
University of Ljubljana Faculty of Computer and

Information Science

Vanč Levstik

Expressiveness and Scalability of

Semantic Web Systems

Graduate Thesis

UNIVERSITY STUDY PROGRAMME OF COMPUTER AND

INFORMATION SCIENCE

Mentor: doc. dr. Dejan Lavbič

Ljubljana 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Ljubljana Computer and Information Science ePrints.fri

https://core.ac.uk/display/151478481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Univerza v Ljubljani Fakulteta za računalnǐstvo in

informatiko

Vanč Levstik

Izraznost in skalabilnost sistemov

Semantičnega spleta

Diplomsko delo

UNIVERZITETNI ŠTUDIJSKI PROGRAM RAČUNALNIŠTVO IN

INFORMATIKA

Mentor: doc. dr. Dejan Lavbič

Ljubljana 2016

Copyright. The results of this Thesis are the intellectual property of the author and

the Faculty of Computer and Information Science, University of Ljubljana. Publication

or usage of the thesis results requires written consent of the author, the Faculty of

Computer and Information Science, and the supervisors.

Created and edited with LATEX.

The Faculty of Computer and Information Science issues the following thesis:

The availability of Semantic Web technologies is not an issue in academic environ-

ment, where they are mainly employed and researched. But there is a problem in

knowledge transfer and Semantic Web technologies employment in industry envi-

ronment. In the following thesis student should review the current state of the art

of systems supporting the development of semantically enriched applications and

evaluate systems in the context of suitability for use in the real industry problems.

The focus should be mainly on the relationship between the expressiveness and

the scalability of these systems. The analysis should be confirmed with a case

study. The most important representatives of the individual category of semantic

systems should be included in the evaluation process. Finally a critical assessment

and proposal for solution of Semantic Web system’s employment for solving real

industry problems is expected.

Fakulteta za računalnǐstvo in informatiko izdaja naslednjo nalogo::

Tehnologije Semantičnega spleta so že nekaj časa na voljo in v uporabi predvsem

v akademskem okolju, medtem ko je prenos omenjenih tehnologij v prakso omejen.

V okviru diplomske naloge preglejte trenutno stanje sistemov za podporo razvoju

semantično bogatih aplikacij in jih ovrednotite v kontekstu primernosti uporabe

za realne probleme. Osredotočite se predvsem na razmerje med izraznostjo in ska-

labilnostjo omenjenih sistemov ter svojo analizo potrdite na študiji primerov. V

evaluacijo vključite najbolj vidne predstavnike semantičnih sistemov iz posame-

znih kategorij pristopov in na koncu podajte kritično oceno in predlog za uporabo

semantičnih sistemov na realnih problemih v gospodarstvu.

Declaration of Thesis Authorship

Undersigned Vanč Levstik, with ID number 63080090, author of graduate thesis

with title:

Expressiveness and Scalability of Semantic Web Systems

I confirm that:

• I worked on the thesis myself under the mentorship of doc. dr. Dejan Lavbič,

• electronic issues of thesis, title (slov., eng.), abstract (slov., eng.) and key-

words (slov., eng.) same as in printed version of thesis

• I agree with publishing electronic version of thesis under ”Dela FRI” univer-

sity archive.

Ljubljana, 6. March 2016 Signed:

I would like to thank my family for all the support given during my studies.

Thanks goes to my colleagues that were there with me during study years. Big

thanks goes to my mentor Dejan Lavbič as well, for all support and ideas during

the writing of the Thesis.

Contents

Abstract

Povzetek

Razširjeni povzetek

1 Introduction 1

2 Semantic Web Technologies 3

2.1 Data Modeling . 4

2.2 Querying Data . 8

3 Semantic Systems Analysis 11

3.1 Systems Selection . 11

3.2 Jena . 12

3.3 RDFox . 14

3.4 GraphDB . 15

3.5 Cayley . 16

3.6 Elasticsearch . 17

3.7 PostgreSQL . 18

3.8 Comparison . 20

4 Case Study: Evaluating Expressiveness and Scalability 21

4.1 Problem Definition . 21

4.2 Test Cases . 22

CONTENTS

4.3 Test Data . 22

4.4 Systems Architecture and Setup . 23

4.5 Answering Problems . 28

4.6 Results . 40

5 Conclusions 45

5.1 Challenges . 46

5.2 Future work . 46

Bibliography 49

CONTENTS

Acronym Full meaning

RDF Resource Description Framework

RDFS Resource Description Framework Schema

OWL Web Ontology Language

SPARQL SPARQL Protocol and RDF Query Lan-

guage

URI Universal Resource Identifier

IRI Internationalized Resource Identifier

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

SQL Structured Query Language

DSL Domain Specific Language

CPU Central Processing Unit

ARQ Automatic Repeat Query

NoSQL Non Structured Query Language

XML EXtensible Markup Language

TURTLE Terse RDF Triple Language

W3C World Wide Web Consortium

CONTENTS

Abstract

In this thesis we focus on Semantic Web systems, their expressiveness and scala-

bility. We go through technologies and standards of Semantic Web and compare

their expressiveness. Our goal is to research and compare Semantic Web systems

and define which are suitable for solving real industry problems. After defining

several industry related use cases, we perform a comprehensive analysis and eval-

uation of selected systems on given problems. Results show that Semantic Web

systems are a good option for complicated problems needing high expressiveness.

Scaling shows to be a problem, so we propose hybrid solutions as the best choice

for industry problems.

Keywords: Semantic Web, scalability, expressiveness, Semantic Web Systems,

querying

Povzetek

V tem delu se posvetimo sistemom Semantičnega spleta, predvsem njihovi izra-

znosti in skalabilnosti. Pregledamo različne tehnologije in standarde Semantičnega

spleta ter primerjamo njihovo izraznost. Cilj diplomskega dela je raziskati sisteme

Semantičnega spleta in ugotoviti, kateri med njimi so primerni za uporabo v pro-

blemih industrije. Na koncu se posvetimo analizi nekaj izbranih sistemov in pre-

gledamo kako se obnašajo pri reševanju teh problemov. Rezultati pokažejo, da so

sistemi Semantičnega spleta dobra rešitev za zahtevne probleme ki potrebujejo vi-

soko izraznost. Sistemi imajo probleme pri skaliranju, zato za uporabo v industriji

predlagamo uporabo hibrida različnih sistemov.

Ključne besede: Semantični splet, skalabilnost, izraznost, sistemi Seman-

tičnega spleta, poizvedbe

Razširjeni povzetek

Uvod

Semantični splet se je pojavil kot koncept leta 2001 [3]. Splet je sestavljen iz

dokumentov, ki jih razumemo ljudje. Ideja semantičnega spleta pa je narediti

splet razumljiv tudi računalnikom. Semantični splet se ni popolnoma uveljavil

in je s strani nekaterih ocenjen kot neuspeh [44]. Semantični splet je sestavljen

iz različnih tehnologij in standardov. Tehnologije in sistemi semantičnega spleta

se lahko uporabljajo tudi v sistemih, ki ne temeljijo na njem. Primer sistema

v industriji, ki uporablja gradnike semantičnega spleta, je recimo Googlov graf

znanja.

V diplomskem delu razǐsčemo sisteme semantičnega spleta, ugotovimo kakšno

dodatno izraznost nam prinesejo in kako ta izraznost vpliva na skalabilnost sistema.

Naš cilj je raziskati ali so ti sistemi pripravljeni za uporabo v industriji in kateri

med njimi so najbolj primerni za uporabo. Pričakujemo, da nam vǐsja izraznost

prinese nižjo skalabilnost, zato razǐsčemo, kateri sistemi nam prinesejo najbolǰse

razmerje med izraznostjo in skalabilnostjo.

Tehnologije semantičnega spleta

V drugem poglavju razǐsčemo tehnologije Semantičnega spleta. Predstavimo gra-

dnike semantičnega spleta, pokažemo kako izgledajo podatki. Posvetimo se pred-

vsem vprašanju, kakšno izraznost nam prinesejo različne tehnologije, kot so RDF

format za zapis trojčkov [23], RDFS za opis grafa sestavljenega iz trojčkov [42]

in OWL za opis ontologij [22]. Ugotovimo, kako nam različni načini sklepanja s

CONTENTS

pomočjo OWL profilov pomagajo pri večji izraznosti. Predstavimo tudi različne

načine poizvedb podatkov, kjer je glavni način za poizvedbe v semantičnem spletu

preko povpraševalnega jezika SPARQL [45]. Opǐsemo tudi jezike poizvedb Gremlin

[19], Elasticsearch DSL [12] ter SQL [10].

Analiza sistemov

V tretjem poglavju se najprej lotimo izbire sistemov za podrobno analizo. Izberemo

po en sistem iz različnih skupin podatkovnih baz. Izberemo sistem Jena, [15]

kot primer odprtokodnega sistema ki ga trenutno uporabljajo številni razvijalci

in je podprt z mnogimi orodji. GraphDB [37] kot primer plačljivega sistema, ki

nam obljublja visoko izraznost. RDFox [39] je izbran kot sistem s poudarkom na

visoki skalabilnosti, kar je dokazal v obstoječih meritvah sistemov [36]. Cayley [8]

izberemo kot primer podatkovne baze grafov, ki ponuja visoko skalabilnost. Kot

primer klasične relacijske podatkovne baze izberemo PostgreSQL [20], predvsem

zaradi dobrih rezultatov v primerjavi z ostalimi relacijskimi podatkovnimi bazami

[47]. Elasticsearch [12] izberemo kot primer podatkovne baze dokumentov. Gre za

odprtokodno rešitev, ki je pogosto v uporabi v industriji in ima močno podporo

razvijalcev.

Sisteme smo bolj natančno analizirali in pregledali obstoječe raziskave in me-

ritve. Poleg izraznosti in skalabilnosti, smo pogledali tudi kako zahtevni so za

uporabo, ali so plačljivi, katera orodja so na razpolago za delo z njimi. Rezultati

so vidni na sliki 1, kjer je vǐsja vrednost bolǰsa v vseh dimenzijah.

Študija primera

V četrtem poglavju se glede na rezultate iz tretjega poglavja odločimo za podrob-

neǰso analizo treh sistemov. Izberemo sisteme RDFox, Cayley in Elasticsearch.

Problem definiramo kot postavitev sistema za odgovarjanje na geografska

vprašanja, kjer je naša domena celoten geografski svet.

Podatki, ki jih uporabimo v študiji primera, so pridobljeni iz podatkovnega

direktorija Geonames [51]. Gre za podatke o geografskih lokacijah, kot so države,

CONTENTS

Slika 1: Primerjava sistemov

mesta, gore, jezera... Celotni podatki obsegajo več kot 150 milijonov RDF trojčkov.

Pokažemo, kako smo postavili delovno okolje za te sisteme in kako pripravimo

sisteme, ko povečamo količino podatkov ter s tem potrebujemo večjo skalabilnost.

Opǐsemo tudi arhitekturo vsakega sistema in jih vizualiziramo.

Izberemo vprašanja, na katera želimo odgovoriti s pomočjo naših podatkov:

• želimo dobiti seznam vseh mest,

• želimo seznam vseh mest iz izbrane države,

• želimo seznam vseh geografskih lokacij iz izbrane občine,

• želimo seznam vseh geografskih lokacij v bližini izbranega mesta,

• želimo seznam vseh mest ki so X km oddaljena od naše lokacije.

Na vsa vprašanja poskusimo odgovoriti s pomočjo poizvedb v vseh 3 sistemih,

ki jih testiramo v naši študiji primera. Na vprašanje najprej odgovorimo na manǰsi

količini podatkov in nato še na večji. Pogledamo, ali je bil sistem zmožen odgovoriti

na problem, v kakšnem času mu je to uspelo na manǰsi in večji količini podatkov.

Vse poizvedbe tudi pokažemo in jih opǐsemo.

CONTENTS

Primerjamo vse rezultate in jih tudi združimo v odločitveni model. Ta nam

pomaga k odločitvi, kateri sistem je najbolj primeren za uporabo v industriji. Ska-

labilnost in izraznost imata vǐsjo utež v našem odločitvenem modelu. Pogledamo

tudi kako zahtevna je postavitev sistema, koliko časa potrebujemo, da v sistem

naložimo vse podatke in kako zahtevna je uporaba sistema ter pisanje poizvedb

za razvijalce. Elasticsearch, se izkaže kot najbolǰsa rešitev naše študije primera.

Rezultati odločitvenega modela, ki smo ga uporabili, so vidni v tabeli 1.

Tabela 1: Rezultati študije primera

Zaključek

V zaključku potrdimo našo hipotezo, da vǐsja izraznost prinaša tudi nižjo skala-

bilnost. Ugotovimo, da so sistemi Semantičnega zanimiva rešitev za probleme, ki

to visoko izraznost potrebujejo, medtem ko skalabilnost še vedno ni enakovredna

drugim sistemom z nižjo izraznostjo.

Kot zanimivo idejo za nadaljnje delo omenimo možnost implementacije hibri-

dnega sistema, ki bi združeval različne pod-sisteme z različno izraznostjo. Tako bi

CONTENTS

lahko probleme, ki ne potrebujejo polne izraznosti, dodelili skalabilnim sistemom z

nizko izraznostjo, kot je recimo Elasticsearch. Tiste s potrebo po visoki izraznosti

pa bi dodelili sistemu kot je RDFox. Sistem bi tako za uporabnika ali razvijalca

deloval kot en sam sistem, čeprav bi uporabljal različne podsisteme.

Chapter 1

Introduction

Semantic Web has first appeared as a term in 2001 [3]. World Wide Web consists

of documents that are mostly only readable by humans. Idea of Semantic Web is to

extend them and make them readable and easy to understand by computers as well.

Through Semantic Web technologies and solutions, we are able to add semantic

meaning to objects of the web and make meaningful connections between those

objects. ”Web 3.0” has often been another term for Semantic Web and possibilities

it would bring.

Semantic Web has standardised many technologies and standards, main ones

being Universal Resource Identifier (URI), Resource Description Framework

(RDF), and Web Ontology Language (OWL). These technologies help us express

semantics of resources on the web and connections between them. Transition of

web into Semantic Web has never really happened and all concepts are not fully

realised. There are notions that Semantic Web as a concept has failed [44].

Although technologies are not fully embraced by World Wide Web there are

many applications of it, that can be seen on the web and further. Large search

engines, such as Google, are extensively using it to enrich their results and make

meaningful semantic decisions about documents on the web. Term knowledge

graph is used to describe knowledge systems that are often using Semantic Web

technologies underneath. Ontologies and ontology languages are used by scientists,

e.g. at European Organization for Nuclear Research (CERN).

1

2 CHAPTER 1. INTRODUCTION

Semantic Web technologies are still not embraced by industry as a whole as

a solution to their problems. Scalability is often singled out as an unknown with

these systems and technologies. Industry is still avoiding Semantic Web systems

because scaling of them is not researched in full. High expressiveness often comes

with lower scalability and it can be hard to decide what level of system’s expres-

siveness is needed for different industry problems.

We want to research these technologies from an industry applications point of

view and investigate what problems we can solve with them. Thesis will focus on

Semantic Web systems, their expressiveness and how different levels of expressive-

ness affect scalability. Our goal is to research current state of the art solutions

and what levels of expressiveness can they offer us. We will leverage that against

scalability with help of existing research and benchmarks. We will focus on a few

selected solutions and test their expressiveness and scalability. We will try to de-

fine what level of expressiveness is needed for use in industry level problems and

what solutions are best fitted for these use cases.

Case study of selected systems on a real data and problems will enable us to

see, how these systems behave. We will try to decide if Semantic Web technologies

in current state can bring value to industry applications. Which ones have shown

to be best fitted for our selected use case.

In Chapter 2 we will look into layers of Semantic Web technologies from data

modeling and query answering point of view. Chapter 3 will focus on Semantic

Web systems, existing research and comparison of these systems. In Chapter 4

we will evaluate selected systems, their expressiveness and scalability through case

study and present our results with the help of a decision model. We will conclude

with Chapter 5 in which we will present our conclusions and discuss challenges

and future work.

Chapter 2

Semantic Web Technologies

Figure 2.1: Semantic Web Stack

In this chapter we will go through layers of Semantic Web depicted in Figure

2.1. Each layer brings some additional expressiveness, but as a consequence can

3

4 CHAPTER 2. SEMANTIC WEB TECHNOLOGIES

bring additional scalability problems.

2.1 Data Modeling

2.1.1 RDF

The Resource Description Framework (RDF) is a framework for expressing infor-

mation about resources [23].

RDF uses triples that allow us to make statements about resources. Each

resource in RDF graph is an IRI (Internationalized Resource Identifier), which is

an unique Unicode string that defines a resource [29]. IRIs are a generalization

of URIs (Uniform Resource Identifier) that are often used in the same context.

These statements (or triples) are formatted as:

< subject >< predicate >< object >

A statement is a relationship between two resources. Subject is related to object

with a relationship that is called property. All three parts construct a single RDF

triple.

RDF can be serialized in many different formats, main ones being:

• Turtle and TriG

• JSON-LD (JSON based)

• RDFa (for HTML embedding)

• N-Triples and N-Quads (human readable line-based exchange formats)

• RDF/XML

We will not focus on them specifically, but all of them are equal in terms of

expressiveness.

An example of an RDF triple which tells us that University of Ljubljana is of

”type” Universities in Slovenia 1:

1Additional prefixes in query examples are left out for better readability

2.1. DATA MODELING 5

U n i v e r s i t y o f L j u b l j a n a rd f : type U n i v e r s i t i e s I n S l o v e n i a .

2.1.2 RDFS

RDF Schema provides a data-modelling vocabulary for RDF [7]. RDF Schema

semanticaly extends RDF. It allows us to describe groups of related resources and

relationships between them. Its class and property system are in many cases similar

to object-oriented programming principles [42]. There are cases where RDF on its

own cannot model our relations and RDFS can do it using constructs such as:

• rdfs : subClassOf

• rdfs : range

• rdfs : domain

Main functionalities that RDF Schema adds are subclass hierarchy, property hier-

archy and domain and range definitions of these properties [1]. That can still be

quite limited for many use cases.

An example of RDFS triple that extends on previous RDF triple:

Un ive r s i tyOfL jub l jana rd f : type U n i v e r s i t i e s I n S l o v e n i a .

U n i v e r s i t i e s i n S l o v e n i a r d f s : subClassOf Un ive r s i ty .

We can observe that we get the information about hierarchy, from which we

can get the information that University of Ljubljana is also a University, as all

Universities in Slovenia are subclasses of University.

2.1.3 OWL

To increase expressiveness OWL Web Ontology language (OWL) has been defined

by W3C. OWL uses RDF Schema and extends it with additional features that can

add expressiveness. Some of extensions that OWL adds are:

6 CHAPTER 2. SEMANTIC WEB TECHNOLOGIES

• Local scope of properties

• Disjointment of classes

• Boolean combinations of classes

• Cardinality restrictions

• Special characteristics of properties

There are different OWL 2 profiles as defined by W3C OWL Working Group [22].

We will focus on OWL 2 profiles in this thesis, shortly mentioning OWL 1 profiles

as well.

An example of our data extended with OWL triple which adds the information

that resource URI UniversityOfLjubljana talks about the same resource as another

resource URI for University of Ljubljana in Wikidata:

Un ive r s i tyOfL jub l jana rd f : type U n i v e r s i t i e s I n S l o v e n i a .

U n i v e r s i t i e s i n S l o v e n i a r d f s : subClassOf Un ive r s i ty .

Un ive r s i tyOfL jub l jana owl : sameAs wik idata : Q1377 .

That allows us to get additional information about same resource from different

URI, therefore giving us more information and increased expressiveness.

OWL Full

Entire OWL language is called OWL full and uses all of the OWL language prim-

itives. It is fully upward compatible with RDF and RDFS, syntactically and

semantically [1]. Expressive power of it is so large that it is virtually impossible

to achieve complete and efficient use of reasoning.

OWL 2 EL

The OWL 2 EL profile is a profile suitable for applications using ontologies with

large number of properties and classes. It can capture expressive power of such on-

2.1. DATA MODELING 7

tologies and provide consistency, class expression subsumption and instance check-

ing in polynomial time [34].

OWL 2 QL

The OWL 2 QL profile is designed so that it allows complete query answering in

LOGSPACE related to the size of data. It provides many main features to ex-

press conceptual models, like UML (Unified Modeling Language) and ER (Entity-

Relationship) diagrams [34]. Efficient query rewriting can also be used to achieve

using OWL 2 QL on relational (SQL) databases [41].

OWL 1 DL and OWL Lite

We mention OWL 1 DL profile as well which is also a subset of full OWL profile

and can be counted as one of OWL 2 profiles. OWL 1 DL places a number of

constraints on OWL language. It requires separation between classes, data types

and other property types, individuals, data values and the built-in vocabulary

[32]. That means that most RDF(S) vocabularies cannot be used with OWL 1

DL. OWL Lite has all restrictions of OWL 1 DL and also forbids usage of some

additional constructs. Idea of OWL Lite is being the minimal possible subset that

achieves useful expressiveness and giving high efficiency.

OWL 2 RL

The OWL 2 RL profiles can be used for applications that require highly scalable

reasoning without losing too much expressiveness. It is somewhere between OWL

2 and RDFS at expressiveness level [34]. It is a profile that stands out as one

that can be used in industry-level applications using reasoning [52]. There are also

existing use cases of using it through relational database back-end and achieving

high efficiency and scalability [30].

8 CHAPTER 2. SEMANTIC WEB TECHNOLOGIES

Relational and document store

We also want to explore using relational and document store data for storing se-

mantic web data. Relational and document stores are scalable and well tested in

real industry environments. There is no reasoning provided and loss of expressive-

ness, compared to using layers of Semantic Web standards, is expected.

2.2 Querying Data

2.2.1 SPARQL

SPARQL 1.1 (SPARQL Protocol and RDF Query Language) is a set of specifica-

tions that provide languages and protocols to query and manipulate RDF graph

content on the Web or in an RDF store [21]. Latest version of SPARQL is 1.1

which has all the features of 1.0 version as well. It is most used querying language

for Semantic Web data. SPARQL can be used over data stored in XML, JSON,

CSV or TSV format and can cover different level of expressiveness mentioned in

previous section. There are also subsets of SPARQL which have lower expressive-

ness but better scalability, SPARQL-LD can be used for OWL-LD specific data

[45].

Example SPARQL query that would return names of all universities in Slovenia:

SELECT ?name

WHERE {
? u n i v e r s i t y rd f : type U n i v e r s i t i e s I n S l o v e n i a .

? u n i v e r s i t y name ?name

}

2.2.2 Gremlin

Gremlin is a graph traversal machine and language designed, developed, and dis-

tributed by the Apache TinkerPop project [43]. Gremlin enables both declarative

2.2. QUERYING DATA 9

and imperative querying. It promises high scalability and possibilities of graph

traversal. Gremlin is not directly related to Semantic Web, but promises similar

expressiveness using same data-sets.

Query example with same results as SPARQL example:

g .V()

. Has (” rd f : f e a t u r e C l a s s ” ,” U n i v e r s i t i e s I n S l o v e n i a ”)

. Out(”name ”) . Al l ()

2.2.3 Elasticsearch Query DSL

Query DSL is a query language used with Elasticsearch. Elasticsearch [12] is a

search server operating on document data, that is installed using Apache Lucene

as back-end [31]. It supports leaf queries, that can be used to look for particular

value on particular field. More complex problems can be answered using compound

queries which can combine different leaf queries to give us more expressive power.

Elasticsearch Query DSL does not operate on triples, but on document stored

data only. Query with similar results to previous examples would be:

{
” query ” : {

”match” : { ” rd f : type ” : ” U n i v e r s i t i e s I n S l o v e n i a ” }
} ,

” f i e l d s ” : [” name ”]

}

2.2.4 SQL

SQL is a query language designed for managing data held in a relational database

[10]. SQL can also be used for querying RDF/OWL data with query rewriting [9].

SQL is a well known and widely used language. Similar to Elasticsearch Query

10 CHAPTER 2. SEMANTIC WEB TECHNOLOGIES

DSL, SQL is not a language written for Semantic Web. It can provide very robust

and scalable queries that have less semantic expressiveness than SPARQL.

Similarly to Elasticsearch SQL does not operate on triples, SQL operates over

relational data and query similar to previous ones would use two SQL tables and

look like this:

SELECT u n i v e r s i t i e s . name

FROM u n i v e r s i t i e s

LEFT JOIN c o u n t r i e s

ON u n i v e r s i t i e s . count ry id=c o u n t r i e s . id ;

WHERE c o u n t r i e s . name=’ S loven ia ’ ;

Chapter 3

Semantic Systems Analysis

In this chapter we will focus on comparing different systems for storing and query-

ing semantic data. We will compare them on expressiveness they can provide,

focusing on previous chapter. Scalability will be another dimension on which we

will compare them, using existing benchmarks and other testing that has been

done. We will add a third dimension, ease of use, that will focus on ease of de-

velopment, access to source code, current tooling available and support provided.

At the end of the chapter we will select a few of the most promising solutions and

include them in our case study.

3.1 Systems Selection

In selecting the systems for our analysis we reviewed previous research work and

also wanted to get a good split among different kinds of databases.

We wanted to select a widely used and well understood open source system

with support for different Semantic layers. Choices that stand out are Jena and

Virtuoso [48], we opted for Jena for the better modularity it provides as well as

strong support behind it from Apache project [15].

Proprietary Semantic Web solutions was another group we wanted to look into.

Allegrograph [25], Oracle [38] and GraphDB [37] were choices here. GraphDB

was chosen for providing better expressiveness options than other two systems [33].

11

12 CHAPTER 3. SEMANTIC SYSTEMS ANALYSIS

Semantic Web system with high focus on scalability was another type we

wanted to explore. RDFox [39] was chosen for its good results in existing bench-

marks [36].

Graph databases with no direct support for layers and technologies of Semantic

Web were another group. Titan [2], Cayley [8] and Neo4j [50] were our main

choices here. We opted for Cayley because of being open-source and used by

Google knowledge graph which promises high scalability [24].

We wanted to get a relational database system for their wide usage among

developers. PostgreSQL [20] was a clear choice here as it is open source, widely

used, and showing good results in various scaling benchmarks [47].

Document store systems was another one we want to explore. Elasticsearch

[12] being a choice here for its high scalability, ease of use and widespread use

among developers [18].

3.2 Jena

Jena is a Java framework that can be used for building Semantic Web applications.

There are different back-end solutions that can be used for storing data. Figure 3.1

shows that Jena supports different back-ends. Jena SDB [14] is a solution using

relational databases as a back-end, but it is not being actively developed anymore.

Jena TDB [15] is a native triple store that can be used as part of Jena framework or

also exposed to external application using Fuseki component. JenaTDB promises

to be better supported and has better focus on semantic expressiveness.

3.2.1 Expressiveness

Jena has support for RDFS and more memory intensive OWL reasoning. Pellet

[46] with OWL DL reasoning can also be used for extending Jena functionali-

ties. Querying is supported through ARQ framework that supports most of the

SPARQL 1.1 features.

3.2. JENA 13

Figure 3.1: Jena Architecture

3.2.2 Scalability

JenaTDB (and JenaSDB) is not especially fast and scalable even when using only

RDFS without any extensions with OWL [5]. There are possibilities for extend-

ing Jena using H-base as a back-end [27]. Benchmarks show that on higher scale

of data being used, JenaTDB can produce memory problems which H-Base im-

plementation can work with. There is also possibility of using OWL DL in this

version, making it more scalable at high expressiveness.

3.2.3 Ease of Use

Jena is written in Java programming language that is widely used and adopted by

developers. Project is supported by Apache Foundation and open sourced, giving

it strong tooling and on-going support and trust.

14 CHAPTER 3. SEMANTIC SYSTEMS ANALYSIS

3.3 RDFox

Figure 3.2: RDFox Architecture

RDFox is a highly scalable in-memory RDF triple store that supports shared

memory parallel datalog reasoning [39]. Figure 3.2 shows the engine part of RDFox

that is written in C++ programming language. It shows how different parts for

reasoning, querying, and storing data are structured.

3.3.1 Expressiveness

RDFox supports RDF reasoning and can also support OWL 2 RL profile reasoning

which gives it more expressiveness, although not getting the full OWL 2 expres-

siveness [36]. OWL 2 RL should give us expressiveness that most of the queries

need. Queries are done with SPARQL, there is support for most of the SPARQL

1.1 features as well.

3.3.2 Scalability

RDFox has shown high scalability capabilities, compared to DBRDF and OWLIM-

Lite [40]. Handling and using parallelization and memory to full extent has shown

to be used very well in RDFox [35].

3.4. GRAPHDB 15

3.3.3 Ease of Use

RDFox is developed and supported by University of Oxford. It is copyrighted

under academic license and open sourced. Written in C++, but supported with

bindings in different programming languages such as Java and Python. As system

is quite new, tooling and developer familiarity is not as strong as at some other

systems.

3.4 GraphDB

Figure 3.3: GraphDB Architecture

GraphDB or OWLIM as it used to be called, is described as a family of semantic

repositories that provide storage, inference and novel data-access features delivered

in a scalable, resilient, industrial-strength platform [28].

16 CHAPTER 3. SEMANTIC SYSTEMS ANALYSIS

3.4.1 Expressiveness

GraphDB offers different levels of expressiveness. It can be used with RDFS only

reasoning, OWL 2 RL or OWL 2 QL with increasing expressiveness but also de-

creasing performance [28].

3.4.2 Scalability

Different versions of OWLIM have shown to be one of the best choices for scalability

among different triple store solutions [33].

3.4.3 Ease of Use

GraphDB is closed source and company supporting it offers different editions from

free to enterprise version [37]. There are different tools available and semantic

service as a suite is provided as well. Figure 3.3 shows engine architecture of

GraphDB, we can observe architecture supports modularity with plugins as well.

3.5 Cayley

Cayley is an open-source graph inspired by the graph database supporting Google

knowledge graph [8]. Its goal is to be something in the middle of classic triple

store and scalable NoSQL graph databases. It is not directly connected to spe-

cific database back-end and allows for choosing different back-ends that supports

different scalability and query speed needs.

3.5.1 Expressiveness

Cayley can load RDF valid data, but does not have support for any semantic

reasoners as it is using its own query language that builds on Gremlin query

language [19]. Gremlin operates on triples, but it does lose on some additional

expressiveness that is provided by Semantic Web reasoning.

3.6. ELASTICSEARCH 17

3.5.2 Scalability

Cayley promises high speed, as query language it uses has shown to be fast and

scalable [24]. It can use different back-ends which allows best one to be chosen for

scalability needs and allows further improvements to scalability later.

3.5.3 Ease Of Use

Cayley is fully open source and supported by Google. It is written in Go pro-

gramming language and supports multiple databases as back-end. It is closely

connected with Google knowledge graph, giving it strong support and promise.

3.6 Elasticsearch

Elasticsearch is widely used in different scalable web applications. It is not used

as often in Semantic Web applications, but there are successful use-cases that are

using it for that as well [49]. Elasticsearch is a search server that can be used on

top of data. There are existing examples of Elasticsearch being used for indexing

Semantic Web data [26].

3.6.1 Expressiveness

Figure 3.4: Elasticsearch Architecture

18 CHAPTER 3. SEMANTIC SYSTEMS ANALYSIS

Elasticsearch is based on documents and not directly tied to any back-end or

reasoning expressiveness it can use. As seen in Figure 3.4 database is storing data,

which is then indexed to Elasticsearch. It can be used with relational data or

RDF/OWL triple data. As it is not directly connected and created for Semantic

Web, there is a loss of expressiveness expected. It operates on JSON files and does

not use Semantic Web query languages or reasoning.

3.6.2 Scalability

Elasticsearch is highly scalable and widely used in various applications [12]. As we

lose some expressiveness there is a possibility of queries becoming more complicated

than queries answering same problems in more expressive systems.

3.6.3 Ease of Use

Elasticsearch is fully open sourced and supported by Elastic. It is written in Java

using Apache Lucene[13] for search. It is easy to set up. Elasticsearch is already

widely used among developers and there is strong tooling and documentation be-

hind it. Elasticsearch is available through Software As A Service platforms as well

such as AWS Elasticsearch 1

3.7 PostgreSQL

PostgreSQL is an open source client/server relational database. It compares well

to other major commercial databases such as Oracle, Sybase, DB2 [11]. Figure

3.5 show us simplified architecture of the database, we can see that it operates on

shared memory and fetches data from disk when needed.

3.7.1 Expressiveness

PostgreSQL as a relational database does not support any standards of Semantic

Web technologies. RDF notation or any kind of OWL reasoning is not available.

1https://aws.amazon.com/elasticsearch-service/

3.7. POSTGRESQL 19

Figure 3.5: PostgreSQL Architecture

SQL as a query language is available to us and can help us make relational queries.

There is no concept of triples, so similarly to Elasticsearch we are losing expres-

siveness offered by SPARQL and reasoning.

3.7.2 Scalability

Many benchmarks and tests has shown PostgreSQL to be one of the fastest and

most scalable relational databases [11]. With help of different specific indexes,

query speed can be significantly scaled and increased as well.

3.7.3 Ease of Use

PostgreSQL is open source and supported by development group behind it. It is

highly expandable and there are bindings available for many major programming

languages. PostgreSQL is a SQL based query language, which is used widely by

developers. There are many tools available for handling the database and wide

group of users provide lots of existing knowledge about PostgreSQL uses.

20 CHAPTER 3. SEMANTIC SYSTEMS ANALYSIS

3.8 Comparison

Figure 3.6: Semantic Systems Comparison

We graded the systems against each other ourselves. Results of our analysis

are visualised in Figure 3.6. Results are normalized on a scale of 1 to 10, with 10

being highest score relative compared to other systems.

We can observe both Jena and RDFox having highest expressiveness. While

Jena gives us ease of use, RDFox scores much higher at scalability potential.

GraphDB provides a bit lower expressiveness, average scalability, ease of use is

hampered by pricing and closed source model.

Elasticsearch promises highest scalability potential and highest ease of use as

well, while having lower expressiveness. PostgreSQL is scalable as well, but trails

Elasticsearch, while providing similar level of expressiveness and ease of use.

Cayley has shown to be in the middle on all three scores and is another inter-

esting candidate for case study research.

Chapter 4

Case Study: Evaluating

Expressiveness and Scalability

Idea of the case study is to compare selected solutions presented in previous chap-

ter. We will compare them based on a simulated real use case and focus on different

solutions’ expressiveness and scalability. Apart from scalability and expressiveness

we will take a look at some other factors such as how difficult it is to prepare a

system, how long it takes for data to be loaded, how complex the query language

used is. Our goal is to research and select the system that has the best combi-

nation of mentioned factors. System that could be best applied to real industry

problems.

4.1 Problem Definition

We are trying to present geographical information and data connected to it in a

meaningful manner. We want to have a knowledge graph about geography with

focus on cities with which we can make useful and expressive queries. Queries need

to be sufficiently quick and scale well with increasing quantity of data.

21

22
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

4.2 Test Cases

From analysis in previous chapter we have selected three systems that we will focus

on and see how they can be used to solve our problem.

• RDFox as a native triple store solution, which we can use with different lev-

els of expressiveness and has shown high scalability in existing benchmarks.

• Elasticsearch as it is proven to be highly scalable, although possibly with

losing expressiveness. We want to try Elasticsearch with RDF/OWL data

as base.

• Cayley as a graph database that has high focus on scalability and can give

us lots of expressiveness through its own query language as well.

4.3 Test Data

For test data we will use open source geographical GeoNames data [17] which

can be used semantically with GeoNames ontology [51]. We will use subsets of

data for different tests and also extend it with additional rules where we would

find appropriate. Full data-set contains about 150 million RDF triples which will

enable us to research some high scalability problems. That amounts to 10,113,356

features, feature in this context is a single geographical entity such as city, country,

beach, lake... We obtained the data using the RDF dump provided by GeoNames
1

An example Geonames entry for city of Ljubljana2:

1http://download.geonames.org/all-geonames-rdf.zip
2Reachable at http://sws.geonames.org/3196359/about.rdf

4.4. SYSTEMS ARCHITECTURE AND SETUP 23

<gn:Feature rd f : about=” h t t p : // sws . geonames . org /3196359/ ”>

. . .

<gn:name>Ljub l jana</gn:name>

<g n : f e a t u r e C l a s s r d f : r e s o u r c e=” ht t p : //www. geonames . org / onto logy#P”/>

<wgs84 po s : l a t>46.05108</ wgs84 po s : l a t>

<wgs84 pos : l ong>14.50513</ wgs84 pos : l ong>

<gn :parentFeature r d f : r e s o u r c e=” h t t p : // sws . geonames . org /3239318/ ”/>

<gn:parentCountry r d f : r e s o u r c e=” h t t p : // sws . geonames . org /3190538/ ”/>

<gn:nearbyFeatures

r d f : r e s o u r c e=” h t t p : // sws . geonames . org /3196359/ nearby . rd f ”/>

<r d f s : s e e A l s o r d f : r e s o u r c e=” h t t p : // dbpedia . org / r e sou r c e / Ljub l jana ”/>

. . .

</ gn:Feature>

We only show a subset of more than 100 triples that give us information about

this feature. We can observe some basic predicates such as name, latitude and

longitude. Some of the other interesting predicates are parentFeature which tells

us what is the first parent of this feature, seeAlso which gives us a link to another

URI with more information about our resource and nearbyFeatures where we can

see what features are close to selected feature.

4.4 Systems Architecture and Setup

Basic architecture of our systems is shown in Figure 4.1. We start from Geonames

data which we have to convert to appropriate format depending on the system

being used. We load the data into system’s back-end data-store where it is per-

sisting. Data is reasoned or indexed in the next step into the part of system that

does the query answering. Clients and in our case tests conducted are then making

queries to the query answering part of the system, which is the only part of the

system available to clients.

For all the tests we were using machine with OS X operating system on 2.6

GHz Intel Core i5, 16 GB 1600 MHz DDR3 main memory and 256 GB SSD hard

24
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

Figure 4.1: Systems Architecture

drive. Using the tool RDFLib 3 we were able to convert the data to be used in

different formats and for different systems.

RDFox

Figure 4.2: RDFox Architecture

RDFox only supports data stored in TURTLE format, so we needed to convert

it from RDF/XML. We are using OWL 2 RL profile for reasoning, which promises

to give us right balance between expressiveness and scalability. As RDFox is still

under development, there were manual steps that needed to be taken to set it up

3https://github.com/RDFLib

4.4. SYSTEMS ARCHITECTURE AND SETUP 25

fully. As listed in Figure 4.2 we loaded the data to RDFox datastore in TURTLE

format, data was then reasoned to SPARQL endpoint where it was available for

queries from clients.

Elasticsearch

Figure 4.3: Elasticsearch Architecture

Elasticsearch only supports JSON format, converting data to JSON-LD was a

slow task that could have an effect on scalability if use-case would require lots of

conversions between formats. ElasticSearch supports multiple back-ends as well

as a starting point for indexing. As seen in Figure 4.3 we selected MongoDB as

a scalable key-value store. Multiple Elasticsearch nodes can be used for query

answering, we provide details on that in 4.4.1.

Cayley

Cayley supports N-quads format only, which needed additional conversions using

RDFLib. There are also multiple databases available to be used as back-end for

Cayley. As listed in Figure 4.4 we opted for Bolt [6] as a back-end.

4.4.1 Systems Scaling

Each of the systems have different techniques to deal with scaling. When we

performed the evaluation on smaller amount of triples we used the default settings

26
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

Figure 4.4: Cayley Architecture

and configuration that made minimal use of available hardware. For larger data-

set we employed different scaling capabilities on both loading/reasoning level as

well as query answering level.

• RDFox has support for different Datastores with increase in scale [36]. For

the smaller data-set we used ”Sequential” store type were reasoning is done

with one thread, and also only one query at a time should be issued. It can

store up to 248 triples. For larger dataset we used ”ParallelComplexWW”

store type which employs a complex indexing scheme designed for highly-

efficient data access. It can store up to 248 resources and up to 248 triples.

• Cayley is using in-memory, ephemeral store for small data set. With in-

crease scale of data we switched to Bolt database which promises high per-

formance on large amounts of data [6]. With Bolt we also get multi-threading

support for querying and loading data which enables us to scale on increased

data size. Cayley should be able to use much more of available hardware

using that datastore.

• Elasticsearch supports many options to scale with increasing data size.

Elasticsearch can operate on multiple nodes and each node can operate on

multiple shards [18]. Each shard contains different part of data, which en-

ables better support for parallelization and better use of available CPU time

4.4. SYSTEMS ARCHITECTURE AND SETUP 27

and memory. For smaller subset of data we operated on 1 node containing

1 shard. When we moved to full scale of data we moved to 4 nodes, each

of them containing 1 shard of data. We also gave the process more memory

available with increasing heap size for the underlying Java process.

We designed the scaling process on all systems in such a way, that adding

additional resources such as CPU and memory is possible and trivial afterwards.

Although we could not fully set up same environments as big industry resources

can provide, we tried to simulate scaling with similar configurations as would be

in effect using those resources.

4.4.2 Data Load Times

Before we started testing query execution, we had to load all the data in RDF

form to our systems. We presumed that data is already in the format that the

system can use and didn’t include conversion in load times. We still include any

internal conversion to internal data types if applicable.

Listed below in Table 4.1 are times needed for data loading to complete. Any

post-load processing such as reasoning is also included in load times. We are

measuring time until the system is ready to start receiving and answering queries.

Table 4.1: Load times

10,000 triples 150 mio triples

RDFox 0.1 ms 55 s

Cayley 1.2 s 585 min

ElasticSearch 5 s 122 min

RDFox has shown to be very quick, making good use of multi-threading for

loading and reasoning in full data-set, while both ElasticSearch and Cayley have

needed much longer, especially Cayley has shown that load and reasoning time is

very slow and does not scale well with increasing amount of data. Elasticsearch

load time is a split between preparing data in MongoDB and indexing it to Elas-

28
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

ticsearch. It is also worth mentioning that on full data-set, Elasticsearch was using

multiple nodes and shards, which made loading times slower as expected.

4.5 Answering Problems

We will go through examples of questions we want to answer with our system

and try to see if all systems in test are able to give us enough expressiveness to

answer each problem. As RDFox promises us highest level of expressiveness we will

construct SPARQL query used in RDFox first. We will then try to reach the same

level of expressiveness in both Cayley using Gremlin queries and ElasticSearch

using ES DSL queries. All the query times will be compared at different scale of

data used. Query times were measured using Apache Jmeter 4. We made 1000

queries per each problem and measured an average of all timings to get the final

time that is presented in our thesis.

4.5.1 List all cities by name

First task for our system is a query that returns all the cities and return their

names. We should not need high level of expressiveness for this query, we presume

to observe problems with scalability as number of results should be very high.

• RDFox SPARQL query: 5

PREFIX gn : <http ://www. geonames . org / onto logy#>

SELECT ?name WHERE {
? c i t y gn : f e a t u r e C l a s s gn :P. ? c i t y gn : name ?name}

}

4http://jmeter.apache.org/
5We will be omitting prefixes on subsequent queries for easier readability

4.5. ANSWERING PROBLEMS 29

• Cayley Gremlin query: 6

g .V() .

Has (” http ://www. geonames . org / onto logy#f e a t u r e C l a s s ” ,

” http ://www. geonames . org / onto logy#P”)

. Out(” http ://www. geonames . org / onto logy#name ”) . Al l ()

• ElasticSearch DSL query:

{
” query ” : {

”match” : { ” f e a t u r e C l a s s ” : ”P” }
} ,

” f i e l d s ” : [” name ”]

}

All three systems are able to return as the answer in a single query, queries are con-

cise and easy to understand as well. Only basic knowledge of Geonames ontology

is required to construct the query.

Table 4.2: List all cities query

10,000 triples 150 mio triples 150 mio with

pagination

RDFox 122 ms 575 s 409 ms per page

Cayley 140 ms 586 s /

ElasticSearch 30 ms 58 s 51 ms per page

Table 4.2 shows times taken for queries on all three systems. Interestingly

RDFox is performing quicker than Cayley, although both do not scale well on this

6See footnote 5

30
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

problem and query times on full data sets are very high. As expected Elasticsearch

has shown to be more scalable by a factor of 10 on full data set.

On full data set we also tested queries with pagination, using limit and offset.

Results on that are also part of table 4.2. Elasticsearch has been almost as per-

formant as on a small dataset. RDFox has been slower, but still scaled well, while

Cayley does not have any support for advanced pagination.

4.5.2 What cities are part of country X

We want to select all cities from selected country and list the city names. We

start the problem from the name of the country, for example purposes we will use:

”Republic of Slovenia”.

• RDFox SPARQL query

SELECT ? c i t y ?name WHERE {
? c i t y gn : f e a t u r e C l a s s gn :P .

? c i t y gn : parentCountry ? country .

? c i t y gn : name ?name .

? country gn : name ” Republ ic o f S loven ia ” }

• Cayley Gremlin query:

var country = g .V()

. Has (”name” , ” Republ ic o f S loven ia ”) . ToValue

g .V() . Has (” f e a t u r e C l a s s ” ,”P”)

. Has (” parentCountry ” , country)

. Out(”name ”) . Al l ()

4.5. ANSWERING PROBLEMS 31

• ElasticSearch DSL query On Elasticsearch we have to do a sub-query

first to get the right country code of our country:

” query ” : {
” bool ” : {

”must ” : [

{”match” : {” f e a t u r e C l a s s ” : ”A”}} ,

{”match” : {”name” : ” Republ ic o f S loven ia ”}} ,

]} ,

” f i e l d s ” : [” countryCode ”]}

We can then use results from the first query to construct the second query,

that returns us the results we want:

” query ” : {
” bool ” : {

”must ” : [

{”match” : {” f e a t u r e C l a s s ” : ”P”}} ,

{”match” : {” countryCode ” : ” SI ”}}
]} ,

” f i e l d s ” : [” name ”]}

On this problem we can see the increased expressiveness of SPARQL as it only

needs one query to get the answer. We had to use a sub-query to get the same

result in Cayley through Gremlin queries. For Elasticsearch query, we needed to

know what the country code was first, which had to be achieved by making another

query before-hand.

32
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

Table 4.3: Cities from selected country 7

150 mio triples 150 mio with paging

RDFox 921 ms 421 ms per page

Cayley 150 ms /

ElasticSearch 20 ms 15 ms per page

RDFox has shown to be slow on big amount of data, Cayley being quicker by

a factor of 10, while Elasticsearch by a factor of 100x. With paging RDFox scaled

better. Cayley as mentioned before has no paging capabilities. Elasticsearch has

shown to scale really well, especially with using paging queries it is by an order of

magnitude quicker than other solutions.

4.5.3 Features from selected municipality

That problem was not solvable with basic RDF data provided by Geonames dump.

Available data only enabled us to get the location of RDF document which contains

information about the children features of each feature. For this problem we can

use the concept of Linked Data which allows us to create typed links between data

from different sources [4].

• RDFox SPARQL Query First query gives us the city URI and linked

document for children features URI that we can later use:

SELECT ? c i t y ?document WHERE {
? c i t y gn : f e a t u r e C l a s s gn :A

? c i t y gn : ch i l d r enFea tu r e s ?document .

? c i t y gn : name ” Ljub l jana . }

In this example the document is

http://sws.geonames.org/3239318/contains.rdf . RDFox tooling allows us to

710,000 triples results are omitted from here on, as we focus on results when we scale data

4.5. ANSWERING PROBLEMS 33

dynamically extend the data with new triples we got from the document.

Second query after we extend the data with new data returns us names of

all of the children features:

SELECT ?name WHERE {
? f e a t u r e gn : parentFeature

http :// sws . geonames . org /3239318

? f e a t u r e gn : name ?name . }

• Cayley Gremlin query:

Similarly to the RDFox query we need to extend the data from external

sources first. We get the document with the following query:

g .V() . Has (” f e a t u r e C l a s s ” ,”A”)

. Has (”name” , ” Ljub l jana ”)

. Out(” parentFeatures ”) . A l l ()

Cayley has no native support for extending data with external linked data,

so for adding information from a separate document we had to provide a

manual script for updating data, it could not have been done dynamically

mid-query. Final query we make for getting all ”parentFeatures” is:

g .V()

. Has (” parentFeature ” , ” http :// sws . geonames . org /3239318”)

. Al l ()

• ElasticSearch DSL query Elasticsearch does not support triple notation

or has any connection with triple data. Children features of municipality is

a problem that Elasticsearch with our data set does not have enough expres-

siveness for solving. Data and index would need to be extended manually to

support it.

34
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

Table 4.4: Features from selected municipality

Getting linked docu-

ment (150 mio triples)

Linking document and

query

RDFox 421 ms 634 ms + 2.1 s

Cayley 140 ms 234 ms + 6 s

ElasticSearch / /

Both RDFox and Cayley could solve a problem using linked data document.

Results shown in 4.4 show us that both were quick with retrieving the document

used for extending data. Extending data was dynamic and faster in RDFox. Any

quantifiable measures here are depending on external resources, in this case on

Geonames repository, so they can depend on external data-set capabilities.

For Cayley we had to create a bespoke script that helped us reload the system

with new data, which made it not very scalable on multiple queries.

Elasticsearch was unable to solve that problem, so there are no timings provided

for it.

4.5.4 Get features that are near the selected city

Similarly to the previous problem, that problem is also solvable using Linked Data

principles, as Geonames ontology has information on nearby features as well. As

”nearby” can be defined by distance and not just ontology defined predicates, there

are other ways of solving that problem. It is worth noting that Linked Data data-

sets are not always reliable and they depend on data quality ensured by data-set

provider.

4.5. ANSWERING PROBLEMS 35

• RDFox SPARQL Query Similarly to 4.5.3 we first need to extend our

data with linked document. We are omitting that part here. Second query

after we extend the data with new data, returns names of all nearby features:

SELECT ?name WHERE {
? f e a t u r e gn : nearby

http :// sws . geonames . org /3239318

? f e a t u r e gn : name ?name . }

• Cayley Gremlin Query as in 4.5.3 we had to extend our data in Cayley

as well. After extending we could use this query to get all nearby features:

g .V(” http :// sws . geonames . org /3239318”)

. Out(” nearby ”) . Al l ()

• Elasticsearch DSL Query Elasticsearch does not support ”nearby” pred-

icate in triple notation with linked data. Partial level of expressiveness can

be reached using queries based on location fields which are storing latitude

and longitude. First query we make is:

” bool ” : {
”must ” : [

{”match” : {” f e a t u r e C l a s s ” : ”P”}} ,

{”match” : {”name ” : ” Ljub l jana ”}}]

}

We use the results to make another query searching by geometry fields pro-

vided by first query. For selecting nearby features we can make a manual

decision on what we perceive as nearby. For our example we will be using

20 km as radius of nearby features.

36
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

” bool ” : {
”must ” : {” match a l l ” : {}} ,

” f i l t e r ” : {
” g e o d i s t a n c e ” : {

” d i s t anc e ” : ”20km” ,

” pin . l o c a t i o n ” : {
” l a t ” : 46 .05 , // from prev ious query

” lon ” : 14 .51 // from prev ious query

}
}

}
}

That approach does have some drawbacks, as it leaves defining nearby fea-

tures on a user, instead of provider of data. Nearby is not always related to

distance, as it doesn’t take in effect other geographical information such as

rivers, mountains, bridges.

RDFox and Cayley were both able to solve the problem using Linked Data,

while Elasticsearch was able to provide a partial solution relying on user decid-

ing what is classified as nearby and not using full capabilities and expressiveness

provided to us by data-set.

Table 4.5: Features nearby to selected city

Full query on 150 mio triples

RDFox 934 ms + 2.2 s

Cayley 321 ms + 6 s

ElasticSearch 9 ms + 14 ms

Similarly to the previous problem, both RDFox and Cayley were sufficiently

quick on first query, but needed long time for extending data and were reliant on

externally hosted data.

4.5. ANSWERING PROBLEMS 37

Elasticsearch solved problem using different approach which made it faster and

scaled well on full data-set.

4.5.5 Get cities that are X km from my current location

For this problem we will take arbitrary location defined in geographical latitude

and longitude. We will try to find all features that are under X km away from

the arbitrary location. We will set radius of 20km from selected location as our

example.

• RDFox SPARQL Query As current location is not something defined by

RDF notation triples, we have to go through filtering feature provided by

SPARQL. We cannot define distance in km, we have to rely on distances in

latitude and longitude degrees. We will use location of University of Ljubl-

jana, Faculty of Computer and Information Science (46.050107,14.4667993)

as our current location. We will construct the query for locating all features

in a box with +-0.2 longitude and latitude difference:

SELECT ?name WHERE {
? c i t y geo : l a t ? l a t i t u d e .

? c i t y geo : long ? l ong i tude .

? c i t y gn : name ?name .

? c i t y gn : f e a t u r e C l a s s gn :P

f i l t e r (

? l a t i t u d e > 46.050107−0.2 &&

? l a t i t u d e < 46.050107+0.2 &&

? long i tude > 14.4667993−0.2 &&

? long i tude < 14.4667993+0.2)

}

It is worth saying that if our current location was part of our Geonames

data-set, our query could be done differently, using nearby location predicate

38
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

instead of filtering.

• Cayley Gremlin Query Cayley Gremlin query language does not support

value comparison yet, so it does not enable us using current location. Only

way to successfully construct that query would be to use location already in

data-set, similarly to the previous problem 4.5.4.

• Elasticsearch DSL Query Using Elasticsearch DSL, we can construct the

query similarly to how we have done it in our previous problem 4.5.4

” bool ” : {
”must ” : {” match a l l ” : {}} ,

” f i l t e r ” : {
” g e o d i s t a n c e ” : {

” d i s t anc e ” : ”20km” ,

” pin . l o c a t i o n ” : {
” l a t ” : 46 .050107 ,

” lon ” : 14.4667993

}
}

}
}

Table 4.6: Cities nearby to current location

10,000 triples 150 mio triples

RDFox 156 ms 845 ms

Cayley / /

ElasticSearch 9 ms 15 ms

RDFox was able to answer the problem, but did not scale well with increasing

number of triples. Cayley did not provide enough expressiveness for solving the

4.5. ANSWERING PROBLEMS 39

problem. Elasticsearch proved to be expressive enough and scales with minimal

losses when increasing our data-set size.

40
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

4.6 Results

Figure 4.5: Problems Solved

As seen in Figure 4.5, RDFox was the only system able to solve all 5 of provided

problems. Cayley was unable to solve one, while Elasticsearch was not expressive

enough for one problem and solved another one with a partial solution. RDFox is

clearly the system with most expressive power from the systems in our case study.

4.6. RESULTS 41

Figure 4.6: Query Timings

Figure 4.6 shows query times taken on each problem from 4.5 at highest scale of

data. If system could not produce a solution for a problem, there is no query time

listed. We can observe Elasticsearch having the fastest queries on all problems it

was able to solve, while Cayley query times were slowest on all but one problem.

RDFox was slower than Elasticsearch, but was able to solve all the problems. We

normalized each result timings on every problem relative between systems and

scoring unsolved problem as 0. We averaged scores across all problems into one,

grading Elasticsearch with a score of 10, RDFox with 3 and Cayley with 2 for

scalability.

42
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

Figure 4.7: Semantic Systems Comparison

Expressiveness (problem solving) and scalability are our main dimensions that

we discussed above. Others are setup times/complexity for system, load times of

data. We added another dimension for how complex the queries constructed are

for developers.

We collated the research from the case study and according to it, graded all

the systems on different dimensions. Radar chart in Figure 4.7 shows how all

three systems score in different dimensions that were presented in the case study.

Problems solved are normalized from number of problems solved by each system to

0-10 scale as seen in Figure 4.5. Data load times, setup times and scalability are

normalized from time taken to a scale of 0-10, for scalability we take in account

if system was unable to solve the problem at all. Query complexity and setup

complexity were graded by ourselves for each system from 0-10 depending on

complexity of constructing queries and setting up the system as part of the case

study. Higher score is better on all dimensions.

Elasticsearch has shown best results in scalability and query complexity, while

having lower setup complexity and load times. As mentioned before, it also had

lowest number of problems solved.

Cayley was scored best in setup complexity while scoring lower for all other

4.6. RESULTS 43

dimensions, especially scalability was lower than expected before our case study

was conducted.

RDFox was the only system able to solve all problems. It scored first in data

load times and low in scalability, proving that highest expressiveness system is

most of the times lowest in scalability scores.

Table 4.7: Semantic Systems Decision Model

We added results to a decision model that can be seen in Table 4.7 with higher

weights for expressiveness and scalability and lower weights for other dimensions.

Elasticsearch has shown to be the best fit for our problems, although low expres-

siveness score is problematic. If high expressiveness is needed, then RDFox is

showing to be the best choice, with Cayley scoring lowest in cumulative score as

well as both expressiveness and scalability.

44
CHAPTER 4. CASE STUDY: EVALUATING EXPRESSIVENESS AND

SCALABILITY

Chapter 5

Conclusions

Semantic systems has shown to provide high level of expressiveness, but there were

problems with scalability once data was larger and queries were operating on a big

amount of triples. Fully semantic reasoning supported systems like RDFox have

shown that they are not fully ready for industry solutions that need quick responses

and strong scalability. We can observe that there is a clear correlation between

system being more expressive and by result of that system being less scalable.

We have observed that semantic data can be used in non purely semantic

systems that are built for scalability first, great example being Elasticsearch and

Cayley to some extent.

We see big opportunities in using highly expressive semantic systems only for

problems needing that high expressiveness. Depending on the problem presented

there are different choices of a system that would best suit the problem solution.

Systems researched all have different purposes and solve different problems.

For industry problems, depending on the problem you are trying to solve we

propose a combination systems presented. For less expressive queries, highly scal-

able systems such as Elasticsearch is a better choice, while for a subset of problems

that are more difficult and need more expressiveness, RDFox could be a choice.

Hybrid solution of both would be best suited for industry problems.

45

46 CHAPTER 5. CONCLUSIONS

5.1 Challenges

Semantic data quality was not the main topic of our case study, but previous

works have shown that Semantic data can be un-maintained and of low quality

[16]. While using the Geonames data-set for our case study, it has shown that

there are other possible rules and features missing in both ontology and set of

triples provided. With better data we could use higher expressiveness provided

to us by Semantic systems. There are lots of potential in these systems, but if

data is not structured and prepared correctly this addition to expressiveness and

reasoning is not used in full and systems using relational or document data can

offer us better scaling on this level.

5.2 Future work

In the thesis we focused on testing scalability with increasing amounts of data. We

didn’t fully research how scalability works on the systems tested with increasing

processing power. We weren’t able to dive into full industry scale hardware support

to use multi-threading, higher memory and CPU to large industry level scale.

With more resources available, further research and comparison between Semantic

systems could be conducted.

There are different aspects important to industry problems that we didn’t touch

in depth here. Ease of use for developers was mentioned briefly, support for easy

deployments could be another, fault tolerance, future plans of the team behind the

system and other aspects could be researched more in depth and are good ideas

for future work.

Thesis focused on different systems and tested them as a whole. Through test-

ing different problems we found that different systems behaved better for specific

problems. For problems that needed low expressiveness, systems with high ex-

pressiveness availability did not scale as well as those with lower expressiveness.

On the other hand there were problem that only highly expressive systems could

solve. Idea for future work would be to implement and test a hybrid solution

which would join multiple systems together and use them together on same set of

5.2. FUTURE WORK 47

data. Different systems are better suited for different problems. Solution could

focus on hiding and abstracting these decisions from the developer. Wrapping all

underlying systems in one query language. That way, instead of having to decide

when to use purely Semantic Web system, hybrid solution could delegate harder

problems to these systems and delegate other problems to a more scalable system.

48 CHAPTER 5. CONCLUSIONS

Bibliography

[1] Grigoris Antoniou and Frank Van Harmelen. “Web ontology language: Owl”.

In: Handbook on ontologies. Springer, 2004, pp. 67–92.

[2] Think Aurelius. Titan. 2016. url: http://thinkaurelius.github.io/

titan/.

[3] Tim Berners-Lee, James Hendler, Ora Lassila, et al. “The semantic web”.

In: Scientific american 284.5 (2001), pp. 28–37.

[4] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked data-the story so

far”. In: Semantic Services, Interoperability and Web Applications: Emerging

Concepts (2009), pp. 205–227.

[5] Christian Bizer and Andreas Schultz. The berlin sparql benchmark. 2009.

[6] Bolt. Bolt. 2016. url: https://github.com/boltdb/bolt.

[7] Dan Brickley and Ramanathan V Guha. “RDF vocabulary description lan-

guage 1.0: RDF schema”. In: (2004).

[8] Cayley. Cayley. 2016. url: https://github.com/google/cayley.

[9] Eugene Inseok Chong et al. “An efficient SQL-based RDF querying scheme”.

In: Proceedings of the 31st international conference on Very large data bases.

VLDB Endowment. 2005, pp. 1216–1227.

[10] Chris J Date and Hugh Darwen. A Guide To Sql Standard. Vol. 3. Addison-

Wesley Reading, 1997.

49

50 BIBLIOGRAPHY

[11] Korry Douglas and Susan Douglas. PostgreSQL: a comprehensive guide to

building, programming, and administering PostgreSQL databases. SAMS pub-

lishing, 2003.

[12] Elastic. ElasticSearch. 2016. url: https://www.elastic.co/use-cases.

[13] The Apache Software Foundation. Apache Lucene. 2016. url: https://

lucene.apache.org/.

[14] The Apache Software Foundation. Jena SDB. 2016. url: https://jena.

apache.org/documentation/sdb.

[15] The Apache Software Foundation. Jena TDB. 2016. url: https://jena.

apache.org/documentation/tdb.

[16] Christian Fürber and Martin Hepp. “Using semantic web resources for data

quality management”. In: Knowledge Engineering and Management by the

Masses. Springer, 2010, pp. 211–225.

[17] Geonames. Geonames. 2015. url: http://www.geonames.org/.

[18] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide. ”

O’Reilly Media, Inc.”, 2015.

[19] Gremlin. Gremlin. 2016. url: https://gremlindocs.com/.

[20] The PostgreSQL Global Development Group. PostgreSQL. 2016. url: http:

//www.postgresql.org/.

[21] The W3C SPARQL Working Group. SPARQL 1.1 Overview. 2013. url:

http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/.

[22] W3C Owl Working Group et al. “OWL 2 Web Ontology Language Document

Overview”. In: (2009).

[23] W3C Working Group. RDF 1.1 Primer. 2014. url: http://www.w3.org/

TR/2014/NOTE-rdf11-primer-20140624/.

[24] Florian Holzschuher and René Peinl. “Performance of graph query languages:

comparison of cypher, gremlin and native access in neo4j”. In: Proceedings

of the Joint EDBT/ICDT 2013 Workshops. ACM. 2013, pp. 195–204.

BIBLIOGRAPHY 51

[25] Franz Inc. Allegrograph. 2016. url: http://franz.com/agraph/allegrogr

aph/.

[26] Thomas Johnson. “Indexing linked bibliographic data with JSON-LD, Bib-

JSON and Elasticsearch”. In: Code4lib Journal 19 (2013), pp. 1–11.

[27] Vaibhav Khadilkar et al. “Jena-HBase: A distributed, scalable and efficient

RDF triple store”. In: Proceedings of the 11th International Semantic Web

Conference Posters & Demonstrations Track, ISWC-PD. Vol. 12. Citeseer.

2012, pp. 85–88.

[28] Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. “OWLIM–a prag-

matic semantic repository for OWL”. In: Web Information Systems Engi-

neering WISE 2005 Workshops. Springer. 2005, pp. 182–192.

[29] Graham Klyne and Jeremy J Carroll. “Resource description framework

(RDF): Concepts and abstract syntax”. In: (2006).

[30] Vladimir Kolovski, Zhe Wu, and George Eadon. “Optimizing enterprise-scale

OWL 2 RL reasoning in a relational database system”. In: The Semantic

Web–ISWC 2010. Springer, 2010, pp. 436–452.

[31] Rafal Kuc and Marek Rogozinski. ElasticSearch server. Packt Publishing

Ltd, 2013.

[32] Deborah L McGuinness, Frank Van Harmelen, et al. “OWL web ontology

language overview”. In: W3C recommendation 10.10 (2004), p. 2004.

[33] Vladimir Mironov et al. “Benchmarking triple stores with biological data”.

In: arXiv preprint arXiv:1012.1632 (2010).

[34] Boris Motik et al. “Owl 2 web ontology language: Profiles”. In: W3C recom-

mendation 27 (2009), p. 61.

[35] Boris Motik et al. “Parallel materialisation of datalog programs in cen-

tralised, main-memory RDF systems”. In: Proc. AAAI. 2014, pp. 129–137.

[36] Yavor Nenov et al. “RDFox: A Highly-Scalable RDF Store”. In: The Seman-

tic Web-ISWC 2015. Springer, 2015, pp. 3–20.

52 BIBLIOGRAPHY

[37] Ontotext. GraphDB. 2015. url: http://ontotext.com/products/graphd

b/editions/.

[38] Oracle. Oracle Database. 2016. url: http://www.oracle.com/technetwor

k/database/index.html.

[39] University of Oxford. RDFox. 2015. url: http://www.cs.ox.ac.uk/isg/

tools/RDFox/.

[40] University of Oxford. RDFox tests. 2014. url: http://www.cs.ox.ac.uk/

isg/tools/RDFox/2014/AAAI/.

[41] Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. Efficient query answer-

ing for OWL 2. Springer, 2009.

[42] W3C Recommendation. RDF Schema 1.1. 2014. url: http://www.w3.org/

TR/2014/REC-rdf-schema-20140225/.

[43] Marko A Rodriguez. “The Gremlin graph traversal machine and language

(invited talk)”. In: Proceedings of the 15th Symposium on Database Program-

ming Languages. ACM. 2015, pp. 1–10.

[44] Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. “The semantic web re-

visited”. In: Intelligent Systems, IEEE 21.3 (2006), pp. 96–101.

[45] Evren Sirin and Bijan Parsia. “SPARQL-DL: SPARQL Query for OWL-DL.”

In: OWLED. Vol. 258. 2007.

[46] Evren Sirin et al. “Pellet: A practical owl-dl reasoner”. In: Web Semantics:

science, services and agents on the World Wide Web 5.2 (2007), pp. 51–53.

[47] Gregory Smith. PostgreSQL 9.0: High Performance. Packt Publishing Ltd,

2010.

[48] OpenLink Software. Virtuoso. 2016. url: http://virtuoso.openlinksw.

com/dataspace/doc/dav/wiki/Main/.

[49] Pedro Szekely et al. “Building and Using a Knowledge Graph to Combat

Human Trafficking”. In: The Semantic Web-ISWC 2015. Springer, 2015,

pp. 205–221.

BIBLIOGRAPHY 53

[50] Neo Technology. Neo4j. 2016. url: http://neo4j.com/.

[51] Bernard Vatant and Marc Wick. Geonames ontology. 2012.

[52] Yujiao Zhou et al. “Making the most of your triple store: query answering

in OWL 2 using an RL reasoner”. In: Proceedings of the 22nd international

conference on World Wide Web. International World Wide Web Conferences

Steering Committee. 2013, pp. 1569–1580.

