
UNIVERZA V LJUBLJANI

Fakulteta za računalnǐstvo in informatiko

Nino Ostrc

Performančni modul za platformo

BI4Dynamics

Diplomsko delo

UNIVERZITETNI ŠTUDIJSKI PROGRAM

RAČUNALNIŠTVO IN INFORMATIKA

Mentor: doc. dr. Luka Šajn

Ljubljana 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Ljubljana Computer and Information Science ePrints.fri

https://core.ac.uk/display/151478151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF LJUBLJANA, SLOVENIA

Faculty of Computer and Information Science

Nino Ostrc

Performance module for

BI4Dynamics platform

BACHELOR’S THESIS

UNDERGRADUATE UNIVERSITY STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Supervisor: Assist. Prof. Luka Šajn, PhD

Ljubljana 2015

Fakulteta za računalnǐstvo in informatiko izdaja naslednjo nalogo:

Tematika naloge:

V okviru diplomske naloge izdelajte načrt za performančno orodje za ana-

litično platformo BI4Dynamics. Za potrebe načrta najprej analizirajte in

opǐsite obstoječo arhitekturo in razmislite, kako bi jo izkoristili in orodje re-

alizirali kot modul. Posebno pozornost namenite funkcionalnosti za zajem

statistik in zagotavljanju neodvisnosti od ostalih poslovnih podatkov.

Izjava o avtorstvu diplomskega dela

Spodaj podpisani Nino Ostrc, z vpisno številko 63060164, sem avtor di-

plomskega dela z naslovom:

Performančni modul za platformo BI4Dynamics

S svojim podpisom zagotavljam, da:

• sem diplomsko delo izdelal samostojno pod mentorstvom doc. dr. Luke

Šajna,

• so elektronska oblika diplomskega dela, naslov (slov., angl.), povzetek

(slov., angl.) ter ključne besede (slov., angl.) identični s tiskano obliko

diplomskega dela,

• soglašam z javno objavo elektronske oblike diplomskega dela na svetov-

nem spletu preko univerzitetnega spletnega arhiva.

V Ljubljani, dne 13. januarja 2015 Podpis avtorja:

I would like to thank my supervisor Assist. Prof. Luka Sajn, PhD, for all

the help and directions in writing this thesis. Also special thanks go out to

my co-workers at BI4Dynamics d.o.o. who shared with me all the trials and

tribulations in developing this project.

Most important of all, of course, my mother - the best mom in the world.

Without you there would be no me.

Your dreams came true. Finally.

Contents

Povzetek

Abstract

1 Introduction 1

2 Businesses Intelligence 3

2.1 Lessons Of History . 5

2.2 Definition . 8

3 BI4Dynamics 11

3.1 BI4Dynamics NAV . 12

3.2 Data Model . 13

3.3 Interface . 31

4 BI4Profiler 35

4.1 Module . 35

4.2 Development . 38

4.3 Putting it all together . 44

4.4 Filling the void . 47

5 Conclusion 51

List of Figures 52

List of Tables 53

List of abbreviations

1. BI: Business Intelligence

2. ERP: Enterprise Resource Planning

3. DBMS: Database management systems

4. .NET: Software framework developed by Microsoft, which runs primar-

ily on Microsoft Windows

5. AMO: Analysis Management Object

6. ETL: Extract, Transform, Load

7. OLAP: Online Analytical Processing

8. SQL: Structured Query Language

9. XML: Extensible Markup Language

10. UI: User Interface

11. NAV: Navision

12. AX: Axapta

13. DMV: Dynamic Management Views

14. DMO: Database Management Objects

15. XAML: Extensible Application Markup Language

Povzetek

BI4Dynamics je analitična BI-rešitev, ki nadgradi transakcijske sisteme Mi-

crosoft Dynamics ERP s sposobnostjo kompleksnih analiz podatkov. V pod-

jetju BI4Dynamics smo razvili dve produktni liniji platforme BI4Dynamics.

BI4Dynamics NAV za transakcijske sisteme Microsoft Navision ter BI4Dynamics

AX za transakcijske sisteme Microsoft Axapata. Ker je podatkovni model

obeh produktov v samem jedru enak, razen manǰsih strukturnih specifičnosti,

in ker je bil performančni modul BI4Profiler razvit za sisteme BI4Dynamics

NAV, se v nadaljevanju osredotočamo le na te sisteme.

Platforma BI4Dynamics je zapakirana kot .NET-aplikacija. Poleg veliko

dodatnih funkcionalnosti, ki jih tukaj ne omenjamo, je njen najpomembneǰsi

del namestitveni čarovnik. Ta v šestih preprostih korakih, preko uporabnǐske

interakcije, zgradi podatkovno skladǐsče in analitično bazo.

Podatkovno skladǐsče BI4Dynamics, ki se namesti na Microsoft SQL-

strežnik, je zgrajeno po Kimballovem principu zvezdne sheme [8] in pred-

stavlja podatkovni vir za nabor OLAP-kock v analitični bazi. Razdeljeno je

na področje priprave podatkov in prezentacijski nivo. Na področju priprave

podatkov se kreirajo ekvivalenti tabel Navision, v katere se z ETL-paketi

prečrpajo prečǐsčeni podatki iz podatkovnega vira. ETL-procesi nadalje skr-

bijo za transformacijo teh podatkov v zvezdno shemo na prezentacijskem

nivoju [8]. Ta je sestavljen iz tabel dejstev in dimenzijskih tabel. Tabela

dejstev predstavlja meritve nekega poslovnega področja (recimo prodaje),

dimenzijske tabele pa predstavljajo tekstovne deskriptorje tega poslovnega

področja (recimo artiklov). Transformacijo ETL-procesi izvedejo s transfor-

macijskim pogledom in polnitveno proceduro. Transformacijski pogled je

najpomembneǰsi del te platforme, saj se tu nahaja vsa poslovna logika.

Med podatki prezentacijskega nivoja in poslovnimi uporabniki pa se na-

haja še en nivo – analitična baza. Ta poslovnim uporabnikom še dodatno

poenostavi in pohitri analizo podatkov, ker uporablja odlično kompresijo po-

datkov in predpripravljene agregate podatkov po različnih nivojih dimenzij.

Osnovo analitične baze predstavljajo kocke, ki so množice sorodnih meri-

tev in dimenzij. Kocka je ekvivalent paketu v aplikaciji, ki predstavlja eno

poslovno področje (npr.: prodajo). Dimenzija pa je skupina atributov, ki

predstavljajo interesno področje pri analizi sorodnih meritev znotraj kocke.

Kocka torej črpa podatke iz prezentacijskega nivoja podatkovnega skladǐsča,

s tem da združi sorodne tabele dejstev oz. meritev. Rešitev BI4Dynamics

vsebuje 14 kock, ki pokrivajo tako standardna kot nestandardna poslovna

področja.

Ko se namesti podatkovno skladǐsče in analitična baza in se podatki v

njih tudi obdelajo, se lahko uporabnik poveže z analitičnim strežnikom s

katerim koli BI-kompatibilnim uporabnǐskim orodjem. Najbolj pogosto upo-

rabljeno orodje je Excel, za katerega nudimo že predpripravljena poročila za

vsa standardna področja analize podatkov.

Vendar prava moč rešitve BI4Dynamics leži v njeni platformni zasnovi.

Ker v celoti uporablja Microsoftov arhitekturni sklad, ki temelji na analitični

in SQL-tehnologiji, v polni meri omogoča spreminjanje katere koli od kom-

ponent modula. Modul v našem primeru pomeni osnovni gradnik platforme

BI4Dynamics. Modul je lahko dimenzija ali kocka in vse pripadajoče od-

visne komponente v podatkovnem skladǐsču ter viru. Modul torej vsebuje

analitični objekt (dimenzijo ali kocko), ETL-procedure (transformacijski po-

gled in polnitveno proceduro) ter seznam stolpcev in tabel na podatkovnem

viru Navision, na osnovi katerih se zgradi področje priprave podatkov.

Prva verzija rešitve BI4Dynamics je vsebovala šest kock, kot del spe-

cifičnih projektov za stranke pa smo razvili tudi druge kocke in pripadajoče

dimenzije, ki smo jih kasneje zaradi frekventnega povpraševanja po njih in

pogoste uporabe integrirali kot del standarda. Vsakič, ko smo implemen-

tirali nove skripte, še posebej v fazi optimizacije, so se porajala vprašanja,

kako se ti skripti obnesejo, če bi jih lahko pohitrili, kje je ozko grlo in koliko

prostora porabijo na strežniku. Če izvajamo meritve ročno brez avtomatike,

je to lahko mučen in dolgotrajen proces. Sprva smo hoteli razviti preprosto

performančno orodje za interno uporabo. Nato smo se odločili, da bi lahko

izkoristili obstoječo platformo in to orodje zapakirali kot modul ter ga po-

nudili tudi našim partnerjem, ki so jih mučili podobni problemi, in nazadnje

tudi končnim strankam, ki bodo lahko analizirale te podatke na isti način,

kot bi katerokoli drugo poslovno področje.

BI4Profiler je torej performančni modul, ki pa poleg osnovne funkcional-

nosti modula, se pravi svoje OLAP-kocke, nabora dimenzij ter pripadajoče

komponente v podatkovnem skladǐsču, vsebuje še dodatno funkcionalnost

za zajem statistik, ki smo jo morali implementirati v ogrodje BI4Dynamics.

Moja naloga v tem procesu je bila načrtovanje arhitekture te funkcionalnosti

in nadzor razvoja modula. Ker smo hoteli zagotoviti neodvisnost in obstoj-

nost teh statističnih podatkov tudi v primeru, ko uporabnik na novo namesti

podatkovno skladǐsče, smo za modul uvedli novo ločeno podatkovno skladǐsče

in analitično bazo, ki pa se namestita samo ob prvi namestitvi originalnega

podatkovnega skladǐsča in se nato ne spreminjata. Podatki v njih pa se obde-

lajo po tem, ko se obdelajo vsi podatki v originalnem podatkovnem skladǐsču

in analitični bazi.

Podatkovno skladǐsče tega modula prav tako vsebuje področje priprave

podatkov in prezentacijski nivo. Področje priprave podatkov predstavljata

samo dve tabeli: glavna tabela s statistikami obdelav in tabela paketnih

obdelav. Pred obdelavo originalnih podatkov se v tabelo paketnih obdelav

doda zapis, ki predstavlja trenutno obdelavo s časovnim žigom. Med ob-

delavo se v tabelo s statistikami beležijo statistike za vsako od polnitvenih

procedur, ki se izvaja v tej obdelavi. Ko se obdelava konča, se pripadajoči

vrstici v tabeli paketnih obdelav doda časovni žig za konec obdelave in vsi

zapisi v tabeli statistik se označijo, da pripadajo tej paketni obdelavi. Nato

se ti podatki transformirajo ter prenesejo v prezentacijski nivo in na koncu

se tabela statistik sprazni. Nekatere glavne statistike so: ime objekta oz. pol-

nitvene procedure, začetni časovni žig, končni časovni žig, neto čas izvajanja

ter absolutni čas izvajanja oz. obračalni čas.

Modul vsebuje samo eno OLAP-kocko s petimi meritvenimi grupami (kar

pomeni pet tabel dejstev v prezentacijskem nivoju): statistike obdelav, stati-

stike tabel, statistike indeksov, statistike baze oz. podatkovnega skladǐsča ter

statistike trdih diskov. Prav tako vsebuje sledeče dimenzije (seveda z pripa-

dajočimi dimenzijskimi tabelami v prezentacijskem nivoju): paketna obde-

lava, datum, baza, datoteke na bazi, indeksi, procedure, tabele, tip obdelave,

področje obdelave ter načrt obdelave.

Vse tabele dejstev razen statistika obdelav se napolnijo iz trenutnega sta-

nja baze v procesu transformacije. Ta pa se napolni iz ekvivalente tabele s

področju priprave podatkov, ki pa podatke dobi med samo obdelavo, za kar

skrbi funkcionalnost za zajem podatkov. Ta funkcionalnost je realizirana v

obliki ločene niti, ki se zažene pred klicem originalne polnitvene procedure

modula, ki se trenutno obdeluje, in se uniči, ko se konča izvajane te pro-

cedure. Nit v tem času pošilja poizvedbe na SQL-strežnik, na katerem se

nahaja originalno podatkovno skladǐsče, glede statistike izvajanja trenutne

procedure, kot je koliko RAM-a ima trenutno na voljo. Preden se nit uniči,

torej po tem, ko se je originalna polnitvena procedura izvedla, nit pošlje še

zadnjo poizvedbo na SQL-strežnik, s katero dobi še vse ostale statistike, ki

jih potem zapǐse v tabelo statistik obdelav. To doseže z uporabo sistem-

skih pogledov ali DMV-jev (Dynamics Management Views), ki jih ponuja

Microsoftov SQL-strežnik. Prvi, preko katerega izve za porabo spomina, je

sys.dm exec query memory grants, drugi pa sys.dm exec procedure stats. Tu

nit dobi pet statistik: začetek časovni žig, trajanje izvajanja, izvajanje na

procesorju ter ime baze. Na podlagi teh statistik in podatkov, ki jih prejme

iz aplikacije, nit izračuna in dopolni še vse ostale statistike.

Ključne besede: BI, podatkovno skladǐsče, zmogljivostna analiza, DMV,

OLAP, BI4Dynamics.

Abstract

BI4Dynamics is an analytical Business Intelligence (BI) solution for Microsoft

Dynamics ERPs. The solution deploys a data warehouse on a Microsoft SQL

server and creates an analytical database on a Microsoft Analysis server; ac-

cordingly, due to SQL’s flexibility, it offers an excellent platform for develop-

ing custom BI modules; OLAP cubes and dimensions.

This paper describes how the BI4Profiler, which is a performace module

for BI4Dynamics platform, was developed. In this process my task was to

design the core architecture of the module and oversee project development.

The BI4Profiler module grew out of our partners’ and our own need for a

tool when benchmarking and optimizing custom developed SQL scripts.

We wanted to use the existing framework so this tool was packed as a

module, thus it can be analyzed using any BI compatible front end tool. To

ensure independency of statistic data, the BI4Profiler deploys its own sepa-

rate data warehouse with staging and presentation area, as well as an OLAP

cube with a set of dimensions. Although module, it has an additional core

functionality that we had to integrate into the existing framework. During

the execution of the scripts, this separate thread pools the SQL Server using

DMVs (Dynamics Management Views) for statistics, which first saves said

statistics to the data warehouse, thence builds and processes the analytical

database.

Keywords: BI, BI4Dynamics, OLAP, data warehouse, benchmarking, DMV.

Chapter 1

Introduction

There have been a lot of BI providers on the market of late. Some offer

complete solutions, while others only cover certain functionality of BI - such

as visualization. Here at BI4Dynamics d.o.o. we developed a complete BI

solution for Microsoft Dynamics ERPs. This solution provides a platform

that enables users to develop their own modules or customize standard ones.

For the sake of better integration it is built on top of the Microsoft Technol-

ogy Stack, with Microsoft SQL for the data warehouse, Microsoft Analysis

Services for the OLAP cubes and .NET framework for the interface.

The BI4Dynamics platform contains 14 standard cubes that cover most

common businesses areas. Back in 2008 we started with only 6 standard cubes

but over the years we and our partners - as a part of client specific projects

- have developed custom cubes that later became part of our standard cube

repository. Yet every time we started implementing these customizations we

faced the same challenge, especially in the optimization phase. How do those

new scripts perform? And how much space do they use? You can do the

benchmarking manually, but it’s a really strenuous task.

This is how the BI4Profiler was born. Initially we intended to build a

simple benchmarking application, but then decided to package it as a module

capable of enabling users to analyze statistical data in much the same way

as they would their business data.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Businesses Intelligence

In the modern consumer age, one cannot imagine running a large company

in which all records are kept in paper format. Indeed, why would we. Since

the advent of computers, we have been given an amazing opportunity to take

evolution to a whole new level. Every year our technological capacities grow

exponentially, and an enormous amount of data is being collected, processed

and stored every day. That’s why companies - big and small - need robust,

rapid and reliable systems. These are so-called transaction systems, mostly

known as ERP (Enterprise Resource Planning) systems. Even though these

systems offer some form of static analysis, they are primarily optimized for

data collection. But data does not equal information. Data without con-

text is meaningless. Implemented as an ERP add-on, the first BI solutions

emerged during the late 1990s as an answer to the desire to obtain useful

information from analytical data which ultimately provides knowledge and a

better understanding of the market, products, services and customers, which

in turn ensures a march on competition.

You can find a vast variety of definitions of BI on the internet, but to

really understand it we have to answer two fundamental questions:

1. What is its purpose?

2. How is it used?

3

4 CHAPTER 2. BUSINESSES INTELLIGENCE

Over the years, with evolution of technology, we have witnessed great

improvements in BI systems but their sole purpose remains the same. Sun

Tzu’s magnum opus Art of War [1] talks about the importance of knowing

both your own and your opponent’s greatest strengths and weaknesses in

order to win a war; such is also the underlying notion of modern economic

warfare: only a complete overview and understanding guarantees optimal

decisions. A company must know all its strengths and weaknesses and has

to be able to exploit its opponent’s weaknesses if it wishes to successfully

compete on the market battlefield. So the main purpose of BI systems is the

timely provision of quality information in order to achieve better and more

reliable decision making processes and the subsequent provision of a head

start in the market through higher quality business processes, services and

products as a consequence of such decisions.

Important decisions are usually based on the conclusions of multiple ex-

perts from various departments within the organization. These experts rely

on the fact that the latest information is up to date and reflects company’s

current state. BI systems therefore have to reflect a company’s objective re-

ality; if it does not, said system doesn’t hold any value to the company, and

indeed incorrect information in relation to business processes may even have

deleterious consequences. Besides providing sound information, one of the

main goals of BI systems is the timely delivery of relevant useful information.

These factors do, of course, vary from field to field. For example in stock

trading the on-time factor is of manifold greater importance than it is in

the retail sector, because information has to be available right away else the

lucrative investment opportunity will be missed. Likewise the operational

health of the company (e.g. reduced production costs, increased sales, better

HR management, greater productivity) is proportional to the quality of the

intelligence provided.

For this reason, the realization of BI systems is nowadays one of the most

important tasks within modern organizations, if not the most important.

Indeed, Garnet’s 2008 survey of 1,500 leading CEOs concurs with this asser-

2.1. LESSONS OF HISTORY 5

tion, while BI systems rank among the top 3 priority tasks undertaken by

the IT department. It can only be surmised that the importance of this task

can only have increased in the interim.

2.1 Lessons Of History

BI systems have been around in their primitive form since the dawn of man.

All organizations are forever in need of insightful information, on the basis

of which decisions are made. Any organization which makes decisions based

on a whim or hunch is ultimately destined to fail and fall apart. Before

the advent of computers, various media - from stone inscriptions to paper

accounts - were used to store data, while the system’s building blocks were

people. Analysts who possessed the knowledge and skill to extract useful

information from stored data, and mathematical and statistical methods were

employed in this. Early data were records of transactions and the trade of

goods and commodities such as silk and sugar. For example, the Sumerians

kept records of wheat shipments carved into stone plates, and this is the first

recorded use of a written language for the purpose of storing and analyzing

data. As can be seen, the questions bothering the Sumerians were not so

different from the ones we have today. Which product is the most profitable?

And which buyers are late with payments? Just the time needed to provide

answers was significantly longer.

From the data inscribed in stone to the data stored in a RAM (Random

Access Memory) or on a hard drive, there’s always been a challenge in storing

the largest possible amount of data in the smallest possible space. The need

for increasing the capacity of a storage medium is even more relevant today.

The possibility of storing large amounts of data became significant when the

first magnetic tapes emerged in the early 1950s 1 and really took off with the

1Magnetic tape was first used to record computer data in 1951 on the Eckert-Mauchly

UNIVAC I. The recording medium was a thin strip of half-inch (12.65 mm) wide nickel-

plated bronze (called Vicalloy). The recording density was 128 characters per inch (198

micrometer/character) on eight tracks.

6 CHAPTER 2. BUSINESSES INTELLIGENCE

advent of the hard drive, which represented a huge step forward in mass data

storage. This set the stage for the arrival in late 1960s of the Hierarchical

database model and mass data collection.

Edgar F. Codd published A Relational Model of Data for Large Shared

Data Banks [2] in 1970, and this laid the foundations for the database systems

we know today. This set off an avalanche of relational DBMS such as Ingres,

SyBase, System R and later DB2, while the first tools for analyzing and

reporting emerged not long after. Such tools were, however, far from handy;

the analyst needed help from a programmer - who knew the DBMS inside

out- to transfer the data from the server. Not only was there a low limit for

the amount of data that could be transferred, but also, from this point on,

the transferred data was no longer synchronized with the server. This was

a huge blow due to the fact that the amount of transferred data was rarely

sufficient to satisfy the need for quality analysis, hence reliability remained

a limiting factor. Combining this with a command line user interface and

inherent inability to handle missing values or partial records, systems were

highly prone to error, which was the reason in itself why those tools were

destined not to become the next big revolution.

With the arrival of personal computers in the early 1980s 2 the world of

data analysis started to evolve rapidly. Personal computers basically invaded

the realm of business almost over night, and a prime mover in this invasion

was Daniel Bricklin. In 1978, while still a student at Harvard Business School,

Bricklin embarked on the development of VisiCalc. His idea was to make a

program that would be intuitive and enable users to handle numbers with the

same ease they handled a text when using a text editor. This was the first

electronic spreadsheet; readily available for home and office use, its impact

was enormous.

2With the introduction of the original Macintosh computer on 24 January 1984, Steve

Jobs revolutionized the world of computers. This was the first mass-market personal

computer featuring an integral graphic user interface and mouse.

2.1. LESSONS OF HISTORY 7

It ran on non other than the Apple II and is therefore also widely credited

for fueling the rapid growth of the personal computer industry.

Instead of producing financial projections using manually calculated spread-

sheets, and having to recalculate every single cell in the sheet, VisiCalc

allowed the user to edit any cell, and have the entire sheet automatically

recalculated. This turned 20 hours of work into a 15 minute task and pro-

vided greater creativity. Upon graduation in 1979, Bricklin and Frankston

founded Software Arts Inc. and began selling VisiCalc. It is interesting to

note that they didn’t patent VisiCalc, which enabled a company called Lotus

to develop widely know application Lotus 1-2-3.

From there on afterwards there was no need for the analyst to sit behind

big computers in a huge data center and go through a great deal of technical

training just to learn how to use those mean machines. Now they could do it

on a small screen in the comfort of their own office, a far more user-friendly

and intuitive solution. But still one problem remained. There was still a

dependence on programmers to transfer data, which was a slow and highly

impractical process. It wasn’t until the standardization of SQL language in

the late 1980s, when the first two-tier client-server DMBSs arrived on the

scene, that these systems fully developed their true potential. SQL had been

used for queries before, but the standardization milestone enabled tools to

independently switch between different DBMS providers. Upon transition to

a new a system, companies were given an excellent opportunity to restruc-

ture their businesses process which subsequently caused additional counsel-

ing costs in addition to the costs of new hardware and software; nevertheless,

many companies dived right into it, seeing greater returns in the long run,

and these migrations fueled the IT industry. The first ERP systems - such

as SAP, Baan and Peoplesoft - were born in the late 1990s in the midst of

all this euphoria. Most known were. These new systems came fully packed,

and covered a wide variety of other businesses areas besides manufacturing.

8 CHAPTER 2. BUSINESSES INTELLIGENCE

2.2 Definition

BI slowly starts gaining widespread recognition in the late 1990s, but the

term - Business Intelligence - was originally coined by Richard Millar Devens

in his 1865 Cyclopædia of Commercial and Business Anecdotes [4]. Devens

used the term to describe how the banker, Sir Henry Furnese, gained profit

by receiving and acting upon information about his environment, prior to

his competitors. “Throughout Holland, Flanders, France, and Germany, he

maintained a complete and perfect train of business intelligence. The news of

the many battles fought was thus received first by him, and the fall of Namur

added to his profits, owing to his early receipt of the news.” (Devens, p.210).

The ability to collect and react accordingly based on the information re-

trieved - a skill that Furnese excelled in - is today still at the very heart

of BI. IBM researcher Hans Peter Luhn became the first to use the term

business intelligence in a more modern sense in his 1958 article [3]; in it he

employed aWebster’s dictionary definition of business: a collection of activ-

ities carried on for whatever purpose, be it science, technology, commerce,

industry, law, government, defense, et cetera. The communication facility

serving the conduct of a business (in the broader sense) may be referred to

as an intelligence system. The notion of intelligence was also defined therein

in a more general sense as “the ability to apprehend the interrelationships of

presented facts in such a way as to guide action towards a desired goal.” It

was, however, Howard Dresner who popularized it by proposing business in-

telligence as an umbrella term to describe concepts and methods to improve

business decision making by using fact-based support systems.

The true definition we know today, however, refined itself in the last ten

to fifteen years. According to Forrester Research when referring to BI in

the broader sense we refer to “a set of methodologies, standards, processes,

architectures, and technologies that transform raw data into meaningful and

useful information used to enable more effective strategic, tactical, and opera-

tional insights and decision-making.”[5] Therefore BI systems are also some-

times referred to data driven Decision Support Systems - DSS. Under this

2.2. DEFINITION 9

definition, business intelligence also encompasses technologies such as data

integration, data quality, data warehousing, master-data management, text-

and content-analytics, and many other processes that the market sometimes

lumps into the “Information Management” segment.

On the other hand, when talking about BI in a more narrow sense, i.e.

only in terms of data usage, we refer to just the top layers of the BI architec-

tural stack, such as reporting, analytics and dashboards [6]. Data usage and

data preparation are indeed two separate things, but they are closely linked

segments of the business-intelligence architectural stack.

Looking closely at the definition it’s obvious that-even the first ERP sys-

tems possessed some elements of BI system. The statically compiled reports

were able to provide the answers to a few specific questions. But in order to

achieve this, the data had to be taken from the data source and rearranged

in a certain way in order to yield answers to a substantial range of so-called

ad-hoc questions. The term data warehouse first surfaced back in 1988, how-

ever it was in the late 1990s when Bill Inmon and Ralph Kimball ensured its

widespread recognition. In 1992 Inmon, recognized by many as the father

of the data warehouse, published his most notable work: Building the Data

Warehouse [11]. Kimball, widely regarded as one of the original architects

of data warehousing, followed with The Data Warehouse ToolKit [8] in 1996;

in it he discussed his own dimensional modeling methodology - also known

as Star Schema [8] - which later became the de facto standard in the sphere

of decision support.

According to Thomas Davenport [7] BI systems are divided into Business

Analytics, querying, reporting (standard, ad-hoc), online analytical process-

ing (OLAP) and alert tools. Because they offer greater flexibility and rapid

answers to arbitrary ad-hoc questions per single businesses events, technolo-

gies for advanced reporting that utilize a data warehouse and OLAP offer a

huge advantage and improvement over simple ERP queries.

Business analytics take everything a step further by making extensive use

of statistical and quantitative analysis, explanatory and predictive modeling,

10 CHAPTER 2. BUSINESSES INTELLIGENCE

forecasting and stochastic optimization, not to find out what has happened

in the past but all that which is yet to come. In other words: Querying,

reporting, OLAP and alert tools can answer questions in relation to what

has happened, how many, how often, where the problem is, and what actions

are necessary. Business analytics can answer such questions as why is this

happening, what will happen next if these trends continue (prediction), and

what is the best outcome (optimization).

Figure 2.1: The outer layer represents Business Analytics.

Chapter 3

BI4Dynamics

BI4Dynamics is an analytical BI solution for Microsoft Dynamics ERP sys-

tem. It comes in two available product lines:

• BI4Dynamics NAV - for Microsoft Navision ERPs

• BI4Dynamics AX - for Microsoft Axapta ERPs

Since both product lines have the same core framework and data model,

with the exception of some minor structural differences, and since the perfor-

mance tool was initially developed for BI4Dynamics NAV product line, the

following chapters focus solely on the BI4Dynamics NAV.

Figure 3.1: BI4Dynamics Transformation Process.

11

12 CHAPTER 3. BI4DYNAMICS

3.1 BI4Dynamics NAV

BI4Dynamics NAV is a BI system designed to equip the Microsoft Navision

ERP system with some heavy analytical firepower. Like all ERP systems,

Microsoft Navision has been optimized for fast and efficient data collection

and this can only be achieved with a normalized data model which minimizes

data redundancy by employing a large number of tables. This can be a big

problem since queries that are executed during data analysis as opposed to

those that are executed from data storage, have to combine data scattered

over large amount of tables and use computationally demanding operations,

which is a heavy draw on resources. The solution lies in restructuring data

from the Navision data source into a data warehouse that uses a dimensional

model as its basis. This highly simplifies the structure of the relational

database and enables more rapid query execution (although it produces some

redundancy).

Built on Kimball’s star schema principle [8], the BI4Dynamics data ware-

house is a data source for a set of OLAP Cubes. Each cube contains analytical

data for one of Navision’s business areas and provides hierarchically ordered

description data and aggregated transactional data for each of the hierar-

chies. Using appropriate tools, this enables business users connected to those

cubes to undertake the desired analysis in a rapid and easy fashion. Most

BI4Dynamics customers use Excel as a BI front-end client, but any other

BI client capable of connecting to Analysis services can be used to access

that information. The BI4Dynamics platform also enables the combination

of data from different NAV database versions in the same BI4Dynamics data

warehouse, thus scripts are executed by the source version in all Navision

products - from NAV 3.1 to NAV 2015 - enabling the user to join different

operational database versions.

The BI4Dynamics system fully utilizes a Microsoft technology stack,

which means it can be installed on any version of the SQL Server. But the

greatest power lies in its architecture, as it provides a platform for building

custom analytical modules thus any part of the solution can be customized.

3.2. DATA MODEL 13

3.2 Data Model

The BI4Dynamics system is packed as a .NET application which through

an especially designed installation wizard deploys a fully functional data

warehouse (with ETL procedures) and a set of desired OLAP cubes and cor-

responding dimensions. ETL procedures transfer the data from the Navision

data source into the staging area of the BI4Dynamics data warehouse. In the

next step, data is restructured, cleaned and then saved into dimensional and

fact tables within the presentation area, using a set of views and stored pro-

cedures. The final step transfers data from the data warehouse presentation

area into cubes and dimensions within the analytical database.

Figure 3.2: BI4Dynamics Data Model.

14 CHAPTER 3. BI4DYNAMICS

3.2.1 Data Warehouse

Setup Area

The Setup Area is the home of setup tables and setup procedures which

contain all the necessary setup data for building the staging and presentation

area. Most of the setup data is entered through the installation wizard by the

user, but some is also automatically generated. Tables and procedures are

part of the setup.* schema which is automatically created when deploying

the data warehouse.

Table Type Description

setup.DataSource Table Contains info about selected Nav-

ision data sources such as version,

server name, etc.

setup.Company Table Contains selected companies

setup.DataSourceTable Table Contains tables from Navision

data source that are needed for

the staging area

setup.DataSourceColumn Table Contains columns for the tables

setup.DataSourceIndex Table Contains indexes for the tables

setup.Translation Table Contains option field translations

setup.InitializeDimension Procedure Stored procedure that initializes

dimensional table with 0 ID and

default values for every field in

case of missing or incomplete val-

ues in the transactional data

setup.CreateStage Procedure See under ETL section

setup.UpdateStage Procedure See under ETL section

setup.IndexStage Procedure See under ETL section

Table 3.1: Setup Tables and Procedures.

3.2. DATA MODEL 15

Staging Area

The staging area is where transactional data is readied for reorganization and

restructuring. It is a set of NAV equivalent tables that are part of stage.*

schema. They are filled with ETL procedures which are not visible to the

end user.

ETL

The first step Extracts the transactional data from the data source. In this

step only the relevant data is transferred, therefore a complete understanding

of Navision’s data model is of key importance. This part of the ETL process

is represented by three procedures in the Setup area:

• Create Stage procedure for every Navision table in

setup.DataSourceTable, builds an equivalent stage table with equivalent

columns in setup.DataSourceColumn. Stage tables are unified for all

data sources inside setup.DataSource table, meaning a union of tables

and columns is made across all data sources. Foreign keys CompanyID

and DataSourceID are added to distinguish between companies and

data sources.

• Update Stage procedure copies the data from tables on data sources

into the stage tables within the presentation area, also adding pri-

mary keys CompanyID from setup.Company and DataSourceID from

setup.DataSource. NULL values are inserted if the column doesn’t exist

in the current data source.

• Index Stage procedure creates the same indexes on the stage table

as they are in the Navision equivalent. These indexes are stored in

setup.DataSourceIndex table. Besides the original indexes, a user can

also create their own and these too may be stored in this table.

Before the data is transformed and saved, the CreateTable Procedure first

builds the presentation area by creating presentation tables.

16 CHAPTER 3. BI4DYNAMICS

The next step is Transformation of the data. This process includes clean-

ing the data (handling missing values, correction of grammatical errors, re-

solving domain conflicts and reorganization into standard formats), joining

data from multiple data sources and removing duplicates. This step is carried

out by Transformation View 1 and Transformation View 2.

• Transformation View 1 is where all the Navision businesses knowl-

edge and logic is concentrated, and it is also where all the transfor-

mations are made. Transformation View 1 first combines the data

from stage tables, help tables and setup tables; it then cleans, filters,

calculates and represents the data with the granularity of the targeted

dimensional table. Any SQL function compatible with the target server

may be used.

• Transformation View 2 is specific only for fact tables. In Kimball

star schema [8], dimension tables are directly linked to fact tables. In

the BI4Dynamcis data warehouse, Transformation View 2 provides that

link between fact and dimension tables. Based on the conditions, a set

of dimensions is provided for each record in the fact table. Missing

values are transformed into 0 key so that they are linked with the

default record inserted by the setup.InitializeDimension procedure.

Finally the data is Loaded into the dimensional and fact tables in the pre-

sentation area. After this step the data is ready to be used by the analytical

server.

• Load Procedure takes the data provided by Transformation View 2

and stores it into the tables in the presentation area. Its structure is

slightly different for dimension and fact tables. The fact table proce-

dure first truncates the data in the fact table, or in the event of an

incremental update, only the data that is newer than the incremental

time stamp is truncated. Dimensional tables are not truncated since

they are connected to fact tables with primary keys, thus the load

procedure only inserts new data and updates old records.

3.2. DATA MODEL 17

Presentation Area

The Presentation Area is where the data is organized, saved and directly ac-

cessible in relation to user queries, reports and other analytical applications.

This data is organized in a manner that follows the dimensional modeling

principle.

Dimensional modeling differs a lot from modeling approaches such as third

normal form (3NF) which is a design technique that minimizes redundancy.

The normalization approach enables rapid processing of the data because

saving and updating transactions update data in one place only, hence this

type of approach is really good for ERP systems, as was mentioned earlier. At

the same time the normalized form is not appropriate for higher structurally

complex queries typical to data warehouses. In relation to the DBMS, the

complexity of the normalized form exceeds the ability of query optimization.

Specifically due to these shortcomings, the normalized form is not appropri-

ate for modeling data in the presentation area of data warehouse. It is most

important for the dimensional model structure to foresee all possible types

of user queries. Despite the fact that data marts contain summarized data

which speed up the queries, they must also contain atomic data that guaran-

tees the smallest possible granularity. This way a user can, by drilling down

through the dimensions, access the most detailed data. It is important that

granularity of the data in the presentation area is detailed enough to provide

the user with answers to the most detailed and exacting questions. All data

marts must use shared dimension and fact tables. These tables, which form

part of multiple business or subject areas, are known as conformed tables.

Usage of such tables is crucial in assuring a robust and integrated data ware-

house. Architecture that has a lot of conformed dimensional and fact tables

is known as bus architecture, and is crucial in the provision of a distributed

data warehouse.

The BI4Dynamics platform follows best practice and has a centralized

data warehouse with bus architecture, by way of which all the dimensions

are shared across different data marts. This results in low data redundancy.

18 CHAPTER 3. BI4DYNAMICS

Fact Tables

The Fact Table is a primary table of the dimension model and consists of the

measurements, metrics or facts of a business process. The term “fact” de-

scribes one business measure, and data for a single business process (business

or subject area) is usually stored in one data mart. Fact tables contain the

content of the data warehouse and store different types of measures - such

as additive, non additive, and semi additive measures.

Often defined by their grain, fact tables provide the additive values which

act as independent variables, by way of which dimensional attributes are

analyzed. The grain of a fact table represents the fundamental atomic level

by which the facts may be defined. If, for example, we decide to follow

sales for a store chain, then as a result, for each product sold across all

stores, we get measures for quantity and amount. A measurement is therefore

uniquely defined by a day, product and store. Other dimensions might be

members of this fact table (such as location/region) but these add nothing

to the uniqueness of the fact records. Such “affiliate dimensions” allow for

additional slices of the independent facts, but generally provide insight at a

higher level of aggregation (i.e. the region contains a number of stores).

A fact table typically has two types of columns: those that contain facts

and those that are a foreign key to the dimension tables. The fact table

assures referential integrity when all foreign keys in said table match with

the primary keys in the dimension table. The primary key of a fact table is

usually a composite key which is made up of all of its foreign keys. In the

dimension model each table which contains a composite key is a fact table,

and as such it has it has many-to-many connections. All other tables are

thus dimension tables.

In the BI4Dynamics platform, fact tables don’t have a primary key, be-

cause all data is deleted and newly inserted during update.

3.2. DATA MODEL 19

Dimension Tables

Unlike fact tables, dimension tables contain descriptive attributes (or fields)

which are typically textual (or discrete numbers that behave like text). These

attributes are designed to serve two critical purposes: query constraining

and/or filtering, and query result set labeling. In well designed dimensional

models, dimension tables have many descriptive attributes. It’s therefore not

unusual for a dimension table to contain 50 to 100 attributes. Compared to

fact tables, dimension tables usually contain a relatively small number of

records, about half a million.

Dimension table rows are uniquely identified by a single key field. It is

recommended that the key field be a simple integer because a key value is

meaningless, and used only for joining fields between the fact and dimension

tables. Dimension tables often use primary keys which are also surrogate

keys. Surrogate keys are often auto-generated (e.g. a Sybase or SQL Server

”identity column”, a PostgreSQL or Informix serial, an Oracle SEQUENCE

or a column defined with AUTO INCREMENT in MySQL).

Attributes play a key role within the data warehouse because they assure

usefulness and understanding. That’s why when designing a data warehouse

it is crucial to label using a terminology that best describes businesses pro-

cess. Best practice is to replace codes with description fields.

Dimension tables often include hierarchical relations that appear in the

businesses system; for example: a dimensional table for items. Items usually

belong to a brand (grouping), and brands are combined into categories. For

each record we then also have to save its brand and category. It should be

noted that such data increases redundancy, which in this case is welcomed

because it simplifies things and lowers the execution time of queries.

Dimensional tables in the BI4Platform also include a large amount of

descriptive attributes. Most of the attributes are restructured and combined

to form new ones.

Dimensions can define a wide variety of characteristics, but some of the

most common attributes defined by dimension tables include:

20 CHAPTER 3. BI4DYNAMICS

• Time dimension tables describe time at the lowest level of time granu-

larity for which events are recorded in the star schema

• Geography dimension tables describe location data, such as country,

state, or city

• Product dimension tables describe products

• Employee dimension tables describe personnel, such as sales staff

• Range dimension tables describe ranges of time, currency values, or

other measurable quantities which simplify reporting

Star Schema

Figure 3.3: Star schema used by example query.

3.2. DATA MODEL 21

The Fact Table and its measures is located at the center of a Star Schema

surrounded by dimension tables containing descriptive attributes for those

measures. The Star Schema gets its name from the physical model’s resem-

blance to a star, with a fact table at its center and the dimension tables

surrounding it representing the star’s points. The Star Schema (also called

a star-join schema) is the simplest style of data mart schema.

The Star Schema is denormalized, meaning the normal rules of normal-

ization applied to transaction relational databases are relaxed during star

schema design and implementation. The benefits of Star Schema denormal-

ization are:

• Simpler queries - star schema join logic is generally simpler than the

join logic required to retrieve data from a normalized transactional

schema.

• Simplified business reporting logic - in comparison with highly normal-

ized schemas, the star schema expedites common business reporting

logic, such as period-over-period and as-of reporting.

• Query performance gains - in comparison with highly normalized schemas,

the star schema can provide performance enhancements for read-only

reporting applications.

• Fast aggregations - the simpler queries in a star schema can result in

improved performance in aggregated operations.

• Feeding cubes – the star schema is used by all OLAP systems to build

proprietary OLAP cubes efficiently; in fact, most major OLAP systems

provide a ROLAP mode of operation which can use a star schema

directly as a source without building a proprietary cube structure.

22 CHAPTER 3. BI4DYNAMICS

3.2.2 OLAP

Online Analytical Processing is an approach to answering multi-dimensional

analytical queries swiftly. The term OLAP was created as a slight modifica-

tion of the traditional database term Online Transaction Processing (OLTP).

OLAP tools enable users to analyze multidimensional data interactively from

multiple perspectives. OLAP consists of three basic analytical operations:

consolidation (roll-up), drill-down, and slicing and dicing. Consolidation in-

volves the aggregation of data that can be accumulated and computed in

one or more dimensions. For example, all sales offices are rolled up to the

sales department or sales division to anticipate sales trends. By contrast, the

drill-down is a technique that allows users to navigate through the details.

For instance, users can view sales by individual product, and likewise can do

this on a regional basis. Slicing and dicing is a feature whereby users can

take out (slice) a specific set of data from the OLAP cube and view (dice)

the slices from different perspectives. Databases configured for OLAP use

a multidimensional data model or SSAS, facilitating the rapid execution of

complex analytical and ad-hoc queries by borrowing aspects of navigational

databases, hierarchical databases and relational databases.

Despite the fact that data in the presentation area of the BI4Dynamics

data warehouse is structured in a way that is ready for end users to ac-

cess and analyze, BI4Dynamics introduces another layer – the Analytical

Database. The analytical database further simplifies and speeds up the way

end users may handle the data by compressing the analytical database and

pre-calculating aggregates for every level of dimension. BI4Dynamics uses

MOLAP, which is the default go-to form of online analytical processing and is

sometimes referred to as just OLAP. MOLAP stores data in optimized multi-

dimensional array storage, rather than in a relational database. Therefore

it requires the pre-computation and storage of information in the cube - the

operation known as processing. MOLAP tools have a very rapid response

time as well as the ability to quickly write back data into the data set.

3.2. DATA MODEL 23

Data Source

Data source is a link between the analytical database and data warehouse,

and identifies to the analytical server where the data is coming from. It

is defined in the form of a connection string that describes the manner of

connection between the analysis server and the data warehouse where the

data is stored. The connection string contains the Server name, Database

name, Security protocol and Timeout interval.

BI4Dynamics uses an integrated SQLNCLI provider to connect to the

data warehouse and ensures safety with Windows domain authentication.

Data Source Views

A data source view contains the logical model of the schema used by Analysis

Services multidimensional database objects - namely cubes and dimensions.

A data source view is the metadata definition, stored in an XML format. A

Data Source View:

• Contains the metadata that represents selected objects from one or

more underlying data sources, or the metadata that will be used to

generate an underlying relational data store if one is following the top-

down approach to schema generation.

• Can be built over one or more data sources, letting the user define

multidimensional and data mining objects which integrate data from

multiple sources.

• Can contain relationships, primary keys, object names, calculated columns,

and queries that are not present in an underlying data source and which

exist separately from the underlying data sources.

• Is not visible to, or available to be queried by, client applications.

Data in the BI4Dynamics presentation area is mapped to the analytical

database using 1:1 relation, which means that it contains all dimensional and

fact tables.

24 CHAPTER 3. BI4DYNAMICS

Cube

Figure 3.4: OLAP Cube.

An OLAP cube is a method of storing data in a multidimensional form.

The cube is defined by the dimensions and measures which are categorized by

its dimensions and represent transactional values used in the aggregations. A

measure can be based on one or more columns drawn from one or more fact

tables combined into a measure group. A dimension is a set of attributes that

present a field of interest inside a measure group. Attributes can be based

on one or more columns drawn from one or more dimensional tables and are

often organized into hierarchies to enable users more detailed analysis.

3.2. DATA MODEL 25

For complex queries, OLAP cubes can produce an answer in around 0.1%

of the time required for the same query using OLTP relational data. The

most important mechanism in OLAP, which allows it to achieve this high

performance level is the use of aggregations. Aggregations are constructed

from the fact table by changing the granularity of specific dimensions, and

aggregating the data along these dimensions.

The OLAP Cube also contain:

• Calculations, which are MDX expressions that enable the user to

add additional objects, in most cases complex new measures, that can

use other object (measures) both within and outside the cube, or even

outside the analytical database. The MDX language was originally

developed by Microsoft in the late 1990s, and has been adopted by

many other vendors of multidimensional databases. Almost all cubes

in the BI4Dynamics analytic database contain complex calculations.

• Partitions, which divide a cube into logical parts. Each partition can

then be reprocessed (refreshed) independent of the other partitions. For

example, a cube containing a huge amount of sales data, can be split

into partitions based on each quarter of a year. When new data is being

written, you can process a partition that represents the current quarter,

a feature which speeds up processing enormously. In BI4Dynamics,

each cube partition is processed individually each time.

• Translations, which ensure multilingual support. Data is often ana-

lyzed by users of different nationality, hence it is therefore convenient if

object names are displayed in the local language. A translation, defined

by the language code and caption, can be provided for every object in-

side the cube, these can encompass dimensions, hierarchies, the cube

name, measure groups, measures and calculations etc... BI4Dnymics

provides out of the box translations for all cubes in relation to ten

different languages.

• Actions are not used in the BI4Dynamics platform.

26 CHAPTER 3. BI4DYNAMICS

Common cube operations:

• Slicing is the act of picking a rectangular subset of a cube by choosing

a single value for one of its dimensions, creating a new cube with one

fewer dimension. [9]

Figure 3.5: The slice contains information on date and product in relation

to a department store.

• Dicing produces a sub-cube by allowing the analyst to pick specific

values of multiple dimensions. [10]

Figure 3.6: Dicing a data cube – retrieving more detailed information in

relation to date and retailer of a specific product.

3.2. DATA MODEL 27

• Pivoting allows an analyst to rotate the cube in space to see its var-

ious facets. For example: while viewing data for a particular quarter,

locations could be arranged vertically and products horizontally. Piv-

oting could be used to replace products with time periods to reveal

data across time for a single product.

• Drill Down/Up allows the user to navigate among levels of data

ranging from the most summarized (up) to the most detailed (down).

Figure 3.7: The Retailer dimension can be drilled-down to reveal specific

retailers, while the Date dimension can be drilled-down to reveal a given

month; Product can be explored in more detail per individual products.

• Roll-up involves summarizing the data along a dimension. The sum

rule might be computing totals along a hierarchy, or the application of

a set of formulae, such as profit = sales – expenses.

All standard cubes and dimensions of the BI4Dynamics platform are

saved as an embedded resource in the from of an XML object. When de-

ploying XML it becomes de-serialized into an AMO object inside a .NET

application that is sent directly to the analytical database.

28 CHAPTER 3. BI4DYNAMICS

BI4Dynamics standard Cubes:

• Sales

Comes with 72 measures that in combination with 47 dimensions pro-

vides insight into all parts of the sales area. Analyzing sales trends,

margin, parallel period and year-to-date sales reports extend standard

reporting as well as makes analysis simple, powerful and quick.

• Sales Orders History

BI4Dynamics makes a daily snapshot of all sales quotes and orders

and stores them in the BI4Dynamics’ Data Warehouse. This feature

enables the analysis of sales quotes and sales orders, even after they

are amended, processed or deleted.

• Receivables

The receivables module is most commonly used as standard in all or-

ganizations and comes with more specific measures such as Average

Balance, Sales on Credit, Average Due and Open Days, Receivables

Turnover in Days, Customer Net Change, % of Total Balance, etc...

• Purchase

The purchase module enables complete purchase analysis with multi-

ple measures and dimensions over multiple companies and currencies.

Purchase by Type, Purchase by Top Vendors by Type, Purchase by

Top 10 Vendors by Purchased Items

• Purchase Orders History

Powerful analysis of orders and blanket orders is mandatory for effi-

cient supply chain management. It is crucial to track the status of

purchased and supplied items. Daily data warehouse snapshots ensure

that purchase order analysis is both fast and accurate.

3.2. DATA MODEL 29

• Payables

Analysis of specific invoices and groups of invoices with smart Payables

measures like Payables Balance, Payables coefficient, Turnover in days,

Purchase of credit, Vendor credit, Vendor discount per different cur-

rencies, date, companies, etc...

• Inventory

BI4Dynamics enables powerful inventory value and quantity analysis

across multiple dimensions. To avoid typical difficulties with inventory

valuation in ERP systems, daily snapshots of data are created in the

data warehouse to ensure rapid and agile analysis.

• Account Schedules

Account schedules are used to prepare financial reports based on the

general ledger. Using account schedules, users can choose specific ac-

counts and perform calculations. In Microsoft Dynamics NAV, users

define their own account schedule.

• General Ledger

Consolidation of information across multiple companies, dimensions

and currencies has never been easier. Charts of Accounts and Income

Statement reports can be created, while budgets over the years can be

compared with YTD (year-to-date) KPI (key performance indicators).

• Jobs and Resources

Powerful analysis of Jobs and Resources, which can reveal answers in

relation to budgets, costs and profits in relation to disparate open jobs

in a single report. The Job and Resources module provides the ability

to concurrently compare budgets, costs and profits in one report for a

specific project.

30 CHAPTER 3. BI4DYNAMICS

• Manufacturing

Powerful, simple and agile analysis across different manufacturing pro-

cesses. The Manufacturing module enables the monitoring of Produc-

tion Orders, Item Composition and Consumption, Actual and Expected

Quantities with Variance. Average Costs or Work in Progress can be

analyzed across many dimensions.

• Fixed Assets

The Fixed Assets module provides the possibility to analyze fixed assets

value, inventory and depreciation.

• Bank Account

The Bank Account module enables balance, credit, and debit analyses

of multiple bank accounts across multiple currencies, companies and

data sources.

• Service Management

The Service Management module extends to the Microsoft Dynamics

NAV Service Management module and enhances it with powerful KPIs.

3.3. INTERFACE 31

Dimension

Grouping the data into similar fields of interest, Dimension is the cubes’ key

building block. Based on the columns of tables in the data source view, Di-

mension is a set of attributes that are linked to the dimensional table columns

in the presentation area of the data warehouse. They can exist independently

of cubes. The same dimension can be used in multiple cubes and can be used

multiple times in same cube. A dimension that exists independently of a cube

is referred to as an analytical dimension. Instance of a dimension inside the

cube is called cube dimension. A dimension can contain a hierarchy that is

used to organize cube measures.

3.3 Interface

The BI4Dynamics platform was developed on top of the .NET framework

(v4.5) using C# programming language. Employing XAML, an XML-based

language, to define and link various interface elements, the WPF (Windows

Presentation Foundation) graphical subsystem provides the user interface.

Considering this is a pretty big application, herein we shall only touch upon

the most essential part of this application: the Installation Wizard.

3.3.1 Installation Wizard

The Installation wizard is an automated package within the application that

serves as a tool to simplify the whole installation and deployment process.

It breaks the process down into 6 individual consecutive steps:

1. License step

Here the user enters the license key provided upon purchasing the solu-

tion. The application connects to our licensing server and verifies the

license key.

32 CHAPTER 3. BI4DYNAMICS

2. Instance step

Here the user enters Name of the instance (the application supports

multiple instances), selects the language, selects SQL and Analysis

server and authentication type to connect to those servers as well as

enters the name of the data warehouse and analytical database.

3. Data Source step

Here the user adds one or more NAV data sources. These are defined

by SQL server, database name and Navision version.

Figure 3.8: Data Source Step.

3.3. INTERFACE 33

4. Company step

Here the user selects one or more companies inside the added NAV data

sources, local and additional currency and adds 1-8 global dimensions

(A global dimension is a dimension that can be used as a filter anywhere

in Microsoft Dynamics NAV).

Figure 3.9: Company Step.

5. Modules step

Here the user selects their desired modules (described in the previous

section) each corresponding to one business area which the user wants

to analyze, choosing between standard and vertical solutions.

34 CHAPTER 3. BI4DYNAMICS

Figure 3.10: Modules Step.

6. Run step

This is the final step. Here the user can select/deselect whether they

only want to deploy data or process it as well. An SQL Agent job

can also be created which, once is set up, automatically executes this

process daily, weekly or monthly, depending on users’ requirements.

Chapter 4

BI4Profiler

The BI4Profiler is an especially designed module that captures and stores

data in relation to performed daily activities (such as processing time, disk

size, RAM etc.) within the SQL server while processing BI solution. This

information is used for sizing and performance optimization which is required

in the corporate environment.

4.1 Module

The true power of BI4Dynamics lies in its platform-like architecture that

provides an environment for developing custom modules. The platform is

based on SQL therefore it can be fully customized. Besides the previously

mentioned standard cubes, so-called verticals, custom modules developed by

our partners and later implemented into an internal module repository are

also offered. Most renowned among these are LSRetail1 and Pebblestone2.

So what’s a module? A module is a basic building block of BI4Dynamics

platform.-It’s basically an abstraction of a OLAP object and all of its depen-

dencies on a data warehouse and data source.

1LSRetail R© is a NAV add-on that covers Point of Sale (POS) to Back-Office and Head-

Office Functionality
2Pebblestone Fashion R© is the leading NAV solution for companies in the fashion in-

dustry

35

36 CHAPTER 4. BI4PROFILER

There are three types of module in the BI4Dynamics’s architecture: di-

mension module, cube module and framework module.

The dimension module and cube module are almost identical and they

consist of:

• TAC file

TAC is the Tables And Columns file which is an XML document con-

taining all the source tables and columns needed for the module. This

file is the basis for building the staging area and is used for filling

setup.DatasourceTables, setup.DataSourceColumns and

setup.DataSourceIndex tables.

• DataWarehouse objects

All previously mentioned objects, such as CreateTable procedure, Trans-

formation View 1 (Transformation View 2 for fact tables) and Load

Procedure, used for building the presentation area of the data warehouse

are stored as SQL scripts in this XML container file.

• OLAP objects

OLAP objects are also stored in an XML container file as AMO (Anal-

ysis Management Objects) providing a complete library of program-

matically accessed objects. This enables an application to manage a

running instance of Microsoft SQL Server Analysis Services.

• Deployment file

Stored in an XML container file, the Deployment file is an XML doc-

ument which defines priority in deploying data warehouse and OLAP

objects to servers.

• ProcessFlow file

The ProcessFlow file is an XML document in an XML container file

that defines priority in processing objects deployed to servers.

4.1. MODULE 37

The Framework module is slightly different in that it does not contain

any TAC file or OLAP objects. Instead of usual Data Warehouse objects

(CreateTable etc..) the Framework module contains all the objects necessary

for deploying the Setup Area (addressed in the Setup section). Besides these

objects it also contains a stored dbo.DropObject procedure used for deleting

custom objects in the Data Warehouse.

All four module components are stored in an XML container file which

enables the versioning of the objects. Each XML container file holds multiple

instances of an object that can be selected on the basis of the following

parameters:

1. NAV Datasource version

2. SQL Server version

3. SQL Server type

4. Analysis version

Developing a custom module is undertaken in 3 steps:

• Importing necessary tables and columns into the staging area of the

data warehouse, which is accomplished through an interface inside the

application

• Developing ETL procedures - Transformation views, any necessary ad-

ditional help tables and load procedure

• Developing dimensions and cubes on an analytical database (can be

carried out with an OLAP compatible tool)

38 CHAPTER 4. BI4PROFILER

4.2 Development

Upon commencing the design of the BI4Profiler we faced the challenge of

how to make the module totally independent. When you customize any part

of standard or custom modules, either on Data Warehouse or OLAP, you

have to redeploy new objects; this means that the database gets dropped

and recreated, and you lose all the history. However, we wanted to make

a module capable of holding all the history, unless their was an explicit

demand that history was to be deleted. Another major issue that arose is the

processing of OLAP objects. The analysis server supports the processing of

single objects from the AMO API used in our .NET framework, but in order

to obtain coherent data when customizing for example a single dimension

you first have to process the dimension itself and then all the cubes that use

this shared dimension in order to rebuild the indexes that are used in a star

schema connecting dimensions to the fact table. And if you customize two

dimensions, you would have to accomplish this in the right order. This means

that all the dependencies and priorities must be implemented internally, in

itself a time consuming approach since the Analysis server implements all

such logic with one single AMO API call: Process Analysis.

The solution? We implemented a separate data warehouse and analytical

database for this module. This ”SYSTEM” database is called

NameOfTheDataWarehouse SYSTEM. For now its only purpose is to iso-

late the BI4Profiler module from the standard data warehouse and ana-

lytical database, but in future versions the plan is to entirely move the

BI4Dynamics Setup area into this database. Both the SYSTEM data ware-

house and analytical database are deployed upon first deployment of the

BI4Dynamics standard data warehouse and analytical database. From initial

deployment onwards, the SYSTEM data warehouse and analytical database

are not dropped or redeployed unless the user connects to the SQL server

and drops them manually. As with the BI4Dynamics data warehouse, the

SYSTEM data warehouse consists of three areas: Setup area, Staging Area

and Presentation Area.

4.2. DEVELOPMENT 39

4.2.1 Setup Area

The Setup Area of the SYSTEM data warehouse contains 2 objects: the

dbo.DropObject and setup.InitalizeDimension stored procedures (both of which

are described in previous sections). The Setup Area introduces 3 new schema:

• p stage.* used for the Staging Area

• p dim.* used by dimensions in the Presentation Area

• p fact.* used by facts in the Presentation Area

4.2.2 Staging Area

p stage.Batch

Every record in this table corresponds to one process run. Thus, each time a

user or SQL agent processes the data, a new record is provided in this table.

Below is a tabular 4.1 presentation of p stage.Batch structure.

Column Description

BatchID Automatically generated ID

ProcessType 0 - Full

1 - Incremental

RunTag 0 - ProcessAll

1 - ProcesStage

2 - ProcessDatawarehouse

3 - ProcessAnalysisDatabase

AutoProcess 0 - Manualy from UI

1 - SQL Agent Job

StartDateTime Starting time stamp

EndDateTime Ending time stamp

Table 4.1: p stage.Batch structure.

40 CHAPTER 4. BI4PROFILER

p stage.ProcessFlowStatistics

This table forms the heart of the BI4Profiler module. It is responsible for

filling the most important part of the BI4Profiler data warehouse presentation

area which is later used for the majority of calculations and reports. It also

holds all the statistical data for each stored procedure executed in a particular

batch. Where this data comes from shall be discussed in the later chapters,

but for now let’s just focus on its content and structure:

• ProcessFlowName

BI4Dynamics supports multiple process flows. This column contains

the process flow name used in the current run.

• DatabaseObjectName

Name of the executed stored procedure.

• RefDatabaseObjectName

Stored procedures for creating and filling the staging area - such as

setup.LoadStage - are executed with parameters. This is the name of

the stage table passed as a parameter for specific procedures; for every

other stored procedure it remains empty.

• DatabaseName

Name of the database currently being processed.

• ExecutionStartDate

Starting time stamp of the execution of a stored procedure.

• ExecutionEndDate

Ending time stamp of the execution of a stored procedure.

• ExecutionTime

Duration of the execution in milliseconds (ms).

4.2. DEVELOPMENT 41

• CpuTime

Effective time stored procedure spent on the CPU, as opposed to wait-

ing for resources.

• GrantedMemoryKb

Highest granted memory, in kilobytes.

• DeletedRecordsCount

Number of records which the stored procedure deleted.

• InsertedRecordsCount

Number of records which the stored procedure inserted.

• UpdatedRecordsCount

Number of records which the stored procedure updated.

• DbSpaceUsed

Size of the database at the time of current batch run.

• LogPhysicalSpaceUsed

Physical size of the log at the time of current batch run.

• LogLogicalSpaceUsed

Logical size of the log at the time of current batch run.

• BatchID

ID of the corresponding batch run.

• CallStartDate

Time stamp of the call of stored procedure.

• CallEndDate

Time stamp of the return from call of stored procedure.

42 CHAPTER 4. BI4PROFILER

4.2.3 Presentation Area

Dimension Tables

Most of the dimensional tables are filled with the data from the Object

Catalog Views (system views which provide database metadata such as list

of tables, stored procedures etc.). Let’s look at the list of dimensional tables

and what they represent:

• p dim.Batch

This dimensional table is a copy of the p stage.Batch table with some

minor descriptive transformations.

• p dim.Date

System generated date dimensional table.

• p dim.DB

List of server databases, from sys.databases

• p dim.DBFile

List of log and database files (for each database) from sys.master files

• p dim.DBIndex

List of all indexes on the server (for each table) from sys.indexes

• p dim.DBProc

List of all stored procedures on the server from sys.procedures

• p dim.DBTable

List of all tables on server from sys.tables

• p dim.ProcessArea

List of all process areas in p stage.ProcessFlowStatistics

4.2. DEVELOPMENT 43

• p dim.ProcessFlow

List of all of process flow names in p stage.ProcessFlowStatistics

• p dim.ProcessType

List of all process types in p stage.ProcessFlowStatistics

• p dim.Volume

List of all volumes on the server used by data and log files.

Fact Tables

As with dimensional tables, most of the fact tables are filled with data from

Object Catalog Views. Their rows basically present a snapshot of the statis-

tics taken at the time.

• p fact.DBFileStatistics

Snapshot of Database statistics, such as Size in MB, a combination of

data from sys.master files, sys.databases.

• p fact.IndexStatistics

Snapshot of Index statistics, such as Average Index Fragmentation

as %, Total Space in KB, Used Space in KB, etc., a combination of

data from sys.dm db index physical stats, sys.dm db index usage stats,

sys.tables, sys.schemas, sys.indexes, sys.partitions, sys.allocation units.

• p fact.ProcessStatistics

Main table containing all the statistics from p stage.ProcessFlowStatistics

described above.

• p fact.TableStatistics

Snapshot of Table statistics such as Row Count, Total Data in KB,

Index Size in KB (on the table), Data Used in KB, Index Used in

KB. A combination of data from sys.tables, sys.schemas, sys.indexes,

sys.partitions, sys.allocation units.

44 CHAPTER 4. BI4PROFILER

• p fact.VolumeStatistics

Snapshot of Volume statistics, such as Drive Letter, Total Space in MB

and Available Space in MB A combination of data from sys.master files,

sys.dm os volume stats.

4.3 Putting it all together

Each dimension is a separate module, which means that it contains its own

deployment and process file, data warehouse objects (CreateTable procedure,

Transformation View 1 and Load Procedure) and analytical object.

Fact tables, however, form part of the BI4Profiler module, which means

that they reside in theBI4Profiler’s deployment and process flow. Each fact

table contains a CreateTable procedure, Transformation View 1 and Load

Procedure.

Although they also form part of the BI4Profiler module, the Setup and

Staging area deployment files have a priority section, meaning that they are

deployed first. The process order is similar to the deployment order, though

only the load procedures for dimensions and facts are executed; create table

procedures are executed when the BI4Profiler is deployed:

1. BI4Profiler Priority Section

(a) dbo.DropObject

(b) dbo.InitializeDimension

(c) p stage.TruncateProcessFlowStatistics

(d) p stage.ProcessFlowStatistics

(e) p stage.Batch

2. Dimensions

First is the CreateTable procedure then Transformation View 1 and

lastly Load Procedure for each dimension.

4.3. PUTTING IT ALL TOGETHER 45

(a) Batch

For example:

i. p dim.CreateTableBatch

ii. p dim.BatchView

iii. p dim.LoadBatch

(b) Date

(c) DB

(d) DB File

(e) DB Index

(f) DB Proc

(g) DB Table

(h) Process Area

(i) Process Flow

(j) Process Type

3. Facts

The Transformation View 1 is first deployed for all Facts, then the

CreateTable procedure and lastly Load Procedure.

In the following order:

(a) ProcessStatistics

(b) TableStatistics

(c) IndexStatistics

(d) DBFileStatistics

(e) VolumeStatistics

46 CHAPTER 4. BI4PROFILER

For example:

(a) p fact.ProcessStatisticsView

(b) p fact.TableStatisticsView

(c) p fact.IndexStatisticsView

(d) ...

Most of the BI4Profiler users are our partners or advanced users who are

developing complicated custom cubes, dimensions or customizing standard

modules. They use the BI4Profiler when optimizing their scripts and usually

focus on reducing execution times, index fragmentation as well as index and

table size.

Below is the most commonly used report in Excel:

Figure 4.1: The upper table shows process statistics, while the lower table

shows table statistics.

4.4. FILLING THE VOID 47

4.4 Filling the void

This paper has still to address a most important issue: where does the data

come from?

When designing the BI4Profiler we had one single goal in mind: Cover

all the angles of benchmarking as thoroughly and accurately as possible,

especially in consideration of the fact that this was a network distributed

solution. When dealing with network solutions it is necessary to consider and

provide contingency for all the latency which might occur due to increased

unrelated network traffic and stored procedural call initialization within the

application. With all this in mind, it was decided to use a hybrid approach

using our own internal benchmarking in combination with DMVs (Dynamic

Management Views).

4.4.1 Dynamic Management Views

With the advent of the Dynamic Management Views (DMVs) in SQL Server

2005, Microsoft vastly expanded the range and depth of metadata that could

be exposed in relation to connections, sessions, transactions, statements and

processes that are, or have been, executed against a database instance. These

DMOs provide insight into the resultant workload generated on the server,

where the pressure points are, and so on, and are a significant and valuable

addition to the DBA’s troubleshooting armory.

We used the following two DMVs:

• sys.dm exec procedure stats

This DMV returns aggregate performance statistics for cached stored

procedures. The view returns one row for each cached stored procedure

plan, and the lifetime of the row is as long as the stored procedure

remains cached. When a stored procedure is removed from the cache,

the corresponding row is eliminated from this view. The view contains

approximately 30 columns but for the first version we only decided to

use just 4.

48 CHAPTER 4. BI4PROFILER

Column Description

last execution time Last time at which the stored pro-

cedure was executed.

last elapsed time Elapsed-time, in microseconds,

for the most recently completed

execution of this stored proce-

dure.

last worker time CPU time, in microseconds, that

were consumed the last time the

stored procedure was executed.

dbname This column is actually not

part of the view, but it is re-

turned as a part of the query.

As the name suggests it re-

turns the name of the database:

DB NAME(databaseid)

Table 4.2: Columns we used from sys.dm exec procedure stats.

• sys.dm exec query memory grants

This DMV returns the memory stored procedure currently requested

and granted to it. However, the issue with this DMV is that it’s not

cached as the previous one. Thus, in order to get the highest mem-

ory grant, the SQL server has to be polled the entire time this stored

procedure is executing. In order to achieve this we implemented a sepa-

rate thread which polls the server for this DMV. This thread is created

prior to the initial call of the stored procedure, and while running it

maintains the highest memory grant. When the original stored proce-

dure execution ends, it also terminates the thread. Upon termination

the thread combines the memory grant with the stats returned by the

previous DMV and saves them into the p stage.ProcessFlowStatistics.

4.4. FILLING THE VOID 49

One minor issue was that sys.dm exec procedure stats DMV was intro-

duced with SQL Server 2008, which meant that there was no backward

compatibility. This is where our internal benchmarking approach comes in.

When the polling thread is initialized, just before the stored procedure call,

the time stamp (CallStartDate) is saved; when the thread is terminated the

ending time stamp (CallEndDate) is again saved.

The time between these two time stamps is a turnaround time from the

application’s perspective, and indeed during this time another stored pro-

cedure cannot be called and executed. Turnaround time contains lead time

(latency due to network traffic, waiting on resources etc.) and the actual

processing time. Since

sys.dm exec procedure stats DMV is not supported on older SQL servers we

at least have the turnaround time.

Figure 4.2: BI4Profiler Core Architecture.

50 CHAPTER 4. BI4PROFILER

Chapter 5

Conclusion

With the development of the BI4Module, testing, benchmarking and opti-

mization processes were improved tremendously, at the same time we also

created a strong selling point for our marketing and sales department. Even

though this is the first version of the module, we have already benefited enor-

mously from it. For example, after refactoring scripts for standard cubes

when testing the incremental update, we noticed that there was a bug in one

of the load scripts which dragged down overall performance of the scripts by

20%. This slowdown may not be much re the relatively small databases used

in our testing environment, but when using such scripts in a real-life produc-

tion database up to 300 GB in size, we are looking at few hours difference.

We also plan to port this module to our AX product line, and in the

next version we are also looking to add more measures and additional di-

mensions. Now that we have a strong core, our only limitation is the power

and flexibility of the DMVs. Microsoft also upgrades DMVs with every new

SQL version, and this can be a little tricky at times since we have to ensure

backward compatibility.

One of the next features shall definitely be a set of precompiled most

commonly used reports, provided in much the same way as the reports for

standard cubes we offer. This shall ensure that the general user is provided

an out-of-the-box module solution ready for analysis.

51

52 CHAPTER 5. CONCLUSION

For advanced users - including us at BI4Dynamics - we plan to fur-

ther explore sys.dm exec query stats which contain performance statistics for

cached query plans. Breaking down the stored procedure into several sepa-

rate queries will ensure even greater control and insight re the optimization

process.

List of Figures

2.1 Business Intelligence Technologies. 10

3.1 BI4Dynamics Transformation Process 11

3.2 BI4Dynamics Data Model . 13

3.3 The Star Schema . 20

3.4 OLAP Cube . 24

3.5 Slicing . 26

3.6 Dicing . 26

3.7 Drill Down . 27

3.8 Data Source Step . 32

3.9 Company Step . 33

3.10 Modules Step . 34

4.1 BI4Profiler Report . 46

4.2 BI4Profiler Core Architecture 49

53

54 LIST OF FIGURES

List of Tables

3.1 Setup Tables and Procedures 14

4.1 p stage.Batch . 39

4.2 sys.dm exec procedure stats 48

55

56 LIST OF TABLES

Bibliography

[1] Tzu, Sun. “The Art of War, Samuel B. Griffith, trans.” Oxford Univer-

sity Press 1 (1971): 963.

[2] Codd, Edgar F. “A relational model of data for large shared data banks.”

Communications of the ACM 13.6 (1970): 377-387.

[3] Luhn, Hans Peter. “A business intelligence system.” IBM Journal of

Research and Development 2.4 (1958): 314-319.

[4] Devens, Richard Miller. “Cyclopaedia of Commercial and Business

Anecdotes: Comprising Interesting Reminiscences and Facts, Remark-

able Traits and Humors... of Merchants, Traders, Bankers... Etc. in All

Ages and Countries...” D. Appleton, 1868.

[5] Evelson, Boris, and N. Norman. “Topic overview: business intelligence.”

Forrester Research (2008). More at:

https://www.forrester.com/home/

[6] Evelson, Boris. “Want to know what Forrester’s lead data analysts are

thinking about BI and the data domain?.” (2010). More at:

https://www.forrester.com/home/

[7] Henschen, Doug. “Analytics at Work; Q and A with Tom Davenport

(Interview).” (2010). More at:

http://www.informationweek.com/news/software/bi/222200096

57

58 BIBLIOGRAPHY

[8] Kimball, Ralph. “The data warehouse toolkit: practical techniques for

building dimensional data warehouse.” New York, itd: Wiley (1996).

[9] The OLAP Council. “OLAP and OLAP Server Definitions.” (1995).

More at:

http://www.olapcouncil.org/research/glossaryly.htm

[10] University of Alberta. “Glossary of Data Mining Terms.” (1999). More

at:

http://webdocs.cs.ualberta.ca/ zaiane/courses/cmput690/glossary.html

[11] Inmon, William H. “Building the data warehouse.” John wiley & sons,

1992.

	Povzetek
	Abstract
	Introduction
	Businesses Intelligence
	Lessons Of History
	Definition

	BI4Dynamics
	BI4Dynamics NAV
	Data Model
	Interface

	BI4Profiler
	Module
	Development
	Putting it all together
	Filling the void

	Conclusion
	List of Figures
	List of Tables

