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abbr. English Slovene
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Povzetek

Naslov: Predpomnjenje v programsko definiranih brezžičnih omrežjih na

podlagi predvidevanja konteksta

V tem magistrskem delu se posvetimo izbolǰsanju predpomnjenja za mo-

bilne uporabnike v večjem brezžičnem omrežju študentskega kampusa. Na-

jprej opǐsemo negativne učinke mobilnosti na razmere v omrežju in uporabnǐsko

izkušnjo. Predlagamo novo metodo, ki bo s pomočjo tehnologij programsko

definiranih omrežij preusmerila uporabnikove zahtevke na optimalno postavl-

jene omrežne predpomnilnike in s tem izbolǰsala uporabnǐsko izkušnjo in

razbremenila jedrne omrežne povezave. Naš prispevek je omrežna aplikacija,

ki prek SDN krmilnika Ryu nadzoruje omrežne tokove. Aplikacija prejme po-

datke o premikih uporabnikov, izračuna kateri predpomnilniki v omrežju so

najprimerneǰsi in ustrezno preusmeri uporabnikove tokove na te predpomnil-

nike. Našo metodo smo testirali v simulatorju omrežja Mininet. Z uporabo

realnih podatkov iz študentskega kampusa na Dartmouthu smo zasnovali več

testnih scenarijev. Kot glavno karakteristiko uporabnǐske izkušnje smo mer-

ili zakasnitev od začetka do konca zahtevka. Kot indikator stanja omrežja

smo merili promet preko jedrnih povezav. Naši eksperimenti so pokazali, da

naša metoda dinamičnega preusmerjanja lahko pod določenimi pogoji prinaša

opazne izbolǰsave v primerjavi s tradicionalnimi, statičnimi pristopi.

Ključne besede: Programsko definirana omrežja, predpomnjenje, brezžična

omrežja, mobilnost uporabnikov.





Abstract

Title: Context prediction-based prefetching in software-defined wireless net-

works

In this master thesis we focus on improving in-network caching for mobile

users in a large campus WiFi network. First we pinpoint the negative effects

of mobility on network conditions and user experience. We propose a method

leveraging SDN technology to redirect users’ requests to optimally located

cache servers, resulting in improved user experience and lowered burden on

the backhaul and core network links. Our contribution is a network appli-

cation that controls the flows in the network via an SDN controller. The

application takes user’s movement traces as an input, computes the optimal

location of cache servers in the network and redirects user’s flows accordingly.

We tested our solution in a Mininet network simulator. We devised multi-

ple scenarios using real-world movement traces from Dartmouth Campus.

We measured requests delay as the main characteristic for user experience

and data traffic over core and backhaul links as an indicator of network

health. Our experiments show that for mobile users our dynamic redirection

approach provides noticeable improvements over traditional, static caching

methods.

Keywords: Software defined networking, caching, WiFi network, user mo-

bility.





Razširjeni povzetek

V tem magistrskem delu se posvetimo izbolǰsanju predpomnjenja za mobilne

uporabnike v večjem brezžičnem omrežju študentskega kampusa. V zadnjih

letih se je število zmogljivih mobilnih naprav izrazito povečalo. Število na-

prav v IP omrežjih bo trikrat vǐsje od svetovnega prebivalstva. Poleg števila

pa se povečuje tudi zmogljivost teh naprav. Omrežni promet bo do leta 2019

predvidoma dosegel 22 GB na prebivalca [7].

Če bo omrežni promet naraščal s trenutnim trendom, bomo verjetno

kmalu opazili več omrežnih zastojev in posledično slabšo uporabnǐsko izkušnjo.

V boju z naraščajočim prometom se zelo pogosto uporablja predpomnjenje.

Predpomnilnik v spletni domeni predstavlja namensko napravo, ki shranjuje

pogosto zahtevane objekte na trdem disku ali v delovnem pomnilniku. Z

uporabo predpomnjenja dosežemo naslednje koristi [26]:

• Zmanǰsan promet na omrežnih povezavah.

• Zmanǰsane zakasnitve za uporabnika. Število skokov od odjemalca

do predpomnilnika je manǰse kot do izvornega strežnika. To postane še

posebej pomembno, ko je izvorni strežnik zelo daleč stran ali pa se na

teh skokih izgubi veliko paketov.

• Zmanǰsana obremenitev izvornega strežnika. Na del odjemalčevih

zahtevkov odgovori predpomnilnik, zato je izvornemu strežniku prihra-

njeno nekaj računskega bremena.

Tradicionalne metode predpomnjenja z večimi predpomnilniki ne upoštevajo

morebitne spremembe lokacije uporabnikov, zato se lahko njihova učinkovitost
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zmanǰsa v določenih okoljih, kot so fakultetna in mestna brezžična omrežja.

V našem delu obravnavamo predvsem to tematiko in predlagamo rešitev, ki

izniči negativne posledice mobilnosti uporabnikov.

Naša rešitev temelji na novi paradigmi programsko definiranih omrežij

(SDN), ki nam omogoča centralizirani, fleksibilneǰsi in enostavneǰsi nadzor

nad omrežjem kot tradicionalne tehnologije. Naš prispevek je omrežna apli-

kacija, ki preko SDN krmilnika preusmerja določene uporabnikove omrežne

tokove k skrbno izbranemu omrežnemu predpomnilniku. Aplikacija kot vho-

dni parameter prejme predvidene premike uporabnikov v omrežju, na podlagi

katerih izračuna potrebne preusmeritve omrežnih tokov. Matematično lahko

to opǐsemo kot problem k-sredin (angl. k-median) [1] in ga v našem delu

rešujemo z uporabo vzvratno požrešnega algoritma (angl. Reverse-greedy) [6]

in enostavneǰso metodo po principu najbližjega skupnega prednika.

V eksperimentih uporabimo realne podatke iz kampusa na univerzi v

Dartmouthu, ki vsebujejo zapise vseh točk dostopa v povezavi z brezžičnimi

karticami uporabnikov med letoma 2001 in 2003 [17]. Na podlagi teh po-

datkov lahko razberemo premike uporabnikov v omrežju in jih neposredno

uporabimo v aplikaciji. Na istih podatkih s pomočjo hierarhičnega grupiranja

generiramo omrežno topologijo, podobno tisti na univerzi v Darthmouthu.

Simulacije izvajamo v simulatorju omrežja Mininet, v katerem namestimo

tudi spletni strežnik. Na omrežna stikala namestimo predpomnilnike tipa

Squid. Uporabimo 170 vozlǐsč, od katerih jih 40 predstavlja stavbe in 100

točke dostopa.

V prvem eksperimentu najprej potrdimo tezo o negativnih učinkih mo-

bilnosti na predpomnjenje z uporabo večih predpomnilnikov. Eksperiment

izvedemo na manǰsem omrežju z dvema točkama dostopa in desetimi upo-

rabniki na vsaki točki dostopa. Uporabniki dostopajo do večjega nabora

vsebin in ko se predpomnilnik napolni, enega uporabnika premaknemo na

drugo točko dostopa in merimo razmerje zadetkov v predpomnilniku za tega

uporabnika. Ob premiku opazimo dvajset odstotni padec razmerja zadetkov,

ki pa začne počasi naraščati proti prvotnim tridesetim odstotkom. To poja-
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snimo z dejstvom, da se je predpomnilnik, ki je odgovarjal na zahtevke tega

uporabnika, v začetni fazi napolnil z delom njegovih datotek, po premiku pa

drugi predpomnilnik ni vseboval teh datotek.

V naslednjem eksperimentu primerjamo našo rešitev s preprosto metodo

predpomnjenja na prehodnem stikalu (gateway switch). Rezultati so poka-

zali opazneǰso zmanǰsanje prometa v omrežju pri uporabi naše metode, kljub

uporabi verjetnostih premikov uporabnikov s tehniko Markovskih verig. Prav

tako pa se je zmanǰsala zakasnitev, ki so jo občutili uporabniki v omrežju.

Opazili smo, da je rezultat odvisen tudi od števila uporabljenih predpomnil-

nikov za vsakega uporabnika in značilnosti premikanja.

V stranskem eksperimentu smo primerjali različne tehnike menjave shra-

njenih objektov, ki jih ponuja Squid, kjer smo ugotovili, da se v našem

primeru najbolje obnese tehnika, ki upošteva velikost in frekvenco zahtev

shranjenih objektov (Greedy-Dual-Size-Frequency).

Zasnovali smo tudi eksperiment, kjer smo predpomnilnike postavili samo

na stikala, ki predstavljajo stavbe. Našo metodo smo primerjali s predpo-

mnenjem brez preusmeritev. Tudi tu se je naša metoda izkazala za bolǰso,

čeprav z manǰso razliko kot v drugem eksperimentu. Verjamemo pa, da bi

naša metoda imela še opazneǰse učinke, če bi uporabili noveǰse podatke, v

katerih bi bili zastopani tudi uporabniki pametnih telefonov, ki so tudi mo-

bilneǰsi.

Nazadnje preizkusimo obnašanje naše aplikacije v nepredvidljivih okolǐsčinah.

V simulacijah uporabnike premikamo z naraščajočo mero naključnosti, tako

da njihovo premikanje začne vedno bolj odstopati od predvidenega. Ugoto-

vimo, da nepredvidljivost igra pomembno vlogo pri učinkovitosti naše aplika-

cije, saj pri večji nepredvidljivosti lahko naša aplikacija celo poveča promet

v omrežju.

Področje omrežnega predpomnjenja je zelo široko in opazimo veliko možnosti

za izbolǰsave. Rešitev bi bilo potrebno predvsem preizkusiti v različnih oko-

ljih z različnimi parametri, tako da bi v celoti spoznali prednosti in slabosti

predlagane rešitve. Zagotovo je veliko prostora za napredek tudi v samem
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algoritmu. Največja izbolǰsava bi bila uporaba metode za pametno izbiro

števila uporabljenih predpomnilnikov za vsakega uporabnika, saj so uporab-

niki v eksperimentih imeli zelo različne vzorce premikanja. V aplikaciji smo

uporabili požrešni algoritem, ki pa vrne samo približno najbolǰso rešitev.

Sklepamo, da bi z uporabo natančneǰsega algoritma lahko dosegli nekoliko

bolǰse rezultate.



Chapter 1

Introduction

Over the last few years the number of powerful mobile devices has increased

drastically. The number of devices connected to IP networks will be three

times as high as the global population in 2019 [7]. Besides quantity, capabil-

ities of those devices are also increasing. By 2019 IP traffic will reach 22 GB

per capita, up from 8 GB per capita in 2014 [7].

If the trend of demand outpacing the capacity growth continues, we will

probably soon see more frequent network congestions and worse quality of

experience. Caching is the main technique used to unburden the network

links and improve response times [26]. A web cache is a dedicated machine

that stores frequently accessed objects in RAM and on the hard disk. Caching

in the internet domain provides us with the following benefits:

• Reduced traffic on internet links.

• Reduced delay for the user. Hop count from client to proxy (cache

server) is lower than hop count to original server. This becomes espe-

cially important when original server is far away (another continent)

or there is high packet loss on these hops.

• Reduced server load. Part of the requests are served by proxies so

original server sees this as lower amount of requests which results in

lower computational burden on the server.

1
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In the internet domain we can distinguish three most commonly used cache

types. Browser cache is used on the client side. It stores content that a user

most commonly accesses via a Web browser. It provides the highest gains

in terms of reducing the delay, but it also lowers the power consumption on

the client, network and server side since no network activity is needed when

content is served from the local cache. The trade-off here is that storage on

client devices can be expensive and limited, especially on smartphones.

Network cache servers (proxies) (Figure 1.1) are used in networks on

all levels, private networks, ISP networks, etc. These cache servers are usually

dedicated machines that serves a group of users. They are usually deployed

for scalability reasons, because they reduce the network load, especially on

the backhaul links. A network that incorporates cache servers can usually

serve more users than a network without them. If we give an example from

the cost perspective, an organization can have a cheaper, lower capacity

backhaul link, if it has a cache server deployed in the network, because this

link will not be as burdened as it would be if cache server would not be used.

Special example is Content Distribution Network (CDN), which is a

globally distributed network of cache server that serves larger user population

(Figure 1.2). The main difference besides scale of deployment is the business

model since content owners pays to CDN provider to serve their content.

Reverse proxy cache server (Figure 1.1). Normal or forward proxy

serves a group of clients by requesting and caching the content from the

source server on their behalf. Reverse proxy is deployed “in front” of the

source servers and answers requests on behalf of these servers. This is often

used to lower the computational burden on source servers.
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Figure 1.1: Forward vs. Reverse proxy. Source:

http://http://community.brocade.com/t5/vADC-Docs/

Using-Stingray-Traffic-Manager-as-a-Forward-Proxy/ta-p/73721

Figure 1.2: Content Distribution Network. Source: http://www.

cdnreviews.com

Traditional caching techniques that use multiple cache servers do not

account for the changing location of the users, so they may perform worse

in certain environments like metropolitan WiFi or campus WiFi networks,

where users are more mobile. Some techniques, like content relocation, were

proposed, but they are not very efficient or are very difficult to implement

and thus are not portable [19]. In this work we put a strong emphasis on

http://http://community.brocade.com/t5/vADC-Docs/Using-Stingray-Traffic-Manager-as-a-Forward-Proxy/ta-p/73721
http://http://community.brocade.com/t5/vADC-Docs/Using-Stingray-Traffic-Manager-as-a-Forward-Proxy/ta-p/73721
http://www.cdnreviews.com
http://www.cdnreviews.com
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Figure 1.3: Traditional vs Software-Defined network [3]

effect of user mobility on caching and design a solution to mitigate those

effects.

The rise of Software-defined networking (SDN) gives us new opportuni-

ties to deal with these challenges. This new paradigm gives us centralized

and programmable control over network. To express the desired high-level

policies in traditional networks, network operators need to configure each in-

dividual network device separately using low-level and often vendor-specific

commands. SDN moves the control logic from network devices to central-

ized network controller and simplifies and abstracts network configurations

(Figure 1.3).

The network is programmable through software applications running on

top of the controller that interacts with the underlying data plane devices

(Figure 1.4). Additionally, destination-based packet forwarding is replaced

with broader and more flexible flow-based forwarding. A flow is defined by a

set of packet field values and actions applied to the packets of this flow [18].

We propose a novel approach that would adapt the caching to the mobility

of the user. We create a network application that can modify network flows

based on user’s movement pattern in the WiFi network to redirect the user

to specific cache servers that would serve the user best. Our intention is

to create portable solution, independent of network topology and movement

traces. Our solution is tested on real-world mobility traces from Dartmouth

campus data trace [17] and on topology generated from access points from
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Figure 1.4: Simplified view of an SDN architecture. Source: https://www.

grotto-networking.com/BBSDNOverview.html

same dataset. We also outline the limitations of proposed approach and

suggest possible future improvements and directions for future research.

https://www.grotto-networking.com/BBSDNOverview.html
https://www.grotto-networking.com/BBSDNOverview.html
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Related Work

User experience in Web browsing is the sum of network conditions, server

performance and various client-side effects like hardware performance, local

storage, etc. A lot of research was done on client-side to improve user ex-

perience. This is often complemented with research on mobility predictions.

Interesting work was done in [24], where authors used mobility and through-

put predictions to proactively cache video content on access points the user

encountered along the way. Orchestration was done by specially configured

mobile device. Although results are good, the solution itself does not scale

very well, because special modifications are needed on the client-side with

the exact knowledge of a network topology. Our solution do not need any

client-side modifications so we avoid these problems completely.

In another research [9] mobility prediction algorithms have been used

to control downloading schedule and buffering on the Android smartphone

trying to minimize segment lateness and maximize video quality by predicting

data rates in user movement through the network. Both solutions and ours

rely on mobility prediction and result in improvements to user experience

but each in very different way. This shows that there is a lot of potential to

improve user experience just by exploiting mobility predictions on client and

network side solutions.

Network caching has always been popular research topic, because it pro-

7



8 CHAPTER 2. RELATED WORK

vides substantial gains in terms of lowering the network traffic and request

latency. This problem domain has a lot of different tunable parameters and

different use cases and many aspects have been extensively researched. A lot

of work has been done on cache replacements schemes [27]. These policies

determine which piece of content will be removed from local storage when

new object needs to be stored. By nature, cache operates by using up the

dedicated disk space and cached objects are continuously being evicted and

replaced with the new ones. That is why replacement policies have such an

important role. There exists five groups of policies, each containing numerous

variations:

• Recency-based. Eviction based on time of last access of cached ob-

jects.

• Frequency-based. Eviction is made based on how many times cached

objects were accessed.

• Size based. Eviction is made based on size of cached objects.

• Function based. Eviction is specified by arbitrary function which

may take into account various parameters of cached objects like recency,

frequency, size, etc. One example of this function is Greedy-Dual-Size-

Frequency algorithm, which takes into account all three parameters

explained above.

• Randomized policies. Policies that have probabilistic behaviour, but

can still take into account any of the parameters explained above.

Another problem that received a lot of attention was the placement of cache

servers in the networks. There exists special framework that determines the

optimal placement of cache servers [20]. In our thesis we also deal with this

problem, but from different perspective. We do not choose where to place

cache servers, but we select to which already placed cache server should

user’s request be redirected. Also related to our work are studies of effect
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of mobility on caching. Interesting approach to support user mobility was

proposed in [19], where the authors developed two algorithms to move the

cached content so it remains close to moving clients. Although they reported

improvement over existing path-prediction based approaches, overhead was

still quite big. We pursue the similar goal of supporting user mobility, but

instead of moving the content around the network, we redirect users’ re-

quests to different cache servers instead to avoid the overhead reported in

the mentioned study.

We found interesting and relevant solution called EdgeBuffer [28]. This

platform is part of MobileFirst project, which tries to address the drawbacks

of traditional networks originally built for static devices. They propose us-

ing wireless access points as cache nodes. They take an interesting approach

with a prefetch buffer that takes into account individual access patterns of

the users and also general popularity of the content. Although their exper-

iments showed significant improvements over traditional caching methods,

we think such solutions are too difficult to implement in regular networks

because they need special infrastructure and configuration. We try to over-

come this drawback by building our solution upon SDN, which makes the

implementation easier and no special infrastructure is needed, except for the

switches that support OpenFlow protocol.

Emergence of a new paradigm called Software-defined networking (SDN)

has introduced new possibilities for inovations in network management [15].

Control logic over whole network is centralized and programmable while net-

work devices perform only packet forwarding. This gives us a platform on

which new ideas can be introduced in the network through a high-level soft-

ware program as opposed to using a fixed set of commands in proprietary

network routers.

In LTE network domain, SDN based caching was also researched [16].

Although the research is from different domain, the authors are dealing with

similar problems like mobility and determining the best caching decision.

They use the technique of content relocation. We decided to use the opposite
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method of request redirection. So instead of moving the content around,

which is an expensive operation, we reroute the request to a target cache

server to get the similar effect but faster and with much less network traffic.

OpenCache is a good example of a novel solution that was built upon

SDN technology. It is experimental caching platform developed to provide

more dynamic caching solution [2]. Authors pursue the goal of reducing

the duplicate deliveries of identical content to lower the transit costs and

improving the user experience. Their solution presents a cheaper alternative

to Content Distribution Network (CDN) and is more suitable for deployment

in smaller networks and last-mile environments. The solution has built-in

function for creating the nodes, moving, fetching and seeding the content

so we think that their platform presents numerous new opportunities for

improving cache related problems. Their solution is also tested on a large-

scale testbed deployed across Europe. We also tried to use this platform in

our experiments, but due to lack of technical documentation we abandoned

this approach. Their solution operates directly with custom cache servers

but ours leaves the caching to more established solutions like Squid proxy

and focuses only on network flow modifications. They provide more general

solution while we tackle very specific problem of user mobility in the network.

Studying the related work on this field, especially SDN related experi-

ments, gave us a lot of valuable insights and ideas to use in our work. We

think that user mobility does introduce new challenges on all sides in Web

domain. We also think that these challenges can be tackled by incorporating

mobility predictions in decision making process of developed solutions.
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Problem Statement

3.1 Scenario

Imagine a large campus network with 160 buildings, over 600 access points

and 3000 network users, which are served by one gateway to internet and

multiple cache servers. For most of the time the users are static. Students

are in the dorms or classes, professors and other employees are in their offices

and are not very mobile. In these cases network environment is static and

stable. Cache servers are serving fixed group of users with the content that

is most frequently requested by this specific group.

Problem arises when users become mobile and go to area that is cov-

ered by a different cache server. There are many transitions like this in a

normal day. Students are moving between dormitories and academic build-

ings, professors are moving between cabinets and classrooms, everyone goes

to cafeteria at one point in a day, etc. During transitions like these, user’s

requests are going to different cache server, which probably stores very differ-

ent content than the cache server the user was served from before, so there is

a higher chance of Cache Miss events. This increases the delay experienced

by the user, because content has to be retrieved from the original source that

is probably many hops away. Besides that, this new content will cause cache

to evict some of the existing files to free the space for storage of a new object.

11
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This is expected behavior, but it decreases overall cache performance if user

will stay at this location only for a small period of time.

Consequences:

• Average round trip time of requests is longer than in static cases due

to the fact that requests go to source server many hops away.

• Network traffic on backhaul and core links is increased so there is higher

probability of congestion.

• Cache servers are slowly repopulated with the content of a new group

of users.

3.2 Problem formulation

To reduce the negative effects of mobility on the network conditions we must

redirect the user’s requests to the cache server that would serve him with the

highest hit rate. In this thesis we assume that a large network is organized

in a tree structure so this problem can be translated into finding k-median

in a tree (undirected acyclic graph). In the k-median problem we are given a

graph G in which each node u has a non-negative weight wu and each edge

(u,v) has a non-negative length duv. We extend this notation to arbitrary u,v

∈ G, so that duv is the minimum distance between u,v in G. Our goal is to find

a set F of k vertices that minimizes costF (G) =
∑

x∈G minu∈F wxdxu. The

optimal cost of G with k cache servers is costk(G) = min {costF (G) : |F | ≤ k}
[1].

In our problem domain u represents access points (leaf nodes) from which

individual user with id i made wui requests. F is a set of k cache servers that

serves this user. It costs dxui to serve a user request at access point x from

cache server located at u. We wish to redirect user to k cache servers in G

so that overall serving cost is minimized. This optimal set of k cache servers

is called k-median of G for a specific movement pattern of a user [1].
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Figure 3.1: Example tree representation of the network with weighted leafs

that represents the number of user’s request on each access point.

Kariv and Hakimi [14] proved that this problem is NP-hard in the case

of general graphs, and proposed an O(n2k2) algorithm for undirected trees,

where n is the number of tree nodes and k is the number of cache servers.

Our network is represented by tree where root represents gateway to

internet (node marked with G), leaf represents an WiFi access point and

intermediary nodes represents networks switches. Each leaf node carries a

value which represents a number of processed user requests. For the sake of

the demonstration, we assume that cache servers are placed on all network

nodes. In a selected time slot user has made ten, eight and four requests on

first (from the left), second and fourth access point respectively. In the next

chapter we will describe two algorithms we implemented for solving k-median

problem described in this section. All of the described algorithms use the

topology displayed in Figure 3.1 as a starting point.
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Chapter 4

Proposed Solution

4.1 Single median

We start with the most simple instance of k-median problem, single median

(one selected cache server per user). This means that we can forward user’s

requests to one designated cache server in the network. We must now com-

pute which cache server would be the most appropriate for user’s distribution

of requests.

We devised simple cost function that we will use to evaluate possible

cache server selections (Equation 4.1). With our cost function we wanted to

take into account the number of issued requests and also penalize the use of

core network links, because by selecting cache servers closer to the edge we

can significantly reduce the in-network traffic on core and intermediary links.

Closer the link is to the gateway (lower depth), higher the cost. A cost of

cache server being selected to serve a specific user is the sum of all link costs

from each AP to designated cache server.

Cost(user, cache) =

|APs|∑
i=1

depth(cache)∑
d=depth(AP [i])

numberOfRequests(user, AP [i])

d

(4.1)

We start by computing the Lowest Common Ancestor (LCA) of access points

with number of requests higher than zero (Algorithm 1). LCA algorithm

15



16 CHAPTER 4. PROPOSED SOLUTION

first gets the Paths for each AP. Path is a list of nodes between AP and the

gateway ordered by increasing depth. First element on all paths is always

the gateway (root) node. Root node is also our first candidate for LCA.

We compute the cost of the candidate with cost function 4.1 and compare it

with the costs of candidate’s children. If all children have higher cost than

the parent then the algorithm returns the parent as the LCA, otherwise the

child with the lowest cost is promoted to be the next candidate and the

process repeats. Computed LCA is the first candidate for optimal solution

and is sent to Algorithm 2 as an argument x. If we would select cache server

anywhere higher than on LCA, we would always have higher hop count and

thus higher delays for requests without any additional benefits, as there are

no requests in other parts of the network that might benefit from this higher

placement of cache server.
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Algorithm 1 Lowest Common Ancestor

1: for all {APi ∈ APs : numberOfRequests(APi) > 0} do

2: # Paths[i] = [root, node at depth 1, node at depth 2, . . . , node i]

3: Paths[i]← path(G,APi)

4: lastI← i

5: end for

6: minDepth← mini(|Paths[i]|)
7: Depth← 0

8: CurrentLca← Root

9: while Depth ≤ minDepth do

10: # First LcaCandidates will be one of the CurrentLca’s children

11: LcaCandidate← Paths[lastI][Depth]

12: for all Path ∈ Paths do

13: if Path[Depth] 6= LcaCandidate then

14: return CurrentLca

15: end if

16: end for

17: CurrentLca← LcaCandidate

18: Depth← Depth + 1

19: end while

20: return CurrentLca

We compute the cost of selecting the cache server on LCA with equation

4.1. Then we compute the cost of caching on all of the LCA’s children.

If children’s costs are higher than the current candidate’s cost, we declare

current candidate as optimal solution, otherwise we recursively continue with

this process on the child with the lowest cost.

LCA is chosen as the first cache candidate and cost is computed with

equation 4.1. In the first step, the algorithm will return the following result

displayed in figure 4.2. LCA is chosen as a cache server candidate. Cost for

selecting this cache server is the sum of all link costs 5 + 4 + 2 + 18 + 4 = 33

(Figure 4.2). Cost is computed for each link between AP and cache server,
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where number of requests are divided by link depth factor. Higher the links

are, higher the cost will be. As we stated before, one of our goals is also to

unburden core links.

In the next step we compute the cost for next cache candidates (both

children of the LCA node). Left child has a cost of 19 (Figure 4.2) and the

right child has a cost of 47 (Figure 4.3). Previously selected node is marked

red for easier demonstration. Left child has smaller cost than the parent and

the right child, so we choose it as current best solution and continue with

the algorithm from this node down.

Again, we compute the costs of children of current solution. Left child has

a cost of 21 and the right child has a cost of 22. Because both children have

higher cost than the parent, algorithm stops and the current best solution is

returned as the final result (Figure 4.2).

Algorithm 2 1-median algorithm

1: # Initialized with x← LCA

2: procedure SingleMedian(G, x)

3: Candidates← children(G, x)

4: i← argmini(cost(G,Candidates[i]))

5: if cost(G,Candidates[i]) < cost(G, x) then

6: return SingleMedian(G,Candidates[i])

7: else

8: return x

9: end if

10: end procedure
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Figure 4.1: Initialization phase - LCA is cache candidate
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Figure 4.2: First temporary state in Single median algorithm
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Figure 4.3: Second temporary state in Single Median algorithm

4.2 Reverse Greedy Algorithm

To solve k-median problem where k > 1, we implement Reverse Greedy Al-

gorithm. General algorithm starts with all cache servers selected. In each
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iteration a cache server is deselected in such way that the overall cost in-

creases the least. Algorithm stops when k cache servers remain selected in

the network. Time complexity of this algorithm is O(log n), where n is the

number of all nodes in the network [6].

Algorithm 3 Reverse Greedy Algorithm [6].

1: # F is a set of all cache servers in the network

2: # u is a user for which we are selecting cache servers

3: procedure ReverseGreedy(F, u)

4: S← F

5: while |S| > k do

6: # f is a cache server that introduces the least cost

7: f← argmini(Cost(u, S − {i}))
8: S← S − {f}
9: end while

10: return S

11: end procedure

Our problem domain has this specific characteristic that all requests are

issued from leaf nodes, so first we need to do few adaptations to the original

algorithm. Instead of starting with all cache servers selected for caching,

we select only cache servers on access points that were visited by the user

(number of requests is greater than zero). Request are always forwarded from

AP to the closest selected cache server, so cache servers on intermediate and

core nodes would not be used in this case. For this adaptation we define the

following terms:

• Path. Path is a list of nodes between AP and the root node.

• Clear path. Path where only one cache server is selected.

• Collision. State where there are two selected cache servers on the

same path.
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Our algorithm in each iteration performs one of two actions on all selected

cache servers:

• Move up. Select the parent cache server and deselect the target one,

This action is performed when path is clear. Number of total selected

cache servers remains the same.

• Merge. When collision occurs we deselect one of the selected cache

servers to clear the path (removes the collision). With this action we

reduce the total number of selected cache servers (K = K − 1).

Initialization phase always produces state with all clear paths. In each

iteration we perform one of the actions on all selected cache servers. Each

action produces new state. For each state we compute the cost with equation

4.2. Equation is basically the same as in Single median algorithm (Equation

4.1), except here we are dealing with multiple cache servers, so we are com-

puting the cost from AP to it’s closest cache server cacheclosest. Equation is

user specific because it computes only requests made by specific user.

Cost(user, caches) =

|APs|∑
i=1

depth(cacheclosest)∑
d=depth(AP [i])

numberOfRequests(user, AP [i])

d

(4.2)

Our initialization step is displayed in Figure 4.4. If k = 3 then this would

also be the end result, but to demonstrate the process we compute the result

for k = 2. We can observe that all cache servers (black nodes) have clear

paths, which means that in next iteration there will be three separate “Move

up” actions resulting in three temporary states as shown in Figures 4.5, 4.6

and 4.7. Node on which an action was performed is marked red for easier

demonstration.
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Figure 4.4: Reverse Greedy Algorithm - initialization phase
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Figure 4.5: First iteration, first temporary state - “Move up” on first cache

server
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Figure 4.6: First iteration, second temporary state - “Move up” action on

second cache server
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Figure 4.7: First iteration, third temp. state - “Moving up” third cache

server

By definition of the Reverse Greedy Algorithm we move towards least

increasing cost. We start with zero cost and after each iteration we decide

which action will increase our total cost the least. In our example, we can

observe that “Move up” action on the fourth cache server will increase the

cost the least. Third temporary state becomes current state and we continue

with the algorithm from this state forward.

We still do not have any collisions on the paths so next iteration will again

perform three “Move up” actions. Costs are 7, 6 and 6 for each temporary

state respectively. This time, second and third temporary state increase

the total cost the least. In such cases, where multiple states have the same

cost, we choose the one where requests have traveled the least distance. If

candidates are still tied after this criteria, we give priority to candidate on

higher depth. We decided for this criteria because we do not want to burden

the core links.

In third iteration, we have the first collision. We have two cache servers on

the first path. This means that the first and second actions will be “Merge”

actions. Third state will be the same as in second iteration (Figure 4.8).

Three temporary states have the costs 11, 10 and 10. We can see that

merging down would be slightly less costly than merging up. We must now

decide between second and third state. Here we have a trade-off between

burdening core link (third state) and increasing hop count for larger number

of requests and increasing traffic more (second state). We decide to always
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Figure 4.8: Second iteration, third temporary state
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Figure 4.9: Second iteration, final state
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Figure 4.10: Third iteration, first and second state - “Merging” first two

nodes
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give priority to “Merge” actions, because despite possible worse short term

results, we are decreasing the k, which brings us closer to the end solution

and overall better cost. With this merge we also reach our exit condition

k = 2. End results looks like tree in figure 4.11. We instantly see that this

is not optimal solution, because second cache server could be placed at the

AP directly thus avoiding one hop.

LCA

10 8 0 4

depth

2

1

Figure 4.11: End result of Reverse Greedy Algorithm

In the worst case our algorithm performs (n−k)∗2−1 “Move up” actions

and (n−k) “Merge” actions, where k is the number of selected cache servers

per user and n is the number of nodes that have cache servers installed.

Worst case is when all APs have greater than zero requests and k = 1.

Only the actions that are actually executed and not discarded are taken into

account. These observations are true for network in shape of binary tree,

although in trees where node can have more than two children number of

“Move up” actions is lower. If we include the actions that were discarded

during the process we get −1 +
∑k+1

i=n(i − k) ∗ 2 ”Move up” actions and∑k+1
i=n i− k “Merge” actions. Findings presented in this paragraph apply for

computation made for single user.

After merge, we do not perform any more actions on this node, only on

target node. If we combine this with the fact that all paths are leading to

the root, we can see that all APs can be merged with one another. Since the

algorithm does incremental steps (only one action per iteration is applied),

it will always converge to k with known worst case number of steps, as we
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show above.

4.3 Optimization

We saw in previous example (Fig. 4.11) that Reverse Greedy Algorithm did

not return the optimal solution. Right cache server is clearly not in local

minimum, because it would cost less to have cache server selected on the

access point itself. To move the cache server in local minimum we apply same

procedure as with Single Median algorithm 2. We try to select the children

of currently selected cache servers to see if the costs decreases. Since left

cache server is already at the edge, we can only move the right one. Moving

it to the left children would increase the cost by 2, moving it to the right

children would decrease the cost by 2.

This simple optimization puts our cache servers in local minimum, but it

still does not guarantee to be optimal solution as seen in Figure 4.12.

LCA
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depth

2

1

Figure 4.12: End result after optimization



Chapter 5

Experiments

5.1 Networking Technologies

The main enabler of our proposed solution is a new network paradigm called

Software Defined Networking (SDN) that allows us to dynamically control

network flows. SDN is a dynamic, manageable and adaptable architecture

that decouples the network control and forwarding functions [18]. This de-

coupling and abstraction of physical infrastructure makes the network pro-

grammable and vendor-neutral [15]. It eliminates the complexity, issues with

vendor dependency and scaling problems of traditional networks [15].

Network abstraction and decoupling is done with OpenFlow protocol [12].

This is also the basis for building SDN applications. In Figure 5.1 we can

see an overview of SDN controller and OpenFlow switch in action. When

switch receives a packet, it checks if there are any matching rules in the

flow table. Matching can be done on various packet fields like source and

destination IP and MAC address, VLAN id, input port, etc. If no match is

found, switch sends the inquiry with packet header to the controller via the

OpenFlow protocol. Controller examines the header and answers the inquiry

with the rule that is inserted into flow table of this switch. What kind of

rule will be inserted depends on the applications that are running on the

controller. Packet headers can be processed by some Firewall application,

27
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Quality of Service application, etc. When switch receives the rule from the

controller, it executes the action defined in the rule. In this example, Packet

out action was specified, so switch will forward the packet through the port

specified in the rule.

Figure 5.1: OpenFlow overview. Source: https://s3f.iti.illinois.edu/

usrman/openflow.html

5.1.1 SDN controller

The concept of SDN is becoming mature as can be seen with many open

source and commercial SDN platform choices. Popular open-source SDN

controllers include Ryu, OpenDaylight Open vSwitch, and Trema, to name

a few. Large vendors also offer commercial solutions like HP Virtual Ap-

plication Networks, Cisco Application Policy Infrastructure Controller, NEC

ProgrammableFlow, and VMware NSX Controller.

After testing the largest project, Java-based OpenDaylight, we decided

to use Ryu controller, because OpenDaylight is overly complex for a proof-

of-concept experiments we are set to perform in this thesis. Ryu is an easy-

to-use SDN controller, has fast startup time and follows the standard SDN

architecture (Figure 5.1.1). The controller has a REST client so it can receive

commands via network from 3rd party applications.

https://s3f.iti.illinois.edu/usrman/openflow.html
https://s3f.iti.illinois.edu/usrman/openflow.html


5.1. NETWORKING TECHNOLOGIES 29

Southbound layer supports different protocols like OpenFlow, Network

Configuration Protocol (NETConfig), Open vSwitch Database (OVSDB),

etc. It also provides some built-in features like Topology discovery and Fire-

wall, although in this aspect is OpenDaylight or some other commercial con-

troller far more superior.

Figure 5.2: Ryu architecture diagram. Source: http://www.slideshare.

net/yamahata/ryu-sdnframeworkupload

We had two implementation options. We could build a Ryu module that

would be loaded in Ryu controller. Benefit of this approach is that is more

reactive since it can act on flows that controllers receives. But since we do

not need that kind of power, we decided for the second option, a standalone

application that communicates with the controller with the help of Ofctl-Rest

module. We chose the second option also because it was easier to connect to

data processing script and also use it directly in Mininet simulations.

Using the above approach our application sends commands to Ryu’s

REST module in a human-readable JSON format 5.1.1. Figure 5.1.1 depicts

an example command sent to the Ofctl-Rest module of our Ryu controller,

http://www.slideshare.net/yamahata/ryu-sdnframeworkupload
http://www.slideshare.net/yamahata/ryu-sdnframeworkupload
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which parses the command and sends it via OpenFlow protocol to switch with

Datapath ID (dpid) of 12, where it is inserted to flow table. This specific

command will insert the rule that will change the destination IP of packets

that are originating from IP 10.0.25.1 and are headed to 10.0.0.1. These

packets will also be forwarded through port 1 of this switch.

Figure 5.3: Example of command that inserts flow rule

A command can contain the following fields:

• dpid: An ID of a switch where the rule is going to be inserted.

• idle timeout: A rule will be deleted after 30 seconds of no traffic

matched by this flow.

• hard timeout: A rule will be deleted after 30 seconds regardless of

traffic. Duration of timeout depends on the intent we want to achieve.
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If both idle and hard timeouts are zero the rule is considered permanent.

In our experiments, we inserted only permanent rules.

• priority: Sets the priority (integer) of a rule. If a packet matches

multiple rules then the rule with the highest priority will be applied.

• match: A list of key-value pairs where a key is the name of a field by

which a packet will be compared to a specified value. In the example

shown in Figure 5.1.1 all packets originating from host with IP 10.0.25.1

and destined to 10.0.0.1 will be matched, and the specified actions will

be applied.

• actions: Actions that will be applied to packets that match the given

rules. In this example a switch with DPID=12 will change the IP

destination field from 10.0.0.1 to 10.0.0.2 for all matching packets.

Each packet will be forwarded through port 1 of this switch.

Besides inserting rules, we can also delete them in similar fashion with a

command depicted in Figure 5.1.1.

Figure 5.4: Example of a command that deletes a flow rule

The main functionality needed for the implementation of our solution

proposed in Chapter 4 is the forwarding of user requests to a cache server

located in an arbitrary location in the network. With the Ryu controller

there are a few different approaches to redirect a flow to an arbitrary host

in the network. First, we could insert flow rules on all switches on the path
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from an originator to a target host using the appropriate OUTPUT action.

But an easier and more scalable solution is to change the destination MAC

address to a target hosts MAC address. This way switches will automatically

forward the packet as if it was intended for the target end-destination from

the start. This solution also takes less time to implement since we only need

to know MAC addresses of cache servers and DPIDs of access point switches.

5.1.2 SDN simulator tools

In our experiments we use an open-source tool called Mininet to simulate

larger SDN networks. Mininet allows us to programmatically create network

switches and hosts and connect them into custom topology. We can man-

age all network nodes via Mininet API or directly via shell. All nodes have

unique MAC addresses and are like mini servers so we can run arbitrary

code on them. Our first host represents “the internet” and is connected

to root switch in our tree topology. On this host we run python’s Simple-

HTTPServer, which serves the content to the users. Users are also repre-

sented by Mininet hosts and are connected to switches on the edges of the

network (access points). We simulate user activity by making http requests

with shell tool called curl.

For cache servers we are using open source tool called Squid. It supports

HTTP, HTTPS, FTP and other popular protocols. It can be used in regular

and reverse proxy mode and it also provides extensive options for hierarchical

caching setups. Most importantly, it supports interception caching, which is

essential part of our solution since we are using multiple cache servers and

changing proxy settings on the client side would simply not be feasible. Squid

servers also run on Mininet hosts that we connect to network switches.

We connect SDN switches simulated in Mininet with an instance of the Ryu

controller. These connections are not a part of the simulated network topol-

ogy and controller command packets sent via these links do not interfere with

the network data traffic. Controller messages are sent to network switches

via the OpenFlow protocol. Finally, the Ruy controller’s REST module, de-
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scribed in the previous subsection, parses the JSON commands we issue, and

sends specific instructions to appropriate switches.

In the Figures 5.1.2 and 5.1.2 we show the full setup we use in experiments.

We show topology for Building-level caching experiment, where we have cache

servers only on building switches. Our network application receives WiFi as-

sociation records and computes which cache servers would be optimal for

caching the content of specific user. In the example, our algorithm selects

the cache server with ip 10.0.1.1 as designated cache server for User 1 and

cache server with ip 10.0.1.2 for User 2. Application sends these commands

in JSON formats to controller’s Rest module where they are parsed and

transformed in OpenFlow commands and then sent to specific access point

switches where they are inserted in flow table. In the second figure we dis-

play how mobility is handled. Our application sends command that will

redirect User 1 to his previous cache server, to second AP switch. Based on

this rule, second AP switch will change the destination MAC address of the

packets from User 1 so they will be redirected to cache server with MAC

00:00:00:00:11:01 when User 1 connects to second AP. This new rule has

higher priority than the rule from first figure so this means that only this

new rule will be applied if packet matches both rules. The timing of the

command is not really important as long as it happens before user makes

the transition. We send only permanent commands so the rules stay in the

switches’ flow tables until we delete them.
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Figure 5.5: Experiment setup (Building level caching).
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Figure 5.6: Experiment setup (Building level caching) - handling user move-

ment.

5.1.3 Measurement tools

The main goal of our work is to reduce the burden that a campus-wide

network experiences on its core links, and at the same time, to ensure that

user experience remains satisfactory. Thus, the main metrics we measure
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Figure 5.7: Network trace of controller in action

are the delay to serve a user request, and traffic load on different parts of

a network. To emulate user requests and measure the service delay we use

a data transfer tool Curl. It is a command line tool and library and it

supports many different protocols like HTTP, FTP, Gopher, SMTP, etc. It

also supports file uploads, authentication and proxy tunneling, although we

do not use these features in our experiments. For traffic measurement we

use Bandwidth Monitor NG. We measure the amount of total passed traffic

through ports on the switches in our network, although the tool can also

count the incoming and outgoing packets and errors. Data can be stored

in csv and html format or displayed on the screen. We are interested only

in network traffic grouped by link depth so we created simple script which

processes total traffic of all ports and groups them by depth. Finally, we use

Wireshark for debugging. The tool allows us to examine individual packets,

including control packets from the Ryu controller to individual switches, as

shown in Figure 5.1.3.
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5.2 Experimental setup

As a basis for comparison we use simulation results of scenario with one cache

server placed at the gateway. We also display the results where no caching

was used, to put all the gains and trade-offs into perspective. Our problem

domain consists of many different parameters which affect the results of our

simulation in various ways. We try to outline the most important ones and

provide experiment results to show the effect of each covered parameter.

5.2.1 Network topology

We experiment with two different topologies. First, we show negative impact

of user mobility on a small network mimicking the structure used in Figure

3.1 where we devised our algorithms. Second, we use a large topology that

represents a realistic picture of an actual campus network setup. The topol-

ogy is based on a well known Dartmouth Campus dataset [17]. This dataset

includes system logs, Simple Network Management Polling data, tcpdump

data and records of access point association of each wireless card seen on

campus. Association records, which we use in our experiments, were col-

lected between 2001 and 2003 and contain data for over 600 APs and several

thousand users at Dartmouth College. We choose this dataset because it

contains a list of association records from which we can construct movement

traces and also a network topology from coordinates of access points. Con-

sequently, on the basis of this information we can craft a realistic simulation

of mobile Internet users moving through a real campus network. The main

challenge, however, is to overlay the campus network topology on top of the

information we have – AP location only. We took an approach based on

hierarchical clustering of APs fixed at their latitude/longitude coordinates.

First, since some APs are missing the location information, we interpolated

this information from other APs within the same building. Then, we grouped

APs by buildings and calculated approximate building center coordinates by

averaging the coordinates of APs. We put a switch at each of these centers,
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and in Figure 5.8 we show their geographical distribution. Points represent

computed location of buildings with WiFi access points on the campus in

2003.

Figure 5.8: Buildings on Dartmouth campus

We then generated the switch linkage matrix with the “ward” hierarchi-

cal clustering method [25] using the Euclidean distance metric. This matrix

contains links between clusters, hierarchically arranged, thus, can also be

visualized with a dendrogram, i.e. Figure 5.9. Our reasoning is that build-

ings that are close together are also connected to the same parent switch.

Validating whether our approach results in a network that indeed mimics

the actual Dartmouth campus WiFi network was not possible, as we have
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no information on the core network connections. However, our goal here is

to produce a reasonably realistic estimate, and we believe that the above

approach is appropriate.

Figure 5.9: Dendrogram of generated building clusters

The Dartmouth Campus trace is rather extensive with 623 APs. Due to

the limitations of the experimental setup (in particular Mininet), we con-

centrate on a topology built on top of 100 most heavily used APs. From

the resulting dendrogram we obtained 170 switches in total: 30 intermedi-

ary switches, 40 switches representing buildings, 100 switches representing

access points. Each switch is connected to it’s own host, which represents

a potential cache server. On the root switch we have an additional host

proxying for the public Internet and running an HTTP server – Python Sim-

pleHTTPServer. To better simulate real world environment we also set a

constant 50ms delay on the link between root switch and the “Internet”

host. Users are represented by hosts connected to AP and their movement

is simulated by disconnecting the host from one AP and connecting it to

the other AP. Finally, WiFi connection, by the nature of wireless, has higher

packet loss than wired core network connection. This plays an important role

in our experiments since retransmissions can take different times depending

on whether they need to complete a path to an intermediary cache server

or the gateway. To simulate wireless losses we enforce 1% packet loss on all
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links between APs and end-users.

5.2.2 Caching

In this thesis we focus on improving utilization of forward proxy caches

in a private network. To make our experiment as representable of real world

scenario as possible we need to pick appropriate cache parameters. We are

using open source tool Squid cache proxy http://www.squid-cache.org.

Although such proxies have a lot of configurable parameters, we will focus

only on few that we think are the most important:

• Cache size. Amount of disk space that can be used to store the con-

tent. This is important parameter because the more content we can

store, more bandwidth we can save and lower overall delay experienced

by user. We must be extra careful in our simulation because our con-

tent pool is limited and we should pick cache size as a percentage of

our content pool. We do not want to have all our content cached as

this would produce results that have no basis in reality. In all our ex-

periments we select such cache size pool that average cache hit rate is

between 20% and 35% which we believe is possible scenario in various

real world environments.

• Cache replacement policy. The cache replacement policy param-

eter determines which objects are evicted (replaced) when disk space

is needed. Squid offers four algorithms [23]: LRU (Least recently

used), LFU (Least Frequently used), heap GDSF (Greedy-Dual-Size-

Frequency) and heap LFUDA (Least Frequently Used with Dynamic

Aging). Although the subject of replacement policies is not the goal

of this thesis, we do run an experiment where we compare the differ-

ent replacement policies and pick the one that performed best in our

scenarios.

• Memory replacement policy determines which objects will be re-

moved from memory when space is needed. Same policies are supported

http://www.squid-cache.org
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as above.

• Cache server placement. This is not a cache parameter but a strate-

gic decision when designing a network topology. This is a mathematical

problem and is a member of facility location problems (k-median) [1].

We would like to point out that this is not the original problem we are

trying to solve despite the problem being in the same problem group.

The results of our algorithm could still provide some insights on the

proxy placement problem. But core of our solution is Reverse Greedy

algorithm which does not necessarily return an optimal solution. Since

this is a design problem which would have long standing effect on the

network, we would argue that different, more precise algorithm using

Primal-Dual schema[13] or Linear Programming Rounding approach

[4] would be more appropriate in this case.

Most simple example would be having a cache server on the gateway

switch. Problem with this approach is that core network links are still

fully burdened and there is higher probability of congestion if demand

increases beyond capacity of any link in the network path. In other

words, we decrease the load only on the backhaul link. On the other

side we could place cache servers on all of APs. We find two main

problems with this approach. First problem is that there would be a

lot of duplicate content over all the caches, because users on different

APs may request the same content [26]. We experiment with follow-

ing placement schemes. Caching on all switches - we place cache

server on all switches. Of course this is not the most realistic setup,

but it provides some insights about the performance of our algorithm.

We compare this to the static Caching on the gateway placement

scheme. In separate experiment we test a compromise between gateway

and edge caching - Building-level caching. We place cache servers

only on building switches (Figure 5.1.2) and then we compare our so-

lution with static caching scheme (no redirections for mobile users).

Forward proxy has two modes of operation:
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• Regular mode. In this mode user must change the settings in the

browser. Browser then talk with the proxy. User is aware that proxy

is acting as a middleman. This is more clean solution, but the draw-

back is that it needs manual settings on the client side. This makes it

unsuitable for our case.

• Interception or transparent proxying. In this mode network is

configured to forward the request to proxy which then “intercepts” the

request. This time user does not know that packets are being inter-

cepted. This solution does not need any changes on clients, but it has

other disadvantages explained in the Squid manual [11] like Break-

ing TCP/IP standards because user agents think they are talking

directly to the origin server, breaking IP authentication because

packets received by the origin have source IP of Cache’s IP address,

doubling DNS load because client and proxy have to do their own

DNS lookup, etc.

5.2.3 Movement patterns

The Dartmouth Campus dataset contains records showing the AP associa-

tion of each wireless card seen on campus [17] between 2001 and 2003. Each

file in the dataset represents one wireless card and it contains record with

timestamp and the AP name. If record contains Off this means that wireless

card was disassociated.

Example: File 00a0f87c2ba7.log.mv contains

1026842553 LibBldg2AP7

1026842579 AdmBldg16AP1

1026842620 OFF

...

We restrict our simulation to data collected during Fall 2003 period as

it contains enough records to provide a thorough evaluation of our solution.
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First, we parse files of all wireless cards and join all association records into

one file with the same format as above, but with and additional user ID field.

We filter the records to the previously selected APs, and further selected the

top 100 most active users per each of the access points. The end result is a

list with 100.000 association records.

The above data gives as the actual movement of the users in a network. In

our work we are interested in the performance of our proposed caching strat-

egy, and assume that user movement prediction is done by a separate module.

Thus, in the beginning we experiment with caching solutions adjusted to per-

fectly predicted user movement. Yet, we acknowledge that in reality actual

movement patterns may deviate from the prediction. Therefore, we also im-

plement a Discrete-time Markov Chain (DTMC), train it on the movement

from a portion of the data, and then generate future movement by querying

the chain. We construct DTMC by going through of the first ninety per-

cent of the rows in our dataset and counting transitions between states in a

matrices of size |APs| × |APs|. In final step we divide by each counter by

the total number of transitions of respective AP. We then use this DTMC

to generate the movement that need not correspond to the actual movement

(of the rest of the trace). It is worth mentioning that our dataset was col-

lected in 2003 and the majority of the records are from laptop wireless cards.

This means that data does not necessarily represent movement patterns that

would be observed in a campus network today. For example, smartphone

usage is heavily underrepresented in the Dartmouth trace. To make the gen-

erated trace more representative, and more challenging for our algorithms,

we increase the mobility by lowering the probability of self repeating states

and evenly increasing the non-zero probability of the transitions.

5.2.4 Request patterns

The Dartmouth dataset unfortunately does not contain any information

about the Web content that was requested. We also could not find any

other dataset that would contain such information. Instead we rely on a
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study that investigates the distribution of accessed videos on Youtube [21].

The distribution the authors have identified and used in their experiment is

shown in Table 5.2.4. We use a scaled down version of the distribution to

shorten simulation time, and show its histogram in Figure 5.11.

Percentage Original size Scaled down size

40% 5 MB 10 kB

30% 10 MB 20 kB

20% 15 MB 30 kB

10% 25 MB 50 kB

Figure 5.10: Content size distribution

To setup a realistic content access distribution across users we refer to a

study by Wolman et al. performed in campus environment of the University

of Washington, USA [26]. The study focuses on documents sharing patterns

in an organization and demonstrates a strong temporal locality of multimedia

downloads. Their findings show that about 75% of requests have already

appeared at one point in the trace. This is confirmed by another unrelated

study [10]. Furthermore, the study finds that 40% of requests to the

shared documents we repeated by the same user [26]. This interesting

characteristic gave us the idea that we could redirect mobile users to same

cache servers they were using on previous locations. Since SDN enables easy

flow modifications, this also means that we could push caches servers closer

to the edge and still serve mobile users according to this characteristic. To

conclude, we modeled request patterns for our experiments based on all the

characteristics explained above. Our content pool consist of 4000 cachable

pictures 5.11. According to findings in [26], 40% of requested content was

uncachable, therefore we added 1400 uncachable files to our content pool.
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Figure 5.11: Histogram of content size distribution
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Chapter 6

Results

6.1 Mobility and hit rates

The field of network caching was extensively researched, but not many exper-

iments take into account the mobility factor of the users, because this aspect

became noticeable only in the last few years, with the increasing performance

and popularity of smartphones. This mobility factor comes into play when

user changes location in a network with multiple cache servers.

To show the impact of mobility we devised small experiment with param-

eters that we think represent normal functioning cache server in a network.

We set up a small topology with two cache servers on two access points, each

cache server having 10 MB disk space. On each access point there are 10

users each requesting 4 MB of content of which 20% of requested content

is shared between users. Request patterns of users are modeled based on

the findings in the Wolman’s thesis [26] that 40% of requests to the cached

content come from the same user. We are interested in the characteristic of

the cache hit rates when a user moves between cache servers, so we will mea-

sure hit rate experienced by single user that was first using one cache server

for a longer period of time and then moved to another cache server used by

another group of users. We do this to avoid initial cold start problem, where

the cache is empty and hit rates characteristics are different.

47
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In the first part of the experiment users are static and are evenly request-

ing files from their designated content pool until both cache servers fill up

and we reach intended average 30% hit rate, which can be seen in the first

part until the vertical line in Figure 6.1. Then we moved single user to the

other AP and we measured and plotted the moving average of the cache hit

rate for this user. In Figure 6.1 we can see the hit rate drop after user was

moved and the increase back to 30%. When a user is static and is using

one cache server for longer period of time, the cache fills with a portion of

his content pool resulting in around 30% hit rate. When a user moves away

to another AP under provision of different cache server, the hit rate first

drops to around 10% and then starts slowly rising back to 30%, while new

server starts caching the objects from user’s content pool. The reason for

20% drop is the fact that new cache server holds objects from other users’

content pools and only small percentage is shared with the new user. Of

course the actual values like hit rate threshold, slope of the drop and the

rise depend on the network environment (cache size, number of users on each

cache servers, request patterns) but the characteristic stays the same under

“normal” operating conditions. Of course this negative impact applies only

to scenarios with multiple cache servers.
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Figure 6.1: Cache hit rates during transition - user perspective

To reduce the traffic on the core network links we try to select cache

server closer to the edge so requests do not need to travel all the way to the

gateway. For mobile users this introduces the cache hit rate penalty seen

in Figure 6.1. In order to “support” mobility we must minimize the effect

of this hit rate drop. Our proposed solution does this by analysing user’s

movement traces and designating few best placed cache servers to this user.

In practice this means that cache servers near most frequently used APs are

chosen for this user and when the user moves to another AP, his requests are

redirected to the closest designated cache server, avoiding the hit rate drop

but taking a longer route.

6.2 Individual node level caching

In the next experiment we compared performance of our solution with the

performance of the most simple caching scheme, one cache server placed on

the gateway. In order to get fair comparison, we lowered the disk space

of cache servers in our solutions, because we are using more of them. Ex-
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Parameter Value

Topology 170 switches (100 access points)

Content pool size 4000 cachable images (total of 146 MB)

1200 non-cachable images (total of 58 MB)

Cache pool size 20 MB

Cache replacement policy LRU

Number of users 100

User content pool 400 images per user

Movement pattern fixed

Table 6.1: Parameters used in experiments in this chapter

periment was done on larger topology, generated from Dartmouth dataset.

Topology generation is described in subsection 5.2.1. We used parameters

described in table 6.1. To quantify the benefits our solution provides for the

network, we measure network traffic on all network links . Improvements for

user experience are quantified by measuring delay of requests.

Note: Cache pool size consists of disk space and memory. Through our

exploratory testing we concluded, that although memory caching is naturally

much faster than caching on the Solid-state drive, the difference did not

have any noticeable impact on the results. We assume the impact would be

noticeable if we used Hard-disk drive. We decided to allocate 90% of Cache

pool size to the disk and 10% to the memory, because it disk capacities are

generally much larger that RAM capacities in general-purpose computers.

6.2.1 Network traffic

First results show noticeable traffic reduction of our solution comparing to

basic caching on the gateway method (Figure 6.3), although we have to em-

phasize that movement pattern is known in advance, so these results are

from “best case” scenario. Single median solution, explained in section 4.1,

showed the least improvement. This was expected, since we still use only one
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cache server. Cache hit rate is the same as with gateway caching example,

because users still connect to one cache server, only the location of this cache

server is optimized for user’s requests. With the location change we lowered

the in-network traffic between 2% and 10%, but backhaul link received the

same amount of traffic as gateway cache server, because hit rates did not

change. More interesting are the results for scenarios with multiple cache

servers per user. Surprisingly, the scenario with two cache servers (2-median)

per user, results in lowest traffic on all depths, including the backhaul link.

To explain this, we analysed movement patterns and we discovered that an

average user was mostly staying at two different locations. Because adding

more cache servers lowers the individual cache size, additional cache servers

actually lower the overall bandwidth savings since only two of them are used

the most. Using more than three cache servers per user has given negative

results. Although in-network traffic was reduced due to cache servers be-

ing selected closer to the edge, backhaul link received more traffic, because

smaller cache size resulted in lower hit rates comparing to other methods

(Figure 6.2).

Scenario Cache hit rate Backhaul bandwidth savings

Root cache 32.3% 130.2 MB

Single median 32.3% 130.2 MB

2-median 37.6% 171.1 MB

3-median 34.4% 165.8 MB

4-median 28.1 100.3 MB

Figure 6.2: Hit rates for experiment with fixed movement pattern.
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Figure 6.3: Network traffic in experiment with fixed movement patterns.

Second experiment was done with the same parameters as the first (Table

6.1). We only replaced fixed movement patterns with randomized version

(subsection 5.2.3). We constructed Markov chain for each user to make their

movement pattern probabilistic and make experiment scenario more realistic.

From the results we can see that all our solutions are sensitive to change

in movement patterns (figure 6.4). Results are showing around 5% increase

in overall network traffic when using Markov chain based movement patterns.

Interesting result is high increase of 2-median solution, which performed the

best in first experiment. As we mentioned before, users in our movement

trace seem to mostly stay at two or three APs for a longer period of time. Be-

cause of this characteristic, solutions with two and three cache servers select

cache servers near most frequently used APs. With probabilistic movement

patterns actual request numbers on APs change and now some of the requests
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need to travel longer path to selected cache servers. This is the same reason

that 4-median scenario increases the traffic the least. Four cache server are

selected for each user and there is higher chance that an AP that gained

some “requests” will be near one of these cache servers.

Figure 6.4: Network traffic in experiment with randomized movement pat-

terns (Markov chain)

6.2.2 User experience

As user experience metric we measured the duration of requests with com-

mand curl -w ’%time total’ . . . From gathered delays we plotted cumulative

distribution functions of delays comparing individual solutions. We also ex-

periment with the effect of cache replacement policies showing the results for

each cache policy with other parameters unchanged.
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Figure 6.5: Cumulative distribution function for Least Recently Used cache

replacement policy.

First figure 6.5 complements the results from previous subsection where

we analysed network traffic. Here we can see the difference between solutions

with one and multiple cache servers. Largest benefits for the user produced

2-median solution, but we must again emphasize that optimal number of

selected cache servers depends mostly on movement patterns of the users.

We can see similar results with other cache replacement policies (Figures 6.6

and 6.7), except that absolute values are different.
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Figure 6.6: Cumulative distribution function for Least Frequently Used cache

replacement policy.
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Figure 6.7: Cumulative distribution function for Dual-Greedy-Size-

Frequency cache replacement policy.

6.2.3 Choosing the best cache replacement policy

In previous subsection we displayed experiment results for individual cache

replacement policy used and we observed that chosen replacement policy

did not drastically changed the outcome of the experiment, however if we di-

rectly compare replacement policies we can see some interesting findings. We

plotted the best performing solution (2-median) and the most basic solution

(cache server on the gateway) with different cache replacement policies (fig

6.8). We can see that Greedy-Dual-Size-Frequency policy performed notice-

ably better than the other two policies. Also interesting is the fact that the

difference between GDSF and other two policies is higher when 2-median ap-

proach was used. Unlike LRU and LFU, GDSF takes into account file size,

file access frequency and recentness of last access. Because it operates on

more parameters, we assume it can make better eviction decisions, resulting

in increased hit rates and byte hit rates (ratio of bytes served by the cache
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over the bytes requested by the clients) [5].

Based on these results we decided to use GDSF replacement policy in the

next experiment, where we placed cache servers only on switches representing

buildings.

Figure 6.8: Cumulative distribution functions for all cache replacement

schemes

6.3 Building level caching

In this experiment we wanted to test our solution in more limited setup. In

previous experiments we assumed that cache servers could be placed on all

network nodes, which is probably unrealistic assumption. That is why we

chose to limit cache servers only on building level switches. Our network ap-

plication can now choose to cache only on these “building switches”. But now

also our basic caching scheme is different. Previously we cached the content

on the gateway, but now we have multiple cache servers and this means that

mobility of users will cause hit rate penalty. We feel that this comparison
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is more fair than previous experiment since we do less assumptions of the

network and comparison is done on equal parameters.

6.3.1 Network traffic

Results in figure 6.9 show decent traffic decrease for our solutions compared

to static caching. We can see that unlike in previous experiments 3-median

solution performed slightly better than 2-median. This difference is cause

by the fact that majority of users have between two and three “popular”

access points where they make most of the requests. In this scenario hit rate

penalty is higher if the users with three APs have their requests forwarded to

two cache servers instead of three, because cache size are equal on all cache

servers. This characteristic does not apply to solutions with four or more

cache servers, which means that there are not many users with four popular

APs.

Increasing the number of designated cache servers per user decreases the

performance, because higher the number of servers more times the user will

suffer the hit rate penalty because requests will be served from cache server

containing less content of this user.
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Figure 6.9: Cumulative distribution function for Dual-Greedy-Size-

Frequency cache replacement policy.

6.3.2 User experience

In this experiment we also measured request delay and plotted cumulative

distribution function for all approaches (Figure 6.10). Results confirm the

findings from previous subsection. 3-medians performed best with highest

cache hit rates resulting in lower overall experienced latency. We can also

see that increasing the number of used cache servers reduces the latency gains

by actually making our solution more like static caching.
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Figure 6.10: Cumulative distribution function for Dual-Greedy-Size-

Frequency cache replacement policy.

6.4 Experiment under uncertainty

In previous experiments we assumed that a user’s movement does not diverge

to much from data traces. In reality user can often move unpredictably. Be-

cause our algorithm uses movement patterns for selecting appropriate cache

servers, we want to analyse performance under various levels of uncertainty.

We do this by artificially adding randomness to test set of our movement

pattern. Transition probabilities pxn converge to equal probabilities in each

iteration: pxn −→ 1
n
, where the sum of transition probabilities for each access

point x is Px =
∑n

i=1 pxn = 1.

In other words, we lower the higher transition probabilities and increase

lower transition probabilities, all converging to same value. In other words,

user can move to any AP with equal probability. Results show interesting

relation between number of cache servers and randomness of movement, but

even more insightful is the implicit connection between number of cache
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servers and number of most visited APs for a user. As we mentioned before,

average user made the majority of requests from two distinctive APs. We

could say, that this user has two clusters. It turns out that our algorithm

performs best when our k matches the number of users cluster, as can be seen

in figure 6.4 in section All nodes. When we start introducing randomness

in movement pattern, user’s clusters start to dissolve. Most of the user’s

requests from are then redirected to cache servers that are further away than

root cache thus increasing overall network traffic.

In the figure we can notice that higher the number of cache servers, higher

the level of randomness that caching scheme tolerates before becoming less

efficient than Root cache server. For our top scoring k = 2 parameter in

deterministic movement scenario 6.4 we can observe that it is actually the

least tolerant for deviations in movement patterns, reaching and surpassing

gateway caching scheme traffic at 28%.

Figure 6.11: Total network traffic for increasing randomness in movement

patterns

Another interesting observation can be made about Single median ap-
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proach. The results seem to be in contradiction with our previously discov-

ered relation between k and total network traffic. The reason for this is the

fact that Single median algorithm in majority of cases picked cache server

near the gateway.
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Conclusion

In this thesis we study the current state of caching in larger WiFi networks

and propose a novel solution based on Software-defined Networking, which

provides us a platform on which we can easily build more advance solutions.

Our primary focus is reducing the network traffic and improving user expe-

rience by increasing cache hit rates and thus reducing experienced request

delay. More specifically we address the impact of user mobility on traditional

caching schemes and provide a dynamic solution that minimizes this negative

impact. In the Mobility and hit rates section we show that user experiences a

significant drop in cache hit rate when moving to another access point under

the coverage of different cache server.

Our network application tries to select optimal cache servers for each

user by analysing their historic movement patterns. More requests that user

made on specific access point, more likely it is that cache server will be chosen

near this access point. When user moves to access point on which he will

make only few requests, his request will be redirected to closest designated

cache server, which probably already contains a portion of his content pool.

Our solution tries to maximize the reduction of network traffic achieved by

selecting cache servers closer to the most used access points by a user and

minimizing the traffic increase caused by redirected requests from less used

access points taking longer path through the network.

63
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We evaluated our solution by comparing it to simple static caching schemes

commonly used in traditional networks. In our experiments we used real

world WiFi connectivity traces collected at Dartmouth campus [17] which

we used to build our network topology and extract movement patterns. In

our simulations we measure network traffic on all links, cache hit rates and

request delays. In the first round of simulations we compare static caching

on the network gateway with our solution that can choose any node in a net-

work as a cache server. Our solution show high traffic reduction, up to 28%

in best case scenario using deterministic movement patterns and up to 24%

when using probabilistic movement patterns generated with Markov chain

method. Results also show that the optimal number of caches servers per

user depends mostly on the movement pattern of a user.

User movements are often unpredictable and since our solution relies on

accuracy of movement predictions we conducted an experiment in which we

artificially added randomness to the user actual movement patterns. We

wanted to check the performance of our solution under high uncertainty.

Simulation revealed steady decrease in performance with rising level of ran-

domness introduced and eventually resulting in much higher network traffic

and higher delay than static caching scheme, which is completely unaffected

by the impact of user mobility. Although this experiment is very artificial,

we discovered that solutions using higher number of cache servers were less

affected by inaccurate predictions than solution using less cache servers.

In the previous experiments we assumed that cache servers are placed

on all switches in the network which is valid scenario for research but very

uncommon in real world. To test how would our solution perform in more

realistic environment we placed cache server only on switches that represent

buildings. This means that cache servers are placed very close to the edge

of the network. This setup also provides fairer comparison between static

caching schemes and our dynamic approach and also better showcases the

negative impact of user mobility. Results showed that our solution, tested

with varying number of used cache servers, performed up to 9% better in
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terms of lower network traffic on the backhaul link that the static caching

scheme.

In this work we studied the often neglected impact of user mobility on

network caching and also proposed a dynamic approach leveraging SDN tech-

nologies to minimize this impact, reduce network traffic and improve user

experience by reducing request delays. We have showed proof of concept

with few experiments that show noticeable gains comparing to static caching

schemes. But the field of network caching is very broad, and we see a lot

of possible improvements and future research directions. In network caching

domain there are a lot of configurable parameters and many different envi-

ronments. We specifically focused on college campus network because of high

predictability of movement and huge dataset available [17]. Main drawback

concerning dataset is the age (gathered in 2003) and the fact that it contains

only traces from laptop users. Since we study the effect of mobility we think

that our solution should be tested with some newer dataset containing ap-

propriate share of mobile smartphone users. We strongly believe, that our

proposed solution would perform even better, since mobility impact would

probably be bigger. There are also countless combination of various network

parameters like topology, cache sizes, replacement schemes, request patterns

and others on which we could test our solution.

Biggest improvement of our algorithm would be the implementation of

one of the techniques like Elbow method [8] or X-means clustering [22] for

selecting optimal number of cache servers for each user. In the conducted

experiments we set the number of cache servers to be equal for all users, but

the movement patterns were quite different between them.
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