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Abstract. Newly settled recruits typically suffer high mortality from disturbances, but
rapid growth reduces their mortality once size-escape thresholds are attained. Ocean
acidification (OA) reduces the growth of recruiting benthic invertebrates, yet no direct effects
on survivorship have been demonstrated. We tested whether the reduced growth of coral
recruits caused by OA would increase their mortality by prolonging their vulnerability to an
acute disturbance: fish herbivory on surrounding algal turf. After two months’ growth in
ambient or elevated CO2 levels, the linear extension and calcification of coral (Acropora
millepora) recruits decreased as CO2 partial pressure ( pCO2) increased. When recruits were
subjected to incidental fish grazing, their mortality was inversely size dependent. However, we
also found an additive effect of pCO2 such that recruit mortality was higher under elevated
pCO2 irrespective of size. Compared to ambient conditions, coral recruits needed to double
their size at the highest pCO2 to escape incidental grazing mortality. This general trend was
observed with three groups of predators (blenny, surgeonfish, and parrotfish), although the
magnitude of the fish treatment varied among species. Our study demonstrates the importance
of size-escape thresholds in early recruit survival and how OA can shift these thresholds,
potentially intensifying population bottlenecks in benthic invertebrate recruitment.
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INTRODUCTION

The supply of new recruits is critical to the

maintenance and recovery of invertebrate populations

(Connell and Keough 1985). Yet, following settlement

from the plankton to the benthos, 50–90% of benthic

invertebrate recruits do not survive beyond three

months (Gosselin and Qian 1997). Owing to their small

size, recruits generally have much higher mortality

relative to their adult counterparts, as small individuals

are either completely unharmed or killed outright by

disturbances, whereas larger individuals may experience

partial mortality (Hughes and Jackson 1985, Babcock

1991). A prominent cause of mortality for recruiting

benthic organisms is direct or incidental predation by

grazers. However, size-escape thresholds have been

reported beyond which recruit vulnerability to predation

is reduced across many taxa, including barnacles

(Connell 1985, Navarrete 1996), mussels (Paine 1976,

Wootton 1993), corals (Raymundo and Maypa 2004,

Box and Mumby 2007), and fish (Rice et al. 1993). Even

within very small size classes, size-escape can be an

important mechanism of predator avoidance for newly

settled recruits (Brock 1979, Christiansen et al. 2009),

making rapid early growth vital to survivorship.

Any process that reduces the growth rate of inverte-

brate recruits will likely prolong the exposure to sources

of mortality (pre-size-escape) and therefore elevate

mortality rates. One of the most insidious disturbances

to influence the growth rate of aquatic invertebrates is

ocean acidification (OA). OA is a chronic disturbance

that is caused by the uptake of atmospheric carbon

dioxide (CO2), which decreases seawater pH and

carbonate saturation. OA can alter community structure

in both tropical (Fabricius et al. 2011) and temperate

ecosystems (Hall-Spencer et al. 2008), and most

calcifying organisms exhibit reduced growth from

elevated CO2 partial pressure ( pCO2; Kroeker et al.
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2010; but see Ries et al. 2009). Due to the importance of

recruitment, many recent investigations have evaluated
the effects of OA on the early life-history of organisms,

and have demonstrated that it can decrease the
fertilization, settlement, and growth of recruits from a

broad range of benthic invertebrates (Kurihara 2008,
Byrne 2011). This includes the post-settlement growth of
abalone (Byrne et al. 2011), oyster (Parker et al. 2009)

and mussel shells (Gaylord et al. 2011), urchin spines
(Byrne et al. 2011), and the linear growth (Cohen et al.

2009, Albright et al. 2010) and calcification (Cohen et al.
2009, de Putron et al. 2011) of coral recruits. However,

no direct effects of OA on post-settlement survivorship
of invertebrate recruits have been recorded to date.

A potentially important source of sudden mortality in
newly settled invertebrates, and corals in particular, is

the action of fish that graze the substrate frequently,
principally to harvest epilithic algal turfs (Steneck 1988,

Rotjan and Lewis 2008). Whether grazing fish actively
prey upon small invertebrates or merely cause incidental

damage during the process of grazing is unclear for most
species, but coral mortality has been documented for

various fish groups (Brock 1979, Christiansen et al.
2009). Here, we aimed to determine whether the chronic

effect of OA would alter the survivorship of newly
settled recruits (,5 mm) following the common, acute
disturbance of herbivorous fish grazing on algal turfs.

We hypothesized that OA would decrease coral recruit
growth and increase their mortality following grazing by

herbivorous fish, with the rate of mortality dependent on
the type of fish feeding method (scraping, tearing, and

combing).

METHODS

General protocol

All experiments were conducted at Heron Island

Research Station (HIRS) from 29 November 2010 to 18
February 2011. Coral larvae were settled on tiles in

ambient seawater and grown in a flow-through aquar-
ium system with three CO2 treatments. The treatments
represented ambient (pH 8.04, pCO2 389 latm [1

atmosphere ¼ 101.3 kPA], aragonite saturation state
Xarag 3.6) and two elevated (pH 7.81, pCO2 753 latm,

Xarag 2.3; pH 7.60, pCO2 1267 latm, Xarag 1.6)
concentrations of CO2 (Appendix A). After two months,

the recruits were mapped and measured to evaluate the
effects of OA on post-settlement growth. The tiles were

then subjected to individual grazing trials with herbiv-
orous fish. Following the grazing trials, the coral recruits

on the tiles were remapped to assess recruit mortality in
each treatment.

Experimental CO2 aquarium system

The three seawater treatments were controlled by CO2

dosing to adjust the set pH of the seawater in 200-L
sumps, following standard protocols for OA research

(Gattuso et al. 2010). The seawater pH was continually
measured with temperature compensated electrodes

(InPro4501VP; Mettler-Toledo, Melbourne, Victoria,

Australia) that were monitored daily for calibration

validity, and recalibrated to 0.01 pH units when

necessary. Targeted pH levels were maintained with a

control unit (Aquatronica; AEB technologies, Cavriago,

Reggio Emilia, Italy), which opened solenoid valves that

slowly injected CO2 into the sumps when the pH

exceeded the desired threshold. For the control treat-

ment, CO2-scrubbed air was bubbled into the sump

when the target pH fell below the desired threshold. The

alkalinity of seawater samples was measured every six

hours for a period of 48 hours from each treatment over

both a spring (2.8 m) and a neap (1.5 m) tidal cycle.

Alkalinity replicates within a sample were measured

using Gran titration until a maximum 1% error was met,

using a T50 titrator (Mettler-Toledo). The carbonate

chemistry of the seawater was calculated with CO2SYS

(Lewis and Wallace 2006) using pH, total alkalinity,

salinity (35.4% 6 0.2% [mean 6 SE]; n ¼ 8), and

temperature as the inputs (Appendix A).

The treatment seawater was fed continually from the

sumps to seven replicate tanks per treatment at a flow

rate of 1 L/min. The pH of the tanks was regularly

verified with a portable SG2 SevenGo pH meter

(Mettler-Toledo). Tank walls were regularly cleaned to

remove any algae and contained small power heads for

extra seawater circulation. Replicate tanks were ran-

domized on the table and placed under thin shade cloth

and neutral density filter (Lee 298 ND 0.15; LEE Filters

Limited, Andover, UK) to accommodate the heteroge-

neity in light, which averaged 143.5 6 1.8 [mean 6 SE])

lmol�m�2�s�1 between 06:00 and 18:00.

Coral recruit culturing

To culture the coral recruits, five gravid colonies of

Acropora millepora were collected from Heron reef flat,

placed in 60-L flow-through aquaria with ambient

seawater, and their gametes collected upon spawning

(29 November 2010). The gametes were fertilized and

reared for five days at 258C with ambient seawater using

techniques described in Doropoulos et al. (2012).

Mature planulae were settled during three days in

ambient seawater onto 5 3 5 cm unglazed terracotta

tiles. The tiles were pre-conditioned on the reef flat for

�6 months to develop a microbial and encrusting algal

community important to planulae attachment and

metamorphosis. This short settlement period minimized

any recruit calcification before the tiles were scored and

randomly assigned among the replicate tanks in the

experimental system. Settled recruits were grown for 60

days in the three CO2 treatments and, during this time,

the tiles were cleaned every three days by gently

brushing them with a soft toothbrush to remove algal

turfs. At the end of this culturing period, the number of

recruits per tile, polyps per recruit, and size of each

recruit were mapped on the underside of each tile with a

dissecting microscope (Appendix B).
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Grazing experiments and fish collection and handling

At the end of the coral growth period, an algal turf
community was allowed to develop on the tiles with the

recruits for five days in the three CO2 treatments.
Twelve-hour grazing trials (06:00 to 18:00) were then

conducted on those tiles, with blennies (Salarius
fasciatus), surgeonfish (Acanthurus nigrofuscus), and

initial-phase (IP) parrotfish (Scarus spp.). The parrotfish
appeared to be S. rivulatus but we could not be certain of

their identification at this early initial phase. Each trial
consisted of a single tile placed with a single fish in an

aquarium with flowing ambient seawater and PVC fish
shelter. Aquaria without a fish acted as the no-fish

control. There were seven tile replicates for each CO2

treatment3fish type combination and five tile replicates

for each CO2 treatment 3 no-fish control.
The blennies were caught on the reef flat (;0.3–2.5 m)

with a hand net and solution of clove oil, ethanol, and
seawater (1:1:9; Christiansen et al. 2009). They ranged

between 75 and 120 mm in total length (TL; 93.6 6 8.3
mm [mean 6 SD]). Surgeonfish and parrotfish were

caught on a shallow reef slope (;1–4 m) with a barrier
net, and ranged between 135 and 180 mm (163.4 6 13.0
mm) and 130 and 175 mm (150.9 6 14.2 mm) TL,

respectively. All fish were brought back to HIRS and
placed in large aquaria with flowing seawater for �1
week prior to the experimental trials. Fouled tiles, live
rock, and PVC structures were placed with the fish

during the acclimation period. On the evening prior to
each grazing trial, fish were placed in individual aquaria

with shelter and flowing seawater. A tile with the coral
recruits was then placed in the aquarium the following

morning, minimizing handling stress to the animal. All
fish were returned to the wild following the trials.

Response variables and statistical analyses

To determine the effect of OA on linear growth, the
diameter of all recruits from each CO2 treatment was

measured after two months using an optical micrometer
(100 lm). A total of 1392 recruits were measured and
their size ranged between 0.3 and 4.7 mm in diameter

(Appendix B). Each CO2 treatment had 26 tile
replicates, which were distributed among the seven

replicate tanks per treatment. The effect of pCO2 on
recruit diameter was analyzed with a mixed effects

ANOVA, using permutations as the data did not
conform to normality and were fourth root transformed

to meet the requirements of homogeneity. CO2 treat-
ment was a fixed factor with three levels (389, 753, 1267

latm), with tanks random and nested in CO2 treatment,
and tiles were random and nested in tanks. Pairwise

comparisons were conducted to investigate differences
among CO2 treatments.

To examine the effect of OA on recruit calcification,
individual recruits were sampled after the grazing trials

from the no-fish control tiles. Recruits could only be
taken from the control tiles to avoid a bias associated

with sampling from tiles that were subjected to grazing.

After the trials, the tiles were thoroughly rinsed in

distilled water to remove any salts and oven dried at

608C for three days. Following Cohen et al. (2009), the

skeletons of four or five recruits from each tile (five tiles

per CO2 treatment) were photographed with a dissecting

microscope camera, scraped from the tile using a scalpel

and paintbrush, and individual recruits were weighed on

a micro-balance (Mettler Toledo X5105) to 0.01 mg

until a 1% error was met. The maximum diameter of

each recruit was quantified using ImageJ (Abramoff et

al. 2004) to standardize the mass of the recruit to mg/

mm. The effect of pCO2 on calcification was analyzed

with a mixed-effects ANOVA on the raw data that

conformed to normality and homogeneity, with pCO2 as

the fixed factor and tiles random and nested in pCO2.

Tukey’s HSD was used to determine differences among

CO2 treatments.

The number of recruits killed by the herbivorous fish

was quantified by measuring coral survivorship as dead

or alive, as initial exploration of the data indicated that

97% of the recruits were either unharmed or entirely

killed (i.e., there were few that suffered partial mortal-

ity). To analyze survivorship in the original model, we

used fish type and pCO2 as fixed factors, recruit

diameter, number of recruits per tile, grazer length,

and percent algae lost per tile as continuous predictors.

The final model was determined with step-wise model

simplification that identified the model with the lowest

Akaike information criterion (AIC) from these possible

explanatory variables and their interactions. The final

model used a generalized mixed-effects model (GLMM)

to analyze the binomial response of the number of

recruits killed with fish type (no fish, blenny, surgeon,

parrot) and pCO2 (389, 753, 1267 latm) as fixed factors,

individual recruit diameter and number of recruits per

tile as continuous predictors, and tile as a random

factor.

To determine the size at which net recruit survivorship

was positive (.0.5), negative (,0.5), or random (;0.5)

following grazing by the different fish, we pooled pCO2

and analyzed the mean survival of each recruit size class

(in 0.1 mm units). The total number of Acropora

millepora recruits in each size class (mm) used for the

grazing trials are presented in Appendix C. Regression

analyses were fitted with a logarithmic function on the

mean survival for every recruit size among fish types.

The GLMM was then utilized to model the survivorship

of recruits up to 5.0 mm diameter following grazing by

the different herbivorous fish at the three CO2 levels.

To quantify algal turf cover on the tiles and the

efficiency of turf removal by the herbivorous fish,

photographs of the tiles were taken immediately before

and after the grazing trials. The abundance of filamen-

tous algal turfs was quantified by classifying whether

turf was present under 100 points per tile (25 cm2) using

CPCe (Kohler and Gill 2006). Turf cover was analyzed

with a three-way ANOVA, using fish type (no fish,

blenny, surgeonfish, parrotfish), pCO2 (389, 753, 1267
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latm), and time (before and after) as fixed factors, and

individual tiles as replicates. Permutation was used to

generate P values as the raw or transformed data would

not conform to normality, and pairwise comparisons

were used to investigate significant terms.

Turf algal samples were collected from the no-fish

control tiles to quantify the C:N ratios among pCO2.

The turf community was sampled under a dissecting

microscope using forceps and scalpel to avoid any

unwanted material (e.g., sand, coralline algae). The

percentage of carbon and nitrogen was quantified with

combustion by elemental analysis (ANCA-GSL; Euro-

pa, Crewe, UK) at Edith Cowan University, Western

Australia. Data on C:N ratios conformed to assump-

tions of normality and homogeneity of variance and

were analyzed using one-way ANOVA with pCO2 as the

fixed factor and individual tiles as replicates.

Permutational ANOVAs were conducted using Prim-

er-E version 6 software (Clarke and Gorley 2006) with

the PERMANOVAþ extension (Anderson et al. 2008).

Statistica (version 10; StatSoft, Tulsa, Oklahoma, USA)

was used for all other ANOVAs. AIC, GLMM, and

survivorship models were conducted using R (version

2.12.0; R Development Core Team 2010) and regression

analyses with Sigmaplot (version 10; Systat Software,

San Jose, California, USA).

RESULTS

OA effects on coral recruit growth

Coral recruits grown for 60 days in the elevated CO2

treatments had significantly reduced growth and calci-

fication compared to those grown in ambient conditions

(Appendix D). The mean diameter of recruits was 8%
(753 latm pCO2) and 12% (1267 latm pCO2) less than

control recruits (Fig. 1a), and calcification was reduced

by 11% and 30% at 753 and 1267 latm pCO2,

respectively (Fig. 1b).

OA and grazing effects on coral recruit mortality

Recruits grown in elevated CO2 levels suffered

significantly higher levels of mortality than recruits

grown in ambient conditions (P ¼ 0.002), and survival

was affected by the type of herbivorous fish grazing (P ,

0.001; Fig. 2). Recruit mortality was highest in those

grown at 1267 (P , 0.001), followed by 753 latm pCO2

(P ¼ 0.011), compared to those grown in ambient

seawater. There was no significant difference in mortal-

ity between recruits grown in 753 and 1267 latm pCO2.

Parrotfish grazing caused the highest recruit mortality

compared to any other fish type (P , 0.001), ranging

from 25% in the ambient treatment, to 51% and 64%

mortality of the recruits grown at 753 and 1267 latm
pCO2 (Fig. 2). Surgeonfish grazing caused higher recruit

mortality than controls (P ¼ 0.004) but was equal to

blenny grazing (P ¼ 0.378), ranging from 6% mortality

FIG. 1. The effect of ambient (389 latm) and elevated (753
and 1267 latm) pCO2 on mean (a) linear extension (n¼ 7) and
(b) calcification (n ¼ 5) of Acropora millepora recruits after 60
days post-settlement growth. Note the different scales for the y-
axes. SI conversion: 1 atm = 101.3 kPa; pCO2 represents the
partial pressure of CO2. Error bars indicate 6SE.

FIG. 2. Survival of coral recruits (mean 6 SE) following
herbivorous fish grazing trials. Newly settled coral recruits (A.
millepora) were grown for 60 days at ambient (389 latm) and
elevated (753 and 1267 latm) pCO2 on 25-cm2 settlement tiles
before the 12-h grazing trials, with one fish and one tile per trial.
Treatments are: control, no fish (n ¼ 5); blenny, Salarias
fasciatus; surgeonfish, Acanthurus nigrofuscus; parrotfish, ini-
tial-phase Scarus spp. (n ¼ 7).
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in the ambient CO2 treatment to 27% mortality in the

highest CO2 treatment. Blenny grazing also caused

significantly higher mortality than the control (P ¼
0.020), ranging from 8% mortality of the recruits grown

in ambient seawater and 20% mortality of recruits

grown at 1267 latm pCO2.

There was a highly significant effect of recruit

diameter (P , 0.001) on coral mortality, while the

number of recruits per tile did not affect survival (P ¼
0.086). The proportion of recruits killed was inversely

related to size, such that the smallest recruits suffered the

highest mortality (Fig. 3a). This was consistent for each

CO2 treatment and fish type (except the no-fish control).

Yet, the actual diameter necessary for net survival

doubled from ;0.5 mm following blenny and surgeon-

fish grazing, to 1.0 mm following parrotfish grazing (Fig.

3a). The survivorship curves were best described by a

logarithmic function that fitted significantly (P , 0.001)

to the observed values for each fish type (R2 for blenny¼
0.72, surgeonfish¼0.81, parrotfish¼0.84), but there was

no relationship between recruit size and mortality in the

control (P ¼ 0.232; R2 ¼ 0.12).

There were distinct differences between the survivor-

ship of recruits ranging from 0.1 to 5.0 mm among the

CO2 treatments (Fig. 3b–d). At ambient levels (Fig. 3b),

blenny and surgeonfish grazing did not affect net

survival, and only those smaller than 0.7 mm suffered

net mortality following parrotfish grazing. When pCO2

increased to 753 latm (Fig. 3c), net survival still

generally occurred on coral recruits following blenny

and surgeonfish grazing, yet the size required for the net

survivorship of recruits following parrotfish grazing

almost doubled to .1.2 mm. At 1267 latm (Fig. 3d),

coral recruits needed to be .0.4 mm for net survival

following blenny and surgeonfish grazing, and .1.4 mm

to survive parrotfish grazing.

OA and grazing effects on algal turfs

Prior to grazing trials, the average turf cover on the

settlement tiles was 86% after five days growth

(Appendix E). This was consistent for tiles allocated

among the different fish types or CO2 treatments

(Appendix F). Elevated pCO2 during the algal turf

growth did not affect the fish grazing rate (Appendix F),

nor the turf C:N ratios (C:N average was 10.68 6 0.44

[mean 6 SE]; F2,12 ¼ 0.267, P ¼ 0.770).

DISCUSSION

This series of experiments has demonstrated the

complexities of OA effects on coral demography at

multiple scales, from the physiology of individuals (i.e.,

skeletal growth), to ecological interactions (i.e., recruit–

FIG. 3. The effect of size on coral recruit survivorship following 12-h grazing trials with three herbivorous fish and a no-fish
control depending on: (a) the mean observed values and model predictions of those grown at (b) ambient, (c) intermediate, and (d)
high pCO2.
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herbivore dynamics). The chronic effect of OA de-

creased the post-settlement growth of coral recruits and

subsequently increased their rate of mortality because

mortality rates were higher in smaller size classes.

However, OA had an additional effect on mortality,

over and above that related to coral size: coral mortality

was greater under elevated CO2 for a given size. While

evidence for a size escape in mortality was found, with

the threshold varying among fish ‘‘predators,’’ all

thresholds increased under elevated CO2 levels, indicat-

ing that recruit survival may be compromised on reefs as

OA continues to rise.

The first impact of OA on coral survivorship was

mediated through its inhibitory affect on coral growth.

Previous studies have also reported an inverse relation-

ship between OA and coral recruit growth (Cohen et al.

2009, Albright et al. 2010, de Putron et al. 2011). Here,

A. millepora recruits exhibited a nonlinear response in

calcification to OA, similar to those of Favia fragum and

Porites astreoides (de Putron et al. 2011), which only

significantly declined in calcification below 2.33 Xarag

(.753 latm). Recruit diameter also responded non-

linearly, such that there was a significant reduction in

linear growth below ambient Xarag (3.63), but not

between the two lowered Xarag (2.3 and 1.56), a similar

response to that found in recruits of Acropora palmata

(Albright et al. 2010). Both of these types of reduced

post-settlement growth of the recruits caused by OA

decreased their survival following fish grazing.

Even at such a small size (,5 mm), the diameter of

each recruit was highly important to their survival. That

is, the mortality of the coral recruits was inversely

related to size such that smaller individuals suffered

higher mortality within each pCO2, following principles

of size-escape theory (e.g., Paine 1976, Gosselin and

Qian 1997). In addition to prolonging the period during

which recruits are vulnerable to grazer-induced mortal-

ity, OA appeared to have an additional deleterious

impact on mortality. The most likely cause of this OA

influence is a change in skeletal density brought about

by reduced calcification, even in corals of identical size.

Conceivably, corals with a weaker skeleton from

elevated CO2 may incur greater damage during fish

feeding activities than those with denser skeletons. Such

density-based phenomena are seen in adult corals where

those species with denser skeletons lose less skeletal

material when fed upon by parrotfish (Bruggemann et

al. 1994). The models illustrated that rising OA

incrementally increased the critical size-escape thresh-

olds for net survival of the two month old coral recruits,

resulting from their lowered calcification.

In our study, coral recruit survivorship was affected

by the type of herbivore that grazed on the surrounding

algal turfs. To survive grazing by parrotfish, recruits had

to be double the size they needed to be to survive blenny

and surgeonfish grazing because of the different feeding

methods of the fish. Parrotfish scrape the substrate and

remove everything growing on the surface (Bellwood

and Choat 1990), whereas blennies ‘‘brush’’ algal turfs

with their comb-like dentition (Wilson et al. 2003) and
grazing surgeonfish rapidly nip at algal turfs, tearing

filaments off with a sideward flick of the head (Purcell
and Bellwood 1993). Therefore, the rates of post-

settlement mortality of benthic invertebrate recruits are
likely to increase under future levels of elevated CO2

because of interactions with herbivorous fish, even at

very small size classes following settlement. Future work
should investigate the wider impact of herbivores on

recruit survivorship throughout coral ontogeny, given
that positive associations between recruit density and

grazing have been widely reported (Birkeland 1977,
Mumby 2009) and cryptic settlement may allow recruits

to escape incidental mortality by herbivory (Raimondi
and Morse 2000).

There are two limitations of this study that warrant
further work. In accordance with other studies in

aquatic systems (Ledger and Hildrew 2005, Witt et al.
2011), we did not observe any obvious effects of OA on

turf cover, palatability or grazing, after five days algal
growth. Yet, the composition of the algal communities

in these systems can be altered by reduced pH (Ledger
and Hildrew 2005, Hall-Spencer et al. 2008, Witt et al.

2011), as can the algae–herbivore dynamics of special-
ized, but not generalist grazers (Ledger and Hildrew
2005). Future experiments should exclusively test these

relationships over longer periods of time in marine
ecosystems. Secondly, although these results and other

recent work have demonstrated that elevated pCO2

alters trophic (e.g., Munday et al. 2010, Ferrari et al.

2011) and non-trophic (e.g., Diaz-Pulido et al. 2011,
Doropoulos et al. 2012) interactions, caution must be

applied to the predictive value of these studies, as
adaptation over multiple generations may serve an

important role in the evolution of species and their
interactions on reefs as they adapt to progressive OA.

Ocean acidification is a chronic press disturbance on
calcifying taxa (Anthony et al. 2011) and our results

suggest that it has the potential to reduce coral
recruitment through at least two mechanisms. The

outcome of such processes might generate new recruit-
ment bottlenecks or intensify existing ones (Mumby et

al. 2007). Bottlenecks in recruitment may be compound-
ed by pre-settlement reductions to invertebrate fertiliza-

tion and metamorphosis, caused by elevated CO2

(Kurihara 2008, Byrne 2011). This combination of
effects suggests that the recovery of calcifying inverte-

brates could be constrained by multiple processes as
atmospheric CO2 continues to rise.
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SUPPLEMENTAL MATERIAL

Appendix A

Summary of the physical and chemical seawater values for the CO2 treatment levels (Ecological Archives E093-202-A1).

Appendix B

Ranges of Acropora millepora recruit sizes, number of polyps, number per tile, total numbers, and the tile replication, after two
months growth at ambient and elevated pCO2 that were used in each grazing trial (Ecological Archives E093-202-A2).

Appendix C

Total number of Acropora millepora recruits in each size class used for the grazing trials (Ecological Archives E093-202-A3).

Appendix D

ANOVA results comparing differences between the linear extension and calcification of Acropora millepora recruits grown at
ambient and elevated CO2 partial pressure ( pCO2) (Ecological Archives E093-202-A4).

Appendix E

Mean turf algae cover on coral settlement tiles before and after 12-h grazing trials with no-fish controls, blennies, surgeonfish, or
parrotfish (Ecological Archives E093-202-A5).

Appendix F

ANOVA results comparing differences between the percent turf cover before and after the 12-h grazing trials with a no-fish
control, blennies, surgeonfish, or parrotfish (Ecological Archives E093-202-A6).
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