
University of Ljubljana

Faculty of computer and information science

Simon Stoiljkovikj

Computer-based estimation of the

difficulty of chess tactical problems

BACHELOR’S THESIS

UNDERGRADUATE UNIVERSITY STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Mentor: Matej Guid, PhD

Ljubljana 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Ljubljana Computer and Information Science ePrints.fri

https://core.ac.uk/display/151478183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Simon Stoiljkovikj

Računalnǐsko ocenjevanje težavnosti

taktičnih problemov pri šahu

DIPLOMSKO DELO

UNIVERZITETNI ŠTUDIJSKI PROGRAM PRVE STOPNJE

RAČUNALNIŠTVO IN INFORMATIKA

Mentor: doc. dr. Matej Guid

Ljubljana 2015

This work is licensed under a Creative Commons Attribution 4.0 International Li-

cense. Details about this license are available online at: creativecommons.org

The text is formatted with the text editor LATEX.

http://creativecommons.org

Faculty of Computer and Information Science issues the following thesis:

In intelligent tutoring systems, it is important for the system to understand

how difficult a given problem is for the student. It is an open question how

to automatically assess such difficulty. Develop and implement a computa-

tional approach to estimating the difficulty of problems for a human. Use a

computer heuristic search for building search trees that are meaningful from

a human problem solver’s point of view. Focus on analyzing such trees by

using machine-learning techniques. Choose chess tactical problems for the ex-

perimental domain. Evaluate your approach to estimating the difficulty of

problems for a human, and present your findings.

Fakulteta za računalnǐstvo in informatiko izdaja naslednjo nalogo:

Pri inteligentnih tutorskih sistemih je pomembno, da sistem razume, kako

težak je določen problem za učenca. Kako samodejno oceniti tovrstno težavnost,

ostaja odprto vprašanje. V svojem delu razvijte in implementirajte algo-

ritmičen pristop k ugotavljanju težavnosti problemov za človeka. Posebej se

posvetite uporabi računalnǐskega hevrističnega preiskovanja za gradnjo prei-

skovalnih dreves, ki so smiselna z vidika osebe, ki problem rešuje. Osredotočite

se na računalnǐsko analizo tovrstnih dreves, pri tem pa uporabite tehnike stroj-

nega učenja. Za raziskovalno domeno izberite taktične probleme pri šahu. Iz-

brani pristop k ocenjevanju težavnosti problemov za človeka eksperimentalno

ovrednotite in predstavite ugotovitve.

Izjava o avtorstvu diplomskega dela

Spodaj podpisani Simon Stoiljkovikj, z vpisno številko 63110393, sem avtor

diplomskega dela z naslovom:

Računalnǐsko ocenjevanje težavnosti taktičnih problemov pri šahu

S svojim podpisom zagotavljam, da:

• sem diplomsko delo izdelal samostojno pod mentorstvom doc. dr. Mateja

Guida,

• so elektronska oblika diplomskega dela, naslov (slov., angl.), povzetek

(slov., angl.) ter ključne besede (slov., angl.) identični s tiskano obliko

diplomskega dela,

• soglašam z javno objavo elektronske oblike diplomskega dela na svetov-

nem spletu preko univerzitetnega spletnega arhiva.

V Ljubljani, dne 16. februarja 2015 Podpis avtorja:

Hvala moji družini, da me je v letih študija in pred tem podpirala moralno,

finančno in z iskreno ljubeznijo.

Hvala tudi mojim najbolǰsim prijateljem, saj veste, kdo ste.

Najlepša hvala mentorju, doc. dr. Mateju Guidu za njegov čas, ideje in

potrpežljivost pri izdelavi diplomske naloge.

Thanks to my family that, in the years of this study and even prior to,

supported me morally, financially and with sincere love.

Also, thanks to my best friends, you know who you are.

Special thanks go to my mentor, Matej Guid, PhD, for his time, ideas and

patience during the writing of the thesis.

Contents

Abstract

Povzetek

Razširjeni povzetek

1 Introduction 1

1.1 Motivation . 1

1.2 Our approach and contributions 2

1.3 Related work . 3

1.4 Structure . 3

2 Methods Used 5

2.1 Domain Description . 5

2.2 Meaningful Search Trees . 6

2.3 Illustrative Example (Hard) . 10

2.4 Illustrative Example (Easy) . 12

2.5 Attribute Description . 15

2.6 Experimental Design . 41

3 Experimental Results 43

4 Conclusions 47

Table of acronyms

kratica angleško slovensko

CP centipawns stotinko kmeta

CA classification accuracy klasifikacijska točnost

AUC area under curve površina pod krivuljo

ROC receiver operating characteristic značilnost delovanja sprejemnika

ITS intelligent tutoring system inteligentni tutorski sistem

Abstract

In intelligent tutoring systems, it is important for the system to understand

how difficult a given problem is for the student; assessing difficulty is also

very challenging for human experts. However, it is an open question how to

automatically assess such difficulty. The aim of the research presented in this

thesis is to find formalized measures of difficulty. Those measures could be

used in automated assessment of the difficulty of a mental task for a human.

We present a computational approach to estimating the difficulty of problems

in which the difficulty arises from the combinatorial complexity of problems

where a search among alternatives is required. Our approach is based on

a computer heuristic search for building search trees that are “meaningful”

from a human problem solver’s point of view. This approach rests on the

assumption that computer-extracted “meaningful” search trees approximate

well to the search carried out by a human using a large amount of his or her

pattern-based knowledge. We demonstrate that by analyzing properties of such

trees, the program is capable to automatically predict how difficult it would

be for a human to solve the problem. In the experiments with chess tactical

problems, supplemented with statistic-based difficulty ratings obtained on the

ChessTempo website, our program was able to differentiate between easy and

difficult problems with a high level of accuracy.

Keywords: task difficulty, human problem solving, heuristic search, search

trees, chess tactical problems.

Povzetek

Pri inteligentnih tutorskih sistemih je pomembno, da sistem razume, kako

težak je določen problem za učenca. Ocenjevanje težavnosti problemov pred-

stavlja izziv tudi domenskim strokovnjakom. Kako samodejno oceniti tovrstno

težavnost, ostaja odprto vprašanje. Namen raziskave, predstavljene v tem di-

plomskem delu, je razviti algoritmičen pristop k ugotavljanju težavnosti, ki bi

ga lahko uporabljali pri avtomatiziranem ocenjevanju težavnosti problemov za

človeka. Osredotočili se bomo na ocenjevanje težavnosti problemov, pri katerih

težavnost izvira iz kombinatorične kompleksnosti in kjer je potrebno preiskova-

nje med alternativami. Pristop temelji na uporabi hevrističnega računalnǐskega

preiskovanja za gradnjo preiskovalnih dreves, ki so “smiselna” z vidika osebe, ki

problem rešuje. Ta pristop predvideva, da se računalnǐsko pridobljena “smi-

selna” preiskovalna drevesa relativno dobro ujemajo s preiskovanjem, ki ga

pri istih obravnavanih problemih izvedejo ljudje. Le-ti pri tem uporabljajo

predvsem znanje, ki tipično temelji na pomnjenju številnih naučenih vzorcev.

Pokazali bomo, da je s pomočjo analize lastnosti tovrstnih “smiselnih” dreves

računalnǐski program sposoben samodejno napovedati, kako težak za reševanje

je določen problem. Za eksperimentalno domeno smo izbrali šahovske taktične

probleme. Uporabili smo taktične probleme, kjer smo imeli na voljo statistično

utemeljene ocene težavnosti, pridobljene na spletni strani Chess Tempo. Naš

program je bil sposoben z visoko stopnjo natančnosti ločevati med enostavnimi

in težkimi problemi.

Ključne besede: težavnost problema, človeško reševanje problemov, hevri-

CONTENTS

stično preiskovanje, preiskovalna drevesa, šahovski taktični problemi.

Razširjeni povzetek

Eden od perečih raziskovalnih izzivov je modeliranje težavnosti problemov

za človeka, npr. z uporabo tehnik strojnega učenja. V tej diplomski nalogi

se bomo osredotočili na šahovsko igro oz. bolj natančno, na taktične pro-

bleme pri šahu. Kdorkoli je kdaj reševal tovrstne probleme, bodisi iz šahovske

knjige bodisi na namenski spletni igralni platformi, bo takoj razumel zakaj je

pomembno, da igralec dobiva probleme ustrezne težavnosti glede na njegovo

predznanje. Gre za podoben problem kot npr. pri inteligentnih tutorskih siste-

mih, torej za oceno težavnosti problema in primerjavo te težavnosti s učenčevo

sposobnostjo reševanja problemov, še preden mu dani problem ponudimo v

reševanje. Čeprav smo se osredotočili na le eno domeno (šah), radi bi raz-

vili algoritmični pristop k razumevanju, kaj pri problemih predstavlja težavo

za reševanje pri ljudeh. Razvoj računalnǐskega modela težavnosti za taktične

šahovske probleme (oziroma tudi za kakršno koli drugo reševanje problemov,

ki vključuje drevesa iger), je lahko v pomoč na področjih, kot je npr. razvoj in-

teligentnih sistemov za poučevanje. Še zlasti, ker je razvoj tovrstnih sistemov

drag zaradi odsotnosti posplošenega pristopa za njihovo izdelavo. Priprava

izpitov za učence je še eno izmed področij, ki bi imele koristi od tovrstnega

modela, saj bi bilo za učitelje pri pripravi izpitov lažje, če bi razumeli kaj je

zanje težko. Skratka, korist od avtomatiziranega ocenjevanja težavnosti pro-

blemov bi lahko našli povsod, kjer je vključeno poučevanje učencev in še zlasti

v manj uveljavljenih domenah, kjer še vedno ne vemo, kaj je pri reševanju

problemov predstavlja težave za ljudi in kjer hkrati tudi nimamo dovolj re-

CONTENTS

sursov, da bi težavnost ugotavljali “ročno” (brez pomoči strojnega učenja).

Poleg tega se je izkazalo, da tudi ljudje sami niso tako dobri pri modeliranju

težavnosti [13], torej je avtomatizirano ocenjevanja težavnosti potrebno ne le

s finančnega vidika, ampak tudi z vidika zanesljivosti ocen.

Zgolj računski pristop (brez uporabe hevristik) k ugotavljanju težavnosti

problemov za ljudi ne bi dal želenih rezultatov. Razlog za to je, da računalnǐski

šahovski programi rešijo taktične probleme pri šahu zelo hitro, navadno že pri

zelo nizkih globinah iskanja. Računalnik bi tako preprosto prepoznal večino

šahovskih taktičnih problemov za lahke in ne bi znal dobro razlikovati med

pozicijami z različnimi stopnjami težavnosti (kot jih dojemajo ljudje). Ocenje-

vanje težavnosti tovrstnih problemov zato zahteva drugačen pristop in druge

algoritme.

Naš pristop temelji na uporabi računalnǐskega hevrističnega preiskovanja

za izgradnjo “smiselnega” drevesa preiskovanja z vidika človeka, ki rešuje dani

problem. Želimo pokazati, da je model, pridobljen z analizo lastnosti tovrstnih

“smiselnih” dreves preiskovanja, sposoben samodejno napovedovati težavnost

problema za ljudi (v izbrani domeni, na katero se model nanaša). Naj pou-

darimo, da je analizira lastnosti “smiselnih” dreves vodila k bistveno bolǰsim

rezultatom od uporabe strojnega učenja z atributi, temelječih zgolj na uporabi

specifičnega domenskega znanja.

V naši raziskavi smo zajeli tip reševanja problemov, pri katerih mora igralec

predvideti, razumeti in izničiti dejanja nasprotnikov. Tipična področja, kjer

se zahteva tak način reševanja problemov, vključujejo vojaško strategijo, po-

slovanje in igranje iger. Pravimo, da je šahovski problem taktičen, če rešitev

dosežemo predvsem z izračunom konkretnih variant v dani šahovski poziciji

in ne s pomočjo dolgoročnih pozicijskih presoj. V diplomski nalogi nas ne

zanima sam proces dejanskega reševanja šahovskih taktičnih problemov, am-

pak predvsem vprašanje, kako težavno je reševanje problema za človeka. Kot

osnovo smo vzeli statistično utemeljene ocene težavnosti šahovskih taktičnih

problemov, pridobljene na spletni šahovski platformi Chess Tempo (dostopna

CONTENTS

na http://www.chesstempo.com). Le-te so predstavljale objektivne ocene

težavnosti problemov.

Pri umetni inteligenci tipični način predstavljanja problemov imenujemo

prostor stanj. Prostor stanj je graf, katerega vozlǐsča ustrezajo problemskim

situacijam, dani problem pa reduciramo na iskanje poti v tem grafu. Prisotnost

nasprotnika v veliki meri otežuje iskanje. Namesto, da bi iskali linearno zapo-

redje akcij v problemskem prostoru, dokler ne dosežemo ciljnega stanja, nam

prisotnost nasprotnika bistveno širi nabor možnosti. Pri reševanje problemov,

kjer obstaja tudi nasprotnik, je prostor stanj običajno predstavljen kot drevo

igre. Pri reševanju problemov s pomočjo računalnika tipično zgradimo le del

celotnega drevesa igre, ki se imenuje drevo iskanja, in uporabimo hevristično

ocenjevalno funkcijo za vrednotenje končnih stanj (vozlǐsč) v drevesu iskanja.

Drevesa iger so tudi primeren način predstavljanja šahovskih taktičnih pro-

blemov. Pri tipih težav, v katerih težavnost izhaja iz kombinatorične kom-

pleksnosti iskanja med alternativami, je navadno nemogoče za človeka, da bi

upošteval vse možne poti, ki bi lahko vodile k rešitvi problema. Človeški

igralci zato hevristično zavrnejo možnosti (poteze), ki niso pomembne pri is-

kanju rešitve določenega problema. Pri tem se opirajo predvsem na svoje

znanje in izkušnje. Pravzaprav človeški reševalci problemov (v mislih) pri

reševanju problemov zgradijo svoja lastna drevesa preiskovanja (oz. drevesa

iskanja). Ta drevesa preiskovanja pa so bistveno različna od tistih, pridobljenih

pri računalnǐskem hevrističnem preiskovanju. Zato smo uvedli t.i. “smiselna”

drevesa preiskovanja (človeška drevesa iskanja), ki so običajno bistveno manǰsa.

In kar je najpomembneje, ta drevesa so v glavnem sestavljena iz smiselnih stanj

in akcij, ki naj bi ljudi vodila do rešitve problema.

Z namenom, da bi omogočili samodejno ocenjevanje težavnosti problemov

za človeka, smo se osredotočili na izgradnjo preiskovalnih dreves, ki so smiselna

s stalǐsča reševalca problema. Takšna drevesa bi morala biti sestavljena pred-

vsem iz dejanj, ki naj bi jih človeški reševalec pri reševanju problema vzel v

obzir. Implicitna predpostavka pri našem pristopu je, da težavnost šahovskega

http://www.chesstempo.com

CONTENTS

taktičnega problema korelira z velikostjo in drugimi lastnostmi “smiselnega”

drevesa preiskovanja za dani problem. Pokazali smo, da lahko za pridobitev

vrednosti posameznih vozlǐsč v “smiselnem” drevesu igre za dani problem upo-

rabimo računalnǐsko hevristično preiskovanje. Pri tem ohranimo le tista vo-

zlǐsča, ki izpolnjujejo določene pogoje (kot so npr. arbitrarno določene mejne

vrednosti ocen vozlǐsč). V diplomskem delu smo pokazali, da je z analizo

lastnosti tovrstnih dreves mogoče pridobiti koristne informacije o težavnosti

problema za človeka.

Chapter 1

Introduction

1.1 Motivation

One of the current research challenges is using machine learning for mod-

eling the difficulty of problems for a human. In this thesis, we focused on

the domain of chess and, more precisely, on tactical chess problems. Whoever

tried to solve such a problem, being an example from a book or an online

chess playing platform, can understand why it is important for the player to

receive a problem with a suitable difficulty level. The problem here is, just

like in intelligent tutoring systems (for example), to assess the difficulty of

the problem and to compare it with the student’s problem solving skill before

showing it to the student to solve it. Although we focused on a single domain

(chess), we would like to come up with an algorithmic approach for determin-

ing the difficulty of a problem for a human, in order to obtain a more general

understanding what is difficult for humans to solve. This is a fairly complex

question to answer, particularly with limited resources available: a database

of ratings for tactical chess problems acquired from the website for solving

such problems – Chess Tempo (available at http://www.chesstempo.com),

chess playing program (or rather, a selection of them, since we experimented

with three chess engines: Houdini, Rybka and Stockfish), and Orange,

1

http://www.chesstempo.com

2 CHAPTER 1. INTRODUCTION

a visual tool for data mining [9].

Developing a computational model of difficulty for chess tactical problems

(or, as we will discuss later, for any problem solving that involves a game

tree) would help in areas such as easing the development process of intelligent

tutoring systems. These systems are currently expensive to develop due to

the lack of a general approach to creating them. Student exam preparation is

another topic that would benefit from such a model, since it would be easier

for teachers to understand what is difficult for their students and prepare

the exams accordingly. In short, anything that involves student learning on

a less than well-established basis, where it is unknown what is difficult for

humans to solve, and where we also don’t have the resources to let humans

research this question manually, can benefit from an automated assessment

of problem difficulty. Furthermore, it turns out that humans are not that

great at modeling the difficulty themselves [13], so a method for determining

the difficulty of problems for a human is needed not only from the financial

aspect, but also from the aspect of reliability.

1.2 Our approach and contributions

A pure computational-based approach (without the use of heuristics) to

determining the difficulty of problems would yield poor results. The reason

for this is that computer chess programs tend to solve tactical chess problems

very quickly, usually already at the shallowest depths of search. Thus the

computer simply “recognizes” most of the chess tactical problems to be rather

easy and does not distinguish well between positions of different difficulties

(as perceived by humans) [13]. Estimating difficulty of chess tactical problems

therefore requires a different approach, and different algorithms. Our approach

is based on using computer heuristic search for building meaningful search trees

from a human problem solver’s point of view. We intend to demonstrate that

by analyzing properties of such trees, the model is capable to automatically

1.3. RELATED WORK 3

predict how difficult the problem will be to solve by humans. It is noteworthy

that we got better results from analyzing the game tree properties rather than

by analyzing specific chess domain attributes.

1.3 Related work

Relatively little research has been devoted to the issue of problem difficulty,

although it has been addressed within the context of several domains, including

Tower of Hanoi [17], Chinese rings [10], 15-puzzle [11], Traveling Salesperson

Problem [12], Sokoban puzzle [1], and Sudoku [2]. Guid and Bratko [3] pro-

posed an algorithm for estimating the difficulty of chess positions in ordinary

chess games. Their work was also founded on using heuristic-search based

methods for determining how difficult the problem will be for a human. How-

ever, they found that this algorithm does not perform well when faced with

chess tactical problems in particular. Hristova, Guid and Bratko [13] under-

took a cognitive approach to the problem, namely, will a player’s expertise

(Elo rating [4]) in the given domain of chess be any indication of whether that

player will be able to classify problems into different difficulty categories. They

demonstrated that assessing difficulty is also very difficult for human experts,

and that the correlation between a player’s expertise and his or her perception

of a problem’s difficulty to be rather low.

1.4 Structure

The thesis is organized as follows. In Chapter 2, we introduce the domain

of chess tactical problems and the concept of meaningful search trees. We also

describe features that could be computed from such trees, and present our

experimental design. Results of the experiments are presented in Chapter 3.

We conclude the thesis in Chapter 4.

4 CHAPTER 1. INTRODUCTION

A note to the reader

Parts of the contents in this bachelor’s thesis are also contained in the

research paper submitted to the 17th International Conference on Artificial

Intelligence in Education (AIED 2015), titled “A Computational Approach

to Estimating the Difficulty of a Mental Task for a Human,” co-authored

with professors Matej Guid, PhD, and Ivan Bratko, PhD, from the Faculty of

Computer and Information Science, University of Ljubljana, Slovenia.

Chapter 2

Methods Used

2.1 Domain Description

In our study, we consider adversarial problem solving, in which one must

anticipate, understand and counteract the actions of an opponent. Typical do-

mains where this type of problem solving is required include military strategy,

business, and game playing. We use chess as an experimental domain. In our

case, a problem is always defined as: given a chess position that is won by one

of the two sides (White or Black), find the winning move. A chess problem

is said to be tactical if the solution is reached mainly by calculating possible

variations in the given position, rather than by long term positional judgment.

In this thesis, we are not primarily interested in the process of actually solving

a tactical chess problem, but in the question, how difficult it is for a human

to solve the problem. A recent study has shown that even chess experts have

limited abilities to assess the difficulty of a chess tactical problem [13]. We

have adopted the difficulty ratings of Chess Tempo (an online chess platform

available at www.chesstempo.com) as a reference. The Chess Tempo rating

system for chess tactical problems is based on the Glicko Rating System [14].

Problems and users (that is humans that solve the problems) are both given

ratings, and the user and problem rating are updated in a manner similar to

5

6 CHAPTER 2. METHODS USED

the updates made after two chess players have played a game against each

other, as in the Elo rating system [4]. If the user solves a problem correctly,

the problem’s rating goes down, and the users rating goes up. And vice versa:

the problems rating goes up in the case of incorrect solution. The Chess Tempo

ratings of chess problems provide a basis from which we estimate the difficulty

of a problem.

2.2 Meaningful Search Trees

A person is confronted with a problem when he wants something and does

not know immediately what series of actions he can perform to get it [5].

In artificial intelligence, a typical general scheme for representing problems is

called state space. A state space is a graph whose nodes correspond to problem

situations, and a given problem is reduced to finding a path in this graph. The

presence of an adversary complicates that search to a great extent. Instead of

finding a linear sequence of actions through the problem space until the goal

state is reached, adversarial problem solving confronts us with an expanding

set of possibilities. Our opponent can make several replies to our action, we can

respond to these replies, each response will face a further set of replies etc. [6].

Thus, in adversarial problem solving, the state space is usually represented

by a game tree. In computer problem solving, only a part of complete game

tree is generated, called a search tree, and a heuristic evaluation function is

applied to terminal positions of the search tree. The heuristic evaluations of

non-terminal positions are obtained by applying the minimax principle: the

estimates propagate up the search tree, determining the position values in the

non-leaf nodes of the tree.

Game trees are also a suitable way of representing chess tactical problems.

In Fig. 2.1, a portion of a problem’s game tree is displayed. Circles represent

chess positions (states), and arrows represent chess moves (actions). Through-

out the article, we will use the following terms: the player (i.e., the problem

2.2. MEANINGFUL SEARCH TREES 7

...

...

...

...

...

...

...

...

level 1: player‘s turn

level 2: opponent‘s turn

level 3: player‘s turn

level 4: opponent‘s turn

level 5: player‘s turn

...

level 1: player‘s decisions

level 2: opponent‘s decisions

level 3: player‘s decisions

level 4: opponent‘s decisions

level 5: player‘s decisions

Figure 2.1: A part of a game tree, representing a problem in adversarial prob-

lem solving.

solver) makes his decisions at odd levels in the tree, while the opponent makes

his decisions at even levels. The size of a game tree may vary considerably for

different problems, as well as the length of particular paths from the top to the

bottom of the tree. For example, a terminal state in the tree may occur as early

as after the player’s level-1 move, if the problem has a checkmate-in-one-move

solution. In type of problems in which the difficulty arises from the combina-

torial complexity of searching among alternatives, it is typically infeasible for

a human to consider all possible paths that might lead to the solution of the

problem. Human players therefore heuristically discard possibilities (moves)

that are of no importance for finding the solution of a particular problem. In

doing so, they are mainly relying on their knowledge and experience.

In fact, human problem solvers “construct” (mentally) their own search

trees while solving a problem, and these search trees are essentially differ-

ent than the ones obtained by computer heuristic search engines. The search

trees of humans, in the sequel called “meaningful trees,” are typically much

8 CHAPTER 2. METHODS USED

a

eb ...

f h

j k

...

level 1: player‘s decisions

level 2: opponent‘s decisions

level 3: player‘s decisions

c d

g i

l m n o p r ...

Figure 2.2: The concept of a meaningful search tree.

smaller, and, most importantly, they mainly consist of what represents mean-

ingful (from a human problem solver’s point of view) states and actions in

order to solve the problem. A natural assumption is that the difficulty of a

chess problem depends on the size and other properties of the chess position’s

meaningful tree. In order to enable automated assessment of the difficulty

of a problem for a human, we therefore focused on constructing search trees

that are meaningful from a human problem solver’s point of view. Such trees

should, above all, consist of actions that a human problem solver would con-

sider. The basic idea goes as follows. Computer heuristic search engines can

be used to estimate the values of particular nodes in the game tree of a specific

problem. Only those nodes and actions that meet certain criteria are then kept

in what we call a meaningful search tree. By analyzing properties of such a

tree, we should be able to infer certain information about the difficulty of the

problem for a human.

The concept of a meaningful search tree is demonstrated in Fig. 2.2. Black

nodes represent states (positions) that are won from the perspective of the

player, and grey nodes represent states that are relatively good for the oppo-

2.2. MEANINGFUL SEARCH TREES 9

nent, as their evaluation is the same or similar to the evaluation of his best

alternative. White nodes are the ones that can be discarded during the search,

as they are not winning (as in the case of the nodes labeled as d, e, h, k, and

r), or they are just too bad for the opponent (h). If the meaningful search

tree in Fig. 2.2 represented a particular problem, the initial problem state a

would be presented to the problem solver. Out of several moves (at level 1),

two moves lead to the solution of the problem: a–b and a–c. However, from

state c the opponent only has one answer: c–i (leading to state i), after which

three out of four possible alternatives (i–n, i–o, and i–p) are winning.

The other path to the solution of the problem, through state b, is likely to

be more difficult: the opponent has three possible answers, and two of them

are reasonable from his point of view. Still, the existence of multiple solution

paths, and very limited options for the opponent suggest that the problem

(from state a!) is not difficult. Meaningful trees are subtrees of complete game

trees. The extraction of a meaningful tree from a complete game tree is based

on heuristic evaluations of each particular node, obtained by a heuristic-search

engine searching to some arbitrary depth d. In addition to d, there are two

other parameters that are chess engine specific, and are given in centipawns,

i.e. the unit of measure used in chess as a measure of advantage, a centipawn

being equal to 1/100 of a pawn. These two parameters are:

w The minimal heuristic value that is supposed to indicate a won position.

m The margin by which the opponent’s move value V may differ from his best

move value BestV. All the moves evaluated less than BestV – m are not

worth considering, so they do not appear in the meaningful tree.

It is important to note that domain-specific pattern-based information (e.g.,

the relative value of the pieces on the chess board, king safety etc.) is not

available from the meaningful search trees. Moreover, as it is suggested in

Fig. 2.2, it may also be useful to consider whether a particular level of the tree

is odd or even.

10 CHAPTER 2. METHODS USED

2.3 Illustrative Example (Hard)

In Fig. 2.3, a fairly difficult Chess Tempo tactical problem is shown. Su-

perficially it may seem that the low number of pieces implies that the problem

should be easy (at least for most players). However, a rather high Chess Tempo

rating (2015.9 points calculated from 1656 problem-solving attempts) suggests

that the problem is fairly difficult.

Figure 2.3: An example of a chess tactical problem: Black to move wins.

What makes this particular chess tactical problem difficult? In order to

understand it, we must first get acquainted with the solution. In Fig. 2.3,

Black threatens to win the Rook for the Bishop with the move 1... Bf2xe1

(that is, Black bishop captures White rook on square e1; we are using standard

chess notation). And if White Rook moves from e1, the Bishop on e2 is en

prise. However, first the Black Rook must move from e5, otherwise the White

Pawn on f4 will capture it. So the question related to the problem is: what is

2.3. ILLUSTRATIVE EXAMPLE (HARD) 11

the best place for the attacked Black Rook? Clearly it must stay on e-file, in

order to keep attacking the White Bishop. At first sight, any square on e-file

seems to be equally good for this purpose. However, this exactly may be the

reason why many people fail to find the right solution. In fact, only one move

wins: 1... Re5-e8 (protecting the Black Rook on d8!).

It turns out that after any other Rook move, White plays 2.Re1-d1, saving

the Bishop on e2, since after 2... Rd8xd1 3.Be2xd1(!) the Bishop is no longer

attacked. Moreover, even after the right move 1... Re5-e8, Black must find

another sole winning move after White’s 2.Re1-d1: moving the Bishop from f2

to d4, attacking simultaneously the Rook on a1 and the Bishop on e2.

284

308

283

341 346 361341330

314 339 334 341 368

2.Re1-d1

1... Re5-e8

2... Bf2-d4

Figure 2.4: The meaningful search tree for the hard example in Fig. 2.3.

12 CHAPTER 2. METHODS USED

Fig. 2.4 shows the meaningful tree for the above example. Chess engine

Stockfish (one of the best computer chess programs currently available) at

10-ply depth of search was used to obtain the evaluations of the nodes in the

game tree up to level 5. The parameters w and m were set to 200 centipawns

and 50 centipawns, respectively. The value in each node gives the engine’s

evaluation (in centipawns) of the corresponding chess position.

In the present case, the tree suggests that the player has to find a unique

winning move after every single sensible response by the opponent. This im-

plies that the problem is not easy to solve by a human.

2.4 Illustrative Example (Easy)

In Fig. 2.5, a fairly easy Chess Tempo tactical problem is shown. Super-

ficially it may seem that the high number of pieces implies that the problem

should be hard (at least for most players). However, a rather low Chess Tempo

rating (996.5 points calculated from 323 problem-solving attempts) suggests

that the problem is fairly easy.

What makes this particular chess tactical problem easy? Again, in order

to understand it, we must first get acquainted with the solution. In Fig. 2.5,

we can see that aside from 1...Rf6xf1, which is a double attack of some sorts,

because Black will than be attacking both White’s king at c1 and queen at g5,

there aren’t any other meaningful moves for Black. Why that was the right

move is revealed at the next level, when the opponent has to come up with a

solution. Since his king is in check, White can only do two things: (1) either

move his king or, (2) capture the piece that is attacking the king. Of course,

White can also try to block the attack with his rook on d2 (2.Rd2-d1), but that

would only result in White losing material, since Black can just capture White’s

queen (2...Qe7xg5), while simultaneously checking the opponent’s king, and

winning a lot material, since after White next move (which will be moving the

king, in the best scenario), Black will be ahead, and it will be his turn to move

2.4. ILLUSTRATIVE EXAMPLE (EASY) 13

Figure 2.5: An example of a easy chess tactical problem: Black to move.

(the rook at f1).

Getting back to the two “meaningful” things White can do, if he chooses to

move his king, he has only one valid square to go to, namely c2. After 2.Kc1-

c2, two of Black’s pieces are being attacked, i.e. the queen on e7 and the rook

on f1. Luckly, Black is also attacking the pieces that are attacking his pieces,

so he has the choice of capturing the rook on g1 (2...Rf1xg1), or capturing the

queen on g5 (2...Qe7xg5). Capturing White’s queen in this situation is a much

better choice, since it clearly yields better material gain. At his next turn,

White recapturing the lost Bishop on f1 with his rook on g1 (3.Rg1xf1) is the

only viable option, kind of a “forced” move, since his own rook is been attacked

by Black’s rook on f1, so he has to do something about it. After capturing it,

Black’s window of opportunities got wide open, as we see in Fig. 2.6, witch

shows the number of meaningful moves Black has at this point.

Now, if we consider the second “meaningful” thing White can do after Black

14 CHAPTER 2. METHODS USED

Figure 2.6: The meaningful search tree for the example in Fig. 2.5.

played 1...Rf6xf1, is to capture the rook on f1 (2.Rg1xf1). This time, it is Black

who has one forced move, namely capturing the queen on g5 (2...Qe7xg5). The

next best thing for White here is to move his king from c1, so that “unpins”

rook on d2 (currently he cannot move his rook from d2, because that would

lead to Black’s queen attacking the king while being Black’s turn, and that is

against the rules of chess). So, after White moves his king (3.Kc1-c2), once

more we see the situation (in Fig. 2.6) where Black is so far ahead, that he has

tons of meaningful moves available to him at his next move.

This is a common phenomenon we discovered for the tactical chess positions

that were deemed easy. It the example above we saw that once the player got

to his third move (level 5 in our meaningful tree), he had a lot of options.

That is because he made such good choices on the previous turns, that once

he got to level 5, he was so far ahead, that he had a lot of meaningful moves.

That is why we can see (in Fig. 2.6) the branching factor of our tree at level 5

2.5. ATTRIBUTE DESCRIPTION 15

increasing so greatly (from 1 at level 4 to 5 at level 8) if the given problem is

easy. As explained before, the meaningful tree is supposed to contain moves

that an experienced chess player will consider in order to find the solution

of the problem. In this sense, the chess engine-computed meaningful tree

approximates the actual meaningful tree of a human player.

On the other hand, we have no (pattern-based) information about the

cognitive difficulty of these moves for a human problem solver. An alternative

to chess engine’s approximation of human’s meaningful tree would be to model

complete human player’s pattern-based knowledge sufficient. However, that

would be a formidable task that has never be en accomplished in existing

research.

2.5 Attribute Description

2.5.1 A Quick Overview

As a reminder of what we explained in the previous chapters, our search

trees can be up to 5 levels deep (they can be shallower, in the example of a

mating position in less than 5 moves, and there are no other nodes to explore,

because the game ends there). The player makes his move at odd levels (L =

1, 3 or 5), while his opponent at even levels (L = 2 or 4).

Table 2.1 shows the attributes that were used in the experiments.

16 CHAPTER 2. METHODS USED

Attribute Description

1 Meaningful(L) Number of moves in the meaningful search

tree at level L

2 PossibleMoves(L) Number of all legal moves at level L

3 AllPossibleMoves Number of all legal moves at all levels

4 Branching(L) Branching factor at each level L of the mean-

ingful search tree

5 AverageBranching Average branching factor for the meaningful

search tree

6 NarrowSolution(L) Number of moves that only have one mean-

ingful answer, at level L

7 AllNarrowSolutions Sum of NarrowSolution(L) for all levels L

8 TreeSize Number of nodes in the meaningful search

tree

9 MoveRatio(L) Ratio between meaningful moves and all pos-

sible moves, at level L

10 SeeminglyGood Number of non-winning first moves that only

have one good answer

11 Distance(L) Distance between start and end square for

each move at level L

12 SumDistance Sum of Distance(L) for all levels L

13 AverageDistance Average distance of all the moves in the

meaningful search tree

14 Pieces(L) Number of different pieces that move at level

L

15 AllPiecesInvolved Number of different pieces that move in the

meaningful search tree

16 PieceValueRatio Ratio of material on the board, player versus

opponent

17 WinningNoCheckmate Number first moves that win, but do not lead

to checkmate

Table 2.1: A brief description of the attritubes

2.5. ATTRIBUTE DESCRIPTION 17

2.5.2 Meaningful(L)

Description

We define a meaningful move as a move that wins material worth at least

2 pawns for the player (or, as it is defined in chess programming for better

accuracy, as 200 centipawns, or CP for short), and includes the best move for

the opponent, as well as all moves that are in the 0.5 pawns (50 CP) boundary

of the best one. Centipawn is a score unit that conform to one hundredth

of a pawn unit. According to Robert Hyatt [18], having experimented with

decipawns (1/10 of a pawn), and millipawns (1/1000 of a pawn), he found

out that centipawns are the most reasonable one. The argument against the

decipawns is that is too coarse, so we will have rounding errors, and millipawns

is too fine, and the search quickly becomes less efficient. We understand that

there is no such thing as “meaningful” move, but we used the term to refer to

the moves that lead to better tactical advantage. We specified the boundaries

of this attribute just as a human problem solver would see the options given to

him: a move is meaningful if it puts the player in a better tactical advantage

than before playing the move. This attribute counts the number of meaningful

moves at given level L in the search tree.

We can see what our program considers ”meaningful” in Algorithm 1.

Example

We will use the list of possible moves from 2.5.3 to show witch of the moves

are meaningful. If we inspect the list, we can see that only the first possible

moves satisfies the boundaries we have set for a “meaningful” move. So in this

case, there is only one meaningful move - Meaningful(1) = 1.

18 CHAPTER 2. METHODS USED

Algorithm 1 Get all meaningful moves

for each move in possibleMoves[L] do

if type of move.score is CP then

if move.score >= 200 then

append move to meaningful[L]

let noneMeaningfulFlag be False

else if noneMeaningfulFlag == True then

if abs(bestMoveScore – move.score) <= 50 then

append move to meaningful[L]

end if

end if

else if type of move.score is Mate then

if move.score > 0 then

append move to meaningful[L]

let noneMeaningfulFlag be False

else if noneMeaningfulFlag == True then

append move to meaningful[L]

end if

end if

end for

2.5. ATTRIBUTE DESCRIPTION 19

2.5.3 PossibleMoves(L)

Description

Every time a chess engine searches for the answers in a given game, it

considers, before using heuristics for pruning the less then winning moves, all

the possible moves. Sometimes the number can be as low as one (if our king

is in check, so can move only the king), but other times this number can reach

as high as two hundred eighteen [19]. In our research case though, most of the

positions have about 40 valid moves. We need this data more as a calculation

basis than a machine learning attribute, because from this list we get our

meaningful moves. That’s why we keep track of the number of possible moves

at each level L in PossibleMoves(L).

We can see the general approach to getting all the possible moves from the

chess engine output, in our case it is from Stockfish, in Algorithm 2.

Algorithm 2 Get all possible moves

lastline ← regex for end of output

while True do

read line from stockfishOutput

if line == lastline then

break

else

append line to possibleMoves[L]

end if

end while

Example

As an example, we will take the tactical chess problem in Fig. 2.5, and

we will show how we calculated all the possible moves. The following is a list

of possible moves that we got from Stockfish (this list was abbreviated, the

20 CHAPTER 2. METHODS USED

actual output has more information in it, but it is not relevant in this context):

• info score cp 478 multipv 1 pv f6f1

• info score cp 5 multipv 2 pv c5b3

• info score cp -637 multipv 3 pv e7f8

• info score cp -637 multipv 4 pv e7f7

• info score cp -693 multipv 5 pv c5d3

• info score cp -884 multipv 6 pv e7g7

• info score cp -923 multipv 7 pv b7b6

• . . .

• info score mate -1 multipv 35 pv g4f5

• info score mate -1 multipv 36 pv g4h5

• info score mate -1 multipv 37 pv g4d7

• info score mate -1 multipv 38 pv g4c8

We have shortened the list for readability purposes, but we can still see from the

“multipv” value that there are 38 possible moves at the start of this position,

i.e. at level 1, for Black. So, we can say that PossibleMoves(1) = 38.

2.5.4 AllPossibleMoves

Description

Similar to the attribute Tree Size, but whereas that one counts the mean-

ingful moves, this attribute counts all the valid moves. AllPossibleMoves shows

the size of the search tree that the player need to take into consideration before

playing the move, at each level. In short, it shows all the possible moves in

2.5. ATTRIBUTE DESCRIPTION 21

the search tree.

We can calculate it by simply summing up all the possible moves in the

search tree, for each of the levels. The pseudocode is shown in Algorithm 3.

Algorithm 3 All Possible Moves

for level in searchTree.depth do

add possibleMoves[level] to allPossibleMoves

end for

Example

Corresponding to the pseudocode in Algorithm 3, we can easily compute

this attribute if we sum up all the PossibleMoves(L), for L from 1 to the depth

of the tree (we mentioned before that the depth of the tree can vary from 1 to

5, depending on the problem, with the depth at 5 being the most common).

But, since we haven’t yet shown an example where we would calculate all

the possible moves at each of the levels, we will do so now, from our data.

Accordingly, our logs show that aside from PossibleMoves(1) being 8, as shown

in 2.5.3, PossibleMoves from level 2 to level 5 are: 4, 73, 45, 70. For the curious

ones, that wonder how can PossibleMoves(2) can be such a low number (as 4),

remember that after Black captures the bishop with his rook, White’s king is in

check, hence White has limited mobility. Moving forward with the calculation,

AllPossibleMoves = 38 + 4 + 73 + 45 + 70 = 230.

2.5.5 Branching(L)

Description

Giving us the number of ratio child nodes over father nodes for each depth,

this attribute shows the branching factor at each given depth in our search

tree. This only captures the meaningful moves, so the default 40 moves per

position doesn’t apply here; considering that we search the game tree with

22 CHAPTER 2. METHODS USED

a MultiPV (multiple principal variation) value of 8. Usually when people

examine chess problems, they would only like the winning variation, i.e. single

principal variation. But in our case, we would like to get as many variations,

to get all the meaningful moves, not just the best one.

We define the branching factor somewhere in the lines of Algorithm 4.

Algorithm 4 Calculate the branching factor

let nodes be items from searchTree

for each level in searchTree.depth do

let fathers[level] be items from nodes[level]

let sons[level] be items from nodes[level+1]

branching[level] ← sons[level] / fathers[level]

end for

Example

In this example, we will talk about the hard illustrative example we shown

previously in 2.3, and calculate the branching factor at all the levels, by

hand. As we can see in Fig. 2.4, after the tactical chess problem starts (the

topmost black circle) the player only has one meaningful answer 1...Re5-e8;

Branching(1) = 1. After the player has made his move, it’s the opponents

turn to look at his possibilities. The gray circle represents his meaningful an-

swer, giving us Branching(2) = 1. After that, the player also has only one

meaningful move which makes Branching(3) = 1. But, the second time that

the opponent gets to play, we see more possibilities. Five meaningful answers

to the players only one move quintuples the branching, i.e. Branching(4) = 5.

In the bottom row we see five answers to five moves, which, after we divide

them, we get Branching(5) = 1.

2.5. ATTRIBUTE DESCRIPTION 23

2.5.6 AverageBranching

Description

Since the branching factor at each given depth is not uniform, we also

include the average branching factor in our search tree. Defined as the sum

the branching factors from all depths, divided by the depth of the search tree,

it gives us an idea of the growing size of our search tree. In chess the average

branching factor in the middle game is considered to be about 35 moves [7],

but since we are only counting meaningful moves, our average branching factor

is considerably smaller.

The average branching factor is calculated by following Algorithm 5.

Algorithm 5 Average branching in our search tree

for level in searchTree.depth do

add branching[level] branchingSum

end for

averageBranching ← branchingSum / searchTree.depth

Example

The average branching is nothing much, but the sum of the attribute

Branching(L), for L ranging from 1 to the depth of the meaningful tree, divided

by the depth of that same tree. Since we calculated that attribute for the hard

illustrative example in 2.3, we will reuse those values. AverageBranching =

(1 + 1 + 1 + 5 + 1)/5 = 1.8

2.5.7 NarrowSolutions(L)

Description

One of the principles in chess is the concept of a “forcing move”. A forcing

move is one that limits the ways in which the opponent can reply. A capture of

24 CHAPTER 2. METHODS USED

a piece that it is best to be recaptured, a threat of mating (or forking, etc.) or

a check (where the rules force the player to respond in a certain way) all count

as forcing moves. This type of move shows up in our search tree as a parent

node with only one child (in chess term, as a move with only one meaningful

answer). The narrow solutions attribute counts the number of this type of

moves at each level.

We calculate the number of narrow solutions as shown in Algorithm 6.

Algorithm 6 Calculate the narrow solutions

for each level in searchTree.depth do

let meaningfulAnswers be items from stockfishOutput[level]

if meaningfulAnswers.length == 1 then

increment narrowSolutions[level]

end if

end for

Example

To explain what a narrow solution is, we will use, once again, the hard

illustrative example. As seen in Fig. 2.4, after the player makes his move, the

opponent only has one meaningful answer; NarrowSolutions(2) = 1. The

same can be said about the player’s options the second he needs to make a

move: NarrowSolutions(3) = 1. But after that move, the opponent has a lot

of meaningful answers for that one answer, hence NarrowSolutions(4) = 0,

because there are no “forced moves” at this level. On the fifth level of the

meaningful tree, however, we see five moves that can be answered only by one

meaningful move. That’s why we have NarrowSolutions(5) = 5.

2.5. ATTRIBUTE DESCRIPTION 25

2.5.8 AllNarrowSolutions

Description

With this attribute, we would like to see how much narrow solutions (forced

moves) appear in our search tree. It is more likely that most of the narrow

solutions will appear at levels 3 and 5, meaning the opponent is limiting the

options of the player, but we would still like to see the magnitude of narrow

solutions from the whole meaningful tree.

This attribute is also fairly simple to calculate, since it’s just summing up

the NarrowSolutions(L) attribute from each of the levels, just like we describe

it in Algorithm 7.

Algorithm 7 All Narrow Solutions

for level in searchTree.depth do

add narrowSolutions[level] to allNarrowSolutions

end for

Example

Because this attribute is similar to the other ones that are other attribute

summed up, we already seen this formula (Algorithm 7) for calculating this

kind of attribute. If we would to take the meaningful tree gotten from the

hard illustrative example 2.4 and the data from the example from the Nar-

rowSolutions attribute 2.5.7, we would get AllNarrowSolutions = 1 + 1 +

1 + 0 + 5 = 8. There is no value for NarrowSolutions(1) in the example,

but from the meaningful tree in the hard illustrative example we can see that

NarrowSolutions(1) = 1.

26 CHAPTER 2. METHODS USED

2.5.9 TreeSize

Description

Our search tree, which is similar to a game tree in chess (a directed graph

with nodes and edges) consists of positions (nodes) and moves (edges). It

differs in a way that the root is not the default starting position in chess, but

a start of a tactical problem (whole games in chess are considered a strategic

problem, while choosing a winning variation in a pre-given position setup is

considered a tactical problem). Also, as opposed to a game tree, our search

tree has a fixed maximum depth (set to 5, for computational purposes) which

means, that not all leafs (end nodes) in the tree are usual chess game endings,

such as a checkmate or a draw (we don’t incorporate time control in our search,

just a fixed depth, and there is no option to draw, since the computer plays

against itself). Important thing to note here is that at any one given level (or

depth) in the search tree, only one side (Black or White) can move.

Simply put, TreeSize is the size (measured in number of meaningful moves

from each level) of our search tree, as shown in Algorithm 8.

Algorithm 8 Tree size

for level in searchTree.depth do

add meaningful[level] to treeSize

end for

Example

The TreeSize, as see in the algorithm 8 can be computed from the attribute

Meaningful(L) from L = 1 to the depth of our meaningful tree. If we take the

tree from Fig. 2.6, Meaningful(L) for each L = 1, 2, 3 is 1. Meaningful(4) and

Meaningful(5) are both 5. Consequently, we have TreeSize = 1+1+1+5+5 =

13.

2.5. ATTRIBUTE DESCRIPTION 27

2.5.10 MoveRatio(L)

Description

For any given position, there are a number of valid moves, also referred

to as possible moves, as seen in the attribute PossibleMoves(L), but only a

few sensible ones, also referred to as meaningful moves, as seen in the at-

tribute Meaningful(L). If we would like to calculate the proportion of mean-

ingful moves out of all possible moves, which would give us somewhat of an

idea of difficulty, since different values tell different stories. A really low value

would mean that, either there are a lot of possible moves or there are very

little meaningful moves. A high value might suggest that almost all the moves

are meaningful, or it may even mean that the opponent is forcing us moves,

so we quickly run out of possibilities. This attribute shows the ratio between

those two, out of all the possible moves how many of them should the player

consider playing.

To calculate this value there isn’t much of complexity involved, we just

divide the number of meaningful moves with the number of possible moves at

each level, as documented in Algorithm 9.

Algorithm 9 Proportion of meaningful moves out of all possible ones

for level in searchTree.depth do

moveRatio[level] ← meaningful[level] / possibleMoves[level]

end for

Example

This computation will be quite simple, since we already shown an exam-

ple calculating the meaningful moves in 2.5.2 for the easy illustrative exam-

ple in Fig. 2.5, and the number of possible moves in 2.5.3. Thus, we have

MoveRatio(1) = 1/38 = 0.026.

28 CHAPTER 2. METHODS USED

2.5.11 SeeminglyGood

Description

Some (even many) positions have a high rating mainly because there is

seemingly attractive variation in them that doesn’t actually lead to victory.

Since most of the difficult problems have only one winning variation, all the

alternatives are either seen as losing lines, and ignored immediately by the

player, or in some cases, when the opponent has only one good answer that

the player overlooks, are also seen as winning variations (by the player). Our

reasoning is, it’s easier for the player to get carried away by this alternatives, if

a lot of them exist. We call these deceptive alternatives seeming good moves,

since they are not really a good move for the player (in most cases they worsen

the tactical advantage of the player).

To get all the seemingly good moves the player would encounter, we need

to search the non-meaningful alternatives that have only good one answer by

the opponent, just like in Algorithm 10.

Example

As previously mentioned, SeeminglyGood is one attribute that cannot be

extracted from the meaningful search tree. That is because of the nature of

the attribute, which is counting the non-meaningful moves which only have

one meaningful answers from the opponent to get an idea of answers that we

could have missed while searching for the right move. In Fig. 2.7 we can see

such tactical position, where White can make a move that will cost him his

rook. The winning (meaningful) move here would be to move the queen to b5

(1.Qb3-b5), which attacks Black’s rook at e8 that is undefended. After that

move, Black can safely move his rook to d8 (1...Re8-d8), at the same time

White can capture Black’s bishop on b7 (2.Be4xb7). We explain this reason

behind moving the queen before capturing the bishop in more detail next.

If White overlooks the crushing answer from Black, although he gets to cap-

2.5. ATTRIBUTE DESCRIPTION 29

Algorithm 10 Extract the seemingly good moves from all the possible ones

if level == 1 then

for move in possibleMoves[level] do

if type of move.score is CP then

if move.score < 200 then

append move to badMoves

end if

end if

end for

for move in badMoves do

answers ← stockfishOutput(move)

if answers[1].score < 200 then

let onlyOneAnswer be True

end if

if answers[2].score < 200 then

let onlyOneAnswer be False

end if

if onlyOneAnswer == True then

increment seeminglyGood

end if

end for

end if

30 CHAPTER 2. METHODS USED

Figure 2.7: An example of a tactical chess problem where there is a seemingly

good move that leads to tactical disadvantage: White to move.

ture Black’s bishop at b7, he loses his rook at c1. That is because after White

plays the “non-meaningful” (seemingly good) move 1.e4xb7, Black can respond

by “forking” the rook at c1 by moving his knight to e2 (1...Nf4-e2+) checking

White’s king while also attacking White’s rook. White has no other option,

but to move his king and lose the rook in Black’s next move. White could have

avoided this move if 1.Qb3-b5 was played first (before moving the bishop), be-

cause the queen would be defending the square e2, hence Black would have

never been able to fork White’s rook. From this we get: SeeminglyGood = 1,

since in this position there is only one such move.

2.5. ATTRIBUTE DESCRIPTION 31

2.5.12 Distance(L)

Description

This attribute gives us a representation of how far the player (or his op-

ponent, depending on the level) has to move his chess pieces. The sum of all

distances between the start square and the end square for each of the mean-

ingful moves at a given depth in our search tree. Calculated according to the

rules of Chebyshev distance, the larger value of the two absolute differences

between the start file and end file, and the start rank and the end rank.

We can see the Chebyshev distance being calculated, right before statement

that adds the variable distance to the the dictionary for storing the distances

at each level, in Algorithm 11.

Algorithm 11 Distance between the square on which the piece is, and where

it would be, after the player makes a move

for level in searchTree.depth do

for move in meaningful[level] do

startSquare ← move.startSquare

endSquare ← move.endSquare

startFile ← startSquare.file

endFile ← endSquare.file

startRank ← startSquare.rank

endRank ← endSquare.rank

distance ← MAX (ABS (startFile - endFile), ABS (startRank - en-

dRank))

add distance to distance[level]

end for

end for

32 CHAPTER 2. METHODS USED

Example

We will use the list of meaningful moves, for our easy illustrative example,

shown in 2.5.3, more specifically, just one item from it (the first one, which is

the only one that contains a meaningful move). The combination of letters and

numbers shown here, f6f1, means that we will move the piece on f6 (Black’s

rook) to f1, capturing White’s bishop. By the definition of measuring distance,

we need both ranks and files where the pieces rests, and where needs to move.

From f6f1 we extract the information: the start rank is 6, while the end rank

is 1, a difference of 5. Likewise, we can extract the start file, which is f, and in

this case is the same as the end file, f, so the numeric difference between the

two files is 0.

From the formula in 11: MAX(ABS(f − f), ABS(6 − 1)), where we can

substitute the file (in our case f) with a number a = 1, b = 2, ...h = 6, f − f
would be 5−5 which gives us zero, and since we are looking for a maximum, we

should look at the other result, absolute value of (6−1), which is 5. So we can

conclude the calculation of this attribute (at level 1) with Distance(1) = 5.

Important thing to note here is that we only had one meaningful move, so

our attribute Distance(1) included a distance from only one move. If we had

more meaningful moves at level 1, Distance(1) would be the sum of all their

calculated distances.

2.5.13 SumDistance

Description

This is a measure of how far the involved players (the player and the op-

ponent) has to move the chess pieces, if they would play all the meaningful

variations. Once we calculate the summed distance at each depth, we move

on to all distances from all the meaningful moves from every depth.

SumDistance, like the other attributes that sum up the minor attributes

from each of the levels, can be simply calculated by adding Distance(L) from

2.5. ATTRIBUTE DESCRIPTION 33

each of the levels, in Algorithm 12.

Algorithm 12 Summed distance from all the levels

for level in searchTree.depth do

add distance[level] to sumDistance

end for

Example

This attribute takes into account all Distance(L) attributes from L = 1 to

the depth of the meaningful tree. We will use the meaningful tree in the hard

illustrative example in 2.3. It has 13 nodes (meaningful moves), which means

we need to calculate 13 distance to compute the SumDistance attribute for

this three. From the Fig. 2.4 we can see that the first three moves are (in

Stockfish output format, for easier calculation): e5e8, e1d1 and f2d4. The

first one involves a piece that is moving on the same file, so only the ranks

matter: ABS(5−8) = 3; the second move involves a piece moving on the same

rank, so we only take the start and end file into consideration: ABS(e− d) =

ABS(5− 4) = 1. The third one features different rank as well as different file:

MAX(ABS(f − d), ABS(2− 4)) = MAX(ABS(6− 4), 2) = MAX(2, 2) = 2.

So far we got SumDistance = 3+1+2 = 6. But, we still got 10 more distances

from moves to compute.

At level 4, we see 5 meaningful moves, and from our gathered data logs,

we can see : e2c4, e2f3, e2b5, e2a6, d1d4. To speed up the proces, we will

skip a couple of steps while computing the distances. That said, they are as

follows: computeDistance(e2c4) = 2, computeDistance(e2f3) = 1, compute-

Distance(e2b5) = 3, computeDistance(e2a6) = 4, computeDistance(d1d4) =

3. That makes SumDistance = 6 + (2 + 1 + 3 + 4 + 3) = 19. At level 5,

again we see 5 meaningful moves, but this time the calculation step is a little

easier to do by hand, since 4 of the 5 moves are the same, i.e. for any one of

the 4 moves that the opponent makes, the player has the same answer. Again,

34 CHAPTER 2. METHODS USED

from our logs, one of the moves is d4a1 with a distance of 3, and d8d4 with a

distance of 4.

Now that we know all the distances in our meaningful tree, we can work

out the SumDistance attribute to be SumDistance = 19 + (3 + 4) = 26.

2.5.14 AverageDistance

Description

Just like with AverageBranching, we would like to get an overview of the

minor attribute, from witch the distance is calculated, Distance(L), and that

is why the AverageDistance shows how much the players would have to move

their pieces on average. AverageDistance is the arithmetic mean of the dis-

tance, and since we have the sum of the distances already calculated in SumDis-

tance, we just divide it with the depth of our search tree. Again, it will not

always be 5, the fixed depth we predefined, because sometimes the tree can be

smaller (but not larger). We can see this formula in Algorithm 13.

Algorithm 13 Average distance the players would need to move the chess

pieces on the board

averageDistance ← sumDistance / searchTree.depth

Example

We can expect an example for this attribute to be as brief as the algorithm

by which the calculation abides, and would be right. Looking back to the hard

illustrative example in 2.3, we can see that our meaningful tree is 5 levels deep,

and looking at the computed SumDistance attribute to 26 in 2.5.13, we get

AverageDistance = 26/5 = 5.2.

2.5. ATTRIBUTE DESCRIPTION 35

2.5.15 Pieces(L)

Description

The number of meaningful moves only shows us a number of valid moves

that we can take, that are sensible. But those moves can have something

in common, the piece that is moving. That’s why we are introducing this

attribute – Pieces(L): Number of different pieces involved in the meaningful

moves at each level.

We check for every move if the involved piece has not yet appeared be-

tween the other meaningful answers to the opponent’s (or player’s) move in

Algorithm 14.

Algorithm 14 Number of different pieces involved
count ← 0

let pieces be empty

for move in meaningfulAnswers do

if pieces[move.piece] ! = True then

increment count

let pieces[move.piece] be True

end if

end for

Example

This attribute can sometimes be the same with Meaningful(L), if we only

have one meaningful move at a given level, that means that we will move

only one piece. But when there are more than one meaningful answers at any

given level, like at level 1 in the example in Fig. 2.8, Pieces(1) can differ from

Meaningful(1), if there is a specific piece occurring in more than one move.

The list in 2.5.18 shows all the possible moves, from which only the first three

are meaningful, but we can see the queen at g7 appearing in two of the three

36 CHAPTER 2. METHODS USED

meaningful moves. That means, although we have three meaningful moves, we

only have two different pieces present at level 1; Pieces(1) = 2.

Figure 2.8: An example of a tactical chess problem where there are meaningful

moves that are not checkmate: White to move.

2.5.16 AllPiecesInvolved

Description

This attributes shows how much pieces has been moved, while we were

building the search tree, or rather, the number of all different pieces involved

in the search tree. Important thing to point out here is: the “different” restric-

tion applies only on the same level. Once we go up a level (or down, depending

on the representation of the tree), the set that keeps track of the unique pieces

resets.

2.5. ATTRIBUTE DESCRIPTION 37

We check for every move if the involved piece has not yet appeared be-

tween the other meaningful answers to the opponent’s (or player’s) move in

Algorithm 15.

Algorithm 15 Number of all pieces involved

for level in searchTree.depth do

add pieces[level] to allPiecesInvolved

end for

Example

For the purpose of showing how we calculated the number of all involved

pieces in the meaningful search tree, we will use the tactical chess problem we

saw in the hard illustrative example in 2.3. The problem had 13 meaningful

moves overall, so we know that the number of all pieces involved can be 13

or less. Best way to calculate it is to go from level 1 to the depth of the

meaningful tree (which is not always 5, but it is 5 in our case), and count the

different pieces that occur. From Fig. 2.4 we can see that there is only one

meaningful move at the first three levels. So Pieces(L) for L = [1, 2, 3] is 1. At

level 4, there are 5 meaningful moves, but only 2 pieces moving, i.e. White’s

bishop from d1 is involved in four of the meaningful moves, and the white rook

(now at d1, after 2.Re1-d1) is involved involved in the last one. That makes

Pieces(4) = 2.

At level 5, we observe a similar situation, where out of 5 meaningful moves,

there is only 2 pieces moving: Black’s bishop (at this point placed at d4)

accounts for four of the meaningful moves, and Black’s rook at d8 is responsible

for the fifth meaningful move. If we sum up the pieces from all the levels, we

get AllInvolvedP ieces = 1 + 1 + 1 + 2 + 2 = 7.

38 CHAPTER 2. METHODS USED

2.5.17 PieceValueRatio

Description

In chess, the relative piece value system assigns a value to each piece when

assessing its strength in potential exchanges. Here we use the system to de-

termine which player has larger relative piece value on the board, by taking

the ratio between the player’s calculated value and the value of the opponent’s

pieces. Common values for the different chess pieces involved in the game

are, also proposed by Claude Shannon, one point for each of the pawns, three

points for each of the minor pieces (knights and bishops), five points for each

rook, and nine points for the queen [15, 8, 20, 16]. To avoid king captures, he

is often assigned a large value, such as 10000, but we don’t include this value

in our equations, to avoid undermining the values of the rest of the pieces on

the board, giving us a more realistic ratio.

At the start of each game, we divide the player’s relative piece value with

the opponent’s piece value, as shown in Algorithm 16.

Algorithm 16 Relative piece value ratio

for piece in board.playerPieces do

add piece.value to playerPieceValue

end for

for piece in board.opponentPieces do

add piece.value to opponentPieceValue

end for

pieceValueRatio ← playerPieceValue / opponentPieceValue

Example

Calculating the relative piece value ration is pretty straight forward, once

you are familiar with the rules. Like we described the attribute, we don’t

consider the king’s value, whatever it is, because there will always be a white

2.5. ATTRIBUTE DESCRIPTION 39

and black king on the chessboard. The values of the other pieces are relative

to the pawn (value of one). The knight and the bishop are each worth three

pawns, the rook is worth five pawns, while the queen is worth nine. The

calculation that follows is from looking at the tactical chess problem in Fig. 2.8.

First, we go over the player’s pieces, adding the value of the piece to the total

value for the player: There are seven white pawns (add 7 to total value for

White), a white bishop (add 3), a white rook (add 5) and a queen (add 9). That

make the total for the player equal to 24. Second, we go over the opponent’s

pieces, adding the value of the piece to the total value for the opponent: There

are five black pawns (add 5 to total value for Black), a black knight (add 3),

a black bishop (add 3), a black rook (add 5) and a black queen (add 9). That

make the total for the player equal to 25.

2.5.18 WinningNoCheckmate

Description

Number of moves that would lead to a winning position, but they are not

mate. There is a difference between the easy and the hard positions in the

tactical problems we are looking at, namely the easy problems can have a lot

of mating possibilities, while the hard ones are more about winning material

or getting in a better tactical position.

At the start of each game, check to see how many moves have the opportu-

nity to gain material, but not checkmate the king, as shown in Algorithm 17.

Algorithm 17 Winning moves, that aren’t checkmate

for move in possibleMoves[1] do

if type of move.score == CP AND value of move.score >= 200 then

add move to winningNoCheckmate

end if

end for

40 CHAPTER 2. METHODS USED

Example

This time around, we need an example where there will be more than one

meaningful move at level 1, at least one of them will be measured in mate in

x moves, and the others will be measured in centipawns. The example below

is a shortened list of all the possible moves White can make at the start of

the problem. A chessboard illustration of the problem given can be seen in

Fig. 2.8.

• info score mate 1 multipv 1 pv g7d7

• info score cp 370 multipv 2 pv e1e6

• info score cp 370 multipv 3 pv g7b7

• info score cp 116 multipv 4 pv g7f6

• info score cp -61 multipv 5 pv g7h6

• info score cp -184 multipv 6 pv g7g8

• info score cp -241 multipv 7 pv e1e7

• info score cp -861 multipv 8 pv g7g6

• info score cp -901 multipv 9 pv g7e5

• info score cp -924 multipv 10 pv e1e8

• ...

We can see that moving the queen to d7 results in a move in 1 move.

But if the player misses that move, there are other possibilities that are still

considered as meaningful moves, e.g. taking the pawn on b7 with the queen

or checking the king with the rook (1.Re1-e6+). In this case, we say that

the attribute WinningNoCheckmate = 2, since there are three meaningful

moves, but one of them leads to imminent mate.

2.6. EXPERIMENTAL DESIGN 41

2.6 Experimental Design

The aim of the experiments was to assess the utility of the meaningful

search trees for differentiating between easy, medium hard and hard tactical

chess problems. We used 900 problems from the Chess Tempo website: 1/3 of

them were labeled as “easy” (with average Chess Tempo Standard Rating ∅
= 1254.6, standard deviation σ = 96.4), 1/3 of them as “medium hard” (∅ =

1669.3, σ = 79.6), and 1/3 of them as “hard” (∅ = 2088.8, σ = 74.3). Chess

engine Stockfish at 10-ply depth of search was used to build the meaningful

search tree up to level 5. The parameters w and m were set to 200 centipawns

and 50 centipawns, respectively. Several attributes were derived from the

trees. They are presented in Table 2.1. Attributes 1–10 represent features

that mainly reflect properties of the meaningful search trees, while attributes

11–17 are more closely related to the properties of the chosen domain – chess in

our case. We used five standard machine learning classifiers (and 10-fold cross

validation) to estimate performance of (all) the attributes, and the performance

of each aforementioned groups of attributes.

42 CHAPTER 2. METHODS USED

Chapter 3

Experimental Results

The methods we used we explained in the previous section, but we need to

compare them with the results on our data set of tactical chess games played

by humans. We present the experiment in this chapter.

Having experimented with different parameters for the lists of algorithms

(see 3.1) that we used (leftmost column), we found the ones that work for our

methods of work:

1. Neural Networks - Inspired by the central nervous system of animals,

artificial neural networks are a statistical learning algorithm that are

used to estimate functions.

(a) Hidden layer neurons: 20

(b) Regularization factor: 1.0

(c) Maximum iterations: 300

(d) The data was normalized

2. Logistic Regression - A type of probabilistic statistical classification

model, mostly used for binary prediction, but here we used for three

values.

43

44 CHAPTER 3. EXPERIMENTAL RESULTS

(a) L2 (squared weight) for regularization, with training error cost (C)

1.0

(b) We normalized the data

3. Classification Tree - A decision tree where the target variable (in our

case difficulty) can take a finite set of values.

(a) Gain ratio was used as a criterion attribute selection

(b) Exhaustive search for optimal split as binarization

(c) Minimum 10 instances in the leaves for pre-pruning

(d) Stopped splitting nodes when the majority class was 85% or higher

(e) m-estimate for post-pruning was set to 10

(f) Recursively merged the leaves with the same majority class

4. Random Forest - An ensemble learning method for classifications that

operates by constructing multitude of decision trees.

(a) 10 trees in the forest

(b) Seed for random generator was 7

(c) Stopped splitting nodes with 10 or fewer instances

5. CN2 Rules - a rule induction learning algorithm that can create set of

rules, while being able to handle noisy (imperfect) data.

(a) Laplace was used as a rule for quality estimation

(b) The default rule alpha for pre-pruning was set to 0.05

(c) The parent rule stopping alpha was set to 0.2

(d) There were no restrictions on minimum coverage

(e) The beam width was set to 5

(f) We used the exclusive covering algorithm

45

To measure the correctness of our approach we used classification accu-

racy (higher is better), area under ROC curve (higher is better) and Brier

score (less is better), gathered from the experiments for all the attributes (see

Section 2.5.1) is shown in Table 3.1.

All Attributes

Classifier CA AUC Brier

Neural Network 0.81 0.94 0.25

Logistic regression 0.81 0.94 0.28

Classification Tree 0.81 0.90 0.33

Random Forest 0.74 0.89 0.41

CN2 rules 0.73 0.89 0.37

Table 3.1: Results of experiments with the all attributes.

Classification accuracy (CA), Area under ROC curve (AUC), and Brier

score are given for each of the five classifiers. All classifiers were able to

differentiate between easy, medium hard, and hard problems with a high level

of accuracy when both the tree and domain attributes (from Table 2.1) were

used. 17 attributes total, each of them derived from letting a chess engine

play chess matches against himself, while logging data that we later used for

machine learning.

However, it is interesting to observe that their performance remained al-

most the same when only attributes 1–10 (see Table 3.2) were used. This

only includes attributes like the number of nodes in our tree (the tree size),

the number of all considered nodes before pruning, the branching factor, the

number of parent nodes with only one child node, etc. This is the important

because the whole premise of our research was to find automated assessment

of difficulty, without going too much in depth in a given domain. These at-

tributes are computable from the structure of meaningful search trees, and

contain no domain-specific knowledge.

On the other hand, the performance of the classifiers dropped significantly

46 CHAPTER 3. EXPERIMENTAL RESULTS

Attributes 1-10

Classifier CA AUC Brier

Neural Network 0.80 0.94 0.26

Logistic regression 0.79 0.94 0.29

Classification Tree 0.80 0.89 0.33

Random Forest 0.74 0.89 0.41

CN2 rules 0.74 0.90 0.36

Table 3.2: Results of experiments with the tree attributes.

when attributes 11–17 (see Table 3.3) were used. These attributes were still

derived from the meaningful search trees, however, they do contain chess-

related knowledge such as information about piece movements, piece values,

and checkmates, but do not concern the structure of the trees at all. For

example, the more distant moves, that the player might overlook, the sheer

number of pieces and their roles on the board that the player needs to consider

before making a move, the value ratio of pieces on the board between the player

and the opponent, etc.

Attributes 11-17

Classifier CA AUC Brier

Neural Network 0.46 0.64 0.61

Logistic regression 0.47 0.69 0.60

Classification Tree 0.46 0.63 0.73

Random Forest 0.49 0.69 0.60

CN2 rules 0.41 0.61 0.86

Table 3.3: Results of experiments with the domain attributes.

The results support the idea on not dwelling too deep into a specific domain

to extract information of problem difficulty, but to look at the built search tree

generated from domain knowledge, while still being generalized enough that

can be used to estimate difficulty in a wide selection of problem areas.

Chapter 4

Conclusions

We tackled the problem of how to assess automatically the difficulty of a

mental problem for a human, which depends on the human’s expertise in the

problem domain. We focused in our experiments on assessing the difficulty

of tactical chess problems for chess players of various chess strengths. The

difficulty depends on the amount of search required to be carried out by the

player before he or she finds the solution. An experienced player only has to

search a small part, here called “meaningful tree,” of the complete search tree.

The rest of the search tree is pruned away by a large amount of pattern-based

chess knowledge that the player has accumulated through experience. A direct

approach to assessing the difficulty of the problem for the player would be to

automatically reconstruct the player’s meaningful tree. This would however

require a computer implementation of the player’s pattern knowledge which

would be extremely hard due to the complexity of this knowledge and has

never been done to a realistic degree. The idea put forward in this thesis is

to approximate the player’s meaningful tree with the help of another type of

“meaningful” tree.

We showed how such an approximation to the human’s meaningful tree can

be extracted from the complete search tree automatically by a chess playing

program. The extracted subtree only contains critical chess variations, that

47

48 CHAPTER 4. CONCLUSIONS

is those that only contain best or “reasonable” moves which is decided by

the chess program’s evaluations of positions. To turn this idea to work as

difficulty estimator of chess problems, we constructed a set of attributes and

performed classification learning for the task of classifying positions into hard

or easy. The attributes were of two types: (1) those that are derived from the

structure of the meaningful tree only (just formal mathematical properties of

the tree, ignoring the chess-specific contents of nodes and moves in the tree),

and (2) attributes that reflect chess-specific contents of the nodes and arcs.

The important findings from the experimental results are:

1. The classification accuracy so obtained was rather high, about 80%,

which indicates the viability of the proposed approach.

2. Using tree structure attributes only, achieved practically the same accu-

racy as using all the attributes.

3. Using chess-specific attributes only, produced accuracy inferior to using

all the attributes, as well as using tree structure attributes only. This is

interesting because it indicates that the difficulty can be determined from

the structure of the meaningful tree, but less so from domain-specific

contents.

We set the aim of the research to be finding formalized measures of difficulty

that could be used in automated assessment of the difficulty of a mental task

for a human. As said before, this would be really convenient for subjects such

as ITS or student’s exams. We mention intelligent tutoring systems because of

the complexity and work involved in the process of making them. If we would

have a formalized approach that takes into account only a simple game tree

and its properties, we would be simplifying the process of making an ITS.

Bibliography

[1] P. Jarušek, R. Pelánek, “Difficulty rating of sokoban puzzle,” in: Proc.

of the Fifth Starting AI Researchers’ Symposium (STAIRS 2010), IOS

Press, 2010, pp. 140–150.

[2] R. Pelánek, “Difficulty rating of sudoku puzzles by a computational

model,” in: Proc. of Florida Artificial Intelligence Research Society Con-

ference (FLAIRS 2011), AAAI Press, 2011, pp. 434–439.

[3] Guid M., Bratko I., “Search-based estimation of problem difficulty for

humans,” in Artificial Intelligence in Education, ser. Lecture Notes in

Computer Science, H. Lane, K. Yacef, J. Mostow, P. Pavlik, Eds. Springer,

vol. 7926, 2013, pp. 860–863.

[4] A.E. Elo, “The rating of chessplayers, past and present,” in Arco Pub.,

1978.

[5] A. Newell, H. Simon, “Human Problem Solving,” Prentice-Hall, 1972.

[6] D.H. Holding, “Adversary problem solving by humans,” in Human and

machine problem solving. Springer, 1989, pp. 83–122.

[7] V. Allis, “Searching for Solutions in Games and Artificial Intelligence,” in

Ph.D. Thesis, University of Limburg, pdf, 6.3.9 Chess, 1994, pp. 171.

[8] H. S. M. Coxeter, “Mathematical Recreations and Essays,” from the orig-

inal by W. W. Rouse Ball, Macmillan, 1940.

49

50 BIBLIOGRAPHY

[9] J. Demšar, T. Curk, A. Erjavec, Č. Gorup, T. Hočevar, M. Milutinović,

M. Možina, M. Polajnar, M. Toplak, A. Starič, M, Štajdohar, L. Umek L.

Žagar, J. Žbontar, M, Žitnik, B. Zupan, “Orange: Data Mining Toolbox

in Python,” in Journal of Machine Learning Research, vol. XIV, pp. 2349-

2353, 2013.

[10] K. Kotovsky, H. A. Simon, “What makes some problems really hard:

Explorations in the problem space of difficulty,” in Cognitive Psychology

22(2), pp. 143–183, 1990.

[11] Z. Pizlo, Z. Li, “Solving combinatorial problems: The 15-puzzle,” in Mem-

ory and Cognition 33(6), pp. 1068–1084, 2005.

[12] M. Dry, M. Lee, D. Vickers, P. Hughes, “Human performance on visually

presented traveling salesperson problems with varying numbers of nodes,”

in Journal of Problem Solving 1(1), pp. 20–32, 2006.

[13] D. Hristova, M. Guid, and I. Bratko, “Assessing the Difficulty of Chess

Tactical Problems,” in International Journal on Advances in Intelligent

Systems, vol. VII, no. 3 & 4, 2014.

[14] M.E. Glickman, “Parameter estimation in large dynamic paired compar-

ison experiments,” in Applied Statistics 48, pp. 377-394, 1999.

[15] J. Good, “A Five-Year Plan for Automatic Chess - Appendix F,” The

Value of the Pieces and Squares. Machine Intelligence Vol. 2, 1968.

[16] H. M. Taylor, “On the Relative Values of the Pieces,” in Chess. Philo-

sophical Magazine, Series 5, Vol. 1, pp. 221-229, 1876.

[17] K. Kotovsky, J. R. Hayes, H. A. Simon, “Why are some problems hard?

Evidence from tower of Hanoi,” in Cognitive Psychology 17(2), pp. 248–

294, 1985

BIBLIOGRAPHY 51

[18] (September 09, 2009) Centipawns and Millipawns by Robert Hyatt, CCC.

Available at: http://www.talkchess.com/forum/viewtopic.php?t=

29694&start=14

[19] (June 11, 2011) Max[imum] amount of moves from a position? by

Árpád Rusz, CCC. Available at: http://www.talkchess.com/forum/

viewtopic.php?topic_view=threads&p=410026&t=39332

[20] Influence Quantity of Pieces - Fibonacci Spiral. Available at:

https://chessprogramming.wikispaces.com/Influence+Quantity+

of+Pieces#FibonacciSpiral

http://www.talkchess.com/forum/viewtopic.php?t=29694&start=14
http://www.talkchess.com/forum/viewtopic.php?t=29694&start=14
http://www.talkchess.com/forum/viewtopic.php?topic_view=threads&p=410026&t=39332
http://www.talkchess.com/forum/viewtopic.php?topic_view=threads&p=410026&t=39332
https://chessprogramming.wikispaces.com/Influence+Quantity+of+Pieces#FibonacciSpiral
https://chessprogramming.wikispaces.com/Influence+Quantity+of+Pieces#FibonacciSpiral

	Abstract
	Povzetek
	Razširjeni povzetek
	Introduction
	Motivation
	Our approach and contributions
	Related work
	Structure

	Methods Used
	Domain Description
	Meaningful Search Trees
	Illustrative Example (Hard)
	Illustrative Example (Easy)
	Attribute Description
	Experimental Design

	Experimental Results
	Conclusions

