × 10
7 
(3.6 × 10

7
) 6.2 × 10

4 
(5.7 × 10

4
)

 
[0.24] 

3.2 Multiple regression and correlation analysis 

A multiple regression analysis was performed to determine the ecological correlation of FPB 

and different bacterial phyla, classes, orders, and families. This analysis is used to make prediction 

based on the relationship between the variables. In this analysis, only orders in HBB showed the 

significant result (p = 0.020; Table 3), whereas bacterial phyla, classes and families gave 

insignificant result. The table shows that 11 bacterial orders can be used the predict the population of 

FPB and E. coli. Therefore, based on this result a subsequent analysis specifically correlation test 

was performed on the bacterial orders in the HBB group only. The equation for the regression line 

was 

y = 3.511 – 0.970 (Aeromonadales) – 0.462 (Bacillales) + 0.617 (Burkholderiales) + 0.057 

(Clostridiales) – 0.016 (Enterobacteriales) – 0.230 (Flavobacteriales) – 0.037 

(Lactobacillales) + 0.019 (Pseudomonadales) – 0.064 (Spingobacteriales) – 0.451 

(Spingomonadales) + 0.091 (Xanthomonadales) 

Further correlation analyses were performed to determine the negative associations between 

bacterial orders and FPB and E. coli. Statistical test revealed that the population of Clostridiales, 

Flavobacteriales and Lactobacillales were negatively correlated with FPB (Figure 2). This means 

that as the population of Clostridiales, Flavobacteriales and Lactobacillales increases, the population 

of FPB and E. coli decreases.  
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Table 3. Multiple linear regression of factors (bacterial orders) related to the percentage of FPB. 

 High background biota  Low background biota  

Unstandardized 

coefficient 

Standardized 

coefficient 

 

 

 Unstandardized 

coefficient 

Standardized 

coefficient 

 

Variables B SE β p value  B SE β p value 

Constant 3.511 0.112  0.020  0.988 1.493  0.628 

Aeromonadales -0.970 0.022 -1.492 0.015*  0.175 0.321 0.409 0.683 

Bacillales -0.462 0.012 -1.385 0.016*  -0.009 0.033 -0.203 0.827 

Burkholderiales 0.617 0.012 0.861 0.013*  -0.719 0.931 -1.032 0.581 

Clostridiales 0.057 0.007 0.440 0.077  -0.031 0.071 -0.260 0.738 

Enterobacteriales -0.016 0.001 -0.595 0.033*  -0.003 0.016 -0.173 0.899 

Flavobacteriales -0.230 0.005 -1.921 0.013*  0.004 0.022 0.146 0.886 

Lactobacillales -0.037 0.001 -1.542 0.021*  0.018 0.091 0.197 0.878 

Pseudomonadales 0.019 0.004 0.212 0.141  -0.008 0.014 -0.600 0.673 

Spingobacteriales -0.064 0.001 -0.822 0.011*  -0.058 2.681 -0.019 0.986 

Spingomonadales -0.451 0.022 -0.441 0.031*  0.056 0.151 0.324 0.774 

Xanthomonadales 0.091 0.004 0.531 0.029*  0.164 0.878 0.157 0.883 

F-test for high background biota give significant result (p value= 0.020) 

Multiple regression analysis of bacterial phyla, classes and families showed insignificant relationship. 

Multiple regression of bacterial genera could not be analyzed due to high number of variables.  

 

Figure 2. Correlation analysis of FPB and Clostridiales, Flavobacteriales and 

Lactobacillales in HBB. 

Clostridiales are composed of bacteria in the Firmicutes phylum, which is also a dominant order 

in the healthy gut [31]. The Clostridiales and Lactobacillales orders present in healthy individuals 

and are considered autochthonous or good bacteria [32,33]. Many members of this order such as 

Clostridium and Bacillus can produce spores [34] and some members of Clostridiales order like 

Caprococcus were found to be beneficial to the host, especially when they were supported by other 

bacteria from the Lactobacillales order [35]. A study by Baumgart et al. [36] discovered that a 

reduction in Clostridiales could enhance the growth of E. coli. Members in this order also impair the 

colonization of pathogenic bacteria such as Clostridium difficile, E. coli and Salmonella [37–39], 

suggesting the importance of Clostridiales order to reduce the growth of pathogenic bacteria. 
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Flavobacteriales are of the Bacteroidetes phylum. In humans, Flavobacteriales reside on dry 

areas of the skin along with β-Proteobacteria [40]. They are also ubiquitous in soil and are usually 

associated with plant rizhosphere and pyllosphere [41]. In general Flavobacteriales are one of the 

beneficial microbial communities to ensure plant health and soil fertility, and can be easily isolated 

from soil and water [42,43]. Flavobacteria possess antimicrobial components and demonstrate 

antagonistic properties toward other bacteria [44]. Flavocin, an agent with fungisitic and 

bacteriostatic activities produced by Flavobacterium sp. L-30, is widely used to treat various farm 

crops [45]. Flavobacteria were also have an antimicrobial effect against S. aureus and E. coli, and 

the interaction was enhanced when combined with α-Proteobacteria [46]. Flavobacteria are also 

active against Bacillus subtilis, Candida glabrata, Escherichia coli and Staphylococcus lentus [47].  

Lactobacillales are comprised of lactic acid bacteria, which are usually associated with 

fermentation and human nutrition [48]. The members of these orders contain many antimicrobial 

compounds [15]. Generally, Lactobacillales, or LAB, are natural inhabitants of the human 

gastrointestinal tract [49], and some species are qualified as probiotics that have health-promoting 

activites [14]. Studies have documented the ability of lactic acid bacteria to produce antimicrobial 

compounds or bacteriocins such as viridicin [50], pediocins [51] lactococcin and nisin [52].  

Table 4. Comparison between different bacterial numbers of HBB. 

HBB Bacterial orders r p-value 

> 10
7 

Clostridiales -0.247 0.600 

Flavobacteriales -0.339 0.512 

Lactobacillales 0.223 0.670 

Clostridiales + Flavobacteriales + Lactobacillales 0.186 0.724 

> 10
6
 Clostridiales -0.005 0.875 

Flavobacteriales -0.269 0.374 

Lactobacillales -0.231 0.448 

Clostridiales + Flavobacteriales + Lactobacillales -0.583 0.036* 

> 10
5 

Clostridiales 0.012 0.995 

Flavobacteriales -0.062 0.767 

Lactobacillales -0.158 0.449 

Clostridiales + Flavobacteriales + Lactobacillales -0.178 0.394 

All 26 

samples 

Clostridiales 0.081 0.693 

Flavobacteriales -0.011 0.958 

Lactobacillales -0.032 0.879 

Clostridiales + Flavobacteriales + Lactobacillales -0.153 0.454 

* Correlation is significant at the 0.05 level (2-tailed). 

As mentioned above, 5.0 × 10
6 

bacterial
 
cells/cm

2 
was chosen

 
as a threshold for low and high 

background biota. Based on these initial findings, the lowest bacterial number was recorded as 10
4
, 

whereas the highest bacterial number was 10
8
. Due to the high differences and inconsistency in the 

cell number, this study separated the samples into two groups of high and low background biota in 

order to obtain more reliable data. The purpose of this procedure was to find out whether the total 

number of bacteria based on bacterial phyla, classes, or orders, influences the population of FPB and 

E.coli. After several trial-and-error methods, the separation value of 10
6
 for the minimum number of 
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HBB was found to be more reliable, which resulted in a strong correlation coefficient and lower p-

value (Table 4). This is the main reason why 10
6 

was chosen as the separation value.  

Additional tests were performed to determine the correlation between FPB and several bacterial 

orders. The results indicated that the correlation between FPB and the combination of Clostridiales, 

Flavobacteriales and Lactobacillales was significant with correlation coefficient of -0.583 (Figure 3). 

The combination of these three bacterial orders gave a higher correlation coefficient compared to 

only one order as well as a more significant result. This outcome was in accordance with the authors’ 

assumption that two or more bacterial orders may correlate due to a common environment or to 

ensure survivability. These bacteria might work synergistically through quorum sensing (QS) to 

impair FPB growth. This shows that it requires a lot of background biota from different orders with 

different characteristics to reduce the growth of pathogenic bacteria. 

The order Clostridiales produces comQXPA, a QS system important in encoding four proteins: 

isoprenyl transferase, pre-peptide signal, histidine kinase, and a response regulator. Upon reaching a 

specific concentration of these molecules, a large number of cellular responses are activated for 

competence development, surfactin production, biofilms formation and extracellular DNA  

release [53]. This allows for background biota to compete with pathogenic bacteria and impair their 

growth. Few bacterial species in the Clostridiales order could also produce the luxS gene to 

synthesise autoinducer-2 (AI-2), an important signalling molecule for the production of biofilms, 

which ensures bacterial survivability [54].  

 

Figure 3. Correlation analysis of FPB and the combination of Clostridiales, 

Flavobacteriales and Lactobacillales in HBB. 

Flavobacteriales (specifically Chryseobacterium) produces the aidC gene, which displays N-

Acyl homoserine lactones (AHLs) degrading activity. AHLs are QS signal molecules used by many 

Gram-negative bacteria. Another study concluded that Chryseobacterium (from the Flavobacteriales 

order) produce Aidc, which functions as a AHL lactonase and catalyses the AHL ring opening by 

hydrolyzing lactones [55]. Some studies have identified the significance of QS inhibition or quorum 
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quenching by identifying and developing chemical compounds and enzymes that target signalling 

molecules, signal biogenesis, or signal detection. These therapies are effective against some 

pathogens but still require further studies [56]. 

Cell-to-cell communication or QS between LAB occurs when a concentration of a specific 

molecule is reached and acts as signals for the induction of specific genes, which allows for the 

production of metabolites such as bacteriocin [57], lactic acid and acetic acid [58]. These metabolites 

play an important role in controlling food-spoilage and food-borne pathogens [59,60]. Additionally, 

plantaricin and weisellicin, two types of bacteriocins produced by Lactobacillus plantarum and 

Weisella hellenica respectively, were found to be active against foodborne pathogen such as S. 

aureus, L. monocytogenes, B. cereus, E. coli, Clostridium perfringens, Salmonella typimurium, few 

Gram-positive bacteria as well as some yeasts and molds [42,61,62].  

The findings from the present study further support the notion that different bacteria interact 

with each other either to, increase survivability and to reduce competition. However, information 

regarding bacterial interactions especially among different species is very limited and requires 

further investigations. 

4. Conclusion 

This study reveals a high diversity of microorganisms including FPB, in CB samples. HBB 

contain a low percentage of FPB compared to LBB; however, in both cases, the FPB number did not 

reach the infectious dose level. Through statistical analysis, multiple linear regression analysis 

showed that only bacterial orders in HBB had a significant ecological correlation with FPB. 

Additionally, a significant negative association was discovered between FPB and E.coli, and the 

combination of Clostridiales, Flavobacteriales, and Lactobacillales in HBB. Based on this analysis 

we propose that, some members of HBB work synergistically with each other to reduce the number 

of FPB, ensure survivability and eliminate competitors. This study also indicated that the microbial 

interactions on CB samples were very diverse, and some genera might have the ability to reduce the 

growth of FPB. Further investigations on these bacteria can be conducted to study their relationship 

with FPB and possible interactions. Furthermore, future studies on metabolites produced from 

background biota will be conducted to understand how these metabolites could impact the number of 

pathogenic bacteria.  
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