

ISSEP 2015, Ljubljana, Slovenia, September 28–October 1, 2015

Title:
The Proceedings of International Conference on Informatics in Schools: Situation, Evolution and Perspectives
— ISSEP 2015.

Publisher:
University of Ljubljana, Faculty of Computer and Information Science

Editor:
Matevž Jekovec

Co-editors:
Regular Papers: Andrej Brodnik and Jan Vahrenhold
Poster Session: Matija Lokar
Workshops: Peter Micheuz
International Teacher’s Conference: Peter Micheuz, Barbara Demo, Claudio Mirolo

Web URL:
issep15.fri.uni-lj.si

Conference Organizer:
University of Ljubljana, Faculty of Computer and Information Science

Publisher:
Založba FRI, Večna pot 113, Ljubljana

This publication is free of charge.

Ljubljana, October 2015

CIP — Kataložni zapis o publikaciji
Narodna in univerzitetna knjižnica, Ljubljana

004:37(082)(0.034.2)
659.2:004:37(082)(0.034.2)
37.091.3:004(082)(0.034.2)

INTERNATIONAL Conference on Informatics in Schools (8 ; 2015 ; Ljubljana)
Proceedings [Elektronski vir] / International Conference on Informatics in Schools - ISSEP 2015, September
28 - October 1, Ljubljana, Slovenia ; [editor Matevž Jekovec ; organizer University of Ljubljana, Faculty of
Computer and Information Science]. - El. knjiga. - Ljubljana : Založba FRI, 2015

Način dostopa (URL): https://issep15.fri.uni-lj.si/files/issep2015-proceedings.pdf. - Nasl. z
nasl. zaslona. - Opis vira z dne 9. 10. 2015

ISBN 978-961-6209-87-8 (pdf)
1. Jekovec, Matevž, 1986- 2. Fakulteta za računalništvo in informatiko (Ljubljana) 1536545987

ISSEP 2015, Ljubljana, Slovenia, September 28–October 1, 2015

Foreword to Information Society 2015

In its 18th year, the Information Society Multiconference (http://is.ijs.si) remains one of the leading conferences
in Central Europe devoted to information society, computer science and informatics. In 2015 it is extended over
three weeks located at Faculty of computer science and informatics and at the Institute “Jožef Stefan”.

The pace of progress of information society, knowledge and artificial intelligence is speeding up. Several
countries allow autonomous cars in regular use, major car companies sell cars with lane assist and other intelligent
functions. It seems that humanity is approaching another civilization stage. At the same time, society conflicts
are growing in numbers and length.

The Multiconference is running in parallel sessions with 300 presentations of scientific papers at twelve confer-
ences, round tables, workshops and award ceremonies. The papers are published in the conference proceedings,
and in special issues of two journals. One of them is Informatica with its 38 years of tradition in excellent
research publications.

The Information Society 2015 Multiconference consists of the following conferences:

∙ Intelligent Systems

∙ Cognitive Science

∙ Data Mining and Data Warehouses

∙ Collaboration, Software and Services in Information Society

∙ Education in Information Society

∙ Facing Demographic Challenges

∙ Cognitonics

∙ SPS EM-Health Workshop

∙ Workshop “Smart Cities and Communities as a Development Opportunity for Slovenia”

∙ 2nd Computer Science Student Conference, PhD Students

∙ 2nd Computer Science Student Conference, Students

∙ ISSEP15 – 8th International Conference on Informatics in Schools: Situation, Evolution, and Perspective.

The Multiconference is co-organized and supported by several major research institutions and societies, among
them ACM Slovenia, i.e. the Slovenian chapter of the ACM, SLAIS and the Slovenian Engineering Academy. In
the name of the conference organizers we thank all societies and institutions, all participants for their valuable
contribution and their interest in this event, and the reviewers for their thorough reviews.

For 2013 and further, the award for life-long outstanding contributions will be delivered in memory of Donald
Michie and Alan Turing. The life-long outstanding contribution to development and promotion of information
society in our country is awarded to Dr. Jurij Tasič. In addition, a reward for current achievements was pro-
nounced to Dr. Domnu Mungosu. The information strawberry is pronounced to the web application “Supervizor,
while the information lemon goes to lack of informatization in the national judicial system. Congratulations!

28th September, 2015

Niko Zimic, Programme Committee Chair

Matjaž Gams, Organizing Committee Chair

i

International Conference on Informatics in Schools, 2015

Predgovor multikonferenci Informacijska družba 2015

Multikonferenca Informacijska družba (http://is.ijs.si) je z osemnajsto zaporedno prireditvijo osrednji sred-
njeevropski dogodek na področju informacijske družbe, računalnǐstva in informatike. Letošnja prireditev traja
tri tedne in poteka na Fakulteti za računalnǐstvo in informatiko in Institutu “Jožef Stefan”.

Informacijska družba, znanje in umetna inteligenca se razvijajo čedalje hitreje. V vse več državah je dovoljena
samostojna vožnja inteligentnih avtomobilov, na trgu je moč dobiti čedalje več pogosto prodajanih avtomobilov z
avtonomnimi funkcijami kot “lane assist”. Čedalje več pokazateljev kaže, da prehajamo v naslednje civilizacijsko
obdobje, hkrati pa so konflikti sodobne družbe čedalje težje razumljivi.

Letos smo v multikonferenco povezali dvanajst odličnih neodvisnih konferenc. Predstavljenih bo okoli 300 refer-
atov v okviru samostojnih konferenc in delavnic, prireditev bodo spremljale okrogle mize in razprave ter posebni
dogodki kot svečana podelitev nagrad. Referati so objavljeni v zbornikih multikonference, izbrani prispevki pa
bodo izšli tudi v posebnih številkah dveh znanstvenih revij, od katerih je ena Informatica, ki se ponaša z 38-letno
tradicijo odlične znanstvene revije.

Multikonferenco Informacijska družba 2015 sestavljajo naslednje samostojne konference:

∙ Inteligentni sistemi

∙ Kognitivna znanost

∙ Izkopavanje znanja in podatkovna skladǐsča

∙ Sodelovanje, programska oprema in storitve v informacijski družbi

∙ Vzgoja in izobraževanje v informacijski družbi

∙ Soočanje z demografskimi izzivi

∙ Kognitonika

∙ Delavnica “SPS EM-zdravje”

∙ Delavnica “Pametna mesta in skupnosti kot razvojna priložnost Slovenije”

∙ Druga študentska konferenca s področja računalnǐstva in informatike za doktorske študente

∙ Druga študentska konferenca s področja računalnǐstva in informatike za vse študente

∙ ISSEP15 – Osma mednarodna konferenca o informatiki v šolah: razmere, evolucija in perspektiva.

Soorganizatorji in podporniki konference so različne raziskovalne institucije in združenja, med njimi tudi
ACM Slovenija, SLAIS in Inženirska akademija Slovenije. V imenu organizatorjev konference se zahvaljujemo
združenjem in inštitucijam, še posebej pa udeležencem za njihove dragocene prispevke in priložnost, da z nami
delijo svoje izkušnje o informacijski družbi. Zahvaljujemo se tudi recenzentom za njihovo pomoč pri recenziranju.

V 2015 bomo tretjič podelili nagrado za življenjske dosežke v čast Donalda Michija in Alana Turinga. Nagrado
Michie-Turing za izjemen življenjski prispevek k razvoju in promociji informacijske družbe bo prejel prof. dr.
Jurij Tasič. Priznanje za dosežek leta je pripadlo dr. Domnu Mungosu. Že petič podeljujemo nagradi “informa-
cijska limona” in “informacijska jagoda” za najbolj (ne)uspešne poteze v zvezi z informacijsko družbo. Limono
je dobilo počasno uvajanje informatizacije v slovensko pravosodje, jagodo pa spletna aplikacija “Supervizor”.
Čestitke nagrajencem!

28. september 2015

Niko Zimic, predsednik programskega odbora
Matjaž Gams, predsednik organizacijskega odbora

ii

ISSEP 2015, Ljubljana, Slovenia, September 28–October 1, 2015

Table of Contents

Regular papers

Preface. 1

List of accepted Papers to LNCS 9378 . 3

Computer Science Competences in Italian Secondary Schools: a Preliminary Study . 4
Silvio Giaffredo, Luisa Mich, Marco Ronchetti1

A language independent assessment of programming concepts knowledge. 13
Franc Jakoš, Matija Lokar

Aspects of Quality in the Presentation of Informatics Challenge Tasks . 21
Wolfgang Pohl, Hans-Werner Hein

Tasks Classification and Age Differences in Task Perception. Case Study of International On-line
Competition “Beaver” . 33

Ekaterina Yagunova, Sergey Podznyakov, Nina Ryzhova, Evgenia Razumovskaia, Nikolay Korovkin

Posters

Preface. 44

Informatics Teacher Education in Turkey . 45

Okan ARSLAN, Selcan KİLİS

YASAAPE – Yet Another System for Automatic Assessment of Programming Exercises 47
Gregor Jerše, Sonja Jerše, Matija Lokar, Matija Pretnar

Learning to Program: from VPL to C . 49
Greg C Lee, Ling-Chian Chang

Publication of Learning Resources: Central or Interoperable? . 51
Paul Libbrecht

Concurrent programming basics through Snap! . 53
Michele Moro, Luigino Calvi

Can I do that? Scenario Feasibility as an Enabler of ICT Usage . 55
Wolfgang Müller, Paul Libbrecht

From Paper to Web – Some Help from PirateBox. 57
Martina Palazzolo, Paolo Mauri

Computer Science for All in Swiss High Schools: Current State, Issues, and Perspectives 59
Jean-Philippe Pellet, Gabriel Parriaux, Morgane Chevalier

Content Categories for Informatics Tasks . 61
Wolfgang Pohl, Jörg Westmeyer

The use of Nao, a humanoid robot, in teaching computer programming . 63
Boštjan Resinovič

The influence of teaching methods during technical e-safety instruction . 65

Václav Šimandl, Václav Dobiáš, Michal Šerý

Teaching Programming Indirectly with “Paint” . 67
Zsuzsanna Szalayné Tahy

iii

International Conference on Informatics in Schools, 2015

Workshops

Preface. 69

Teaching Software Engineering in Primary and Secondary Schools . 70
Peter Antonitsch, Andreas Bollin, Stefan Pasterk, Barbara Sabitzer

Learning Computational Thinking through Bebras Tasks . 71
Valentina Dagiene, Gerald Futschek

A web service for teaching programming. 72
Gregor Jerše, Sonja Jerše, Matija Lokar, Matija Pretnar

The International Teacher’s Conference

Preface. 73

A cautious look at coding in primary education . 74
Peter K. Antonitsch

The cat, the turtle, the snake and GCD . 81
Agnieszka Borowiecka, Katarzyna Olędzka

Roboval: Robot contest and education with Arduino in high school . 92
Maurizio Boscaini, Alberto Valente

Blended learning environments, flipped class and collaborative activities to teach databases in a
secondary technical school . 99

Maria Concetta Brocato

Active learning in a “Introduction to networks” course . 111
Sophia Danesino

Introducing recursion with LOGO in upper primary school . 121
Ágnes Erdősné Németh

Experiences of the T4T group in primary schools . 130
Fabrizio Ferrari, Alessandro Rabbone, Sandro Ruggiero

Preparing programming exercises with efficient automated validation tests . 142
Gregor Jerše, Sonja Jerše, Matija Lokar, Matija Pretnar

Selected spotlights on informatics education in Austrian schools . 153
Peter Micheuz, Barbara Sabitzer

Algorithms and well formatted texts: Introducing computer science activities in lower secondary schools . . 164
Martina Palazzolo

ZaznajSpoznaj – a modifiable platform for accessibility and inclusion of visually-impaired elementary
school children . 173

Matevž Pesek, Daniel Kuhl, Matevž Baloh, Matija Marolt

iv

ISSEP 2015, Ljubljana, Slovenia, September 28–October 1, 2015

8th International Conference on Informatics in Schools — ISSEP 2015

This year, the 8th International Conference on Informatics in Schools: Situation, Evolution and Perspectives
(ISSEP 2015) held at the University of Ljubljana, Slovenia, between September 28th and October 1st, 2015, was
rather special. It was federated with a very successful Teacher Conference (VIVID) and therefore represented a
wider forum to deliver fresh knowledge, ideas, and reports in direct classroom experiences.

ISSEP is on its own a forum for researchers and practitioners in the area of Informatics education, in both
primary and secondary schools (K-12 education). The topics discussed at the conference are various and span
from curriculum design and country reports to issues rather special on how to approach teaching programming
and/or bring computational thinking to classroom. This colourfulness is also reflected in papers presented at
this year’s conference. The ISSEP series started in 2005 in Klagenfurt (Celovec) and was followed by meetings
in Vilnius (2006), Toruń (2008), Zürich (2010), Bratislava (2011), Oldenburg (2013), Istanbul (2014) and this
year at the University of Ljubljana, Faculty of Computer and Information Science.

We received 36 submissions for the conference and each submission was reviewed by up to four reviewers and
evaluated on quality, originality, and relevance. Slightly less than half of the papers (17) were accepted for the
presentation at the conference. Out of 17 accepted submissions, 14 were chosen to be published in a volume
of Lecture Notes on Computer Science (LNCS 9378), Informatics in Schools – Curricula, Competences, and
Competitions, published by Springer.

We want to thank once more to the Programme committee members for their diligent and great work that
made this conference possible. We hope you will enjoy the conference and papers at least as much as we did.

25th September, 2015

Andrej Brodnik, General Chair
University of Ljubljana

Jan Vahrenhold, Program Chair
Westfälische Wilhelms-Universität Münster

Program Committee:

∙ Erik Barendsen, Radboud University Nijmegen and Open Universiteit

∙ Andrej Brodnik (chair), University of Ljubljana and University of Primorska

∙ Michael Caspersen, Aarhus University

∙ Valentina Dagiene, Vilnius University

∙ Barbara Demo, Universitá di Torino

∙ Ira Diethelm, Carl-von-Ossietzky-Universität Oldenburg

∙ Kathi Fisler, Worcester Polytechnic Institute

∙ Yasemin Gülbahar, Ankara University

∙ Juraj Hromkovič, ETH Zürich

∙ Peter Hubwieser, Technische Universität München

∙ Peter Micheuz, Alpen-Adria-Universität Klagenfurt

1

International Conference on Informatics in Schools, 2015

∙ Ralf Romeike, Friedrich-Alexander-Universität Erlangen-Nürnberg

∙ Jože Rugelj, University of Ljubljana

∙ Carsten Schulte, Freie Universität Berlin

∙ Chris Stephenson, Google

∙ Maciej M. Sysło, Nicolaus Copernicus University Toruń

∙ Josh Tenenberg, University of Washington

∙ Françoise Tort, Ecole Normale Supérieure de Cachan

∙ Jan Vahrenhold (chair), Westfälische Wilhelms-Universität Münster

External Reviewer:

∙ Filiz Kalelioğlu, Ankara University

2

ISSEP 2015, Ljubljana, Slovenia, September 28–October 1, 2015

Springer LNCS 9378: Informatics in Schools

Accepted papers to the LNCS 9378: Informatics in Schools, Curricula, Competences, and Competitions, pub-
lished in 2015 by Springer, are:

1. Surprising Computer Science (invited talk)
Tim Bell

2. The Theory Behind Theory - Computer Science Education Research Through the Lenses of Situated
Learning (invited talk)
Maria Knobelsdorf

3. Robotics Activities–Is the Investment Worthwhile?
Ronit Ben-Bassat Levy and Mordechai (Moti) Ben-Ari

4. Dimensions of Programming Knowledge
Andreas Mühling, Peter Hubwieser, and Marc Berges

5. Defining Proficiency Levels of High School Students in Computer Science by an Empirical Task Analysis
Results of the MoKoM Project
Jonas Neugebauer, Johannes Magenheim, Laura Ohrndorf, Niclas Schaper, and Sigrid Schubert

6. Classification of Programming Tasks According to Required Skills and Knowledge Representation
Alexander Ruf, Marc Berges, and Peter Hubwieser

7. Online vs Face-To-Face Engagement of Computing Teachers for their Professional Development Needs
Sue Sentance and Simon Humphreys

8. Programming in Scratch Using Inquiry-Based Approach
Jiří Vaníček

9. Olympiad in Computer Science and Discrete Mathematics
Athit Maytarattanakhon, Vasiliy Akimushkin, and Sergei Pozdniakov

10. CS Unplugged: Experiences and Extensions
Irena Demšar and Janez Demšar

11. Computing at School in Sweden – Experiences from Introducing Computer Science within Existing Subjects
Fredrik Heintz, Linda Mannila, Karin Nygårds, Peter Parnes, and Björn Regnell

12. A Snapshot of the First Implementation of Bebras International Informatics Contest in Turkey
Filiz Kalelioğlu, Yasemin Gülbahar, and Orçun Madran

13. Introducing a New Computer Science Curriculum for All School Levels in Poland
Maciej M. Sysło and Anna Beata Kwiatkowska

14. Analyzing the Twitter Data Stream Using the Snap! Learning Environment
Andreas Grillenberger and Ralf Romeike

15. Is Coding the Way to Go?
Violetta Lonati, Dario Malchiodi, Mattia Monga, and Anna Morpurgo

16. Visual Literacy in Introductory Informatics Problems
Françoise Tort and Béatrice Drot-Delange

3

Computer Science Competences in Italian Secondary
Schools: a Preliminary Study

Silvio Giaffredo1, Luisa Mich2 , Marco Ronchetti1

1 DISI – University of Trento

2 DII – University of Trento

(silvio.giaffredo, luisa.mich, marco.ronchetti)@unitn.it

Abstract. To enable a more effective process of learning and teaching, the ped-
agogic research and many educational institutions suggest an approach by com-
petence. This approach is not yet widespread in the classes of Computer Sci-
ence. This paper describes a study on Computer Science competences in Italian
secondary schools. The study is the first step of an ongoing research project,
whose goal is to develop an environment for the support of teaching by compet-
ences. To this end, a survey was run to gather data about the adoption of the
competence approach in Italian secondary schools, among Computer Science
teachers of 11 to 13 grade classes. The survey results are illustrated in the pa-
per, along with the work-plan for developing the further steps of the research.

Keywords. Computer science education, informatics education, secondary
schools, education by competence.

1 Introduction

Many aspects of the competence-based approach have been investigated in recent
years. Competence is defined as "a combination of knowledge, skills and attitudes ap-
propriate to the context" [16]. The competence-based approach is widely used in the
professional training activities, and its extension to the educational systems has been
recommended by the European Institutions [16]. Sets of competences have been
defined, mainly concerning general "top" level competences, and also some examples
of discipline-specific competences. This paper describes the preliminary results of a
research in the field of Computer Science Education, at the level of the upper second-
ary school, grade 11 to 12 (in Italy 13), with the focus on the technical schools. In a
preliminary survey, illustrated here, we tried to understand if other approaches, as the
content-driven approach, are still prevalent in the Computer Science (CS for short)
teaching activity, in spite of the recommendation towards the competences. In order
to deal with this problem, we propose to build a teaching environment and a plan for
teachers training.

4

This paper is organised in several sections. Section 2 summarises the state of the art in
education by competence. In Section 3, the problem statement has been detailed. The
study goals have been presented in Section 4. Section 5 shows some preliminary res-
ults. Conclusions and future steps of the research are then described.

2 State of the art in CS education by competence

In order to build a structure of reference for the research, we introduce several but rel-
evant issues from the vast field of the pedagogy, even though we will have just the
space to list the most important pedagogical theories in a very short summary. Further
on, we will also study the specific concept of competence deeper.
Many theoretical pedagogical approaches have been developed. We will try, follow-
ing the track depicted in [2], to focus on the most relevant theories of learning. For the
learning process the three main theories are behaviourism, cognitivism and construct-
ivism. According to the behaviourism, the reality is objective, external to the indi-
viduals and we can only know the facts of the reality through the experience, which
changes the learners' behaviour; then, the learning is measurable, observing the
changes in behaviour of the learner. The focus is on the content, and nobody can say
anything about “what is going on in the learner’s head” (on p. 19 in [2]). The cognit -
ivism, on the opposite, claims that the learning outcomes depend also on an interpret-
ation of the reality. Personal characteristics of the individuals influence their internal
process of learning, which involves also the meta-cognition of the learners, that is
“their knowledge and cognition about cognitive phenomena” (in [8] p. 906). Accord-
ing to the constructivist approach, learning is a process able to build the knowledge
inside the individuals, who are trying to understand the world, in a certain social and
cultural environment. The construction of the personal knowledge depends on the in-
dividual situation, and follows these three steps: observation, processing of the in-
formation collected, and interpretation, that is the re-construction of the previous
knowledge of the learners. The constructivist teachers maintain the role of leadership
and guide, but in order to “encouraging and orienting the students' constructive effort”
(p. 26 in [19]). The principles of the constructivist approach to the learning process
are the basis for an educational system addressing the development of the compet-
ences.
The competence approach to education is promoted as an effective way to learning
and teaching, in many countries of the world and at different levels. At the end of the
1950s the term “competence” was used by White in [20], with the broad meaning, de-
rived by biology and then relevant also to a human subject, of “capacity to interact ef -
fectively with its environment” (by [20] p. 297). Learning can help to preserve the
results of reciprocal effects of interaction between the individuals and the environ-
ment: in this way, their competence to deal with the environment might increase.
Narrowing the focus on the European countries, the competence-based approach star-
ted to be adopted after the year 1980. A useful summary has been recently proposed
by Le Deist and Winterton [11], as reported in [14]. The authors include - with the
three traditional competences also famous as KSA (knowledge, skills, attitudes) – the

5

meta-competence, that is the personal competence which makes individuals aware of
their own competence. The multidimensional model has been also called holistic
model of competence (see [21] p. 691) and represented as a tetrahedron, to highlight
that meta-competence has to be based on the other three traditional competences.
In the year 2006, the European institutions defined a set of competences for European
citizens [16]. The recommendation of the key competences, also known as general
competences, has been generally acquired by the individual member states and in-
cluded into the curricula of European countries, covering the mandatory levels of edu-
cation, up to grade 10. Among the eight key competences, the digital competence is
considered a priority to ensure the digital inclusion into the knowledge society, for the
European citizens. The DIGCOMP project proposed a digital competence framework
in [15], with the goal of supporting the development of this competence by all the
European citizens.
In contrast to the key competences, for the competences of the single subject discip-
lines, also named the subject-specific or domain-specific competences, a commonly
accepted definition has not yet been pointed out for all disciplines. The TUNING pro-
ject [18] is concerned with the subject-specific competences, but limited to the higher
level of education, the University level. One of the parts of the TUNING project is the
FETCH initiative [7], specialised in CS competence, at the level of tertiary education.
As long as the digital competence is one of the key competences, the CS competences
are subject-specific, directly related to the CS discipline. Also ACM and IEEE have
released important guidelines to define a CS curriculum [1]; again in this case, the is-
sues addressed by the work are both University-oriented and content-driven.
In Italy, the Ministry for Education listed the competences for the secondary schools
in the New Organisation Structure (see [10]). This contains a set of documents, in
which the different branches of the secondary schools – liceo (general education),
technical school and vocational school - are described. Particularly for the range from
11 to 13 grade, there are definitions of competences for the disciplines, in some cases
detailed for the different grades. Abilities and knowledge are also included, but they
are not directly linked with the defined competences.

3 Adoption of CS education by competence in Italian secondary
schools

The focus of this study is mainly on the technical schools, since they offer a meaning-
ful range of competences in informatics, both in quality and in quantity terms. Two
different sectors are defined: technical-economic and technical-technological schools.
The competences, abilities and knowledge defined for the two kinds of schools are
not homogeneous, and several disciplines are included in the CS group.
We are focusing on the problem of the adoption of the competence approach, in CS
classes of the target schools. There are no quantitative analysis, related to the use of
this approach. There are no available official survey, describing how spread the adop-
tion is. Qualitative indicators may help to understand the situation. To collect mean-
ingful data, we worked with different kind of sources: literature references, direct

6

contacts with institutional subjects, and qualitative researches among the teachers.
First of all, some evidences from Italian literature describe a general sense of uncer-
tainness for the teachers, in adopting the competence-based approach. According to
Bottani [5], the teachers don't have suggestions on how to teach. And Pellerey claims
that the institutional concept of competence lacks an adequate semantic and operative
framework [13]. The educational institutions of some countries have stated an official
definition of subject-specific competences. But in many cases, the schools and the
teachers don't seem so eager in adopting this definition. Often, the competences are
depicted through generic descriptions. The teachers have the hard work of interpreting
the competences in the different, real situations. Also in the cases when the compet-
ences have been defined, there are no suggestions, how to use them for the teaching
activity. Teachers are free to choice. Or, in other words, they are alone. Furthermore,
the traditions and the habits of the school systems are mainly content-driven: then,
'competence' is considered just a word with no real meaning and no practical con-
sequences. Thus, educators are experiencing in the daily work how difficult it is to
keep their activities in the track of a planned, competence-based learning design.
The second source of data is a local institutional research institute, in charge for the
biggest part of the teachers training in our small geographical area. The research insti-
tute didn't launch any official survey, in order to test the teaching effects of its wide
training action in the field of competences. Nevertheless, the involved researchers are
ready to extend the number of interventions on the territory, not only to enlarge the
number of teachers to train, but also to give an extra support to trained teachers. The
schools are now able to release to their pupils the competence certification, settled for
the grade 10. But, according to a general sensation of “not completed” training action
by the research centre, the process of defining the levels for every competence of
every pupils is not so clear and easy to manage for the teachers.
As our third kind of data, we started also a phase of qualitative research among the
teachers, using two different techniques: focus-groups and interviews. The fo-
cus-groups involved around sixty teachers of different disciplines, attending a meeting
held in Trento last November to show the intermediate results of the eSchooling pro-
ject. This is an industrial project (more details in [6]), run by public and private entit -
ies: Telecom Italia SpA, the publisher Edizioni Centro Studi Erickson SpA, two
SMEs (Memetic Srl and ForTeam Studio Srl) and the University of Trento. The pro-
ject is co-funded by the Autonomous Province of Trento and will last till July 2015.
The data collected by the focus groups confirm that the teachers suffer for lack or for
fuzzines of the guidelines, declaring also a low level of trust on the competence pro-
ponents. And if we could expect an understandable and common resistance to change,
it is remarkable the teachers belief of more work and efforts required by the different
approach. In order to understand what is the use of the competence-based approach to
teaching, particularly of the CS competences among secondary teachers in Italian
technical schools, we interviewed seven CS teachers. Again, the collected data recon-
firm a certain distance from the competences defined by the institutions, complaining
also for the time-consuming, bureaucratic mission. Along with critical words, we also
recorded the acknowledgement that competence-based approach is relevant for devel-
oping students' knowledge, skills, attitudes.

7

Now we are able to explicit our research question: how can we help the CS teachers
to move towards the competence-based education? In order to find out an answer, we
divide the main question into two sub-questions: which repertory of competences is
suitable for CS teachers? And which methods can support and spread the adoption of
the competence-based CS teaching?

4 Study Goals

The research project will try to point out a practical solution, in order to reduce the
gap between an institutional definition of competences and a limited adoption in
teaching, aiming at supporting the day-by-day activities of the teachers.
The competence-based approach implies an attitude, shared among all the teachers of
a student. With a collaborative work, every teacher should support the competences
development of their learners. The collaborative work makes easier and more mean-
ingful for the teachers to follow the evolution of their students competences, com-
pared to simply continuing to measure the amount of disciplinary contents, collected
by the students. The competence-based approach seems to lead towards a collective
action for groups of teachers. Nevertheless, when the Learning Units of a specific dis-
cipline are designed, built, and assigned with the competences in mind, rather than
with regard to the pure contents, this approach can offer a meaningful advantage to
the learning process, also for the individual teachers and for their individual discip-
lines. For this reason, the objective of our research can have a positive impact, even if
it is restricted only to the subject specific of Informatics and to the Informatics teach-
ers.
Related to the two sub-questions of the research, we will pursue two distinct goals.
Firstly, a teaching environment will be create, to support the teachers in adopting the
competence approach. Starting from real situations, we will define a useful and prac-
tical repertory of tools and guideline, available for the teaching/learning activities, ac-
cording to the competence approach. Secondly, we will suggest a teachers training
plan. The study illustrated by this paper is the first step of the research project. The
main goal of the study is the definition of the work-plan for developing the further
steps of the research, divided into two parts according to the two research goals.

4.1 Creating a teaching by-competence support environment

The work-plan for the first goal of the research provides two products: the tool-box
and the supporting software system. The research project, recently started, will man-
age a process of gradual revision to define the contents of the tool-box. The CS tool-
box will include different instruments into three main parts: the Learning Units ex-
amples, that is activities to develop or previously developed in classes, along with a
synthesis of the students' evaluations collected; the competence repertory, where
knowledge, skills, and attitudes are defined; methodologies, which include guidelines
and examples to use the learning units, according to the competence repertory. We
will start collecting the Learning Units, which in our case will be learning projects de-

8

signed by the teachers and assigned to the students. The project will require the devel -
opment of a real or realistic software application, as commonly used in CS education,
in which the project-based learning approach [4] is often adopted. We will promote
the design of such learning projects, asking to the teachers to create a complete set of
materials, to be reused and assigned by the other teachers to the students of different
classes and groups. The applications produced by the students will be firstly assessed
by the teachers of the related classes; then, small groups of teachers will produce
common evaluations of all the learning outcomes, with the aim of refining the materi-
als of the learning unit. Further activities with the teachers will build up the compet-
ence repertory. With an incremental process of subsequent refining, we will progress-
ively adapt: the choice of the competences to develop and their definitions; the rela-
tions between competences and activities, with worthy alternatives; the definition of
the activities, detailing the learning tools chosen for the activities, possibly with a
range of options, fitting the different learning styles.
The software application, called “Co4CS” (Competences for CS), will support the
teachers, in their cyclic process of revisions to define the contents of the tool-box. We
will also apply some tools of the Content Representation (CoRe) method, explained in
[12]. CoRe is a method which was initially used to describe the professional know-
ledge of the science teachers, in terms of pedagogical content knowledge (PCK) (see
[17]). Usually, PCK is an element really difficult to investigate, since teachers tend to
“focus more on doing teaching rather than explicating the associated pedagogical
reasoning” ([12], page 371). The CoRe method suggests a structured analysis to elicit
the most important content, or “Big Ideas”, of the discipline to teach. For every “Big
Idea”, the teachers will fill a simple table with their answers to eight questions, as ex-
plained soon. The CoRe table was applied in a research on Lithuanian CS teachers
[3], in which the eight questions were aggregated in four, different pedagogical as-
pects, referred to the aforementioned PCK, as listed in Table 1.

In our research, we will start to use the CoRe method to collect some “Big Ideas”
from the teachers. This means that in the first round, the teachers will be involved to
define some of the CS contents. But we note here that the aspect (a) of Table 1 is re-
lated to learning goals and objectives, and these can bring to the competence. So, in
the second turn we will work with the group of teachers to the elicitation of the CS
competences. This will be the critical and crucial point, in which the research will try
to suggest a clear and shared connection between the contents (the “Big Ideas”) and
the competences or, better, to build a bridge towards the competences, starting by the
contents. With the aim to offer the opportunity for the teachers to build such a con-
nection, we will refer to every “Big Ideas”, the most important CS contents, to apply
the question: “Why is it important for the students to know this”. Then, the answers

9

will be combined to find the first list of competences . Table 2, derived from page 73

of [3], shows the complete list of the eight questions, linked to the four aspects.

4.2 Towards a teachers training plan

 In order to apply the results of the research to a wider area and to more teachers, we
will try to develop an idea for a possible training plan, with a proposal toward a com-
petence-based teaching. The plan will be build upon a training course template for CS
teachers. The outline of the course template will be detailed, according to the results
of the first research goal.

5 Preliminary results

The results of the first survey activities have been included in previous sections. This
section adds another preliminary outcome of the research, showing one of the use-
case diagrams representing the system requirements for the Co4CS sw tool. The dia-
gram is shown in Fig. 1 and represents the most general functions of the system. One

10

of the most relevant goals of the competence-driven approach is to make learners con-
scious of their own learning process. As said in [9], the students should be “cognit -
ively activated” and have the opportunity to “self-regulate their work”. In order to
support the achievement of this result, the learner's role has been included here, even
though the research started from the teacher-side.

6 Conclusion and future steps

The research will be developed along the rest of the current school-year, lasting the
next two school-years. The work will involve various CS teachers of different schools
in province of Trento, mainly teachers of the technical schools. The critical factor of
the project is the capability of involving the teachers in a positive and effective way.
For this reason, we decided to approach the teachers gradually, starting with a small
number of enthusiastic teachers. At the moment, we met four teachers, who will form
the small sample group. With this group, we started to define a set of preliminary
works and to collect materials and documents.
Acknowledgements. Our thanks to all the eSchooling partners, for allowing us to be
involved in the project. A special thank to the teachers engaged in the first steps of the
research, and to the teachers who accepted to be interviewed.

References

1. ACM/IEEE-CS Joint Task Force on Computing Curricula. 2013. Computer Science Cur-
ricula 2013. ACM Press and IEEE Computer Society Press.

2. Anderson, T.:. The theory and practice of online learning. Athabasca University Press
(2008)

3. Barendsen, E., Dagiene, V., Saeli, M., Schulte, C.: Eliciting Computing Science Teachers’
PCK using the Content Representation Format Experiences and Future Directions. In: 7th
International Conference on Informatics in Schools: Situation, Evolution, and Perspect-
ives. Heidelberg: Springer International Publishing, pp. 29-40 (2014)

4. Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A.:
Motivating project-based learning: Sustaining the doing, supporting the learning. Educa-
tional psychologist. 26(3-4), 369-398 (1991)

5. Bottani, N.: L’istruzione scolastica a un bivio di fronte alla voga travolgente e stravolgente
delle competenze. (in Italian) in D.S. Rychen, L. Hersh Salganik. Agire le competenze
chiave. Scenari e strategie per il benessere consapevole. Ed. Franco Angeli (2007)

6. Chiozzi, G., Giaffredo, S., Gris, R., Ronchetti, M.: Helping educators to teach compet -
ences with the support of technology in the Italian context. In Proceedings of World Con-
ference on Educational Multimedia, Hypermedia and Telecommunications. pp. 106-113
Chesapeake, VA: AACE (2014)

7. FETCH Project (Future Education and Training in Computing): How to support learning at
anytime anywhere. Retrieved 3 November, 2014 on http://fetch.ecs.uni-ruse.bg/?
cmd=gsIndex

8. Flavell, J. H.: Metacognition and cognitive monitoring: A new area of cognitive–develop-
mental inquiry. American Psychologist. 34(10). 906-911 (1979)

11

9. Köller, O., Parchmann, I.: Competences: The German Notion of Learning Outcomes. in
Bernholt, S., Neumann, K., Nentwig, P. (eds.), Making it Tangible: Learning Outcomes in
Science Education. pp. 151–168. Waxmann (2012)

10. La Riforma della Scuola Secondaria Superiore (in Italian). Retrieved 20 October, 2014 on
http://archivio.pubblica. istruzione.it/riforma_superiori/nuovesuperiori/index.html

11. Le Deist, F. D., Winterton, J.: What Is Competence? Human Resource Development Inter-
national. vol. 8, No. 1, 27–46 (2005)

12. Loughran, J., Mulhall, P., Berry, A.: In search of pedagogical content knowledge in sci-
ence: Developing ways of articulating and documenting professional practice. Journal of
Research in Science Teaching. 41(4), 370–391 (2004).

13. Pellerey, M.: Ripensare le competenze e la loro identità nel mondo della scuola e della
formazione. Seconda parte: l’approccio per competenze nei processi educativi e formativi
(in Italian). Orientamenti Pedagogici. vol.57, n.3, 379-400 (2010)

14. Pikkarainen, E.: Competence as a key concept of educational theory - a semiotic point of
view. Journal of Philosophy of Education. Vol. 48 No. 4, 621-636 (2014)

15. Punie, Y., Brečko, B.N.: A framework for developing and understanding digital compet-
ence in Europe. eds. DIGCOMP Publications Office (2013)

16. Recommendation of the European Parliament and of the Council of 18 December 2006 on
key competences for lifelong learning. Official Journal of the European Union 06.05.2008
(2008/C111/01) 10-18. Retrieved 4 November, 2014 on http://eur-lex.europa.eu/LexUr-
iServ/ LexUriServ.do?uri=OJ:L:2006:394:0010:0018:en:PDF

17. Shulman, L. S.: Knowledge and teaching: Foundations of the new reform. Harvard Educa-
tional Review. 57, 1-22 (1987)

18. TUNING Project - Educational Structure in Europe. Retrieved 3 November, 2014 on
http://www.unideusto.org/tuningeu/ home.html

19. von Glasersfeld, E.. An exposition of constructivism: Why some like it radical. Journal for
Research In Mathematics Education. Monograph 4: 19–29 & 195–210 (1990)

20. White, R.H.: Motivation reconsidered: the concept of competence. Psychological Review
Vol. 66 (5), 279-333 (1959)

21. Winterton, J.: Competence across Europe: highest common factor or lowest common de-
nominator? Journal of European Industrial Training Vol. 33 Issue 8/9, 681 – 700 (2009)

12

A language independent assessment of
programming concepts knowledge

Franc Jakoš1 and Matija Lokar2

1 Janka Glazerja Ruše Primary School
Ruše, Slovenia

franc.jakos@glazer.si
2 Faculty of Mathematics and Physics

University of Ljubljana, Slovenia
matija.lokar@fmf-uni-lj.si

Abstract. At the end of any educational process there is usually an
assessment of the newly acquired knowledge. There are pedagogical goals
and examples of tests, but they are all usually bound to a particular
educational environment.
The article describes knowledge assessment created for grading the stu-
dents’ knowledge in the basic concepts of programming at the entry
level of education. The tasks are simple, easily understood and do not
assume any additional pre-existing knowledge. They are based on mini-
mal teacher involvement and in most cases, students do not need further
explanation. Such assessment requires the students to be familiar with
the concept, as they have to transfer the knowledge pattern from the
learning environment into the testing environment.

Keywords: teaching, programming, pseudo code, knowledge assessment

1 Introduction

In Slovene primary education a new elective subject Computer Science was in-
troduced into year 4 in the 2014/15 school year. The subject will be gradually
introduced into years 5 and 6 as well. Its three-year curriculum goals are based
on computer science as a field of science and is not not merely computer liter-
acy oriented. All that encourages the teachers to use additional content in other
elective computer related subjects, the curricula of which and especially their
execution is mostly computer literacy oriented now.

The introduction of computer science content into lessons is a novelty for the
teachers and as such it is approached differently; with various tools, educational
environments, criteria. The article [7] shows several options available for the in-
troduction into the world of programming and algorithmic thought processes.
Students eventually get bored with any educational tool and the initial motiva-
tion abates quickly as the problems become more demanding. Thus, it makes
sense to vary the tools and methods, both because this enables the acquisition of
appropriate goals and because it increases the students’ interest for the subject.

13

However, variety can cause problems during knowledge assessment if it is bound
to a certain level of familiarity with a specific environment, e.g. Scratch3.

In addition, teachers are often invited to participate in numerous studies.
At the moment the hot topic is whether the students in year 4 are capable of
abstraction that is required for the acquisition of the subject goals and pro-
gramming tasks, and what method of teaching is most successfully employed
for year 4 students. Thus, one of the authors of this article was asked to take
part in a research with the hypothesis that the students who first encountered
conditionals in CS Unplugged and then started exercises in Scratch were more
successful than the students who did not have the CS experience. However, the
author teaches in a slightly different way. Students are initially motivated with a
virtual reality educational game and only then do they start using Scratch. The
questions in the research study were dependent on Scratch environment, so it
is highly questionable whether these students were a good control group in this
research.

Therefore, it would be practical to create methods of testing which would
contain tasks that are not bound to particular environment or depend on the
rules of a certain programming language syntax.

The article describes the tasks meant to assess the knowledge that does not
depend on pre-existing knowledge, educational environment, or the teacher. This
set of tasks can be useful for the teachers during knowledge assessment. It could
also be used to pre-test and post-test the students in order to determine the level
of knowledge when different educational environments or approaches to teaching
the basics of computer programming languages are analysed.

The proposed model of the task is based on activities that are often used
during entry level courses in programming. The object uses a single command to
move across the field and leaves a trail behind it. The easily understood activity
allows the students to focus on the meaning of the programming concepts.

2 Research and knowledge assessments

Assessment is always the most difficult part of the learning process, both for
the teachers and the students as they both receive a mark of value. Therefore
when creating a test, the value of the knowledge acquired has to be taken into
account. It can be claimed that thinking about assessment leads to a better
understanding of the subject goals.

Our research as well as the practical teaching goal was to create methods of
testing which would contain tasks that are not bound to particular environment
or depend on the rules of a certain programming language syntax.

Checking the literature for existing tests with the features mentioned above
and following suitable taxonomy levels of knowledge shows that the web offers
many programming skills tests (see4 for example) that are purposely program-
ming language bound. In addition, many authors discuss automatic program

3 http://scratch.mit.edu
4 http://www.testdome.com

2

14

assessment. The solution offered by the article [6] involves the translation of the
program into pseudo code and then determining the presence of the elements
necessary for the correct solution of the problem. Numerous articles ([1, 3, 8, 10,
12]) analyse the manner of thought and describe tools or methods of testing, but
all are either strictly bound to very short periods of teaching (computer camps)
or limited to a specific learning environment (making games, or a concrete pro-
gramming language). Tew and Guzdial in [11] analyse the comparison of testing
results in pseudo code and in the programming languages taught. They deter-
mine that though the results vary at the beginning of the educational courses,
the final outcome is more uniform, showing but a slight difference. Their tests are
somehow language independent; however, we could not get access to practical
examples of their tasks, so we could not use them.

We have also encountered some scientific contributions that aimed to use
pre and post assessment to analyse new educational methods or environments
(see [4] for example). In order to achieve that they created tests and criteria, all
dependent on a particular environment, though.

There is also the question what taxonomy levels of knowledge best describe a
certain level of difficulty ([5]). The determination of the level of acquired knowl-
edge where two taxonomies (Structure of Observed Learning Outcomes - SOLO
[2] and Bloom) were joined, as described in [9], seemed the most appropriate to
us.

Of course, when computational knowledge is to be assessed, a kind of pro-
gramming syntax and a certain enivironment must be used. During the assess-
ment itself we wished to exclude the influence of the teachers on the execution
of the assessment. Therefore, we tried to construct the assessment in such a
manner that does not require additional explanation from the teachers. Teach-
ers are namely the least predictable element in the research, despite training
all the teachers in the same way and giving all of them the same instructions.
Thus, we wish to involve the teachers to the smallest extent possible, and in
order to achieve this minimal involvement, the students are provided with short
instructions at the beginning.

We tried to use the approach where the syntax as well as the tasks themselves
are as obvious as possible. Therefore, a rectangular field was used containing an
object that moves around the field leaving a trail behind it. Such tasks can be
met in many different environments, e.g. Logo5 (turtle graphics), Scratch6 (drop
the pen), virtual reality educational environment7 (trace the trail activity). So
when post-tests are performed, results from groups using different environments
could be compared.

The tasks are constructed with the desire to first check the single-structure
use and then the multi-structure or relational use for each separate concept of
programming. According to the Bloom taxonomy, applying signifies the students’
ability to read written code that according to SOLO taxonomy only contains one

5 https://logo.codeplex.com/
6 http://scratch.mit.edu
7 http://opensimulator.glazer.si

3

15

concept and then in the multi-structure or in the relational structure contains
several concept that can be co-dependent. (Figure 1) gives an example of a task,
categorised into a single-structure (SOLO) / apply (Bloom), and Figure 2 is an
example of a task that belongs to a multi-structure (SOLO) / apply (Bloom).

Fig. 1: single-structure (SOLO) /
apply (Bloom) .

Fig. 2: multi-structure (SOLO) /
apply (Bloom)

The tasks should incorporate clear criteria regarding the testing itself and the
goals. They should provide clear information about the students’ achievement of
each of the goals. An additional requirement is that the test should be formulated
in such a way that minimal teacher involvement is required; the teachers thus
do not need to offer additional explanations or help the students during the task
solving.

We did not want to construct lower level tasks, as the questions would then
be too bound to particular environment. Therefore, we included some tasks that
according to Bloom belong into the category of creativity, where students need
to read the task and complete or correct it. The final task tests the students’
ability to write three different programs for a known solution. It was assumed
that students might try to write commands without using concepts, so add a
rule that does not enable that was added. (Figure 3) shows an example of a
task categorised as relational (SOLO) / apply (Bloom), and(Figure 4) shows an
example of a task categorised as relational (SOLO) / creative (Bloom).

Fig. 3: relational (SOLO) / apply
(Bloom) Fig. 4: relational (SOLO) / cre-

ative (Bloom)

4

16

3 Suggested tasks

As explained above the environment for solving the tasks themselves is sim-
ple. There is a rectangular field containing an object that moves according to
the program instructions. Using a grid with marked columns and rows enables
the students to easily understand and imagine where exactly the object is at
any given moment in the course of the program. As only the knowledge of the
concepts is to be assesed, we wanted to exclude any pre-existing knowledge nec-
essary for a successful solution of the problem. For example: as the students do
not encounter the coordinate system until year 8, we decided to use a grid with
the system of letter and number marked rows and columns instead. Figure 5
shows the first of the three examples illustrating the rules of the tasks following.

Fig. 5: Task 1: example 1

Each example consists of the task (field and program) and the legend. The
3D field consists of a network of cells with a uniform address, e.g. A/2 and the
number on the object that states the final floor. The addressing was kept in
this form because conditionals and loops can refer to it. It turns out that this
kind of notation is more easily understood by the students than the coordinate
system. ”The programming language” only consists of the command go in all
directions (up, down, left, right, forward, back). The legend describes the object,
the starting point of the trail, the trail travelled, and numbers 0, 1, or 2 symbolize
the height at which the object is found at the end of the trail.

5

17

The commands in the program named ”pathTravelled” direct the object on
its way to the final destination. At the start, the object is in the red field. Student
must read the program, colour the trail and determine the final field.

The instructions and the three examples at the beginning of the assessment
provide enough information for most students to start solving the problem im-
mediately. Very few of them require additional explanation.

Figures 6 and 7 show the increasing complexity of the variable concept. At
first, the students should be able to read and understand the program and the
value of the variable. The next task uses two variables and a loop that changes
the value of one variable. We assume that a student who has never encountered
programming will solve the task in Figure 6 successfully, whereas it will be
interesting to monitor the age influence on the absolute beginners’ success in
solving the task shown in Figure 7.

Fig. 6: Simple program
Fig. 7: More complex program

A similar increase of complexity for the condition concept is shown in Fig-
ures 8 and 9.

Fig. 8: Simple program
Fig. 9: More complex program

Additional instructions were included before the tasks where the students are
expected to correct, complete or write a program. Namely, those tasks expect
the exact opposite from the students. They are to “translate” the picture of a
trail into a program.

Another group of tasks is slightly different again. The trail had already been
coloured and the object is at the end of the trail. The program is either wrong
or is incomplete. The students’ task is to correct or complete the program so
that the solution matches the picture. Figures 10 and 11 show tasks where the
students need to correct or add code in the grey fields.

6

18

Fig. 10: Simple example

Fig. 11: More complex example

4 Findings, further research and conclusions

At the moment, the preparation of the assessment is in its pre-pilot version. The
assessment has already been used with a small group of students. It transpires
that most students complete the “simple” tasks successfully. Tasks that are more
complex are successfully solved by those students that have previously encoun-
tered programming. Thus, the year 8 students who have already programmed
in Scratch solved most tasks. The problems mostly arise during the last stage
where they need to correct, write, or complete the program.

We wish to include a larger number of students and teachers into the research
at the end of the school year. That is namely the time when most curricula for
Computer Science propose the introduction of extra content connected to pro-
gramming. We are interested in the responses and results of both the complete
beginner students and the students who had previously encountered program-
ming. The progress of individual groups will be followed, regardless of the envi-
ronment used and an attempt will be made to determine the correlation between
the proposed assessment model and the environment bound assessment. We wish
to offer a model of assessment that would provide the teachers/researchers with
a tool that would enable them to claim that the knowledge acquired in any
environment matches the goals and is transferrable to real life problems. Such
a tool would also enable reverse assessment where the effectiveness of methods
and learning environments could be evaluated.

The proposed model of assessment comprises several positive factors. It is
a learning environment free test and matches the goals of the subject. That in
turn enables teachers to switch environments if the motivation of the students
begins to abate. What is more, this type of assessment enables comparison on a
wider level; between schools, learning environments, and pedagogical methods.
Many different experts can be involved in the construction of such assessment,
which further increases the credibility of the assessment.

References

1. Basawapatna A., Han Koh K., Repenning A., C. Webb D., Sekeres Marshall K.:
Recognizing computational thinking patterns In: SIGCSE ’11 Proceedings of the
42nd ACM technical symposium on Computer science education, pp 245 - 250,
ACM New York, NY, USA, 2011

7

19

2. Biggs J., Collis K.: Evaluating the Quality of Learning: the SOLO taxonomy New
York, Academic Press, 1982

3. Franklin D., Conrad P., Boe B., Nilsen K., Hill C., Len M., Dreschler G., Aldana G.,
Almeida-Tanaka P., Kiefer B., Laird C., Lopez F., Pham C., Suarez J., Waite R.:
Assessment of Computer Science Learning in a Scratch-Based Outreach Program
In: SIGCSE ’13 Proceeding of the 44th ACM technical symposium on Computer
science education, pp 371 - 376, ACM New York, NY, USA, 2013

4. Howland K., Good J.: Learning to communicate computationally with Flip: A
bi-modal programming language for game creation In: Elsevier, Computers and
Education, Volume 80, January 2015, Pages 224–240

5. Johnson C., Fuller U.: Is Bloom’s taxonomy appropriate for computer science?
In: Baltic Sea ’06 Proceedings of the 6th Baltic Sea conference on Computing
education research: Koli Calling 2006, pp 120 - 123, ACM New York, NY, USA,
2006

6. Khirulnizam Abd R., Syarbaini A., Nordin J.: The Design of an Automated
C Programming Assessment Using Pseudo-code Comparison Technique In: Na-
tional Conference on Software Engineering and Computer Systems 2007, University
Malaysia Pahang, Pahang, Malaysia, 2007

7. Lokar M.: Prvi koraki v programiranje – številne poti in možnosti (First steps
into programming – numerous paths and possibilities) in: Uporabna Informatika,
Ljubljana (to appear) (2015)

8. McCracken M., Almstrum V., Diaz D., Guzdial M., Hagan D., Kolikant Y., Laxer
C., Thomas L., Utting I., Wilusz T.: A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students In: Proceeding ITiCSE-
WGR ’01 Working group reports from ITiCSE on Innovation and technology in
computer science education, pp 125 - 180, ACM New York, NY, USA, 2001

9. Meerbaum-Salant O., Armoni M., Ben-Ari M.: Learning computer science concepts
with scratch In: ICER ’10 Proceedings of the Sixth international workshop on
Computing education research, pp 69 - 76 ACM New York, NY, USA, 2010

10. Seiter L., Foreman B.: Modeling the Learning Progressions of Computational
Thinking of Primary Grade Students In: ICER ’13 Proceedings of the ninth annual
international ACM conference on International computing education research, pp
59-66, University of Glasgow, UK, 2013

11. Tew E. A., Guzdial M.: The FCS1: a language independent assessment of CS1
knowledge In: SIGCSE ’11 Proceedings of the 42nd ACM technical symposium on
Computer science education, pp 111 - 116, ACM New York, NY, USA, 2011

12. Werner L., Denner J., Campe S., Kawamoto Chizuru D.: The Fairy Performance
Assessment: Measuring Computational Thinking in Middle School In: SIGCSE ’12
Proceedings of the 43rd ACM technical symposium on Computer Science Educa-
tion, pp 215-220, ACM New York, NY, USA, 2012

8

20

Aspects of Quality in the
Presentation of Informatics Challenge Tasks

Wolfgang Pohl and Hans-Werner Hein

BWINF / Bundesweite Informatikwettbewerbe
Wachsbleiche 7, 53111 Bonn
{pohl,hein}@bwinf.de

Abstract. So far, there has not been much scientific discussion about
the quality of informatics tasks. The international community that is
concerned with competitions like olympiads in informatics and the Be-
bras contest, however, has seen significant internal debate about even
very detailed aspects of task quality. We describe the mechanics of de-
veloping Bebras tasks and formulate a central quality guideline for the
development of task presentations. As an example, we demonstrate the
critical steps in the development of one specific task and show that the
modifications comply with the guideline. The guideline certainly refers to
the circumstances of running a Bebras contest. Nevertheless, the guide-
line, and the recommendations we formulate on how to comply with it,
are applicable to tasks in other settings – like exams or unsupervised
learning scenarios – as well.

1 Introduction

Task quality is an important matter when quality of school education is dis-
cussed. In the area of mathematics, for instance, a significant amount of work
on task quality can be found. In an internet search via google.com on March
12, 2015, we looked for sources that are relevant to our work, i.e. are concerned
with the quality of tasks that are used in an educational context. We obtained
80,900,000 results for the search term “mathematics quality tasks”1, with only
relevant sources among the top ten results.

In the area of informatics (and its didactics in particular), the discussion
about task quality is much less abundant. In our search, the term “informatics
quality tasks” yielded 9,570,000 results, with four relevant sources among the
top ten, while “computer science quality tasks” had more results (46,000,000),
but no relevant top ten source. In Germany, in particular, work on task quality
in informatics is rare. An online resource2 documents the results of a workshop
on “Aufgabenkultur Informatik” (engl.: task culture in informatics) and admits:
“In Informatics, the debate about the culture of tasks is just at the beginning.”

1 The search term “quality tasks” turned out to be more successful than “task quality”.
2 http://bildungsserver.berlin-brandenburg.de/fortbildung aufgabenkultur informatik

htw.html (last accessed 03/24/2015)

21

Task quality should be a main concern among the organizers of task-based
competitions (see [16] for a taxonomy of competitions) in informatics and other
subjects. Hence, it is no surprise that most of the relevant contributions to this
discussion are coming from the competition community (see next section). But
even in this work, one important facet of (competition) task quality has been
neglected so far: the presentation of a task, which is comprised of task material
like text and images plus the composition of this material.

In this work, we introduce aspects of task quality, with a focus on task
presentation, that are motivated by the specific circumstances of running the
informatics contest Bebras [5, 1]. First, we discuss previous work on quality of
competition tasks; we will see that task presentation has not been a predominant
topic there. The following section describes the Bebras task development process,
and then discusses quality guidelines for (Bebras) tasks. Section 4 presents one
example task and illustrates how the task was modified during several steps of
the task development process. The modifications are then related to our quality
guideline. Finally, we discuss directions of future work and the applicability of
Bebras-related task quality guidelines or measures to other areas.

2 Quality of Competition Tasks

While task quality is not a big issue in informatics education in general, there
has been quite a discussion about task development and task quality among
organizers or scientific committees of informatics competitions. In 1992 already,
Hein [8] identifies constraints for competition tasks, suggests task types and
presents “features” of good tasks.

The following topics seem to be most important in this discussion:

task types Specific types of tasks might be used in competitions to require
collaboration within teams [13], to stimulate students’ creativity [11], or in
general make a competition better achieve its goals (as defined by the contest
organizers) [9].

task attractiveness Tasks that involve graphics [18] or programming of games
[12] might increase attractiveness and appeal of competitions.

task development Task quality can be supported by well-designed task devel-
opment processes [7] and task management systems [10]. Specific techniques
can be used to find new ideas for tasks and to refine them into suitable
competition tasks [4].

Task presentation, however, is not much covered in that discussion. Mainly,
quite general requirements can be found, like “a [task] formulation must be clear,
comprehensive and not too long” [7], “[task] text must be clear and complete”
[10], and “[. . .] a problem statement [should be] (relatively) short and easy to
understand” [4]. But what does that mean: easy to understand? There is only few
work that approaches this question. Pankov states that “. . . a good task should
create a particular image in the mind of the contestant” [15]. Similarly, van der
Vegt relates the problem of estimating task difficulty to the process of searching

2

22

the mental representation of a text [20], which is part of the general reading
comprehension process, as discussed in [3]. Our recommendations (as presented
in Section 4.4) on how to arrive at high-quality task presentations essentially
aim at enabling the contestant to easily find a good mental representation of the
problem to be solved.

3 Tasks in the Bebras Contest

3.1 Development of Tasks for Bebras

Bebras is an international contest initiative that started in Lithuania in 2004. As
of now, Bebras involves more than 30 nations world-wide, each of which orga-
nize their own national Bebras contests. In Germany, for instance, the national
Bebras contest is known as “Informatik-Biber” [17]. All Bebras contests draw
their tasks from an international task pool. This task pool is filled at the annual
International Bebras Workshop. Each national contest (namely its organizers)
contributes a bunch of task proposals in English. At the workshop, all task pro-
posals are reviewed, perhaps modified and finally either recommended (added
to the task pool) or not. Up to the year 2013, some tasks were selected to be
mandatory tasks (i.e., to be used in all national Bebras contests). In 2014 there
were no mandatory tasks, but some tasks in the pool were recommended higher
than others.

After the international workshop, the organizers of each national Bebras
contest choose tasks for their contests from the task pool. In order to use them
in their contest, each national organizer needs to transfer the chosen tasks into
the language(s) that are spoken in their country. This transfer process may
require not only translation, but also modification of the English version that
was output by the workshop. First, that version may still not be ready to be
used in a contest. Second, transferring a task into another language may require
linguistic (i.e., semantic, idiomatic, or metaphoric) adjustments. Last but not
least, preparing a task to be used in a national context also requires to consider
cultural aspects: “political correctness”, “common sense” or even cultural taboos
may vary significantly from country to country; and it is probably impossible
to consider all these aspects for all the potential users of a task during the
international workshop.

3.2 A Quality Guideline for Bebras Tasks

Quality of tasks, including task presentation, has been discussed quite early in
Bebras history, and several publications have presented aspects of this discussion
[14, 6, 19]. But also Bebras-related work mainly contains vague recommendations
like “good tasks have easy understandable problem statements” [6, p. 23] but
do not make these recommendations operational (i.e. do not tell how a task is
made “easy understandable”).

In general, “quality” is a relative notion that needs a measure or benchmarks.
This holds for task quality as well: “Tasks may not be considered good in an

3

23

absolute sense; in order to be able to talk about good tasks, a quality measure is
needed”3 [21]. If quality is to play a role in the development of (Bebras) tasks,
then quality measures or, at least, guidelines or criteria that tasks should meet
are needed.

Dagiene and Futschek [6] present early results of discussion in the Bebras
community, among them a large table of “Criteria for Good Bebras Tasks”.
Finally, they arrive at a short list of so-called mandatory criteria:

– The task can be solved within 3 minutes.
– The problem statement is easily understandable.
– The task is presentable at a single screen page.
– The task is solvable at a PC without use of other SW4 or paper and pencil.
– The task is independent from specific systems.

Some of these criteria may be criticized:

1. The 3-minutes-constraint depends on the overall amount of time given and
the number of tasks presented to the participant of a national Bebras contest.
Within a contest, tasks should be of different difficulty levels. Hence, it may
be acceptable to have a 4-minute-task, if there are enough other tasks that
can be solved quickly.

2. The size of “a single screen page” varies wildly among the hardware that
can be used to participate in a Bebras contest; so this criterion is not very
precise and may be considered obsolete.

3. Pen and paper are not needed to solve a task if the task allows the participant
to explore the solution space through interactive means (within the online
contest environment). However, it may be considered an important part
of a participant’s informatics competence to develop their own model of
the solution space via pen and paper; in the German “Informatik-Biber”,
participants are therefore explicitly encouraged to use pen and paper.

To us, the second criterion in the list above is crucial: The problem statement
is easily understandable. But what does “easily understandable” mean? Let us
take a closer look at the circumstances of a Bebras contest. Each participant
is asked to solve a relatively large number of tasks within limited time. In the
German “Informatik-Biber”, for instance, 18 tasks need to be solved within 40
minutes. This immediately leads to the following requirement: A task needs to
be understood quickly. Furthermore, a contest must be fair; all participants must
find similar conditions. This leads to a second requirement: A task needs to be
understood correctly by everyone; with “correctly” meaning “in the way the task
setters wants it to be understood”. Third, in most Bebras countries Bebras is
not a knowledge test; this leads to the third requirement: A task needs to be
understood without prior knowledge (in the contest’s subject: informatics). We
summarize these three requirements into one central task quality guideline:

3 Originally in German: “Aufgaben an sich sind nicht in einem absoluten Sinn gut;
um von guten Aufgaben reden zu können, bedarf es eines Qualitätsmaßstabes.”

4 We assume SW to stand for “software”.

4

24

A task needs to be understood quickly, correctly,
and without prior knowledge.

In other exam contexts, prior knowledge may be required or even tested; in such
cases the guideline abbreviates to: A task needs to be understood quickly and
correctly.

4 Developing Bebras Tasks with Quality in Mind:
An Example

In this section, we will present one example task and how it got modified
within the task development process. As example, we have chosen the task
“Verlorene nf rmat on” (engl.: Lost Information; its initial English title was
“Missing Piece”). It was presented at the International Bebras Workshop of
2011. The German “Informatik-Biber” incorporated this task in both 2011 and
2012 [2, p. 40].

Like many Bebras tasks, the presentation of this task consists of the following
components: (a) an introductory text, (b) one central image, (c) a question, and
(d) a set of choice answers (with only one answer being correct; Bebras choice
tasks typically are single-choice). In this case, the choice answers are images.
Further on, we will refer to all text components of a task presentation (intro-
ductory text and question) as task text. These four components are presented
at participation time, i.e. in-contest. In addition, there are further task compo-
nents that are presented post-contest, i.e. after the contest: (a) a solution text
that explains which solution is correct and why, and why other solutions are not
correct; (b) a background text (titled: It’s Informatics!) that explains why the
question relates to informatics and which of its topics it does refer to.

4.1 Task Version Produced by the International Bebras Workshop

Figure 1 displays the task presentation as produced by the International Bebras
Workshop. Concerning the task’s subject matter, it is about error-correcting
codes: A binary code given by a 5× 5 matrix is enhanced by an error-correcting
row and column.

4.2 Transfer into German

After the international workshop, the task was transferred into German. We
present the results of this transfer in English, though, trying to stick to the
German formulation as close as possible. Figure 2 shows the text components
of this version; the images were not modified in this transfer process. The task
text significantly differs from the German original, as follows:

1. The introductory text of the task (often referred to as “story” of a task)
was modified. The “message” turned into a “label”. The latter notion much
better fits the two-dimensional nature of the black-and-white-matrix code.

5

25

Missing Piece
Beaver John has received a secret message. Unfortunately a part of the
message has been destroyed by a spill of red colour.
This case was foreseen and there are additional squares in the message. Each
square in the rightmost column (column 6) or the lowest row (row 6) is
coloured such that the number of black squares in a row, respectively in a
column is even.

John considers there are sixteen different possible messages. Only four of them
make sense to him.
What is the pattern of the red piece?

A: B: C: D:

Fig. 1. Task version as output by the International Bebras Workshop

2. In the first version, the parity effect of an additional row and column had to
be described quite laboriously. The new version more concisely mentions a
6 × 6 matrix the rows and column of which obey a parity condition.

3. The first version tried to motivate why just four choice answers are presented
(“. . . sixteen different possible messages. Only four of them make sense . . . ”).
This part is not needed in order to understand the task correctly. Hence, it
can be dismissed.

4. In the first version, the defective part of the code is referred to in multiple
ways: It is called either “part of the message” or “piece” (this is unclear:
piece of what?). The new version consistently uses the phrase “the four red
fields”. Please note that the question fully repeats this phrase, instead of
abbreviating it (which might seem more elegant) to “the four fields”.

All modifications comply with our quality guideline: Modifications 1 and 4 help
to understand the task correctly by using appropriate and consistent wording.
Modifications 2 and 3 shorten the text and therefore help to understand the task
quickly. The first version already had not required prior knowledge of informatics,
and neither does the new version. It introduces the technical notion of “barcode”,
though, and we cannot safely assume that this notion is known to all potential

6

26

Lost Information
The beavers label cut trees using a kind of barcode in a 6× 6 square with the
particularity that in each row and each column, the numbers of black fields
must be even.
In the following barcode, the four red fields were damaged.
Image as in Figure 1
How did the four red fields look?
Choice answers as in Figure 1

Fig. 2. Task version resulting from the transfer into German (re-translated to English)

Bebras participants. This may be considered a weakness of the new version. But
note that the new version of the task mentions barcodes, but does not require
knowledge about barcodes to be solved.

4.3 Further Modifications

Figure 3 shows a third version of the task, including the post-contest “It’s In-
formatics!” background text. This version is the result of further modifications
by task editors. At first it can be seen that the central image was modified:

1. The upper row and leftmost column got dismissed. There are two reasons
for this: (a) The fields of this row and column contained numbers that were
meaningful in the first version only, but not in the second and third. (b)
The white fields with the numbers were hard to distinguish from the black,
white, and red fields that are genuine elements of the code.

2. There are white separation lines between black fields now, consistent with
the black separation lines between white fields. Before, adjacent black fields
had formed a big black block, hiding the matrix structure of the code. (Un-
fortunately, the editors missed to apply this idea to the choice answer images
as well.)

The task text was modified either:

1. In the second version, the label was described as “a kind of barcode”. We
assume that this analogy was introduced to relate the matrix code of the
labels to something known. That may make sense, but may be dangerous
as well: In case such an analogy is inappropriate, it may cause connotations
that are not only unnecessary to understand the task but may even prevent
the participant from doing so. In this task, the barcode analogy does not
fit; a barcode is one-dimensional, while the matrix code of the tree labels is
two-dimensional.

2. The barcode analogy is replaced by the noun “label”. Thus, a uniquely iden-
tifying word is used to refer to the code, which even matches the verb “label”
used in the sentence before.

7

27

Lost nf rmat on
The beavers label the trees they cut.
A label consists of a matrix of 6 times 6 fields that may be black or white.
In each row and column of a label, the number of black fields is even.
Thus, in the rough environment the label is more robust.
This label got dirty in a tree transport:

How did the four red fields look before?
Choice answers as in Figure 1
It’s Informatics!
In everyday life, there are many situations where communication is disturbed.
Informatics knows a lot of methods to ensure that information will be preserved
along a communication channel, in spite of eventual disturbances.
In the theory around these methods, “redundancy” is a central notion. The
rule is: The more redundant the information source (here: design of the labels),
the more robust the information (the label coloring).

Fig. 3. Final version of the task presentation

3. The first sentence of the second version had been quite long and complex.
This sentence is split into three much shorter sentences. By repeatedly using
the noun and verb “label” in all three sentences, the semantical coherence
of the former long sentence does not get lost.

4. The vague notion of a “6×6 square” from the second version is now specified
as “matrix of 6 times 6 fields that may be black or white”. This phrase
precisely defines the structure of the code. Moreover, the colors black and
white are defined to be the only colors permitted in a code; thus, the reader
is prepared to understand the red coloring of fields as error situation.

5. In the second version, the problem with the code was described in a mis-
leading way. It said “the four red fields were damaged”; this left unclear
whether the red coloring was the damage (this is the intended meaning) or
the fields were initially red and then damaged. The new version now simply
says “This label got dirty”. Together with priming the reader to understand

8

28

the red coloring as error (see previous item), this terse wording is absolutely
clear.

All these modifications comply with quality guideline and are meant to make
the reader quickly and correctly understand the task. The resulting version of
the task was considered final and used in the contest.

4.4 Recommendations for High-Quality Task Presentation

Above, we described specific modifications that were applied within the develop-
ment process of one particular task. From these modifications, we try to derive
and generalize a few recommendations for action. In order to comply with the
proposed quality guideline, task authors should use:

. . . short sentences: Short sentences are easier to read, and they facilitate quick
understanding. (See also [3]: “Students are more likely to misunderstand a
complex question, especially if complex language is used.”)

. . . words or phrases repeatedly: Repetitions allow for splitting long sentences
without losing semantical coherence. Furthermore, repetitions consolidate
correct understanding.

. . . clear definitions: A clear definition of a notion facilitates correct understand-
ing.

. . . a one-to-one relationship between words and objects: using only one linguis-
tic term for the same object facilitates quick and correct understanding. Do
not use synonyms; it’s a task, not an essay.

. . . appropriate analogies: Inappropriate analogies interfere with both quick and
correct understanding.

. . . unambiguous wording: A wording that is ambiguous or misleading interferes
with correct understanding.

4.5 No Version is Perfect

Two peculiarities with the final version of the task may have been noticed:

1. In the title, a few letters were replaced by underscores. This “lost informa-
tion” nicely corresponds with the task title. We do not consider the task
title crucial for task understanding. The task title mainly serves to attract
attention, which it certainly does in this case. Moreover, this specific “title
gimmick” helps to introduce the problem and guides the reader into thinking
about completion of missing information.

2. A full sentence was introduced into the final version, namely: “Thus, in the
rough environment the label is more robust.” This sentence is not needed
for task understanding. An unnecessary sentence seems not to comply with
our guideline, because it unnecessarily consumes resources needed for task
understanding. However, this sentence plays an important part: not in rela-
tionship to the in-contest components of task presentation, but among the
post-contest components. It introduces the notion of “robust information”,

9

29

which is the main keyword in the “It’s Informatics!” background text as-
sociated with this task. We consider this background text to be of vital
importance to the overall quality of a task (if quality is considered over the
task’s whole life-time). Therefore we find it legitimate to create a strong
relationship between task text and background text by inserting a sentence
that is not essential to the in-contest task presentation.

Furthermore, we see the following two potential shortcomings in the final
version of the task:

1. The mathematical term “matrix” is used in the task text. In the contest, the
task was presented to students of grades 7 and 8 (12-14 years old), which
usually are not familiar with that term. We argue that it is not necessary to
understand the meaning of “matrix”; the phrase “6 times 6 fields” together
with the image will yield a clear mental model of the problem to be solved.
Hence, the term could or even should be omitted (“A label consists of 6
times 6 fields . . . ”) or be replaced by a non-technical term (“A label is an
arrangement of 6 times 6 fields . . . ”).

2. In the question, the phrase “the four red fields” is used to refer to the code
elements the content of which is to be determined. This phrase is not com-
pletely in line with the definition that the fields of a label must be black or
white only. So, the wording could be more precise: “the four fields colored in
red”. However, we argue that the shorter wording will be understood more
quickly, and that – together with the image – the reference to the four inner
fields of the label is significantly clear.

5 Summary and Future Work

We have presented a guideline for developing high-quality presentations of in-
formatics tasks. This guideline has been inspired and influenced by the specific
circumstances of the Bebras contest. We have demonstrated the development
steps of an example Bebras task and described in detail the modifications that
were applied to this task in order to improve the quality of its presentation.
Furthermore, we have shown that the modifications comply with the presented
guideline. From these specific modifications, we have derived a short list of gen-
eralized recommendations on how to produce task presentations of high quality
with respect to the presented guideline.

We argue that these recommendations are useful for task authors in Bebras
as well as in other contexts where quick and correct understanding is crucial.
Such contexts may be other competitions, but also unsupervised computer-aided
learning environments where it is usually not possible to clarify the correct un-
derstanding of a task by interacting with a (human) tutor.

The concepts presented in this work need to be investigated further. First,
task presentation may (and in Bebras perhaps should) involve images. There are
many details to be considered as far as images are concerned: Where to place
an image in relation to the text and other material? What information should

10

30

be given by images, what information by text? If colors in images are used to
encode information: Is the code unambiguous, appropriate, and common sense
(e.g. in a European context it is common to use red for “stop” and green for
“go”). Second, there are certainly other aspects of quality that are important to
informatics tasks. Producing a high-quality task presentation is just one part of
task development. What makes the core problem of a task interesting or even
fascinating? What is a good story, i.e. a sound and culturally acceptable outfit
for the core problem? Third, we have argued that following our recommendations
will lead to task presentations that can be understood quickly and correctly. But
we still need to prove our claim by empirical investigations.

References

1. Bebras: International Contest on Informatics and Computer Fluency, http://www.
bebras.org/

2. Informatik-Biber: Aufgaben und Lösungen 2012. BWINF (Februar 2013),
http://informatik-biber.de/fileadmin/user_upload/archiv/2012/

Informatik-Biber_2012_Web_01032013_mitLoesungen.pdf

3. Ahmed, A., Pollitt, A.: Curriculum demands and question difficulty. In: IAEA
Conference. International Association for Educational Assessment, Bled, Slovenia
(May 1999)

4. Burton, B., Hiron, M.: Creating informatics olympiad tasks: Exploring the black
art. Olympiads in Informatics 2, 16–36 (2008)

5. Dagiene, V.: The BEBRAS contest on informatics and computer literacy – stu-
dents’ drive to science education. In: Joint Open and Working IFIP Conference.
ICT and Learning for the Net Generation. pp. 214–223. Kuala Lumpur (2008)

6. Dagiene, V., Futschek, G.: Bebras international contest on informatics and com-
puter literacy: Criteria for good tasks. In: Mittermeir, R., Syslo, M. (eds.) Infor-
matics Education – Supporting Computational Thinking. pp. 19–30. LNCS 5090,
Springer-Verlag, Berlin Heidelberg (2008)

7. Diks, K., Kubica, M., Radoszewski, J., Stencel, K.: A proposal for a task prepara-
tion process. Olympiads in Informatics 2, 64–74 (2008)

8. Hein, H.W.: International olympiads in informatics: What is a proper programming
contest task? In: 12th IFIP World Computer Congress. Madrid, Spain (September
1992)

9. Kemkes, G., Cormack, G., Munro, I., Vasiga, T.: New task types at the Canadian
Computing Competition. Olympiads in Informatics 1, 79–89 (2007)

10. Kolstad, R.: Infrastructure for contest task development. Olympiads in Informatics
3, 38–59 (2009)

11. Kulczyński, T., Lacki, J., Radoszewski, J.: Stimulating students’ creativity with
tasks solved using precomputation and visualization. Olympiads in Informatics 5,
71–81 (2011)

12. Ninka, I.: The role of reactive and game tasks in competitions. Olympiads in In-
formatics 3, 74–79 (2009)

13. Opmanis, M.: Team competition in mathematics and informatics “Ugāle” – finding
new task types. Olympiads in Informatics 3, 80–100 (2009)

14. Opmanis, M., Dagiene, V., Truu, A.: Task types at “beaver” contests. In: Dagiene,
V., Mittermeir, R. (eds.) Information Technologies at School: Proceedings of the

11

31

2nd International Conference “Informatics in Secondary Schools: Evolution and
Perspectives”. pp. 509–519. Institute of Mathematics and Informatics, Vilnius
(2006)

15. Pankov, P.S.: Real processes as sources for tasks in informatics. Olympiads in
Informatics 4, 95–103 (2010)

16. Pohl, W.: Computer science contests for secondary school students: Approaches to
classification. Informatics in Education 5(1), 125–132 (2006)

17. Pohl, W., Schlüter, K., Hein, H.W.: Informatik-Biber: Informatik-Einstieg und
mehr. In: Koerber, B. (ed.) Zukunft braucht Herkunft: 25 Jahre INFOS – Infor-
matik und Schule. pp. 38–49. Gesellschaft für Informatik, Bonn (2009)

18. Ribeiro, P., Guerreiro, P.: Increasing the appeal of programming contests with
tasks involving graphical user interfaces and computer graphics. Olympiads in
Informatics 1, 149–164 (2007)

19. Vańıček, J.: Bebras informatics contest: Criteria for good tasks revised. In:
Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. pp. 17–28. LNCS 8730, Springer
International Publishing, Switzerland (2014)

20. van der Vegt, W.: Predicting the difficulty level of a Bebras task. Olympiads in
Informatics 7, 132–139 (2013)

21. Walther, G.: Modul 1: Gute und andere Aufgaben (Arbeitsversion),
Mathematikmodul 1 des Programms “Sinus-Transfer Grundschule”,
http://sinus-transfer-grundschule.de/fileadmin/Materialien/Modu1.pdf

12

32

Tasks Classification and Age Differences in Task Perception. Case
Study of International On-line Competition “Beaver”

Ekaterina Yagunova1, Sergey Podznyakov2, Nina Ryzhova3, Evgenia Razumovskaia4,

Nikolay Korovkin5

1 Saint-Petersburg State Electrotechnical Institution LETI after V.I.Ulianov (Lenin),
ul. Professora Popova 5, St. Petersburg, Russia

St Petersburg Academic University, “Physical-Technical School” Lyceum, 8/3 Khlopina Str,
St Petersburg, Russia

katrin.home@mail.ru

2 Saint-Petersburg State Electro technical Institution LETI after V.I.Ulianov (Lenin), ul. Professora
Popova 5, St. Petersburg, Russia
pozdnkov@gmail.com

3 State Corporation ‘Institution of Training – ARB Pro’, Kaluzsky per, 3, St Petersburg, Russia

ryzhova.nina@gmail.com

4 The University of Edinburgh, Old College, South Bridge, Edinburgh, United Kingdom EH89YL
evgeniar@yahoo.com

5 St. Petersburg State Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg, Russia

nikolay.korovkin@gmail.com

Abstract
Complexity is objective characteristic of a task. Difficulty defines the relationships between the task and the
person solving it. We can evaluate task complexity a posteriori - by the portion of the participants who solved
task correctly. Task difficulty is hard to evaluate.
We offered and compared several approaches to evaluation of difficulty and complexity of tasks of the
international informatics competition “Beaver”.
We found that a priori evaluation of problems by the organizers does not correspond to the difficulty of the task
for the participants. The organizers underestimated the complexity for younger pupils and overestimated the
difficulty for older. The pupils, especially primary school kids, frequently underestimate the complexity of the
tasks.
We clustered the tasks by their difficulty and complexity into 4 clusters. One of them had tasks with
significantly underestimated difficulty. We showed that one year age difference results in differing evaluations
of task difficulty and complexity.

Keywords
complexity of tasks • difficulty of tasks • on-line competitions • educational tests • typology of tasks •
competition "Beaver"

33

1 INTRODUCTION
1.1 Methods for estimating task complexity and difficulty
A task which is easy for one participant may be difficult for another one. The task difficulty reflects the
relationships between a task and an individual who performs it. To underline this feature many authors separate
the notions of “complexity” and “difficulty” ([2], [11], [18], [23]). Complexity means a certain objective
feature of a task while the difficulty is understood as a subjective feature, i.e. how a participant interprets a task.
While speaking about the difficulty the authors focus on the individual’s activity to perform a task – to analyse
and to process the information, to design and to make decisions, to forecast consequences of their own decisions
and to build operation images and frameworks ([16], [21]).
The task complexity may be measured upon competition results by counting a share of participants who got
right answers. A measurement or at least evaluation of task difficulty requires serious efforts.
The difficulty of a task for a subject is formed of their mental workload (cognitive, informational, emotional,
attentional loads) and expenditures for their own state control ([23]).
The most accurate methods of workload estimation suggest measuring of various human factors ([4]). A
diagnostic procedure may be accomplished only during “live” competitions with limited number of participants.
The procedure itself may be an additional stress for participants. This may lead to the increase of effort made to
control their state ([13]). Meanwhile, it is only possible to assess the state of participants of remote competitions
using self-reflection tests during task performance. The results of such questionnaires shall be adequate only for
senior school students because it will be difficult for primary school children to make an objective evaluation of
their state and abilities ([25]). According to Piaget ([20]), a primary school child is at the stage of concrete
operational intellectual development. Typically for this age, thinking restrictions affect not only the cognition of
outside world but also the manner of children to perceive themselves. It is fair to start talking about conceptual
thinking only by the age of 11-12 years.
The level of the development of thought process is associated with the age as well as the appropriateness of self-
assessment. That is why primary school children may not cope with solution of tasks that require the operation
with abstract notions (and this is natural!) ([20]). During the period from 8 to 10 years the capacity of memory is
rapidly increasing, attention can be switched much better. So, even minor age difference in this period may cause
significant differences in results when solving same tasks.
The results of “human system” activity exhibit the relationship between the quality of operation information
(quality and quantity of stimuli, coding, distribution etc.) and the capacity of resources available ([18]). In
subject competitions the attention load, the processes of short-term and operative memory may be assessed with
the difficulty of the text of problem statement. Among numerous ways of assessment of the difficulty of text,
the most straight forward is the length of the statement, i. e. number of stimuli to be processed for solution ([3]).
The workload may be a function of the level of difficulty and the number of tasks to be performed within a unit
of time ([22]).
Online informatics competition “Beaver” gives us a unique opportunity not only to compare the results of the
participants, but also to analyse the process of their work on the tasks. Thus we can estimate both complexity
and difficulty on a large sample of schoolchildren.
Using the protocols of on-line competitions one can evaluate the workload of participants taking into account the
time spent by them to solve tasks ([10]). The rules of “The Beaver” competition presume the possibility by
participants to complete only a part of tasks. In this case the participant’s refusal to solve the task is to be
considered as their assessment of task difficulty upon binary rating scale (“difficult” – “not difficult”). Solved
tasks are assessed by a participant as “not difficult”, while those that are not presented – as “difficult”. A share of
participants who found the task “difficult” shall determine the difficulty of a task for the whole body of
competition participants.
There is a huge number of ways to determine task weights (SoČan, 2009, [5]). The organisers of the ‘Beaver’
competition assign weights to tasks prior to the beginning of the competition. Previously, it was shown ([27])
that the distribution of the results is far from normal. A prior estimation of tasks by experts (weighting) shall be
correct once both the task complexity and difficulty are taken into account for participants of each age group.
Only analysis of the results of competition can establish whether the difficulty has been really considered at
weighting, whether a priori estimate is in agreement with an objective complexity.

1.2 Research objectives

1. To evaluate the difficulty and complexity of the tasks of online informatics competition “Beaver”
2. To compare different evaluations of task complexity and difficulty gained using different methods
3. To classify tasks upon their complexity and difficulty.
4. To estimate the differences in the perception of the tasks by the school children from different age

groups

34

It should be noted that some authors use the notions of “complexity” and “difficulty” as synonyms because not
the content of mental processes is fundamental for them, but the execution – whether a schoolchild can or cannot
solve the task ([15]). Further on we shall differ the terms “complexity” and “difficulty” by high lightening them
in bold. If the matter is a complex evaluation with account made for both parameters, we shall use the term
“complexity” without high lightening it.

2 MATERIAL AND METHODS
2.1 “The Beaver” competition: organization, tasks selection
“The Beaver” international on-line competition on informatics started in 2003 ([6]). The task pool is prepared
by representatives of participating countries. The statements of the problem should meet certain requirements
([19], [7]). The statements are discussed and formulated in English. Each country chooses the problems for the
competition out of the task pool. Some tasks are “compulsory”, i.e. they should be included by all participating
countries. The organizing committee of each country is responsible for translation of the statements to the
national language of each country.
Russia took part in this competition for the first time in 2012. The competition in Russia is organized for six age
groups. The participants are proposed to solve the tasks of three levels of complexity: for schoolchildren of 1
and 2 grades – 4 tasks for each level, for schoolchildren of 3-10 grades – 5 tasks for each level. 8 simple and 7
complicated tasks are proposed to senior schoolchildren. The tasks of 2012 can be found at
http://ipo.spb.ru/bebras-files/beaver-2012-rus.zip (in Russian) or http://ipo.spb.ru/bebras-files/beaver-2012-
eng.zip (in English). 40 minutes are given for task completion. Every wrong answer is fined the penalty rate
which makes one-third of task value.
Competition tasks are numbered, simple tasks are of smaller order and complicated tasks have larger numbers.
The tasks of the same complexity are randomly numbered (the order is different for each participant).
Participants may solve the tasks arbitrarily, they may return to solved tasks.
Participants are to choose from multiple answers, three of them are wrong and one is correct. A participant can
choose the option “no answer”. In this case they will receive neither score, nor penalty. Certain tasks prepared
for students of 1-2 grades are dynamic – certain actions with the mouse are required to be made. These tasks will
be scored in the same way as others. A sum of scores and penalties gained shall make the result of competition
for each participant. Participants gained the highest results shall become winners in each age group.

2.2 Scales and analysis
The protocol of competition where all participants’ actions are recorded shall be taken as a basic data set ([26]).
If a participant introduced successively several answers the last one is to be taken into consideration when
counting the results. The total number of competition participants in 2012 was 6602 schoolchildren. The
distribution of the participants by age is given in table 1.

Table 1. Number of students in each age group, who took part in the competition

level of
contest Grade number of pupils

1
1 297

733
2 436

2
3 661

1483
4 822

3
5 793

1603
6 810

4
7 672

1329
8 657

5
9 615

1148
10 533

6 11 306 6602

35

We used several scales to evaluate the complexity and difficulty of competition tasks.
Scale 1 – scale of expert estimation. It is performed upon three-point scale (1 – simple, 3 - complicated) during
the meeting of international steering committee. In order to consider the estimate as correct both the objective
complexity and difficulty of tasks should be taken into account.
Scale 2 – share of participants who chose the “no answer” option for particular task. When the answer is
arbitrarily chosen out of 4 proposed options, the probability (p) to choose a correct answer makes ¼. In this case
a mathematical expectation of scores gained is р*х+ (1-р)*(-х/3) =х (4р-1)/3=0 (where х – task value), that
coincides with total scores received when choosing “no answer” option. If one of the answers proposed is
rejected as certainly wrong, the probability of arbitrary choice of a correct answer out of remained options is
greater than ¼ and a mathematical expectation of score gained for solving a task becomes positive. Therefore, a
participant has no reasonable motive to choose “no answer” button. The use of this button may only be due to
psychological reasons – for example, a fear of failure (and penalty for it) or an extreme lack of self-confidence, a
fear of task statement. As statistical expectation of score may be hardly calculated by schoolchildren, the choice
of “no answer” option reflects their feelings about the relation between winning and failing probabilities. In all
cases the choice of “no answer” option is the result of an interaction between the schoolchild and the task, i.e. it
features the difficulty of a task for a participant.
Scale 3 – share of participants who gave a correct answer among those who decided to solve the problem. It shall
be determined upon completion of a competition and shall contribute to proper evaluation of the task
complexity. We must underline that this is just a task complexity because it is calculated only taking into
consideration those who decided to solve it, i.e. among those who understood it as “not difficult” upon scale 2.
Scale 4 – number of symbols in problem statement. This is an indirect assessment of task difficulty because it
relates to memory and attention loads.
Because scales 1-3 are ordinal, the comparison of scale 1 with scales 2 and 3 has been made using Spearman's
correlation coefficient.
Clustering of tasks has been made by Ward’s method while using Euclidean metric.

3 RESULTS
3.1 Task complexity and difficulty
The distribution of the number of correctly solved tasks is shown in fig. 1. It appeared that average schoolchild
solves less than a half of all the offered tasks in all the grades. Moreover, 75% of the participants both from
primary and secondary schools solved less than a half of the offered tasks. The majority of schoolchildren
showed low results. It means that difficulty and/or complexity of the tasks were underestimated by the
organisers. Extremely few students solved all the tasks of the competition.

Fig. 1. Distribution of the number of tasks solved by the students from different years.

Task assignments upon difficulty (scale 2) and complexity (scale 3) are far from normal (Figure 2). The skew of
task complexity distribution is positive while that of task difficulty distribution is negative, i.e. tasks of low

36

difficulty prevail in competition but the most part of tasks are of high complexity. There are tasks with difficulty
of less than 10% among the tasks for each grade. The task of the lowest difficulty was found in a test for the 8th
grade (1, 1%) and of the highest difficulty - in a test for the 10th grade (47, 6%). The task complexity within test
versions for each grade varies from 10-20 to 80-90 %. The lowest complexity task was found in the 2nd grade
version (7, 7%) and the one of the highest complexity – in the 7th grade task set (89, 8%).

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
0

10

20

30

40

50

60

70

N
o

of
 o

bs
 difficulty

 complexity

Fig. 2. Distribution of competition tasks upon their difficulty and complexity

Spearman’s rank correlation coefficients of expert tasks evaluation (scale 1) with their complexity (scale 3) and
difficulty (scale 2) for participants calculated for all competition tasks are significantly positive (р<0.01) and
equal to 0.56 and 0.60 respectively (table 2). There was no correlation of expert evaluation of complexity with
task difficulty revealed for junior grades (1, 2, 3). There is a significantly positive correlation for grades starting
from the 4th. The best agreement of expert evaluation with task complexity was found for 1-2 grades. As far as
it concerns the versions for 7-8 and 11 grades the evaluation of task complexity by organizers did not
correspond to real complexity of tasks for school students.

Table 2. Spearman’s rank correlation coefficients of expert evaluation of tasks complexity for each grade with their

complexity and difficulty. Correlation coefficients significantly at р<0.05 are highlighted in bold.

Grade 1 2 3 4 5 6 7 8 9 10 11
Tasks difficulty 0,41 0,46 0,51 0,67 0,53 0,76 0,76 0,76 0,63 0,79 0,84
Tasks complexity 0,74 0,8 0,62 0,64 0,59 0,57 0,28 0,25 0,62 0,66 0,49

Table 3 shows correlation coefficients between the number of characters in task statement (scale 4)
and its complexity and difficulty (scales 2 and 3). In junior grades (from the 1st to the 4th) a
significantly positive link (p<0.01) has been found between task statement length and its difficulty
(number of “no answer” responses). Moreover, the link between the task statement length and its
objective complexity was revealed only for tasks of the 3rd - 4th grades.

Table 3. Spierman’s rank correlation coefficients of task statement length and its difficulty and complexity. Correlation
coefficients significant at р<0.05 are bolded.

Grade 1 2 3 4 5 6 7 8 9 10 11
Task difficulty 0,90 0,83 0,77 0,78 0,17 0,13 -0,04 -0,06 0,10 0,04 -0,14
Task complexity 0,37 0,36 0,77 0,78 0,29 0,32 -0,18 -0,20 -0,13 -0,01 -0,23

37

3.2 Tasks classification and age differences in task perception
The results of the clustering are shown in fig. 3. Two clusters were distinguished. One of them includes the tasks
with high complexity and the other includes all the other tasks. The first cluster is composed of 2 sub-clusters of
tasks which differ by difficulty. The second cluster is also composed of 2 sub-clusters of tasks. The tasks for the
second cluster differ by complexity while the difficulty of all these tasks is low. Examples of tasks from each
cluster can be found on fig. 4. , i.e. the objective characteristic of the task becomes the most important. The
division of tasks by the subjective evaluation by students (by difficulty) is made only for the tasks of the first
cluster(tasks with high complexity). The perception of task difficulty by students is not important for clustering
of the tasks from the second cluster , tasks with low complexity.

Fig. 3. Clusters and subclusters on the basis of comparison of their difficulty and complexity. The statements of the tasks

shown with arrows are in fig. 4.

If the same task is offered to the children of different ages, its complexity and difficulty will be different.
Schoolchildren of two grades took part in each of the first five competition levels. The results of comparison of
junior and senior schoolchildren in each pair of grades are shown in Figure 5. At each level (i.e. among
schoolchildren who were solving the same tasks) the results of younger participants were lower (Fig. 5A). Junior
schoolchildren of levels 1 & 2 assessed task difficulty as higher (i.e. they chose “no answer” response, Fig. 5B)
while those who were in the 4th and 5th age group assessed it as lower. Tasks were complicated (number of
wrong answers, Fig. 5C) for junior children at all competition levels except the first one. We have to note that it
is not correct to compare the results of children of different levels because the number and sets of tasks differed.

38

Fig. 4. Examples of tasks from different clusters. The position of the tasks in ‘difficulty-complexity’ space is shown in fig. 3

39

Fig. 5. Differences of results of junior and senior schoolchildren at each competition level. А. Differences of average score B.
Differences in assessment of task difficulty. C. Differences in task complexity. White circles – senior grade, full circles –

junior grade Averages are given with 95%-confidence intervals.

Figure 6 presents the task clustering by grades. When comparing junior and senior grades within competition
levels we note that all tasks for senior schoolchildren with a single exception are of the same or lower
complexity and difficulty. Only ninth task of fifth competition level is of low difficulty for juniors (9th grade)
and of high difficulty for seniors (10th grade). The task complexity for all participants is the same, and it is high.

Fig. 6. Task clustering for each grade. Numbers of tasks are given in cells. Arrows show changes of complexity or difficulty.

The circled tasks are the tasks from fig. 3. Their statements can be found in fig. 4.

4 DISCUSSION
4.1 Difficulty and complexity of tasks
Due to a significant right skewness of distribution of total scores, the selection of winners and ranking of the
strongest participants run at high point. Ranking of the main body of participants is rough. A set of tasks used
for this competition could be more appropriate if its goal was to select the best students. Taking into account that
the competition is aimed at the general public in order to heighten the interest in the subject and tailored for
students of general education schools, the set of tasks must be admitted to be far from successful.
As it was mentioned above, most of the tasks proved to be complicated for the majority of participants. There is
a possibility to make some assumptions about the reasons for that. The assumptions were made based on the
results of comparison of expert estimation of tasks and their complexity and difficulty. As far as it concerns the
tasks proposed to junior pupils, the correlation between expert estimation and task complexity is high while the
one related to the difficulty is insignificant. The elder the pupils were, the closer was the task assessment by
organizers to its difficulty set up in the protocol of competition. However, the correlation between expert
opinion and task complexity was not always established in tasks designed for senior students. That is to say, the
experts do not evaluate accurately the difficulty of tasks for juniors and their complexity for seniors.
Our results confirm to some extent the opinion of Navon and Gopher ([18]) that one of the components
contributing to the task difficulty is its statement length. In junior classes the tasks became significantly more

40

difficult with the increase in statement length. Perhaps, this factor was not taken into account by experts when
estimating tasks for junior grades which resulted in making the task excessively complicated. We suppose that
the task length was the factor which determined a large number of refusals in junior classes, even though the
tasks were not complex, in fact. This must have skewed the results of measurement of knowledge and skills of
junior pupils. Because of lower level of development of mental processes junior pupils misunderstand long texts.
It was proved that complexity of text provokes loss of interest to its content ([9]), therefore, tasks with too
intricate statements should be avoided.
Another complicating factor is interface peculiarities of a competition. Tasks containing long texts may have not
enough space to be presented on one screen. In this case to read it from the screen some skills related to
computer-literacy will be needed (to know what “vertical scroller” means and how to use it), as well as fine
motor skills shaped in a certain manner (to know to use a mouse).
For senior students the length of text is not an extra complicating factor. Moreover, during educative process a
personal experience to assess the difficulty of a task by eye is being gained as well as schemata to differ
“difficult” and “simple” tasks. That is why the tasks estimated by experts as difficult prove to be such for senior
participants.
Having made mistake with assessment of task difficulty for junior schoolchildren, the experts evaluated best of
all the complexity of tasks for them. As far as it concerns senior pupils the objective complexity of tasks did not
coincide with an a priori opinion of organizers. It probably means that an objective complexity of a task is due to
students’ knowledge to a large extent. The knowledge of senior students participating in the competition on
informatics was overestimated by organizers. The impression is that the experts were oriented to select and
estimate competition tasks for a standard student of secondary school.
When considering the causes of incorrect a priori evaluation of task complexity, we should bear in mind that the
competition is international. It is well-known fact that same tasks of TIMMS and PISA can have different
weights for children from different countries. This is due to varied linguistic and cultural backgrounds ([12], [1]).
Appropriate complexity evaluation by the experts is essential for adaptation of the tasks of international
competition for the specialties of each country. It would be interesting to compare the results gained by us with
the data from other countries.

4.2 Tasks categorization and age differences with regard to task perception

Tasks of low difficulty prevail in the competition. Pupils are more disposed to solve tasks than to make “no
answer” choice. As shown above, the selection of “no answer” version gives no advantage in scores over a
simple guessing.
The tasks where a large part of pupils refused to find a solution are of higher interest – these are tasks of second
cluster. Most of them were found in tests designed for junior and senior students. We suppose that this cluster
contains nonstandard tasks that frighten pupils by their presentation. The probability of giving a right answer is
instinctively assessed as extremely low (this is not consistent with the reality – this probability is not less than
¼). However, as stated by Sočan([24]), the choice between the omission of answer, i.e. ‘no answer’ option, and
guessing an answer even in the conditions where ‘no answer’ gives you an advantage in scores over guessing,
the choice students make are determined by the personality, instructions given for the exam and other not
linearly connected factors.
Three other clusters contain more intelligible and/or ordinary tasks. The simplest (tasks of low difficulty and
complexity) are those called in competition slang “consolation tasks”. Their solution is possible for practically
each participant. The existence of such tasks in competition gives a positive emotion even to those who solved
few tasks. The number of such tasks proposed for competition was negligible.
The above results show that a mere one year gap makes significant differences with regard to the perception of
the same tasks. Junior participants of elementary schools are prone to assess tasks as more difficult and they are
ready to choose “no answer” version more often than senior pupils. Elder pupils of elementary schools are prone
in the contrary to assess tasks as less difficult (Tab. 3). The complexity of tasks for younger pupils of elementary
school is in fact higher which becomes apparent in larger number of wrong answers and it is not surprising that it
leads to lower results.

5 CONCLUSION
1. The evaluation of complexity and difficulty of the tasks of the competition “Beaver” was conducted

based on the analysis of the protocols.

41

2. It was shown that the organisers underestimated the complexity for younger pupils and overestimated
the difficulty for older.

3. The length of the statement of the task was demonstrated to be one of the factors determining the
difficulty of the task for primary school children.

4. The cluster of non-standard tasks was clustered out.
5. It was shown that the difference of one year in the age of the school children results in significant

differences in their perception of difficulty and complexity of the same tasks.

REFERENCES
1. ARFFMAN, I. (2012). TRANSLATING INTERNATIONAL ACHIEVEMENT TESTS: TRANSLATORS’ VIEW. FINNISH
INSTITUTE FOR EDUCATIONAL RESEARCH. REPORTS 44. 92P.
2. Ball, G.A. (1990). Theory of training tasks: Psychological and educational aspect. Moscow, Russia:
Pedagogy.
3. Benjamin, R. G. (2012). Reconstructing Readability: Recent Developments and Recommendations in the
Analysis of Text Difficulty: Educational Psychology. Vol. 24, pp. 63 – 88.
4. Cain, B. (2007). A review of the mental workload literature. Toronto, ON, Canada: Defense Research and
Development Canada.
5. Chang, S.-W. (2009). Choice of Weighting Scheme in Forming the Composite: Bulletin of Educational
Psychology. Vol. 40, N 3, pp. 489–510.
6. Dagienė, V. (2006). Information Technology Contests--Introduction to Computer Science in an Attractive
Way: Informatics in Education-An International Journal. Vol. 5, N1, pp. 37-46.
7. Dagienė, V., Futschek G. (2008). Bebras international contest on informatics and computer literacy: Criteria
for good tasks. s. In R.T. Mittermeir and M.M. Sysło (Eds.), Informatics Education – Supporting Computational
Thinking, Vol. 5090 of Lecture Notes in Comput. Sci.. Springer, Berlin, 19–30.
8. Delandshere, G. & Petrovsky, A. R. (1998). Assessment of Complex Performances: Limitations of Key
Measurement Assumptions: Educational Researcher. Vol. 23(2), pp. 14 – 24.
9. Fulmera, S. M. & Tulis, M. (2013). Changes in interest and affect during a difficult reading task:
Relationships with perceived difficulty and reading fluency: Learning and Istruction. Vol. 5, pp. 11 – 20.
10. Gibson, D. & Clarke-Midura, J. (2013). Some Psychometric and Design Implications of Game-Based
Learning Analytics. Perth, Australia: Curtin University.
11. Golikov, Yu. Ya. & Kostin, A. N. (1996). Psychology of facilities management automation. Moscow,
Russia: RAS Institute of Psychology.
12. Grisay, A., de Jong, J., Gebhardt, E., Berezner, A., & Halleux-Monseur, B. (2007). Translation equivalence
across PISA countries. Journal of Applied Measurement, 8 (3), 249–266.
13. Kantovits, B. & Sotokin, R. (1991). Human factor: Mir. Vol. 4, pp. 85 – 113.
14. Kiriukhin, V. M. (2012). Methodological recommendations on elaboration of tasks for school and municipal
stages of All-Russian competition on informatics for students in 2012/2013 academic year. Moscow
15. Krotov, V. M. (1999). On complexity of problems on physics: Physics: teaching problems. Vol. 3, pp. 69 –
74.
16. Leontiev A. N. (1975). Activity. Comsciousness. Personality. Moscow, Russia: Politizdat.
17. Lord, F. M. (1952). Theory of Test Scores: Psychometric monograph. Vol. 7.
18. Navon, D. & Gopher, D. (1979). On the economy of human information processing systems: Psychology
Review. Vol. 86, pp. 214 – 255.
19. Opmanis, M., Dagiene, V., Truu, A. (2006). Task Types at Beaver Contests Standards. In: Dagienė, V.,
Mittermeir, R. (eds.) Proc. of the 2nd Int. Conference Informatics in Secondary Schools: Evolution and
Perspectives, Vilnius, pp. 509–519.
20. Piaget, J. (1951). Psychology of intelligence. London, Great Britain: Routledge and Kegan Paul.
21. Ponomarenko, V.A. Cherniakov, G. M. & Kostritsa, V.G. (2013). Operator’s mental states as the object of
engineering and psychological researches: Cybernetic issues.
22. Riley, V. Lyall, E. & Wiener, E. (1994). Analytic workload model for flight deck design and evaluation:
Proceedings of the Human Factors and Ergonomic Society. Vol. 38, pp. 81 – 84.
23. Sammer, G. (1997). Concepts of mental workload in psychological research: Proceedings of the 13th
Triennial Congress of the International Ergonomic Association. Vol. 5, pp. 368 – 370.
24. Sočan, G. (2009). Scoring of multiple choice items by means of internal linear weighting: Review of
Psychology. Vol. 16, N2, pp. 77-85.
25. Towler, L. & Broadfoot, P. (1992). Self-Assessment in the primary school: Educational Review. Vol. 4(2),
pp. 137 – 155.

42

26. Yagunova, E., Ryzhova, N. (2013). Use of protocols of online competitions for an assessment of complexity
of tasks and increase of a validity of measuring procedure. Komp'ûternye instrumenty v obrazovanii. Vol. 6,
pp.33-44.
27. Yagunova, E., Pozdnyakov, S., Ryzhova, N., Razumovskaia, E., Korovkin, N. (2015). Analyses of difficulty
and complexity of items in international on-line competition “Beaver”. IFIP TC3 Working Conference “A New
Culture of Learning: Computing and next Generations”. Preliminary Proceedings. July 1 st - 3 rd , 2015, Vilnius
University, Lithuania. Andrej Brodnik, Cathy Lewin (Eds). pp. 242-254

43

ISSEP 2015, Ljubljana, Slovenia, September 28–October 1, 2015

ISSEP 2015 — The Poster Session

Poster presentations are an integral part of this conference including a session with a fast-forward presentation of
the poster’s summary to all conference attendees. Twelve posters are presented, with various interesting topics.
In addition, an extended abstract of each poster is published in the Local Proceedings. Topics covered are quite
diverse ranging from describing the situation with computer science in different countries to various approaches
in learning and teaching programming. Altogether, 24 authors coming from nine different countries are authors
of these posters.

The overview of current state of computer science in Swiss high schools is reported by Jean-Philippe Pellet,
Gabriel Parriaux, and Morgane Chevalier, contrasting the presentation by Okan Arslan and Selcan Kilis on
Informatics Teacher Education in Turkey. The most represented topic is teaching computer programming,
presented in various posters. Greg C Lee and Ling-Chian Chang talk about transition from visual programming
language to C, Zsuzsanna Szalayne Tahy is approaching teaching programming indirectly with the use of “Paint”
programme and Boštjan Resinovič uses a humanoid robot in teaching computer programming. Michele Moro and
Luigino Calvi discuss concurrent programming basics through Snap! Gregor Jerše, Sonja Jerše, Matija Lokar and
Matija Pretnar present their YASAAPE – a system for automatic assessment of programming exercises. Paul
Libbrecht and Wolfgang Muller describe a vision of supporting the teachers towards the choice and adoption
of ICT-based learning scenarios. The influence of teaching methods during technical e-safety instruction is
analysed by Vaclav Šimandl, Vaclav Dobiaš, and Michal Šery. Martina Palazzolo and Paolo Mauri report
how they used PirateBox to teach how to create simple web pages. Wolfgang Pohl and Jorg Westmeyer propose
content categories for Informatics Tasks while Paul Libbrecht discusses alternatives for publishing open educatinal
resources (OERs) and how they can be found using regular tools on the web.

16th September, 2015

Matija Lokar, Poster Session Chair
University of Ljubljana

44

Informatics Teacher Education in Turkey

Okan ARSLAN1 and Selcan KİLİS2

1 Middle East Technical University
Ankara, Turkey

okana@metu.edu.tr
2 Middle East Technical University

Ankara, Turkey
skilis@metu.edu.tr

Abstract. The purpose of the study is to examine the informatics teacher
education programme and ICT curriculum in Turkey. The study also
compares national ICT teacher education programme in public universi-
ties with national ICT curriculum in public schools. This study applied
systematic review as a quantitative method. Descriptives and frequen-
cies were analysed in order to explore, define and interpret the data.
There were 67 public universities in Turkey which have Computer Ed-
ucation and Instructional Technology (CEIT) department. Curriculums
of all universities were investigated. After excluding missing data, there
were 34 universities. Results indicated that there were 4 main course cat-
egories: Domain Knowledge (38 percentage), Pedagogy (22 percentage),
General (29 percentage), and Elective courses (11 percentage). The scope
of Informatics teacher education programme was found much higher than
ICT curriculum in schools that Informatics teachers teach in schools.

Keywords: informatics, teacher education, ICT curriculum in Turkey,
CEIT

1 Introduction

In information age, information and communications technology (ICT) and tools
has advanced. With the purpose of meeting with the demands of this age, a new
ICT program was developed based on standards-based curriculum approach [2].

The name of the course was changed as Information and Communication
Technologies and Software from Information Technologies in 2012 to match with
new topics covered in new program. In new ICT program, learning domains cov-
ered are digital literacy, communication, knowledge sharing and self-expression
via ICT, research, knowledge construction and collaboration, problem solving,
programming and development of authentic materials.

This new ICT program, based on some taxonomies and levels [1, 3, 4] includes
3 main levels namely basic, intermediate, and advanced with 2 dimensions which
are I and II. In new ICT program, evaluation methods are Portfolio, Rubric, Peer
evaluation, Self-evaluation, and Performance evaluation.

45

2 Research

The purpose of this study is to introduce and examine national ICT teacher
education programme and ICT curriculum in Turkey. This study compares also
national ICT teacher education programme in Turkey’ public universities with
national ICT curriculum in public schools in Turkey.

Systematic review as a quantitative method was used as a research method-
ology. Descriptives and frequencies were analysed in order to explore, define
and interpret the data. There were 67 public universities in Turkey which have
Computer Education and Instructional Technology (CEIT) department.

Curriculums of all universities were investigated. In the organisation and
preparation process, data sets that had missing data were excluded. After this
step, the number of universities were reduced to 34. Thus the sample of this
study is 34 university CEIT curriculums. As a final step descriptive data was
analysed and the results interpreted. The course requirements are formed of the
courses: Domain Knowledge (38 percentage), Pedagogy (22 percentage), General
(29 percentage), and Elective courses (11 percentage).

3 Conclusion and further research

Matching the courses taught in ICT in schools with teacher education pro-
gramme indicates that only a small part of the courses in teacher education
programme are enough for the whole national ICT curriculum in public schools.
National ICT curriculum includes mainly algorithm, programming, ICT liter-
acy, ethics and privacy, and project development and applicaiton. These are
included in seven courses in domain knowledge courses in teacher education pro-
gramme in the universities. So, teachers cannot teach and use all their knowledge
that offered themselves in the universities. Therefore, it is suggested that either
the scope of course Information and Communication Technologies and Software
should be enhanced or scope of teacher education programme in the universities
should be reduced.

References

1. Fraillon, J., Ainley, J.: The IEA International Study of Computer and Information
Literacy (ICILS). International Association for Evaluation of Educational Achieve-
ment. 2011

2. Gülbahar, Y., Ilkhan, M., Kilis, S., Arslan, O.: Informatics education in Turkey:
national ICT curriculum and teacher training at elementary level. In: Informatics in
Schools: Local Proceedings of the 6th International Conference ISSEP 2013–Selected
Papers (p. 77)., Oldenburg, Germany, 2013

3. Tomei, L.A.: Taxonomy for the Technology Domain. In: Information Science Pub-
lishing, USA, 2005

4. UNESCO: Strategy Framework for Promoting ICT Literacy in the Asia-Pacific Re-
gion. In: UNESCO Bangkok Communication and Information Unit, Bangkok, 2008

2

46

YASAAPE – Yet Another System for Automatic
Assessment of Programming Exercises

Gregor Jerše, Sonja Jerše, Matija Lokar, and Matija Pretnar

Faculty of Mathematics and Physics
University of Ljubljana, Slovenia
Matija.Pretnar@fmf.uni-lj.si

Abstract. Programming is a skill where teachers are required to both
encourage students by exposing them to numerous problems and super-
vise their attempts to solve them. To support this teaching approach we
developed a web service Projekt Tomo, presented in this poster.
The service is designed in such a way that it requires little or no addi-
tional work from students and teachers, enabling them to focus on the
content. Furthermore, the service can be used in almost all teaching en-
vironments, as it can be adapted to most programming languages and
has minor technical requirements.

Keywords: programming, teaching, web service

1 Introduction

In introductory programming courses groups are usually large and heteroge-
neous. Assessment of programming exercises by manual inspection of code on
paper is notoriously inefficient and error-prone. So several different automatic
assessment systems have been proposed. The obvious benefits of automatic as-
sessment are the objectivity, consistency and speed of assessment, as well as
constant availability.

Tools for automated assessment of programming assignments are a well-
researched approach to support teaching programming. There are several sur-
veys of such systems (among others [1–3]) and there are numerous such systems
available with different features such as programming languages supported, con-
nection to learning management systems, possibilities of defining tests, ways
resubmissions are tackled, possibility of manual assessment, security issues, dis-
tribution and availability, and others. For a review of possible features see for
example [2, 3].

2 Main objectives of the service

As all the known solutions failed to provide proper support to our education
process for various reasons, we started developing our own Projekt Tomo1 service
in 2010. Our main objectives were:

1 tomo.fmf.uni-lj.si

47

Low overhead interaction We wanted to keep the interaction with the sys-
tem (uploading solutions, waiting for feedback. . .) to the minimum.

Possibility of remote work A service was required that would be available
24 hours a day and both at school and at home.

Local execution Due to security issues a solution was required that executes
programs on the student’s computer. This approach also allows usage where
the internet connection can be unreliable (at home, in dormitories. . .).

Ability to choose a preferred coding environment Students should use a
coding environment of their choice.

Independence of a programming language Different courses use different
programming languages, each suited for its particular task, and ideally, the
proposed service should be adaptable to offer support to any one of them.

Flexibility in administering tests In addition to a direct string comparison,
much richer possibilities for testing have been foreseen.

Open source development

The fundamental idea of the resulting system is as follows. A student down-
loads the file containing problem instructions (in form of comments) from the
server and enters his own solutions into the file.

When a student executes a program, his attempts are evaluated and a feed-
back is given, even when his computer is offline. When connected to the internet,
his attempts are also automatically saved on the server.

3 Conclusion

The Projekt Tomo offers many features that are expected from a service for
teaching programming like low overhead interaction, remote work, local execu-
tion, preventing various malicious attacks and allowing the service to have small
technical requirements, independence of both a coding environment and a pro-
gramming language and open source development. So far, this service has been
successfully used in several different courses. In the 2013/14 school year, this
service was used by 10 teaching assistants and about 500 students. Altogether,
they solved 40.000 problems in 600.000 attempts.

References

1. Ala-Mutka, K.: Survey of Automated Assessment Approaches for Programming As-
signments, in: Computer Science Education, Volume 15 Issue 2, pp 83–102, 2005

2. Caiza, J.C., Del Alamo, J.M.: Programming assignments automatic grading: re-
view of tools and implementations, In: INTED2013 Proceedings, 7th International
Technology, Education and Development Conference, pp 5691–5700, 2013

3. Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O.: Review of recent systems
for automatic assessment of programming assignments, In: Proceedings of the 10th
Koli Calling Conference on Computing Education Research, pp 86–93, 2010

2

48

Learning to Program: from VPL to C

Greg C Lee1 and Ling-Chian Chang2

1 National Taiwan Normal University
Taipei, Taiwan

leeg@csie.ntnu.edu.tw
2 Hsin-Tien Senior High School

New Taipei City, Taiwan
ninachang@htsh.ntpc.edu.tw

Abstract. In recent years, visual programming langauge (VPL) has
been very popular for introducing programming to K-12 students. Al-
though students may enjoy the fun of visual programming, it is still a
challenge to leap into programming in C/C++/Java. In this study, we
aim to find ways to bridge the gap between VPL and C programming.
Curriculums have being developed and pilot study is underway. Results
on students’ development of computational thinking skills as well as pro-
gramming skills are to be reported at the conference.

Keywords: Visual Programming Language, Computational Thinking,
Computer Programming

1 Introduction

The need for problem solving techniques is inherent in engineering, as well as
scientific and other disciplines [1]. Improvements in computing have made it pos-
sible for all fields to incorporate computation as part of their problem solving
and research process. Programming skills also have impacts on the development
of thinking skills; the connection between programming and problem solving has
long been established [3]. Therefore, students who are not going to pursue com-
puter science further can still benefit from the process of learning to program.
But which language should be taught and learned by high school students? Ac-
cording to the Tiobe programming community index [2], the most widely used
programming languages both in industry and education today are Java and C,
and having been so for many years. However, there have been much debate
about the suitability of these programming languages for education, especially
when introducing programming to novices [4, 5]. These languages are criticized
for the verboseness in syntax and overhead in notation so that students have
little practice in thinking algorithmically and writing structured programs. Over
the past several years, new visual programming languages have been developed
targeting K-12 students to learn about programming with a focus to develop
computational thinking skills. Programming languages and environment such as
Scratch and Greenfoot have since attracted own group of teachers. Although vi-
sual programming learning environment might be easier for novice programmers

49

to handle, can those programmers make the necessary leap into programming in
C/C++/Java in later courses? In this ongoing research, we proposed a learning
progression for going from visual programming to line-based programming for
high school students. In year one of this three year research, curriculum has been
developed and a pilot study is been conducted.

2 Research

There are four phases in the planned programming learning progression:

1. Learn to think computationally through VPL (e.g. Code.org).
2. Learn to solve simple problems computationally through VPL (e.g. in-house

Blockly tasks).
3. Learn to devise algorithm and solve problems computationally through VPL

(e.g. in-house Blockly tasks).
4. Learn the syntax of C and solve the same problems in (3) in C/C++.

The in-house Blockly tasks and programming environment have been fully
developed. Pilot study is to be conducted during the summer session (July and
Auguest) for 20+ incoming freshman (10th grader) at a local high school. Stu-
dents will be pre- and post-tested with Bebras tasks to assess changes in their
computational thinking skills. Furthermore, learning difficulties during each step
of the learning progression will be monitored and reported.

3 Conclusion and further research

The pilot teaching experiment is ongoing. However, the small sample size test
conducted during the task development showed that students were able to learn
to program in VPL during the first three phases. We are confident that students
will be able to build on their VPL programming skills to solve problems with
the C programming language.

References

1. Wing, J.M.: Computational Thinking. In: Communications of the ACM, 49(3), 33-
35, ACM New York, NY, USA, 2006

2. http://www.tiobe.com
3. Soloway, E.: Should we teach students to program? In: Communications of the ACM

36(10), 21-24, ACM New York, NY, USA, 2006
4. Gupta, D.: What is a good first programming language? ACM Crossroads. 10(4):

7–7, ACM New York, NY, USA, 2004. doi: 10.1145/1027313.1027320
5. Kölling, M.: This much I know: thoughts on the past, present and future of educa-

tional programming tools. In: Proceeding of the 44th ACM technical symposium on
Computer science education (SIGCSE ’ 13): 5–6, ACM New York, NY, USA, 2013.
doi: 10.1145/2445196.2445200

2

50

Publication of Learning Resources:
Central or Interoperable?

Paul Libbrecht

Weingarten University of Education, Germany
(Supported partially by the EU project OpenDiscoverySpace)

libbrecht@ph-weingarten

Abstract. This poster discusses alternatives for publishing open edu-
catinal resources (OERs) and how they can be found using regular tools
on the web. This discussion attempts to propose solutions to the recur-
ring problem of low endorsement of OERs.

Keywords: open educational resources, sharing, web-authoring

1 Introduction

Activities around Open Educational Resources exist since more than a decade.
Expectations such as the ease of re-purposing because of modularity are at least
as far as 2000, e.g. in [4]. Repositories that collect Open Educational Resources
(OERs) are numerous with broad and specialized servers. However, the penetra-
tion of OERs in the daily life of teachers is not yet broad.

A common reason is the spread of learning resources in a way that make them
hard to find again. Whereas the early OERs history proposed sharing platforms
where one could have the impression that everyone of a community will converge
on a single platform, specialized tools (such as encoding, preview, or evaluation
services) and specialized vocabularies have been developed and many specialized
platforms have emerged contributing to a broader spread. Even for a small field
such as that of mathematics education with dynamic geometry, there exists a
generic server (i2geo), and several specialized servers (e.g. Sketchpad Exchange,
GeoGebraTube), and many author-publishers which display on their website.

How can regular teachers find across this collection? Only individual OER
platforms provide search functions and each using their vocabulary. Global web
search engines offer reasonable services for well-identified concepts which can be
expressed using simple words but fail very quickly as soon as refined concepts
of the disciplines to be learned are used or when pedagogical concepts are ex-
pected (often, synonyms’ suggestions are not possible, and concepts expressed
in multiple words yield results with unrelated words in the documents).

2 Possible Solutions

One of the solution is that learning resources travel among the servers: using pro-
cesses such as the OAI-PMH harvesting allows the information about a learning

51

resource to be collected so as to be displayed in other repositories. Harvesting has
been applied with success to many OER repositories including OERcommons,
LreForSchools, and Gooru which collect from multiple sites and offer an en-
hanced access to resources. In Europe, the platform OpenDiscoverySpace.eu has
been designed with this strategy: harvesting as many learning resources as pos-
sible from dozens of repositories, overall about a million, providing a taxonomy
vocabulary that is adjusted to Europe, and supporting the further enrichment of
resources’ metadata on the portal by tools for scenarios and communities. Such
a large server provides an answer to a unified search and collaboration facility
for OERs. However, small author repositories are not harvestable and are thus
excluded. Moreover, harvesting often looses precious information.

Generic search engines could be refined to take more information in account
from web-pages so that learning-resources information is faithfully searched.
The micro-data markup LRMI [3] contributes to it and a prototype to em-
ploy Google’s search for this has been made [1]. However, contrary also to the
expectations in [2], there does not seem to be an interest yet from the big search
engines to offer a mature service of this sort, the educational domain vertical is
not yet a feature.

Other strategies support the transfer of some information carried in a web
page to other servers which are in current use. E.g. Social networks witness the
content of a link when sending message that mention one: they show an excerpt.

3 Conclusion and Future Work

The options to publish learning resources that we have presented leave cur-
rent authors perplex: Should I simply use a repository or should I maintain my
web-page and become a web-site designer to stage my creations? (a standard
competency in secondary schools). Is the example of medien-in-die-schule.de to
be followed? How will others talk about my learning resource and at which URL?

Displaying key information of the resource within communication, and ensu-
ring that this information is sufficient for search engines, social networks and
repositories, might offer a scalable way for all teachers to host their learning
resources while still allowing them to be easily found. Approaches to this solution
might be to turn an LRMI web-crawler into an OAI-PMH server, or to develop
such custom search engines as [1] to understand many discipline concepts.

References

1. Phil Barker, Building a Google custom search engine for LRMI-tagged pages, http:
//blogs.cetis.ac.uk/philb/?p=976.

2. EdReNe Project, D3.4 Repository Strategies, Available from http://edrene.org.
3. Creative Commons and Dublin Core, Learning Resources Metadata Initiative 1.1,

http://www.lrmi.net/the-specification.
4. Wiley D. A. (2001) Connecting learning objects to instructional design theory: A

definition, a metaphor, and a taxonomy. In Wiley D. A. (editor), The Instructional
Use of Learning Objects, pp. 1-35. AECT, 2001. See http://reusability.org/.

2

52

Concurrent programming basics through Snap!

Michele Moro1 and Luigino Calvi2

1 Dipartimento di Ingegneria dell’Informazione, University of Padova, Italy
michele.moro@unipd.it

2 Istituto di Istruzione Superiore Negrelli-Forcellini, Feltre (BL), Italy
luigino.calvi@negrelliforcellini.gov.it

Abstract. Snap! can be effectively used for introducing fundamentals
of concurrent programming at secondary school level. Some basic syn-
chronization tools have been implemented and tested.

Keywords: Concurrent programming, Snap!, Constructionism

1 Introduction

Concurrent programming (CP) has been recently introduced in some curricula
of secondary schools in Italy [1]. Its learning requires a special attention to sub-
tle effects and wrong forms of synchronization: gaining a sufficient experience
in CP is therefore not a trivial task. Snap! [2] is a programming environment
which extends the Logo-heir Scratch, both being inspired by the constructionist
Papertian pedagogy [3]. Exploiting recursion, lists and procedures as first class
data, its simple forms of object-oriented and functional programming, the inter-
pretation of its active item (sprite) as a simple sensorized robot on a 2D scenario
[4], and its intrinsic multithreading, our proposal shows how effective Snap! is
for teaching CP at this level. A first experimentation was done this year in the
second biennium (16-17 years old students) of a technical secondary school: some
preliminary evaluations are presented in the poster.

2 Research and proposal

Snap! concurrency is based on a time-slice, round-robin scheduling. Some basic
commands of the language allow to implement several forms of synchronization
between threads and to realize a variety of examples of CP in a pleasant and
affordable way. First of all it is necessary to intuitively introduce multitasking in
Snap! through some simple examples, like: concurrent execution of scripts on the
same sprite; concurrent execution of a script with several sprites; interpretation
of a script executed on an event as an event listener or an interrupt task; the
evidence of race conditions when setting concurrently global variables.

The first construct we propose is the counting semaphore whose state is
represented by a normal global integer variable. Its primitives are realized by

53

suitable user blocks where the warp command ensures atomicity executing crit-
ical code without yielding to other threads. Figure 1 shows the implementation
of the semaphore and an example of mutual exclusion (at any time not more
than one sprite, represented by a colored circle, can be inside the square).

Fig. 1: semaphore wait and mutual exclusion

Snap! messages provide an elementary form of synchronized message-passing,
but they are not first class data, they are only broadcasted and cannot bring
additional information, they are not enqueued and are essentially asynchronous.
Due to these limitations, we realized a synchronized FIFO message queue using
Snap! generic lists, together with one testing producer/consumer example.

The Object-oriented approach of Snap! can be fully exploited to implement
an advanced synchronization structure like the Hoare’s Monitor [5]. Following
this approach, we have realized a generic constructor block returning a selector
script which must be subsequently run in order to execute the requested access
method. Due to its relative complexity, this constructor can be initially provided
by the teacher as a black box, and afterwards examined in detail to improve the
students’ skills. We adopted a similar approach also to implement the semantics
of the simplified Monitor of Java [6] with its wait, notify, notifyAll primitives.

We are convinced that our proposal smoothly introduce CP in preparation
of other professional languages and environments.

References

1. Guide to the reform of technical and vocational schools (in Italian), Mondadori
Education, Italy, 2012, pag. 143

2. http://snap.berkeley.edu
3. Papert S.: Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.,

1980.
4. Arlegui J., Moro M., Pina A.: Simulation of Robotic Sensors in BYOB In: Proceed-

ings of 3rd Robotics in Education Conf. 2012, pp. 25-32 Prague, CZ, 2012
5. Hoare C.A.R: Monitors: an Operating System Structuring Concept Comm. ACM

17(10)(1974) pp. 549-557.
6. Goetz B., et al.: Java concurrency in practice Pearson Education, 2006.

2

54

Can I do that?
Scenario Feasibility as an Enabler of ICT Usage

Wolfgang Müller1 and Paul Libbrecht2

1Media Education and Visualization (MEVIS), 2Informatics Education
Weingarten University of Education, Germany

muellerw|libbrecht@ph-weingarten.de

Abstract. In this poster, we describe a vision of supporting the teach-
ers towards the choice and adoption of ICT-based learning scenarios by
means of mappings to the school infrastructure. The vision proposes
the selection and curation of didactical design patterns, as repeatable
solutions to problems found in such works as learning scenarios, and
their mapping to each school’s infrastructure. This collection of patterns,
linked to experience reports and scenarios, will offer the regular teachers
a way to plan for their applications with a trust of realizability.

Keywords: computers at school, course planning, teacher training

1 Adopting Scenarios: Barriers and Opportunities

Today, schools are expected to support students in building media competence
and ICT literacy. This requires an comprehensive integration of media and IT
into the classroom, allowing for frequent, unobstructed, and wise use of tech-
nology in all subject fields and situations. However, today’s teachers often lack
appropriate knowledge and experience to apply media and IT effectively in the
classroom, and they require therefore adequate support in this field.

Descriptions of approaches and lesson plans that can use the information and
communication technologies of the schools can be found in great amounts on the
world wide web. The forms include didactical scenarios, simple re-usable mate-
rial, complete interactive games, or semi-formal descriptions of best practices in
terms of didactical design patterns, such as [?]). They are generally attractive
for teachers to apply provided that some conditions are met.

Technical feasibility relates to the question whether the infrastructure at the
teacher’s school is sufficient to implement a selected scenario. Without a sufficient
degree of confidence that this can be answered positively, teachers can only plan
for an attempt, having one or two plan Bs in their pockets. Assessing technical
feasibility requires technical skills which teachers often do not possess: Questions
such as “Is the version of the plugin sufficient?” are typical sources of uncertainty.

Adequacy of content to the instructional goals and the learning environment
represents another essential aspect to be met. While corresponding reports and
discussions of teachers, who applied this content, can sometimes be found in rat-
ing and comment sections of supplying portals, teachers need to be able to assess

55

relevance to the context of their classroom using their professional knowledge by
simulating as much as possible.

Furthermore, resources need to provide sufficient adaptability to allow for the
application in the teachers own classroom, if the two above criteria fail a bit.

Few approaches aim at supporting the teachers’ in assessing these values.
There aspects may be addressed in some teacher trainings and in peer discus-
sions, but corresponding knowledge typically remains undocumented and there-
fore not at hand when required. As a result, teachers often drop ideas to adopt
new approach and scenarios for using IT in the classroom.

2 The Proposed Approach

In our approach we target to bridge teachers’ uncertainties in the possible ap-
plication of educational scenarios and contents and to provide adequate support
on demand by the means of rich instructional patterns and a platform provid-
ing access to these patterns and allowing for extension and commenting. Rich
instructional patterns represent an extension classical design patterns [?] to con-
tain not only abstract descriptions of general solutions for recurring problems
in the educational field, but also to provide links to required infrastructure and
possible variants of the scenario conforming to variations in the infrastructure.

Our rich instructional patterns will represent a compact set of guidelines for
several types of applications, which focus on the essential aspects of the learning
processes. They will be based on examples, but will be sufficiently abstract so
that they can address a wide range of situations, and bridge the gap between the
technological (what is feasible?) and the pedagogical aspects (what is intended?)
of learning scenarios. These patterns will be obtained via interviews aimed at
understanding what current ICT practices are followed by each participating
school, and also from existing literature.

Our approach will be applied and evaluated in a collaboration project with
schools and academic partners from three different countries called eSIT4SIP
(Empowering the School IT infrastructures for the implementation of Sustain-
able Instructional Patterns). In this project we shall disseminate the rich instruc-
tional patterns found and thus contribute to the increase of efficient technology
enhanced learning practices in identified schools where we shall map them to the
infrastructure information.

References

1. Bergin, J. Fourteen pedagogical patterns. In Proceedings of the 5th European Con-
ference on Pattern Languages of Programs (EuroPLoP) (Konstanz, 2000), M. Devos
and A. Rüping, Eds., Universitätsverlag Konstanz, pp. 1–40.

2. Johnson C., Fuller U.: Is Bloom’s taxonomy appropriate for computer science? In:
Baltic Sea ’06 Proceedings of the 6th Baltic Sea conference on Computing education
research: Koli Calling 2006, pp 120 - 123, ACM New York, NY, USA, 2006

3. Mor, Y., Mellar, H., Warburton, S., and Winters, N., Eds. Practical design
patterns for teaching and learning with technology. Springer, 2014.

2

56

From Paper to Web - Some Help from PirateBox

Martina Palazzolo1 and Paolo Mauri2

1 Istituto Comprensivo Ilaria Alpi
Milan, Italy

martina.palazzolo.5@gmail.com
2 Istituto Comprensivo I.Calvino

Lecco, Italy
paolo@paolomauri.it

Abstract. We used PirateBox in a 7th grade class to teach how to cre-
ate simple web pages. The first approach was to make pupils understand
the concept of digitally formatted text using an unplugged activity de-
veloped by the Aladdin team. PirateBox allowed us to maintain a strong
motivation in learning HTML.

Keywords: mark-up languages, HTML, PirateBox

1 Introduction

Last year we joined the project ”PirateBox a scuola” from LOPTIS (Laboratorio
Online Permanente di Tecnologie Internet per la Scuola -[1]) to test PirateBox in
our teaching activity. PirateBox [2] is a portable electronic device that creates a
wireles network allowing the connected users to share files. We used a TPK-Link
Wi - Fi router and a 16 Gb USB pen drive [3]. To organize your contents in
PirateBox some knowledge of HTML is required. Aladdin’s Wikipasta workshop
[4] helps pupils in developing their mental model of formatted text, allowing us
to introduce the use of abstrac digital tags [5].

2 Research

We first prepared our PirateBox by loading HTML pages, videos or pictures
to be shared. Pupils brought their own devices endowed with a Wi-Fi antenna
(notebooks, tablets or cell phones) and began learning how to connect to Pi-
rateBox. Once they got familiar with sharing by using PirateBox, we moved on
to constructing web pages. We realized that pupils were lacking an important
concept: in digital documents, content and formatting are two pieces of informa-
tion that browsers manage in completely different ways, whereas on paper they
are handled together. Aladdin’s Wikipasta workshop [4] tackles this misunder-
standing by replacing the symbolic manipulation of tags by a physical activity.
In Figure 1 we can see a text where pupils are invited to use different kinds of
pasta and colored buttons to format it. Following this activity, the association of

57

the function of pasta or colored buttons and mark-up, like wiki or HTML tags,
was mostly evident. Figure 2 shows an example of a simple HTML page that
pupils wrote using the Text Editor at the end of the project.

Fig. 1: wikipasta
Fig. 2: HTML with Text Editor

3 Conclusion and further research

A text editor, basic HTML tags, some pictures and PirateBox allowed pupils to
write and share well formatted documents. Pupils seem to have developed the
mental model in order to deal with other mark-up languages, for example wiki.
Besides, and indeed unexpectedly, PirateBox allowed them to build a first mental
representation of the Internet: they realized that their documents sent over the
intranet connection are collected in a specific physical place, the teacher’s USB
pen drive, and were then lead to generalize the same concept for the Internet,
where these details are not easy to grasp.

References

1. Andreas Formiconi: http://iamarf.org/portfolio/piratebox/
2. PirateBox:https://en.wikipedia.org/wiki/PirateBox
3. Roberto Marcolin: https://nilocram.wordpress.com/2014/06/30/e-arrivata-la-

piratebox-1-0/).
4. Bellettini T., Lonati, V., Malchiodi D., Monga M., Morburgo A.: Exploring the

Processing of formatted texts by a kynesthetic approach. In: Proceedings of the 7th
Workshop in Primary and Secondary Computing Education: WiPSCE ’12, pp 143
- 144 ACM New York, NY, USA, 2012

5. Bellettini T., Lonati, V., Malchiodi D., Monga M., Morburgo A., and Torelli M.:
What you see is what you have in mind: constructing mental models for formatted
text processing. In: Proceedings of ISSEP 2013 n.6 in commentarii informaticae
didacticae. pp 139 - 147

2

58

Computer Science for All in Swiss High Schools:
Current State, Issues, and Perspectives

Jean-Philippe Pellet, Gabriel Parriaux, and Morgane Chevalier

Lausanne University of Teacher Education
Teaching & Research Unit for Media & ICT

Lausanne, Switzerland
firstname.lastname@hepl.ch

Abstract. This poster discusses the main issues at stake in the task of
determining a “computer science for all” curriculum in Swiss high schools.
Such a task raises fundamental questions such as: what is CS exactly;
what are its subtopics and its fundamental concepts; how should it be
classified with respect to other sciences; who should teach it and with
which required background; etc. In the poster, we graphically depict the
discussion points and conclusions we have come to on such issues.

Keywords: computer science curriculum, computational thinking, field
definition, concept map, high school

1 Context

There is an international trend to shift K–12 curricula towards a more technical
education [1, 4]. The targeted topics are often referred to with the STEM acronym:
science, technology, engineering, and mathematics. Switzerland is no exception,
although it was certainly no pioneer. One of the prominent members of the STEM
topics is computer science (CS). The teaching of CS in Swiss high schools is the
focus of this poster.

In Switzerland, about 20% of all students complete the version of high school
known as “maturity school” (MS), which is the one that traditionally leads to
university [3]. Global, detailed nation-wide curricula do not exist: each of the
26 cantons is responsible for its own high school. However, a national reference
document known as Framework for High School Curricula (FHSC) exists, which
determines the basic list of topics and sets the bounds in which the cantons are
free to operate.

This poster describes the current state of the FHSC and the ongoing efforts,
to which the authors are contributing as members of SSIE (Swiss Association
of CS Teachers), to make it change and include CS as a full-fledged topic for
everyone.

2 Main Poster Points

When the current version of the FHSC document was published in 1995, it specifi-
cally mentioned CS as not being a field per se, but a collection of transdisciplinary

59

topics. In 2008, an addendum to the 1995 FHSC was published, introducing CS
as an actual (but optional) field. Currently, the committee editing the FHSC is
considering recommending adding CS as a mandatory field for every student in
MS. This is clearly a disciplinarization process, which the authors adhere to.

The issues we are discussing in the poster are ones the authors have needed
to deal with while writing a proposal for a CS curriculum for MS. They include:

– What is CS? We detail the three-pillar breakdown proposed by the Hasler
Foundation (unaffiliated with the authors) [2]:
1. Fundamental CS (FCS) as both an applied and formal science;
2. Digital literacy, or the ability to adequately use CS-based software and

hardware tools;
3. Media education as a social science.

We argue that FCS should be the main focus of a CS-for-all curriculum.
– What are the main subtopics of FCS? We present a high-level cartog-

raphy of CS as an applied and formal science and a concept map derived
therefrom.

– Where should FCS be classified in curricula? The current Swiss curric-
ula tend to classify sciences as either experimental sciences or human sciences.
We argue that it is vain to try to make FCS as an applied science fit in either
category and that applied sciences deserve a place of their own.

– How should FCS for all be taught? Rather than delve into mainly
theoretical or abstract concepts for their own sake, we argue that FCS for all
should start from very applied problem-solving tasks.

– Who should teach FCS? Current laws mandate teachers to have the
equivalent of a Master’s degree in the field they teach. We foresee that this
condition may not be fulfilled for the first years where FCS for all would be
taught, as current CS teachers are mostly non-specialists who teach concepts
closer to digital literacy than to FCS.

– When should we start teaching FCS concepts at school? We consider
it possible and desirable to get acquainted by FCS concepts much earlier
than at the MS level (16–19 years old). There, these concepts could be seen
as belonging to computational thinking and be understood in a wider context
than strictly CS.

Finally, we show how each of these questions has had a direct or indirect
impact on the format of our modification proposal of the FHSC document and
mention potential further issues.

References

1. R. W. Bybee. Advancing STEM education: A 2020 vision. Technology & Engineering
Teacher, 70(1):30–35, 2010.

2. P. Kleiner. Was ist Informatik? Schriftenreihe der Hasler Stiftung, 2014.
3. Swiss Federal Statistical Office. Indicateurs de la formation suisse, 2014.
4. US Congress Joint Economic Committee. STEM Education: Preparing for the Jobs

of the Future, 2012.

2

60

Content Categories for Informatics Tasks

Wolfgang Pohl1 and Jörg Westmeyer2

1 BWINF / Bundesweite Informatikwettbewerbe
Bonn, Germany
pohl@bwinf.de

2 Rheinische Friedrich-Wilhelms-Universität
Bonn, Germany

Abstract. Organizers of task-based informatics competitions aim at
composing task sets which cover diverse areas of the field. To achieve
this goal, a system of categories is needed for classifying tasks accord-
ing to the content area they cover. We identified and analyzed several
category systems for informatics content. From that, we derived a new
system that allows for task classification along both abstract and specific
concepts of informatics.

Keywords: competitions, informatics areas, content categories

1 Introduction

Competitions have proven to be popular and effective in motivating K-12 stu-
dents to discover or demonstrate their talents. Informatics is no exception: from
motivational contests like Bebras [3] to high-level competitions for the most
brilliant talents like the International Olympiad in Informatics, there is a large
portfolio of very different school-level competitions in informatics.

Usually, in a competition involving tasks, organizers aim at composing a well-
balanced task set. In particular, tasks should nicely distribute content-wise, i.e.
should cover a large part of the competition subject (informatics in our case).
To assess this requirement, a system of content categories is needed. Then, tasks
can be assigned to categories to finally show how the task set is distributed over
the categories. We analyzed existing content category systems for informatics,
and now we are proposing a new system for content classification of informatics
(competition) tasks.

2 Research

For the Bebras challenge, a set of content categories was presented in [3]. This set
contains categories like ALG for tasks about algorithms and basic algorithmic
thinking, or INF for tasks about representation of information. In practice, this
category system has shown to be too coarse to be useful for task set assessment.

In order to develop a more fine-grained system, we considered many proposals
to characterize the essential aspects and concepts of informatics; for instance:

61

– The computational thinking (CT) vocabulary [2] lists the following basic
computational thinking skills: data collection, data analysis, data represen-
tation, problem decomposition, abstraction, algorithms & procedures, au-
tomation, simulation, and parallelization.

– The fundamental ideas of computer science [4] are based on three “master
ideas”: algorithmization, structured dissection, and language (later extended
to formalization). Each of these master ideas is the root node of a tree of
concepts; each concept is required to be fundamental according to a set of
well-defined criteria.

– Areas of “content competences” used to define educational standards for CS
education in middle school: information and data; algorithms; languages and
automata; informatics systems; and informatics, man, and society [1].

Based on our experience with competitions, we looked for a content category
system that (a) is rich enough to allow for fine-grained task classification; (b) is
organized hierarchically to allow for categorization on different levels of detail as
well as for flexibly introducing subcategories if more detail is needed; and (c) al-
lows for categorization along abstract notions (like those of the CT vocabulary)
as well as specific or even application-oriented terms.

Only the fundamental ideas [4] show a hierarchical approach. Therefore, we
propose a set of category hierarchies, the root nodes of which mainly correspond
to Schwill’s master ideas (algorithmization, structuring, formalization). A fourth,
application-oriented hierarchy has the root node “informatics systems”.

3 Conclusion and further research

We have made a first step towards a content category system for informatics
competition tasks. Now, our proposal needs to be tested and evaluated. We will
apply the system to the tasks of competitions like Informatik-Biber 2015, this
year’s German implementation of Bebras.

References

1. Brinda, T., Puhlmann, H., Schulte, C.: Bridging ICT and CS – educational stan-
dards for computer science in lower secondary education. In: ITICSE 2009 proceed-
ings (2009)

2. CSTA, ISTE: Computational thinking teacher resources (second edition).
http://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources 2ed-
SP-vF.pdf. Accessed 12-08-2015.

3. Dagiene, V., Futschek, G.: Bebras international contest on informatics and computer
literacy: Criteria for good tasks. In: Mittermeir, R., Syslo, M. (eds.) Informatics
Education – Supporting Computational Thinking, pp. 19–30. LNCS 5090, Springer-
Verlag, Berlin Heidelberg (2008)

4. Schwill, A.: Fundamental ideas of computer science. EATCS-Bulletin (53), pp. 274–
295 (1994)

2

62

The use of Nao, a humanoid robot, in teaching
computer programming

Boštjan Resinovič

Šolski center Celje, Srednja šola za kemijo, elektrotehniko in računalnǐstvo
Celje, Slovenia

bostjan.resinovic@guest.arnes.si

Abstract. Visual programming languages can reduce a novice program-
mer’s problems in mastering the syntax of a language and developing
computational thinking. But when the intrinsic switch to a traditional
programming language is made, the same problems, along with new ones,
arise. Students are faced with a different language, IDE, platform and of-
ten programming paradigm. To help overcome all of the above mentioned
problems we propose using Nao, a humanoid robot, and its programming
tools.

Keywords: computer programming, visual programming language, Chore-
graphe, Nao, humanoid robot

1 Introduction

Students learning programming using traditional languages like C, C++, C#,
Java or Python are faced with two considerable problems: they must learn a
complicated syntax and develop computational thinking. In addition they are
typically instructed to write simple but useless programs which can lead to a
lack of motivation. To counter these problems teachers often choose a visual
programming language like Scratch or App Inventor which offer clickable items
representing programming constructs thus minimizing the syntax learning effort.
Some of these items represent high level operations helping students concentrate
on writing interesting, useful programs. This maintains their motivation and by
eliminating many of the details lessens the complexity of computational thinking
needed.

2 Nao, Choregraphe, and Python

But to become employable, students must master a traditional language at some
point and previously mentioned problems, along with new ones arise. Students
have to learn a completely new language and IDE; they often use a different
platform and/or programming paradigm.

Trying to introduce programming with traditional languages and later with
App Inventor, teachers at our schools have observed all of the above problems,

63

so we researched other options and decided to introduce Nao, a humanoid robot.
We believe this will help our students acquire robotics related skills very likely
needed in the near future and at the same time help them master programming
in an easier way. Nao can be programmed with Choregraphe, a dedicated visual
programming language, which offers all expected basic controls along with high
level controls for speech, movement, vision, etc. Controls are represented by
boxes and connected with lines (Figure 1). Each box is actually a part of a
program written in Python (Figure 2) and can be completely reprogrammed
using the same already familiar IDE, the code is object oriented and allows for
sequential, parallel and event driven approach. [1, 2]

Fig. 1: Choregraphe window

Fig. 2: Python code of a box

3 Conclusion

Nao has proven to be excellent for student motivation and for mastering pro-
gramming with re-duced effort and less problems compared to previous ap-
proaches since it offers all the benefits of the visual languages and allows for
an easy transition from a visual language (Choregraphe) to a traditional pro-
gramming language (Python) using the same IDE, platform and programming
paradigms. So far this approach has only been applied on a small group of stu-
dents so it remains to be tested with the whole class.

References

1. Beitter, M., Coltin B., Liemhetcharat S.: An introduction to robotics with Nao.
Aldebaran Robotics (2012)

2. Suh, Ki-sung: Using Nao: Introduction to interactive humanoid robots. Aldebaran
Robotics (2013)

2

64

The influence of teaching methods during
technical e-safety instruction

Václav Šimandl1, Václav Dobiáš2, and Michal Šerý3

1 Faculty of Education, University of South Bohemia
Budweis, Czech Republic

simandl@pf.jcu.cz
2 The Institute of Technology and Business

Budweis, Czech Republic
dobias@mail.vstecb.cz

3 Faculty of Education, University of South Bohemia
Budweis, Czech Republic

kyklop@pf.jcu.cz

Abstract. The article looks at the influence of various teaching methods
on the perception of technical e-safety issues as taught in the university
curriculum. We have proposed four lesson scenarios for the teaching of
this topic. To measure the influence of the lessons, we have used pairs of
semantic differential questionnaires, one pre-lesson and one post-lesson.

Keywords: E-safety, teaching method, semantic differential

1 Introduction

E-safety involves protecting the user and his ICT from the risks that occur
during the use of ICT [1]. This paper focuses on the narrower topic of so-called
technical e-safety, which involves the problems of malware, sharing personal data,
identity theft, spam, hoax, phishing and computer crashes. Becta claims there
is a clear need to educate children and young people about the e-safety issues
and risks [2]. The lack of accessible studies on the influence of various teaching
methods in technical e-safety lessons led us to propose, test and analyse the
influence of several lesson scenarios for the teaching of this topic at the Institute
of Technology and Business in Budweis.

2 Research

2.1 Teaching methods

As the technical e-safety issues are part of the Informatics 1 subject curriculum
at the institute, four lesson scenarios were proposed for teaching these issues,
with an estimated lesson time of 90 minutes.

– Group method : Students work on chosen technical e-safety issues in groups
and go on to present their results to the other students.

65

– Experience method : Students are faced with demonstrative e-safety threats
which they have to cope with. The threats are discussed and a lecture follows.

– Inviting an expert : An expert gives a talk on technical e-safety, with an
emphasis on examples from everyday life.

– Explanatory method : The teacher presents lesson content in the form of a lec-
ture where the students are passive. The teacher tries to appeal by making
the presentation interesting.

2.2 Research method

The semantic differential was chosen for measuring the influence of the lessons.
This enables connotative psychological meanings of terms to be measured in
individual probands [3]. Consequently, their perception of technical e-safety can
be captured via selected terms. The use of a pair of pre-lesson and post-lesson
questionnaires of an identical semantic differential can identify changes in the
probands’ perception of the problem.

The semantic differential questionnaire contained 15 nouns and 12 pairs of
bipolar adjectives (4 expressing activity, 4 potency and 4 evaluation). The nouns
included 8 key words from the area of technical e-safety (Back-up, Ulož.to (the
Czech version of RapidShare.com), Password, Facebook, Privacy, Loss, Virus,
Email) and 7 anchor words (Knowledge, Fear, Teacher, Life, Work, Money, Me).

A total of 227 probands (students of the Informatics 1 subject) took part
in the chosen type of lesson, pre-lesson and post-lesson semantic differential
questionnaire investigations.

3 Conclusion

The acquired questionnaires are currently being analysed. The shift in percep-
tion of key words between the first and second questionnaire investigation is
examined. Results of the research will be used to compare individual teaching
methods and to subsequently optimise technical e-safety lessons and achieve
improvement of knowledge in the most effective way.

The first outcomes of the research will be presented on our poster.

References

1. Barrow, Ch. and Heywood-Everett, G. E-safety: the experience in English ed-
ucational establishments [online]. Becta, 2006 [cit. 20120715]. Available from
http://dera.ioe.ac.uk/1619/1/becta 2005 esafetyaudit report.pdf

2. Becta. Safeguarding children in a digital world: Developing a strategic approach to
e-safety [online]. Coventry: British Educational Communications and Technology
Agency, 2006 [cit. 20120914]. Available from http://www.wisekids.org.uk/BECTA
%20Publications/safeguarding digital world.pdf

3. Smékalová, L., Homolová, K. Methodological argumentation of M. M. Bergman in
the context of using Q-methodology and semantic differential in the mixed-methods
research. Paidagogos [online]. 2013, 2013(2), p. 268–279 [cit. 20150621]. Available
from http://www.paidagogos.net/issues/2013/2/article.php?id=17

2

66

Teaching Programming Indirectly with “Paint”

Zsuzsanna Szalayné Tahy

Eötvös Loránd University, Faculty of Informatics
Budapest, Hungary

sztzs@caesar.elte.hu

Abstract. In many cases IT literacy is inadequate: users do not un-
derstand the concepts of software, and consequently using applications
creates more problems. Professionals suggest learning programming to
improve computational thinking [1]; but this way is impractical for many.
There is another efficient method to teach computational thinking and
prepare for programming. By using an application such as Paint soft-
ware the teaching programming can be embedded into the teaching of
application usage. So the way to the high level computational thinking
and programming comes through exploring the used application.

Keywords: application, programming, basics, teaching method

1 Introduction

The main task is the improvement in digital literacy for members of the digital
society. The most important stage is to understand how IT tools work. As they
are based on written programs, the starting point of improvement is to teach
programming. This is the idea behind several national curriculums [2], where
programming is set as key competence. There are students, who had learnt pro-
gramming using Scratch in elementary school. Many of them learn program writ-
ing later but felt the gap: “I am not able to learn programming”. As they cannot
transfer the visual solution to code, they cannot transfer the learnt algorithm to
everyday practice. The suggested approach is indirect teaching: students explore
the well-known software, then understand the idea behind the tools. In fact, the
teachers are teaching programming skills but students do not realise this. This
method will be demonstrated through the example of the Paint program.

2 Embedded Programming – Using Paint

Paint is an example of one layer handled pixel-graphics software, saving the
product into bitmap (bmp) format. In the following the concept of ‘take apart,
look inside, explore who, what, how, why. . . ’ is demonstrated. Students like
to paint but in this case they start by exploring the software. Maybe the first
question is “Where are the colour tools?” but the next question is about the
model of colours and the data structures: “How many different colours are defined
in the software?” “How are the codes for colours stored in the memory?”

67

Through teaching Paint we can teach several concepts of programming such
as set of objects, property and method. Students should imagine an instance
of array abstraction, so they can understand and practice indexing. Exploring
colour schemes creates several questions for students about number systems, data
representation, picture size, file size, etc. Practical solutions involve the concept
of lossy and lossless compression. By working with painting examples students
are able to explore methods and algorithms: students should guess “what does
the little man in the computer do” when they resize the image. Depending on
the level of teaching and students’ precognition, we can model the method or we
can write pseudo code. The main points are:

– data structures, models and objects are explored;
– students understand the relation between view and binary sign;
– students state algorithms as hypotheses and try to prove them with tests.

The next stage, after exploring paint and other applications could be “Try to
hack an image”. This task involves modifying files by writing code. The best
practice for teachers is to give a frame code which reads and writes files. The
frame program includes the implementation of data structure, the class of Pixel
with properties like Red, Green and Blue components and the array of pixels.
Although the goal is to modify an image, the first step is to explore the code
to find relations between codes and learnt concepts. The next step is to learn
how to debug and run codes. The last step is the start of explicit learning of
programming putting these skills and knowledge all together: modifying an image
by coding [3].

3 Summary

Fig. 1: . . . look inside, explore who, what, how, why. . .

References

1. J.M. Wing: Computational Thinking and CS@CMU Carnegie Mellon University,
2006.

2. Department for Education, GOV.UK: National curriculum [Online]
https://www.gov.uk/government/collections/national-curriculum, 16. July 2014.

3. David J. Malan: BMP Puzzles Harvard University, [Online]
http://nifty.stanford.edu/2011/malan-bmp-puzzles/, 2011.

2

68

ISSEP 2015, Ljubljana, Slovenia, September 28–October 1, 2015

ISSEP 2015 — Workshops

Workshops are distinguished meeting points for getting informed about the ongoing work in our relevant fields;
current topics preferably in practical informatics at all school levels.

The ISSEP series started in 2005 in Klagenfurt/Austria. Five ”tutorials” as a synonym for “workshops”
have been offered then, covering rather soft Informatics topics as Security and Dependability in E-Learning,
a presentation of Moodle, Didactic Aspects of e-Learning Contents Development, Fundamentals of Human-
Computer Interaction and last, Insights into the functionality of a model search engine.

Ten years later, within the call for the 8th ISSEP conference following rather genuine Informatics topics have
been proposed:

∙ Maker movement (e.g. robotics)

∙ CS unplugged activities and informatics contests/challenges

∙ Development environments and programming interfaces

∙ Web applications, web collaboration and production tools (e.g. moocs and e-books)

∙ Good practice and worked out examples

∙ Short and long term lesson plans, reference models and special curricular issues

Finally, the call yielded the three proposals “Teaching Software Engineering in Primary and Secondary Schools”
from the Informatics Didactics team at Klagenfurt University in the neighbourhood Carinthia, “A web service
for teaching programming” from an Slovene team and third, “Learning Computational Thinking through Bebras
Tasks” as an Lithuanian/Austrian co-production.

23rd September, 2015

Peter Micheuz, Workshops’ Chair
University of Klagenfurt

69

Teaching Software Engineering in Primary and
Secondary Schools

Peter Antonitsch, Andreas Bollin, Stefan Pasterk, and Barbara Sabitzer

Institute for Informatics and Informatics Didactics, University of Klagenfurt, Austria
Software Engineering Research Group, University of Klagenfurt, Austria

Software is everywhere — be it in mobile phones, in washing machines, or in
cars. With it, the importance of software Engineering (SE) is uncontested, and
it is taught all over the world: at Universities, at Colleges, and recently also at
High Schools. There are international Software Engineering curricula, standards,
and certificates, but there is no manifestation of SE (and related practices) in
the course syllabi at primary and secondary schools. Most important, SE is not
just programming.

Taking a closer look at SE, its main goal is to develop programs that are
affordable and dependable for consumers without bugs or glitches. In order to
do so, SE education must account for a broad spectrum of knowledge and skills
that software engineers will be required to apply throughout their professional
life. Covering all the topics in depth within a school setting (from primary to
secondary schools) seems to be infeasible due to the previous knowledge of the
pupils, the curricular constraints as well as due to the inherent differences be-
tween the school types. Similar arguments hold for the teachers, as most of them
are not really trained in SE. Now, based on the authors’ experiences gained in
combining SE topics with school projects in a vocational high school for com-
merce and tourism (11th grade) in cooperation with a lower secondary school
(6th grade) it turned out that, by customization of the approach, one is able to
address pupils with different maturity levels, educational aims, and backgrounds.

The objective of this 90-minutes workshop is to show that it is possible to
interweave SE topics with school projects and to motivate for the most important
practices related to that field. Key skills and challenges are identified, mapped
to the situation at hand, and, by following a stepwise approach, example settings
are discussed.

70

Learning Computational Thinking through
Bebras Tasks

Valentina Dagiene1 and Gerald Futschek2

1Vilnius University, Lithuania
2Vienna University of Technology, Austria

This workshop addresses all educationists and education scientists who are
interested how school students can learn informatics (computer science) concepts
and Computational Thinking through a contest. The International Bebras Con-
test on Informatics is the world’s largest contest on Computational Thinking. In
the 2014 contest more than 900,000 students participated in 36 countries of all
continents. The students have to solve 15 to 21 tasks within 40 to 60 minutes.
To solve these tasks, students do not need specific pre-knowledge. Tasks are de-
veloped for different age groups, from primary school to upper secondary school
students. The tasks contain concepts of about nearly all areas of informatics.
Usually a short story introduces a task and states a problem, termini technici
are not used, but to solve the task some kind of computational thinking must be
applied. There are tasks about concept categories of information representation,
algorithms, programming, logic, encryption and many other.

Items discussed in the workshop:

– Operational definition of computational thinking
– Why Bebras tasks can convey computational thinking?
– Which concepts of informatics can be introduced through Bebras tasks?
– How to teach computational thinking using Bebras tasks?
– Relations of Bebras contests to informatics curricula in various countries
– Formal and informal introducing informatics concepts

In the workshop the participants will learn more about the Bebras contest,
how the tasks are created, which kind of tasks were produced, what are the
effects on learning and teaching. We will discuss how the Bebras contest should
be performed in a school context and how the teachers may use the Bebras tasks
in their teaching activities. The participants will experience wow-effects while
solving Bebras tasks and how thinking is directed to solving strategies that are
typical for informatics and computational thinking.

71

A web service for teaching programming

Gregor Jerše, Sonja Jerše, Matija Lokar, and Matija Pretnar

University of Ljubljana, Faculty of Mathematics and Physics, Slovenia

Programming is a skill that can be best learned by writing as many pro-
grams as one can. So teachers are required to expose the students to numerous
problems and of course supervise their attempts to solve them. To support this
teaching approach, the authors developed a web service Projekt Tomo, which
we aim to present at the workshop. This service has already been successfully
used in various courses ranging from secondary schools to introductory courses
in higher education. The service works as follows: the student first downloads
the files containing problems to his computer and starts filling in the solutions,
checking them locally in his favourite coding environment, while the server au-
tomatically stores and verifies the solutions. In this way, there is no need for
powerful servers and the service provides instantaneous feedback to the student
and an overall insight into the obtained knowledge to both the student and the
teacher, all without disturbing the teaching process. This helps teacher save time
which he can spend for in-depth discussion about programming and giving ad-
ditional help to those who need it. An important aspect is also the fact that
existing programming environment can be used by the student. The teachers
can also view a student’s history of attempts and download the files with the
attempted solutions if they want to analyse the student’s progress and provide
appropriate advice. These submissions can serve as a valuable insight into ef-
forts made by the students towards the solutions. The service can be adapted
to almost all teaching environments, as it can be used with all programming
languages and has low technical requirements.

Agenda:

– Introduction to the web service - understanding the motivation behind the
web service, logging into the service.

– Solving problems (as a student) - downloading a problem file, submitting a
correct and an incorrect solution, understanding feedback.

– Analyzing submitted solutions (as a teacher) - getting an overview of cor-
rectness of submitted solutions, looking at individual feedbacks, exploring
the history of student submissions.

– Creating and editing problems (as a teacher) - modifying an existing prob-
lem, adding automated tests, creating a new problem.

– Discussion - getting feedback to steer future development.

72

ISSEP 2015, Ljubljana, Slovenia, September 28–October 1, 2015

ISSEP 2015 — The International Teacher’s Conference

Up to now, for Italian teachers of Informatics it has not been customary to organize regular meetings in order
to address educational, curricular and pedagogical issues of their discipline. Also the most self-motivated among
them had few occasions for discussion and for sharing their experience with colleagues facing similar problems
elsewhere. Thus, the idea of having international teacher sessions within the ISSEP conference is very welcome,
in that it offers a valuable opportunity of professional enrichment. The contributions from Italy (5), Hungary
(1) and Austria (2) encompass all levels of school education and present interesting approaches to the teaching
of computing topics.

Primary and lower-secondary teachers have taken a trans-disciplinary “computational thinking” perspective
and view the learning within the field as a peculiar component of scientific education. More specifically, a main
concern in Ferrari, Rabbone and Ruggiero’s paper is interplay between unplugged ativities and coding in order
to design a sustainabile curriculum for the elementary school. A balanced mix of unplugged tasks and work
with computers is also central to the experiences described by Palazzolo, who in addition points out the need
of engaging a larger number of middle-school teachers in similar projects. Moreover, Erdősné Németh addresses
a classical topic in computing education: how to teach recursion to young pupils. Her proposal revisits the
traditional approach of exploring graphical recursive structures in Logo.

High school teachers, on the other hand, seem to focus on “active learning” with some significant technological
support. Boscaini and Valente discuss the educational implications of projects aimed at participating in robot
contests, in particular as to the tradeoff between theoretical knowledge and practical skills learned by students.
Brocato reports on her experience of teaching database fundamentals following a flipped-classroom approach with
the aid of a learning management system. Finally, Danesino describes an introductory unit where the students
are encouraged to analyze and explain network-related concepts by producing learning materials themselves. Her
students use specific applications that allow them to apply augmented-reality techniques.

The two Austrian contributions provide a cursory and deep insight into all levels of Informatics education.
Peter Antonitsch takes a “A Cautious Look at Coding in Primary Education” where he reports on an ac-

tion research project in a primary school. He eleborates on two antagonistic viewpoints, one propagating that
programming at this early stage fosters the intellectual developement of pupils, and the other pointig at devel-
opmental risks when children are exposed too early to virtual envirements.

In their contribution “Selected Spotlights on Informatics Education in Austrian Schools” Peter Micheuz and
Barbara Sabitzer take a look at current developments going on in Austrian general Informatics education. They
provide an overview with some insights about initiatives at primary education, insights into competence models
and their impact on Informatics at secondary level, including curricula issues in the grade 9. Finally they present
first results of a major reform of the final school leaving exam in Informatics (Matura).

16th September, 2015

Peter Micheuz, Chair of the Program Committee
University of Klagenfurt

Barbara Demo, Chair of the Program Committee
University of Turin

Claudio Mirolo, Chair of the Program Committee
University of Udine

73

A Cautious Look at Coding in Primary Education

Peter K. Antonitsch

Alpen-Adria Universität Klagenfurt

Institut für Informatikdidaktik

Peter.Antonitsch@aau.at

Abstract. New programming environments try to attract younger and younger

children to computers in general and coding and programming in particular,

claiming to foster their intellectual development. Others warn by pointing at

developmental risks if children are exposed to virtual environments at too

young an age. This article reports on a small scaled research project at primary

level, indicating that both viewpoints might have their justification, but also

points at coding being some special case.

Keywords: Primary education, Informatics, Coding, Programming

1 Introduction

Informatics education has always been triggered by current technical innovations.

Right now, with the availability of comparably inexpensive digital devices like smart-

phones or tablets we witness efforts to extend teaching and learning of basic Informat-

ics down to primary education, where, in the meantime, “basic Informatics” covers a

wide spectrum ranging from skills to operate application software of various kinds to

the abstract field of programming (in terms of writing pieces of code). Due to the

development of new curricula ([1], [2]), the latter attracted particular attention, result-

ing in the development of software-enviroments that facilitate young children’s first

steps into coding, like the software available at code.org [3], or ScratchJr [4].

Some hail this development stating that “[ScratchJr is] almost purely graphic-driven,

which makes it accessible to an age group for whom reading is sometimes still a lot of

work.” [5]. Others, not less enthusiastic, praise coding as “not only a way to learn

about computer science but how to think and tackle problems through computational

thinking skills and abstracting out details that are meaningful." [6], suggesting this

also to be true for children at primary level or even before.

But there is another, yet different point of view, seeing possible drawbacks in chil-

dren’s development when they are exposed to computers too early. This point of view

not only can be found within the educational thought of anthroposophical philosophy,

[7], but is also an issue of popular scientific publications. In [8], for instance, the basis

of argumentation is Piaget’s theory of cognitive development, concluding that mean-

ingful use of digital devices needs the capability for abstraction and should not take

place before the formal operational stage, beginning around the age of twelve. In-

74

stead, early childhood should provide lots of experience within the physical world,

supporting the children’s development of spatial perception, or their ability to concen-

trate on a certain task for a longer period of time. This is believed to provide a sound

basis for abstract thinking and, later on, for reflected use of digital devices and soft-

ware in general, and for successful programming in particular.

The two positions sketched above appear to be rather incompatible. Nevertheless,

results of a small-scaled research project to introduce principles of computational

thinking into traditional education of a third grade of an Austrian primary school indi-

cate that even programming can be taught the age between nine and twelve. However,

neither the abandonment nor the execcive use of digitial devices seems to be favour-

able, but an intermediate course of action where computers are used as tools to sup-

port learning but play only a minor role.

2 Research

2.1 Motivation

The research project was partly motivated by observations during Informatics courses

at higher secondary level (learners at the age of 15 or 16) during the 2012-13 school

year. At this level, learners are introduced into formal reasoning, for instance, by ex-

pressing a solution to a posed problem by means of a formalized programming lan-

guage. But while being at ease with operating digital devices or being able to work

with application software quite well, some of these so called “Digital Natives”

─ had poor reading comprehension,

─ had problems to produce meaningful passages of text by themselves,

─ had little experience with structuring aids like tables or mind maps to chunk infor-

mation into pieces,

─ were unable to learn by following written step-by-step instructions.

─ and lacked basic problem solving strategies like dissecting a big problem into

smaller solvable parts.

Obviously, these learners missed some basic skills that are necessary to model pro-

grammable solutions to a problem and to code these solutions, with the acquisition of

these skills being supposed to start back in primary education. Nevertheless, as In-

formatics is not taught in Austrian primary schools, the concept of computational

thinking had to serve as an additional motivation to look for traces of Informatics

content in primary education. According to [9], [10], computational thinking is a

problem-solving process that includes (selection):

─ formulating problems in a way that enables us to use a computer and other tools to

help solve them,

─ logically organizing and analyzing data,

─ (formulating and) automating solutions through a series of ordered steps,

75

and should be present at all levels of education, thus also at primary level.

Finally, the findings of E. Stern that children can develop the ability for abstraction

and for operating within (simple) formal systems before they reach the formal opera-

tional stage [11], motivated to broaden the horizon and to look for ways how to aug-

ment primary education with aspects of coding and automation.

2.2 Research Questions

Regarding basic literacy and numeracy to be the major educational goals of primary

education (in Austria), the following research questions were posed:

─ How can algorithmic thinking (as a distinct aspect of computational thinking) at

primary level be linked to these major educational goals?

─ How can traditional educational practice at primary level be augmented by un-

plugged exercises that illustrate basic ideas of Informatics in general and the prac-

tice of programming, in particular?

─ Can traditional educational practice at primary level be enhanced by introducing

computers to allow for automation of written code?

2.3 Context and Course of Research

The research took place in a third grade of an Austrian primary school (14 girls, 8

boys, 8 to 9 years old) in the 2013-14 school year. This age group was chosen, be-

cause the learners were supposed to have basic reading- and writing-skills before

getting in touch with Informatics mindsets. The concept of algorithmization should

not be introduced as an add-on to traditional learning content but should smoothly be

integrated into the traditional mode of primary education by being linked to basic

literacy, i.e. reading and writing. Hence, and according to the research questions,

there were three different preparing phases of the project with computers being intro-

duced not before the last of these phases, and a subsequent fourth phase dedicated to

work on tasks using appropriate software. These phases spanned the whole school

year, considering “doing Informatics” – either due to preparatory exercises or in terms

of computer-based working with software - one lesson per two weeks, in average.

The software of choice was Blinkenpaint, a simple program providing a tabular grid

to create sequences of pictures that can be viewed in a flip-book manner, and Scratch,

a software-environment for novice programmers. Programs in Scratch are composed

by combining ready-made programming blocks that prevent from running into syntax

errors and are used to animate two-dimensional sprites, which gives instant feedback

about the correctness of the written code.

The first phase could be titled “understanding and creating step-by-step instructions

and started at the end of the previous school year as part of the project preparation.

First of all, existing educational material appropriate for preparing algorithmic think-

ing had to be identified. This material included step-by-step instructions for simple

science experiments or tinker instructions for manufacturing a wind rotor or a flip

76

book. All of these were used to train how to read and follow stepwise instructions,

and were augmented with tasks from Computer Science unplugged [12], Informatik

ErLeben [13] or the Bebras Contest [14]. These tasks also included a first introduction

into structuring tools like tables or trees. Furthermore, the learners had to create sto-

ryboards to prepare for creating stepwise instructions by themselves (see [15] for a

more detailed overview of the material put to work).

The second phase was dedicated to formalizing step-by-step instructions and was

partly inspired by the preparation of conventional flip books during the first phase. To

prepare for the use of Blinkenpaint the learners had to draw a second series of flip

books provided by sheets with an 8 rows – 18 columns matrix, thus having to change

their mode of drawing from “continuous” to “pixel wise”. Furthermore, building upon

their experience on writing text-based instructions the learners had to describe se-

quences of simple movements by means of enlarged, printed and cut Scratch-blocks.

These programs where tested during a role play where learners had to translate each

other’s sequence of instructions into stepwise movement, thus providing both, a cod-

ing environment and a feedback mode very similar to the software intended to use

during the subsequent phase.

To prepare the use of the software the learners from primary school paid three visits

to a higher secondary school providing a sufficient number of computers so that all

children could be instructed in parallel. At primary school, four laptops were available

to practice and to work on tasks posed during the third and the fourth phase.

2.4 Selected Findings

To assess the intended learning progress of the primary school children, a mixed-

method approach was chosen, which combined qualitative observations, mainly of the

corresponding primary school teacher, process portfolios written by the learners to

document their activities, the outcome of an intermediate exercise based on sequenc-

ing cards, evaluation of two written assessments focusing on algorithmization and

qualitative analysis of Scratch-projects created during the final phase of the project,

the latter being done by the author. Relevant results can be summarized as follows:

─ The sequencing cards exercise displayed out of order pictures “telling” the story

about the evolution of a chicken. The task was to “retell” the story giving the cor-

rect steps, either by cutting the pictures and rearranging them, by listing the correct

order of pictures within a table or by writing a short story. While all of the learners

mastered this exercise, remarkably none of them chose the swiftest possible solu-

tion based on tables.

─ The first written assessment contained a selection of stepwise instructions the

learners had to understand. Most of the instruction sequences used rather long tex-

tual descriptions to examine the reading comprehension of the children, only one

used a semi-formal representation utilizing Scratch blocks. Scratch blocks were

unknown to the learners until that moment but were chosen intentionally as they

77

should prepare for the use of the software later on and are generally considered

very intuitive.

The children had no problems to follow written instructions, except for confusing

the left and right when making turns, but did hard to write an ordered sequence of

instructions by themselves, even when they had the task to rewrite a given “algo-

rithm” by filling the lines of a table. Furthermore, only one could figure out the

meaning of the algorithm coded with Scratch blocks.

─ When working with the software Scratch the learners became acquainted with

Scratch blocks rather soon. Nevertheless, most of them preferred to invest a lot of

time into drawing elaborate backgrounds and/or characters so that little time was

left for coding. Most of the learners kept this habit during the last phase of the pro-

ject, where they were expected to invent and animate stories by themselves. Hence

some extra programming exercises (also including loops as a means to control pro-

gram flow) were provided. These exercises were included as an optional track

within the art/technical crafts lesson at primary school.

─ The final evaluation focused again on the ability to understand and to formulate

simple (movement-) algorithms, and on trees as a structuring tool specific to In-

formatics, especially with file organisation. This topic turned important when it be-

came evident that storing at or saving from a specified directory on the working

USB-stick posed serious difficulties for some of the children. Unsurprisingly, the

results of the corresponding tasks within the final examination were rather poor.

Regarding algorithmic thinking, the learners were able to deal with sequences of

instructions but did not use loops as a shortcut to describe repetition. Furthermore,

many learners still confused left and right.

3 Discussion and Outlook

With regard to the three research questions, the project was only partially successful.

On one hand, even traditional primary education offers many possibilities and ready-

to-use learning material to link algorithmization and formalization in the sense of

understanding and writing step-by-step instructions to the common course of learning

and teaching. Hence, at least to some extent, formal reasoning can be grounded at

primary level. On the other hand, learning how to program by means of computer

software proves harder than expected. One possible reason might be the scattering of

Informatics content and corresponding phases for practice across the weeks, with

enough time to forget in between. In this case, a period of condensed Informatics

instruction using the computer might yield better results.

But the results sketched above indicate that the reason for the learners’ problems with

implementing algorithmic thoughts might be rooted deeper, as prior knowledge and

skills seem to be essential for success in programming:

78

─ Informatics uses a variety of structuring tools to represent information. Some of

these tools young learners simply do not know yet, others they know but do not use

frequently. Generally speaking, at primary level the ability to structure rather ab-

stract information is under progress, if not just starting. This view is encouraged by

the learner’s problems when working with tables or tree-structures, by the simple

structure of code written by children of that age (see [16] for further examples of

that kind) as well as in most of the children’s inability to transfer basic concepts

from one piece of code to another. All of this seems to be in accordance with Pia-

get’s theory of cognitive development.

─ What has been trained before using the computer seems to determine what learners

prefer to do with software at hand. Hence, the learner’s concentration tends to shift

away from what they are expected to do. This can be derived from most learners

preference for drawing instead of coding and can be considered a general habit of

human behaviour: We like to do what we know how to do: While the children had

been drawing pictures (by hand) for at least two or three years, “creating” a se-

quence of instructions was rather new. Remarkably, those who were very focused

during the “unplugged” tasks dealing with stepwise instructions, performed better

when writing and automating programs by means of Scratch-scripts.

─ Besides foregoing mental experiences, bodily real-world experiences seem to be as

important. With the example of equilibrium, in [8] the authors point at the impor-

tance of bodily experiences to develop abstract thinking. The distinction between

left and right seems to be similar to “exploring equilibrium”, suggesting that pro-

gramming needs certain body knowledge as well.

These interpretations allow to connect with the introductory thoughts: It makes sense,

to diminish the learner’s problems with structuring of data within computer systems,

or with concepts of computer software by letting them do meaningful work with com-

puter software at an early age, say, at primary level. But specialized tasks like pro-

gramming/coding that demand a certain capability of abstraction seem better to be

postponed to prevent learners from being overstrained by the tasks they have to fulfil,

and to give them time to develop properly.

Of course, the results presented above do not settle the question whether a “modern”,

digital-devices based approach to learning at young ages can modify the learner’s

cognitive development or rather hinder it, for instance, by creating habits that are at

odds with the desired outcome. Meerbaum-Salant et al. have pointed at this danger in

[17] looking at a different age group, though. But the results indicate the value of

intensified “unplugged” experiences in the field of Informatics before using the com-

puter as the major tool in Informatics education.

Hence, beginning with the 2015–16 school year, a corresponding long term research

project will be launched by the Informatics didactics group at the University of Kla-

genfurt, designed to evaluate the development of children during four years at primary

school, where their learning will be enhanced by ”mostly unplugged” Informatics

content.

79

References

1. CSTA Standards Task Force: K–12 Computer Science Standards, revised 2011.

http://csta.acm.org/Curriculum/sub/CurrFiles/CSTA_K-12_CSS.pdf

2. National Curriculum in England: Computing Programmes of Study, published 2013.

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-

programmes-of-study

3. Code Studio Website. https://studio.code.org/

4. ScratchJr Website. http://www.scratchjr.org/

5. Wohlsen M.: Finally, a Way to Teach Coding to the Touchscreen Generation. WIRED

business, 2014. http://www.wired.com/2014/07/finally-a-way-to-teach-coding-to-the-

touchscreen-generation/

6. Shine E.: Bringing Coding to Kindergarden, ACM news, 2015. http://cacm.acm.org

/news/183337-bringing-coding-to-kindergarten/fulltext/

7. Setzer V.W., Lowell M.: An Alternative View on Why, When and How Computers Should

Be Used in Education. In: Muffoletto, R. (ed.): Education and Technology: Critical and

Reflective Practices, Hampton Press, 2001. http://www.ime.usp.br/~vwsetzer/comp-in-

educ.html

8. Lembke G., Leipner I.: Die Lüge der digitalen Bildung. Redline Verlag, München, 2015

(in German)

9. Wing J.M.: Computational Thinking. In: Communications of the ACM, March 2006/Vol

49 No. 3. http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf

10. Barr V., Stephenson C.: Bringing Computational Thinking to K–12: What Is Involved and

what Is the Role of the Computer Science Education? ACM Inroads 2011 March Vol. 2

No. 1 http://csta.acm.org/Curriculum/sub/CurrFiles/BarrStephensonInroadsArticle.pdf

11. Stern, E.: Wie abstrakt lernt das Grundschulkind? In: Petillon, H. (ed.): Individuelles und

soziales Lernen in der Grundschule - Kindperspektive und pädagogische Konzeple. Leske

+ Budrich, Opladen; 2002 (in German)

12. Computer Science Unplugged Website. http://csunplugged.org/

13. Informatik ErLeben Website. http://informatik-erleben.uni-klu.ac.at/

14. Austrian Bebras Contest Website. http://www.ocg.at/de/biber-der-informatik

15. Antonitsch P., Hanisch L.: Aspekte von Computational Thinking im Unterricht der Pri-

marstufe, project report, June 2014 (in German). https://www.imst.ac.at/imst-wiki/ in-

dex.php/Aspekte_von_Computational_ Thinking_im_Unterricht_der_Primarstufe

16. Northern Ireland Curriculum 2012, Using ICT Case Studies,

http://www.nicurriculum.org.uk/key_stages_1_and_2/skills_and_capabilities/uict/UICT_in

_practice/case_studies/scratch.asp#top

17. Meerbaum-Salant O., Armoni M., Ben-Ari M.: Habits of Programming in Scratch, Pro-

ceedings of the 16th annual joint conference on Innovation and technology in computer

science education, ACM, New York 2011

80

The Cat, the Turtle, the Snake and GCD

Agnieszka Borowiecka and Katarzyna Olędzka

Computer Assisted Education and Information Technology Centre, Warsaw, Poland

{agnieszka.borowiecka, katarzyna.oledzka}@oeiizk.waw.pl

Abstract.In this paper, we discuss our proposition for the lessons of algorithmic

in which we work with interactive projects. By playing and programming small

applications students have the opportunity to understand an algorithm and be-

come familiar with different ideas. Everyone learns effectively when acts

(learning-by-doing), but it is even better when one is programming (learning-

by-programming). Different approaches to the greatest common divisor prob-

lem (GCD) are presented from pedagogical perspective.

Keywords:learning algorithmic, computational thinking, greatest common di-

vision, Euclidean algorithm

1 Introduction

Familiarizing students with the world of programming is an interesting and chal-

lenging task. By recognizing the need for continuous improvement we are asking

some questions: How to encourage students to learn? What kind of tasks are interest-

ing and suitable for them? How to help them understand difficult ideas in a friendly

way? In spite of the many steps that we have taken to encourage students for learning

programming, we have prepared several application which can help in developing

computational thinking skills. By making different projects students broaden their

knowledge and grown in their experience. In this article we will present some ideas

focus on greatest common divisor problem.

The Euclidean algorithm for finding the greatest common divisor (GCD) combines

ancient and modern times. It is said that this algorithm is one of the oldest algorithms

in common use. It appears in Euclid's Elements in 3rd century BC. Moreover, it can be

an object of interest for primary school children and mature programmers as well. In

programming lessons it can be presented in such a way that students with different

learning approaches could have fun – for those who prefer to understand logical for-

mulas, and also for those who would like to see it or to point a finger on a screen. This

algorithm is quite short in implementation so it is relatively easy to code. It allows us

to find the searched number in a fast way. Everyone learns effectively when acts

(learning-by-doing), but it is even better when one is programming (learning by pro-

gramming). Teachers should combine creative approach to the problem and critical

thinking. We will present different concepts how to work with students around the

problem of finding the greatest common divisor. The implementations are prepared in

81

various programming environments. They are available for students at different edu-

cational stages. We will start from visual programming, next, there will be presented

an example from the Logo language, and finally – the high-level language. The last

one is abstract – to be solved with ink and papers without a computer. Our ideas are

organized into four lessons.

2 A cat walks on a board and shows Euclidean algorithm

On the first lesson we will invite a cat to present an algorithm. Students are observ-

ing what is going on the screen by running a previously prepared application. Then

they try to write the rules that guide movement of a ball in a natural language. Next

students code that algorithm using blocks in Scratch, or other environment (like

Blockly).

First, a user should input two numbers so a ball starts its journey from a specific

point. Next the ball is moving left or down according to distance to the bottom and to

the left border of a grid. If it is closer to the bottom edge it moves left, otherwise –

down. In every step the longer distance is shortened. In a shown example, two given

numbers are: 25 and 15, then the ball moves 15 to the left, 10 to the down, and fi-

nally 5 to the left. Now both numbers are equal.

This is a graphical representation of the Euclidean algorithm. First, the user speci-

fies two numbers a and b. In each step, values a and b are presented, until the algo-

rithm gets to the point where these two values are equal.

Fig. 1. The beginning and the end of the visualisation

After analysing this application, a teacher can ask students some questions such as:

What is the input for the program? When the ball moves left and when down? How

many steps it moves? When the algorithms ends?

82

Fig. 2. The algorithm written in a natural language

After that, the teacher should help students to code with blocks. The more specific

the language of writing, the shorter the program, and the easier to code.

Fig. 3. Blocks for the basic algorithm and the algorithm with visualisation

Moreover, students have to prepare a grid. It can be done in a graphics editor, but

more ambitious student can prepare it in Scratch by defining code for a sprite.

A visual language is chosen for this task because it is easier for students to use

blocks instead of writing a code. There is a huge gap between programming in a visu-

al language like Scratch and programming by typing commands. Beginners prefer

manipulating program elements graphically rather than specified them textually. On

83

one hand, using blocks student does not need to concentrate on the syntax but on ide-

as, on the other hand, when the problem is more complex code is usually long and

unreadable. The advantage of learning such visual languages is that you can create

many interesting applications, even you are not advanced programmer. In this task the

algorithm and our visualization is simple – by adding only few commands for the ball

we got the whole application.

3 School algorithm with a turtle in background

In the second lesson the main role will play a turtle. We stimulate students to improve

their experience in computational thinking. We will start from presenting a well know

algorithm and ask students to solve some problems based on this knowledge. In this

lesson some task are more difficult like decomposing a number into primes, other are

simpler, so the teacher can differ students’ work.

Primary school children learn how to find the greatest common divisor of a and b.

For this purpose, they list all the a and b divisors that are repeated in both lists. The

product of items that are in the both lists is GCD.

Fig. 4. An application in Imagine (Logo)

The implementation requires to code three things: first one – finding a list of all di-

visors, second – find an intersection of these lists and third – calculating the product

of numbers that are repeated in the both list. For finding divisors of a, we divide giv-

en number by 2, 3, 4, … up to the square root of a. If the modulo of division is 0 we

remembers this number and we try to do it another time, otherwise we increase value

by which we divide. All remembered values build the searched list.

84

to gcd :a :b

 let "ra decom :a

 let "rb decom :b

 let "com common :ra :rb

 output apply "product :com

end

to decom :n

 let "temp []

 let "i 2

 while [:i*:i<=:n] [

 ifElse (mod :n :i)=0 [

 let "temp lput :i :temp

 let "n div :n :i]

 [let "i :i + 1]]

 output lput :n :temp

end

to common :a :b

 let "temp []

 let "nb_a 1

 let "nb_b 1

 let "a lput 1000000 :a

 let "b lput 1000000 :b

 while [:nb_a<=count :a][

 ifElse (item :nb_a :a)=(item :nb_b :b)[

 let "temp lput (item :nb_a :a) :temp

 inc "nb_a

 inc "nb_b]

 [ifElse (item :nb_a :a)<(item :nb_b :b)

 [inc "nb_a]

 [inc "nb_b]]]

 output butLast :temp

end

This algorithm is introduced in mathematics lessons, because it is useful for opera-

tions with ordinary fractions. However, this requires a and b to be factored, and there

is no effective algorithm for this problem.

Reviving the newest Polish e-textbook for Informatics we can find and interesting

task. It is worth to mention that the whole lesson is for teenagers who are familiar

with this topic from mathematics lessons but they are programming beginners. The

task is to prepare an application which is drawing many squares – some of them are

coloured and some not. A user should point which part of the figure is filled with the

colour. While coding this task student should not only concentrate on visualisation

85

and user-computer communication, but also an appliance of some algorithms. The

most difficult part of this task is to simplify fractions.

Fig. 5. From e-textbook for gymnasium students in Informatics

Another problem is also strictly connected with GCD. Suppose that you have two jar

glasses with a capacity of a (in example 21 Litres) and b (12 Liters) and one more of

unlimited capacity. How to measure exactly c (3 Liters) using these jars?

Fig. 6. Application in Imagine environment (Logo)

Students can solve this problem by trial and error method. They will gain some expe-

rience and direct their intuition. They can also try to write an algorithm for this task.

A detailed discussion of this problem can be found in [3].

In conclusion, although the Logo language is created for children, but is quite power-

ful. In this language students can implement many algorithms using advanced con-

86

cepts. They can improve computational thinking and develop their programming skill.

Although Scratch is becoming more and more popular, the Logo language still has its

educational value. Even problems of medium complexity in visual programming are

almost impossible to code whereas in the Logo language solutions are nice and reada-

ble.

4 Time for a snake

The third lesson is for older students. We prepared the Python application in the Pro-

cessing environment because of its multimedia features. Implementation starts from a

basic algorithm code, through simple visualization and ends with interaction.

There are a different way to code Euclidean algorithms. Although version with sub-

traction is less efficient, we will concentrate on it because it is easiest to visualise.

def gcd(a,b):

 while not (a==b):

 if (a > b):

 a = a - b

 else:

 b = b - a

 return a

def gcd(a,b):

 while (a>0):

 r = b % a

 b = a

 a = r

 return b

def gcd(m,n):

 if m>n:

 return gcd(n,m)

 else:

 if m==0:

 return n

 else:

 return gcd(n % m,m)

After coding the core of algorithms we can go forward to add some graphics. At the

beginning, we built a rectangle with sides a and b. In each iteration a square is cut. In

the presented example we calculate GCD(35,21). It means that the program is

drawing the rectangle 35 wide and 21 height. Next, we cut the square 21x21, so we

get the rectangle 14x21. Now the height of the rectangle is bigger than its width, so

we cut the square of side 14. As we have rectangle 14x7, we cut square 7x7. Final-

ly, we get the square 7x7. At the end, we can draw a board with colour squares each

87

7x7. In addition, there are colour section shown above and next to the rectangle – a

red one (horizontal) for the value of variable a and a blue one (vertical) for variable

b.

Fig. 7. Application in the Processing for visualisation of the Euclidean algorithm

Next we can add some interaction. Instead of automatic presentation, a user can point

out the new values of a and b. If she/he does it correctly, the computer will do one

88

step of the algorithm, otherwise nothing will happen. In this way the student is stimu-

lated to think. In our application, ten buttons are added for numbers, and two more for

a new a and new b.

Fig. 8. Application in the Processing for visualisation of the Euclidean algorithm

In general, Python as one of high-level languages deserves interest. Firstly, the syntax

usually allows programmers to express concepts in less lines of code than other lan-

guages and it emphasizes code readability. Secondly, it is developed as an Open

Source project, and it is free. Thirdly, it can be programmed either by novice pro-

grammers, even primary school students, and professionals in programming as well.

This language is widely used in education as well as in real-life systems. In this pro-

ject, working in the Processing environment allows us to prepare multimedia applica-

tions. This environment is designed to create visually appealing graphics, interactive

applications and games. Moreover, in Processing one can prepare applications for

web pages and for different platforms like Android.

5 One more lesson

The older students, the more advance tasks they can solve. On the maturity exam in

Poland (2015) there was the task entitled the Extended Euclidean algorithm. It was in

the theoretical part of exam where students solve problems without computer. Stu-

dents were given explanations and an example. Their task was to fill a form for an-

other example and formulate the algorithm.

In the task there was a description for Euclidean algorithm. Students were given spec-

ification and short introduction to Extended Euclidean algorithm. Given example:

GCD(231,30) = 3 * 231 + (– 23) * 30

89

Fig. 9. The given example – calculations for a = 231, b = 30

Students have to fill a table for an example where a=188, b=12.

Fig. 10. First part of students’ task

The next step was to specify algorithm written in pseudo-code. They had to formulate

formulas and an output. For some students recursive algorithms are very difficult.

Fig. 11. Second part of students’ task

90

This tasks is interesting and instructive. Students can prove their ability to read al-

gorithms and broaden their knowledge. The Extended Euclidean algorithm is a base

for RSA algorithm that is important in the digital world. Generally, the Euclidean

algorithm has many theoretical and practical applications.

6 Summary

Our proposition for the lessons on algorithmic is to work with interactive projects not

only with the GCD problem but also with others. By playing and programming small

applications students have the opportunity to understand an algorithm on a specific

example and become familiar with the different ideas. Designing and coding their

own programs they deepen and broaden algorithmic knowledge. Selecting the pro-

gramming language and environment is not the main issue, but on the other hand, it

cannot be said, that it is completely unimportant. The role of a teacher is to inspire

students to take efforts and be creative. In algorithmic world, every student can assim-

ilate the idea of another human being, she/he can see how it works on a specific ex-

ample and even code himself. As John D. Carmack wrote: “Because of the nature of

Moore's law, anything that an extremely clever graphics programmer can do at one

point can be replicated by a merely competent programmer some number of years

later."

References

1. Knuth, D.E., The Art of Computer Programming: Fundamental algorithms, Addi-

son-Wesley, 1968

2. Cormen, T.H., Introduction to Algorithms, MIT Press, 2009

3. Man, Yiu-Kwong, Solving the General Two Water Jugs Problem Via an Algorith-

mic Approach. International Association of Engineers, 2015.

4. Scratch portal, http://scratch.mit.edu

5. The central examination commission, http://www.cke.edu.pl (Polish)

6. E-textbook, http://www.epodreczniki.pl (Polish)

91

Roboval: Robot Contest and Education with
Arduino in High School

Maurizio Boscaini1 2 and Alberto Valente3 4

1 maurizio.boscaini@gmail.com
High School G. Marconi, Piazzale Guardini 1, Verona, Italy

2 Department of Computer Science, University of Verona, Italy
3 alberto@plumake.it

Plumake Srl, Viale del lavoro 2, Grezzana (VR), Italy
4 co-founder Verona FabLab, Viale del lavoro, 2, Grezzana (VR), Italy

Abstract. In this paper we describe an experience of educational robotics
in high school for Roboval, an annual fair organized by Verona FabLab
that takes place in Verona (in the north of Italy) about robotics, in-
novations, and makers. Our focus will be on the learning and technical
aspects. The aim is to form some student teams to participate in con-
tests with a robot built by themselves. All the teams have to deal with
software, in particular the programming of the Arduino system, and to
take care of practical aspects. Some teams also have the opportunity
to tinker the pieces together or to repair the hardware. The learning
skills provided by this experience are varied and interesting. The the-
ory is important but stays quietly in the background, while practice and
collaboration play the main role.

Keywords: robotics, education, high school, positive challenge, learn-
ing by doing, cooperative learning, peer tutoring, teaching enzyme, active
learning, computational thinking, contests and competitions in informat-
ics.

1 Introduction

Since its first edition in 2012, Roboval has had students, schools, as well as the
many fans of technology and hi-tech in a major role. Organized by Associazione
Verona FabLab[1], Roboval is an annual fair of robotics, innovations and their
innovators,and where creators and curious meet to share inventions and expe-
riences. In 2015 the event moved from the town of Grezzana to the center of
Verona in the former Austrian arsenal buildings.

For many students the central event is the robotic competition, attended by
some high schools from the province of Verona. The team of students, guided by
their teachers, begin preparing for the event a few months before with meetings,
mostly in the afternoon. The whole work is based on collaboration and mutual
help. The skills required are focused mainly on information technology and elec-
tronics, and the ultimate goal is to program a robot to solve a maze or to make
a circular route in the shortest possible time.

92

2 Maurizio Boscaini and Alberto Valente

Over time, the number of schools participating increased from 4-5 to 12-13,
while the number of teams are now about twenty for the race labyrinth and 12
for the speed one.

Every school involves 6-10 students and every team is usually made up of 3-5
members.

In this paper we first introduce Roboval Fair activities, then we describe the
hardware and software used for the competitions and in the end we focus on
contents and educational methodology.

2 Kit Roboval Easy

Fig. 1. The Roboval Easy Robot.

To the schools involved the Associazione Verona FabLab provides free of
charge (thanks to the availability of some corporate sponsors) some robot kits
based on the Arduino platform (assembled or unassembled). Other kits can be
purchased at a cost of around 100 Euros.

2.1 Hardware

Roboval Easy robot is composed of an acrylic chassis equipped with two inde-
pendent wheels and an omnidirectional wheel (steel sphere).

93

Roboval: Robot Contest and Education with Arduino in High School 3

The robots movements are handled by an Arduino, which, using a custom
shield developed specifically for Roboval by Plumake srl, allows the control of
the two motors and of the front luminosity sensors. The assembly instructions
and the photogallery are available on Roboval website.

2.2 Software

The Arduino IDE is freely downloadable from www.arduino.cc for Linux, Win-
dows and Mac operating systems[2]. Some custom firmwares are available from
Roboval website for testing robots behaviors:

– Pololu library for line sensor (to be installed inside Arduino libraries folder)
– Line sensor test firmware
– Motor test firmware

3 Challenges

Easy robots are used for the challenges held during Roboval Fair. Every team
starts from the same initial conditions, both for hardware and for software, since
the organizers provide a basic firmware which can be improved or completely
rewritten.

The Roboval Labyrinth contest is an opportunity to challenge design and
problem solving skills. The goal is to program the robot to solve a labyrinth in
the shortest time.

Beginning this year a new race has been added : the Contest Roboval Speed.
The purpose of this competition is to program a robot to independently move
along a loop without crossings or sharp bends in the shortest possible time.

4 Contents and educational methodology

We put together content and teaching methodology for multiple reasons. First,
the training process/design, though based on a common canvas, was developed
completely autonomously by the participating schools according to availability,
teaching styles, skills and knowledge of each teacher involved. Secondly, because
in this case the motto ”learning by doing” has been the pervasive motivation
in the educational experience, making it quite difficult to separate the product
from the inventing process.

The spirit of adventure and discovery is a key point of the educational ap-
proach. Even the competitive aspect is important ,in that it heightens the need
to meet and discuss, in the light of positive challenge: first and foremost to
themselves and their limits, and then to the other team.

In addition, the cooperative aspect, where possible, is heavily favored. In the
first meetings of the working group cooperation is practically mandatory: the
help and mutual support is basic and continuous.

94

4 Maurizio Boscaini and Alberto Valente

Fig. 2. A Roboval Labyrinth example.

At the ITIS Marconi in Verona this year, the number of boys involved was
more than 30! From first year to fifth year students participated, some of whom
had never programmed before. In the first of the afternoon meetings to begin
the project, students new to the competition were introduced by the teacher to
the objective to be achieved and the means to do so. In particular to define the
subject of robotics and programming Arduino, within the syllabus as follows:

95

Roboval: Robot Contest and Education with Arduino in High School 5

4.1 A simple Syllabus for the course

Knowledge Area Knowledge Item

Introduction to
robotics

Brief history of robotics and etymology of the word robot.
Application areas of robotics.

Basic features of a
robot

Environment, sensors and actuators. Degrees of autonomy.

Introduction to the
Arduino platform

Brief to Arduino project. Basics. Connection to the PC.

Introduction Kit
Roboval ”Easy”

Basics Kit Roboval ”Easy”: engines, inline sensor, wheel,
power source, shield connection, Arduino.

Introduction to
Programming

Basic principles of programming: control structures, vari-
ables, functions.

Programming
Arduino

Arduino programming environment. Basics of Arduino pro-
gramming language. Functions setup() and loop().

Problem Posing
and Solving

Presentation and discussion of basic problems: rotate the
robot in a square pattern, ... Presentation of the challenges
of the competition: ”Labyrinth” and ”Speed”.

The canvas of a program for Arduino.

/* it is performed only once at the launch of the program */

void setup ()

{}

/* is performed after the setup and called cyclically

until the end of the program */

void loop ()

{}

In the first meeting the students could experience what they saw briefly in
theory. In later meetings, they would experience for the first time, some theo-
retical arguments still not well understood; but most of the time was devoted
to spontaneity in the laboratory in groups of two or three . In this situation,
the teacher, using a sports metaphor, was also playing the role of a ”coach”,
a catalyst (to encourage the creation of any groups that might not otherwise
form), a facilitator, an organizer.

A very interesting and important aspect of ”peer tutoring”, is the mutual help
of students. The older and/or more expert assume the task of helping the younger
and/or less expert. In particular, the support takes place in two situations: in
the initial phase to knowledgeably start the first tests (a teaching enzyme,
that is, a biological catalyst of the learning process) and again if the group is
faced with a problem and cannot overcome it.

96

6 Maurizio Boscaini and Alberto Valente

Fig. 3. Preparation phase at the Roboval contest.

The climate in the classroom is typically constructive and cooperative and
this allows the development of relational skills as well as learning skills and new
knowledge .

On some occasions, especially in the early stages of the competition, the stu-
dents were involved in the activity of the kit assembly. The physical experiences
of welding, cutting, gluing etc. were very appreciated by almost all the students.
Because for many of them, it was the first time they could get the hands on
experience of building an electronic device.

The team must also consider all the practicalities. Robots ”Easy” uses a 9V
battery to power Arduino and a battery pack of 4 AA batteries to power the
motors. Participants must be autonomous with regard to replacement batteries
and chargers for the conduct of the race. In addition to the main program, the
teams have to deal with other aspects such as the very practical concern of the
field tests. These can sometimes differ greatly from theoretical calculations, for
example, the natural or artificial light detected by the sensors, or the slipperiness
of the ground on which the robot moves, or by the weight and weight distribution
of the robot, (in particular the electric batteries).

5 Conclusions

This experience so far has certainly proven to be valid from the point of view of
motivation and direction for students, as well as for the educational aspects that
were conveyed. The short syllabus presented above may be a common reference
for teachers but can also be developed and extended. This is to try to overcome
some practical difficulties, that more than one school reported, in being able
to progress with a certain continuity with their students. The commitments of

97

Roboval: Robot Contest and Education with Arduino in High School 7

teachers especially in the final stage of the school year sometimes made this
continuity difficult.

This method, to start from a challenge, create a project and make it happen,
was much appreciated by the participants, who have demonstrated a steady and
effective collaborative spirit. The theoretical contents are sometimes sacrificed.
With older students, also the direct and inverse kinematics issues could be con-
sidered, but only if placed in a more advanced and comprehensive curriculum.

To continue this analysis, taking as reference the Bloom’s taxonomy educa-
tional path[3], though this education process starts from important theoretical
basis, it is somehow biased towards experiential and heuristic learning. From the
beginning it focuses too much on the higher levels of the taxonomy (application,
creation, analysis , evaluation) and maybe too little on the basic ones (memo-
rization and understanding). Nevertheless our belief is that, in this experience,
a theoretical-front lack is a price worth paying.

References

1. Roboval, Web. 11 Jul. 2015. http://www.roboval.it/
2. What is Arduino? Arduino. Web. 11 Jul. 2015 https://www.arduino.cc/
3. Tassonomia di Bloom, Wikimedia Foundation, n.d. Web. 12 Jul. 2015

https://it.wikipedia.org/wiki/Tassonomia di Bloom

98

Blended Learning Environments, Flipped Class and
Collaborative Activities to Teach Databases in a

Secondary Technical School

Maria Concetta Brocato

ISIS Arturo Malignani, Computer Science Teacher, Udine, Italy

mariaconcetta.brocato@malignani.ud.it

Abstract. The paper describes some learning and collaborative activities, some
tools and an on-line environment created to teach the Databases to secondary
technical school students (aged 17-18). The on-line course, created by using the
Learning Management System Moodle, is a blended learning environment to sup-
port daily classroom activities. The on-line environment increases dynamically
with the contribution of teacher and students and “wraps around” the class during
the learning process. The course allows "Flipped Classroom" and collaborative
activity (on-line and classroom), it supports discussion and sharing information. It
also enables students to have personal/sharing areas for files and supports the
main cloud services to upload/download files. Topics of the course: modelling a
database using the relational model, designing Entity/Relationship diagrams, SQL
language, case studies based on real life and student scenarios.

Keywords: Database, Relational Model, SQL, Blended Learning, Flipped Class-
room, Moodle

1 Introduction

The “Fundamentals of Databases” is a course designed for Italian Secondary Technical
School students (aged 17-18, specializing in Computer Science and Telecommunica-
tions). The Computer Science subject has 99 hours per year for the first, third and fourth
year of the five provided. An Italian Technical School year has 32 hours per week;
Computer Science occupies 3 hours per week for the whole school year. In the first year
of this specialization, students, aged 14-15, have an introduction to the basic concepts of
ICT and digital literacy to develop digital skills and key competencies. These goals are
achieved by using Office Automation tools, searching information on the web, evaluat-
ing sources and organizing the data, which is finally presented. This also includes study-
ing computer architecture, numbering systems and Boole’s algebra. Very often the ap-
proach is problem solving based. During the second part of the year, teachers introduce

99

algorithms, flow charts and coding. This is possible using one of two different ap-
proaches: easy and informal with icons and graphic environments (like “Scratch” [1]
and “Code.org” [2]) or more formally using a common Integrated Development Envi-
ronment for a high level language, e.g. C++ Language. During the entire third year,
students, aged 16-17, study programming languages, algorithms, flow charts and code.
At 17-18, students complete their route in Computer Science by studying Website De-
sign and Databases; this last module contains the course described.

The course designed is composed by common daily class activities (in the classroom)

and some on-line activities (in the classroom or at home); some activities are synchro-
nous, some other asynchronous. The on-line course, created using the Learning Man-
agement System Moodle [3], supports all daily class activities, so the learning method-
ology is “blended” and “hybrid”. The on-line environment increases dynamically with
the contribution of students and teacher and “Wraps Around” the class during the learn-
ing process. The course allows "Flipped Classroom" methodology and collaborative
activities (on-line and classroom); supports discussion and sharing of information from
teacher to students but, mainly, through peers who are the basic actors of the learning
process. It also enables students to have personal/sharing areas for files and supports the
main cloud services to upload/download files such as Google Drive or Dropbox. It is
possible to highlight three basic features of the course “Fundamentals of Database”:

• the first is connected with topics: students are introduced to important topics of ICT
such as modelling a database, designing Entity/Relationship Diagrams, building the
schema in a MySQL database, using SQL Language; all the topics are connected to
problem solving competence;

• the second is connected with didactic methodology: concepts are learnt by practical
and collaborative activities (on-line and classroom), through team work and group
discussions, using flipped classroom scenarios and blended learning environments;
the teacher supports learning in the classroom but is also a tutor in the on-line course;
this enables students to help each other in the on-line forums, to discuss in threads, as
well as to share and suggest solutions; write collaboratively on a wiki page; teacher
handouts and textbooks are expanded with best student’s homework or conceptual
maps that are very often discussed/modified and shared in the classroom;

• the third feature is connected with students motivation: the student’s interest is en-
hanced using case studies taken from their daily life; this allows them to share and
discuss their personal observation of reality and to easily identify a possible solution;
furthermore collaborative and useful interaction in forums/wiki pages are evaluated
by the teacher, at the end of each term.

The effects of the last two points are that, each year, the course is different: enriched
with the contribution of peers, not static, dynamic and open to personal styles and stu-
dent’s needs.

100

2 Topics: the Modules of the on-line course

2.1 Common Area

At the beginning of the Moodle course, there is a common area with three resources:

• “News Forum”: managed only by the teacher for communications such as the
presence of new material in the on-line course, a deadline to hand in an exercise, a
date of an important conference to follow, etc.;

• “General Purpose Forum”: everyone (students and teacher) can open a new
discussion, ask or answer; it is used for general topics not related to specific modules;

• “Delivery Area”: each student can upload files or exercises like a cloud personal
area inside the course, the area is also visible to the teacher but not to other peers; the
upload supports the main cloud services. To help the teacher during corrections and
evaluation, the name of each exercise delivered must follow the guidelines for
standard file names: “Surname_ProgressiveNumber_ShortText”.

Fig.1: the icon point out Forums, the icon points out the student’s cloud personal area

The teacher uses a communication mode related to students such as icons like “Smi-

leys” or “Red Devils” and the hash symbol “#” to reference a main topic or the “@” to
reference a student like on “Twitter”, in order to engage the student’s attention.

2.2 Module 1 (Study and Learn): Theory of Modelling a Database

Module 1 is the theoretical part of the course: students have to study and learn basic
concepts of Databases. It contains:

• “Database Forum”: a specific forum, everyone can open a new discussion, ask or
answer about materials and lessons in the classroom, as well as sharing personal
notes, maps, diagrams, summaries, links and so on;

• Summary: helps to study the module and to perform the final assessment: it contains
reference pages from the text book, a quick index of different kinds of files and a
short description on how to use materials;

101

• Documents about the “Theory of Databases”: written by the teacher to explain:
basic terminology and symbols, Fundamentals of Relational Model, Conceptual,
Logic and Physical Level, Entity/Relationship Diagrams (E/R), SQL Language for
query, manipulate and create a database in a MySql Environment; sometimes the best
student’s homework, is published in this section, showing great valence to revise or
to study; very often the contents written on the whiteboard are also shared in this
section;

• “On-line Test”: the final, individual, assessment; the test is composed of different
types of questions (open, multiple choice, radio button, cloze, gapped text, etc.).

Fig.2: : the icon points out thematic forums, the icon points out theoretical files, the

icon points out Excel files, the icon points out a test assessment, the icon points out a
wiki page to correct the assessment

The concepts are explained by real cases, using simple problematic situations, possibly
related to a student’s daily life. Materials contain diagrams that help students to
understand historic passages in Database Theory: to motivate the Relational Model and
the use of a DBMS. At the beginning of the module, the teacher highlights errors con-
nected with types of databases not managed with a Relational DMBS. Examples of
these types of databases are paper databases, electronic databases that use separate and
not synchronous files. This topic is connected with “Data Redundancy”: to manage a
database without errors it is necessary to save, read and maintain information in one
place and to refer to it with the definition of relations through data. This aim is intro-
duced through a case study: “A bank database has to memorize and to manage some
current accounts, memorizing name, surname, address, account number, amount,
deposits, withdrawals and bank transactions”. Redundancy errors are highlighted using
Excel Sw (“esempio 1” file in figure 2) with different and not synchronized folders for
“bank details”, “clients” and “transactions”. The teacher asks the students for
information connected to the problem; this information is written in folder’s cells
including total amounts with one or two transactions. After a short talk, the teacher
manually modifies the cells of the transaction folder by adding, deleting and altering
data. Errors are then pointed out by reading the asynchronous folder of the current

102

amount. Other similar examples are possible for the account number or name and
surname.

Files, numbered from 1 to 4 in figure 2, contain detailed and technical contents such as:
terms and definitions with connected examples, Entity/Relationship Diagrams, real life
case studies, screenshots from MySql, queries and commands of SQL Language.

About the on-line test: the teacher manually evaluates all the open answers; the close
answers are evaluated automatically by Moodle LMS; at the end of the test, the system
automatically shows students feedback for each question; the feedback could be written
by the teacher before the test or modified during corrections.

After the end of the on-line test a key activity is performed: as a homework task,
students have to write down solutions to each question on a wiki page (last activity of
figure 2). For each question, they have to work in collaboration: writing reference page
numbers of the textbook or useful electronic materials (in the course or on-line, written
by the teacher or students) resulting in a clear and exhaustive answer. The purpose and
the relevance of this activity is connected to the third feature of the introduction section.

2.3 Module 2 (Apply and Collaborate): Design a Database and Write a Project

Module 2 is relevant because it involves the application of the theoretical concepts using
an E/R Design Tool and some graphic tools for MySql environment. Students work in
pairs, because the task “Design a database and write a Project” is not a simple task and
needs lots of different and transversal competencies. The teamwork is a detailed project
file of a relational database with the E/R diagram, logical and physical levels and a
technical report file containing all the choices made and motivations. The Module con-
tains:

• “Case Studies”: three different and simple case studies, chosen from an
environment close to real life;

• “Creating Groups and Logbooks”: the working groups are not chosen manually by
teacher but “Team Up” Sw is used [4]; this is an on-line tool developed by Aalto
University which allows one to create random groups and to record a simple voice
logbook for each group (weekly, daily, less or more often as students desire).

• “Steps and Final Delivery of Teamwork”: it describes the whole module, helps
each group to perform the teamwork activities, contains steps on how to use
materials, to deliver the weekly activity report and the final project;

• “Collaborate and Improve with Wiki”: all students collaborate writing a dedicated
wiki page for each of the three case studies. At home, each student discusses the two
case studies not performed in pairs; students have to read all the teamwork projects
connected to the case studies and identify an improved common solution. The
comment section, of each wiki pages, can be used to discuss the common solution.

103

Fig.3: the icon points out the delivery area for the group files, the icon points out the
three wiki pages, one for each case study, to perform collaboration for the improved solution

Some observations about module 2:
• the first part of the module, which needs group activity, is developed during:

(a) classroom activities: in an ICT laboratory; during this stage students collaborate
together and can use the net to search for information, take notes and share
documents using Google Tools [5], (Google Docs, Google Sheets, Google
Slides) or other collaborative Tools; the design of the E/R schema could be
performed: with a simple graphic Tool like “Diagram Designer” [6], or others
more technical, like “Raise Editor” [7];

(b) extra scholastic time: to observe a real case connected to the case study (for
example to interview people connected with the case;

• the second part of the module, that also needs personal activity, is developed at home
or in the ICT lab during class activities, using an asynchronous interaction to
encourage autonomous reflection.

Solutions adopted are thoroughly evaluated by the teacher if supported by photos from
real life or the web, connected to the problem and that confirms their choices. Students,
before activity, know the evaluation scale that contains quantitative indicators (wiki
writings, forum posts, peers support, number of real photos or interviews) and quality
indicators (complete and clear E/R schema, correct logical and physical level, types of
errors, correct technical descriptions, clear motivations).

In detail, the text of the three case studies are:

• Organize information concerning subscriptions of a publishing house that publishes different magazines:
every magazine has subscribers and a subscriber can subscribe to multiple subscriptions to different
magazines. The purpose of the database is to archive useful data for sending to subscribers. Integrating
and motivating the decisions related to the information;

104

• Organize information about a photocopying service at a Press Center of a school; any activity carried out
(date, time, number of photocopies, price paid) may be requested by a user who may be a student, a
teacher or a whole class. The press center has different copy machines. The purpose of the database is the
management and the control of the activities of the center. Integrating and motivating the decisions related
to the information considered useful;

• Organize the store and the search of data relating to articles published in specialized magazines in a given
area, by organizing the layout of a magazine, topics and industries. The purpose of the database is to
facilitate the search and consultation of these items. Integrating and motivating the decisions related to the
information considered useful.

2.3 Module 3 (Apply Autonomously): SQL Language

Module 3 is relevant because it involves the application of the theoretical concepts in
the whole phpMyAdmin environment. Students work alone. The activity, in the first
part, continue the teamwork of Module 2: student must write personal observations
versus the common solution presented in wiki (for the two cases not analyzed in pairs).
After, each student must write, in text words and not in SQL language, almost one need
of information connected to the reality and post them in forum. In the final delivery,
students write a personal project containing E/R diagram, observations and queries in
SQL language. They also have to write some creation commands for databases, tables
and fields. The Module contains:

• a forum about each “Case Study”: in the three different forums each student has to
write a post that contains at least a query written in text words;

• within the three forums there are different threads, one for each text query posted
by students; students must reply to, at least, one post writing the SQL query
connected to the text; students can correct each other’s solutions;

• A delivery area for final personal project file.

The activity “collaborative writing queries in forum” allows students to collaborate
during homework activities in an on-line environment; students have to read all the
threads connected to the case study and identify a good response to the solution. The
teacher observes the behavior of students in forums, reads posts and corrects them; he
uses a communication mode close to students: icons like “Smileys” or “Red Devils”
and the “@”symbol to reference a student.

3 Methodology: “Wrap Around” environment, collaborative and
group activities, flipped teaching

3.1 “Wrap Around” Environment

All the modules, materials, activities and tools used in the course are collected and
available in an on-line environment which was created using the Learning Management

105

System (LMS) Moodle - version 2.7.1 as well as some plugins developed by Moodle’s
Community. The on-line course is used as a “blended learning environment” that col-
lects and shares all the materials used and produced by students and the teacher (links to
important web sites, all kinds of documents, discussions in forums, wiki pages), so it
supports every daily class activity and it is the “core” of the whole didactical ac-
tion. The course was built to allow "flipped classroom", to use collaborative tools and
collaborative activities, to share documents using some common cloud tools such as
Dropbox and Google Drive. The environment expands dynamically during the year and
“wraps around” the whole class.

During school activities (classroom):

• the teacher uses the interactive whiteboard and a PC, connected to the net, in order to
use and discuss documents saved through the course or to immediately save the actu-
al lesson performed;

• during all the lessons in the classroom, students can choose to use their personal
devices (BYOD) in order to feel more comfortable, to add personal notes in their re-
served area or to share information and relevant files;

• during ICT lab lessons, each student uses a PC in order to use uploaded materials, to
execute exercises, to add personal files in their reserved area or to share information
or files in dedicated areas with the rest of the class;

• there is an alternation of plenary discussion moments and group activities.

During home activities (on-line):

• the teacher publishes materials in the on-line course, uploads files, organizes modules
and sections, plans and explains the steps of each activity, prepares on line assess-
ments and quizzes;

• students use or download materials shared in the on-line course by the teacher, read,
write and collaborate in forums and on wiki pages, use collaborative tools and per-
form exercises and assessments;

• everyone should write in the forums of the course, ask a question or answer other
questions;

• there is a peer collaboration under the supervision of the teacher who is also an on-
line tutor.

There is a fluid interaction: classroom and home activities do not follow fixed sche-
mas. The learning process alternates presence and physical distance; interaction,
through media and technologies, can be synchronous or asynchronous in a "liquid" suc-
cession. Technology is integrated into lessons, do but does not substitute them:
textbooks, personal devices, files, exercise books and notes should be used together.

The lesson moves from the classroom to the web, students come in the class having

already read the theoretical contents prepared by the teacher and shared in the LMS of
the school. The lesson is flipped: the students have seen the lessons, so the class time
could be more active and becomes a workshop.

106

There is an overcoming of the hierarchical rule from teacher versus student:

• creation of materials: not only the teacher creates and publishes materials, students
perform a co-creation and post files, maps or links;

• interaction: the course improves peer education and discussion in forums or wiki but
also during classroom activities.

3.2 Collaborative and Group Activities

The activity in the classroom becomes more focused to problem solving: a dis-
cussion of possible solutions rather than an explanation from one channel, the teacher,
to students like passive spectators. It is more dynamic: not only one channel of commu-
nication but two or more. The collaborative activity in the classroom and on the on-line
course is made possible by using useful tools:

• TeamUp on-line Tool [4]: allows the teacher to randomly create groups with a
dedicated vocal diary for each group; the diaries are managed and maintained by the
students. The single registration keeps one minute of voice, but groups could record a
lot of entries. The teacher can listen to the recordings before the lesson which may
make the teacher aware of any problem areas;

• Padlet on-line Tool [8]: it is a virtual board to tap personal notes or to exchange
notes for group work, it is often used in a recent MOOC [9];

• Cmap Tool [10], famous concept map Sw, is used collaboratively to revise
theoretical concepts; it is useful as a homework task then enriched in the classroom,
for example first of an assessment. Students create a map at home and deliver it on
the Moodle platform, before the lesson the teacher displays maps and identifies the
most complete. Those identified are discussed in the classroom. The maps are
integrated and published during the course; this allows all students to perform a
better preparation for the final assessment. This action also allows one to improve
results on the checks.

3.3 Flipped Teaching

Before lessons:

• the teacher uploads selected contents and files (choosing between ready materials
and/or self-produced) in an on-line environment (LMS or on-line Tools);

• students perform activities like reading contents in the on-line environment, create
personal maps and study; students can communicate with each other (peer) and with
the teacher through forums and messages in the on-line environment.

107

Concepts take shape in the virtual classroom with the support of the teacher who
can guide, trace the path, check, facilitate and give sense to the home activity. Each
student prepares themselves at home for classroom activities.

During classroom lessons there are: real time discussions, negotiations of meaning,
depth study, collaborative learning, synchronous learning, group activities. LIM or
whiteboard are used for the negotiation of meaning.

3.4 Other useful Sw and Tools

• “Prezi” an on-line Tool [11]: to design collaborative and multimedia presentations;
• “Google Apps” Tool [5]: to store files in cloud, to share and write files, to assess;
• “Socrative” on-line Tool [12]: to create quizzes;
• “Learning Designer” Sw [13]: is a specific on-line graphic Tool used by teachers to

plan class activities with simple drag and drop actions, small text descriptions and
check lists. An example of a lesson, planned with the Sw, is contained in the follow-
ing screenshot:

In following text (in italics) there is the beginning of the resulting plan (is possible to
print a pdf file of a plan directly from the site) containing, only the general part and the
first step of the lesson planned.

Context

Topic: Databases – ICT Total learning time: 1190 Number of students: 24
Description:

• STEP 1: Individual Preparation: 1. Read Watch and Listen materials in the on-line course
(Moodle) 2. Practice with tools and app in order to create a conceptual map using tablets 3.
Produce a file or a link, with the map, and upload it in the Moodle course of the class.

• STEP 2: Collaboration: 1.Class discussion 2. Collaborate: group activity (two students)
groups have to find a real case (describe the case and the situation) in order to model it using
a database 3. Produce: group activity (two students) groups have to project the conceptual
schema of the database (diagram E/R) and the model of the database connected to the case of

108

the previous step 4. Share the collaborative description and the project of the Database sche-
ma connected with (diagram E/R) in a FORUM in Moodle.

• STEP 3: Assessment: 1. Individual assessment: on-line quiz on Moodle 2. Small Group Col-
laboration in a Wiki page to correct the quiz.

Aims

The lesson plan focusses on a "FLIPPED CLASSROOM'S" scenario; it describes some activities
to introduce an important concept for ICT students in a secondary school: "Introduction to pro-
jecting a Databases with E/R schema". Flipped activities are shared in the on-line course of the
class in the Moodle environment of the school. Students and teacher, during their school activi-
ties, can use: an interactive whiteboard and a PC connected to the net in the classroom, a person-
al tablet for each (BYOD) and a fast wifi connections provided, instead, by school. During home
activity students use tablets to access to materials shared in the on-line course by teacher, to
collaborate in forums and in wiki pages, to use tools.
Outcomes
• Draw (Knowledge): draw a map
• Analyse (Analysis): analyse a real case
• Question (Comprehension): Answer questions

Teaching-Learning activities (TLA): TLA 1 - Individual Preparation:

• Read Watch and Listen materials in the on-line course (Moodle)
• Practice with tools and app in order to create a conceptual map using tablets
• Produce a file or a link, with the map, and upload it in the Moodle course of the class.

Read Watch Listen 240 minutes 24 students Tutor is not available
Each student, individually at home, logs into the Moodle on-line course and read, watch and
listen the materials shared by teacher.

Practice 120 minutes 24 students Tutor is not available
Students, at home, using their own tablets write a conceptual map using Cmap tool or Popplet on-
line Sw or Popplet App for tablet (the choose is free). This activity helps students to identify the
main concepts included in materials studied and allows them to create a summary in order to
reuse it for future activities. The tools identified (Cmap or Popplet) booth allow to collect and
connect topics using different kinds of media: visual, sound, text. This is in accord to Howard
Gardner’s theory: students could became more aware of how they learn if they have different
kinds of learning activity.

Produce 20 minutes 24 students Tutor is not available
When the conceptual map was ended, each student logs into the Moodle on-line course of the
classroom and upload the map (a link, a file) in the area dedicated to the delivery.

3.5 Reflections

Through technology it is created a learning environment for:

• student support: students retrieve videos and different types of multimedia files,
perform self-assessment tests, write questions in a moderated forum. Students cannot

109

accumulate deficiencies and have different types of interactions to solve problems.
Moreover, studying with contexts and environments that offer diversified media, stu-
dents can achieve the customization of a learning process; this helps those who are
in greater difficulty.

• teacher support: teachers can understand and investigate the student’s level before
the lesson in classroom. The on-line activity allows to highline them, first of the
lesson, not in classroom. This allows to prepare more effective lessons: discussing,
first, arguments non clear for students. Moreover teachers could use forums as an on-
line tutor to support students also outside the class.

Technology will improve, in the future, their importance in our life. We don’t pre-
pare our student for today but we prepare our students for tomorrow. So technol-
ogy has to be integrated to what students do in school with the guide of teachers: this
process helps them in their future work and in their future life. If, this integrated pro-
cess, starts at school, it could have better positive effects: could produce better long life
learners that consciously use technologies, not only for access to information and con-
sumption of it; but also to produce personalized contents, to share them and collaborate
with others.

Technology could improve a personalized learning: students could use and reflect

to materials shared or created from teachers, using different media, and collected in
virtual class environments; they could review them in different and asynchronous time,
they could easily personalize materials adding notes, links, voice. They could learn with
more flexibility and they could reflect, in differentiated ways, about what they produce.

The use of technology is also a solution to include: teacher can positively use peer
collaboration in classrooms, could have feedback also for this activity that sometimes
isn’t so visible during normal class activities. Moreover students could easily work in
small groups and collaborate inside and outside school in fluent ways.

References
[1] “Scratch” Tool MIT Media Lab Cambridge: http://wiki.scratch.mit.edu/wiki/Scratch_2.0;
[2] “Code Org” Website: https://code.org/;
[3] “Moodle” Website and Community: https://moodle.org/?lang=en;
[4] “TeamUp” on-line Tool: http://teamup.aalto.fi. The manual for the use is visible on the

link: http://teamup.aalto.fi/TeamUp-Manual.pdf;
[5] “Google Apps” Tool: http://www.google.it/intl/it/about/products/
[6] “Diagram Designer” on-line Tool: http://meesoft.logicnet.dk/DiagramDesigner/
[7] “Rise” Sw http://www.risetobloome.com/Page_1_S_NodeListing.aspx?ITEM=1404;
[8] “Padlet” on-line Tool: https://it.padlet.com
[9] MOOC course: http://www.europeanschoolnetacademy.eu/en/web//tablets-in-schools;
[10] “CMap” Sw: http://cmap.ihmc.us/
[11] “Prezi” on-line Tool: https://prezi.com/
[12] “Socrative” on-line Tool: http://www.socrative.com;
[13] “Learning Designer” on-line Tool: http://learningdesigner.org/

110

Active learning in a “Introduction to networks” course

Sophia Danesino
Istituto di Istruzione Superiore “Giuseppe Peano”

Torino, Italy
sophia.danesino@peano.it

Abstract. There is significant evidence that profound learning occurs when students
are involved in creating, sharing, interacting and explaining. Traditional lessons tend
to be particularly ineffective in some types of teaching. Telling students how devices
work or describing the process of networking transmission can be boring, difficult to
remember, even hard to understand. It is necessary to find new approaches in order to
involve students in the learning process so to increase their engagement and make
them more motivated and autonomous. Starting from this assumption, two innovating
teaching methods have been experimented at Peano Institute in Torino, Italy, with
encouraging results. In this work, we describe the way we used to increase the amount
of active learning in our “Introduction to networks” course of the third-year
curriculum. After introducing these techniques in 2013 we observed an increase of
interest and participation in our students. This result suggests that the adoption of
active learning pedagogies can contribute to increase personal work and improve the
learning process.

1. Background

I.I.S. “G.Peano” (http://iispeano.gov.it) is a technical high school that offers a five-
year course both in “Computer Science” and in “Electronics” (age of pupils: 14-19). It
is located in the peripheral area of Torino, Italy, a highly industrialized city. The
qualification combines academic study with work-based learning. The school is
designed to equip students for a particular area of work, as well as giving them the
general skills that are useful in any type of job. Upon completion of Higher National
Diploma students can progress to university to complete a degree programme.
Enrollments have reached during the last ten years an average of 800 students per
year. Most of them come from poor families and the percentage of immigrants is
quite high. Such an unfavorable social background causes a high rate of dropouts.
Consequently it becomes imperative to motivate students, to increase their interest in
Computer Science and to improve their knowledge of the English language so to
avoid dropouts and facilitate access to employment.
As active learning methodologies have demonstrated to be effective in terms of
learning outcomes [1], we decided to experiment teaching strategies and technological
resources that engage students in their learning process. Two apps have been chosen
as particularly fit to encourage students to analyze and explain concepts: Popcorn
Maker and Augmented Reality.

111

The first experiment involved two classes in their third year of high school (3AI 25
students and 3BI 29 students) in April-May 2013. The second one involved one class
of 24 students in their fourth year in November-December 2014.

2. Popcorn Maker

Popcorn Maker was selected as a basic tool in the first experiment because of its
specific features. Traditional video editors produce what can be described as flat
video [2]: each frame is predetermined by the creator and the viewer has no other way
to experience it. Popcorn Maker transforms the passive act of watching a video
online into an active experience where the video makes connections across a variety
of platforms [3]. In other words Popcorn Maker produces multimedia that can be
influenced by data on the web.

Using a simple drag-and-drop interface (https://popcorn.webmaker.org/) users can
grab live content like Twitter feeds, Google maps, photos, news feeds and links
directly into an existing video and audio file producing multimedia that can be
influenced by the actions of the viewer.

Structurally speaking, Popcorn Maker is divided into three sections (Figure 1): the
preview pane, the timeline, and the feature list. In the center of the screen is the
preview pane, where users may view the videos they have modified. Below that
screen is the timeline, which displays the video as a linear timeline, punctuated by

Figure 1 – Wikipedia information added to a video.

PREVIEW
PANE

EVENTSTIMELINE

112

“events” (e.g. text or pop-up bubble) layered on top of the original video. To modify
the videos, users drag and drop the events listed on the right of the screen into layers
in the timeline [4].

The events users can add to videos include simple text overlay that can be modified
with different fonts, sizes, colors, shadow, background color and link, as well as text
overlay within a bubble and featuring an icon (e.g. an exclamation point). Both the
shape and icon may be changed as shown in Figure 2.

Adding overlays means analyzing the content given: identifying parts, analysing
relationships between parts, recognizing the organizational principles involved,
classifying, ordering. Students are required to interpret information, not to simply
recall information: learning is achieved through students selecting relevant
information and interpreting it through their existing knowledge.

Figure 2 – Popup text added to the video.

113

Once a project is finished and saved, it can be shared as a Popcorn Maker URL,
exported as an HTML source file, or embedded in another webpage using provided
embed code. Figure 3 is an example of an augmented video with clickable interactive
widgets: if you click the small window you can access the related information on
Wikipedia website.

Popcorn Maker is free. It gives schools, like other users/students, the freedom to copy
and redistribute the software, with no obligation to pay for doing so (moreover
Popcorn Maker allows the user to create his own version of Popcorn Maker by
forking the code on Github) . Our students can keep working at home for free and this
is important because we do not want our students to illegally install proprietary
software on their PC. “The most fundamental task of schools is to teach good
citizenship, including the habit of helping others. In the area of computing, this
means teaching people to share software” [5].

This online tool was used in two classes of 25 and 29 students attending the third
year. They worked at first on the TCP/IP protocol suite: working in groups of
four/fine students they broke down the problems involved in moving data from one
computer to another one and categorized these problems to four groups (the four
layers in TCP/IP), then they identified the different addresses needed at each layer
(MAC, IP, port number, DNS name). Afterwards, in greater detail, on the
encapsulation/decapsulation process.

Stage 1 – Introduction

At the beginning the teacher tried to explain the process of encapsulation using the
analogy of a packaging process but it didn't work. The story “The content is put inside
bags, the bags are packed into boxes and the boxes are put inside cars. The bags,

Figure 3 – augmented video.

114

boxes and cars normally will contain information that are needed for the delivery”
was boring and, taken out of context, had little meaning. So students were encouraged
to simulate the process of getting a web page from the web.

Stage 2 – Simulation

Each student played a different role (i.e. layer) from the data-link layer to the
application layer. They physically added control data to each data unit and
encapsulated them into a new one (Figure 4).

In the preparation phase of this activity students were divided into small groups (of
four to five students) and each group was assigned a single step in the
sending/receiving process to explore. Each group discussed the plan for its virtual
play and prepared the envelopes and the information needed (ARP table, Routing
table, DNS mappings...). Each group had to interact with the others in order to get a
consistent information of the whole network and on the whole process being
organised.

Stage 3 – Video recording

The video has been recorded in English as it was part of a Content and Language
Integrated Learning (CLIL) lesson: students were learning networking (content)
through the medium of English (a foreign language) and English by studying a
content-based subject.

At the end of this step a final video was recorded (https://youtu.be/_dU4bonmyeE).
The results were quite impressive. Not only our students had been able to use a
foreign language when speaking, but they also showed a remarkable creativity.
Creativity is a critical component in enabling us to use innovative powers and a key
resource in a knowledge-driven economy.

Figure 4 – Simulating the encapsulation process.

115

Stage 4 – Review

The last phase of the experiment included a full review of the entire process. The
students were asked to explain the process of encapsulation/decapsulation improving
the video previously made in the classroom using Popcorn Maker. Using its drag-and-
drop interface they were asked to:

i. add hyperlinks for the viewer to click and get information on the web (i.e.
related articles from Wikipedia, such as detailed information about a specific
protocol layer as shown in Figure 3)

ii. add popups to the video describing the data unit shown (such as packets,
segments, etc.) as in the following figure:

iii. insert images showing detailed schema of a video section, for example the
IPv4 address structure as in the following figure:

Figure 6 – IPv4 address schema.

Figure 5 – A network layer data unit.

116

This activity improved the overall quality of learning as students had ample
opportunities to clarify, question, apply, compare and consolidate their knowledge.

The final work (https://danesino.makes.org/popcorn/35th) has been embedded into
the school e-learning website (a Moodle learning environment, login as Guest):
http://informatica.peano.it/mod/page/view.php?id=1724

A full analysis of the learning results is not possibile yet. Appreciable results have
certainly been obtained in increasing interest and participation, All students, without
any exception, have given a personal contribution. Improvements of proficiency
levels and reduction of dropout rate will be assessed in the future. The school is
planning to repeat the test next year.

3. Augmented Reality

The second active learning experience conserns Augmented Reality, i.e. the ability to
see or hear contextually relevant information superimposed on what you see through
the camera lens of an Android or iOS device such as a phone or mobile device. A
classic example of AR is the fighter pilot’s heads up display: data such as altitude,
speed and fuel level appear on a transparent visor worn by the pilot, so that he does
not need to look down at a control panel.

Augmented Reality (AR) allows educators and students to create layers of digital
information on top of the physical world. It can be successfully used to make videos
and apply them on top of trigger images such as book covers, photos, lab equipment.
The information delivered increases engagement and enjoyment: it makes the
difference between an ordinary lecture and a learning experience.

Augmented Reality not only can change the environment around students, it also
encourages them to construct their own learning worlds. Students can place AR
markers throughout the classroom. When markers are scanned, they trigger student-
made videos, slideshows or images.

To implement a project in the field of Augmented Reality, Aurasma
(http://www.aurasma.com/) was chosen as the most appropriate digital tool. Aurasma
is a simple and immediate app that allows users to engage in and create Augmented
Reality experiences.

At Peano Institute Aurasma has been used in several different ways in a classroom of
24 students attending the forth year. During an initial lesson on networking devices,
such as switches and router, students were asked to think of a brief way to describe
each device function.

i. Each student worked with a partner and each group was given the image of a
specific device (such as the one in Figure 7). That image became their trigger
image (a trigger is an image that activates media when scanned by an AR-
enabled device).

ii. In order to define and describe it, some students drew an image containing text
information (for example a description of a switch/router interfaces and

117

physical ports were added to the device image), others recorded an audio
description (for example a brief description of each layer were added to an
image of the TCP/IP protocol suite).

iii. After that, the students opened the Aurasma app, uploaded the image they
were given and added the text/audio as an overlay.

All images were stuck to the classroom walls (our public auras can be downloaded
searching “peano” on Aurasma). As a result, any time a student wants to know more
about a device, he can hover his tablet/smartphone above the image on the wall. The
text/audio overlay, created by the students, will automatically begin playing (Figure
8).

The experiment offered students a chance of engaging in personal work, made them
less dependent on textbooks and predetermined ways of thinking and working.

The experiment will be repeated next year so to allow a better assessment of results,
based on quantitative data. At present the outcome of the experiment is considered
quite satisfactory in terms of student participation and interest.

Figure 8 – Text overlay, example.

Figure 7 – Trigger image, example.

118

4. Conclusion

The benefits of the activities described above are relevant. They include improved
critical thinking skills, increased retention and transfer of new information, increased
motivation and improved interpersonal skills. Nevertheless, there are a few
observations related to the learning process that must be underlined.

Adopting active learning methodologies is a time-consuming process:

i. it requires a significant effort by the instructor to develop a plan for an active
learning program

ii. students need a lot of class time to complete the activities (we doubled the
class time in the second experiment and even more in the first one).

Although active learning requires a large initial time investment, we realized that our
students have a better understanding of what they learnt, so that learning new
information will become an easier and quicker process [6].

Another element must be taken into account: active learning can be challenging
because of class size or room limitations such as fixed seating. So we suggest using a
laboratory or a flexible environment as a classroom. A fast Internet connectivity is
also mandatory.

Using active learning does not mean abandoning the lecture format, but incorporate
active learning into our lessons can transform our classroom into an exciting, dynamic
learning environment.

The described activities allow a twofold approach to digital competences. Not only
students discover and practice digital tools while carrying out a task, but they also
explore and explain the related contents. To properly learn something nothing better
than having to teach it and this works also for young students.

119

References

[1] Michel Prince, Does Active Learning Work? A Review of the Research, Journal of
Engineering Education, July 2004

[2] Mozilla support, How is Popcorn Maker different from other video editors?

https://support.mozilla.org/en-US/kb/how-is-popcorn-different

[3] Remake learning, Popcorn Maker - Video beyond the box

http://remakelearning.org/resource/popcorn-maker/

[4] Educade, 3 Lesson Plans Using MOZILLA POPCORN MAKER

http://educade.org/teaching_tools/mozilla-popcorn-maker

[5] R.Stallman, Why Schools Should Exclusively Use Free Software, Free Software
Fundation

[6] Mick Healey, Eric Pawson, Michael Solem, Active Learning and Student
Engagement: International Perspectives and practices in Geography in higher
education, Routledge 2009

120

Introducing recursion with LOGO
in upper primary school

Ágnes Erdősné Németh

Batthyány Lajos Gimnázium, Nagykanizsa, Hungary
ELTE Faculty of Informatics, PhD School, Budapest, Hungary

erdosne@blg.hu

Abstract. Recursion is a powerful concept, but most of the students and teach-
ers agree that it is difficult to learn, understand, and teach it. On the other hand,
Logo is a powerful language that allows for explorations of recursion via visu-
alization. This article demonstrates a new way of teaching and understanding
recursion for the upper primary students with the help of Logo. The structure
we used fits to the computational thinking approach, it helps to understand time
and memory limits of computers, too. Understanding the key concepts of recur-
sion prepares students for making sense of other types of programming con-
cepts like memoization and dynamic programming and other more complex
concepts.

Keywords: recursion, LOGO, primary school education, computer science,
trees, computational thinking, fractals, L-systems

1 Introduction

Recursion is a key concept in the Computer Science field. It is a powerful tool for
solving specific programming tasks and has features that sometimes make it a superi-
or choice over other approaches. [2] Students learn recursion during their first pro-
gramming course and learn its concept in math too. It is deep, rich, and interdiscipli-
nary, but at the same time abstract, vague and difficult to explain or define [3]. Many
agree that, while it is powerful and significant, it is difficult to learn and understand
[4]. There seems to be an overall consensus on the difficulty of teaching it at all
school levels [8], too.

On the other hand, Logo is a powerful language that allows students to explore re-
cursion via visualization. This article demonstrates a new way of teaching recursion to
the 11 and 12-year-old children with LOGO, on the basis of computational thinking.
Visualization, associations with everyday life, and the variety of different samples
might help understanding, encourage motivation, aid conceptualization, and give a
strong basis for subsequent formal studies.

Recursion in programming textbooks often exists as the quintessential triumvirate:
Towers of Hanoi, Factorial and Fibonacci. [10] These tasks are powerful, but they are

121

not expressive enough for primaries, because children in primary schools need visual-
ization to understand any idea. Most of the textbooks begin with iteration examples
instead of real recursive tasks.

There is a noteable textbook teaching recursion with Logo by Hromkowitz [1],
which begins with a simple definition: “Recursion is the process of repeating items in
a self-similar way.” His first example is an unlimited recursion without parameters
which does nothing because the recursive call is the first step. The second example is
drawing something before the recursive call. The next ones are variations of spiral
with different angles and lengths with incrementing parameters infinitely. Just after
this he shows the STOP command with a condition. After that he analyzes the depth
of calls. These theoretical examples are followed by the traditional examples: nesting
brackets, Koch-curve, Sierpinski-triangle, trees and snowflakes. This structure is suit-
able for adults because of its theoretical characteristic and not for children without
taking advantage of the visualization power of Logo.

There is a remarkable Hungarian textbook teaching recursion with Logo [11],
which introduces recursion with spirals - instead of using iteration for drawing spirals,
which is more suitable for children with their previous experiences. Next step is im-
plementing fractals. Their introduction of recursion procedure comes without expla-
nation; the children have to learn it from samples: Cantor-dust, Cantor-set, Koch-
curve, Koch-snowflakes, Sierpinski-triangle, Sierpinski-carpet and Sierpinski-curve.
After learning all of them from samples, the Peano-curve and optional creative frac-
tals are given as homework. There is no awareness of the foundation of recursion but
it is a good choice for learning it alone.

In our paper we suggest a more conscious setup of teaching recursion while keep-
ing the computational thinking approach in mind. Based on our experience it is com-
prehensible for all students at the age of 11-12 and develops their thinking methods.
Using Logo for teaching recursion is a natural concept. In the drawings it is very natu-
ral to explore the drawing itself, at a very early age.

2 Approaches on teaching recursion with Logo

For introducing recursion we have used a number of principles and approaches from
the field of informatics and mathematics. Some prerequisite knowledge was mastered
before introducing recursion in Logo, such as: basic commands for drawing a picture
in Logo (forward, back, left, right, penup, pendown, pencolor, fill), flow of control in
a procedure, iteration (for and while), conditional, interaction between procedures;
local variables (only the knowledge of parameters is needed) and scope of variables,
triangles, polygons, the basics of geometry. The children had to write procedures and
to use the development environment.

3 Discovering the recursive step

The first task is to familiarize with recursion via binary trees (Fig. 1.). This example
comes from everyday life; the children imagine real trees growing from year to year.

122

We think that the best way to explain the growing tree problem is with a ready-made
program.

Fig. 1. Growing binary tree (tree 1..8)

Fig. 2. Binary tree with colors (tree 1..5)

The above figure (Fig. 2.) is just for explaining the method. The goal of the presen-
tation of above problem is explained by children: “The red part of the tree is the same
as the one year younger whole tree. The blue part is a one-year younger tree too, just
it erupts in another direction but it is in the same position as the red one. We could
draw a line, turn left, draw a one-year-younger tree, turn right, draw a one-year-
younger tree, turn left and go back to the initial position of the turtle.”

The children must articulate the strictly decreasing condition and the transparent
status of the turtle with their own simple sentences. They have to decompose a recur-
sive pattern into two parts, one of which is a smaller version of the original pattern.
This means:

draw a pattern
 draw the base element
 move/turn
 draw a smaller pattern

After pupils have recognized, that the whole recursive procedure can be formulated
by words, they could implement it.

From a computational thinking approach, visualization helps to express children’s
thoughts about recursive pattern and helps them be familiar with this complicated idea
by seeing this simple explanation.

123

4 Initial state

In the first example the initial state of recursion was very simple, a single line. It
could be drawn simply in a recursive step. The next task is about the first state of the
turtle in recursion, the initial step.

Fig. 3. Growing diamond (diamond 1..5)

In this example a diamond must be drawn as the first, initial stage, and the teacher
must elicit that there must be a quitting condition: “when the recursion level turns to
the first stage, we must draw an initial pattern, a diamond.”

From the syntactic approach they have to recognize and formulate a template for
recursive procedures:

procedure_name
 initial state
 recursive case

From a computational thinking approach abstraction helps to express pupil’s
thoughts about initial state.

5 Levels

The stage of the recursion call is always known throughout the process. In the next
two examples we can use this information and we can make changes depending on
the stage. In the next picture (Fig. 4.) there is an example where the width of a bough
depends on the age of a bough.

Fig. 4. Narrowing binary tree (narrow 1..7)

In every step we could write out the level information and observe the status of the
stack. In the next picture (Fig. 5.) the color of a bough depends on the age, the stage
of recursion, too.

124

Fig. 5. Coloring binary tree (color 1..6)

In further studies - when they already have learned to use lists - there are a lot of
creative opportunities to use this nature of recursion, that is, that we know the stage of
the stack. There are tasks collections [11] to choose tasks for practicing this powerful
and challenging topic. At advanced level it can be mixed with iterations and lists.

6 State transparency

Next step is exploring state transparency in recursive procedures. In every procedure
there is a hard question: What is the turtle’s position and direction before and after the
next occurrence of recursive step? In the previous examples we made a starting posi-
tion clear with drawing a turtle. In the next examples moving between recursive steps
is not so easy, but exploring the drawing itself in a natural way makes it spectacular
for children. Seeing a lot of examples children understand the importance of state
transparency.

In the following examples (Fig. 6.; Fig. 7.) the children have to find first the posi-
tion and direction of a self-similar drawing and the initial state of the picture, after
that they can implement the whole procedure.

Fig. 6. Growing cactus (cactus 1..6)

125

Fig. 7. Branching structure (branch 1..6)

7 Limit of data structures

There are two classical recursion problems to illustrate the limits of the recursion
calls. The first one is the Sierpinski-triangle (Fig. 8.).

Fig. 8. Sierpinski-triangle (sier 1..5)

The second one is the Sierpinski-carpet (Fig. 9.).

Fig. 9. Sierpinski-carpet (siercarpet 1..4)

These examples (Fig. 8. and Fig. 9.) visualize the problem of the finite property of
data structures. We could not see any changes on the figure after the step (5-6), be-
cause the figure is too small. In the step (i) the area and side’s length of triangle and
square are lower than a pixel, so the Logo cannot display it. The computation goes on,
but we can see nothing more on the picture, just only that the turtle turns very quickly.
The number of the stage, where the drawing disappears can be counted easily (1/in).

126

From the computational thinking approach there is a impressive opportunity for
visualizing the limitation of the computer data structures. In further studies the stu-
dents will learn about the limits of data structures, such as integer, long integer, real,
string, and they will be able to recall these examples.

8 Time costs

The next classical problem is the Koch-curve (Fig. 10.). This is a very good example
for illustrating the exponential increasing running time. The students are very impa-
tient and they think that computers are fast enough to compute everything in a flash.
The first iterations are very fast, but from the 6th level it will be slower and slower.
They can see the turtle turn and turn very fast and draw nothing, just compute the
decreasing lengths which are lower than one pixel.

It is a good experiment to measure the time of making these pictures. Surprisingly,
they will experience an exponential running time of the number of recursive steps.

Fig. 10. Koch-curve (koch 1..10)

This trapeze task (Fig. 11.) is good for experiencing again both the data structure
limitation and running time limitation.

Fig. 11. Trapeze (trapeze 1..8)

From the computational thinking approach, the experience, namely, that the com-
putation takes time, is a surprising discovery for students.

127

9 One recursive procedure calls another recursive procedure,
which calls back the first one

The next cognitive level of recursion is when the procedure calls another one and it
calls back to the first one. We think this concept is easy to understand with the visual-
ization of Logo.

Children must carefully examine these pictures (Fig. 12.) to discover that once the
triangle is right-shifted and in another time it is left-shifted. In a right-shifted triangle
are left-shifted ones and vice-versa. We have to write two procedures which call each
other.

Fig. 12. Triangle (triangle 1..4)

In the next example (Fig. 13.) we have to decide on what the starting stage of the
recursion is. This is one more parameter to think of at the initial stage. Using two
procedures calling each other is a very hard type of recursion.

Fig. 13. Hexagons (hexagon 1..4 1, hexagon 1..4 2)

10 Conclusions

In our structure the concepts of recursion are drawing up consciously, simply, step-
by-step. These examples are visual, easy to understand and raise awareness of the
foundation of recursion. Children need a lot of tasks to learn and to practice the whole
concept [13, 14, 15, 16, and 17].

Children have to predicate the basics with their own simple words. The visualiza-
tion, with LOGO, helps them to do this. They learn about decomposing a recursive
pattern into two parts, one of which is an original pattern, the other is a smaller ver-
sion of the original pattern. They describe a template for recursive procedures and
they understand how recursion works. The necessity of terminating the work of a
recursive procedure is revealed, and correspondingly a termination rule has to be in-
cluded in the procedure.

128

They learn about important concepts from computational thinking too, like the time
of computation, the memory limit, the limit of data structures and the stack.

If they familiarize recursion with the visualization of LOGO, then later they will
understand easier the top-down approach, the memoization and the bottom-up ap-
proach of dynamic programming, too.

The source codes of the discussed examples are available at
www.microprof.hu/recursion.zip.

References

1. Juraj Hromkovic: Einführung in die Programmierung mit Logo: Lehrbuch Informatik, In:
Vieweg+Taubner | GWv Fachverlage GmbH, Wiesbaden, 2010

2. Dr. Ivan Kalas & Dr. Andrej Blaho: I Beg Your Pardon Turtles: Don't Forget About Data
Structures, In: Eurologo'97 Proceedings, Budapest, Hungary

3. Dalit Levy: Classification, Discussion, Recursion: Helping the Development of Computer-
Science Concepts, In: Eurologo'97 Proceedings, Budapest, Hungary

4. Leron U.: What makes recursion hard, In: Proceedings of the Sixth International Congress
on Mathematics Education (ICME6), 1988, Budapest, Hungary

5. John Murnane: To iterate or to recurse? In: Computers & Education, Volume 19, Issue 4,
November 1992, Pages 387–394

6. M.C. Er: On the complexity of recursion in problem-solving, In: International Journal of
Man-Machine Studies, Volume 20, Issue 6, June 1984, Pages 537–544

7. Derek Wilcocks, Ian Sanders: Animating recursion as an aid to instruction, In: Computers &
Education, Volume 23, Issue 3, November 1994, Pages 221–226

8. Dalit Levy: Collaborative Conceptual Change: The Case of Recursion, In: Journal of Intelli-
gent Systems 01/2002; 12(2)

9. Dr. John Close, Dr. Darina Dicheva: Misconceptions in Recursion: Diagnostic Teaching, In:
Eurologo'97 Proceedings, Budapest, Hungary

10. Michael A. Wirth: The far side of recursion, In: Teaching mathematics and computer sci-
ence, 2015/1 , pp 57-71

11. Viktória Heizlerné Bakonyi, László Zsakó: Strategy of guessing exercises – Variations of
drawing trees, In: Proceedings of the 9th International Conference on Applied Informatics
Eger, Hungary, 2014. Vol. 1. pp. 285–294

12. J. M. Wing: Computational thinking, In: Communications of the ACM, 49(3), p. 33-35,
2006. https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf

13. Rónai Orsolya Renáta, Vöröss Veronika: Lógós ecsetvonások, NJSZT 2008,
http://matchsz.inf.elte.hu/logosecsetvonasok/ > lecke6.html & lecke7.html

14. LOGO versenyfeladatok tára 1998-2002, Ed.: Mészáros Tamásné, Zsakó László, NJSZT,
2002, http://logo.inf.elte.hu/peldatar/LogoPeldatar1998_2002.pdf

15. LOGO versenyfeladatok tára 2003-2007, Ed.: Heizlerné Bakonyi Viktória, Zsakó László,
NJSZT, 2008, http://logo.inf.elte.hu/peldatar/Logo2003_2008.pdf

16. LOGO versenyfeladatok tára 2008-2012, Ed.: Heizlerné Bakonyi Viktória, Zsakó László,
NJSZT, 2013, http://logo.inf.elte.hu/peldatar/LogoPeldatar2008_2012.pdf

17. NJSZT Logo Országos Számítástechnikai Tanulmányi Verseny archívum,
http://logo.inf.elte.hu/logo_archivum.html

129

Experiences of the T4T group in primary schools

Fabrizio Ferrari1, Alessandro Rabbone2 and Sandro Ruggiero3

1 Primary school De Amicis - IC Regio Parco
Torino, Italia

f.ferrari@to7120.com

2 Primary school R. D’Azeglio – DD R. D’Azeglio
Torino, Italia

alessandro@rabbone.it

3 Primary school N. Tommaseo – IC Tommaseo
Torino, Italia

sandro.ruggiero@gmail.com

Abstract. In this paper we describe the experiences carried out in three dif-
ferent primary schools during several years with pupils in their third, fourth and
fifth grades (i.e. with pupils from 7 to 10 or 11 years old). The focus is on pro-
gramming because we consider it a new tool for pupils to express their creativi-
ty while they are learning fundamental elements of computer science. Obvious-
ly suitable program development environments must be used, for example
Scratch that is our choice for introducing programming. Our teacher experienc-
es are focused on finding contributions to defining an interesting, affordable
and sustainable school curriculum for CS in primary and lower secondary
school. Such curriculum should introduce computing respecting the pedagogical
achievements that have been identified by educators in the decades for the dif-
ferent school grades, allowing pupils to perform new kinds of activities also to
the benefit of those longtime recognized achievements.

Keywords: Primary school education, computer science, Scratch

1 Introduction

We would like to draw the readers’ attention to some pupils experiences about cod-
ing and computational thinking carried out in some primary schools in Turin, Italy.

We are a group of teachers interested in working on Computational Thinking and
Computer Science (CS) who met during the T4T (Teachers For Teachers) seminars,
organized yearly by the Informatics Department of the University of Turin. One of the
aims of T4T is to introduce programming environments as new expressive tools to
pupils and students of all ages and meanwhile teach them fundamental concepts of
Computer Science [b].

130

Our teacher experiences were, and continue to be focused on, finding some inter-
esting, affordable and sustainable suggestions for a school curriculum on CS in prima-
ry and lower secondary school. For us a proposal (and in the end a curriculum) is
sustainable when it introduces new concepts but also it is respectful of the pedagogi-
cal achievements that have been identified by educators in the decades for the differ-
ent school grades, allowing pupils to perform new kinds of activities also to the bene-
fit of those longtime recognized achievements. Obviously it does not reduce to cross-
disciplinary activities. Also, suggestions must be affordable for schools: this often
means they should propose (almost) free activities.

In section 2 unplugged activities, yet introducing to computing, are described with
their connections to the pedagogical achievements considered typical of the school-
children age. In section 3 the computer based activities are described that have been
experimented: they normally begin with scaffolded activities of easy-programming
like using the Lightbot or Code.org and progress to use the Scratch development envi-
ronment to implement stories, quiz or games. In section 4 the transition to computer
programming in Scratch is presented also for its possible contributions to the linguis-
tic abilities of the school-children particularly for their writing abilities. The conclu-
sive section gathers some very preliminary reflections on the experiences.

2 Computer Science unplugged

Computer science unplugged activities are an important component of the experi-
ences introducing to computing because of the obvious reason that they do not re-
quire the use of an intermediate device unknown to the school-children. Especially in
the unplugged activities that require identification of their body and a android - robot,
children seem to benefit greatly in terms of operational thinking. Another reason,
more tangible, is that they normally are inexpensive activities and this is almost a
mandatory requirement in many italian schools.

Searching on the internet and in schoolbooks for programming activities in primary
schools we find three basic types of unplugged activities:

• Paper and pencil activities to move an android/robot. In the beginning commands
are independent on both the person who gives the command and on the robot that
has to perform the commands (typically the cardinal symbols N, E, S, W are used).
Then commands are provided that require robot dependent movements such as
Forward, Left, Backward, Right

• Boardgames using the same movement instruction as above, but in competition
among players (i.e. Cody & Roby - http://codeweek.it/cody-roby/)

• Games on giant boards where pupils act as robot/android following school-mates
commands.

We will focus on unplugged activities of the last kind. Unplugged activities are
missing of an important element, present in every computer-based task: error check-
ing. During unplugged activities you can’t have an immediate feedback telling you if
you are right or wrong. We remember Cédric Villani recent words: “Coding, maybe,

131

is the only activity where pupil can correct errors by themselves”
(http://www.atelier.net/trends/articles/cedric-villani-programmation-seule-discipline-
enfant-realise-auto-correction_436613).

In our experience we notice that the more pupils issuing commands identify them-
selves as the programmers, the more the robot/pupils follow to the letter what they
have to do thus the activity turns out to be nearer to the computer based commands
execution with its immediate errors visualization.

During our activities in the primary school D’Azeglio in Turin, pupils use the
“natural” board shown in figure 1 that is a part of the school playground. It is made
of 84 squares (about 80 cm for each side - 7 x 12) five of them occupied by a slide.

Fig. 1. The school playground

For the pupils of the 4th grade, the teacher prepared the following activities.
1. First a competitive role play as suggested by “Cody & Roby”

(http://codeweek.it/cody-roby/duello/). One pupil acted as an Android/Robot
and his/her mates gave her/him all the instructions in order to “catch” a second
pupil acting as an enemy Android/Robot trying to enter in first pupil’s home-
square. Pupils giving commands used only user dependent movement instruc-
tions F, R, L, B. This first exercise was useful for pupils to acquire confidence
with the board and to learn to use a finished number of unambiguous instruc-
tions to communicate with the “Android/Robot”.

2. To movement instructions as in activity in point 1. other commands were
added for: Repeat (n), grab, leave. The teacher prepared some sheets where
the playground was drawn in every detail, see figure 2. Each sheet had grow-
ing difficulties tasks (similarly to what can be found in the Farmer activity in
Code.org - https://studio.code.org/s/20-hour/stage/9/puzzle/4). On the right of

132

the sheet pupils could write their own code on numbered lines to reach the
given target: one line, one command. For the “Repeat (n)” command pupils
could draw on the left of the code a “(” sign from a line to another to precisely
define which were the commands to repeat. Later on pupils shared their writ-
ten code for the same task to discuss (and find) the best solution in order to
solve the tasks with the less number of instructions. At the end pupils tried
their code on the outdoor playground verifying their solutions.

Fig. 2. The squared playground drawn on a paper

In figure 2. below the drawing of the squared playground there is the description of
one of the activities suggested to the pupils: starting from P the robot must catch all
the @ and bring them to point D, then the robot must go to A, with the lowest number
of commands.

During unplugged activities schoolchildren are engaged in acting like they are ro-
bots moving according to a given sequence of instructions or like programmers decid-
ing the sequence of instructions to be asked to a school-mate/robot to do a task, i.e.
deciding the programs making the schoolmate/robot to do something. Soon pupils
were ready to write down similar sequences of instructions making the computer to do
something, that is ready to write programs for the computer with a suitable environ-
ment.

133

3 Computer-based programming

During the school years 2013-14 and 2014-15 the activity of computer program-
ming (using both computer or other devices like iPad, tablet…) has been proposed in
various ways and in different solutions, but all activities can briefly be classified as
follows:

3.1 Puzzle solving (exercises on various websites)

We mean above all the courses offered by Code.org or by "Programma il futuro"
(Italian version) in the framework of "One Hour of Code".

Still in our school labs the pupils have also experienced some puzzles with Light-
Bot (http://lightbot.com/) and with Blockly-games’ maze (https://blockly-
games.appspot.com/maze?lang=it)

Some videos were initially screened on the interactive whiteboard and some exam-
ples puzzles were discussed and solved collectively. Later the children were invited to
continue the path individually at home during the weekends or at school during the
hours of the labs with the mates' help and the teacher's advice.

3.2 Using Scratch for the free development of personal projects

Usually the presentation of the Scratch environment has been very short and sim-
ple.

At the beginning of some sessions using the interactive whiteboard the teacher
showed the students the development of a simple project that the children had to re-
peat step by step.

This “introduction” has never exceeded the length of 10 - 15 minutes.
Later the students were asked to develop their own original design or modify the

example according to their taste or even to explore the Scratch website looking for
projects to remix.

This ‘free’ activity has occupied most of the hours dedicated to labs. Cooperation
among children, exchange and mutual support have been strongly encouraged. Even
the use of a personal account in the context of the social environment of the site has
been encouraged.

Lastly the printed and laminated Scratch Cards (https://scratch.mit.edu/help/cards/)
were made available to students. Similarly some copies of the Getting Starter Guide
(https://cdn.scratch.mit.edu/scratchr2/static/__90f8d4d8afbc51e3d823ca5efcc0ea53__
/pdfs/help/Getting-Started-Guide-Scratch2.pdf)

3.3 Using Scratch to build a collective project

In our experience, Scratch has often been used as a tool for the implementation of
projects related to curricular subjects or even when it was necessary to build some-
thing for a major event of the school life.

134

Children made animated backdrops for their theater performances, an interactive
installation for Sciences exhibition (this one using a Makey Makey board -
http://www.makeymakey.com/) and especially created animated stories with story-
telling. Cappuccetto Rosso 2.0, which you can see in the appendix, is an excellent
example of what we mean by “collaborative project”

Works on group projects has, however, involved the totality of pupils in classes.
The teacher, in this type of activity, has obviously taken on a more managerial role.

He had to deal with the organization and coordination of teamwork, assigning mod-
ules or specific activities of the project (search for information, graphic design, im-
plementation of sound or music, final assembly of the parts).

All above activities have been performed by schoolchildren 7-10 years old.

4 Coding strictness and written language teaching

Coding activity is very useful to introduce to the written language formalism, espe-
cially when pupils are foreign students and not native speakers. In a context of pre-
disciplinary teaching, typical in primary school, our aim was to use the absolute strin-
gency of the code (always verifiable through feedback of the computer) so that stu-
dents would understand better the need of grammatical rules in written language.

During the school-year 2013/2014 we faced many pupils that aren’t italian mother
tongue even if they are italian native. In the primary school, teachers usually talk and
read a lot to improve communication skills and vocabulary, but at the end the need of
learning the written language rules arrives. Transition from oral language to written
language is not so easy as it could seem at a first sight.

In the 5th grade of De Amicis school in Turin, we planned to use coding to make
pupils easier to understand the need of rules for the written language. For the activi-
ties here described Scratch was the software for our pupils!

A similar intuition was already present in an educational robotics project described
in [c] where pupils were using an Italian Logo-like language to program their Lego
robots. In both cases teacher’s target were:

• introduce pupils to a formal environment, i.e. an environment with strict rules
pleasant and near to their way of thinking

• using of computers to improve motivation and to avoid the direct teacher-pupil
interaction

• start using a new language, formally strict, but with immediate feedback
• developing comparative discussion about Scratch written language and italian writ-

ten language.

Activities lasted an entire school year even if they were not so regular: sometime
we worked more on Scratch; other times we worked more on written text, studying
the syntax of the italian language.

Scratch tasks were not only focused on coding and developing problem solving
skills, but the target was to learn about how strict can be a written language, whatever
it is.

135

According to a choice of a non-directive teaching practice, children were invited to
translate the code’s commands in natural-language sentences (Italian).

The absence of any (traditional) interaction pupils-teacher but only pupils-pupils
and pupils-computer strengthened this target.

The path was positive and the results were very good: pupils were motivated and
the return on written language was encouraging. Every pupils understood that each
written language needs fixed rules.

Differently from previous activities identified in paragraphs 2 and 3, this activity
could not be included in a curriculum of CS, but it provides a good example of inter-
disciplinary operation.

5 Conclusions (very temporary)

The activities summarized here led our group to reflect on the differences in educa-
tional approach to the issues of coding, programming and Computational Thinking, in
an attempt to start to define a possible curriculum for primary school.

It is immediately evident the large difference between an activity with the 'puzzles'
and a ‘free’ activity using Scratch. In the first case, the learning goals are gradually
fixed from the outside (more from the website, not so much by the teacher). In the
second case it is the student who sets himself its objectives, if appropriately encour-
aged. This situation puts the child in more cognitive challenge: ‘imagine’ and plan a
possible solution to his problem.

On the other hand the activity for preset sequences of concepts (sequence, iteration,
conditions, functions, ...) offers the teacher the guarantee to offer, in a gradual way to
difficulties, all the key concepts that a good curriculum for the primary school should
provide.

All this means, therefore, that, at least from our point of view, it is not possible,
anyway, decide once and for all, what is the best path. There are conditions, in every-
day school life, quite variable from one situation to another. What may be advanta-
geous in one, may not be so on another.

Certainly the experience of both types of activity at different times seems appropri-
ate and advisable. For instance, we noticed that the children who had already experi-
enced the path of Intro course Code.org, showed greater confidence and mastery in
dealing with the planning of their Scratch projects.

Even unplugged activities can be integrated in a complementary way with other
kinds of experience. The unplugged activities, especially in the initial stages of learn-
ing a concept - key, especially with younger children, can be an indispensable cogni-
tive aid when, in live situations, you replicate the issues raised by digital puzzles.

[a] H. Abelson, A. Di Sessa, Turtle geometry, 1986
[b] T. Filippini and V.Vecchi (eds.) The one hundred languages of the children ,

Reggio Children Publisher, 1996/2005, 216 pagg., ISBN 978-88-87960-08-2, Reggio
Emilia.

136

[c] G. Barbara Demo, T4T: a peer training model for in-service teachers, WiP-
SCE 2015, Berlino

[d] G. Barbara Demo, G. Marcianò, Contributing to the Development of Lin-
guistic and Logical Abilities through Robotics, Conference EuroLogo 2007, August
2007, Comenius University Editor, Bratislava

[e] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, 1980
[f] A. Rabbone, Bambini che imparano a programmare, Blog

(http://bambinicheimparanoaprogrammare.blogspot.it/)
[g] B. M.Varisco, Nuove tecnologie per l’apprendimento, Garamond, Roma, 1998

137

APPENDIX

RED RIDING HOOD 2.0

The 4th grade class of I.C. Tommaseo primary school began work on this project
to participate in the Samsung Smart Code challenge 2015. This challenge focused on
promoting coding and computational thinking through digital or analogical (un-
plugged) work.

During the school year the class experimented with the Scratch platform and many
of the pupils enrolled with the community as individuals. Their work did not go fur-
ther than attempts at sprite management or cartoon style scenes Apart from the lack of
individual know how, after the general introduction to the class, the tool was used in
spontaneous play. In December 2014 the teacher enrolled the class in the “Program-
ma il futuro” initiative marking the start of a new way of working. All the pupils
were enrolled on some “code.org” course and were invited to complete the work
both at school and at home with the provision of free and collaborative periods. In a
truly constructive way, the more competent pupils helped those with more difficulties
to find solutions and finish the work whilst the role of the teacher was that of stimulus
provider and moderator. Familiarity with block programming, the opportunity of
guided work and the fact that there were objectives to be achieved meant courses 1
and 2 were soon completed and fairly accurately.

138

We then progressed to the 20 hour course which is under way at present. The

whole class divided into two parallel groups is now working as a tutor for other clas-
ses that want to follow the “code” experience sharing both the equipment and the
skills acquired.

The pupils have thus learnt how to block programme as well as ensure safety and
automatism on simple programming operations, for example the awareness of differ-
ent points of view.

Taking part in the Samsung competition has provided the opportunity to test tech-
nological and non technological class skills in the construction programming and
creation of an imaginary product. At the early stages the class went through a brain-
storming phase on the “Padlet” (virtual wall); they abandoned the idea of a videogame
in favour of videonarrating a fairytale. The class had previously been involved in a
cartoon creation workshop (Calimero which is currently showing on RAI TV) and
thus knowing about Propp functions, storyboard and storytelling they favoured anima-
tion. In view of limited time they chose to interpret the well known fairytale of Little
Red Riding Hood rather than their own invention. Using a calendar we calculated
that we had just four weeks to dedicate exclusively to the project (interrupting the
teaching programme) which worked out to be about 60 hours school time. At this
stage we identified the necessary roles to carry out the animation and then planned
each step. Taking into account the children’s aptitudes and preferences we identified
the following roles: Documentarists (those recording each phase and updating the
scrum board), Screenwriters (those drawing up the paper storyboard and the dia-
logues), Scenographers (those drawing up or reelaborating the backgrounds), Phonics
(those choosing and working on the soundtrack and the voices), Costume designers
(those working on the costumes), Photographers (those documenting and photo-
graphing the sprites), Programmers (those mounting the scenes and the movement),
the Special Effects Group (those elaborating the photographic and animation effects).

The groups worked autonomously and all the teacher had to do was coordinate the
various phases. Decisions were taken collectively and the mounting done in real time

139

on the whiteboard meaning the whole class was involved and often useful comments
were made to find the best solutions. The project was beneficial in learning how to
cooperate. It provided motivation to reach a common objective within a deadline.
There was a true atmosphere of cooperative learning, relationships were improved
and the pupils became individually and collectively responsible, peer education was
enhanced as well as emotional skills. The class explored traditional and technological
tools in order to adopt the best strategies to reach their objectives of quality, useful-
ness and aesthetics without neglecting the audience’s emotional involvement in the
final product. The use of internet, different types of software, personal devices to-
gether with the school premises and tools provided a modern and effective learning
environment as well as food for thought over new initiatives. Experience in pro-
gramming made it clear that the application of computational skills and thinking
within school is decidedly useful both in daily problem solving and for the planning
of projects and new initiatives.

Photos of the activities

140

141

Preparing programming exercises with efficient

automated validation tests

Gregor Jerše, Sonja Jerše, Matija Lokar and Matija Pretnar

Faculty of Mathematics and Physics, University of Ljubljana

Ljubljana, Slovenia

{gregor.jerse, sonja.jerse, matija.lokar,

matija.pretnar}@fmf.uni-lj.si

Abstract. This paper presents Projekt Tomo web service, a service intended for

automatic assessment of programming tasks in various programming languages

and gives instructions for teachers on how to prepare problems with efficient

automated validation tests.

Keywords: programming, education, automatic assessment, web service

1 Introduction

In order to achieve good programming skills, a learner has to solve many

programming problems. Good and swift feedback about the submissions is vital for

quick progress.

In an effort to save the teachers’ time, a number of automated grading systems were

developed. These systems use different approaches, as discussed below.

Setting up a special server provides a viable solution. Examples of such servers are

Kattis Problem Archive1, CodeChef2 and Putka3. Students send their programs to the

server, which then executes them, checks their behaviour and reports on the possible

mistakes; all without any teacher intervention. A possible problem with this approach

is the fact that the server must be powerful, as it has to be able to run and check the

programs of all the students in the class at the same time during the lesson itself.

The students' tasks normally have simple solutions; however, the submissions that the

students hand in often contain mistakes, which cause the program to loop indefinitely,

and thus take up a large amount of the memory and processor time. Authors can recall

numerous teaching occasions when the servers became overloaded, forcing the

teaching assistant to switch back to ordinary teaching practice.

Apart from that, running third party code on the servers raises possible safety issues.

Those servers have a significant drawback from the teacher's perspective as well, as

they do not usually provide a teacher's insight into the students’ submissions. Students

1 http://open.kattis.com
2 http://www.codechef.com
3 http://www.putka.si

142

are engaged in a significantly high level of individual practice and experimentation in

order to acquire basic competencies.

However, practice behaviours can be undermined during the early stages of

instruction. This is often the result of seemingly trivial misconceptions that, when left

unchecked, create cognitive-affective barriers [3].

Another alternative that has become rather widespread in the last few years is using

the server for administration only, while the code itself runs on the student's

computer. The CodeAcademy4 page and Khan Academy5 are currently probably the

best-known examples of such a service. This alternative eliminates security and

technical issues, as well as provides even faster feedback to the students as they do

not need to upload the files on the server. Despite all its advantages, the alternative

has a drawback. It is most easily executed using JavaScript programs, which run via a

web browser. Therefore, most services offer assistance with the learning of either

JavaScript or some basic form of another programming language that can be

simulated in JavaScript. Another possible issue is that the students cannot use and

thus get used to the common development tools.

All the known solutions have so far failed to provide proper support to our education

process.

It should also be emphasized that a solution to support the learning process where the

primary form of work are lab exercises with a group of students was needed, not an

automated assessment tool, which requires relatively different design decisions (for a

survey of such approaches see [1]).

Therefore, a web service called Projekt Tomo was developed. The first version of the

system was created in 2010 by Matija Pretnar and Andrej Bauer [2]. In 2015, a new

and enhanced version of the system was developed by Matija Pretnar, Gregor Jerše,

Sonja Jerše and Matija Lokar.

2 Main objectives of Project Tomo service

A system, where students’ submissions are tested locally, without the need for

uploading or copying programs to a different coding environment was envisioned.

The students should be able to use existing coding environments for solving

problems. This enables them to get comfortable with using environments that are used

when working on real projects. This objective also has its practical roots. Namely,

there are several courses where the usage of our service has already been foreseen.

Due to various reasons in those courses, different environments (and languages) are

used. Therefore, the students should not be forced to learn to use yet another

environment.

Another factor behind the service is that students often solve their tasks outside the

Faculty computer labs (at home, in dormitories …) where the quality of internet

connection can be problematic from time to time. Consequently, it is important for the

4 http:// www.codeacademy.com
5 http:// www.khanacademy.org/computing/computer-programming

143

students to have the possibility to solve exercises (downloaded beforehand) without

being online.

As explained before, such a solution is “server friendly” and not prone to misbehavior

of the students’ code.

As much flexibility as possible in administering tests was another desired function.

For instance, there should be the possibility to administer tests that check if a specific

method was (or was not) used in a student’s submission. For example, if the students’

ability to write recursive programs is to be tested, non-recursive methods should not

be accepted, even if they give expected results.

Subsequently, the main objectives were:

• local execution,

• using existing programming environment,

• being flexible enough to be functional with any programming language and

• providing as much flexibility as possible in administering tests.

3 Using the web service

Tomo web service works as follows: the students first downloads the files containing

problems to their computer and start filling in the solutions, executing them locally in

their favourite coding environment, while the server automatically stores and verifies

the submissions.

At this moment the service supports Python and R programming languages. However,

it is easily adaptable and the development towards the inclusion of C# and other

languages is already on the way. Logging in is required for easier tracking of who

made what changes and who solved which problems. Logging in is possible through

use of LDAP system (for students of Faculty of Mathematics and Physics), Google

account or Facebook account. Slovenian teachers can also login through their

ArnesAAI6account.

Problems are organized in problem sets and courses according to topic they cover.

Courses are managed by course teacher or teachers.

3.1 Using the web service as a student

After logging in, the students see all problem sets that are available in their courses

(some problem sets might be hidden by teachers). The quota of the solutions accepted

is shown beside each problem set. This way each student gets a quick overview of the

progress made.

A very important design decisions was to call suitable submissions accepted, not

correct as in the first version. Namely, after several discussions with students an

incorrect interpretation about the correctness of the algorithm was observed. Now the

fact that a student’s submission is evaluated only on a given set of test data is

6 https://aai.arnes.si/

144

emphasized. It could happen that a solution to be delivered by a student provides the

expected output for the test taken, but would fail to do so in a different test.

At the top of a problem set there is usually an introduction that explains the topic

covered in that section. The problems are listed underneath. They are independent

from one another and each consists of one or more parts. The parts usually depend on

one another and gradually become more difficult.

When the students select a problem, they must download the problem file from the

server. Inside the file, there are the problem and the parts’ descriptions with blanks for

entering solutions.

All the functions necessary for communicating with the server and the tests for

validating submissions are at the bottom of the file.

Students can open the file in any editor or programming environment they wish. Then

they write the solutions in designated space between part descriptions. The students’

submissions are checked and evaluated when the file is executed. Feedback is written

on standard output and tells the students which solutions are accepted and which are

not. For non-accepted solutions, the feedback usually includes information about

which tests have failed.

If a student downloads the same problem file again, all the saved changes are included

in the file. This way the student can continue solving the problem on a different

computer, for example, at home.

After their submissions are accepted, the students can compare their solutions with the

provided ones, written by the teacher. The teacher can choose to display the provided

solutions even before a student’s submission is accepted. Another option is not to

show the provided solutions even after a student’s solution is accepted. This is useful

for exams.

3.2 Using the web service as a teacher

Users with teacher status add new problems and construct tests to test student

solutions, show/hide official solutions to the problems and show/hide problem sets.

As teachers can change the whole course, teacher status must be assigned with

caution. Therefore, only the admin user can promote other users to teacher status.

After logging in, the teachers see a list of all their courses. When they enter a course,

they see all the problem sets in the course.

The teachers can view a list of all the submissions for a problem. On this list, the

teacher can see for each student which parts of the problems a student tried to solve

and whether the submission was accepted. If the teachers want to examine the

submission in more detail, they can download the student’s attempt file to their

computer. The teachers can also check the history of all the student’s submissions for

a problem. This option proved to be very useful in determining whether the students

with similar submissions had cheated or not.

Teachers add problems by first clicking the Add new problem button. A form opens

and the teacher fills the form with the problem title and description. When the teacher

clicks the Add button at the bottom of the form, a new problem with a matching file is

145

generated. The problem title, description and all the functions for communicating with

the server are already written in this file.

The teacher must then add a description of problem parts, provide solutions and a test

for validating the students’ attempts. To do this, the teacher must download a problem

file, open it in a text editor and write directly into the file. When the file is executed,

all the changes are saved on the server.

The problem description should be written in the comments at the top of the file. Text

formatting is done with Markdown language7 . Markdown language provides simple

formatting options from which HTML can be rendered. Mathematical formulas can

be written using LaTeX expressions are rendered by the browser using MathJax

library8.

Part’s description should be written in comments between #=====.... as shown in

example below.

===

Write a function `rectangle_area(width, height)`, which

returns the area of a rectangle

with width equals ‘width` and height equals ‘height`.

===

def rectangle_area(width, height):

 return width * height

Check.part()

Check.equal('rectangle_area(3, 4)', 12)

Check.equal('rectangle_area(10, 10)', 100)

Check.equal('rectangle_area(1, 1)', 1)

The part’s description is followed by the provided solution and tests. The tests and the

provided solution are separated by Check.part() command.

Perhaps one of the most important features of the system is its richness in providing

the teacher with suitable tools for constructing efficient tests. In the next section some

of the most important features are discussed.

4 Most common validation tests

4.1 Check.equal

The simplest test is Check.equal(expression, expectedResult) which

checks the result of the given expression and compares it to the expected result. The

evaluated expression usually consists of a function application of the form

fun(arg1, arg2, ...), but it can contain any expression. If the results differ,

7 http://daringfireball.net/projects/markdown
8 http:// www.mathjax.org

146

the test emits an error from which the difference between the actual and the expected

result can be seen.

===

Write a function `distance(x1, y1, x2, y2)`, which

returns the distance between points (`x1`, `y1`)

and (`x2`, `y2`).

===

def distance(x1, y1, x2, y2):

 return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** (1/2)

Check.part()

Check.equal('distance(0, 0, 3, 4)', 5)

Check.equal('distance(1, 2, 3, 4)**2', 8)

As is evident in the last example, the fact that an expression can be used, and not

merely a function call, can come quite handy.

Following is an example of a feedback that a student would get for an incorrect

submission that forgets to take the square root in the end:

- Expression distance(0, 0, 3, 4) returns 25 instead of 5.

- Expression distance(1, 2, 3, 4)**2 returns 64 instead of 8.

Note that the expression must be a string so that the feedback can show where the

error occurred, while the expectedResult can be any Python expression, which

will be displayed in its evaluated form.

4.2 Check.secret

Since the validation is performed on the students’ computers, all tests are contained in

the problem file. Students that are more cunning could thus look at the validation code

and write a solution that passes all the listed tests, for example:

def distance(x1, y1, x2, y2):

 if (x1, y1, x2, y2) == (0, 0, 3, 4):

 return 5

 if (x1, y1, x2, y2) == (1, 2, 3, 4):

 return math.sqrt(8)

The students could even delete all the tests from the file, making the system mark

such a submission as accepted. To prevent such cheating, the test

Check.secret(expression) is used. It evaluates the given expression and

sends the computed results to the server, where they are compared with the results

submitted by the teacher (note that these are computed automatically when validating

the teacher’s solution).

147

A most common case is when expression consists of a function application,

though this time there is no need to write it as a string because the location of the

error will not be shown to the student (the system will, for example, just say ''Part

3 does not have a valid solution.'').

The students can still see the validation in the problem file, but it offers them little

information because (1) they will not see the expected results and (2) the number of

such tests can be quite large, as the teacher can easily test hundreds of seemingly

random cases by simply writing:

for i in range(100):

 Check.secret(distance(i - 50, i * 17, i + 13, i/2)

which will compute the distance between pairs of points (-50, 0) & (13, 0), (-49, 17)

& (14, 0), (-48, 34) & (15, 1) and so on… The Check.secret is thus especially

useful when preparing exams or when there is a necessity to ensure that the students

will solve their problems. In most cases, though, the students do not show a tendency

to take shortcuts. Therefore, Check.equal tests are usually more appropriate, for

they provide a better feedback.

4.3 Check.run

When programs that change local variables (for example when modifying lists or

dictionaries) are tested, not only the result of an expression is to be compared, but also

how it changed the state. In this case, Check.run(statements, expected_state) are used

where statements is a list of Python statements (written as strings for the same reasons

as in Check.run), and expected_state is a dictionary consisting of variable values

expected after the statements are executed. For example:

===

Write a function `negate(numbers)`, which negates all

the elements in a list `numbers`.

===

def negate(numbers):

 for i in range(len(numbers)):

 numbers[i] = -numbers[i]

Check.part()

Check.run([

 'a = [1, 3, -5, 2, -6]',

 'negate(a)',

 'b = [1, -5, 2, 5]',

 'negate(b)',

 'negate(b)'

], {'a': [-1, -3, 5, -2, 6], 'b': [1, -5, 2, 5]})

148

Just like Check.equal, Check.run will not issue any warnings if the actual state

matches the expected one. But if any of the values differ, a warning with an

explanation will be issued. For example, if one wrote negate to leave the given list

unchanged, the feedback would be:

- The statements

 >>> a = [1, 3, -5, 2, -6]

 >>> negate(a)

 >>> b = [1, -5, 2, 5]

 >>> negate(b)

 >>> negate(b)

set a to [1, 3, -5, 2, -6] instead of [-1, -3, 5, -2, 6].

4.4 Check.out_file

To check the submissions that are expected to generate files as output,

Check.out_file(filename, expected_contents) is used. This

function checks if the contents of the file with the given filename match the

expected_contents, given with a list of lines. If any of the lines do not match,

the student gets a comparison of both files, with * marking the lines that are different.

For example, if the students are to write a function write_alphabet(n,

filename) that prints the first n letters of the alphabet to the given file, the

appropriate test is:

write_alphabet(3, 'test_output.txt')

Check.out_file('test_output.txt', [

 'a', 'b', 'c',

])

and the output in case the submission is incorrect would be:

- The output file test_output.txt

 equals instead of:

 e * a

 d * b

 c | c

4.5 Check.in_file

In order to test the programs that read from a given file,

Check.in_file(filename, contents)is used. It generates a file with a

given name and contents (supplied in the same way as in Check.out_file). The

difference is that Check.in_file is used as a context manager – a function that

149

changes the context in which the following functions are ran. This is best shown with

an example.

Say that the students need to write a function count_lines(filename), which

returns the number of lines in a given file. Then, the tests would be:

with Check.in_file('test_input1.txt', ['a', 'b', 'c',]):

 Check.equal('count_lines("test_input1.txt")', 3)

with Check.in_file('test_input2.txt', []):

 Check.equal('count_lines("test_input2.txt")', 0)

As you can see, the usual testing commands are used inside a context, provided by

Check.in_file (in the example, there is only one such test for each file, but there

could be more). As seen in the example, Check.in_file can be used more than

once to test solutions on different files. Check.in_file also changes the feedback

so it can be seen which tests failed at which files. For example, if the student wrote a

solution that had an off-by-one error, the feedback would be:

- For the input file test_input1.txt with contents

 a

 b

 c

 the following errors occurred:

 - The expression count_lines("test_input1.txt") returns

4 instead of 3.

5 Advanced validation

As the validation code is part of a Python file, more advanced tests can be constructed

using not only the functions described above, but also everything that Python

supports: conditionals, loops, functions, libraries, and more.

The basic command to use in such custom tests is Check.error(message),

which issues an error with a given message.

if f(100) > 1000:

 Check.error("The value f(100) is too large!")

The error can also be raised using an extended form Check.error(message,

arg1, arg2, ...), where message is given by a Python format string, where

placeholders of the form {} which get filled with arguments can be included.

150

for x in [100, 200, 300, 400]:

 if f(i) > 10 * i:

 Check.error("The value f({0}) is too large!", i)

The tests also have access to the source of the submitted solution under

Check.current_part['solution'], so they can make tests that ensure that a

solution did not use for or while loops (e.g. if the students are to write solutions in

recursive style). For example ast library9 can be used for advanced analysis of

Python source code.

Commands Check.equal, Check.run and Check.out_file return True

or False. Therefore, they can be used to determine if additional tests should be run

or not. For instance, if the first test fails, the submission is clearly not valid and

additional tests are not necessary. However, if the goal is to provide the students with

detailed information on which test data their programs fail, as many tests can be run

as desired.

6 Conclusions

The Projekt Tomo service has been warmly welcomed by students and teachers alike.

In the 2013/14 school year this service was used by 10 teaching assistants and about

500 students. Altogether, they solved 40.000 problems in 600.000 attempts.

The goal for the future is for Tomo to be used by schools and by individuals who

want to learn to program by themselves. We want to accumulate a large base of well-

prepared programming exercises that everybody can use and contribute to, therefore

helping people to become better programmers.

Of course, there are numerous possibilities of improvement. One of them is the

connection with a Moodle LMS. Tailoring appropriate feedback dependent on the

history of solving a particular problem or a problem set is another area where more

work is required.

7 Acknowledgements

This work was funded in part by the European Union, European Regional

Development Fund and the Ministry of Education, Science and Sport. The operation

is implemented in the framework of the Operational Program for Strengthening

Regional Development Potentials for the Period 2007 – 2013, Development priority:

Economic development infrastructure, Priority theme: Information society.

9 https://docs.python.org/3.5/library/ast.html

151

8 References

1. Ala-Mutka, K.M (2007). Survey of Automated Assessment Approaches for

Programming Assignments, in: Computer Science Education, 15:2, 83-102, DOI:

10.1080/08993400500150747

2. Pretnar, M.: Spletna storitev za poučevanje programiranja. In: Vzgoja in

izobraževanje v informacijski družbi, Lj, SLO, (2014)

3. Scott, M. J., Ghinea, G. (2013) Educating programmers: A reflection on barriers

to deliberate practice. In: Proceedings of the 2nd HEA Conference on Learning

and Teaching in STEM Disciplines, Birmingham, UK, 2013

152

Selected Spotlights on Informatics Education

in Austrian Schools

Peter Micheuz1 and Barbara Sabitzer2

1 Alpen-Adria University Klagenfurt
Klagenfurt, Austria

peter.micheuz@aau.at

2 Alpen-Adria University Klagenfurt

Klagenfurt, Austria
Barbara.sabitzer@aau.at

Abstract. In this paper we take a look on Informatics education in Austrian
primary and secondary schools. The development of two reference models for
digital competence and Informatics education should be seen as a big conceptu-
al step forward, but regarding its nationwide implementation there is still a long
way to go. Further, we report on a promising local initiative in Informatics for
primary education as an outreach program. Then the current status of the devel-
opment of a “curriculum reform light” for the obligatory subject Informatics in
the 9th grade is pointed out. And finally, a major reform of the school leaving
exam (Matura) at academic secondary schools including Informatics has been
implemented in 2015 for the first time. In the last chapter we reflect on its gen-
eral conditions, first experiences and results.

Keywords: School education, Informatics, Competence Orientation, Reference
Models, Digital Competence, Curriculum, Final Exam, Matura

1 Introduction

Since the late 1980s, Informatics, ICT and Digital Media education at all levels of
Austrian schools for general education have shown an inconsistent picture. Although
there are many ambitious local and regional initiatives, Informatics education is not
adequately represented in school, given the digital nature of our era. There is still a
long way to go in Austria, especially in primary and lower secondary education.

This paper outlines the big picture of two comprehensive, coherent and comparable
frameworks, including Informatics, ICT and digital literacy for all Austrian pupils and
students in general education. It does not go into detail regarding vocational education
at upper secondary level where the situation is much clearer, better structured and
more binding.

The Austrian school system encompasses elementary (grades 1 to 4, from the age
of 6-7 years on), lower secondary (grades 5 to 8), and upper secondary level (grades 9
to 12) [1]. The secondary level is divided into two types of obligatory schools, namely

153

New Middle School (NMS), and academic secondary schools (AHS). This type of
school comprises a four year lower level and a four year upper level, and concludes
with the upper secondary diploma or school leaving exam (Matura) which entitles to
study at universities. Currently about two thirds of the pupils attend the NMS and
about one third the lower level of the AHS for four years.

Due to the lack of binding national IT-frameworks and central Informatics curricu-
la at primary and lower secondary level so far, schools and teachers act independent-
ly, teaching, if at all, Informatics and ICT according to school specific curricula. As
an undesired consequence, schools and students proceed and perform at extremely
different paces.

2 Two Similar Frameworks for Digital Competence and

Informatics Education for all Levels

The two competence models presented here refer to all pupils and students, from pri-
mary education on to the upper secondary level and Informatics Matura [2].

Fig. 1. Models for Digital Competence (primary and lower secondary level, to the left) and
Informatics Education (upper secondary level, to the right)

154

Lower secondary level (10-14 year olds) should be regarded as both a window of
opportunity for and important phase of basic Informatics education. Standard learning
objectives with clear expectations for teachers and students, based on a consistent,
coherent and outcome-oriented reference framework, were overdue, and their devel-
opment has been least triggered by the Digital Agenda [3], a framework for digital
competence (left table in Fig. 1.) developed.

This model for “Digital Competence and Basic Informatics Education” incorpo-
rates many aspects. It is integrative, consistent, interdisciplinary and multidiscipli-
nary.

A detailed discussion of the structure and example descriptors can be found in [4].
In general, curricula can be regarded as results of cultural traditions and findings from
science and empirical research, including framework conditions given by educational
policy. The competence framework for lower secondary education has been devel-
oped without referring to a national (core) curriculum because currently there is none.

One function of this model is to provide schools with guidance for implementing
educational objectives. These can serve as a road map for policy makers, teachers,
pupils and parents as well. A second is to form a basis for assessing educational out-
comes in terms of accepted objectives. The competence matrix can also provide an
orientation for individual diagnosis and supplementary support measures.

The framework and classification scheme (Fig. 1.) with four main categories and
four content areas for each, together with about 70 “I can …” descriptors, has been
disseminated among Austrian teachers. Many prototype subject tasks have been de-
veloped to illustrate and concretize the expected objectives and competencies within
the Austrian project “DIGIKOMP” and the campaign “No child without digital com-
petence.” [5],[6].

Fig. 2. Planning grid for digital literacy and competence in lower secondary education

Subject to there being broad agreement on this project in all NMS and AHS, the
acceptance of the standardized learning objectives and the development of tasks under
a CC-license, schools should then be able to transfer theory into practice through
effective implementation processes.

155

One current approach, especially in the NMS, is a planning grid (Fig. 2.) where
teachers in many disciplines are invited to carry out selected tasks and to cover, if
possible, all learning objectives of the competence model. This project, currently in
progress, will be evaluated by the Austrian educational institute BIFIE.

Integrating these tasks in other subjects and/or implementing a new (interdiscipli-
nary) subject are key issues for the future. Ongoing challenges include the supply of
competent teachers, the development of competence-oriented curricula and corre-
sponding teaching and learning material for the grades 5 to 8.

Currently, it does not seem to be realistic to implement compulsory Informatics
lessons for all pupils at lower secondary level in a short time. However, there is hope
that within a future major curricular reform, a new integrative and innovative subject
covering all aspects of digital education including Informatics could be established.

3 Interventions and Initiatives at Primary Level

It speaks for the robustness of this model that there is an Austrian initiative to harness
it as a framework for primary level within the project DIGIKOMP4 [7]. This model
has the same main and subcategories as the framework for lower secondary level. The
objectives are tailored appropriately to the particular age-group, but are still seen as
very demanding. More than 50 tasks have been developed and published online. This
can be seen as an ambitious endeavor to build IT-competency from a very early stage
on. However, the general conditions in Austrian primary schools for a large-scale
promotion and implementation of IT and Informatics are not beneficial. The reasons
for this situation are manifold and need further investigation.

Whilst the situation in Austria is rather different from the top down / bottom up
overhaul of computing education experienced by teachers in England, there are some
interesting Austrian interventions and initiatives, typically focusing on outreach or of
an informal, regional and project-driven character:

• Informatik erleben [9]
• Technik basteln [10]
• Wiener Zauberschule der Informatik [11]

 Currently the funded project “Informatics – A child’s play” and the idea of an
“Informatics-Lab” [12] try to attract primary school pupils to Informatics. Many pu-
pils in Austria associate the term informatics with the mere use of computers, tablets
or smartphones. The main goal of the concept Informatics-Lab is to provide them
with a better understanding of what Informatics really is. Other goals are to attract
more pupils for the Informatics at an early age; the provision of co-operative learning
environments where students teach one another through peer tutoring; development
and use of neurodidactical lesson concepts; and the teaching of basic principles of
computer science in a playful way [13].

156

Sample Workshops [http://informatikwerkstatt.aau.at]

• All is logic (Boolean Algebra)
• 1 + 1 = 10 (Binary Numbers)
• Top secret!

(Codes and Encryption)
• Fully networked

(The Internet and Networks)
• Touchable computer

(Computer Systems, Hardware)
• The data bus is on its way!

(Information Processing)

• Well planned is half done
(Modeling and Diagrams)

The pilot project took place in July 2014 and recently 2015 at Klagenfurt University.
Three research questions were the basis of an ongoing study:

• Is the concept Informatics-Lab able to increase the interest in Informatics?
• How are the individual learning workshops rated?
• Which learning methods helped the most in understanding the topics?

Feedback and replies of about 90 participants have been evaluated. The results

were very promising and mainly positive. The answers about the learning methods are
remarkable: The visitors rated the tutors most effective in explaining the topics.
75% said that individualized learning was very or rather helpful. More than 60% rated
cooperative learning with peers and the booklet as very or rather helpful.

This regional project and initiative already seems to be having an impact on the
positive perception of Informatics from an early age.

4 Special Case 9th Grade – A Compulsory Curriculum for All

Secondary academic schools (AHS, Gymnasium) provide a broad general second-
ary education at pre-university level for grades 9-12. Since the late 80s, Informatics
has been compulsory in grade 9 and elective in the grades 10-12.

Due to a major reform of the school leaving certification process (Matura) in 2015,
there has been a need for an educational guide providing recommendations for the
structure and implementation of competence oriented curricula, tasks and final exams.

The similarity with the competence model for lower secondary level is obvious and
deliberate. There are only a few changes in denotations which indicate the shift from
digital competence (literacy) and ICT at lower secondary level to Informatics at sec-
ondary level. This model consists of four categories, each further divided into four
independent areas. 80 descriptors in form of “I can …” statements describe the com-
petences, providing more detailed information about the objectives and the corre-

157

sponding topics and serving as the basis for the new competence oriented Informatics
curriculum in the 9th grade. Taken as a whole, this provides teachers and students with
a clear picture of Informatics.

The competence oriented curriculum, which is an amalgam of the old curriculum
of 2003 [14] and the competence model in Fig. 1, is currently in review for approval.

Informatics, Human and Society
- Students describe the importance of computer science in society, evaluate its impact on individuals and
society and examine exemplarily the advantages and disadvantages of digitalization.

- They take measures and apply legal principles related to data security, privacy and copyright issues.
- They describe and evaluate the development of computer science.
- They know professions related to Informatics and applications of Informatics in various occupational
areas.

Informatics Systems
- Students describe and explain the structure of digital devices.
- They explain the functionality of informatics systems.
- They explain the basics of operating systems and handle graphical user interface and utilities.
- They describe the basics of networked computers.
Applied Informatics
- Students use standard software for communication and documentation as well as for the creation,
publication and multimedia presentations of their own works.

- They apply standard software for calculating and visualizing.
- They know the basics of information management and use suitable software for the organization of their
learning.

- They can explore sources of information, systemize, structure, evaluate, process digital content and
apply different representations of information.

Practical Informatics
- Students explain terms and basic concepts of Informatics and put them into context.
- They understand, design and represent algorithms and implement them in a programming language.
- They explain basic principles of automata, data structures and programs.
- They use data bases and design simple data models.

Each curriculum is primarily only a (theoretical) paper. However, the implementa-
tion of these requirements and the consequent impact on students’ competences is the
other (practical) side of the coin. The issue of the intended, implemented and achieved
curriculum is an interesting field of research. There are already some empirical results
regarding the implementation of students achievement under the old curriculum [15].
Recent pilot research yielded insights into the actual contents which have been taught
in some schools in the school year 2013/2014. The data were collected after informed
consent of the schools from the central database of an Austrian wide digital class
register. Most academic secondary schools have outsourced the lesson planning pro-
cess where teachers have to record the subject matter they teach each week, providing
a rich source of data on the planned, if not always enacted, curriculum.

The word cloud (Fig. 3.) gives an impression of the subject matter covered (or at
least recorded as covered) by Informatics teachers. It is striking that there is very little
programming or databases. Standard software widely dominates the content. Alt-
hough the sample of data is very small and needs to be extended to yield valid results,
the assumption that Informatics in the 9th grade is very application driven is justified.

158

Fig. 3. Word cloud of Informatics lessons in the 9th grade of four Austrian schools.

5 Competence Oriented Informatics Matura – First

Impressions and Results

A major reform of the final exam (Matura) at academic secondary schools has recent-
ly been implemented, with effect from the 2014-15 school year. All subjects, Infor-
matics included, have been affected. A strong competence orientation, especially in
the task construction provided the underlying philosophy for the reform. Whereas in
languages and mathematics central regulations provided all students with the same
tasks at the same time, in other disciplines, including Informatics, it has been left to
the schools to select topics and develop individual tasks, based on particular curricula
and competence models.

Oddly, the first exams under the new system (the Matura of summer 2015) took
place before the new competency based curricula were in place, which will be
adapted in the subsequent school year! Despite this flaw and criticism regarding the
rather short preparation time for this major Matura reform, a nationwide evaluation
actually yielded rather positive feedback, including for the oral Informatics Matura.

The new Matura includes the elective subject Informatics in grades 10-12, based
on an open curriculum since 2003. Currently it is not competence oriented and con-
sists merely of 11 different topics, without any indication of the level of knowledge
expected in these. These broad topics are:

Basic principles of information processing, concepts of operating systems, con-

struction and operation of networks, databases, learning and work organization, con-

cepts of programming, artificial intelligence, expansion of theoretical and technical

foundations of computer science, basic algorithms and data structures, computer

science, society and the world of work, legal issues.

Unlike the main subjects (German, foreign languages and mathematics), there are
no central regulations and centrally developed tasks for Informatics. Insted the teach-

159

ers are responsible for the selection and sequencing of these topics in combination
with appropriate software tools. Together with the competence model, these topics
serve as the basis for the oral Matura.

Since 2012, a competence model for Informatics in upper secondary level (Fig 2.)
now extends the curriculum with a better structure and orientation. It is not yet known
to what extent this competence model is used by the teachers in their Informatics
lessons. However, this model is one building block of official ministerial recommen-
dations outlining some sample tasks [16].

The particular innovation of the Matura reform and the oral Matura is the mandato-
ry competence oriented alignment of the tasks and the assigned number of topics. In
the case of the elective Informatics, teachers at any particular schools have to agree on
12 topics which have to be publicly announced about six months before the exam.

School A

- 01 History of Computer Science
- 02 Spreadsheet
- 03 Databases
- 04 Internet and Web 2.0
- 05 Operating Systems
- 06 Data security and privacy
- 07 Software development and binary system
- 08 Web Publishing/Markup Languages
- 09 Programming Languages and Concepts
- 10 Digital Imaging
- 11 Hardware Basics
- 12 Network Technology

School B

- 01 Data Structuring and Modeling
- 02 Algorithms
- 03 Programming
- 04 Office Programs
- 05 Mathematics in Informatics
- 06 Computer Architecture
- 07 Fractals in Computer Science
- 08 Networks
- 09 Operating Systems
- 10 Web design
- 11 Artificial Intelligence
- 12 Data security and privacy

This table illustrates two examples with different approaches to Informatics con-

tent. There are about 340 secondary academic schools in Austria, although not all
schools offer elective Informatics courses. That does not necessarily mean that there
in all courses there are candidates who chose Informatics as an oral Matura subject.

As it is rather difficult to collect data from Austrian schools we only can estimate
the figures. We estimate that in two thirds of the schools there are currently elective
Informatics courses, suggesting that nationwide between 500 and 1000 students out of
approximately 17000 chose the oral Informatics Matura.
 If a school has candidates for the oral exam, the teacher has to prepare two “compe-
tence oriented” tasks for each topic. A competence oriented task has, by law, to cover
three aspects of proficiency and requirements areas: reproduction, transfer and prob-
lem solving and reflection.

With these regulations, the legislator intended to transform the Matura from a
knowledge-based to a competence-based assessment. Until these reforms, the tasks
and questions were heavily content-based, asking for knowledge rather than the appli-
cation of higher-level thinking through problem-solving or critical thinking. As long
as it was only facts that assessments required, these will be what teachers teach and
students learn, regardless of any efforts in curriculum renewal: ‘that which we meas-

160

ure becomes that which we value’. Educators at all levels need expertise in the eval-
uation of competence and skills, building on a solid basis of content knowledge.

It has been a challenge for teachers to develop the 24 competence-oriented tasks,
two for each topic.

Fig. 4. Topics and tasks

All tasks have to be camera-ready a few weeks before the Matura, when the candi-

dates have to draw two different random topics of which one has to be chosen. After
this procedure the teacher chooses one of the two assigned tasks and hands it out to
the student.

Part of an exemplary task, the reflective and problem-oriented element, is shown in
Fig. 5. The whole task set of this particular school is shared as an open educational
resource and can be downloaded from [17].

In Fig. 5. there is a fragment of a task is assigned to the topic “Simulation, Anima-
tion and Coincidence”.

Fig. 5. Example for the reflective and problem-solving part of a given task.

In the run-up to the Matura, a couple of month before the oral exams took place,
the author conducted a little qualitative survey among a community of teachers in-
volved about believes of strengths and weaknesses of the new Matura.

161

Strengths/Advantages Weaknesses/Risks

All informatics teachers in one school must

cooperate, there is no one man show any longer

No depth; interesting topics might be neglected.

Tasks cannot be very demanding. For special

topics (as robots, …) there will be less time.

Not only factual knowledge is assessed. Fewer candidates for the Informatics Matura.

Standardization of the number of topics. The Informatics Matura will be chosen only by

very gifted and talented students. It is too difficult

for the average.

The new Matura will bring more drive and moti-

vation into the informatics lessons.

Many tasks have to be prepared for few students.

Practical tasks can be well covered through the

second requirement area (transfer, application).

The practical part could be neglected.

This selection of 15 teachers’ opinions is only a small sample of many interesting

comments and insights. Assuming that most of the teachers are cooperative, the eval-
uation of experiences, the collection and categorization of topics and developed tasks
could serve as a valuable resource for the improvement of the Informatics Matura
and, moreover, also for the consolidation of the subject Informatics in general.

6 Conclusion

In this paper we have shed light on the current situation of Informatics education in
Austria at different school levels in general education. We tried to sketch a picture of
the spectrum from bottom up movements and initiatives to top down competence
models, campaigns, curricula and central reforms, laying the focus on four active
areas. Other projects such as the Beaver Contest and competitions in the field of IT,
the influence of the European Computer Driving License on formal IT education, and
the situation of teachers’ pre- and in-service training have not been mentioned.

There are difficulties in comparing Austria’s current status in and progress with In-
formatics education with that in other countries. However, comparable data from
many countries that refer to national frameworks and formal implementation process-
es in existing school curricula suggest that Austria is trailing behind, in particular
there is no coherent and nationwide education policy for IT and Informatics at prima-
ry and lower secondary level. By this standard, to start formal Informatics education
for all at the 9th grade seems too late.

Nevertheless, as we indicate, there are non-formal activities and autonomous de-
velopments in individual schools which add life to the Informatics scene in Austrain
education, and thus compensate to a certain extent for political omissions.

162

References

1. Bildungssystem in Österreich. http://www.bildungssystem.at
2. Micheuz, P. (2012). Towards a competence model for ICT and Informatics in general edu-

cation at secondary level. In: Manchester Metropolitan University (Hrsg.): IFIP Working
Conference. Addressing educational challenges: the role of ICT. Manchester: Manchester
Metropolitan University, 12 pp.

3. DA (2008). Digital Agenda. http://ec.europa.eu/information_society/digitalagenda
4. Micheuz, P. (2011). A Competence-Oriented Approach to Basic Informatics Education in

Austria, in I. Kalas, R.T. Mittermeir (Eds.) Informatics in Schools - Contributing to 21st
Century Education, ISSEP 2011, Springer, 43-55.

5. Project DIGIKOMP8: http://www.digikomp.at
6. Narosy T.: Kein Kind ohne digitale Kompetenzen!. In: P. Micheuz et. al (Hrsg.): Digitale

Schule Österreich. OCG. Wien (2013).
7. Mulley U. Zuliani B.: Ein Digitales Kompetenzmodell für die Volksschule.

In: P. Micheuz et. al (Hrsg.): Digitale Schule Österreich. OCG. Wien 2013.
8. National Curriculum in England: Computing Programmes of Study, published 2013.

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-
programmes-of-study

9. Informatik Erleben: http://informatik-erleben.aau.at
10. Technik basteln: http://www.technikbasteln.at
11. Wiener Zauberschule: http://www.ocg.at/de/wizik
12. Sabitzer, B.; Pasterk, S. (2014). Informatics – A Child’s Play.

 6th International Confernce on Education and New Learning Technologies (EDULEARN),
 July 2014, Barcelona, Spain.

13. Sabitzer, B. 2014. A Neurodidactical Approach to Cooperative and Cross-curricular Open
 Learning: COOL Informatics. Habilitation thesis. Alpen-Adria-Universität Klagenfurt.

14. Informatics Curriculum Upper Secondary Level Austria (2003)
 http://www.bmbwk.gv.at/medienpool/11866/lp_neu_ahs_14.pdf

15. Micheuz P.: Zahlen, Daten und Fakten zum Informatikunterricht an den Gymnasien
 Österreichs. In: B. Koerber (Hrsg.): Zukunft braucht Herkunft, INFOS 2009, LNI, Berlin.
 Online: http://subs.emis.de/LNI/Proceedings/Proceedings156/243.pdf (2009)

16. Official Guidelines for oral Informatics Matura
 https://www.bmbf.gv.at/schulen/unterricht/ba/reifepruefung_ahs_lfinf_24984.pdf?4k21fp

17. Portal for Informatics at academic secondary schools
 http://www.ahs-informatik.com/informatik-matura-neu/aufgabenpools/

163

164

165

166

167

168

169

170

171

172

ZaznajSpoznaj - a modifiable platform for
accessibility and inclusion of visually-impaired

elementary school children

Matevž Pesek1, Daniel Kuhl1, Matevž Baloh1, Matija Marolt1

1University of Ljubljana, Faculty of Computer and Information Science
E-mail: matevz.pesek@fri.uni-lj.si

Abstract. The educational and IT communities have produced a number of e-learning
products, ranging from support-oriented platforms for online courses and learning to
educational games. However, there is still a growing need for inclusive and accessi-
ble learning products. To meet the need, we developed an accessible online web and
mobile platform for educational games which are highly modifiable and applicative
to any learning domain. The paper describes the platform, its agile development pro-
cess, and first results of the platform’s evaluation for the blind and visually impaired
elementary school children.

Ključne besede: e-learning, visually-impaired children, ZaznajSpoznaj platform,
memory training, vision training, ICT inclusion

1 Introduction
E-learning draws more and more attention each year, by increased inclusion of e-
materials in primary and secondary schools, new IT products focusing on this field,
and by the rising affordability of technology.

E-learning introduces a number of challenges. Existing educational materials may
soon become outdated and do not evolve with new technologies. Moreover, the mate-
rials, especially the educational games, usually include fixed content, which cannot be
modified by the user. When the product gradually becomes outdated, the educational
process and the game content drift apart. Thus, the teacher is faced with a decision to
either modify the educational process to include the game or stop using the game. Ad-
ditionally, the source code of many projects is unavailable — either the code is private
(not open-source), or even worse, is lost.

For students with disabilities, e-materials introduce additional difficulties. Although
the technology itself usually provides accessibility options to be used by people with
disabilities (e.g. Android, Windows and other OS accessibility features), these are
rarely usable for a specific product to the full extent. For example, the OS built-in

173

accessibility features may not be fully compatible with an e-learning application and
games are not adapted for use by these students.

Within the ZaznajSpoznaj project, we are developing a novel platform for inclusive
and accessible educational games that would overcome some of these difficulties. The
project focuses on the blind and visually-impaired children by supporting them in their
elementary school learning process. The ZaznajSpoznaj platform offers a variety of
repetitive games for memory and vision training, learning Braille and extending the
typing skills. The games support accessibility for the blind and visually impaired and
are developed to be extremely flexible and allow for modification of their content, thus
offering teachers the possibility to adapt the games to several domains and modify them
through time.

This paper presents the platform, which enables open-access to: developers with an
open-source API for development; teachers who can modify the games in several as-
pects including content and visual appearance; and users who gain access to a growing
community-based games database. The paper is structured as follows: the current state
of related products is presented in Section 2. Further on, the ZaznajSpoznaj platform
and its features are presented in Section 3, followed by a preliminary evaluation with
visually impaired children in Section 4. We conclude the paper in Section 5.

2 Related work
Due to the increasing importance of e-learning there already exist approaches to make
learning management systems (LMS) accessible for blind and visually impaired stu-
dents [8]. In addition there are also various initiatives to make textbooks and other
traditional learning materials accessible (e.g. [5], [2]). However, recent trends and de-
velopments introduce new challenges into learning processes in general and e-learning
in particular. Two currently popular trends are mobile learning and game-based learn-
ing. The spread of mobile devices results in a greater demand to support mobile learn-
ing activities at every level of education. For example, research activities of Filho et al.
address general aspects to make learning environments accessible on mobile devices,
Ally et al.[1] are focused on the impact of mobile technology on learning processes,
curriculum and education in general to make mobile learning beneficial. To foster mo-
bile learning especially in developing countries the United Nations Educational, Sci-
entific and Cultural Organization (UNESCO) published policy guidelines for mobile
learning[10].

Despite all diverse learning concepts and modern technology, learning activities as
such remain annoying to most students. To overcome motivational barriers, it proved
beneficial to introduce game-based learning elements into the process. Depending on
target groups, subject and learning objectives, different approaches can be applied. Es-
pecially elementary school children are likely to benefit from such approaches. For
example, Leichtenstern et al.[4] use mobile devices to assign specific types of interac-
tion within role plays. Görgü et al. [3] use mobile devices and augmented reality to
motivate users for outdoor games. The approach of Schimanke et al. [9] focuses on the
benefits of games to improve results of repetitive learning activities. The game-based
approach also raises challenges related to accessibility and inclusion. Although some

174

initiatives offer examples of web-based learning games 12 they lack the integration into
a LMS and offer only limited opportunity for customization and personalization. In
addition due to applied technology, they are not always available on standard mobile
devices. Milne et al. [6, 7] present several examples for learning games for blind and
visually-impaired children on standard mobile devices. But so far their approaches offer
only limited opportunities for customization and lack integration into a LMS.

Existing e-learning platforms and approaches do not provide sufficient support for
game-based learning in general and are not suitable for visually-impaired children. In
addition they do not support the Slovenian language and offer limited support for cus-
tomization by teachers that are not IT-experts.

3 The ZaznajSpoznaj platform

Figure 1: A layout of available games on a mobile platform. The default layout includes in-
stances of seven games which can be played offline. The classes which the user is enrolled in, are
accessible in online mode.

The focus of the ZaznajSpoznaj platform is to provide a series of modifiable ed-
ucational games which include concepts that can be applied to a number of learning
domains. Since the project focuses on the blind and visually impaired, these games are
divided into three related categories: memory training, vision training and ICT inclu-
sion. The memory training section contains games such as a standard memory game
and finding the correct subset of the shown items. There are also several variants of
these games, e.g. finding exact sequences, inverted subsets etc. The vision training
category includes games for pattern matching and its variations. The ICT inclusion
category consists of two training activities for learning Braille and touch-typing. All
games offer the user and their teacher a supportive environment to achieve the learning
goals (see Figure 1).

The ZaznajSpoznaj platform offers these games as modifiable templates by pro-
viding a special interface for the teachers. A teacher can take a template, define the

1http://allabilitiesplayground.net.au
2http://braillebug.afb.org

175

parameters of the game: the shown items, learning domain, and even the visual outlook
of the game — which is important especially for the visually impaired. By modifying
the template, teachers can create specific instances of the game for their students with
specific needs.

Game templates can be further extended. All games communicate with the central
ZaznajSpoznaj server hosting the ZaznajSpoznaj framework via an application pro-
gramming interface (API). Calls to the API give the templates the information the
teacher entered to define their game instances. The game is then customised accord-
ing to the given parameters of the specific instance based on the received information
from the API. Moreover, each game for each student can be personalized. If a user
suffers from a specific visual impairment, their personal preferences are adjusted ac-
cordingly (e.g. colors, text font, text size etc.) and the entire contents of the game
displayed in this personalized manner. We believe that this is an important aspect that
increases accessibility of the games.

The framework supports several user roles: administrator, teacher and student.
Framework administrators have the ability to add users, create classes, define teach-
ers for classes and upload new templates (for games) and media files (images, sounds).

Each class in the framework has at least one assigned teacher. Teachers can edit their
class’ information and create new games or applications from the available templates.

A user can be a teacher in one class and a student in another as this role is tied
to individual classes. Students are the framework’s regular users. They enroll (or are
enrolled by teachers) in classes and participate in the activities the classes offer. Each
user is able to specify specific preferences, including the level of visual impairment.
This setting then tailors the visual display and behavior of the site and games, suitable
for the user. The current list of style preferences contains the following possible states:
default, blind, inverted colors, high contrast, protanopia, tritanopia and achromatopsia.
It is up to the game template developers to determine how each of these is processed
in the game itself. ZaznajSpoznaj platform also supports multiple languages. Each
template can provide multilingual language files and a user can define their preferred
language.

These features of the platform allow for involvement of the community to further
expand the array of functionalities developed within the ZaznajSpoznaj project. The
API is open to any potential developer who can create new games and offer them for use
through the platform. The high customizability of both, the games and user preferences,
is important for inclusion of users with various impairments. We expect to increase the
number of options in the field of visual impairment and add support others conditions
(e.g. ADHD, games for the elderly and others).

4 Preliminary evaluation
The ZaznajSpoznaj project is still under development. The developed features are how-
ever continuously evaluated by the staff at Zavod za slepo in slabovidno mladino Ljubl-
jana (ZSSM), who is the leading partner in the project. Due to agile development, we
are able to adjust the developed features according to results of their evaluation. Ad-
ditionally, we performed a preliminary evaluation of the ZaznajSpoznaj platform with
three visually impaired children. Each child was evaluated by a teacher who inter-

176

Figure 2: A layout with game instructions, accompanied by a star character which encourages
the student throughout the playtime.

viewed the child and accompanied by an observer who wrote down her observation. A
child was presented with a game of finding a subset of displayed images, shown in Fig-
ure 3. Children started playing the game on the basic level, where the task was to find
two images and if they successfully played the game, the difficulty was automatically
increased by increasing the number of images to find. We evaluated children’s interac-
tions, their response to success and failure and understanding of instructions displayed
by the game.

Our findings show that all three children, aged between 8 and 10, were excited
to play the game. The game character provided valuable visual encouragement (as
shown in Figure 2) but the children also needed verbal support while playing the game.
This finding suggests that we should implement vocal encouragement into the games.
Two children needed help after failing several attempts on a higher difficulty level,
the third needed help already at the basic difficulty level. One child needed additional
explanation of the game, while another suggested modifying the appearance of the game
to his favourite colors.

5 Conclusion
The ZaznajSpoznaj project provides an open-source platform and a template standard
for accessible and inclusive learning games. Even teachers without specific IT-knowledge
can freely modify content and customize games according to the needs and preferences
of visually-impaired school children. This way they can enrich and diversify the learn-
ing process and include motivating and accessible elements of game-based learning into
inclusive learning scenarios.

Although we only performed an initial evaluation on target users of the platform, it
has already shown positive acceptance of the ZaznajSpoznaj concept by teachers and
school children. Therefore ZaznajSpoznaj can be considered a significant advancement
in using ICT for inclusion of blind and visually impaired children.

177

Figure 3: A screenshot of the game played during the evaluation. The user was asked to find the
images (top), which are displayed as the subset of images (bottom). The number of images which
need to be selected is indicated at the top left corner. The stars on the right side of the screen
indicate the user’s progress, which is tracked throughout the game.

We will base our future work on the results of our first evaluation stage. The next
stage of evaluation will focus on the platform’s interface and support for teachers to
customize the games according to preferences and impairments of individual users. We
further intend to evaluate the interface and to create and provide templates for new
games with master students of the e-Learning course at the Faculty of computer and
information science, University of Ljubljana. This will also help to extend the set of
available games for our primary target groups and introduce new domains of impair-
ments (such as ADHD).

References
[1] Mohamed Ally, Margarete Grimus, and Martin Ebner. Preparing teachers for a mobile world, to improve

access to education. PROSPECTS, 44(1):43–59, February 2014.

178

[2] LarsBallieu Ballieu Christensen and Tanja Stevns. Biblus – A Digital Library to Support Integration
of Visually Impaired in Mainstream Education. In Klaus Miesenberger, Arthur Karshmer, Petr Penaz,
and Wolfgang Zagler, editors, Computers Helping People with Special Needs SE - 6, volume 7382 of
Lecture Notes in Computer Science, pages 36–42. Springer Berlin Heidelberg, 2012.

[3] Levent Görgü, Abraham G. Campbell, Kealan McCusker, Mauro Dragone, Michael J. O’Grady, Noel E.
O’Connor, and Gregory M. P. O’Hare. FreeGaming: Mobile, Collaborative, Adaptive and Augmented
ExerGaming. In Proceedings of the 8th International Conference on Advances in Mobile Computing
and Multimedia - MoMM ’10, volume 8, pages 287–301. ACM Press, 2010.

[4] Karin Leichtenstern, Elisabeth André, and Thurid Vogt. Role Assignment Via Physical Mobile Interac-
tion Techniques in Mobile Multi-user Applications for Children. In Bernt Schiele, AnindK. Dey, Hans
Gellersen, Boris Ruyter, Manfred Tscheligi, Reiner Wichert, Emile Aarts, and Alejandro Buchmann,
editors, Ambient Intelligence SE - 3, volume 4794 of Lecture Notes in Computer Science, pages 38–54.
Springer Berlin Heidelberg, 2007.

[5] Klaus Miesenberger and Reinhard Ruemer. Schulbuch Barrierefrei (Accessible School Books) – Co-
operation Between Publishers and Service Providers in Austria. In Klaus Miesenberger, Joachim Klaus,
WolfgangL. Zagler, and ArthurI. Karshmer, editors, Computers Helping People with Special Needs,
volume 4061 of Lecture Notes in Computer Science, pages 32–39. Springer Berlin Heidelberg, 2006.

[6] Lauren R Milne, Cynthia L Bennett, and Richard E Ladner. VBGhost: A Braille-based Educational
Smartphone Game for Children. In Proceedings of the 15th International ACM SIGACCESS Conference
on Computers and Accessibility, ASSETS ’13, pages 75:1—-75:2, New York, NY, USA, 2013. ACM.

[7] Lauren R Milne, Cynthia L Bennett, Richard E Ladner, and Shiri Azenkot. BraillePlay: Educational
Smartphone Games for Blind Children. In Proceedings of the 16th International ACM SIGACCESS
Conference on Computers & Accessibility, ASSETS ’14, pages 137–144, New York, NY, USA, 2014.
ACM.

[8] Marko Periša, Dragan Peraković, and Vladimir Remenar. Guidelines for Developing e-Learning System
for Visually Impaired. In Universal Learning Design, page 115, Berlin; Heidelberg, 2012. Springer-
Verlag.

[9] Florian Schimanke, Robert Mertens, Oliver Vornberger, and Stephanie Vollmer. Multi Category Content
Selection in Spaced Repetition Based Mobile Learning Games. In 2013 IEEE International Symposium
on Multimedia, pages 468–473. IEEE, December 2013.

[10] Mark West and Steven Vosloo. UNESCO Policy guidelines for mobile learning. United Nations Edu-
cational, Scientific and Cultural Organization, Paris, 2013.

179

