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INTRODUCTION 

 

Introductory university-level programming courses tend to suffer from comparatively high failure rates [1-3]. Various 

reasons for this problem have been identified [3-6]. Jenkins [4] argues that programming, unlike most subjects at the 

pre-university level, involves a hierarchy of skills (such as the syntax-semantics-structure-style hierarchy) and a 

multitude of processes (a given problem specification has to be first translated to an algorithm or a recipe and then to 

code). Both learning and teaching programming are therefore considered difficult, especially for students who do not 

study computer science as their major subject and thus often lack the internal motivation to learn programming [7]. 

 

Several approaches have been proposed to alleviate the problem of teaching and learning programming. To make 

programming concepts and algorithms more tangible and thereby easier to grasp, some teachers have employed 

advanced visualisation tools [8] or multi-sensory approaches [9]. Some courses teach programming by providing the 

students with ‘attractive’ problems [10]. For instance, students might learn programming through developing computer 

games [11] or manipulating media files [7][12]. 

 

In problem-based and project-based approaches [13-15], students, typically organised in groups, acquire knowledge by 

working on challenging but possibly ill-structured problems or projects. Active learning approaches [16-18] emphasise 

the student’s responsibility in gaining his or her knowledge. While traditional, teacher-centered approaches view the 

teacher as the sole purveyor of knowledge and the student as its passive receiver, active learning approaches regard the 

student as an active participant in the learning process and the teacher as the ‘mere’ facilitator of learning. Active 

learning approaches are consistent with the constructivist learning theory [19]. 

 

In this paper, we focus on the introductory programming course called ‘Basic Programming’, taught at University of 

Ljubljana, Slovenia, at the Faculty of Computer and Information Science (UL-FCIS) as a compulsory part of the so-

called ‘University programme Computer and Information Science’ [20]. In the academic year 2009/10, UL-FCIS 

adopted the Bologna reform [18][21][22] to ensure greater compatibility of its programs and courses with other 

European universities. Among other things, the Bologna reform calls for a more active, student-centred way of learning. 

To enable the students to assume a greater role in the learning process, we refreshed the lab sessions of the course 

‘Basic Programming’ in the academic year 2010/11. While retaining the overall form of the course, we made the lab 

sessions more interactive and thus closer to the spirit of active learning approaches and the Bologna reform. 

 

Many modern approaches to teaching programming take advantage of state-of-the-art technology to encourage greater 

participation of students in the learning process. The lab sessions of our course were refreshed by the help of a 

cooperative development system called Assistant’s Assistant. While this system was developed primarily to save some 

A cooperative development system for an interactive 

introductory programming course 
 

Luka Fürst & Viljan Mahnič 
 

University of Ljubljana 

Ljubljana, Slovenia 

 

 

 

 

ABSTRACT: We present a system for the cooperative development of computer programs that was created for the lab 

sessions of an introductory programming course at University of Ljubljana, Slovenia. The system has relieved the 

students from the tedious task of retyping programs developed by the teaching assistant and enabled them to cooperate 

with the teaching assistant in solving programming problems. We have thus made the lab sessions more efficient and 

interactive and brought them closer to the spirit of active learning approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Ljubljana Computer and Information Science ePrints.fri

https://core.ac.uk/display/151477203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

2 

valuable time during the lab session blocks, its most important advantage is to facilitate cooperation between the 

teaching assistant (TA) and the students in acquiring programming skills. 

 

In the rest of this paper, we first present the course ‘Basic Programming’ at UL-FCIS and then the system Assistant’s 

Assistant. 

 

THE COURSE ‘BASIC PROGRAMMING’ AT UL-FCIS 

 

The course ‘Basic Programming’ teaches the fundamentals of object-oriented programming in Java, the language of 

choice at many universities throughout the world [23-26]. The syllabus of the course covers control structures, arrays, 

classes and objects, inheritance, and fundamentals of computer graphics. The course is taught in the first semester of the 

first year. It comprises 15 weeks of formal lectures and 13 weeks of lab sessions. The lectures are conducted in a 

teacher-centred fashion. In each block of lectures (three consecutive hours
1
 per week), the lecturer introduces a 

programming subject and presents several basic examples to the entire body of approximately 250 students 

simultaneously. The lab sessions are held in groups of 25-30 students. Each block of lab sessions is supervised by two 

TAs. 

 

Before the Bologna reform, the lab sessions were conducted in blocks of three hours per week. The students played a 

fairly passive role. In each block, one of the two TAs first presented a programming problem and then gradually 

developed its solution (a Java program) on his or her computer. The TA’s computer screen was projected onto the 

projection surface so that the students could observe the development of the program and simultaneously retype it on 

their own computers. After the TA finished developing the program, the students had to compile and run it and, if time 

allowed, to modify it in some minor way. In some lab session blocks, several smaller problems were solved instead of 

one larger, but the students remained more or less passive receivers of knowledge throughout the course. The other TA 

(i.e., the one who did not present and solve programming problems) helped the students in testing the programs, 

answered their questions, etc. 

 

Such a way of conducting lab sessions suffered from several disadvantages. During the sessions, the students were 

occupied with retyping programs that were being developed by a TA, rather than with building their own solutions. 

Furthermore, the tedious process of retyping made it much harder for the students to think about the program while it 

was being developed. Retyping was also the source of many typographical errors. Those errors were usually easy to 

correct, but they still required considerable time, particularly with less skilled students. In addition, programming 

novices often needed help in spotting and correcting typographical errors, causing further delays. The role of the second 

TA was therefore often reduced to that of correcting typographical errors. 

 

These problems became even more acute in the year 2009/10, when UL-FCIS adopted the Bologna reform.  To enable 

the students to do more work at home and thus to assume a greater responsibility in acquiring their knowledge, the 

reform reduced the amount of lab sessions from three to two hours per week, while the quantity of material covered in 

the course ‘Basic Programming’ was not reduced. Two-hour lab session blocks did not allow any time for the students 

to ‘play around’ with the developed programs, which effectively transformed the lab sessions into a pure teacher-

centred pedagogical process. This change was particularly unfavourable in light of the fact that the Bologna reform 

promotes active, student-centred learning. The reform therefore prompted us to reconsider the design of lab sessions. 

 

A possible way of conducting lab sessions would be to let the students develop their own solutions to the problem(s) 

presented by a TA at the beginning of each block. In such a setup, the responsibilities of both TAs would include giving 

hints to the students, answering their questions, etc., but not developing or presenting solutions on their own. However, 

a similar idea was already tried out some years ago, but it did not produce desired results. The problem is that many 

students have little or no background in programming and problem-solving techniques, and thus some form of guidance 

from the TAs nevertheless seems to be appropriate. We therefore decided that the lab sessions have to retain a generally 

TA-driven character, but they should be refreshed according to the following guidelines: 

 

 The unproductive and time-consuming chore of retyping has to be automated so that the students could follow the 

process of solving a programming problem without any distractions. 

 The development of a solution to a programming problem should become an interactive process. The TAs and the 

students should cooperate in constructing a solution. 

 

These two directives led to the development of Assistant’s Assistant, a cooperative development system presented in the 

next section. 

                                                           
1
 Throughout this paper, an ‘hour’ actually refers to an academic hour, which lasts 45 minutes. 
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THE SYSTEM ASSISTANT’S ASSISTANT 

 

The system Assistant’s Assistant (available at http://ltpo.fri.uni-lj.si/as2/ and at SourceForge: 

http://sourceforge.net/projects/as2/) can serve as an online file transfer system, as a tool for 

developing programs cooperatively, and as a Java development environment. We present each of these functionalities in 

a separate subsection. 

 

Assistant’s Assistant as an Online File Transfer System 

 

The system Assistant’s Assistant is essentially a client-server Java application that automatically, at regular intervals, 

copies Java source files from a designated directory on the TA’s computer to each of the students’ computers. 

Conceptually, the system comprises a server and an arbitrary number of clients. The server runs on the TA’s computer. 

Each student computer runs its own client instance. 

 

When the TA initiates the server on his or her computer, he or she specifies the directory whose contents will be 

regularly copied to each of the students’ computers. For the sake of conciseness, let us call this directory A. After the 

TA has started the server, each student initiates a client instance, specifying a directory S as a parameter. The client 

automatically creates the directory S/assistant, into which the files from the TA’s directory A will be copied, and 

the directory S/me, which will be used to store the student’s own solutions to programming problems. As long as the 

client and the server are both active, the contents of the client’s directory S/assistant are updated automatically 

with Java source files from the server’s directory A. 

 

At regular intervals (every N seconds, with N=3 in the current implementation), each client sends a synchronisation 

request to the server. A synchronisation request is a description of the current contents of the directory S/assistant. 

For each Java source file currently contained in the directory S/assistant, the synchronisation request specifies its 

name and the time of its most recent modification (last-modification time – LMT). When the server receives a 

synchronisation request from a client, it compares the contents of its directory A with the data specified in the 

synchronisation request. The server then sends to the client all files that are present in the directory A but not in the 

synchronisation request (those files exist on the server but not yet on the client), as well as all files for which the LMT 

in the directory A is more recent than the LMT specified in the synchronisation request (those files exist on both the 

server and the client, but the server holds more recent versions of them than the client does). The client saves all files 

received from the server into the directory S/assistant. This process is illustrated in Figure 1. Note that the server 

deals with each client separately. Each client is driven by its own timer, which, by firing every N seconds, regularly 

‘reminds’ the client to send a new synchronisation request to the server. 

 

 
 

The client executes in a graphical user interface (GUI), a screenshot of which is shown in Figure 2. The main panel 

ofthe GUI is divided into two subpanels. In the left-hand subpanel, a student can view (but not edit) the contents of the 

directory S/assistant. In the right-hand subpanel, he or she can view and edit the contents of the directory S/me. 

The client executes in a graphical user interface (GUI), a screenshot of which is shown in Figure 2. The main panel of 

the GUI is divided into two subpanels. In the left-hand subpanel, a student can view (but not edit) the contents of the 

directory S/assistant. In the right-hand subpanel, he or she can view and edit the contents of the directory S/me. 

The contents of the left-hand subpanel are refreshed automatically, without any user intervention. After each 

synchronisation event (i.e., every N seconds), the files currently open in the left-hand subpanel are automatically 

updated. If the TA saves his or her file(s) frequently enough (or simply turns on the ‘autosave’ option, available in 

many modern editors), the students will be able to observe the development of the program in real time on their 

computer screens, with no action required on their part. 

Client 2 (student computer 2) 

File LMT 

Area.java 10:00:20 

Binary.java 10:00:17 

Circle.java 10:00:17 

Directory  S/assistant 

Client 1 (student computer 1) 

File LMT 

Area.java 10:00:20 

Circle.java 10:00:30 

Directory  S/assistant 

Server (TA’s computer) 

File LMT 

Area.java 10:00:20 

Binary.java 10:00:32 

Circle.java 10:00:30 

Directory  A/ 

Binary.java 

Circle.java Binary.java 

Figure 1: The server responds to the synchronisation requests of individual clients by sending them the most recent 

version of its files. 

http://ltpo.fri.uni-lj.si/as2/
http://sourceforge.net/projects/as2/
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Assistant’s Assistant as a Cooperative Development Tool 

 

The button labeled ‘>’ in the top-right corner of the left-hand subpanel copies the currently active file in the left-hand 

subpanel (in Figure 2, this is S/assistant/Area.java) to the directory S/me and opens the copy in the right-

hand subpanel. This button makes it possible to develop programs cooperatively. For instance, the TA might write a 

skeleton of a program (or a partial solution), place it into his or her directory A, and ask the students to complete it. The 

skeleton is automatically copied to the directory S/assistant of each student. After a student opens the skeleton in 

the left-hand subpanel and presses the button ‘>’, the skeleton is copied to the directory S/me. The copy is immediately 

opened in the right-hand subpanel, where it can be edited. After the students have completed the program, the TA might 

do the same in his or her own way by editing the skeleton. The students’ left-hand subpanels (and corresponding files in 

their directories S/assistant) are automatically updated with the TA’s solution. Each student can then compare the 

TA’s solution with his or her own simply by comparing the contents of the left-hand subpanel with those of the right-

hand subpanel. 

 

Assistant’s Assistant as a Java Development Environment 

 

The left-hand subpanel of the GUI serves as a container of Java viewers, and the right-hand one as a container of Java 

editors. Besides the standard editing features, such as cut/copy/paste, undo/redo, find/replace, etc., the editors offer 

features such as syntax highlighting, brace matching, increasing and decreasing indentation, etc. Furthermore, Java 

source files in the directories S/assistant and S/me can be compiled and executed directly from within the GUI. 

The compiler’s output is displayed in a separate subpanel. When the user clicks on a compilation error or warning, the 

GUI highlights the corresponding line in the corresponding source file. If a file compiles without errors, it can be 

executed. In the situation presented in Figure 2, the file Area.java in the left-hand subpanel (i.e., the file 

S/assistant/Area.java) has been compiled, with compilation errors shown in the bottom subpanel, and the file 

Circle.java in the right-hand subpanel (i.e., the file S/me/Circle.java) has been successfully executed, with the 

output shown in a separate window in the bottom-right part of the screenshot. 

 

The client can be initiated even if the server is not running. In this case, the left-hand subpanel can be ignored or hidden, 

and the GUI behaves as a pure Java development environment. 

Figure 2: A screenshot of the client GUI. 
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DISCUSSION 

 

The system Assistant’s Assistant enabled us to make the lab sessions of the course ‘Basic Programming’ more efficient 

and interactive. Prior to the introduction of Assistant’s Assistant, i.e., before the year 2010/11, much time was spent on 

correcting trivial typographical errors resulting from manual retyping of code from the projection surface. Furthermore, 

some students could not keep up with the TA’s typing pace, so the TA and the other students often had to wait for them 

to catch up. We estimate that, on average, at least 15 minutes of a 90-minute block were spent in this fashion. 

 

Using Assistant’s Assistant, we saved both on time and on the ‘energy’ of the students, who can now attentively follow 

the process of solving a problem instead of being occupied with retyping. The two TAs who supervise the sessions were 

freed from the unpleasant obligation of correcting typographical errors and can now both help the students in solving 

problems, check their solutions and comment on them, etc. 

 

The resources saved by Assistant’s Assistant were used to adopt a cooperative approach to solving problems. Some 

problems or some parts of a larger problem were solved by a TA, and others by the students. The students were given 

enough time to solve their share of (sub)problems. After the time limit for a (sub)problem assigned to the students 

expired, the TA quickly developed his or her own solution to that (sub)problem so that each student could compare the 

TA’s solution with his or her own. The system Assistant’s Assistant saved enough time to make such cooperative 

programming possible. While the number of programming problems solved in the year 2010/11 was approximately the 

same as the year before, almost all problems were solved either entirely by the students or cooperatively. In the year 

2009/10, by contrast, almost all of these problems were solved entirely by the TA, while the students were usually only 

able to retype and test them. 

 

It might be worthwhile to compare the system Assistant’s Assistant with some other approaches that may appear to 

achieve the same goal. Some form of cooperation between the TA and the students in solving a programming problem 

can be established simply by preparing a partial solution to the problem in advance and making it accessible on some 

web server at the beginning of a lab session block. While this approach saves the students from retyping, it fails to give 

them the opportunity to observe the development of the partial solution. The system Assistant’s Assistant, on the other 

hand, enables the students to follow the process of building programs in ‘real time’. 

 

Viable alternatives to Assistant’s Assistant include web-based collaborative editing systems such as collabedit 

(http://collabedit.com/). The main advantage of Assistant’s Assistant over such systems is its two-panel 

design, which makes it easy for a student to compare the TA’s solution to a problem with his or her own. Another 

advantage of Assistant’s Assistant is its built-in way to compile and execute both the TA’s and the student’s programs. 

 

Last but not least, the system Assistant’s Assistant can itself motivate the students to learn and practice programming. 

By creating and using a course-related programming product, the instructors directly demonstrate the value of 

programming to the students. The source code of Assistant’s Assistant is freely available, inviting the students to browse 

it or experiment with it. 

 

CONCLUSION 

 

We have presented a cooperative development system called Assistant’s Assistant that has enabled us to create a more 

interactive learning environment during the lab sessions of an introductory programming course at University of 

Ljubljana, Slovenia. The system was primarily created to relieve the students from the time-consuming and error-prone 

task of retyping programs from the projection surface and to enable them to follow the development of programs on 

their computer screens. The two-panel design of the client part of the system, as well as the time saved by automating 

file transfer, enabled the TA and the students to cooperate in developing solutions to programming problems. The 

system was met with many positive responses from the students. 

 

The system Assistant’s Assistant can be enhanced in several ways. One possible idea is to provide support for other 

common programming languages, such as Python or C/C++. Another possible improvement is to enable continuous file 

transfer also in the direction from individual students to the TA, which would enable the TA to monitor and compare 

the students’ work during lab sessions. 
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