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Abstract

The Caribbean Sea encompasses a vast range of physical environmental conditions that have a profound
influence on the organisms that live there. Here we utilize a range of satellite and in situ products to undertake a
region-wide categorization of the physical environments of the Caribbean Sea (PECS). The classification
approach is hierarchical and focuses on physical constraints that drive many aspects of coastal ecology, including
species distributions, ecosystem function, and disturbance. The first level represents physicochemical properties
including metrics of satellite sea surface temperature, water clarity, and in situ salinity. The second level considers
mechanical disturbance and includes both chronic disturbance from wind-driven wave exposure and acute
disturbance from hurricanes. The maps have a spatial resolution of 1 km2. An unsupervised neural network
classification produced 16 physicochemical provinces that can be categorized into six broad groups: (1) low water
clarity and low salinity and average temperatures; (2) low water clarity but average salinity and temperature,
broadly distributed in the basin; (3) low salinity but average water clarity and temperature; (4) upwelling; (5) high
latitude; and (6) offshore waters of the inner Caribbean. Additional mechanical disturbance layers impose
additional pattern that operates over different spatial scales. Because physical environments underpin so much of
coastal ecosystem structure and function, we anticipate that the PECS classification, which will be freely
distributed as geographic information system layers, will facilitate comparative analyses and inform the
stratification of studies across environmental provinces in the Caribbean basin.

It has long been recognized that marine environments
encompass vast environmental heterogeneity across a
continuum of scales. Setting boundaries to the ocean is
the first step towards its quantitative study (Longhurst
2007). In principle, a categorization of the physical marine
environment might help explain patterns of the structure
and function of marine systems and account for common-
alities or contradictions in the results of experiments or
monitoring studies carried out at different locations (Iken
et al. 2010). Environmental classifications should also
provide a logical means of stratifying field measurements so
that outcomes can be scaled up appropriately.

Several attempts have been made to categorize the
world’s oceans into regions. The U.S. National Oceanic
and Atmospheric Administration (NOAA) identified 64
large marine ecosystems: large areas with distinct bathym-
etry, hydrography, and productivity (Sherman and Hempel
2008). Longhurst (2007) classified the world ocean into 57
biogeochemical provinces after examining imagery of sea
surface chlorophyll concentration and reviewing physical
oceanographic literature for each ocean basin. Spalding
et al. (2007) produced an expert-derived classification of the
marine environment into 12 marine realms, 62 provinces,
and 232 ecoregions, areas that are expected to hold a
relatively homogeneous composition of species. These
categorizations partition the Caribbean Sea into either
two (Longhurst 2007; Sherman and Hempel 2008) or nine
units (Spalding et al. 2007: fig. 1).

Neither of these classification schemes was intended to
categorize the physical environment at an intra-Caribbean

scale. This point is made clear by considering regional
variability of sea surface temperature, an important
environmental variable in determining pattern and function
in marine systems (Tittensor et al. 2010). There is great
thermal variability (Fig. 1) within even the most detailed
classification available (Spalding et al. 2007), which did not
take into consideration oceanographic data to carry out the
categorization. For example, the southern Caribbean
ecoregion (ecoregion 66 in Fig. 1) encloses areas influenced
by upwelling (Müller-Karger et al. 1989) as well as offshore
oligotrophic areas. Furthermore, similar physical environ-
ments have been arbitrarily separated into different
ecoregions, as highlighted by the division of the Colombian
upwelling areas (described by Andrade and Barton 2005)
into ecoregions 66 and 67 (Fig. 1).

The physical environment of the Caribbean Sea is
spatially heterogeneous, and such variations are likely to
affect the function and distribution of marine organisms in
the basin. Major sources of heterogeneity include river
plumes (Müller-Karger et al. 1989; Restrepo et al. 2006),
runoff (Imbach et al. 2010), upwelling (Müller-Karger et al.
2004; Andrade and Barton 2005), and bathymetric effects
(Cerdeira-Estrada et al. 2005). These mechanisms princi-
pally alter the physicochemical environment experienced by
marine organisms (i.e., temperature, light, salinity), which
influence fundamental biological processes including me-
tabolism and photosynthesis. None of the existent attempts
to classify the ocean into regions (Longhurst 2007;
Spalding et al. 2007; Sherman and Hempel 2008) capture
this variability.

Here, we begin by creating a classification of the
physicochemical environments of the Caribbean. This* Corresponding author: i.c.chollett-ordaz@exeter.ac.uk
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classification defines major physicochemical boundaries,
but many organisms, particularly those living in shallow
coastal habitats (, 20 m) are also strongly influenced by
the mechanical disturbance regime. Two principal types of
mechanical disturbance can be distinguished: chronic
exposure to waves and acute, episodic physical disturbance
from tropical cyclones (Connell 1978; Edwards et al. 2011).
To accommodate physicochemical environments and dif-
ferent mechanical disturbances, we created a hierarchical
classification scheme of the physical environments of the
Caribbean Sea (PECS) that encompasses the fundamental
physicochemical regime at the top level and two forms of
physical disturbance at lower levels. The PECS classifica-
tion was developed directly from observed data rather than
being imposed upon data, and was implemented at a high
spatial resolution of 1 km2. We anticipate that the
classification scheme will benefit the systematic quantita-
tive study of biological oceanography in the Caribbean in
addition to that of coastal habitats such as intertidal rocky
shores, mangroves, subtidal seagrass beds, and coral reefs.
Moreover, a detailed classification of physical environ-
ments will help inform conservation planning activities of
the likely stratification of biodiversity in the area.

Methods

The data set—The region of interest covers the area
between 8uN and 28uN and 89uW and 58uW. Waters of the
Atlantic Ocean, 100 km away from the eastern edges of the
land masses circumscribing the basin, were masked out and
excluded from the analyses. The environment of the
Caribbean Sea was defined in terms of sea surface
temperature, water clarity, salinity, wind-driven wave

exposure, and hurricane incidence. Surface physicochemi-
cal variables may differ from those measured at the
subsurface (Leichter et al. 2006). The magnitude of these
differences depends on local atmospheric and oceano-
graphic conditions, particularly the level of stratification of
the water column, which is spatially and temporally
variable (Donlon et al. 2002). Although the input variables
used here were measured at the ocean surface and therefore
do not capture this vertical variability, superficial satellite
measurements are the only ones that allow a full assessment
of horizontal heterogeneity at a basin level. Additionally,
surface temperature and ocean color are both strongly
correlated to processes in the entire water column (Long-
hurst 2007; Oliver and Irwin 2008). Thus, the resulting
classification has some value for the assessment of pelagic
systems in addition to its main focus of benthic systems. A
short description of the source data and the methodology
followed to obtain each data layer is given below.

Sea surface temperature (SST) data were derived from
infrared observations collected by the Advanced Very High
Resolution Radiometer (AVHRR) sensors flown on the
NOAA’s Polar Orbiting Environmental Satellite Series
(satellites NOAA 11–18). AVHRR data from 1993 to 2008
at 1-km2 spatial resolution were gathered, navigated,
processed, and archived by the Institute for Marine Remote
Sensing (IMaRS) at the University of South Florida. The
temporal coverage initiates when the High Resolution
Picture Transmission antenna located at the University of
South Florida first collected data. Nightly data were
subjected to the cloud-filtering procedure described by
Hu et al. (2009). In the shallow Florida Keys environment
the root mean square difference of the 1-km AVHRR SSTs
from those measured by several buoys was , 1uC (Hu et al.

Fig. 1. Average sea surface temperature map (AVHRR 1993–2008) and marine ecoregions in the Caribbean Sea (8–28uN, 89–58uW)
according to Spalding et al. (2007): (43) Northern Gulf of Mexico; (63) Bahamian; (64) Eastern Caribbean; (65) Greater Antilles; (66)
Southern Caribbean; (67) South-western Caribbean; (68) Western Caribbean; (69) Southern Gulf of Mexico; (70) Floridian.
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2009), while in open-ocean environments the differences
were smaller (Kearns et al. 2000). From this data set, we
calculated the climatological average, the climatological
minimum monthly mean (mMM), and the climatological
maximum monthly mean (MMM). In order to calculate
mMM and MMM, the average temperature for each
month (i.e., the mean of all daily data from all years for
that particular month) was calculated, and then the lowest
and the highest values were selected to produce the mMM
and MMM maps.

A proxy for water clarity was assessed using the diffuse
attenuation coefficient at 490 nm (K490). K490 represents
the rate which light in the blue to green region of the
spectrum is attenuated with depth (i.e., higher values
indicate lower water clarity). Time series data from 1997
to 2008 at 1-km2 spatial resolution were derived from ocean
color observations collected by the sea-viewing wide-field-
of-view sensor (SeaWiFS) on board of GeoEye’s SeaStar
satellite. SeaWiFS data were collected, navigated, pro-
cessed (using SeaDAS version 4 software, NASA’s Ocean
Biology Processing Group), and archived by IMaRS.
Validation of the SeaWiFS default K490 data product
over the global ocean (bottom depth . 30 m) through
NASA’s SeaWiFS bio-optical archive and storage system
(SEABASS) online tool showed root mean square error of
40.1% (n 5 410, 0.018 , K490 , 0.58, R2 5 0.77) as
compared with in situ measurements (http://seabass.gsfc.
nasa.gov/seabasscgi/validation_search.cgi). A recent work
using limited data collected in southwest Florida coastal
waters and in the Caribbean showed root mean square
uncertainty of 27.6% (n 5 7, 0.03 , K490 , 0.41, R2 5 0.99)
(J. Zhao unpubl.). Saturated values (K490 5 6.3998 m21, the
maximum attainable value for this variable) were removed
from the data set. Spatial variability in the relative
composition and nature of in-water constituents in coastal
waters makes their quantification problematic in large
regions that include both clear and optically turbid areas
(Babin et al. 2003). Additionally, the Caribbean Sea contains
optically shallow areas (e.g., the clear Bahamas banks)
where light reflected by the seabed contributes to the
reflectance spectra captured by the satellite sensor, resulting
in misleadingly high K490 estimates (K490 values up to
0.4 m21, Cannizzaro and Carder 2006; J. Zhao unpubl.).
Therefore, we calculated the relative frequency of K490
anomalies (percentage of times that K490 values were above
0.5 m21) as a proxy to identify areas of low water clarity
throughout the Caribbean Sea. While the threshold of
0.5 m21 accounts for the effects of optically shallow waters,
it confines the approach to the detection of large water
quality anomalies that occur only in coastal areas because it
is unlikely to obtain K490 values above 0.5 m21 in open-
ocean waters. The use of relative frequencies allows the
comparison of areas with different observation frequency
because of heterogeneous cloud coverage in this large region.

Salinity data from the World Ocean Atlas 2009 were
obtained from the NOAA National Oceanographic Data
Center. The original data were collected from several
sources, including bottle samples, ship-deployed conduc-
tivity–temperature–depth package, profiling float, moored
and drifting buoys, gliders, and undulating oceanographic

recorder profiles (Antonov et al. 2010). The earliest
observations were recorded during the 17th century, and
the last observations during 2008. The data set was
analyzed in a consistent, objective manner on a 0.25u
latitude–longitude grid at standard depth levels (Antonov
et al. 2010). Here we used climatological monthly
composites of salinity at the surface. From this source
data we calculated average surface salinity, which was then
rescaled to 1 km2 using bicubic interpolation in order to
match the spatial resolution of the other layers.

Wind-driven wave exposure, the degree of wave action on
an open shore, is governed by the fetch (distance of open
sea that the wind has crossed to generate waves) and the
strength and direction of the winds. The approach used
here, based in wave theory, excludes the influence of any
other effects on the wave climate (i.e., tides, and swell
arising from distant sources) that are not generated by the
local wind. Although an approximation of wave patterns in
shallow areas, simple methods based on the configuration
of the coastline and wind patterns have repeatedly shown
to be sufficient predictors of spatial variation in coastal
communities (Chollett and Mumby 2012; Harborne et al.
2006). Here we measured fetch using the global, self-
consistent, hierarchical, high-resolution shoreline database
(GSHHS version 1.5, Wessel and Smith 1996), and wind
speed and direction were acquired from the QuikSCAT
(NASA) satellite scatterometer from 1999 to 2008. Ascend-
ing and descending passes were averaged in order to
produce one daily wind estimate per day. Wind data,
originally at , 25-km spatial resolution, were rescaled to
1 km2 using bicubic interpolation prior to the analyses.
Wave exposure was calculated using the method described
by Ekebom et al. (2003), where the exposure of a location is
a function of the shape of the basin, wind speed, and
direction. However, the method of Ekebom et al. (2003)
was developed in small archipelago environments (dozens
of kilometers) with uniform wind conditions and fetch-
limited exposure (Ekebom et al. 2003). For this study we
are assessing a large region (thousands of kilometers) with
high variability in wind distribution and many open, fetch-
unlimited areas. For those reasons we made two modifi-
cations to the original method: By specifying the shift
between equations for ‘‘fetch-limited’’ and ‘‘fully devel-
oped’’ seas, because for a given wind speed and a long fetch
there is a fixed height to which a wave can grow (Chollett
and Mumby 2012) and by including spatial variability in
wind fields using gridded wind data. Additionally, we
calculated daily wave exposure and then produced an
average for the entire time period, instead of using the
average wind speed in each of the main directions (Ekebom
et al. 2003). This approach allows inclusion of strong,
sporadic winds, which have a disproportionate influence on
resulting wave patterns and would be missed otherwise. A
detailed description of the overall method and equations
can be found in Chollett and Mumby (2012).

Hurricane incidence was measured using the Atlantic
Hurricane data set (1851–2008), which tracks the location
and intensity of the eye of tropical cyclones every 6 h
(Jarvinen et al. 1984). We confined the analyses to storms
that reached hurricane intensity (i.e., no tropical storms
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were included). Hurricane-force winds may extend several
kilometers from the hurricane track. We calculated the
frequency of hurricanes in any given location using the
approach described by Edwards et al. (2011). Essentially,
the area of influence of each hurricane is captured in
buffers (up to 160 km wide) that take into account the
intensity of the storm, its asymmetry (because of the
Coriolis force), and the reduction in wind speed with
distance from the hurricane track (Keim et al. 2007). Using
this approach, we mapped the total frequency of hurricanes
for each Saffir–Simpson intensity class for the entire record
at 1-km2 spatial resolution.

Classification—The Caribbean basin was classified into
physicochemical regions using self-organizing maps (SOM;
Kohonen 1995), an unsupervised clustering approach. The
input variables for the classification were average SST,
mMM SST, MMM SST, relative frequency of water clarity
anomalies, and average surface salinity, which are expected
to depict the most relevant physicochemical features of the
area. All variables were first standardized to allow
meaningful comparisons. For each variable, standardiza-
tion was achieved by centering each value xi (i.e., by
subtracting the lowest score: xi 2 xmin) and then dividing
this by the range (xmax 2 xmin; Legendre and Legendre
1998: Eq. 1).

x’i~
xi{xmin

xmax{xmin

ð1Þ

The classification method (SOM) is a type of neural
network based on competitive learning that both reduces
the dimensionality of the data and displays similarities
among data. SOM was preferred over more traditional
clustering approaches, such as hierarchical clustering or k-
means, because of its ability to deal with large data sets and
nonlinear problems. SOM does not make a priori
assumptions about the distribution of the data, making it
more appropriate for water clarity and salinity data, which
have leptokurtic and skewed distributions. Other strengths
of SOM are its ease of implementation, adaptation (the

ability to change its structure based on external or internal
information), parallelization (performing small operations
in parallel), flexibility, and speed. A brief overview of the
SOM algorithm is given below, but the reader is referred to
Kohonen (1995) for a more technical discussion. Although
the SOM has been used previously to extract patterns in
satellite imagery (Richardson et al. 2003), most applica-
tions have employed it to extract temporal patterns, and, to
our knowledge, only one study has used it for the
extraction of spatial patterns and the identification of
regions (Saraceno et al. 2006).

SOM is a nonlinear classification analysis in which
multidimensional data are mapped onto a two-dimensional
output space while preserving the topological relationships
among input data (Kohonen 1995). The input data for the
analysis are N vectors (one for each pixel in the study area,
more than three million in total) with five dimensions,
corresponding to the descriptors of the physicochemical
environments of the Caribbean. The SOM (Fig. 2) consists
of a set of units, nodes or neurons arranged in a two-
dimensional grid. These units characterize the center of the
clusters. The number of units (and clusters) and the type of
arrangement (e.g., hexagonal or rectangular grid) are
defined by the user and are dependent upon the level of
detail desired in the analysis. A weight vector of the same
dimension as the input data is associated with each unit.
This vector is initialized with random values or eigenvec-
tors of the data set. During the self-organizing process,
input vectors are presented to the SOM and the distance of
the weight vector of each unit to the input vector is
calculated. The unit with the smallest distance is selected as
the ‘‘winner.’’ At this point, the weights of both the winner
and its neighboring units are modified to more closely
resemble the input vector. These changes depend on a
learning rate, a constant which determines how fast the
SOM learns and decreases with the number of iterations
(units change more at the beginning of the iterative process)
and a neighboring function that is spatially explicit
(neighbor units farther away from the winner change less).
The procedure is repeated until each input vector is
presented to the network, and then the entire process is

Fig. 2. Overview of the SOM algorithm: each pixel within the temperature (average, mMM, MMM), water clarity, and salinity
input maps (1) is taken as an input vector for the SOM algorithm (2). n input vectors (where n is equal to the number of pixels in the
image) are linked to the output layer through weighted links (3). The output layer (4) is, in this case, a matrix composed by 16 (4 3 4)
units in a hexagonal grid, where lines indicate the connections among units, and the update neighborhood of the first (black) unit is
defined by the gray gradient, with lighter colors highlighting farther units.
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repeated many times, leading to a topologically ordered
map. The inclusion of a neighborhood function implies that
similar patterns are mapped onto neighboring regions on
the map, while dissimilar patterns are mapped farther
apart. Once the underlying patterns have been character-
ized with the output units, SOM results can be used to
classify the input vectors into clusters, where each vector is
represented by the most similar unit.

The SOM requires the user to define the desired number
of clusters a priori. To identify the optimum number of
clusters, we partitioned the data set using 4–36 clusters and
compared the results using a validation criterion. While a
few clusters produce groups that are well separated but
internally very variable (highly dispersed), too many
clusters give more compact but overlapping clusters. To
choose the optimal number of clusters (k), we evaluated the

Fig. 3. Metrics used to identify the optimum number of clusters (a) Caliński and Harabasz index (CH ); (b) within-cluster sum of
squares (wSS) and between-cluster sum of squares (bSS). Gray stars correspond to 16 clusters, the partition chosen.

Fig. 4. Spatial arrangement of the 16 physicochemical provinces in the Caribbean Sea and selected examples (A–N), described in
Table 2.
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resulting classifications regarding their compactness or
within-cluster variability, and isolation or between-cluster
variability using the index described by Caliński and
Harabasz (1974). The approach is analogous to the F-
statistic in univariate analysis and has shown a superior
performance when compared to other indices (Milligan and
Cooper 1985). Within-cluster variability (wSS) was esti-
mated by calculating the sum of squares of the Euclidean
distances between each pixel (n pixels in total) and the
centroid of its cluster, while between-cluster variability
(bSS) was assessed as the sum of squares of the Euclidean
distances between each cluster centroid and the centroid of
the entire data set. The Caliński and Harabasz (CH) index
is given by the formula below (Eq. 2). The number of
clusters that maximizes CH suggests the best partition.

CHk~

bSSk

(k{1)
wSSk

(n{k)

ð2Þ

The units of the SOM were arranged in a hexagonal grid,
which allows a better visualization and more continuous
transitions among the units. The learning rate was 0.9 during
the initial phase and 0.02 during the refining phase. The initial
neighborhood size was set to 3, and the refining-phase
neighborhood size was set to 1. The initial phase consisted of
100 steps, while the refining phase consisted of 400 steps, for
500 iterations in total. To calculate distances from a particular
unit to its neighbors we used the link distance, which is simply
the number of links that must be taken to reach the unit under
consideration. The analyses were performed using the Neural
Network toolbox in Matlab version 7.10 (The MathWorks,
Inc).

Geographic information system files with the PECS
classification including both the physicochemical categori-
zation and the physical disturbance regime are available
from the corresponding author.

Fig. 5. Topological arrangement of the SOM showing the
relative location of the clusters. (a) The proportion of pixels
associated with each numbered cluster is indicated by the size of
each hexagon, where larger hexagons indicate a larger number of
pixels represented by that cluster. (b) Euclidean distances between
the center of neighboring clusters, where the hexagons represent
the clusters, the lines connect neighboring clusters, and the shades
of gray in the regions containing the lines indicate distances
between clusters. Darker shades represent larger distances and
lighter colors smaller distances. (c) Average value for each cluster
for each environmental variable. Darker shades represent larger
values.

Table 1. Average and standard deviation of average SST, mMM, MMM, water clarity proxy (WCp), and salinity for each of the
16 clusters.

Cluster Average SST (uC) mMM SST (uC) MMM SST (uC) WCp (%) Salinity (%)

1 26.6360.19 25.4260.35 27.9760.22 1.0361.61 35.0260.3
2 27.1760.13 25.9660.29 28.5460.12 0.2360.35 35.9160.12
3 27.6060.12 26.2660.19 29.1060.15 0.1060.45 35.960.16
4 27.8460.19 26.1960.31 29.6860.21 0.0860.50 35.9760.13
5 27.0060.15 25.7660.35 28.2560.14 0.3360.51 35.6960.16
6 27.2760.14 26.0860.21 28.5960.13 0.2360.39 35.5560.1
7 26.9360.22 25.1260.37 28.8660.22 0.1060.29 36.360.12
8 27.1260.19 24.9260.43 29.6060.24 0.1160.45 36.160.12
9 27.0160.42 26.0260.57 28.2360.33 2.5762.58 33.161.23

10 27.1560.13 25.9860.26 28.4960.18 0.6460.99 35.1760.22
11 26.0660.39 24.3160.65 27.9460.32 2.0461.73 36.1560.4
12 26.0560.36 22.2660.61 29.7860.29 0.2560.83 35.8860.38
13 27.6961.24 26.6061.36 29.1961.18 36.32618.87 31.4461.69
14 26.6560.81 24.3461.88 28.9061.04 21.99612.71 35.5560.71
15 26.4660.28 23.7660.39 29.4160.31 0.0960.36 36.2360.2
16 25.0760.47 19.7461.05 29.8860.33 1.1062.70 35.8160.24
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Results

SOM classification—The optimal partition of the input
data set was found when using 16 clusters (Fig. 3). For this
partition the CH index attained the second maximum value
after 36 classes (Fig. 3a). This classification scheme
represents the best tradeoff in minimizing the within-cluster
variability (wSS) and maximizing the between-cluster
variability (bSS, Fig. 3b) while providing a number of

clusters that is small enough to be easily visualized and
interpreted. Punctuated increases in CH index when using
16 clusters are most likely due to the bidimensional
configuration of this network. Unlike other clustering
methods, such as k-means, which looks for a partition just
based on a given number of clusters, SOM arranges this
fixed number of clusters in a topologically ordered
partition. For example, the 16-cluster solution derives from
a topologically ordered grid of 4 3 4 units (see Fig. 2),

Table 2. Physicochemical provinces of the Caribbean Sea.

Main
oceanographic
features Clusters Example Country Description

Low water clarity,
low salinity

13 A. Orinoco
River plume

Venezuela Under the freshwater influence of the
Orinoco River, the fourth of the world’s
rivers in terms of discharge (Müller-
Karger et al. 1989)

B. Lake
Maracaibo

Venezuela The largest brackish lake in South America,
influenced by the freshwater discharge of
numerous rivers (Rodrı́guez 2000)

C. Cienaga Grande
de Santa Marta

Colombia Large estuarine lagoon complex that forms
part of the delta of the Magdalena River,
the largest river discharging directly to the
Caribbean Sea (Restrepo et al. 2006)

D. Uraba Gulf Colombia The southernmost portion of the Caribbean
Sea, with waters influenced by the
freshwater discharges of the Atrato River
and other small streams (Diaz et al. 2000)

Low water clarity 14 E. River Tuy Venezuela The River Tuy concentrates the wastewater
effluents from the capital of Venezuela
(Jaffe et al. 1995)

Low salinity 9 F. Panama–Costa
Rica runoff region

Panama and
Costa Rica

Under the influence of river discharge and
runoff (Imbach et al. 2010) driven by
strong rainfall in the area (Portig 1965)

Upwelling 11 G. Yucatan
upwelling

Mexico Topographically and wind-induced
upwelling (Merino 1997; Melo-González
et al. 2000)

H. Southern
Caribbean
upwelling

Colombia and
Venezuela

Wind-driven upwelling occurs along eastern
Colombia and most of the Venezuelan
coastline, although the Guajira (Andrade
and Barton 2005) and the southeastern
Venezuela (Müller-Karger et al. 2004) are
the best known upwelling areas in the
region

High-latitude areas 12,15,16 I. Florida banks USA Topographically induced fronts with colder
waters in winter due to the action of
sensible heat and evaporative losses in
shallow areas

J. Northern
Bahamas banks

The Bahamas Topographically induced fronts, with
thermal contrasts enhanced at higher
latitudes

K. Western
Cuba banks

Cuba These topographically induced fronts have
been described by Cerdeira-Estrada et al.
(2005)

L. Inner Gulf
of Mexico

Mexico and
USA

The limits of the waters of the inner Gulf of
Mexico are clearly delineated by the loop
current. Within the Gulf waters exhibit
higher seasonal variation in temperature
(Müller-Karger et al. 1991)

Inner Caribbean 1–8,10 N. The Loop
Current

USA and
Cuba

Joining the Yucatan and Florida currents in
a clockwise flow (Hofmann and Worley
1986)
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where all neighbor units are related. The CH index not only
identifies the optimal number of classes but the optimal
arrangement of the units, which is relevant for neighbor-
hood-sensitive classification tasks.

The selected SOM classified the physicochemical envi-
ronment of the Caribbean Sea into 16 clusters (Fig. 4).
Although no explicit geographic constraints were included,
the clustering procedure mostly produced homogenous
clusters with well-defined boundaries. Even though maps
obtained with larger numbers of clusters provide more
complex patterns, the distribution of the main physico-
chemical features remained stable when different partitions
were applied to the data set (not shown).

The number of pixels within each class was not evenly
distributed and a few clusters (e.g., cluster 3, cluster 6)
included most of the pixels, while others (e.g., cluster 13,
cluster 14) enclosed a small subset of the region (Fig. 5a).
The SOM (Fig. 5b) shows similar patterns adjacent of one
another, dissimilar patterns at opposite ends of the SOM
space, and a continuum of change across the array
(Kohonen 1995). Clusters 13 and 14, on the top left corner,
are very different from the rest, while clusters 2, 5, 6, and 10
are quite similar. These similar clusters represent offshore
waters, with similar oceanographic characteristics, weak
gradients, and fuzzy boundaries (Fig. 4). When looking at
the relative importance of the different variables in each
cluster (Table 1), it can be seen that cluster 13 is
characterized by the lowest water clarity and the lowest
salinity. Cluster 14 also shows low water clarity. Cluster 16
exhibits the lowest SST average and mMM and the highest
MMM, while cluster 4 shows the highest average SST.

Physicochemical provinces of the Caribbean Sea—The
physicochemical provinces of the Caribbean Sea can be
broadly distributed into six groups, which are detailed
below and in Table 2. (1) Areas characterized by low water
clarity and low salinity, but average temperatures were
identified by the cluster 13. Examples are the Orinoco River
plume (region A in Fig. 4), an area under the direct

influence of the Orinoco River; the Lake Maracaibo
(region B); Cienaga Grande de Santa Marta (region C);
and the Uraba Gulf (region D).

(2) Areas characterized by low water clarity, but not
exceptionally low values of salinity (cluster 14) and average
temperatures were broadly distributed in the Caribbean
Sea. These conditions exist, for example, in the Golfete de
Coro (Venezuela), and in areas influenced by the Tuy
(Venezuela, Region E in Fig. 4) and Magdalena (Colom-
bia) river plumes. In Central America, turbid areas are
located along the coast of Nicaragua and eastern Hon-
duras, the Gulf of Honduras, Chetumal and Espiritu Santo
Bays, and in the Conil lagoon in the north of Quintana
Roo, Mexico. In North America, turbid areas are located
in Tampa Bay, Charlotte Harbor, and Florida Bay.
Finally, the Gulf of Batabano, eastern La Juventud Island,
and the Camagüey Archipelago in Cuba and Samana Bay
in Dominican Republic have high turbid areas in the
Greater Antilles.

(3) Areas characterized by low values of salinity (cluster
9) but relatively high water clarity when compared to
Provinces 1 and 2, were located along the coast of Panama
and Costa Rica (region F in Fig. 4) and on the edge of the
Orinoco River plume.

(4) Areas with the lowest seasonal temperature maxi-
mum, also characterized by generally cold average and
minimum SSTs (cluster 11) were located in the upwelling
areas of Yucatan (region G in Fig. 4) and the southern
Caribbean (region H).

(5) Towards the north, areas with low average and
minimum temperature but high seasonal maxima were
characterized by clusters 12, 15, and 16. Shallower sections
such as the Florida banks (region I in Fig. 4), the northern
Bahamas banks (region J), and the western Cuban banks
(region K) were characterized by larger seasonal ranges
when compared to surrounding areas, experiencing colder
waters in winter and warmer waters in summer. Cold
waters of the inner Gulf of Mexico (region L) also share a
similar temperature signature with broad seasonal ranges.

Fig. 6. Chronic and acute physical disturbance regime. (a) Chronic stress given by wave exposure (WE, in J m23). The wind rose in
the top right corner shows the average wind conditions (1999–2008) for the entire basin. (b) Acute stress given by the frequency of
occurrence of hurricanes Category 1–5 in the last 157 yr (1851–2008).
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(6) The interior of the Caribbean Sea was characterized
by several (1–8, 10) highly correlated clusters (Fig. 5b).
These clusters are characterized by a mixture of relatively
warm waters with high salinity and high water clarity. Most
differences within this area are fuzzy, indicating smooth
transitions between clusters. The only exceptions are the
waters of the loop current that identify a well-defined
circulation path (region M).

Physical disturbance in the Caribbean Sea—To comple-
ment the oceanographic regime, the Caribbean Sea was
characterized according to its chronic and acute physical
disturbance regime (Fig. 6). Chronic physical disturbance,
represented by wave exposure patterns, changes predictably
in the basin according to the prevailing direction of the
wind and fetch (Fig. 6a). The dominant effect of the
northeasterly trade winds is clearly visible. In general,
windward areas have higher wave exposure than leeward
areas, unless they are sheltered by a land mass (e.g.,
westward cays of The Bahamas). From 1851 to 2008, 2199
hurricanes have been observed in the Caribbean basin.
There is a clear spatial heterogeneity in the distribution of
storms across the basin, with higher occurrence in the north
and two centers of high activity in the passage between
Yucatan and Cuba and east Puerto Rico (Fig. 6b).

The chronic and acute disturbance regime can be used to
refine the physicochemical provinces if relevant for the
system under study. The northern Bahamas, for example,
encompasses three physicochemical provinces characterized
by bathymetry-driven temperature effects (Fig. 7a), but this
simple categorization can be enriched for shallow marine
ecosystems by incorporating information on the chronic
and acute disturbance regime. While chronic stress
highlights spatial variability at the scale of a few kilometers
(Fig. 7b), the acute disturbance regime in the area shows a
marked latitudinal gradient (Fig. 7c).

Discussion

Information on the physicochemical characteristics of
the water masses and the physical disturbance regime was
used to produce the hierarchical PECS classification. While
the physicochemical clusters are arranged in broad-scale
spatial patterns, the physical disturbance imposes addi-
tional pattern that operates over fine (wave exposure) and
large (hurricane incidence) spatial scales. The PECS
classification is useful for research and conservation
planning at regional scales by providing comprehensive
coverage, a data-driven, objective classification approach,
and high spatial detail consistent with the scale of many
research and conservation requirements in the area.
Although the data set is specific to the Caribbean and
captures information relevant to the functioning of coastal
ecosystems in the basin, the methodology applied is fully
transferable to other geographic locations, other spatial
scales, and can be used with other environmental
variables.

The Caribbean Sea was divided into physicochemical
regions characterized by similar sea surface water clarity,
salinity, and temperature patterns. These regions delineate

Fig. 7. Case study of northern Bahamas. (a) Physicochemical
provinces, (b) chronic, and (c) acute physical disturbance regime.
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marine areas that are expected to hold similar ecosystem
function and pattern. The regions, however, should not be
interpreted as units with no interaction. The Caribbean Sea
is highly connected, both in terms of physical oceano-
graphic transport and the dispersive stages of many
organisms (Cowen et al. 2006), which can lead to extensive
gene flow across the region (Foster et al. 2012). Patterns of
connectivity were not considered in this classification but
would make for a useful extension, particularly for the
study of marine biogeography within the region (Milosla-
vich et al. 2010). The inclusion of information on the
connectivity among environmental provinces would make
some of the boundaries defined in Fig. 4 fuzzier or,
conversely, clearer, if oceanographic features contribute
to the establishment of distinct ecological barriers (Cowen
et al. 2006).

While some regions of the Caribbean have well-defined
boundaries, indicating the presence of persistent features
such as river and upwelling fronts, some regions in the
inner Caribbean have fuzzy edges indicating transition
areas. The resulting classification is consistent with physical
oceanographic literature for the basin (Table 2). However,
precise boundaries should be interpreted cautiously because
they indicate average locations of rapid change in
oceanographic conditions. Oceanographic features such as
river plumes or upwelling fronts exhibit strong seasonal
and interannual variability (Müller-Karger et al. 1989,
2004), and therefore have dynamic boundaries that are not
captured by this static approach (Oliver and Irwin 2008).
Additionally, some of these boundaries might be shifting
under a changing climate. For example, changes in the
strength of the upwelling in the southern Caribbean during
the last few years have produced major changes in plankton
communities in the area (F. E. Müller-Karger unpubl.).
However, the extent to which recent changes in climate are
actually shifting the ecotones and producing permanent
changes in marine ecosystems is poorly understood.

Our objective was to produce a classification that can
inform research and management goals that require spatial
data on the structure and function of marine systems on
timescales of at least 1 yr (e.g., structure of reef communities
assessed in different parts of the Caribbean). If the desire is
to compare patterns or processes that develop over short
(e.g., a seasonal) timescales, such as the summertime
community structure of plankton, then an alternative
approach might be necessary. In this case, the same

methodology could be used but the input data would be
limited to include only the temporal scale of interest.

An important difference between PECS and earlier
classification schemes is that PECS allows regions with
similar oceanography to be defined. This enables regional
comparisons of patterns or processes in often distant, but
comparable systems. The categorization proposed here does
not replace global classification systems (Longhurst 2007;
Spalding et al. 2007; Sherman and Hempel 2008) but
provides a more detailed regional product that fulfills
regional research and conservation needs. Previous catego-
rizations aim to provide enough detail to support linkage to
applied research and conservation (Spalding et al. 2007);
however, several research (Cruz-Motta et al. 2010; Iken et al.
2010; Miloslavich et al. 2010) and management (Mills et al.
2010) assessments have observed a mismatch in spatial scales
between these zones and practical applications. Indeed,
higher-resolution environmental data should better explain
patterns of biodiversity and organismal distribution (Cruz-
Motta et al. 2010; Iken et al. 2010), and smaller regions have
been highlighted as more suitable for conservation activities
because they have relatively homogeneous natural attri-
butes, human activities, and aspects of governance that
facilitate management (Mills et al. 2010).

The use of environmental classes is a common strategy in
conservation planning (Ferrier 2002, Ferrier et al. 2009).
The use of PECS depends on the level of environmental
variability at the scale of interest. For example, regional
planning activities, such as the identification of biodiversity
hot spots (Harborne et al. 2006) or large-scale reserve
networks, might identify hot spots of PECS diversity or
seek to obtain representation of all PECS classes as part of
a large-scale biodiversity plan (Mills et al. 2010). At smaller
spatial scales, where only a limited number of PEC
categories exist, practitioners might make use of the
underlying data within physicochemical categories to
stratify planning activities within individual PEC categories.
PECS could also be used as a baseline against which to
contrast spatial patterns of extreme weather. This would
allow examining the relationship between climatological and
stressful conditions, which varies spatially and is known to
affect the responses of marine organisms to stress events
(Mumby et al. 2011). Other potential applications of PECS
include the production of hypotheses about geographic
patterns of biological distinctiveness, including differences in
composition, structure, function, and acclimation.

Table 3. Issues that would benefit by referencing PECS.

Approach Issue Action

A priori Selection of locations to facilitate comparisons Choose locations from physicochemical provinces that
are similar or contrasting according to the aims of the
study

A posteriori Selection of locations to place results into context Compare results with locations within the same
environmental province

A posteriori Modeling patterns of marine ecosystem attributes at
regional scales

Use environmental province as an explanatory variable

A posteriori Priority setting and planning Use environmental province as ecological criteria within
selection algorithms
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PECS facilitates a number of research and conservation
applications, regardless if the researcher is in the planning
stage or has already collected the data (Table 3). In general,
the hierarchical approach provides an objective framework
in which to plan, analyze, and interpret research and/or
conservation efforts in the basin.
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