
Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Peter Žužek

Implementacija knjižnice SYCL za

heterogeno računanje

MAGISTRSKO DELO

MAGISTRSKI PROGRAM DRUGE STOPNJE

RAČUNALNIŠTVO IN INFORMATIKA

Ljubljana, 2016

University of Ljubljana

Faculty of Computer and Information Science

Peter Žužek

Implementation of the SYCL

Heterogeneous Computing Library

MASTERS THESIS

THE 2nd CYCLE MASTERS STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Supervisor: izr. prof. dr. Patricio Bulić

Co-supervisor: doc. dr. Boštjan Slivnik

Ljubljana, 2016

Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Peter Žužek

Implementacija knjižnice SYCL za

heterogeno računanje

MAGISTRSKO DELO

MAGISTRSKI PROGRAM DRUGE STOPNJE

RAČUNALNIŠTVO IN INFORMATIKA

Mentor: izr. prof. dr. Patricio Bulić

Somentor: doc. dr. Boštjan Slivnik

Ljubljana, 2016

Copyright. The results of this Masters Thesis are the intellectual property of the author

and the Faculty of Computer and Information Science, University of Ljubljana. For the

publication or exploitation of the Masters Thesis results, a written consent of the author,

the Faculty of Computer and Information Science, and the supervisor is necessary.

c⃝2016 Peter Žužek

Declaration of Masters Thesis authorship

I, the undersigned Peter Žužek am the author of the Master Thesis entitled:

Implementation of the SYCL Heterogeneous Computing Library

With my signature, I declare that:

• the submitted Thesis is my own unaided work under the supervision

of izr. prof. dr. Patricio Bulić and co-supervision of doc. dr. Boštjan

Slivnik,

• all electronic forms of the Masters Thesis, title (Slovenian, English),

abstract (Slovenian, English) and keywords (Slovenian, English) are

identical to the printed form of the Masters Thesis,

• I agree with the publication of the electronic form of the Masters Thesis

in the collection ”Dela FRI”.

In Ljubljana, 18. March 2015 Author’s signature:

Acknowledgments

I would like to thank both of my mentors, izr. prof. dr. Patricio Bulić and

doc. dr. Boštjan Slivnik, people from Codeplay Software, and Klemen Rahne

who helped running tests, for helping me with this thesis.

Peter Žužek, 2016

Contents

Povzetek iii

Abstract v

Razširjeni povzetek vii

1 Introduction 1

2 Heterogeneous Computing 5

2.1 Overview of a modern CPU 5

2.2 Overview of GPU architectures 8

2.3 Other processing units . 14

2.4 The interconnect . 17

2.5 Heterogeneous System Architecture 19

3 Programming framework 23

3.1 OpenCL . 23

3.2 SYCL . 33

4 Implementation 43

4.1 Anatomy of a sycl-gtx application 44

4.2 The OpenCL code generator 47

4.3 Limitations . 51

4.4 Example code . 56

4.5 Porting the OpenCL example to sycl-gtx 63

CONTENTS

4.6 Additional remarks . 66

5 Tests 67

5.1 smallpt . 67

5.2 Porting smallpt to sycl-gtx . 71

5.3 Testing environment . 75

5.4 Results . 77

6 Conclusion 85

List of Acronyms

Cg C for Graphics

CISC Complex Instruction Set Architecture

CPU Central Processing Unit

CU Compute Unit

CUDA Compute Unified Device Architecture

DSP Digital Signal Processor

EU Execution Unit

FFT Fast Fourier Transform

FIR Finite Impulse Response

FMA Fused Multiply-Accumulate

FPGA Field Programmable Gate Array

GPC Graphic Processing Cluster

GPU Graphics Procesing Unit

GPGPU General Purpose Graphics Processing Unit

HBM High Bandwidth Memory

HDL Hardware Description Language

HLSL High Level Shader Language

hQ Heterogeneous Queuing

HSA Heterogeneous System Architecture

HSAIL Heterogeneous System Architecture Intermediate Language

hUMA Heterogeneous Unified Memory Architecture

ILP Instruction Level Parallelism

IPC Instructions Per Clock

i

ii

ISA Instruction Set Architecture

JIT Just-In-Time

MAC Multiple-Accumulate

OoO Out-of-Order

OpenCL Open Computing Language

OpenMP Open Multi-Procesing

PCIe Peripheral Component Interconnect Express

PE Procesing Element

RAII Resource Acquisition Is Initialization

RISC Reduced Instruction Set Architecture

RNG Random Number Generator

RTTI Run-time Type Information

SIMD Single Instruction Multiple Data

SMM Streaming Multiprocessor Maxwell

SMT Simultaneous Multi Threading

SoC System-On-Chip

SPIR Standard Portable Intermediate Representation

SPMD Single Program Multiple Data

SYCL Though this may seem like an abbreviation, it is not

TDP Thermal Design Point

TSMC Taiwan Semiconductor Manufacturing Company

VLIW Very Large Instruction Word

VPU Vector Procesing Unit

Povzetek

Heterogeno računalnǐstvo postaja vedno bolj popularno zaradi zmanǰsanega

napredka pri hitrosti osredjih procesorjev, izjemne rasti zmogljivosti grafičnih

procesorjev in razvoja novih programabilnih čipov, razvitih za specifične na-

loge. Vendar je programiranje heterogenih sistemov še vedno zapleteno za-

radi zelo različne strojne opreme ter potrebe po podvajanju podatkov in

sinhronizaciji. Specifikacija SYCL je bila razvita z namenom poenostavitve

heterogenega programiranja, kar doseže z naslanjanjem na OpenCL in mo-

derni C++. Odprtokodne implementacije SYCL-a še ni bilo, v čemer smo

videli priložnost za razvoj lastne. Odločili smo se, da ne bomo prilagali ob-

stoječih prevajalnikov ali celo razvili novega, temveč nam je uspelo udejaniti

velik del specifikacije SYCL tako, da smo razvili generator OpenCL kode,

ki prevaja SYCL kodo tik pred izvajanjem, t.j. Just-In-Time. Naše delo je

bilo povzeto v članku ”An Overview of sycl-gtx”, objavljenem na konferenci

PPoPP 2016.

Ključne besede

SYCL, OpenCL, heterogeno, vzporedno, JIT

iii

Abstract

Heterogeneous computing is becoming more popular with the lack of CPU

performance increases, the exceptional rate of GPU performance growth, and

the emergence of other programmable computing elements. However, pro-

gramming heterogeneous systems is still problematic due to differing hard-

ware, explicit data copying, and synchronization. The SYCL specification

aims to simplify heterogeneous programming by building on top of OpenCL

and employing modern C++. However, there is no open-source implemen-

tation of SYCL available, which presented an opportunity for us to develop

one. We restricted ourselves to not modify any existing compilers or write

new ones, but we managed to implement a large part of the SYCL specifica-

tion by developing an OpenCL code generator that compiles SYCL code in

a Just-In-Time manner. Our work was summarized in an article called ”An

Overview of sycl-gtx”, which was presented at the PPoPP 2016 conference.

Keywords

SYCL, OpenCL, heterogeneous, parallel, JIT

v

Razširjeni povzetek

Pri razvoju centralnih procesnih enot (CPE) je vedno težje doseči vǐsjo zmo-

gljivost. Zgodovinsko gledano se je razvoj osredotočal na pohitritev izvajanja

enega zaporedja kode, ali prek povečevanje frekvence CPE ali prek večjega

števila ukazov, ki jih CPE lahko izvede v enem urinem taktu (Instructions

Per Clock oz. IPC). Razvoj proizvodnega procesa je običajno omogočal oboje

– slavni Moorov zakon predvideva podvojitev števila tranzistorjev na enoto

površine vsaki dve leti. Ti tranzistorji so se porabili za razvoj novih zmo-

gljivosti CPE, kar je vodilo v vǐsanje IPC, obenem pa so manǰsi tranzistorji

omogočili vǐsje frekvence. CPE so se ponašale z vedno napredneǰso notranjo

arhitekturno zasnovo, npr. izvajanje strojnih ukazov v drugačnem zaporedju,

kakor so prevzeti (Out-of-Order oz. OoO), uporaba cevovodov, prevzem in

izvajanje večih ukazov v istem urinem taktu, uporaba pomnilnǐske hierar-

hije z namenom skrivanja zakasnitev pri dostopu do glavnega pomnilnika,

predvidevanje pogojnih skokov ipd.

Vendar so se v zgodnjih 2000-ih pojavile težave – vǐsanje frekvence CPE

ni bilo več smotrno, kajti potreba po električni moči in proizvodnja toplote

sta bili nenadoma previsoki. Namesto vǐsanja frekvence je še bolj pomemben

postal razvoj notranje arhitekture CPE. Industrija se je posvetila CPE z

visokim IPC in nižjimi frekvencami [2]. Sčasoma je bilo možno dvigniti tako

IPC kakor frekvenco, vendar je bil ta dvig drastično nižji od zgodovinskega

razvoja. Moderna CPE Intel Core i7-6700K (izdana pozno 2015) se ponaša s

frekvenco 4 GHz [3], medtem ko je CPE Intel Pentium 4 HT 3.4 [4] dosegla

3.4 GHz že v 2004, kar je manj kot 18-odstotno zvǐsanje v 11 letih. In čeprav

vii

viii

je bil začetni skok v IPC pri omenjeni spremembi relativno visok, se je kasneje

tudi razvoj IPC upočasnil, kajti i7-6700K ima le 22% vǐsji IPC kakor CPE

i7-2600K [5], ki je bila izdana leta 2011.

Vseeno se je Moorov zakon obdržal skozi vsa ta leta in še vedno velja

v letu 2016 (čeprav je videti, da se upočasnjuje) – čemu se torej posvečajo

vsi dodatni tranzistorji na CPE? Večinoma se uporabijo za vgradnjo ostalih

komponent na isto vezje poleg CPE. CPE so pridobile več jeder, integrirano

grafiko in ostale specializirane enote. Dodajanje jeder je relativno enostavno,

vendar z večimi jedri naloga izkorǐsčanja polne zmogljivosti CPE prenese na

programerja, ki se mora naučiti pisati večnitno kodo. Programerji imajo

še dandanes težave s tem, kajti tradicionalna programerska orodja niso bila

spisana z večnitnostjo v mislih.

Poleg CPE so zanimiv razvoj doživele tudi grafične procesne enote (GPE)

[6, 7], ki so se sprva uporabljale izključno za obdelavo računalnǐske grafike,

sčasoma pa so pridobile zmogljivosti bolj splošnega računanja. Grafična opra-

vila lahko bolj učinkovito izrabijo dodatne tranzistorje kakor aplikacije, spi-

sane za CPE, zato je napredek zmogljivosti GPE opazno presegel napredek

zmogljivosti CPE. GPE so postale bolj podobne mnogojedrnim CPE (sicer s

šibkeǰsimi jedri). Vendar je programiranje zahtevno že za mnogojedrne CPE,

kaj šele za GPE, ki so kljub podobnostim še vedno precej drugačne od CPE,

poleg tega pa se mora programer ukvarjati še s komunikacijo med CPE in

GPE.

Pojavila se je torej potreba po poenotenju programiranja in komunikacije

med CPE, GPE in po možnosti ostalimi računskimi enotami v sistemu, ki jih

je možno programirati. Ker se računske enote precej razlikujejo med seboj,

izvajajo se pa vzporedno, se tak princip imenuje heterogeno programiranje.

Iz te potrebe se je razvil standard OpenCL (Open Computing Language oz.

odprt računski jezik) [8], ki skrije nekatere razlike med računskimi enotami

(Compute Unit oz. CU) in priskrbi enoten način programiranja teh enot.

CPE, GPE, procesorje digitalnega signala (Digital Signal Processor) in kate-

rokoli enoto, ki sledi standardu OpenCL, se lahko programira na isti način.

ix

Poleg poenotenja heterogenih enot je OpenCL zasnovan z vzporednostjo v

mislih, kar poenostavi programiranje večjedrnih enot.

Čeprav je OpenCL poenostavil in poenotil programiranje heterogenih

enot, je za programiranje še vedno relativno zahteven. Programer mora na-

mreč ročno poskrbeti za nizkonivojske podrobnosti, kot je priprava računskih

enot, rezervacija in sproščanje pomnilnika in podatkov, ki si jih enote iz-

menjajo, opravljanje sinhronizacije itd. Poleg tega je OpenCL osnovan na

jeziku C, ki je sicer učinkovit, vendar mu manjkajo napredneǰse možnosti

vǐsjenivojskih jezikov, ki bi poenostavile programiranje. Poleg OpenCL ob-

stajajo druge rešitve za enostavno vzporedno programiranje (npr. OpenMP

[9]) ali za programiranje GPE v jeziku C++ (C++AMP), vendar nobena ne

ponuja tako splošnega pristopa k heterogenemu računanju kakor OpenCL.

Možna izjema bi bila CUDA [10], ki je sicer zelo podobna OpenCL, le da

se naslanja na C++. Največji problem CUDE je vezanost na GPE podjetja

Nvidia, kar CUDI bistveno omeji razširjenost.

Zaradi teh razlogov se je skupina Khronos, ki skrbi za razvoj OpenCL,

odločila za nov standard, ki bi poenostavil pristop OpenCL s pomočjo C++ v

moderni različici. Ta nov standard so poimenovali SYCL [11] in marca 2014

izdali provizorično specifikacijo standarda, ki pa ni imela nobene konkretne

implementacije. Lastno implementacijo je najavilo podjetje Codeplay Soft-

ware, ki je eden izmed glavnih pobudnikov standarda, vendar so se odločili

za zaprto, komercialno rešitev [12]. Kmalu se je pojavila odprtokodna imple-

mentacija SYCL-a po imenu triSYCL, vendar ni bilo videti, da bi se razvoju

le-te posvečalo kaj dosti pozornosti.

Tako smo se odločili, da prispevamo lastno odprtokodno implementacijo

SYCL-a, ki smo jo izdali pod permisivno licenco [14]. Glavni namen te na-

loge je bil razvoj čim večjega dela SYCL specifikacije brez uporabe posebnega

prevajalnika, temveč le kot knjižnico, spisano v jeziku C++11, ki med izva-

janjem programa (Just-In-Time oz. JIT) prevaja SYCL kodo v OpenCL.

Uspelo nam je razviti veliko osnovnih elementov standarda, popisati naše

delo tako v javnem repozitoriju kode kakor v tej nalogi in pognati ter ana-

x

lizirati par poskusov. Na ta način je tudi ta naloga zasnovana: začne se

s predstavitvijo heterogenega računanja, sledi pregled programerskih okolij

OpenCL in SYCL, nato obrazložitev našega dela pri samem razvoju specifi-

kacije in na koncu so rezultati naših poskusov.

Chapter 1

Introduction

It has become increasingly more difficult to increase performance of the tra-

ditional Central Processing Unit (CPU). Historically, increasing CPU per-

formance focused on executing a single stream of code as fast as possible,

either by raising the CPU clock frequency, or by increasing the amount of

work the CPU can perform in a single clock cycle (Instructions Per Clock –

IPC). The manufacturing improvements usually allowed both – the famous

Moore’s Law predicted a doubling of transistors per area every 18 months and

those transistors could be used to implement new functionality, but smaller

transistors also allowed for higher frequencies. CPUs gained more and more

advanced architectural designs – making the execution stream Out-of-Order

(OoO), employing pipelines, fetching and executing multiple instructions at

a time, implementing memory caches to hide the memory access latency [1],

predicting conditional branches etc.

But problems emerged in the early 2000s – it was no longer feasible to

increase the CPU frequency, because the power requirements were suddenly

too high. Since major frequency increases were out of the question, it be-

came clear that architectural changes played an even larger role now. The

industry focused on high IPC, lower frequency CPUs [2], and was eventually

able to raise both the IPC and the frequency, but much lower than what

were historical standards. A modern (late 2015) Intel Core i7-6700K has a

1

2 CHAPTER 1. INTRODUCTION

frequency of 4 GHz [3], while the Intel Pentium 4 HT 3.4 [4] reached 3.4 GHz

already in 2004, less than an 18% increase in 11 years. And even though the

initial jump in IPC after this shift was substantial, the i7-6700K only has a

22% higher IPC than the i7-2600K [5], released in 2011.

However, Moore’s Law persisted through all these years and still holds

true even in 2016 (although it has seemingly slowed down slightly) – so what

are all the added transistors used for? Mostly to integrate other components

on the same chip alongside the CPU. CPUs started employing more cores,

integrated graphics, and other, specialized hardware. Adding more cores is

relatively simple, but the burden of extracting performance then falls on the

programmer, who has to learn how to write parallel code – programmers still

struggle with this, as traditional programming tools weren’t written with

parallel code in mind.

There has been another interesting development alongside CPUs – graph-

ics processing units (GPU) [6, 7], which were first used only to process graph-

ics, but later gained general purpose computing capabilities. Graphics work-

loads can use more transistors more efficiently than a CPU, so the increases

in graphics performance were more evident. GPUs became similar to CPUs

with a lot of (lower performing) cores, but as mentioned, parallel program-

ming is already difficult for the CPU. Additionally, despite the similarities,

a GPU is still pretty different from a CPU, while the programmer also needs

to take care of the communication between them.

A need emerged to unify programming and inter-communication of the

CPU, the GPU, and any other programmable processing elements. Because

the computing elements differ from each other, but are programmed to exe-

cute alongside each other, this is called heterogeneous computing. A standard

was developed, called OpenCL (for Open Computing Language) [8], which

abstracted the different computing elements into Compute Units (CUs) and

provided a unified way to program them – CPUs, GPUs, Digital Signal Pro-

cessors, and any other CUs that conform to the OpenCL standard can be

programmed in the same manner. Along with unifying heterogeneous CUs,

3

OpenCL is also designed to be parallel, which simplifies extracting perfor-

mance from multiple cores.

But even though OpenCL unified heterogeneous programming with an

open standard, it still wasn’t simple. In OpenCL, the programmer needs

to manually take care of many low-level details, like initializing the CUs,

allocating and releasing memory that is exchanged between CUs, performing

synchronization, etc. Additionally, OpenCL is designed upon the C language,

which, while efficient, lacks more advanced features of higher level languages

that would simplify programming. There are alternatives for simple parallel

programming (e.g. OpenMP [9]), or for GPU-accelerated C++ (C++AMP),

but none offer the very general approach to heterogeneous computing. A

notable exception may be CUDA [10], which is very similar to OpenCL, but

relies on C++. The problem is that CUDA is exclusive to NVIDIA GPUs,

which significantly limits its reach.

That’s why members of the Khronos Group, who oversights OpenCL

development, decided on a standard that would greatly simplify OpenCL

programming using modern C++. They called the standard SYCL [11] and

released a provisional specification in March 2014. However, this was only

a specification, with no available implementation at the time. Codeplay

Software, one of the leading contributors to SYCL, announced their own

implementation [12], but also that it would be proprietary. A project emerged

to provide an open-source implementation, called triSYCL [13], but it wasn’t

clear whether any active development was going on.

That’s when we decided to implement the SYCL specification on our

own, releasing it under a permissive open source license [14]. The main goal

was to develop as much of the SYCL specification without using a special

compiler, but rather as just a C++11 library that performs JIT compila-

tion at runtime. Over the course of this Thesis we managed to implement a

lot of essential functionality, document what has been done, and run some

experiments. That is also how the Thesis is structured: a bit of explana-

tion of heterogeneous computing, followed by an overview of OpenCL and

4 CHAPTER 1. INTRODUCTION

SYCL, then an explanation of our implementation efforts, and finally the

experimental results.

Chapter 2

Heterogeneous Computing

In this chapter we present the need for heterogeneous computing. We start

by explaining traditional computing, using a single Central Processing Unit,

continue with the history of Graphics Processing Units, how GPUs became

more CPU-like in order to allow general purpose computation, discuss some

other approaches to accelerating computing, present a common bottleneck

in heterogeneous computing, the interconnect, and finally discuss a modern

heterogeneous architecture.

2.1 Overview of a modern CPU

We already discussed some of the historical developments of CPUs in the

introduction, so in this section we present the Intel Core i7-6700K [3] as an

example of a modern high performance CPU.

The i7-6700K is based on Intel’s Skylake architecture and was introduced

to the market in september 2015. It is built using Intel’s 14nm manufacturing

process, their second generation process to employ FinFET transistors. Intel

did not disclose the number of transistors for the chip, although estimates

range from 1.4 to 1.7 billion, with a die size of 122mm2. It incorporates four

Skylake cores, 24 GPU compute units, 8 MB L3 cache (shared between CPU

and GPU), and a DDR4/LPDDR3 memory controller. We focus here on just

5

6 CHAPTER 2. HETEROGENEOUS COMPUTING

Figure 2.1: Simplified Skylake pipeline (figure source: [3]). Only the execu-

tion units perform work on data and the caches help with memory bandwidth,

other parts are designed for extracting IPC.

the Skylake core and briefly discuss some other elements in other sections.

The i7-6700K has a base frequency of 4 GHz – the frequency is guaran-

teed to run within it’s 91W Thermal Design Point. It also features a boost

frequency of 4.2 GHz, which it can achieve on one core for short periods of

time. The idea is that since some common workloads cannot be parallelized,

but take a relatively short time to complete, the CPU can ramp up the fre-

quency on that core without exceeding its TDP. The boost here is actually

quite low, only 5%, at least compared to mobile processors that are also

based on the Skylake architecture – like the Intel Core m7-6Y75, which has

a TDP of 4.5W, a base frequency of 1.2 GHz, and can boost up to 3.1 GHz,

an increase of 158%. These frequencies are achieved as a combination of the

low power manufacturing process and a suspected pipeline length of 14 to

19 stages, depending on the instruction – the exact number wasn’t released,

but is thought not to have changed much from Intel’s Haswell architecture

[15].

2.1. OVERVIEW OF A MODERN CPU 7

Because clockspeeds have somewhat stagnated since the failure of Den-

nard scaling [16], CPUs rely heavily on extracting Instruction Level Paral-

lelism (ILP) from code in order to achieve high performance. Intel processors

are externally (visible to the programmer) CISC designs, but internally the

CISC instructions are converted into RISC-like µ-ops – ever since Intel’s

Sandy Bridge architecture, the core also includes a µ-op cache, alongside the

regular instruction cache. Before instructions are even fetched from memory,

the branch predictor tries to guess the location of the next instruction – a

misprediction incurs higher penalties in longer pipelines, but the design of a

good branch predictor is something of a secret in the industry. To extract

ILP, the Skylake core is Out-of-Order (OoO), storing 224 instructions in the

OoO window for potential reordering, trying to utilize its functional units

as efficiently as possible. The Skylake core can dispatch six fetched µ-ops

at once to the scheduler queue, which then in turn dispatches six µ-ops to

the execution units. The execution units consist of integer and floating point

ALUs as well as load and store units.

Memory accesses are cached in the L1, L2, and L3 caches. The Level 1

cache is split into 32 KB of instruction cache and 32 KB of data cache. Each

core also has 256 KB of L2 cache and 8 MB L3 is shared between all cores.

The Skylake core, implementing a 64-bit x86-compliant architecture, fea-

tures 8 legacy general-purpose registers, extended from 32-bit to 64-bit, and

8 new 64-bit general-purpose registers. However, as is typical of a CISC

instruction set, it also features many special purpose registers [17, 18].

The i7-6700K also features HyperThreading, a commercial name for two-

way Simultaneous Multi Threading (SMT). This is done by storing two sets

of registers (two contexts [19]), so when some instruction is waiting for an

action to complete (for example waiting for data to be retrieved from the main

memory), the core can switch to the other context and proceed working on

an independent set of instructions.

8 CHAPTER 2. HETEROGENEOUS COMPUTING

2.2 Overview of GPU architectures

2.2.1 History of Graphics Processing Units

Computer graphics have evolved through the years – at first, only simple text

input to the screen was needed. But as CPUs became faster, 3D rendering

became feasible, and 3D scenes got more and more complex. The basic steps

needed to be taken to display a 3D scene on a 2D screen go like this [6]:

1. Set up the scene (move objects, camera, ...)

2. Simplify the actual displayed scene – remove invisible objects, reduce

the detail level for objects that are far away from the camera etc.

3. Transform the scene to a 2D view

4. Calculate lighting

5. Prepare renderable triangles (Triangle Setup and Clipping)

6. Render the triangles

Steps 3–6 are considered to be the 3D graphics pipeline, but at first it was

all computed on the CPU. Step 6 was the first to be moved to a dedicated

graphics processor. Through time, step 5, 4, and 3 were also brought to

the graphics processor (in that order), which caused Nvidia to coin the term

GPU in 1999, since the whole 3D graphics pipeline was now handled by the

graphics processor instead of the CPU.

Rendering a scene is not that complex of a task, but rather just very repet-

itive – performing a simple independent calculation for every vertex, triangle,

and pixel, and then perform some rendering operations (ROP stage) to actu-

ally output to display. A single core CPU would take a long time to perform

all operations (e.g. render about a million pixels 60 times per second), so of-

floading the graphics pipeline to specialized graphics hardware brought large

speed improvements and allowed the CPU to focus more on other aspects of

the application. It was also relatively simple to add multiple pipelines to a

2.2. OVERVIEW OF GPU ARCHITECTURES 9

GPU, so it was easier to gain performance from adding transistors to a GPU

compared to a single core CPU. This allowed the GPU performance growth

to significantly outpace CPU performance growth [6].

The idea of a graphics pipeline was introduced by Silicon Graphics Inc.

(SGI), who also introduced OpenGL in 1989 [7], an API for 2D and 3D

graphics programming. But while SGI focused more on professional graphics,

many companies emerged in the mid 1990s that offered graphics hardware

to consumers – 3DFX, Nvidia, ATI, and Matrox relied on PC games that

started to use 3D graphics acceleration.

When the first ”true” GPUs emerged in 1999 (handling the whole 3D

pipeline in specialized graphics hardware), they were known to feature a fixed

function pipeline. Fixed function meant that after the scene data was sent to

the GPU, the GPU took over the whole computation, so it was not possible to

modify the scene in the middle of the graphics pipeline. This was inflexible,

as when the OpenGL and DirectX APIs gained new functionality, existing

GPU were not able to take advantage of it. In 2001, Nvidia released the

Geforce 3, which made some of the graphics pipeline stages programmable.

Along with data, the programmer could send in a program (called a shader),

that influenced the execution of the vertex or the pixel stage. The shader

was written in an assembly-like shader language, but soon Nvidia and Mi-

crosoft developed Cg, C for Graphics, which simplified shader programming.

Microsoft later developed HLSL (High Level Shader Language), which was

basically Cg, but only for their proprietary DirectX 9 API.

2.2.2 GPGPU

The combination of a programmable pipeline, the parallel nature of GPUs,

and the aforementioned performance growth that outpaced CPUs, GPUs

became very interesting for non-graphic, compute applications [7]. But these

compute applications on the GPU really started to take off when Nvidia

introduced the Geforce 8 series in 2006. The Geforce 8 series moved from

having different kinds of shaders (geometry, vertex, pixel) to employing a

10 CHAPTER 2. HETEROGENEOUS COMPUTING

single, more general kind of shaders, called unified shaders. Unified shaders

are much more similar to a traditional CPU design, as they can also execute

general purpose code, coining the term General Purpose GPU.

Still, a GPU core is usually much simpler than a CPU core, in the sense

that it dedicates little resources to extracting ILP and rather focuses on ALU

units. This does not provide high performance for serial code, but graphic

workloads are generally easily parallelizable, so doubling the core count can

efficiently provide an almost double speedup. Because the core is simpler,

it also takes up less die area, making it possible to put more cores into the

same sized chip. Having a high core count also provides an opportunity for

many general algorithms that are easily parallelizable [20].

2.2.3 Modern GPUs

In this section we present the Nvidia Geforce GTX 980 [21] as an example

of a modern high performance GPU. It was released in September 2014, but

due to the lack of a newer high performance manufacturing process at TSMC

(Taiwan Semiconductor Manufacturing Company), where Nvidia manufac-

tures their chips, the architecture is still relevant as of this writing.

The GTX 980 is manufactured on TSMC’s 28nm process using 5.2 billion

transistors on a die 398mm2 in size and a TDP of 165W. It features 2048

CUDA cores. CUDA stands for Compute Unified Device Architecture, which

has been the base of Nvidia GPUs since their first GPGPU, the Geforce 8800

GTX. The number of cores cannot be directly compared to other architec-

tures, as what the core is capable of varies more significantly in GPUs than

in CPUs – the 980 GTX actually features 28,9% less CUDA cores than its

direct predecessor, the GTX 780 Ti, while being slightly faster. Since it’s

primarily a GPU, it also features 128 texture units and 64 Raster Output

Units, both of which are not relevant for GPGPU. It also features it’s own

memory, 4 GB of GDDR5, with an effective frequency of 7 GHz, connected

via a 256-bit bus.

The GTX 980 has a base clock frequency of 1126 MHz and can boost

2.2. OVERVIEW OF GPU ARCHITECTURES 11

Figure 2.2: Streaming Multiprocessor Maxwell (figure source: [21]). All of

the cores are meant for processing data. The figure has been cropped slightly

and modified to show only two out of four warps.

to 1216 MHz (8%), similarly to what was described for Skylake, although it

works somewhat differently. It is highly unlikely that just a single CUDA

core will be occupied – instead, most of the time most of the GPU is fired

up, consuming power and generating heat, so the boost clocks cannot be as

high. The GTX 980 targets a temperature of 80◦C, but allows it to reach

91◦C while boosting the clock. Sometimes the temperature may exceed even

that, so there is a hard limit set to 95◦C. During boost operation, the TDP

limit increases from 165W to 206W.

Double floating point execution units were long not present on GPUs,

while many lower performance GPUs still do not support it. The GTX 980

does support double precision floating point operations, but only at a rate of
1
32

of single precision. Double precision is necessary in some scientific com-

putations, so the low rate on GTX 980 slightly reduces its GPGPU appeal.

The GTX 980 is based on the Maxwell 2 architecture. The high core

count is organized in a hierarchical way – the whole chip is split into four

12 CHAPTER 2. HETEROGENEOUS COMPUTING

Graphic Processing Clusters (GPCs), and each GPC contains four SMMs

(Streaming Multiprocessor Maxwell). Each SMM contains four execution

units (”warps”) and within each warp there are 32 CUDA cores [10]. The

warp is a SIMD unit (actually it’s what Nvidia calls a ”SIMT” unit, which is

similar), executing the same instruction on all 32 cores at once This means

that the cores are not completely independent, which can have some perfor-

mance implications when writing general purpose code. Consider the follow-

ing example:

1 int i = this_thread_id();

2 if(i % 2 == 0) {

3 execute0();

4 }

5 else {

6 execute1();

7 }

Here only half of the cores need to execute the code within the if-statement.

But since the cores execute as a SIMD unit, we get a slowdown: first all cores

execute execute0(), but half of the results are discarded, and then all cores

execute execute1(), where the other half of the results are discarded.

Each SMM contains a 4 KB instruction cache and each warp contains

an instruction buffer. A warp scheduler assigns workload to cores within a

warp – at every instruction issue time, the scheduler issues one instruction.

Additionally to 32 cores, a warp also contains 8 load/store units and 8 Special

Function Units (trigonometry functions). It is also good to know that the

concept of a warp was somewhat different in earlier Nvidia architectures –

a warp was always a collection of 32 consecutive threads that execute in

parallel like a SIMD unit, but unlike previous architectures, with Maxwell

each warp has its own warp scheduler.

Each warp contains 16384 32-bit registers – a 64 KB register file. This

is 512 registers per core, although all 16384 are available to the entire warp,

with certain limitations [10].

2.2. OVERVIEW OF GPU ARCHITECTURES 13

The memory on a SMM consist of [22]:

• a read-only constant memory,

• 24 KB of a unified L1 data/texture cache,

• 96 KB of shared memory.

L1 cache is hidden from the programmer unless using it as a texture cache,

while the constant and shared memory need to be explicitly addressed. The

whole GPC also includes 2 MB of L2 cache.

2.2.4 Comparison of Skylake and Maxwell

Feature Skylake CPU Maxwell GPU

Cores 4 (8 threads) 2048 CUDA (16 SMMs)

ILP 14-stage pipeline, OoO, ... In-order

Base clock 4 GHz 1.126 GHz

Boost clock 4.2 GHz 1.216 GHz

GP* registers 64-bit, 16 per core 32-bit, 16384 per warp

L1 cache 32 KB + 32 KB per core 24 KB per SMM

L2 cache 256 KB per core 2 MB per SMM

L3 cache 8 MB per chip None

Other memory Possible 64/128 MB eDRAM Constant, 96 KB shared

Main memory 64-bit LDDR3/DDR4 4GB 256-bit GDDR5

Table 2.1: Comparison of Skylake and Maxwell architectures. GP stands

for ”General Purpose”.

We can see from Table 2.1 that even though a GPU supports general

purpose code, a CPU and a GPU serve quite different types of workloads.

While a CPU is focused on single core performance and extracting ILP –

high clockspeed, long pipeline, wide OoO window, branch prediction, lots of

instruction and data caching — a GPU offers instead a great environment

14 CHAPTER 2. HETEROGENEOUS COMPUTING

for inherently thread-parallel code – high number of cores, wide memory

interface, special constant and shared memory for sharing between threads.

2.3 Other processing units

We mostly take a look into heterogeneous computing using popular CPUs

and GPUs, but there are some other designs that could potentially be part

of a heterogeneous system.

2.3.1 Digital Signal Processors

Digital Signal Processors (DSPs) process a stream of data (a signal) [23].

They are designed to process large amounts of data as quickly as possible –

data is often required within a prespecified timeframe, e.g. real-time video

processing needs to provide 30 image frames per second (or similar). A

general purpose CPU can usually perform the same tasks as a DSP, but DSPs,

being designed specifically for processing data, can offer better performance

and/or lower power consumption. As such, they are mostly preferred to

CPUs in power constrained devices.

DSPs are optimized to execute multiplications, additions, and fused

multiply-accumulate (FMA or MAC), which is required for calculating con-

volution, FIR filters, and Fast Fourier Transform (FFT), to name just a few

examples. DSPs also often feature fixed point arithmetic units, which are

less flexible, but more efficient that floating point units. The memory ar-

chitecture of a DSP is optimized for streaming data, fetching multiple data

and instructions at the same time – the instructions are then issued either in

a superscalar fashion or as a VLIW (Very Large Instruction Word) and the

data is processed in SIMD units. Separate program and data memories are

typical for a DSP in order to increase bandwidth.

2.3. OTHER PROCESSING UNITS 15

2.3.2 FPGA

A Field Programmable Gate Array is a circuit that is designed to be con-

figured for a specific task after it has already been manufactured [24]. Un-

like other processing elements presented here, an FPGA does not have an

instruction set – instead, a programmer designs hardware blocks (using a

Hardware Description Language, HDL) and sends them as configurations to

the FPGA. An FPGA consist of an array of programmable logic blocks and

a reconfigurable interconnect. By enabling and disabling specific logic blocks

and interconnections, any combinatorial function can be configured, as long

as there is a large enough number of basic logic blocks. The very regular

structure of FPGAs means that they benefit greatly from newer manufactur-

ing processes – FPGA designer Altera was the first to employ Intel’s 14nm

process [25], which was the most advanced commercial process at the time.

Eschewing instruction processing (fetch, decode, issue, ...) and design-

ing hardware blocks to perform a specific function can lead to significantly

higher performance and lower power versus a general purpose CPU, GPU,

or DSP. This does come with a cost, though: writing HDL is more difficult

than a regular programming language (”compilation” can take a few hours)

and FPGA reconfiguration time limits the general-programmability aspect.

FPGAs are more suited for prototyping hardware designs or for applications

that are loaded once and ran many times.

FPGAs can be used in many different ways – one interesting result came

from Microsoft [26], where their deployment of FPGAs in datacenters in-

creased the thoroughput by 95% while only using 10% more power and at

30% higher costs. Intel also plans to integrate an FPGA on its Xeon line of

chips [27].

2.3.3 Intel Xeon Phi

Intel developed the Xeon Phi as a GPGPU competitor – the original idea was

to develop a discrete GPU using x86 cores and software rendering (x86 refers

16 CHAPTER 2. HETEROGENEOUS COMPUTING

to the backwards-compatible CISC programming model of Intel CPUs). The

project, codenamed Larrabee, was canceled due to delays and underwhelming

performance [28].

But Intel got rid of Larrabee’s GPU-specific functions and introduced a

PCIe connected accelerator, named the Xeon Phi [29]. It promised to deliver

the same functionality as a GPGPU – high performance for thread-parallel

applications – but with a much simpler programming model. We touch a

bit on GPGPU programming in section 3.1, but here we can mention that it

is quite different than traditional programming models. On the other hand,

the x86 model has been known to programmers and compilers for over 30

years – apart from dealing with sending data between the CPU and the Xeon

Phi and some other specifics, the programmer sees the Xeon Phi as if it were

a normal Intel CPU, just with a large number of cores. Combined with

the support for high double precision floating point performance, this lead to

adoption in High Performance Computing applications (it’s a key component

of the No. 1 supercomputer in the world [30]).

Architecturally, one could say the Xeon Phi sits somewhere in between

a regular CPU and a GPU. The current generation Xeon Phi, codenamed

Knights Corner, has its core based on Intel’s Pentium P54C core [31]. The ba-

sic P54C core is a dual-issue OoO design with a 5-stage pipeline [32], but the

Xeon Phi core is heavily modified. Along with adding new instructions (in-

cluding 64-bit ones), extending the pipeline, using the 22nm manufacturing

process, and significantly increasing/adding caches, the Xeon Phi incorpo-

rates four-way SMT and includes a Vector Processing Unit (VPU). The VPU

is a an enhanced SIMD unit that can process 16 single precision floating point

operations at once, or 8 double precision ones. Xeon Phi includes 60 cores,

which with SMT works out to 240 processing threads (at full utilization). So

we can see that the performance of a single core sits between a GPU core and

a regular Intel CPU core, while the total number of threads it can process in

parallel is also somewhere in between.

Xeon Phi is supposed to feature a new version in 2016, codenamed Knights

2.4. THE INTERCONNECT 17

Landing [33], which will move from enhanced Intel Pentium to enhanced In-

tel Silvermont cores. The core count will increase only to 72, so most of

the claimed 3x performance improvement will come from the improved OoO

cores. To help alleviate bandwidth concerns, the chip will also feature 16GB

of on-package memory.

2.4 The interconnect

A significant problem in heterogeneous computing is connecting the various

computing elements together. A standard model is to assume a GPU or other

accelerator communicating with the CPU over a PCI Express (PCIe) bus.

However, even PCIe 3.0 can only carry 1 GB/s per lane [34] – high end GPUs

are connected by 16 lanes, providing almost 16 GB/s of bandwidth. In some

contexts that may sound a lot, but let’s consider the bandwidth difference

between CPUs and GPUs with the help of the Skylake–Maxwell comparison

table in section 2.2.4.

A typical 64-bit DDR3 1600 MHz memory bus provides 12.8 GB/s of

bandwidth: 64b
8

∗ 1.6GHz = 12.8GB/s – this is actually less than what 16

lanes of PCIe provide, although this is just one channel as opposed to the

usual two, while PCIe also exhibits higher latency. On the other hand, typical

256-bit GDDR5 memory running at a 7 GHz effective rate (shipped on the

GPU board) provides 224 GB/s of bandwidth – this is required because of

the high number of processing elements on a GPU, which can process large

amounts of data in parallel. We see that PCIe bandwidth is much lower than

what GPUs are able to use, therefore any data copying between a CPU and

GPU needs to be limited.

The limited bandwidth can be observed in some Systems-On-Chip (SoCs),

where the integrated GPU shares the same global memory as the CPU, which

is typically of the DDR3 variety – a dual channel configuration presents 25.6

GB/s for both the CPU and GPU to share. The reason CPU-centric DDR3

is used instead of the GPU-centric GDDR5 is that GDDR5 has much higher

18 CHAPTER 2. HETEROGENEOUS COMPUTING

access latencies – for a GPU this is usually no problem, because it needs to

read large amount of data at a time, but a CPU is much more sensitive to

memory latency.

Let’s consider an example. Intel HD 4400 graphics employs 20 Execution

Units (EUs), while Intel HD 5000 graphics employs 40 EUs – these integrated

GPUs are built using the same architecture with more or less the same fre-

quencies, the only significant difference is the doubling of EUs [35]. Doubling

the number of computing units on a GPU usually results in almost double

the performance, but Intel HD 5000 is only up to 15% faster than HD 4400

and in some cases it’s not faster at all. On the other hand, comparing Intel

HD 4600 and Intel Iris Pro 5200 (variants of the HD 4400 and HD 5000, re-

spectively, used in higher power desktop as opposed to mobile chips) reveals

that Iris Pro 5200 performance is 50% higher or more – the reason why it

isn’t even higher is that Intel Core i7-4770K, which houses the HD 4600, is

allowed more thermal headroom [36].

What makes the Iris Pro 5200 special is the use of an additional layer in

the memory hierarchy – 128MB of external DRAM (eDRAM), which can be

viewed as some sort of L4 cache (it doesn’t act quite like an L4 cache, as

it can be bypassed, but that detail isn’t very important in this discussion).

This means that the Iris Pro 5200 has normal access to 25.6 GB/s of DDR3

bandwidth and additional 50 GB/s when the data can be cached.

Newer memory standards are being developed in order to raise the avail-

able bandwidth. DDR4 promises clockspeeds up to 3.2 GHz in four channel

configurations [37], which provides 102.4 GB/s of bandwidth on a 64-bit in-

terface. For GPUs, AMD was the first to employ High Bandwidth Memory

(HBM) on its Radeon Fury X GPU [38], which uses a much wider 1024-bit

interface at 1 GHz, which, when arranged in four stacks, gives 512 GB/s

of bandwidth. Power and/or cost currently prevent wide adoption of these

faster solutions, although that will definitely change with newer manufactur-

ing processes.

2.5. HETEROGENEOUS SYSTEM ARCHITECTURE 19

Figure 2.3: Two main features of HSA (figure source: [39]). The figure has

been cropped.

2.5 Heterogeneous System Architecture

Continuing the discussion on memory bandwidth, different computing units

in a heterogeneous system employ either each their own memory, tailored for

their needs, or employ a shared memory, which is usually a disadvantage to

at least one of the different units.

But sharing memory provides an optimization opportunity – in some

cases, the memory does not need to be copied at all, when just passing a

memory address (a pointer) would suffice. In order for that to work, the

different computing units need to have a unified memory space, but tradi-

tionally the memory spaces were separate. AMD was among the first to

embrace this unified memory idea [39], which they call Heterogeneous Uni-

fied Memory Architecture (hUMA) – their first product to implement hUMA

was the Kaveri architecture. There are many benefits of hUMA:

1. Eliminating CPU-GPU copies.

20 CHAPTER 2. HETEROGENEOUS COMPUTING

2. Access to the entire address space. The GPU is no longer limited to

its own onboard memory and the memory can be upgraded just like

regular main memory.

3. Unified addressing in hardware. Without this, the application had to

ask the GPU driver to allocate a GPU page table for a given range of

CPU virtual addresses, because the GPU had a separate virtual address

space. This only worked for simple data structures (arrays) and the

page table initialization introduced some performance overhead. But

in hUMA pointers can be freely exchanged between CPU and GPU,

with no driver overhead.

4. Demand-driven paging. CPU virtual memory can point to other ad-

dresses than those of physical memory, e.g. to the hard drive – this

is called demand-driven paging. But GPUs traditionally did not im-

plement this – the application had to know the range of addresses it

needed and map them to a GPU buffer object. Having fixed memory

is problematic with dynamic data structures (e.g. linked lists), where

pointers could point to anywhere in memory.

5. CPU-GPU coherence. In addition to being able to see the same data,

the CPU and the GPU should also be able to see write operations to

this data in order to ensure data consistency, which is complicated due

to the cache hierarchy. This is an optional feature for the programmer

to use, because it incurs some overhead. Atomic operations are also

provided.

But hUMA is just one part of AMD’s Heterogeneous System Architecture

(HSA). Another important part is HSAIL (HSA Intermediate Language),

which is a portable pseudo-ISA for heterogeneous compute (ISA – Instruction

Set Architecture). HSA was first implemented by AMD, but is actually

a specification, developed by the HSA foundation, where AMD plays an

important role. Because different manufacturers may implement HSA, the

HSA foundation wants the same applications be able to run on different

2.5. HETEROGENEOUS SYSTEM ARCHITECTURE 21

hardware, but this requires a standard software interface. However, HSA

targets a wide range of different computing units (CPU, GPU, DSP, ...) so

a unified ISA would not be feasible. Instead, the compiler generates HSA

Intermediate Language, while the actual binary is produced Just-In-Time by

the HSA driver.

Another important feature of HSA is Heterogeneous Queuing (hQ), which

is about optimizing task queuing. There are three important improvements

on this front:

1. User-mode queuing. Queuing tasks does not need to invoke the GPU

driver and system calls anymore. This reduces overhead and makes

even small tasks feasible to queue to the GPU.

2. Dynamic Parallelism. Normally it’s the CPU that queues work for the

GPU, but now it is also possible for the GPU to queue tasks for itself.

3. CPU callbacks. In addition to queuing work for itself, the GPU can

also invoke CPU functions – this especially benefits legacy CPU code

that is not GPU-aware.

Some of the described HSA functionality had already been available be-

fore – e.g. OpenCL SPIR (Standard Portable Intermediate Representation)

is similar to HSAIL, Nvidia had already supported dynamic parallelism and

unified memory addressing in software (but not in hardware). But AMD was

the first to implement the full HSA version 1.0.

22 CHAPTER 2. HETEROGENEOUS COMPUTING

Chapter 3

Programming framework

3.1 OpenCL

3.1.1 Overview

OpenCL is an open royalty-free standard for general purpose parallel pro-

gramming across CPUs, GPUs and other processors, giving software develop-

ers portable and efficient access to the power of these heterogeneous systems

[8]. It is maintained by the Khronos Group, which consists of many hard-

ware and software companies. It is designed to be efficient, to map to the

underlying hardware as close as possible, while still providing a powerful pro-

gramming toolchain. OpenCL is most commonly used with CPU and GPU

devices, but there are also DSPs available that support OpenCL [40], and

even FPGAs from Altera [41] and Xilinx [42] have an OpenCL SDK.

OpenCL consists of the OpenCL framework and a specially designed lan-

guage for programming devices, called OpenCL C, which is a subset of ISO

C99, but with extensions for parallelism. It also offers interoperability with

OpenGL and similar graphics APIs.

The OpenCL framework consists of the following components:

1. Platform layer. Allows the host to discover devices and their capabili-

ties and to create contexts.

23

24 CHAPTER 3. PROGRAMMING FRAMEWORK

2. Runtime. Allows the host to manipulate contexts after creation.

3. Compiler. Creates program executables that contain OpenCL kernels.

OpenCL was initially developed by Apple [43], which holds trademark

rights and who submitted the initial proposal to Khronos. The Compute

Working Group was formed within Khronos, which released the OpenCL

1.0 specification in November 2008. The first actual implementation was

provided by Apple in their Mac OS X Snow Leopard Operating System in

August 2009 [44]. AMD opted for OpenCL instead of its own Close to Metal

framework [45] and Nvidia decided to support OpenCL alongside its own

CUDA.

OpenCL has gone through multiple revisions [8]. Version 1.1 was released

in 2010, and Version 1.2 in 2011 – the latter sees very widespread support

today in 2016 and is also the focus in this thesis. Version 2.0 brought a

lot new features in 2013, e.g. shared virtual memory, nested parallelism, a

generic address space etc. The newest specification is 2.1, which was released

in 2015 and replaces the OpenCL C language with OpenCL C++.

3.1.2 Architecture

Platform model

An OpenCL platform consists of a host connected to one or more devices. A

device is divided into one or more compute units, which are further divided

into processing elements (PEs), which perform the actual computation. The

PEs execute a single stream of instructions either as SIMD units (Single In-

struction Multiple Data) or as SPMD units (Single Program Multiple Data,

each PE maintains its own program counter). To support devices with vary-

ing capabilities, OpenCL considers multiple version identifiers: the platform,

the device, and the OpenCL C language versions.

3.1. OPENCL 25

Execution model

An OpenCL program executes in two parts: a kernel executes on a device

and a host program executes on the host. When the host submits a kernel for

execution, an index space is defined, and the kernel executes for each index.

An instance of kernel execution is called a work-item, and each work-item

executes the same code, but it can perform different computation based on

its index (global ID). Work-items are organized into work-groups, which also

receive their own index (a local ID), and are meant to offer a more coarse

grained view into the execution. The OpenCL index space is an NDRange,

which is an N-dimensional index space, where N can be 1, 2, or 3.

The host defines a context for kernel execution, which includes devices,

kernels, program objects, and memory objects. The execution is controlled

by a command queue, which includes commands for kernel execution, mem-

ory access, and synchronization. The command queue can be either in-order

or out-of-order (OoO), although most OpenCL implementations don’t sup-

port OoO. Kernel execution and memory commands generate event objects,

which are used to control execution between commands and to aid the com-

munication between host and devices. A single context can be associated

with multiple queues, which run concurrently and independently – synchro-

nization between them needs to be managed by the programmer with the

help of event objects.

Memory model

A work-item can access four distinct memory regions;

1. Global memory.

2. Constant memory. Remains constant during execution of a kernel.

3. Local memory. Shared by all work-items within a work-group.

4. Private memory. Only visible to the work-item.

26 CHAPTER 3. PROGRAMMING FRAMEWORK

The host has no access to local and private memories, while a device can

access any of them. The host can, however, dynamically allocate all except

private memory, while a device can allocate all except global memory, but it

needs to do it statically. The host and device memory models are generally

independent, but there is some necessary interaction, which is managed by

either copying data or mapping memory regions. OpenCL uses a relaxed

consistency model, which means that the state of work-item memory is not

guaranteed to be consistent across all work-items at all times. Consistency

needs to be enforced through synchronization points.

In most cases, global memory is the main system memory and private

memory is represented by registers on the device. Constant and local memory

are usually emulated in main memory on a CPU device, but with GPUs this

is often an architectural feature (see section 2.2.3).

Programming model

As explained, in OpenCL code is split into host code and device code. The

host code is the main program (usually runs on a CPU), which also prepares

the device and sends it commands and data. The host can recognize an

OpenCL platform – distinguished by the OpenCL platform version – and

each platform contains one or more devices. OpenCL 1.2 recognizes multiple

types of devices: CPU, GPU, accelerator, etc. A device reveals its properties

to the host, e.g. the number of its compute units (cores).

At the very least, the host needs to initialize the desired device, prepare

the execution context and command queue, send data, instruct the device to

execute the required code, and retrieve the new data. Code that executes on

the device is called a kernel and is written in a specialized version of C, called

OpenCL C. OpenCL C code needs to be either in a separate file or passed as

a string to the OpenCL compiler. The OpenCL environment and compiler

are vendor specific and usually ship as part of an OS driver. The kernel is

sent to the device and executed by work items. The number of work items

is specified by the host and work items get mapped to the available compute

3.1. OPENCL 27

units by the OpenCL environment and by the hardware itself. Each work

item executes the same kernel, but is also assigned a unique ID, which can

come useful in the kernel.

A classic example is vector addition. Suppose we have three arrays – A,

B, and C – each one of length n. On the host, we would write:

1 int A[n], B[n]; // Filled somewhere ...

2 for(int i = 0; i < n; ++i)

3 C[i] = A[i] + B[i]

But in OpenCL C, we write:

1 __kernel void add(__global int* A, __global int* B, __global int* C) {

2 int i = get_global_id(0);

3 C[i] = A[i] + B[i];

4 }

The host needs to copy A and B to the device, invoke the kernel with n work

items, and copy C back from device to host. Each work item reads only one

element from A, one from B, adds the values, and stores the sum to C. If n is

lower than the number of compute units, this is done in one step, in parallel,

because it has no interdependencies. Even if n is larger than the number of

compute units, a significant speedup can still be achieved – the number of

compute units on a GPU is usually significantly higher than on a CPU.

In the example, the kernel accessed global memory. This can have dif-

ferent meanings: on a CPU, global memory is main memory (e.g. DDR4),

while for a discrete GPU it’s its own memory (typically GDDR5). As dis-

cussed in the memory hierarchy section, this memory can be a bottleneck for

computation.

28 CHAPTER 3. PROGRAMMING FRAMEWORK

3.1.3 Comparison to CUDA

Along with their first GPGPU, Nvidia also released CUDA in 2006 [46],

which is very similar to OpenCL. Note that CUDA is both the name of a

core on an Nvidia GPU as well as the programming model, which we discuss

in this section.

CUDA is meant only for Nvidia GPUs, but OpenCL is designed to be

much more general, covering CPUs, GPUs, DSPs, FPGAs, or anything else,

from any manufacturer, as long as the device designers opt to include com-

patibility with the OpenCL standard – and OpenCL is supported by a large

number of hardware and software companies.

AMD provides a guide on porting CUDA to OpenCL [47], which high-

lights the similarities. Instead of work-items and work-groups, CUDA uses

threads and thread blocks. Local memory in OpenCL is called shared in

CUDA, while private memory in OpenCL is local in CUDA. OpenCL pro-

vides global indexes within a kernel as opposed to CUDA (that doesn’t have

global indexes), and uses functions instead of predefined variables for index-

ing.

Both provide synchronization of work-items within a work-group and be-

tween all work-items, but OpenCL provides more options with regard to

read/write synchronization. CUDA does not have a command queue that

would provide task parallelism. A big difference is that in addition to offline

compilation, OpenCL also supports runtime compilation.

OpenCL requires kernel arguments to be annotated with their memory

space, which is not required in CUDA. Additionally, while CUDA encourages

scalar code and OpenCL supports it, it is usually more efficient to use vector

types.

A study found that CUDA provides up to 30% better performance than

OpenCL for Nvidia GPUs, but the performance difference could be almost

entirely reduced by manually optimizing the OpenCL code [48]. The differ-

ence could also be attributed to the fact that Nvidia provides both OpenCL

and CUDA for their GPUs, but prefers optimizing for their own platform.

3.1. OPENCL 29

3.1.4 Simple OpenCL code example

Let us consider a simple example. Suppose we have arrays of N integers A

and B and perform the following operation for each value within the array A

(index i): if value A[i] is odd, store to C[i] the sum of A[i] and B[i], else

compute B[i] to the power of 5 and store the result to C[i]. Standard C++

code would be:

1 int A[N], B[N], C[N]; // N known from before, actual values elsewhere

2 for(int i = 0; i < N; ++i) {

3 if(A[i] % 2) {

4 C[i] = A[i] + B[i];

5 }

6 else {

7 int Ci = B[0];

8 for(int j = 1; j < 5; ++j) {

9 Ci *= B[j];

10 }

11 C[i] = Ci;

12 }}

Of course, this example is completely artificial and even computing the

power operation is not optimal. But it will serve our purpose of demonstrat-

ing various approaches to computing it.

This computation can be easily parallelized, because there are no inter-

dependencies. However, writing OpenCL code for even this simple example

requires quite a lot of code. The OpenCL kernel is pretty straightforward

(stored in file example.cl):

1 __kernel void example(

2 const __global int* A, const __global int* B, __global int* C

3) {

4 int i = get_global_id(0);

5 if(A[i] % 2) {

6 C[i] = A[i] + B[i];

30 CHAPTER 3. PROGRAMMING FRAMEWORK

7 }

8 else {

9 int Ci = B[0];

10 for(int j = 1; j < 5; ++j) {

11 Ci *= B[j];

12 }

13 C[i] = Ci;

14 }}

Apart from the call get_global_id to obtain the index, the kernel body is

the same as the body of the main for loop above. However, before we can

use the kernel, we need to get the platform, device, and context, initialize

the buffers, the program, the kernel, and the queue and at the end manually

free all created objects. Here is the host code:

1 int A[N], B[N], C[N]; // N known from before, actual values elsewhere

2 cl_int error;

3

4 // Get platform

5 cl_uint numPlatforms;

6 clGetPlatformIDs(0, nullptr, &numPlatforms);

7 std::vector<cl_platform_id> platforms(numPlatforms);

8 clGetPlatformIDs(numPlatforms, platforms.data(), nullptr);

9 auto platform = platforms[0];

10

11 // Get device

12 cl_uint numDevices;

13 clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, nullptr, &numDevices);

14 std::vector<cl_device_id> devices(numDevices);

15 clGetDeviceIDs(

16 cpPlatform, CL_DEVICE_TYPE_GPU, numDevices, devices.data(), nullptr

17);

18 auto device = devices[0];

19

20 auto context = clCreateContext(

3.1. OPENCL 31

21 nullptr, 1, &device, nullptr, nullptr, &error);

22

23 // read text file containing the kernel

24 std::string kernelCode = read("example.cl");

25 auto codePtr = kernelCode.c_str();

26 auto codeLength = kernelCode.length();

27

28 // Build kernel program

29 auto program = clCreateProgramWithSource(

30 context, 1, &codePtr, &codeLength, &error);

31 clBuildProgram(program, 1, &device, "", nullptr, nullptr);

32

33 // Initialize buffers on device and copy input data

34 auto bufA = clCreateBuffer(

35 context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

36 sizeof(int) * N, (void*)A, &error

37);

38 auto bufB = clCreateBuffer(

39 context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

40 sizeof(int) * N, (void*)B, &error

41);

42 auto bufC = clCreateBuffer(

43 context, CL_MEM_WRITE_ONLY,

44 sizeof(int) * N, nullptr, &error

45);

46

47 // Prepare queue and kernel arguments

48 auto queue = clCreateCommandQueue(context, device, 0, &error);

49 auto kernel = clCreateKernel(program, "example", &error);

50 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&bufA);

51 clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*)&bufB);

52 clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*)&bufC);

53 size_t globalWorkSize[] = { N };

32 CHAPTER 3. PROGRAMMING FRAMEWORK

54

55 // The actual kernel call

56 clEnqueueNDRangeKernel(

57 queue, kernel, 1, nullptr, globalWorkSize, nullptr,

58 0, nullptr, nullptr

59);

60

61 // Wait for queue and read data back from device

62 clFinish(queue);

63 clEnqueueReadBuffer(

64 queue, bufC, CL_TRUE, 0, sizeof(int) * N,

65 C, 0, nullptr, nullptr

66);

67

68 // Release all created objects

69 clReleaseCommandQueue(queue);

70 clReleaseMemObject(bufC);

71 clReleaseMemObject(bufB);

72 clReleaseMemObject(bufA);

73 clReleaseProgram(program);

74 clReleaseContext(context);

We have a lot of initialization code that significantly exceeds the line count

of the kernel that performs the actual computation. Note that we skipped

error handling to make the code more readable. The code is very long,

cumbersome, and error prone. We suppose long time OpenCL experts may

know all of these function calls and what they do by heart, but we constantly

needed to consort the OpenCL specification about the function signatures

and the call order, even though we’ve already written quite a few kernels.

A common theme is an abundance of 0 and nullptr values passed to the

functions – this is partly because the functions are very flexible and offer

a lot of calling options, but also because OpenCL was designed for the C

language, which doesn’t support function overloading.

3.2. SYCL 33

We look again at this particular example – exploring alternatives to par-

allelization – in sections 3.2.4 and 4.5.

3.2 SYCL

3.2.1 Specification

SYCL is a C++ programming model for OpenCL [11]. It aims for single

source compilation of host and device code using standard C++11. In its

version 1.2 (first released version) it targets OpenCL 1.2 compatibility, al-

though OpenCL isn’t necessary – OpenCL interoperability is specified in the

SYCL API, but the underlying system could be something else. For exam-

ple, the open source triSYCL [13] implementation is based on OpenMP and

suggests the base could be swapped for CUDA.

SYCL has three main goals:

1. Simplicity. With OpenCL, programmers need to learn to write separate

device and host code, in two separate languages, and how to connect the

two together in one system. SYCL allows for single source compilation,

reusing the language experience and the compiler. Additionally, SYCL

simplifies programming flow by relying on higher-level C++ paradigms

as opposed to OpenCL C.

2. Reuse. The C++ type system allows for complex interactions between

different code units, abstract interface design, and reuse of library code.

3. Efficiency. Tight integration with the type system and library code

reuse enables the compiler to perform inlining and other optimizations.

SYCL is designed to allow a compilation flow with multiple compilers,

seamlessly integrated to provide the final program. By allowing the compila-

tion to be split across multiple compilers, it offers the advantage of allowing

integration with existing toolchains and choosing the optimal compiler for

the target device. SYCL recognizes at least two compilers: the host compiler

34 CHAPTER 3. PROGRAMMING FRAMEWORK

(used for writing the application code) and the device compiler. The device

compiler compiles the code that should execute on the target device. The

host and device compiler could be just one compiler or separate compilers.

SYCL is as close to standard C++ as possible, although there are a few

limitations due to the fact that it is supposed to support many different

target devices, which are usually not tightly coupled with the host, and

that the underlying OpenCL standard is not as flexible. The restrictions

include function pointers and virtual functions, exceptions, Runtime Type

Information (RTTI), or any libraries that rely on these features. At the

same time, the remaining C++ features (templates, inheritance, ...) allow

for new kinds of heterogeneous computing libraries, which can be both simple

and efficient. SYCL extends OpenCL in two important ways:

1. Hierachical Parallelism. This offers a simple syntax for expressing the

data-parallel OpenCL execution model, with code layers serving to

avoid fragmentation of code and to more efficiently map to CPU-style

architectures.

2. Data access is separated from data storage. By heavily relying on the

C++ idiom Resource Acquisition Is Initialization (RAII), where data

is acquired in an object constructor and automatically released in the

destructor when that object goes out of scope, SYCL removes a lot of

dependencies that usually complicate parallel programming.

3.2.2 Architecture

SYCL builds upon OpenCL, so most of the terminology and structure is

reused. The basics are still the same: the host prepares code (a kernel) that

can be executed on the devices. But SYCL provides an important addition:

host fallback (the SYCL host device). This means that if no OpenCL device

is available, code is executed on the host. Note that the host CPU can

also act as an OpenCL CPU device, but host fallback is a separate target,

guaranteeing that code is executed even if OpenCL fails.

3.2. SYCL 35

The target users of SYCL are C++ programmers who want the perfor-

mance and portability of OpenCL with the higher-level language flexibility of

C++ across the host/device code boundary. That’s why SYCL provides fully

compatible interoperation with OpenCL. We already mentioned some limi-

tations of C++ code inside kernels, but outside kernels host code supports

anything the compiler of choice is able to provide.

In this section we go quickly over the architecture of SYCL, since it is

similar to that of OpenCL, and will mostly just list extensions over OpenCL.

All SYCL classes are part of the cl::sycl namespace.

Platform model

A SYCL application runs on a host according to the standard C++ CPU

execution model. The SYCL application submits command group functors

to queues, which execute either on an OpenCL device or on the SYCL host

device. SYCL executes kernels on a device by enqueuing OpenCL commands.

SYCL can use any parallel execution facility available to execute the kernels

as long as it executes within the semantics of the OpenCL kernel execution

model.

SYCL presents the user with a set of devices grouped into platforms. The

device version indicates the device’s capabilities and corresponds to the high-

est version of the OpenCL specification for which the device is conformant,

but it is limited by the platform version.

Execution model

SYCL executes kernels either on the SYCL host device or on an OpenCL

device from a host CPU program, which defines the context and manages

execution. OpenCL commands (data transfer, synchronization, kernels, ...)

are grouped in SYCL into a functor called command group. Each command

group has a handler which associates sets of data movement operations and

enqueued kernels on the underlying OpenCL queue with the command group.

At kernel submission an index space is created, just as in OpenCL,

36 CHAPTER 3. PROGRAMMING FRAMEWORK

only that in SYCL the NDRange index space is accessed through templated

classes, e.g. nd_range<N>, where N is the dimensionality of the index space

(1, 2, or 3). An nd_range<N> consists of a global and a local range, each

represented by an object of type range<N> and an offset of type id<N>. Each

work-item is identified by an nd_item<N> object, which encapsulates a global,

a local, and a work-group ID, all of type id<N>. SYCL allows the work-group

size to be undefined, which hands the decision over to the SYCL framework.

SYCL manages the following resources (only SYCL-specific changes noted

here):

1. Platforms.

2. Contexts. All OpenCL resources are attached to a context and a con-

text can only wrap devices owned by a single platform. Data movement

between devices within a context may be efficient and hidden by the

runtime, but data movement between contexts involves the host.

3. Devices. SYCL additionally provides a device_selector class, which

is used to determine device selection – SYCL provides a few selectors,

but the programmer can supply their own. As mentioned, SYCL also

provides a host device (host fallback).

4. Command groups. Submitted to a SYCL queue.

5. Kernels. Defined as C++ functors or lambda functions. All kernels

must have a name – it is either taken from the name of the functor

or needs to be supplied in case of a lambda. Names are necessary to

enable linking with different compilers.

6. Program objects. These are OpenCL objects that store implementaion

data for the SYCL kernels. Required for advanced use.

7. Command queues. A command queue is associated with a context, a

platform, and a device, which can be either automatically chosen by

SYCL or specified by the programmer.

3.2. SYCL 37

The command queue schedules commands for execution. The commands

are executed asynchronously with respect to the host thread and can be

scheduled in any order the SYCL framework sees fit as long as the order

preserves the semantics. This means that SYCL must provide proper data

movement, kernel execution, and synchronization between different queues,

devices, and the host. The underlying OpenCL queues may operate in-order

or OoO, with SYCL providing automatic synchronization commands.

Memory model

There are four distinct memory regions just like in OpenCL. SYCL uses tem-

plated buffer and image classes for exchanging data between host and device.

An important difference to OpenCL is that while in OpenCL a memory ob-

ject is attached to a specific context, in SYCL a buffer or an image object can

encapsulate multiple underlying OpenCL memory objects and host memory

allocations to enable the same buffer or image to be shared between dif-

ferent devices, contexts, and platforms. SYCL then provides the necessary

synchronization and data movement to maintain semantic integrity.

buffer and image data is accessed using accessor objects. An accessor

is specified with the target attribute, which defined how the data is accessed

(global memory, constant memory, image samplers), and with the mode at-

tribute, which specifies read or write access (or both). The mode also specifies

whether previous data should be discarded, or the programmer may even re-

quest atomic access.

It is not possible to directly pass a pointer to host memory as a kernel

parameter because the device does not necessarily support the host’s address

space. But buffer and image objects can be constructed using host pointers,

using explicit pointer classes depending on the accessed memory region.

Just as OpenCL, SYCL uses a relaxed memory consistency model. Con-

sistency can be enforced through synchronization using barriers. But SYCL

enforces consistency for buffer and image objects at certain synchroniza-

tion points, derived from completion of enqueued commands. As mentioned,

38 CHAPTER 3. PROGRAMMING FRAMEWORK

SYCL also provides atomic operations, using the atomic class, but the extent

is limited by device capabilities.

Programming model

A SYCL program is written in standard C++ and it allows the host and

device code to be written in the same C++ source file – in OpenCL, either

a separate file is required for OpenCL C code or the code is submitted as a

string. SYCL relies on C++03 (apart from RTTI), the function, string, and

vector classes from the standard library, and some of the modern C++11

features (like lambdas and rvalue references). SYCL programs are explicitly

parallel and expose the full capabilities of the underlying OpenCL model,

but SYCL additionally provides an abstraction layer to hide the complexity

of the OpenCL model.

SYCL provides multiple ways to launch (invoke) kernels:

1. Single task. Only a single work-item executes the kernel. Enqueuing a

single task on multiple queues supports task-parallelism.

2. Basic data parallel kernel. Multiple work-items, each one executes its

own instance of the kernel. The local work-group size is chosen by the

SYCL runtime.

3. Work-group data parallel kernel. As above, but the local work-group

size needs to be specified. Along with global memory, work-items can

also access local memory – all work-items within a work-group share the

same local memory. Synchronization between work-groups is achieved

using local barriers.

4. Hierarchical data parallel kernels. The programmer can use special

syntax, provided by SYCL, to highlight the hierarchical nature of the

parallelism. This is purely a compiler feature and does not change the

execution model of the kernel.

3.2. SYCL 39

Synchronization is enforced by SYCL at the following points: buffer,

queue, or context destruction, accessor construction, and command group en-

queue. The programmer can also enforce synchronization using the OpenCL

event system or SYCL event objects. SYCL also supports synchronous and

asynchronous error handling.

SYCL recognizes three different kinds of scopes: application, command

group, and kernel scope. Kernel scope is the code sent to kernel invocation,

a single kernel function, represented by a functor or a lambda. The kernel

function is compiled by the device compiler and executed on the device. The

command group scope specifies a unit of work submitted to the queue for

execution, and it consists of accessors and a single kernel function. All other

code belongs to the application scope.

SYCL automatically manages the lifetime of most internal OpenCL ob-

jects, except when the programmer requests access to those internal objects.

Internal OpenCL objects are reference counted.

More about the programming model can be observed in chapter 4.

3.2.3 ComputeCpp suite

Khronos provided only the open SYCL specification [49], while an actual

implementation was developed by Codeplay Software. Codeplay are part of

the SYCL Working Group in Khronos and one of the main contributors to

the standard. They provide SYCL as part of their ComputeCpp suite [12],

which is, as opposed to the SYCL specification, proprietary. Codeplay does,

however, provide evaluation licenses for developers to get acquainted with

SYCL – we contacted them and successfully obtained an evaluation license

for the purposes of this thesis.

ComputeCpp is currently available for Ubuntu 14.04 and Windows 7.

This may have been the reason for some of our problems, because our own

platform was Microsoft Visual Studio 2013 on Windows 10, which wasn’t

officially supported – even though we had the latest Intel drivers installed,

some of the more complex code samples would not run. So because Windows

40 CHAPTER 3. PROGRAMMING FRAMEWORK

10 wasn’t officially supported, we downloaded the Windows 7 version and

installed it to the Program Files folder.

The installation includes SYCL include files, the device compiler, and li-

brary files (.lib and .dll), along with some documentation, tools, and sam-

ple code. Because the downloaded release was targeted at Visual Studio, the

tools included Visual Studio build customizations and a project template to

simplify ComputeCpp integration. Another included tool is the SPIR verifier

– SPIR is an intermediate representation of OpenCL code and ComputeCpp

lists SPIR support as a requirement. Code examples are provided in the di-

rectory sample_code, and a CMake build system is used to set up the Visual

Studio solution. We managed to compile and run some of the examples, but

not all of them. An additional issue was that while the original code would

work, changing it and recompiling very often failed.

The way ComputeCpp works is that before the host compiler (Visual

Studio) is invoked, the device compiler (provided by Codeplay) first goes

through the code and compiles kernels into a .sycl file using the SPIR format.

Then the host compiler compiles the code as usual and the .sycl file is linked.

Supporting only certain host compilers definitely hurts SYCL portability

– our implementation (called sycl-gtx, chapter 4), by contrast, can be used

anywhere OpenCL 1.2 and C++11 can be compiled. Of course, sycl-gtx does

not properly implement the specification (see section 4.3), but it tries to get

as close as possible. We did, in fact, find this aspect of ComputeCpp to be

a huge help when developing sycl-gtx: ComputeCpp’s SYCL conformance

was much better than that of sycl-gtx. We often tried writing new tests and

implementing the required functionality, only to discover that our interpreta-

tion of the specification lacked something, because it wouldn’t even compile

in ComputeCpp. After adjusting the test so that it compiled and ran in

ComputeCpp we were also able to fix sycl-gtx.

We assumed the ComputeCpp implementation properly implements the

specification and did not check for any potential errors. Since Codeplay were

one of the main proposers of the SYCL standard, we believe it’s reasonable

3.2. SYCL 41

to assume their implementation is the most complete.

3.2.4 Porting the OpenCL example to SYCL

In section 3.1.4 we presented an example of a simple C++ loop without

interdependencies and how to parallelize it using OpenCL. We show here the

same parallelization effort, but using SYCL, which allows the kernel to be

part of the normal application code:

1 int A[N], B[N], C[N]; // N known from before, actual values elsewhere

2 using namespace cl::sycl;

3

4 {

5 // Create a queue for a GPU device

6 // Automatically selects platform, device, and context

7 gpu_selector gpu;

8 queue q(gpu);

9

10 // Create buffers on device

11 auto rN = range<1>(N);

12 auto bufA = buffer<int>(A, rN);

13 auto bufB = buffer<int>(B, rN);

14 auto bufC = buffer<int>(C, rN);

15

16 q.submit([&](handler& cgh) {

17 // Get access to buffers

18 auto a = bufA.get_access<

19 access::mode::read, access::target::global_buffer>(cgh);

20 auto b = bufB.get_access<

21 access::mode::read, access::target::global_buffer>(cgh);

22 auto c = bufC.get_access<

23 access::mode::write, access::target::global_buffer>(cgh);

24

25 // The actual kernel

42 CHAPTER 3. PROGRAMMING FRAMEWORK

26 cgh.parallel_for<class example>(rN, [=](id<1> i) {

27 // Note the lowercase letters

28 // - we access the buffer accessors

29 // not the arrays or buffers

30 if(a[i] % 2) {

31 c[i] = a[i] + b[i];

32 }

33 else {

34 int Ci = b[0];

35 for(int j = 1; j < 5; ++j) {

36 Ci *= b[j];

37 }

38 c[i] = Ci;

39 } }); });

40 } // All data is automatically synchronized

41 // when queue goes out of scope

Compared to the OpenCL version, this is a considerably smaller amount

of code, with the bonus that both the kernel and the host code are in a single

source file and the kernel is written in C++ (although this particular kernel

doesn’t use any C++ specific features). The code is also arguably much

easier to understand.

The kernel body is more or less the same as it was in the sequential C++

version or the OpenCL version. The most important exception is that we

need to use accessor objects, retrieved from the buffers, instead of arrays.

All data movement is completely automatic. There are a few synchroniza-

tion points to retain data integrity, e.g. in buffer and queue destructors and

in accessor constructors. The SYCL runtime tries to minimize and optimize

data movement by trying to smartly schedule buffer copying.

SYCL is explained more in-depth in chapter 4, particularly this example

may be better understood by referring to sections 4.1 and 4.5.

Chapter 4

Implementation

The Khronos Group prepared only a specification, but no implementation of

SYCL. The already mentioned triSYCL is hosted on GitHub [13] under the

University of Illinois/NCSA Open Source License, but it doesn’t seem to have

much functionality implemented. On the other hand, SYCL is offered as part

of the commercial ComputeCpp suite [12], developed by Codeplay Software,

who are also among the main contributors to the SYCL specification. While

ComputeCpp seems to be mostly implemented, it is offered under a commer-

cial license, which does not suit the needs of many interested developers (we

managed to obtain an evaluation license for inspecting ComputeCpp for the

purposes of this thesis).

We decided to base our implementation on OpenCL 1.2 and C++11,

without the need for any special compilers – this way, the transition from

OpenCL to SYCL would be greatly simplified. The SYCL specification calls

for a special compiler to enable same source compilation of host and device

code, but we decided against it – while something like LLVM would have

eased the development efforts, SYCL itself is already an extensive specifica-

tions, in our opinion too large for one person to develop fully in a year. So

the real goal of this thesis was to develop as much of the SYCL specification

as possible within a year and without using a special compiler, but rather

as just a C++11 library that calls a self-developed JIT compiler at runtime.

43

44 CHAPTER 4. IMPLEMENTATION

The library approach has some drawbacks, though, which are discussed in a

later section. Our implementation is called sycl-gtx and the whole project is

open sourced under the MIT license, available on GitHub [14].

4.1 Anatomy of a sycl-gtx application

The first question when implementing a large specification is where to begin.

The specification provides class interfaces for all of the publicly accessible

classes, so that was a good starting point, to just copy the classes verbatim

into their own header files, where class methods could be implemented as

needed.

We then set ourselves a milestone: try to get the first SYCL code example

from the specification to work. We are referring to the example from the

section ”Anatomy of a SYCL application”, which we post here in full in

order to study it a bit:

1 #include <CL/sycl.hpp>

2 int main() {

3 using namespace cl::sycl;

4

5 int data[1024]; // initialize data to be worked on

6

7 // by sticking all the SYCL work in a {} block, we ensure

8 // all SYCL tasks must complete before exiting the block

9 {

10 // create a queue to enqueue work to

11 queue myQueue;

12

13 // wrap our result variable in a buffer

14 buffer<int> resultBuf(&result, range<1>(1024));

15

16 // create some commands for our queue

17 myQueue.submit([&](handler& cgh) {

4.1. ANATOMY OF A SYCL-GTX APPLICATION 45

18 // request access to our buffer

19 auto writeResult=resultBuf.get_access<access::mode::write>(cgh);

20

21 // enqueue a parallel_for task

22 cgh.parallel_for<class simple_test>(

23 range<1>(1024), [=](id<1> idx

24) {

25 writeResult[idx] = idx[0];

26 });

27 }); // end of our commands for this queue

28

29 } // end scope, so we wait for the queue to complete

30

31 // print result

32 for(int i = 0; i < 1024; i++) {

33 std::cout << "data[" << i << "] = " << data[i] << std::endl;

34 }

35

36 return 0;

37 }

This piece of code was crucial to get the basics working. We should note,

however, that this piece of code is from the final SYCL 1.2 specification

(Revision Date 2015-05-08). We had some problems due to SYCL starting

of as a provisional specification (Revision Date 2014-03-09) and gradually

evolving – sometimes only certain conventions were changed (e.g. line 17

used to be command_group(myQueue, [&]() {), while other changes lead to

significant refactoring. ”Anatomy of a SYCL application” also used to be

simpler due to the use of single_task instead of parallel_for on line 22,

but that didn’t change the milestone much.

The main goal of SYCL is to simplify heterogeneous programming, so

this relatively simple code may not properly convey the amount of work that

went into getting in to function properly. We present an approximate list of

46 CHAPTER 4. IMPLEMENTATION

steps taken by sycl-gtx:

1. Initialize the OpenCL platform, context, device, and command queue

on line 11.

• It selects the first available OpenCL platform (further work is

required to make it more intelligent).

• It selects the default device using the default device selector. Cur-

rently the default is just to select the first device on the platform.

• The context also contains a default handler for asynchronous events

(not implemented yet).

• The queue keeps a record of the buffers used within it (not part

of the first milestone, but currently working).

2. Create a buffer object on the device from existing data, on line 14.

range<1>(1024) tells SYCL that the data is one-dimensional and fea-

tures 1024 elements.

3. Submit commands to the queue on lines 17–27. Commands are stored

as functions with metadata in sycl-gtx. handler& cgh is the command

group handler – the myQueue.submit function accepts a whole group of

commands, and the handler provides a link between the queue and the

commands. The submitted function containing commands represents

command group scope.

4. Obtain write access to the device buffer on line 19. get_access returns

an accessor object, which allows the kernel code to manipulate data

on the device.

5. Submit a command to enqueue a kernel on lines 22–24. Use 1024 work-

items and a one-dimensional kernel. Additionally, provide an index for

the current work-item – the dimensionality of the index needs to agree

with that of the kernel. The kernel is provided as a C++11 lambda

function, but is also given a name (simple_test) – the name is defined

4.2. THE OPENCL CODE GENERATOR 47

as a class, but a class with this name does not need to exist. The kernel

function opens up (and closes) kernel scope.

6. Compile kernel code on line 25. This is by far the most complicated

step, which deserves a special section: 4.2. In this particular case, each

work-item accesses its own element in the device buffer and assigns it

its own ID. An id object can be used as an index into a buffer, but it

needs to be explicitly converted into a number for calculations.

7. The queue starts executing the commands it received, plus a few hidden

ones.

(a) Initialize all buffers that were accessed in this set of commands

and weren’t initialized yet.

(b) For each submitted kernel, copy the data for the buffers it uses

from host to device, execute the kernel, and copy the results back.

Based on the access modes, some copies can be avoided, and there

are additional optimizations for inter-kernel dependencies.

8. Synchronization on line 29. All commands need to finish, all data needs

to reside where the programmer expects it to. This wasn’t such an issue

for the first milestone, since OpenCL queues (used by SYCL queues)

are by default in-order, and data copying was a blocking operation.

However, for conformance with the specification, a lot of checks and

potential waiting need to be employed.

4.2 The OpenCL code generator

The core and the main differentiator of the sycl-gtx implementation is the

OpenCL code generator. SYCL code is compiled with the host compiler

just like any other code, but special classes capture the code in the program

executable. When the executable is run, it executes host code as normal,

but when it reaches calls to these special classes that hold information about

48 CHAPTER 4. IMPLEMENTATION

the SYCL code, the code generator is invoked, which produces OpenCL C

code, line by line. The generated code is then fed to the OpenCL C compiler,

which is part of the OpenCL specification and is provided with device drivers.

Because the SYCL code is captured at compile time, but actually compiled

for the device at host runtime, this is a form of Just-In-Time compilation

(JIT).

4.2.1 The source class

The code generator itself is coupled with the kernel source handler, which is

the class cl::sycl::detail::kernel_::source (from now on referred to as

the source class). An instance of this class stores the kernel name, lines of

generated OpenCL C code, and a list of accessors that were used within the

kernel. Before code generation can occur, the kernel scope needs to be en-

tered, using the static method source::enter(source& src), which is called

inside a kernel invocation call (e.g. cgh.parallel_for) – it also has a cor-

responding exit method. The scope is basically just a static pointer to a

source object. Because the pointer is static, there may be some problems

with multithreaded code, although it is also defined to be thread local (dif-

ferent pointer for each thread) – this should help, although it wasn’t tested

extensively.

The source class contains a static register_resourcemethod (for keeping

track of used accessors within the kernel) and a static add method (for adding

lines of OpenCL C code to the kernel). After kernel scope is exited, an

argument list string is created from the used accessors – needs to take into

account the underlying type, the access mode (read, write, ...), and the access

target (global buffer, constant buffer, ...). The kernel name, the argument

list, and the lines of code are joined into a single string that is later passed

to the available OpenCL compiler.

We say that the code generator emits a line of code when the static

source class method add is called, which is done using the scope pointer, so

something like this:

4.2. THE OPENCL CODE GENERATOR 49

1 cl::sycl::detail::kernel_::source::scope->add(line_of_code);

4.2.2 The data_ref class

Now we have the source class, but it doesn’t perform much code generation

– it mostly manages accessors and lines of code that were sent to it. The sec-

ond piece of the code generating puzzle is the cl::sycl::detail::data_ref

class (from now on the data_ref class). As mentioned in the memory model

section, the host does not have access to the private memory region of the

device – but data_ref offers a way to emulate it. All objects within kernel

scope have to be derived from data_ref or at least should be able to interact

with data_ref. Each data_ref object contains a string, which is that object’s

representation of an expression in OpenCL C. By overloading operators of

data_ref, new OpenCL C expressions can be formed. All expressions re-

main internal and hidden from the programmer, disguised as regular data

types. When a statement is encountered, the statement (which consists of

expressions) is passed as a line of code to the source class.

To better explain it, consider the following kernel code:

1 int2 a(1, 10);

2 int2 b(1, 2);

3 b *= 2;

4 int2 c = a + b;

int2 is a vector type, which holds two integer values, as per the SYCL

specification. But in sycl-gtx int2 is derived from data_ref (as are all vector

types). Line 1 represents creation of a variable a of type int2. What actually

happens is that the constructor of int2 is called, which generates a name

for the variable (this code is executed at runtime, so the original variable

names a, b, c don’t exist anymore). Specifically, it generates the string

"_int2_0", which is stored in the data_ref part of the int2 type to represent

this variable as a variable in device private memory. Line 2 is similar, and

together they emit the following lines of code to the source class (comments

50 CHAPTER 4. IMPLEMENTATION

are not generated, just added here for clarity):

1 int2 _int2_0 = (int2)(1, 10); // a

2 int2 _int2_1 = (int2)(1, 2); // b

On line 3, the object b, which is an instance of data_ref, executes a call to its

operator*=(int) function. This function converts the integer 2 into a string

and emits the following line of code to the source class:

1 _int2_1 *= 2;

On line 4, the first thing to happen is that the object a (instance of data_ref),

gets a call to its operator+(const data_ref&) function. This function returns

a new data_ref object, where the expression string is

"(_int2_0 + int2_1)". Then, the data_ref(const data_ref&) constructor

is called, to construct the object c. The object c gets the generated name

"_int2_2" as its expression string, but the constructor also takes the tempo-

rary data_ref object and emits a single line of code to the source class:

1 int2 _int2_2 = (_int2_0 + _int2_1);

Similarly, data_ref overloads all of the other operators to interact with other

data_ref objects and with all the basic numeric types. In the case of vector

data types, there are additional overloads to ensure type safety (e.g. an int2

cannot be directly assigned to int3).

4.2.3 Line 25 explained

With the code generator cleared up, we can finally discuss line 25 from the

code in section 4.1, ”Anatomy of a sycl-gtx application”:

1 writeResult[idx] = idx[0];

idx is of type id<1>, which also derives from data_ref, but it receives special

treatment. As soon as kernel scope is entered, the code generator emits:

1 const int _sycl_gid0 = get_global_id(0);

2 const int _sycl_gid = _sycl_gid0;

4.3. LIMITATIONS 51

writeResult is an accessor, which is not derived from data_ref, but has an

overloaded operator[](const data_ref&) method, which takes the expres-

sion name as the index (here _sycl_gid). The accessor also has a temporary

name generated by the source class: _sycl_buf1. The call idx[0] should

return an integer as per the specification – the index of the work-item ex-

ecuting the kernel instance – but sycl-gtx returns a data_ref object with

an expression name _sycl_gid0. Thus the assignment looks like this in the

generated OpenCL C code:

1 _sycl_buf_1[_sycl_gid] = _sycl_gid0;

For more examples on how sycl-gtx and the code generator work, please

refer to section 4.4.

4.3 Limitations

As one can gather from the section on code generation, sycl-gtx employs

the device compiler as a two-part design: an OpenCL code generator, which

is compiled by the host compiler and invoked at runtime, and the OpenCL

device compiler, which is also invoked at runtime to compile the generated

OpenCL C code. Here we can see the main disadvantage of sycl-gtx: the

device compiler does not have the same kernel information as the host com-

piler, because it is run at runtime: the host compiler actually eliminated most

type information and all variable names, which leaves the device compiler in

a tough spot. The data_ref class tries to capture as much information as it

can – there are some other attributes captured besides the expression string.

But the fact remains that some information is lost and cannot be retrieved.

4.3.1 Scalar numeric types are not directly available in

kernels.

data_ref is able to interact with numeric scalars, but creating a scalar vari-

able within a kernel does not necessarily work. Consider the following code,

52 CHAPTER 4. IMPLEMENTATION

where i is of type id<1>:

1 int k = 2 * i[0];

This code seems reasonable: i[0] is the current work-item index and we

want to multiply it by two and store the result. This should work as per the

specification, but it does not in sycl-gtx – i[0] return a data_ref instead of

an integer and a data_ref cannot be converted to an integer. sycl-gtx solves

this by providing an int1 vector class, which represent an integer – float1,

long1, etc. are also available. int1 derives from data_ref, so it can be used

in kernel scope. Since we want the code, written for sycl-gtx, to be valid on

any SYCL implementation, we also provide a compatibility header, which

contains typedefs for these types and should be included in every sycl-gtx

file:

1 #ifndef SYCL_GTX

2 #include "sycl_gtx_compatibility.h"

3 #endif

Now we can write the line

1 int1 k = 2 * i[0];

and expect correct results in sycl-gtx and any other SYCL implementation.

Note that in some cases directly using scalars would still yield correct

results in sycl-gtx, for example (a is an accessor):

1 int k = 5;

2 a[0] = k;

3 k *= 3;

4 a[1] = k;

This code is completely valid, because the values get inlined:

1 _sycl_buf1[0] = 5;

2 _sycl_buf1[1] = 15;

However, we do not recommend relying on these cases, as wrong behavior

could easily be overlooked.

4.3. LIMITATIONS 53

4.3.2 Control flow is not directly available

Just as variable names, a C++ program also cannot recognize control flow

structures during runtime. Consider the following kernel code (i is again of

type id<1>):

1 if(i[0] > 100) { ... }

2 else { ... }

Similarly to the previous case, this does not work, because i[0] is a data_ref,

which can be compared to 100, but the result is another data_ref – this will

not return the required results, because i[0] is not the actual work-item

index, just a representation of it. Additionally, even if data_ref could be

evaluated in a boolean context, the host program would then only execute

one of the if-else branches, which means that the code generator would not

have full kernel coverage.

Instead, we decided to use macros. Macros are somewhat unwanted in

modern C++ code, but in sycl-gtx control flow macros aid the generator in

evaluating each expression and statement within the whole kernel exactly

once. The above code would thus be written as:

1 SYCL_IF(i[0] > 100) { ... }

2 SYCL_ELSE { ... }

3 SYCL_END

Note that control flow macros implicitly open a new scope, but that scope

needs to explicitly closed with SYCL_END. What these macros actually do is

that they emit lines of code to the generator. The macros are also included

in the compatibility header, since their translation to regular C++ is pretty

straightforward.

The above sycl-gtx code would translate into OpenCL C like this:

1 if(_sycl_gid0 > 100)

2 {

3 ...

4 }

54 CHAPTER 4. IMPLEMENTATION

5 else

6 {

7 ...

8 }

The call to SYCL_IF translates to lines 1 and 2 – line 1 is the if, line 2 is a

new scope. Similarly SYCL_ELSE translates to lines 4, 5, and 6 – it recognizes

that a new scope had to be have been opened for the program to be valid, so

it closes it on line 4, emits the else statement on line 5 and opens up a new

scope on line 6. Finally, line 8 contains the explicitly closed scope, SYCL_END.

for loops have similar macros – the idea is to have the code generator

inspect the initialization, condition, increment, and the whole body of the

loop, which means it needs to execute everything exactly once. Consider the

following code:

1 SYCL_FOR(int1 j = 0, j < 100, ++j) { ... }

2 SYCL_END

This gets translated into OpenCL C:

1 int1 _int1_0 = 0;

2 for(; _int1_0 < 100; ++i)

3 {

4 ...

5 }

There are a few considerations here. We notice that variable initialization

is on a separate line, line 1. This is because that line of code is emitted by

the int1 constructor (which we used because we cannot directly use scalars).

Next we notice one of the limitations of macros: we need to use commas to

properly pass arguments, and other programmer-supplied commas are not

allowed as part of macro arguments. Another important consideration is the

increment ++j: this can be either a standalone statement or an expression

within a statement. The problem is that it is not really possible to determine,

when it is which. We decided to make it an expression – the standalone

increment statement (++j;) should instead be replaced with a compound

4.3. LIMITATIONS 55

assignment sum (j += 1;). By making it an expression, we can guarantee

proper behavior in expressions – in fact, the SYCL_FOR macro would not work

correctly if increment was treated as a statement, because it would generate

the following code:

1 int1 _int1_0 = 0;

2 ++_int1_0;

3 for(; _int1_0 < 100; _int1_0)

4 {

5 ...

6 }

It may be interesting to investigate what happens if we use a regular for

loop instead of the special sycl-gtx macros and the int1 type, just

for(int j = 0; j < 100; ++j). There are no data_ref instances here, so

the code generator knows nothing about the for loop. What happens is that

the loop body gets executed 100 times – which means that calls to the code

generator inside the loop also get executed 100 times, generating too much

code. This could actually be used as an extension to SYCL, to knowingly

generate code, but we do not recommend it because it does not conform to

the specification.

At this point it may be important to note that SYCL allows function

calls within kernels, but only if those function adhere to the restricted C++

kernel code syntax. In sycl-gtx, this is also allowed, but all function calls get

inlined.

4.3.3 No host fallback

Because of all the above mentioned limitations, we decided not to implement

host fallback. It definitely is possible – maybe ship a custom gcc compiler

along with the SYCL library to act as the SYCL host device compiler, or

keep track of detailed type information within data_ref. But since the spec-

ification is quite extensive, we decided against it.

56 CHAPTER 4. IMPLEMENTATION

4.3.4 Many unimplemented features

Along with host fallback, many features are missing in sycl-gtx, e.g. images,

atomics, constant buffers, etc. We will try to provide further effort on the

implementation, but it is our hope that because the whole project is open

source other developers may implement at least some missing features.

4.4 Example code

Once the first milestone was reached, we started implementing additional

tests. For example, we implemented passing functors as kernels (a functor

is an object that acts as a function) and invoking kernels asynchronously.

Some of the more interesting tests are described below in order to provide a

better overview of SYCL and sycl-gtx.

4.4.1 Vector addition

We wanted to compile the test presented on the Codeplay Developer Blogs

[50] (slightly simplified here). This is one of the best showcases for par-

allelization, because adding two vectors is a locally simple operation (sum

two adjacent elements) without interdependencies, so it is very simple to

parallelize.

Assuming count is the size of a vector, and a, b, r are the vectors, the

following is the usual approach:

1 for(int i = 0; i < count; ++i) {

2 r[i] = a[i] + b[i];

3 }

The SYCL implementation requires specifying a queue, creating buffers for

vectors, getting access to device data using data accessors, and passing the

kernel to the device. So, assuming now that cgh is the handler for the com-

mand group that is sent to the queue and a, b, r are the accessors to device

buffers, the following is the SYCL kernel:

4.4. EXAMPLE CODE 57

1 cgh.parallel_for<class addition>(range<1>(count), [=](id<1> i) {

2 r[i] = a[i] + b[i];

3 });

We see that the actual kernel doesn’t differ much from the serial code imple-

mentation. Of course, there is some initialization required, but as a result

we get code that is completely parallelized and able to run on any OpenCL

device.

We can also observe the generated OpenCL C code:

1 __kernel void _sycl_kernel_0(

2 __global int* _sycl_buf3,

3 __global const int* _sycl_buf1,

4 __global const int* _sycl_buf2

5) {

6 const int _sycl_gid0 = get_global_id(0);

7 const int _sycl_gid = _sycl_gid0;

8 _sycl_buf3[_sycl_gid]

9 = (_sycl_buf2[_sycl_gid] + _sycl_buf1[_sycl_gid]);

10 }

In OpenCL C, a kernel function starts with __kernel, followed by void –

it doesn’t have a return type, because it doesn’t return in the classic sense.

_sycl_kernel_0 is a generated kernel name; instead of 0 there could be any

number, as it’s meant only to prevent name clashes. As we’ve shown in

section 4.1, the programmer needs to supply a kernel name, if the kernel is a

lambda function, or the name is taken from the supplied functor. However,

this name is not visible at runtime, so the OpenCL code generator is unable

to see it, although it tries to provide a translation between the compile-time

and the runtime names.

Because the code asked for access to global buffers (not shown here, but

similar to 4.1), the data is passed as a __global pointer of the base element

type (here int). Buffer names are also generated, but their order isn’t always

obvious. Since we only read from buffers a and b, we asked for write access,

58 CHAPTER 4. IMPLEMENTATION

which also provides the const specifier.

Lines 6 and 7 are temporaries to hold the index. The i that was passed

to the kernel can be resolved as an index to _sycl_gid, or as a number

i[0] (which can also be used as an index) to _sycl_gid0. This is somewhat

redundant in a one-dimensional kernel, but is included for consistency.

The actual calculation is done on lines 8 and 9 (in two lines because of

formatting). Every arithmetic operation is wrapped into parentheses in order

to preserve operator precedence.

4.4.2 Matrix rotation

SYCL is also designed to deal with 2D and 3D data. A simple example is

rotating a N ×N matrix A and storing the result into B:

1 for(int x = 0; x < N; ++x) {

2 for(int y = 0; y < N; ++y) {

3 B[N - y - 1][x] = A[x][y];

4 }}

For SYCL, we first need to serialize the data to store it into a buffer (assuming

we’re working with matrices of floats), e.g.:

1 buffer<float, 2> a_buf(reinterpret_cast<float*>(A), range<2>(N, N));

The accessors are not affected by the dimensionality of the data or the kernel,

so they are basically the same as in section 4.1. And now the kernel:

1 cgh.parallel_for<class rotation>(range<2>(N, N), [=](id<2> i) {

2 b[N - i[1] - 1][i[0]] = a[i];

3 });

We immediately recognize that i[0] stands for x and i[1] for y, while as

an added convenience we can just use i as a 2D index and SYCL resolves it

based on the work-item index and the work-group size. This can be observed

from the generated OpenCL C code:

1 __kernel void _sycl_kernel_0(

4.4. EXAMPLE CODE 59

2 __global float* _sycl_buf2, __global const float* _sycl_buf1

3) {

4 const int _sycl_gid0 = get_global_id(0);

5 const int _sycl_gid1 = get_global_id(1);

6 const int _sycl_gid =

7 _sycl_gid1 * get_global_size(0) + _sycl_gid0;

8 _sycl_buf2[((1024 - _sycl_gid1) - 1) + _sycl_gid0 * 1024]

9 = _sycl_buf1[_sycl_gid];

10 }

4.4.3 Parallel reduction sum

Reduction is the process where a single binary operation is applied to a series

(array) of values, where the left operand is the accumulator. An example is

summation: the operation is +, the initial value of the accumulator is 0,

and every value in an array is added to the accumulator. This is a slightly

more difficult problem than vector addition or matrix rotation, but it can be

parallelized quite efficiently. Serial code for a vector a of size N would look

something like this:

1 int sum = 0;

2 for(int i = 0; i < N; ++i) {

3 sum += a[i];

4 }

For a parallel implementation, we can operate on the array itself, but we need

to split the process into multiple steps [51]: first sum in parallel each two

neighboring elements and store the result in the place of the first of those two

elements (a[0]+=a[1], a[2]+=a[3], a[4]+=a[5]), then sum up those sums in

the same manner (a[0]+=a[2], a[4]+=a[6], a[8]+=a[10]), and so forth until

there is only one sum left.

This distance between the elements that need to be summed is called a

stride, and it increases exponentially: 1, 2, 4, 8, ... On the other hand, since

on each step we have half as many operations, there are a total of log2(N)

60 CHAPTER 4. IMPLEMENTATION

steps. The SYCL implementation is as follows:

1 auto s = stride_.get_access<access::mode::read_write>(cgh);

2 for(size_t stride = 1; stride < N; stride *= 2) {

3 cgh.parallel_for<class reduction_sum>(

4 range<1>(N / 2 / stride),

5 [=](id<1> index) {

6 auto i = 2 * s[0] * index;

7 a[i] += a[i + s[0]];

8 s[0] *= 2;

9 });}

We use a for loop to issue log2(N) kernels with different strides – the kernel

should only be compiled once, but in the current sycl-gtx implementation

it is always compiled, which leads to some slowdown. These kernels would

normally be launched asynchronously, but since there are interdependencies,

the SYCL runtime makes sure they execute in the right order. a is here a

read-write accessor to the array a.

One problem is the stride: we need to pass it to the kernel invoca-

tion (host code) – and also to the device. In the kernel invocation, we

specify the size of the work-group (the number of work-items) by passing

range<1>(N / 2 / stride). The reason for this particular size is that at

every step the number of operations halves (controlled by stride), and we

always use one work-item to sum up two values (the division by 2). Besides

the host-side stride we also have an accessor s, which offers access to a

one-dimensional device buffer of size 1, stride_.

1 __kernel void _sycl_kernel_0(

2 __global int* _sycl_buf1,

3 __global int* _sycl_buf2

4) {

5 const int _sycl_gid0 = get_global_id(0);

6 const int _sycl_gid = _sycl_gid0;

7 _sycl_buf2[((2 * _sycl_buf1[0]) * _sycl_gid)]

8 += _sycl_buf2[(((2 * _sycl_buf1[0]) * _sycl_gid) + _sycl_buf1[0])];

4.4. EXAMPLE CODE 61

9 _sycl_buf1[0] *= 2;

10 }

The OpenCL C code above is pretty straightforward: a is represented by

_sycl_buf2 and s is represented by _sycl_buf1. There is one issue, however:

i is not stored as a value, but is instead expanded into

((2 * _sycl_buf1[0]) * _sycl_gid).

4.4.4 Vector data types

SYCL supports device vector types and also provides special vector types

for OpenCL interoperability. In the following code excerpt we define a test

vector of three elements and assign it to 10 other vectors in parallel:

1 const int size = 10;

2 auto vectors = buffer<float3>(range<1>(size));

3 auto testV = buffer<float3>(range<1>(1));

4 {

5 auto testVector_ = testV.get_access<

6 access::mode::discard_write, access::target::host_buffer>();

7 auto& testVector = testVector_[0];

8 testVector.x() = 1;

9 testVector.y() = 2;

10 testVector.z() = 3;

11 }

12 myQueue.submit([&](handler& cgh) {

13 auto v = vectors.get_access<access::mode::discard_write>(cgh);

14 auto testVector_ = testV.get_access<access::mode::read>(cgh);

15 cgh.parallel_for<class vectors>(range<1>(size), [=](id<1> i) {

16 auto testVector = testVector_[0];

17 v[i] = float3(testVector.x(), testVector.y(), 0);

18 v[i].z() = testVector.z();

19 });

20 });

62 CHAPTER 4. IMPLEMENTATION

We define vectors, a buffer of vectors of three floating point numbers on

line 2, the buffer contains 10 vectors. On the next line a test vector testV is

defined with the same type as vectors, but with only one element. Since we

want to define an initial value for testV, but testV is a buffer, we need to

obtain a host accessor on lines 5 and 6. discard_write means that we only

want to write to this buffer and do not care about any previous values. Note

that host access to this buffer is wrapped in a new scope (lines 4 to 11). This

is done because obtaining a host accessor means giving control over the buffer

over to the programmer and SYCL isn’t allowed to access the buffer while

the programmer has control over it. Also worth noting is that we obtained

an accessor to an array of one element, so line 7 serves only to simplify access

to this element. Lines 8, 9 and 10 then showcase the initialization of the test

vector element to (1, 2, 3).

For the kernel, first the buffer accessors are obtained on lines 13 and 14

(line 14 would not have worked if a new scope hadn’t been employed for

the host accessor on lines 4 to 11). The one-dimensional kernel is enqueued

on line 15 with 10 work-items. Line 16 also serves just to simplify access

to the single array element. In line 17 a vector is assigned using a vector

constructor, while line 18 demonstrates assigning a single vector element.

Again we can observe the generated OpenCL C kernel:

1 __kernel void _sycl_kernel_0(

2 __global const float3* _sycl_buf1, __global float3* _sycl_buf2

3) {

4 const int _sycl_gid0 = get_global_id(0);

5 const int _sycl_gid = _sycl_gid0;

6 float3 _float3_2 = (float3)(_sycl_buf1[0].s0, _sycl_buf1[0].s1, 0);

7 _sycl_buf2[_sycl_gid] = _float3_2;

8 _sycl_buf2[_sycl_gid].s2 = _sycl_buf1[0].s2;

9 }

We notice that a temporary was created on line 6, even though it is used only

once (line 7) and could easily have been inlined. This is one of the quirks

4.5. PORTING THE OPENCL EXAMPLE TO SYCL-GTX 63

of sycl-gtx, as the proper copying and movement of data within the kernel

has proven to be a slightly elusive goal. In the current implementation sycl-

gtx tries to be more conservative with inlining, instead preferring to create

temporaries, which has proven to be more accurate during testing, although

there are cases where it may still fail. For example, using auto& instead

of auto on line 16 of the above C++ code yields an error in sycl-gtx as of

February 2016, although it would be correct SYCL – indeed, ComputeCpp

works properly with auto&.

Otherwise, the vector constructor on line 6 is pretty straightforward in

OpenCL C, as well as the single element access on line 8 (apart from the

unnecessary temporary on line 7). One thing to note is that instead of .x,

.y, and .z, access to elements is provided as .s and the sequential number

of the element (as per the OpenCL specification [52]) – although this was a

pretty arbitrary choice.

4.5 Porting the OpenCL example to sycl-gtx

We’ve seen a simple parallel kernel written in OpenCL and SYCL (in sec-

tions 3.1.4 and 3.2.4, respectively). Based on all the presented sycl-gtx code

examples we now have a good idea of how the example can be ported to

sycl-gtx:

1 int A[N], B[N], C[N]; // N known from before, actual values elsewhere

2 using namespace cl::sycl;

3

4 {

5 gpu_selector gpu;

6 queue q(gpu);

7

8 auto rN = range<1>(N);

9 auto bufA = buffer<int>(A, rN);

10 auto bufB = buffer<int>(B, rN);

11 auto bufC = buffer<int>(C, rN);

64 CHAPTER 4. IMPLEMENTATION

12

13 q.submit([&](handler& cgh) {

14 auto a = bufA.get_access<

15 access::mode::read, access::target::global_buffer>(cgh);

16 auto b = bufB.get_access<

17 access::mode::read, access::target::global_buffer>(cgh);

18 auto c = bufC.get_access<

19 access::mode::write, access::target::global_buffer>(cgh);

20

21 cgh.parallel_for<class example>(rN, [=](id<1> i) {

22 SYCL_IF(a[i] % 2) {

23 c[i] = a[i] + b[i];

24 }

25 SYCL_ELSE {

26 int1 Ci = b[0];

27 SYCL_FOR(int1 j = 1, j < 5, ++j) {

28 Ci *= b[j];

29 }

30 SYCL_END

31 c[i] = Ci;

32 }

33 SYCL_END

34 }); }); }

There are only a few differences to the pure SYCL example, all in the

kernel: the use of macros for control flow and replacing int with int1. Here’s

what the kernel gets translated to:

1 __kernel void _sycl_kernel_0(

2 __global int* _sycl_buf3,

3 __global const int* _sycl_buf1,

4 __global const int* _sycl_buf2

5) {

6 const int _sycl_gid0 = get_global_id(0);

7 const int _sycl_gid = _sycl_gid0;

4.5. PORTING THE OPENCL EXAMPLE TO SYCL-GTX 65

8 if(_sycl_buf1[_sycl_gid] % 2) {

9 _sycl_buf3[_sycl_gid] =

10 _sycl_buf1[_sycl_gid] + _sycl_buf2[_sycl_gid];

11 }

12 else {

13 int int_0 = _sycl_buf2[0];

14 int_1 = 1;

15 for(; int_1 < 5; ++int_1) {

16 int_0 *= _sycl_buf2[int_1];

17 }

18 _sycl_buf3[_sycl_gid] = int_0;

19 }}

Interestingly, replacing the for loop with a macro is not necessary in this

case, because the loop would just be unrolled. So the loop:

1 for(int j = 1; j < 5; ++j) {

2 Ci *= b[j];

3 }

would become:

1 int_0 *= _sycl_buf2[1];

2 int_0 *= _sycl_buf2[2];

3 int_0 *= _sycl_buf2[3];

4 int_0 *= _sycl_buf2[4];

But this kind of behavior may seem unpredictable to the programmer, so the

supplied macros are preferred.

Regarding the if statement, not using the SYCL_IF macro leads to a

compile-time error: the expression a[i] % 2 returns a data_ref object in

sycl-gtx, which is not convertible to bool.

66 CHAPTER 4. IMPLEMENTATION

4.6 Additional remarks

During the process of implementing the SYCL specification we found some

minor errors in the specification itself. Our work started while the specifica-

tion hadn’t yet been finalized, so some errors were expected. We noted most

of them as comments to the specification and made the annotated version

available alongside main code in the public repository [14]. Unexpectedly,

the release of the final SYCL 1.2 specification did not get rid of all the errors.

We contacted Codeplay (one of the proposers and the main implementers of

the specification) about the errors and they have acknowledged a corrected

specification was going to be released.

We also wrote an article summarizing this thesis, called ”An Overview

of sycl-gtx”, which was presented at the SYCL’16 workshop of the PPoPP

2016 conference [53].

Chapter 5

Tests

Tests were mostly developed to ensure SYCL conformance – our approach

to the implementation was in a way test–driven, where we would write a

test an then implement the necessary functionality. These tests were al-

ready discussed in section 4.4 – here we discuss another test with a focus on

performance observations.

5.1 smallpt

We stumbled upon an implementation of the smallpt ray tracer in SYCL,

presented on the Codeplay developer blog [54]. This would have been a

great opportunity to test sycl-gtx, to see whether it would be able to compile

a ray tracer – although very small by ray tracer standards, it was much more

comprehensive than any of the proof-of-concept tests we’d written.

smallpt is a global illumination renderer, written in 99 lines of C++ [55],

which are open sourced. Ray tracing is a conceptually simple technique for

rendering a scene: send rays of light from the camera, follow (trace) their

movement through the scene using a physical simulation, and add color to

the ray based on the light sources it finally hits (if any) and the materials

encountered on the path. Computationally, it’s very expensive: for each

camera pixel at least one ray (sample) needs to be used, while multiple

67

68 CHAPTER 5. TESTS

Figure 5.1: Example output of running the smallpt tester with 512 samples

per pixel using Intel HD Graphics 4600.

samples per pixel provide better accuracy.

However, pixels are computed independently from one another, which

means that ray tracing is inherently parallel – a common modern resolution

of 1920 times 1080 means 2073600 pixels, offering lots of opportunities for

multi-core hardware. Using multiple samples per pixel exposes even more

parallelism, although the samples need to be averaged for the end result.

To understand smallpt slightly better, we list here some of the more

important features:

• Global illumination via unbiased Monte Carlo path tracing.

• Antialiasing through 2x2 super-sampling.

5.1. SMALLPT 69

• Specular, diffuse, and glass reflection.

• Russian roulette for path termination.

As mentioned, we were inspired by the Codeplay blog post and they

provide the full code for the SYCL-ported smallpt program. The first thing

they did was move from the default double precision floating point numbers

to single precision. The reason was that many GPUs still don’t support

double precision operations. Replacing double with single precision would

normally imply shorter runtimes, but in this case it actually slightly slows

down the computation. The reason for the slowdown in smallpt is that lower

precision leads to artifacts, which represent unnecessary computation. To

combat this, the scene was adjusted (smaller spheres) and the margin of

error when calculating intersections was increased.

The second problem was the random number generator (RNG). smallpt

relies heavily on randomization, but OpenCL does not have a standard ran-

dom number generator. Instead, Codeplay wrote their own based on a Xor-

shift RNG [56].

The third problem was replacing recursion, which smallpt relies on to

compute reflectance, with iteration, because OpenCL does not yet support

recursion. In general, any recursion can be replaced with iteration with the

help of an additional stack, but in this case this was slightly simpler to achieve

– on recursion, the traced ray is modified and the pixel colors and reflectance

are accumulated.

Then, the code could be ported to SYCL – create a queue, data buffers,

submit the kernel, and wait for the computation to end. We modified their

code slightly to fit into the tester we’ve written (passing the device to execute

the queue on and controlling extra parameters) and renamed the variables

to be more self-descriptive. Here is the function with full SYCL code sans

the kernel:

1 void compute_sycl(

2 void* device_,

70 CHAPTER 5. TESTS

3 int width, int height, int samplesPerPixel,

4 Ray camera, Vec cx, Vec cy, Vec initialRadiance, Vec* colors) {

5 queue q(*(device*)device_);

6 {

7 // data is wrapped in SYCL buffers.

8 buffer<Vec, 1> color_buffer(colors, range<1>(width * height));

9 buffer<Sphere, 1> spheres_buffer(&spheres_glob[0], range<1>(9));

10 auto cg = [&](handler& cgh) {

11 kernel_r smallpt = {

12 // enabling access of the data on the device for SYCL.

13 color_buffer.get_access<access::mode::write>(cgh),

14 spheres_buffer.get_access<

15 access::mode::read,

16 access::target::constant_buffer>(cgh),

17 width, height, samplesPerPixel,

18 camera, cx, cy, initialRadiance

19 };

20 nd_range<2> ndr(range<2>(width, height), range<2>(8, 8));

21 ch.parallel_for(ndr, smallpt);

22 };

23 // submitting the command group to the SYCL command queue

24 // for execution.

25 q.submit(cg);

26 }

27 }

We can observe the main mission of SYCL in this function: to simplify het-

erogeneous programming. Apart from the three problems we discussed above,

writing SYCL code is rather straightforward, because it doesn’t require a lot

of code and follows a template. Instead, the focus is shifted to writing the

kernel, which is in this case the most important part of the application. Note

that the classes Vec, Ray, and Sphere were already part of the original smallpt

code.

By porting the code to SYCL, Codeplay reported a speedup factor of

5.2. PORTING SMALLPT TO SYCL-GTX 71

almost 40 when using an AMD Radeon HD R9 295X, achieving only slightly

lower precision than the original program.

5.2 Porting smallpt to sycl-gtx

The ported smallpt code is available for download [54] – we’ve managed to

get it fit into our tester and compile it using ComputeCpp (with quite some

difficulties). But it doesn’t work with sycl-gtx at all. Replacing control flow

with macros and scalars with one-dimensional vectors in kernel code was

trivial. However, we had significant problems with custom data structures.

Instead of trying to get the Codeplay port work in sycl-gtx, we decided

to start from the original smallpt code. That way, we could document all the

changes as commits [14] and would gain a better understanding of smallpt.

Another important factor was that at the time that we decided to port

smallpt to sycl-gtx, sycl-gtx was not nearly implemented enough to allow

for a ray tracer to work, so we worked on the implementation along with

porting smallpt.

We took the basic same steps as Codeplay, but with some modifications.

We moved from double to single precision, but also implemented an abstrac-

tion layer to support the original data. We used a different, simpler RNG.

Replacing recursion with iteration was done in pretty much the same manner,

though.

Of course, within kernel code all control flow was written using custom

macros and scalars were replaced with custom vectors. An additional prob-

lem was that if a helper function had more than one return point, the return

value needed to be stored as an extra variable and returned once at the end,

or passed as an extra input reference. So instead of:

1 inline float clamp(float x) {

2 return x < 0 ? 0 : x > 1 ? 1 : x;

3 }

we would need to write the more cumbersome (but arguably clearer)

72 CHAPTER 5. TESTS

1 inline void clamp(float1& x) {

2 SYCL_IF(x < 0)

3 x = 0;

4 SYCL_ELSE_IF(x > 1)

5 x = 1;

6 SYCL_END

7 }

Note that in this case we avoided using an extra return variable by modifying

the existing input, which was justified by the way this function was called in

the kernel.

As mentioned, the biggest problem were custom data structures. Some

of this was discussed in the section 4.2 – all data references within a sycl-gtx

kernel need to derive or be able to interact with objects of type data_ref,

otherwise the JIT code generator cannot observe it at runtime. So while

passing a Vec object (a smallpt vector of three floating point numbers) to

a SYCL buffer would properly copy the object to and from the device, the

kernel would not be able to interact with it properly.

To solve this, we modified the original smallpt classes to have a templated

type, so instead of Vec being a collection of three double values, we would

have using Vec = Vec_<double> for the same class and also Vec_<float1> for

a collection of three float1 values. We then had to inherit from Vec_<float1>

and add a few simple constructor to allow for conversions between different

types. But this still wouldn’t have quite worked: sycl-gtx vector types are

only supposed to be used inside kernels, not stored in buffers. Indeed, using

buffer<Vec_<float1>> would have resulted in a runtime error. Instead, we

used buffer<float3> and provided a simple constructor to the class that

derived from Vec_<float1> to deal with the conversion. Here is the full

Vector class:

1 struct Vector : public Vec_<float1> {

2 private:

3 using Base = Vec_<float1>;

5.2. PORTING SMALLPT TO SYCL-GTX 73

4 public:

5 Vector(float x_ = 0, float y_ = 0, float z_ = 0)

6 : Base(x_, y_, z_) {}

7 Vector(const ::Vec_<float>& base)

8 : Base(base.x, base.y, base.z) {}

9 Vector(const Base& base)

10 : Base(base) {}

11 Vector(float3 data)

12 : Base(data.x(), data.y(), data.z()) {}

13 };

But if float3 is also a sycl-gtx vector class, how come then that

buffer<float3> works correctly? This is actually a hidden feature of sycl-

gtx: the buffer class recognizes sycl-gtx vector float3 and instead stores

the data as a regular OpenCL vector cl_float3. The accessors in the kernel

then return the float3 values. But this only works if the data type passed

to the buffer is a sycl-gtx vector, not if it contains one (or more).

Porting the Sphere class works similarly, but also requires much more

thought. A Sphere class is pretty heterogeneous compared to the homoge-

neous Vec: it contains one float, three Vecs, and one custom enum value.

We decided to treat every value as a float1 – which means a Sphere would

contain 11 values – and pack everything into a buffer<float16>. The code:

1 struct SphereSycl : public Sphere_<float1> {

2 float1 reflectance;

3 SphereSycl(const float16& data)

4 : Sphere_<float1>(

5 data.lo().lo().w(), // Radius

6 Vector(data.lo().lo().xyz()), // Position

7 Vector(data.lo().hi().xyz()), // Emission

8 Vector(data.hi().lo().xyz()), // Color

9 Refl_t::DIFF // Original enum value, not important

10),

11 reflectance(data.hi().lo().w()) // Reference to the enum value

74 CHAPTER 5. TESTS

12 {}

13 float1 intersect(const Ray_<float1>& r) const {

14 float1 return_;

15 ...

16 return return_;

17 }

18 };

Note that the intersect method needed to be overridden in order to conform

to the rules of sycl-gtx kernel code.

This approach has a major drawback: excess data. A Sphere has 11

numeric values, but buffer<float16> stores 16 for each sphere, which means

more data needs to be copied when buffers are copied to and from the device.

Luckily, the tested scene contains only 9 spheres. Additionally, SphereSycl

inherits from Sphere_<float1>, but adds a float1 to act as a reference to

the enum value, while the original enum value is ignored – though this could

be avoided by further templating the original Sphere class.

Using this approach, passing data finally worked. We just needed to

provide some extra code: assign the original spheres to the buffers, prepare

a buffer of seeds to be passed to the RNG in the kernel, and copy the buffer

of colors to the original array at the end of computation.

We observed that running long computations on the GPU resulted in the

computer becoming unresponsive for the duration of the computation, even

freezing the display image. This is because the integrated GPU under test

was also used to drive the display, so dedicating it to computation would

make the screen unresponsive. We decided to solve this by splitting the

computation into multiple parts – the split is done vertically with regard to

the 2D image buffer and it depends on the number of samples per pixel and

the height of the image.

5.3. TESTING ENVIRONMENT 75

5.3 Testing environment

A tester program was written that evaluates the smallpt computation for an

image of size 1024x768 pixels and the default test scene, which consists of a

room with colored walls, one glass and one mirror-like ball, and a circular

light on the ceiling. The tests consisted of the original smallpt code and the

floating point version – both of these also had an OpenMP version.

Briefly, OpenMP is a simple way to parallelize code across CPU cores

using preprocessor directives [9]. Example for smallpt:

1 #pragma omp parallel for schedule(dynamic, 1) private(initialRadiance)

2 for(int y = 0; y < height; y++) { // Loop over image rows

3 org::compute_inner(

4 y, width, height, samplesPerPixel,

5 camera, cx, cy, initialRadiance, colors);

6 }

Here the #pragma acts a a signal to the compiler to schedule the body of the

for:y loop across multiple cores.

In addition to these four tests, we added the sycl-gtx version and the

SYCL version from the Codeplay blog [54]. Unfortunately, the SYCL ports

were mutually exclusive: The Codeplay version does not work with sycl-gtx

and while we managed to successfully compile our version of smallpt using

ComputeCpp, it did not work correctly. Since ComputeCpp is not finished

yet, it is difficult to speculate, what the problem may be, but our guess is

that sycl-gtx misses something that we are unaware of with regard to SYCL

specification conformance. What we ended up doing was compiling two tester

programs: one that handled the original smallpt and the sycl-gtx version,

compiled using Visual Studio 2013 with the OpenMP switch, and another

one that handled the Codeplay version and was compiled using ComputeCpp

and Visual Studio 2013. Both shared as much code as possible and were

compiled using the ”Release” target and the /O2 optimization switch.

The tester tries to find all OpenCL 1.2+ compatible devices in the system

and creates a new test for the SYCL test code for each device. For each device

76 CHAPTER 5. TESTS

information about it is displayed. The tests are stored as a struct containing

the device name, the pointer to the device, and the function pointer to the

test. The original smallpt tests are stored the same way, only that the ”device

name” is hard coded and the device pointer is set to nullptr.

The tester contains multiple time checks. It has a global time limit,

which can be passed as a parameter to the program (in minutes) and is

the maximum amount of time available to the test suite – though this isn’t

strictly enforced, the check only occurs after each test run, not in between.

It also has a per test time limit, which is set to 40 seconds and checks the

last runtime of the test. The per test limit check is only enforced before

the test runs and there are additional exceptions when the test is allowed to

run, based on whether there are any OpenCL-accelerated tests available and

whether the total test suite running time hasn’t exceeded half of the global

limit yet. The idea is to prevent the tester from terminating too quickly

(more tests means more results) or too late (being an inconvenience to the

user) and to prefer OpenCL and stronger hardware (not to waste too much

time on slow code, as we can see in section 5.4).

The tests had a ramp-up, starting at 4 samples per pixel and each iteration

the number of samples doubled. Note that we do not consider the antialiasing

feature of smallpt in our results, which means that the actual number of

samples per pixel is 4 times higher than what is listed in our results (the

tests on the Codeplay blog did consider this feature, so their 5000 samples

per pixel would correspond to our 1250).

The sycl-gtx GitHub repository [14] is constantly changing, but we cre-

ated a tag that was used for these tests: smallpt-sycl-gtx-v1.4.

5.4. RESULTS 77

5.4 Results

5.4.1 Modern quad core CPU with integrated GPU

Below is the full table (Table 5.1) of results obtained when running the tester

on an Intel Core i5-4570, which has four cores and an integrated GPU, the

Intel HD Graphics 4600 with 20 Execution Units. The CPU has a base

frequency of 3.2 GHz and can boost up to 3.6 GHz. The tester was executed

on Windows 10 with the latest (February 2016) Intel OpenCL drivers.

4 8 16 32 64 128 256 512

Original 23.02 45.93 91.82 184.76 369.24 736.02

OpenMP 7.51 15.03 29.91 60.99 119.87 239.21 479.7

Float 21.82 43.55 86.83 173.09 342.32 689.48

OMP Float 7.36 15.31 29.06 58.22 116.59 233.60 466.08

i5-4570 1.2 2.95 5.27 10.10 19.58 39.03 77.24 154.64 309.89

i5-4570 2.0 3.27 5.41 10.64 20.64 41.78 82.83 165.18 331.34

HD4600 1.2 1.04 1.61 2.75 5.11 10.03 19.90 45.79 93.17

i5-4570 1.2 5.48 10.52 20.67 40.77 80.78 161.40 323.37

i5-4570 2.0 5.26 10.04 19.90 39.41 78.57 156.69 314.12

Fallback 51.86 63.81 89.29 151.81 267.52 501.24

Table 5.1: Results of the smallpt tester running on an Intel Core i5-4570.

All times are in seconds. The columns represent test runs when using different

numbers of samples per pixel.

The results are grouped and the names are shortened. All values are

in seconds. The first row is the number of samples per pixel used – not

considering antialiasing. There are multiple samples per pixel because a

pixel is treated as a small square surface instead of a point, so it is possible

to send multiple rays per one pixel through different coordinates.

The next four rows correspond to the original smallpt code, also with

OpenMP (”OMP”), and the single precision variants (”Float”). The three

78 CHAPTER 5. TESTS

Figure 5.2: The difference between single and double precision variants of

the original code.

rows after that are results from sycl-gtx, using the Core i5-4570 CPU with

OpenCL 1.2 and 2.0 and the HD Graphics 4600 with OpenCL 1.2.

The last three rows correspond to ComputeCpp, which is similar to sycl-

gtx, except that compiling for the GPU failed every time, so there are no

GPU results for ComputeCpp – instead the last result is the SYCL host

fallback, which was programmatically forced.

Let us look first how much did the original code benefit from moving

from double to single precision in the original code, in Figure 5.2. It can

be observed that moving to single precision did not bring a big performance

improvement. This has already been mentioned, the reason lies in the extra

artifacts produced with lower precision. The difference is noticeable and

consistent at around 5% for the single threaded version and about 2 to 3%

for the OpenMP version. This only confirms that making the SYCL variants

use single precision does not present an unfair advantage.

Staying away from OpenCL a bit longer, Figure 5.3 showcases the running

times of the smallpt variants that do not use OpenCL. In this figure we ignore

single precision, as we’ve already established the difference isn’t large. Even

5.4. RESULTS 79

Figure 5.3: Execution time of non-OpenCL variants.

though the Core i5-4570 is a 4 core CPU, OpenMP isn’t four times faster

than the single-threaded original code, but rather closer to three times faster.

Some of the difference may be attributed to the single core boost of the i5-

4570, some maybe to OpenMP.

What is more interesting is the ComputeCpp host fallback. This starts up

much slower than the single-threaded code and becoming faster later, consis-

tently increasing the gap. Our guess is that there is some overhead at lower

sample rates – host fallback basically needs to simulate the OpenCL execu-

tion model, which may not be efficient if the workload isn’t large enough.

We observed something very strange in the ComputeCpp OpenCL results:

the values are almost exactly twice the sycl-gtx values. In fact, if we shift the

ComputeCpp values one column to the right, we can observe a very small

difference in results, shown in Figure 5.4. Moreover, this difference is very

consistent: when using OpenCL 1.2 sycl-gtx is about 4% faster, while when

using OpenCL 2.0 ComputeCpp is about 5% faster. We do not know the

80 CHAPTER 5. TESTS

Figure 5.4: Comparison of sycl-gtx and adjusted ComputeCpp results.

reason for this discrepancy. While we did modify the code from the Codeplay

blog to fit the tester and use as much common code as possible, there is no

known reason for this almost-exactly-factor-of-two difference. After all, our

implementation of SYCL is definitely less mature. We presume we’ve made

a mistake somewhere, though careful examination of the code did not reveal

it. We compared the image outputs, but they were comparable at the same

sample rate.

The same problem may be present in the host fallback version as well

– returning to Figure 5.3, the host fallback result at 64 samples per pixel

is very close to OpenMP at 128 samples per pixel. Due to long execution

times we did not provide more data points, but the graph trend certainly

suggests similar behavior to what was observed when comparing sycl-gtx

and ComputeCpp.

The last chart is probably the most interesting. Figure 5.5 shows the

speedup factor of different results compared to the original (single precision)

5.4. RESULTS 81

Figure 5.5: Speedup over original smallpt (using single precision).

code. Using OpenMP provides a constant speedup factor of 3, but using sycl-

gtx on the same four CPU cores boosts the results by almost another factor

of 3, though the advantage is somewhat lower when using lower sample rates.

Amazingly, this result can be much improved when switching to the GPU.

Even though the Intel HD Graphics 4600 has pretty low performance among

modern GPUs, it can still best the four core CPU by another factor of 4,

resulting in the final results be almost 35 times faster than the original code.

It suffers even more from the initial setup than the CPU version, though,

which can be partly attributed to the low memory bandwidth when copying

data – when the sample rate increases, the copy times aren’t as important,

leading to best performance.

If we take the sycl-gtx GPU results at 512 samples per pixel and do a

fast calculation: we have 1024 times 768 pixel, 512 samples per pixel, take

antialiasing into account (computing 4 samples for each requested one and

averaging the results), and consider the total running time of 93.17 seconds,

we get 1024∗768∗512∗4
93.17

= 17286816.96 samples per second, or about 864340.85

82 CHAPTER 5. TESTS

samples per EU per second. A similar calculation for the sycl-gtx CPU

version (OpenCL 1.2) returns 1299342.30 samples per core per second, which

is clearly higher per computing element, but not by what the higher IPC and

much higher clock frequency would suggest. This is where heterogeneous

computing shows its strengths – the GPU is just much more suited for these

kinds of tasks due to a much stronger architectural focus on data instead of

on instructions.

5.4.2 Older laptop with discrete graphics

Something very interesting occurred on additional testing. The tester was

designed to check the platform version is at least OpenCL 1.2 compatible

and add to the test all devices, belonging to the platform. However, when

running on a laptop with an Intel Core i5-2520M and an Nvidia Quadro

2000M discrete GPU (Windows 10 OS), the Nvidia platform presented itself

as ”OpenCL 1.2 CUDA 7.5.15”, but the actual device version was ”OpenCL

1.1 CUDA”, meaning it wasn’t compatible with the test. On the first run

the whole computer froze, and on the second one a Blue Screen of Death

was encountered. The results could still be obtained, although much fewer

ones, and they are listed in Table 5.2. Additionally, the time limit was much

stricter here.

4 8 16 32 64 128 256

Original 31.61 63.63

Original OpenMP 14.00 28.06 55.46

Quadro 2000M 1.90 3.09 5.95 11.31 23.02 45.77 95.16

Table 5.2: Results of the smallpt tester running on a laptop with an Intel

Core i5-2520M CPU and an Nvidia Quadro 2000M GPU. All times are in

seconds. The columns represent test runs when using different numbers of

samples per pixel.

Since the Intel Core i5-2520M is an older CPU, with only two cores

5.4. RESULTS 83

(but with HyperThreading), and a power-restricted mobile one as well, the

single core performance is almost 50% slower, while the multi core results

(OpenMP) took almost twice longer. But more telling are the GPU results:

besides the fact that integrated GPUs have made some interesting progress

with regard to performance (the HD 4600 is about twice faster than Quadro

2000M), the heterogeneous ecosystem needs to be properly maintained.

5.4.3 Summary

Since the main focus was to get the implementation working, we didn’t run

more performance tests. But being able to implement a ray tracer in sycl-gtx

with comparable performance to what the leading, proprietary ComputeCpp

implementation provides (presuming we’ve made an error somewhere and

using the adjusted results) speaks favorably to the development status of

the implementation. There is always room for improvement – even though

our ported smallpt compiles with ComputeCpp, it cannot be run there. But

sycl-gtx continues to evolve and will hopefully someday be able not only to

properly support more of the SYCL specification but also include additional

general and device-specific performance optimizations.

84 CHAPTER 5. TESTS

Chapter 6

Conclusion

We managed to provide an implementation of SYCL, even though it is not

complete. We even managed to write an article about the implementation

and got it published on the PPoPP 2016 conference [53]. Some parts of the

implementation are missing because there was no time to implement every-

thing, while others are missing because of a fundamental design decision.

We decided not to modify any existing compilers – all code in our implemen-

tation should be compatible with any compiler that supports C++11 and

OpenCL 1.2. The way we implemented SYCL was by writing a code genera-

tor which would capture information about the compiled C++ code and use

that information to generate OpenCL C, which was then fed to the OpenCL

C compiler – basically Just-In-Time compilation of SYCL code. This, how-

ever, prevented us from implementing even some basic features – control

flow, for example (if, for, ...), could not be captured this way. We provided

workarounds, but ultimately it does not quite follow the SYCL specification.

Nevertheless, many simple SYCL programs, completely conformant to

the SYCL specification, were able to compile and run using our implementa-

tion. We provided a compatibility header, the inclusion of which ensures that

code written for our implementation of SYCL also works on any other im-

plementation. That way, we can still observe what SYCL promises: simple,

modern C++ code that can easily be parallelized and executed in heteroge-

85

86 CHAPTER 6. CONCLUSION

neous systems, providing almost the same level of performance as OpenCL

with much less programming effort.

Tests were mostly written to prove the correctness of the implementation

and to observe how the code generator works, although some testing also

focused on performance.

Of course, heterogeneous computing is a large area of study, so we also

went over various aspects: how different computing units work, what are their

strengths and weaknesses, how heterogeneous programming is approached

today.

There is a lot of potential for future work. First, our implementation is far

from fully implemented. While we have proven it is possible to implement a

ray tracer using sycl-gtx, a lot of the more advanced features are still missing.

Second, more performance evaluations are needed. We’ve demonstrated that

there’s likely some overhead with small kernels – it would be interesting to

compare sycl-gtx performance with ”pure” OpenCL and to perform more

comparisons with ComputeCpp. Third, in order for the implementation to

be useful, it should actually be used, meaning applications should be ported

to sycl-gtx. This includes both existing OpenCL applications, applications

where OpenCL may have proven not to be worth the implementation effort,

and possibly any other applications where parallelization hasn’t even been

considered yet. We provided a compatibility header that makes any valid

sycl-gtx application also valid in other SYCL implementations.

The main implementation of SYCL, ComputeCpp, provides the best in-

sight into SYCL, because it’s developed by the same people that also con-

tribute to the SYCL specification. But ComputeCpp is proprietary, while

our solution is open-sourced. We hope that despite the flaws in our solu-

tion, the open source community will embrace it by writing SYCL code and

maybe even develop the implementation further. As we’ve seen, the appeal

of heterogeneous computing is spreading, and SYCL is an important step on

the road to the future of computing – and sycl-gtx is a part of that.

Bibliography

[1] J. L. Hennessy, D. A. Patterson, Memory Hierarchy Design - Part 1.

Basics of Memory Hierarchies), 2012.

URL http://www.edn.com/design/systems-design/4397051/1

[2] P. Lilly, A Brief History of CPUs: 31 Awesome Years of x86, 2009.

URL http://www.maximumpc.com/a-brief-history-of-cpus-31-

awesome-years-of-x86

[3] I. Cutress, The Intel Skylake Mobile and Desktop Launch, with Archi-

tecture Analysis, 2015.

URL http://www.anandtech.com/show/9582/

[4] Intel Corporation, Intel R⃝ Pentium R⃝ 4 Processor supporting HT Tech-

nology 3.40 GHz, 2016.

URL http://ark.intel.com/products/27504/

[5] I. Cutress, Comparing IPC on Skylake: Memory Latency and CPU

Benchmarks, in: The Intel 6th Gen Skylake Review: Core i7-6700K and

i5-6600K Tested, 2015.

URL http://www.anandtech.com/show/9483/

[6] T. S. Crow, Evolution of the Graphical Processing Unit, 2004. doi:

10.1.1.142.368.

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.142.368

87

http://www.edn.com/design/systems-design/4397051/1
http://www.edn.com/design/systems-design/4397051/1
http://www.edn.com/design/systems-design/4397051/1
http://www.maximumpc.com/a-brief-history-of-cpus-31-awesome-years-of-x86
http://www.maximumpc.com/a-brief-history-of-cpus-31-awesome-years-of-x86
http://www.maximumpc.com/a-brief-history-of-cpus-31-awesome-years-of-x86
http://www.anandtech.com/show/9582/
http://www.anandtech.com/show/9582/
http://www.anandtech.com/show/9582/
http://ark.intel.com/products/27504/
http://ark.intel.com/products/27504/
http://ark.intel.com/products/27504/
http://www.anandtech.com/show/9483/
http://www.anandtech.com/show/9483/
http://www.anandtech.com/show/9483/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.368
http://dx.doi.org/10.1.1.142.368
http://dx.doi.org/10.1.1.142.368
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.368
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.368

88 BIBLIOGRAPHY

[7] C. McClanahan, History and Evolution of GPU Architecture, 2010.

URL http://mcclanahoochie.com/blog/wp-content/uploads/

2011/03/gpu-hist-paper.pdf

[8] Khronos OpenCL Working Group, The open standard for parallel pro-

gramming of heterogeneous systems, 2016.

URL https://www.khronos.org/opencl/

[9] The OpenMP R⃝ API specification for parallel programming, 2016.

URL http://openmp.org/wp/

[10] NVIDIA, CUDA C PROGRAMMING GUIDE, 2015.

URL http://docs.nvidia.com/cuda/cuda-c-programming-guide/

[11] Khronos OpenCL Working Group, SYCLTM Specification, 2015.

URL https://www.khronos.org/registry/sycl/specs/sycl-1.2.

pdf

[12] Codeplay Software, ComputeCpp, 2016.

URL https://www.codeplay.com/products/computecpp

[13] triSYCL, 2016.

URL https://github.com/amd/triSYCL

[14] sycl-gtx, 2016.

URL https://github.com/ProGTX/sycl-gtx

[15] A. Lal Shimpi, Intel’s Haswell Architecture Analyzed: Building a New

PC and a New Intel, 2012.

URL http://www.anandtech.com/show/6355/

[16] C. Märtin, Post-Dennard Scaling and the final Years of Moore’s Law,

2014.

URL https://www.hs-augsburg.de/medium/download/fki/person/

maertin_christian/PostDennard.pdf

http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
http://openmp.org/wp/
http://openmp.org/wp/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.khronos.org/registry/sycl/specs/sycl-1.2.pdf
https://www.khronos.org/registry/sycl/specs/sycl-1.2.pdf
https://www.khronos.org/registry/sycl/specs/sycl-1.2.pdf
https://www.codeplay.com/products/computecpp
https://www.codeplay.com/products/computecpp
https://github.com/amd/triSYCL
https://github.com/amd/triSYCL
https://github.com/ProGTX/sycl-gtx
https://github.com/ProGTX/sycl-gtx
http://www.anandtech.com/show/6355/
http://www.anandtech.com/show/6355/
http://www.anandtech.com/show/6355/
https://www.hs-augsburg.de/medium/download/fki/person/maertin_christian/PostDennard.pdf
https://www.hs-augsburg.de/medium/download/fki/person/maertin_christian/PostDennard.pdf
https://www.hs-augsburg.de/medium/download/fki/person/maertin_christian/PostDennard.pdf

BIBLIOGRAPHY 89

[17] x64 Architecture, 2015.

URL https://msdn.microsoft.com/en-us/library/windows/

hardware/ff561499(v=vs.85).aspx

[18] x86 Registers, 2015.

URL http://www.eecg.toronto.edu/~amza/www.mindsec.com/

files/x86regs.html

[19] D. M. Tullsen, S. J. Eggers, H. M. Levy, Simultaneous Multithreading:

Maximizing On-Chip Parallelism, in: Proceedings of the 22nd Annual

International Symposium on Computer Architecture, 1995, pp. 392–403.

[20] D. Butnariu, S. Reich, Y. Censor, Inherently Parallel Algorithms in

Feasibility and Optimization and their Applications, Studies in Compu-

tational Mathematics, Elsevier Science, 2001.

URL https://books.google.si/books?id=GyOEo12F970C

[21] R. Smith, The NVIDIA Geforce GTX 980 Review: Maxwell Mark 2,

2014.

URL http://www.anandtech.com/show/8526/

[22] NVIDIA, TUNING CUDA APPLICATIONS FOR MAXWELL, 2015.

URL http://docs.nvidia.com/cuda/maxwell-tuning-guide/

[23] S. A. Dyer, B. K. Harms, Digital signal processing, no. 37 in Advances

in Computers, Elsevier Science, 1993.

URL https://books.google.com.sg/books?id=vL-bB7GALAwC

[24] I. Kuon, R. Tessier, J. Rose, FPGA Architecture: Survey and Chal-

lenges, Vol. 2 of Foundations and Trends in Electronic Design Automa-

tion, 2008. doi:10.1561/1000000005.

URL http://www.doc.ic.ac.uk/~wl/papers/08/kuon08survey.pdf

[25] R. Marrit, Intel to make 14-nm FPGAs for Altera, 2013.

URL http://eetimes.com/document.asp?doc_id=1263080

https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx
http://www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html
http://www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html
http://www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html
https://books.google.si/books?id=GyOEo12F970C
https://books.google.si/books?id=GyOEo12F970C
https://books.google.si/books?id=GyOEo12F970C
http://www.anandtech.com/show/8526/
http://www.anandtech.com/show/8526/
http://docs.nvidia.com/cuda/maxwell-tuning-guide/
http://docs.nvidia.com/cuda/maxwell-tuning-guide/
https://books.google.com.sg/books?id=vL-bB7GALAwC
https://books.google.com.sg/books?id=vL-bB7GALAwC
http://www.doc.ic.ac.uk/~wl/papers/08/kuon08survey.pdf
http://www.doc.ic.ac.uk/~wl/papers/08/kuon08survey.pdf
http://dx.doi.org/10.1561/1000000005
http://www.doc.ic.ac.uk/~wl/papers/08/kuon08survey.pdf
http://eetimes.com/document.asp?doc_id=1263080
http://eetimes.com/document.asp?doc_id=1263080

90 BIBLIOGRAPHY

[26] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides,

J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-

man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,

E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, D. Burger, A

Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services,

in: 41st Annual International Symposium on Computer Architecture

(ISCA), 2014.

URL http://research.microsoft.com/apps/pubs/default.aspx?

id=212001

[27] S. Anthony, Intel unveils new Xeon chip with integrated FPGA, touts

20x performance boost, 2014.

URL http://www.extremetech.com/extreme/184828-intel-

unveils-new-xeon-chip-with-integrated-fpga-touts-20x-

performance-boost

[28] R. Smith, Intel Kills Larrabee GPU, Will Not Bring a Discrete Graphics

Product to Market, 2010.

URL http://www.anandtech.com/show/3738

[29] G. Chrysos, Intel R⃝ Xeon PhiTM X100 Family Coprocessor - the Archi-

tecture, 2012.

URL https://software.intel.com/en-us/articles/intel-xeon-

phi-coprocessor-codename-knights-corner

[30] TOP500 Lists November 2015, 2015.

URL http://www.top500.org/lists/2015/11/

[31] R. Rahman, Intel R⃝ Xeon PhiTM Core Micro-architecture, 2013.

URL https://software.intel.com/en-us/articles/intel-xeon-

phi-core-micro-architecture

[32] C. M. Kozierok, Intel Pentium (”P5” / ”P54C”), 2001.

URL http://www.pcguide.com/ref/cpu/fam/g5P54-c.html

http://research.microsoft.com/apps/pubs/default.aspx?id=212001
http://research.microsoft.com/apps/pubs/default.aspx?id=212001
http://research.microsoft.com/apps/pubs/default.aspx?id=212001
http://research.microsoft.com/apps/pubs/default.aspx?id=212001
http://www.extremetech.com/extreme/184828-intel-unveils-new-xeon-chip-with-integrated-fpga-touts-20x-performance-boost
http://www.extremetech.com/extreme/184828-intel-unveils-new-xeon-chip-with-integrated-fpga-touts-20x-performance-boost
http://www.extremetech.com/extreme/184828-intel-unveils-new-xeon-chip-with-integrated-fpga-touts-20x-performance-boost
http://www.extremetech.com/extreme/184828-intel-unveils-new-xeon-chip-with-integrated-fpga-touts-20x-performance-boost
http://www.extremetech.com/extreme/184828-intel-unveils-new-xeon-chip-with-integrated-fpga-touts-20x-performance-boost
http://www.anandtech.com/show/3738
http://www.anandtech.com/show/3738
http://www.anandtech.com/show/3738
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://www.top500.org/lists/2015/11/
http://www.top500.org/lists/2015/11/
https://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture
https://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture
https://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture
http://www.pcguide.com/ref/cpu/fam/g5P54-c.html
http://www.pcguide.com/ref/cpu/fam/g5P54-c.html

BIBLIOGRAPHY 91

[33] R. Smith, Intel’s ”Knights Landing” Xeon Phi Coprocessor Detailed,

2014.

URL http://www.anandtech.com/show/8217

[34] R. Smith, PCI Express 3.0: More Bandwidth For Compute, in: AMD

Radeon HD 7970 Review: 28nm And Graphics Core Next, Together As

One, 2011.

URL http://www.anandtech.com/show/5261

[35] A. Lal Shimpi, The GPU: Intel HD 5000 (Haswell GT3), in: The 2013

MacBook Air Review (13-inch), 2013.

URL http://www.anandtech.com/show/7085

[36] A. Lal Shimpi, Addressing the Memory Bandwidth Problem, in: Intel

Iris Pro 5200 Graphics Review: Core i7-4950HQ Tested, 2013.

URL http://www.anandtech.com/show/6993

[37] I. Cutress, Comparing DDR3 to DDR4, in: DDR4 Haswell-E Scaling

Review: 2133 to 3200 with G.Skill, Corsair, ADATA and Crucial, 2015.

URL http://www.anandtech.com/show/8959

[38] R. Smith, High Bandwidth Memory: Wide & Slow Makes It Fast, in:

The AMD Radeon R9 Fury X Review: Aiming For the Top, 2015.

URL http://www.anandtech.com/show/9390

[39] I. Cutress, R. Garg, A Deep Dive on HSA, in: AMD Kaveri Review:

A8-7600 and A10-7850K Tested, 2014.

URL http://www.anandtech.com/show/7677

[40] J. Lee, J. Kim, S. Seo, S. Kim, J. Park, H. Kim, T. T. Dao, Y. Cho,

S. J. Seo, S. H. Lee, S. M. Cho, H. J. Song, S.-B. Suh, J.-D. Choi, An

OpenCL Framework for Heterogeneous Multicores with Local Memory,

in: Proceedings of the 19th International Conference on Parallel Archi-

tectures and Compilation Techniques, PACT ’10, ACM, New York, NY,

http://www.anandtech.com/show/8217
http://www.anandtech.com/show/8217
http://www.anandtech.com/show/5261
http://www.anandtech.com/show/5261
http://www.anandtech.com/show/7085
http://www.anandtech.com/show/7085
http://www.anandtech.com/show/6993
http://www.anandtech.com/show/6993
http://www.anandtech.com/show/8959
http://www.anandtech.com/show/8959
http://www.anandtech.com/show/9390
http://www.anandtech.com/show/9390
http://www.anandtech.com/show/7677
http://www.anandtech.com/show/7677
http://doi.acm.org/10.1145/1854273.1854301
http://doi.acm.org/10.1145/1854273.1854301

92 BIBLIOGRAPHY

USA, 2010, pp. 193–204. doi:10.1145/1854273.1854301.

URL http://doi.acm.org/10.1145/1854273.1854301

[41] R. Garg, A Look at Altera’s OpenCL SDK for FPGAs, 2013.

URL http://www.anandtech.com/show/7334/

[42] SDAccel Development Environment, 2016.

URL http://www.xilinx.com/products/design-tools/software-

zone/sdaccel.html

[43] B. Crothers, OpenCL goes beyond Apple, 2008.

URL http://www.cnet.com/news/opencl-goes-beyond-apple/

[44] NVIDIA, NVIDIA Delivers Comprehensive OpenCL Support under

Snow Leopard, 2009.

URL http://www.nvidia.com/object/io_1252000156987.html

[45] T. Valich, AMD Ditches Close-To-Metal, Focuses On DX11 And

OpenCL, 2008.

URL http://www.tomshardware.com/news/AMD-stream-processor-

GPGPU,6072.html

[46] A. Lal Shimpi, D. Wilson, in: NVIDIA’s GeForce 8800 (G80): GPUs

Re-architected for DirectX 10.

[47] AMD, OpenCLTM and the AMD APP SDK v2.4, 2011.

URL http://developer.amd.com/resources/documentation-

articles/articles-whitepapers/opencl-and-the-amd-app-sdk-

v2-4/

[48] F. Jianbin, A. L. Varbanescu, H. Sips, A Comprehensive Performance

Comparison of CUDA and OpenCL.

[49] G. Brown, SYCL 1.2 Provisional Specification Announced, 2014.

URL https://www.codeplay.com/portal/sycl-12-provisional-

specification-announced

http://dx.doi.org/10.1145/1854273.1854301
http://doi.acm.org/10.1145/1854273.1854301
http://www.anandtech.com/show/7334/
http://www.anandtech.com/show/7334/
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.cnet.com/news/opencl-goes-beyond-apple/
http://www.cnet.com/news/opencl-goes-beyond-apple/
http://www.nvidia.com/object/io_1252000156987.html
http://www.nvidia.com/object/io_1252000156987.html
http://www.nvidia.com/object/io_1252000156987.html
http://www.tomshardware.com/news/AMD-stream-processor-GPGPU,6072.html
http://www.tomshardware.com/news/AMD-stream-processor-GPGPU,6072.html
http://www.tomshardware.com/news/AMD-stream-processor-GPGPU,6072.html
http://www.tomshardware.com/news/AMD-stream-processor-GPGPU,6072.html
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk-v2-4/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk-v2-4/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk-v2-4/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk-v2-4/
https://www.codeplay.com/portal/sycl-12-provisional-specification-announced
https://www.codeplay.com/portal/sycl-12-provisional-specification-announced
https://www.codeplay.com/portal/sycl-12-provisional-specification-announced

BIBLIOGRAPHY 93

[50] R. Reyes, SYCL Tutorial 1: The Vector Addition, 2014.

URL http://www.codeplay.com/portal/sycl-tutorial-1-the-

vector-addition

[51] B. Catanzaro, OpenCLTM Optimization Case Study: Simple Reduc-

tions, 2010.

URL http://developer.amd.com/resources/documentation-

articles/articles-whitepapers/opencl-optimization-case-

study-simple-reductions/

[52] Khronos OpenCL Working Group, The OpenCL Specification, 2012.

URL https://www.khronos.org/registry/cl/specs/opencl-1.2.

pdf

[53] P. Žužek, An Overview of sycl-gtx, 2016.

URL http://conf.researchr.org/event/PPoPP-2016/sycl-2016-

papers-an-overview-of-sycl-gtx

[54] L. Iwanski, SYCL-ing the ’smallpt’ Raytracer, 2015.

URL https://www.codeplay.com/portal/sycl-ing-the-smallpt-

raytracer

[55] K. Beason, smallpt: Global Illumination in 99 lines of C++, 2014.

URL http://www.kevinbeason.com/smallpt/

[56] G. Marsaglia, Xorshift RNGs, Journal of Statistical Software 8 (1)

(2003) 1–6.

http://www.codeplay.com/portal/sycl-tutorial-1-the-vector-addition
http://www.codeplay.com/portal/sycl-tutorial-1-the-vector-addition
http://www.codeplay.com/portal/sycl-tutorial-1-the-vector-addition
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-optimization-case-study-simple-reductions/
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://conf.researchr.org/event/PPoPP-2016/sycl-2016-papers-an-overview-of-sycl-gtx
http://conf.researchr.org/event/PPoPP-2016/sycl-2016-papers-an-overview-of-sycl-gtx
http://conf.researchr.org/event/PPoPP-2016/sycl-2016-papers-an-overview-of-sycl-gtx
https://www.codeplay.com/portal/sycl-ing-the-smallpt-raytracer
https://www.codeplay.com/portal/sycl-ing-the-smallpt-raytracer
https://www.codeplay.com/portal/sycl-ing-the-smallpt-raytracer
http://www.kevinbeason.com/smallpt/
http://www.kevinbeason.com/smallpt/

94 BIBLIOGRAPHY

	Povzetek
	Abstract
	Razširjeni povzetek
	Introduction
	Heterogeneous Computing
	Overview of a modern CPU
	Overview of GPU architectures
	Other processing units
	The interconnect
	Heterogeneous System Architecture

	Programming framework
	OpenCL
	SYCL

	Implementation
	Anatomy of a sycl-gtx application
	The OpenCL code generator
	Limitations
	Example code
	Porting the OpenCL example to sycl-gtx
	Additional remarks

	Tests
	smallpt
	Porting smallpt to sycl-gtx
	Testing environment
	Results

	Conclusion

