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Bayesian Point Set Registration

Adam Spannaus, Vasileios Maroulas, David J. Keffer, Kody J. H. Law ∗

Abstract. Point set registration involves identifying a smooth invertible transforma-
tion between corresponding points in two point sets, one of which may be smaller
than the other and possibly corrupted by observation noise. This problem is tra-
ditionally decomposed into two separate optimization problems: (i) assignment or
correspondence, and (ii) identification of the optimal transformation between the
ordered point sets. In this work, we propose an approach solving both problems
simultaneously. In particular, a coherent Bayesian formulation of the problem re-
sults in a marginal posterior distribution on the transformation, which is explored
within a Markov chain Monte Carlo scheme. Motivated by Atomic Probe Tomogra-
phy (APT), in the context of structure inference for high entropy alloys (HEA), we
focus on the registration of noisy sparse observations of rigid transformations of a
known reference configuration. Lastly, we test our method on synthetic data sets.
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1 Introduction

In recent years, a new class of materials has emerged, called High Entropy Alloys
(HEAs). The resulting HEAs possess unique mechanical properties and have shown
marked resistance to high-temperature, corrosion, fracture and fatigue [?zhang2014microstructures,
?gao2016high]. HEAs demonstrate a ‘cocktail’ effect [?jien2006recent],
in which the mixing of many components results in properties not possessed by any
single component individually. Although these metals hold great promise for a wide
variety of applications, the greatest impediment in tailoring the design of HEAs to
specific applications is the inability to accurately predict their atomic structure and
chemical ordering. This prevents Materials Science researchers from constructing
structure-property relationships necessary for targeted materials discovery.

An important experimental characterization technique used to determine local
structure of materials at the atomic level is Atomic Probe Tomography (APT)
[?Miller:2013:aptbook,?Larson:2013:aptbook]. APT provides an iden-
tification of the atom type and its position in space within the sample. APT has
been successfully applied to the characterization of the HEA, AlCoCrCuFeNi
[?santodonato2015deviation]. Typically, APT data sets consist of 106 to
107 atoms. Sophisticated reconstruction techniques are employed to generate the
coordinates based upon the construction of the experimental apparatus. APT data
has two main drawbacks: (i) up to 66% of the data is missing and (ii) the recovered
data is corrupted by noise. The challenge is to uncover the true atomic level struc-
ture and chemical ordering amid the noise and missing data, thus giving material
scientists an unambiguous description of the atomic structure of these novel alloys.
Ultimately, our goal is to infer the correct spatial alignment and chemical ordering
of a dataset, herein referred to as a configuration, containing up to 107 atoms. This
configuration will be probed by individual registrations of the observed point sets in
a neighborhood around each atom.

In this paper we outline our approach to this unique registration problem of find-
ing the correct chemical ordering and atomic structure in a noisy and sparse dataset.
While we do not solve the problem in full generality here, we present a Bayesian
formulation of the model and a general algorithmic approach, which allows us to
confront the problem with a known reference, and can be readily generalized to the
full problem of an unknown reference.

In Section 2 we describe the problem and our Bayesian formulation of the sta-
tistical model. In Section 3, we describe Hamiltonian Monte Carlo, a sophisticated
Markov chain Monte Carlo technique used to sample from multimodal densities,
which we use in our numerical experiments in Section 4. Lastly, we conclude with
a summary of the work presented here and directions for future research.
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2 Problem Statement and Statistical Model

An alloy consists of a large configuration of atoms, henceforth “points”, which
are rotated and translated instances of a reference collection of points, denoted
XXX = (X1, . . . ,XN),Xi ∈ Rd for 1 ≤ i ≤ N which is the matrix representation of the
reference points.The tomographic observation of this configuration is missing some
percentage of the points and is subject to noise, which is assumed additive and Gaus-
sian. The sample consists of a single point and its M nearest neighbors, where M is
of the order 10. If p ∈ [0,1] is the percent observed, i.e. p = 1 means all points are
observed and p = 0 means no points are observed, then the reference point set will
be comprised of N = dM/pe points. We write the matrix representation of the noisy
data point as YYY = (Y1, . . . ,YM),Yi ∈ Rd , for 1≤ i≤M.

The observed points have labels, but the reference points do not. We seek to reg-
ister these noisy and sparse point sets, onto the reference point set. The ultimate goal
is to identify the ordering of the labels of the points (types of atoms) in a configura-
tion. We will find the best assignment and rigid transformation between the observed
point set and the reference point set. Having completed the registration process for
all observations in the configuration, we may then construct a three dimensional
distribution of labeled points around each reference point, and the distribution of
atomic composition is readily obtained.

The point-set registration problem has two crucial elements. The first is the cor-
respondence, or assignment of each point in the observed set to the reference set.
The second is the identification of the optimal transformation from within an appro-
priate class of transformations. If the transformation class is taken to be the rigid
transformations, then each of the individual problems is easily solved by itself, and
naive methods simply alternate the solution of each individually until convergence.

One of the most frequently used point set registration algorithms is the it-
erative closest point method, which alternates between identifying the optimal
transformation for a given correspondence, and then corresponding closest points
[?BeslMcKay]. If the transformation is rigid, then both problems are uniquely
solvable. If instead we replace the naive closest point strategy with the assignment
problem, so that any two observed points correspond to two different reference
points, then again the problem can solved with a linear program [?li20073d].
However, when these two solvable problems are combined into one, the resulting
problem is non-convex [?papazov2011stochastic], and no longer admits
a unique solution, even for the case of rigid transformations as considered here.
The same strategy has been proposed with more general non-rigid transformations
[?chui2003new], where identification of the optimal transformation is no longer
analytically solvable. The method in [?myronenko2010point] minimizes an
upper bound on their objective function, and is thus also susceptible to getting stuck
in a local basin of attraction. We instead take a Bayesian formulation of the problem
that will simultaneously find the transformation and correspondence between point
sets. Most importantly, it is designed to avoid local basins of attraction and locate a
global minimum.
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We will show how alternating between finding correspondences and minimiz-
ing distances can lead to an incorrect registration. Consider now the setup in Fig.
(1). If we correspond closest points first, then all three green points would be as-
signed to the blue ‘1’. Then, identifying the single rigid transformation to min-
imize the distances between all three green and the blue ‘1’ would yield a lo-
cal minimum, with no correct assignments. If we consider instead assignments,
so that no two observation points can correspond to the same reference point,
then again it is easy then to see two equivalent solutions with the eye. The first
is a pure translation, and the second can be obtained for example by one of
two equivalent rotations around the mid-point between ‘1’s, by π or −π . The
first only gets the assignment of ‘2’ correct, while the second is correct. Note
that in reality the reference labels are unknown, so both are equivalent for us.

1 2 3123

Fig. 1: Setup for incorrect registration; al-
ternating assignment and `2 minimization

Here it is clear what the solutions are,
but once the problem grows in scale,
the answer is not always so clear. This
simple illustration of degenerate (equal
energy) multi-modality of the regis-
tration objective function arises from
physical symmetry of the reference
point-set. This will be an important
consideration for our reference point
sets, which will arise as a unit cell of
a lattice, hence with appropriate sym-
metry. We will never be able to know
the registration beyond these symme-
tries, but this will nonetheless not be
the cause of concern, as symmetric so-
lutions will be considered equivalent.
The troublesome multi-modality arises
in the presence of noisy and partially
observed point sets, where there may be local minima with higher energy than the
global minima.

The multi-modality of the combined problem, in addition to the limited infor-
mation in the noisy and sparse observations, motivates the need for a global proba-
bilistic notion of solution for this problem. It is illustrated in the following subsec-
tion that the problem lends itself naturally to a flexible Bayesian formulation which
circumvents the intrinsic shortcomings of deterministic optimization approaches for
non-convex problems. Indeed at an additional computational cost, we obtain a distri-
bution of solutions, rather than a point estimate, so that general quantities of interest
are estimated and uncertainty is quantified. In case a single point estimate is required
we define an appropriate optimal one (for example the global energy minimizer or
probability maximizer).
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2.1 Bayesian Formulation

We seek to compute the registration between the observation set and reference set.
We are concerned primarily with rigid transformations of the form

T (X ;θ) = Rθ X + tθ , (1)

where Rθ ∈ Rd×d is a rotation and tθ ∈ Rd is a translation vector.
Write [T(XXX ;θ)]ki = Tk(Xi) for 1≤ i≤ N, 1≤ k ≤ d, and where Xi is the ith col-

umn of XXX . Now let ξ ∈Rd×M with entries ξi j ∼ N(0,γ2), and assume the following
statistical model

YYY = T(XXX ;θ)C+ξ , (2)

for ξ ,θ and C independent.
The matrix of correspondences C ∈ {0,1}N×M , is such that ∑

N
i=1 Ci j = 1,1 ≤

j ≤ M, and each observation point corresponds to only one reference point. So if
Xi matches Yj then Ci j = 1, otherwise, Ci j = 0. We let C be endowed with a prior,
π0(Ci j = 1) = πi j for 1≤ i≤ N and 1≤ j ≤M. Furthermore, assume a prior on the
transformation parameter θ given by π0(θ). The posterior distribution then takes
the form

π(C,θ | XXX ,YYY ) ∝ L (YYY | XXX ,C,θ)π0(C)π0(θ), (3)

where L is the likelihood function associated with Eqn. (1).
For a given θ̃ , an estimate Ĉ can be constructed a posteriori by letting Ĉi∗( j), j = 1

for j = 1, . . . ,M and zero otherwise, where

i∗( j) = argmin
1≤i≤N

|Yj−T (Xi; θ̃)|2 . (4)

For example, θ̃ may be taken as the maximum a posteriori (MAP) estimator or the
mean. We note that Ĉ can be constructed either with a closest point approach, or via
assignment to avoid multiple registered points assigned to the same reference.

Lastly, we assume the jth observation only depends on the jth column of the cor-
respondence matrix, and so Yi,Yj are conditionally independent with respect to the
matrix C for i 6= j. This does not exclude the case where multiple observation points
are assigned to the same reference point, but as mentioned above such scenario
should have zero probability.

To that end, instead of considering the full joint posterior in Eqn. (3) we will
focus on the marginal of the transformation

π(θ | XXX ,YYY ) ∝ L (YYY | XXX ,θ)π0(θ). (5)

Let C j denote the jth column of C. Since C j is completely determined by the
single index i at which it takes the value 1, the marginal likelihood takes the form
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∑
C

p(Yj | XXX ,θ ,C)π0(C) =
N

∑
i=1

p(Yj | XXX ,θ ,Ci j = 1)π0(Ci j = 1)

=
N

∑
i=1

πi j p(Yj | XXX ,θ ,Ci j = 1)

∝ πi j exp
{
− 1

2γ2 |Yj−T (Xi;θ)|2
}
. (6)

The above marginal together with the conditional independence assumption al-
lows us to construct the likelihood function of the marginal posterior (5) as follows

L (YYY | XXX ,θ) =
M

∏
j=1

p(Yj | XXX ,θ)

∝

M

∏
j=1

N

∑
i=1

πi j exp
{
− 1

2γ2 |Yj−T (Xi;θ)|2
}
. (7)

Thus the posterior in question is

π(θ | XXX ,YYY ) ∝ L (YYY | XXX ,θ)π0(θ)

=
M

∏
j=1

N

∑
i=1

πi j exp
{
− 1

2γ2 |Yj−T (Xi;θ)|2
}

π0(θ) . (8)

Consider a prior on θ such that π0(θ) ∝ exp(−λR(θ)), where λ > 0. Then we
have the following objective function

E(θ) =−
M

∑
j=1

log
N

∑
i=1

πi j exp
{
− 1

2γ2 |Yj−T (Xi;θ)|2
}
−λR(θ) . (9)

The minimizer, θ ∗, of the above, Eqn. (9) is also the maximizer of a posteriori
probability under Eqn. (8). It is called the maximum a posteriori estimator. This can
also be viewed as maximum likelihood estimation regularized by λR(θ).

By sampling consistently from the posterior, we may estimate quantities of in-
terest, such as moments, together with quantified uncertainty. Additionally, we may
recover other point estimators, such as local and global modes.

3 Hamiltonian Monte Carlo

Monte Carlo Markov chain (MCMC) methods are a natural choice for sampling
from distributions which can be evaluated pointwise up to a normalizing con-
stant, such as the posterior (8). Furthermore, MCMC comprises the workhorse of
Bayesian computation, often appearing as crucial components of more sophisticated
sampling algorithms. Formally, an MCMC simulates a distribution µ over a state
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space Ω by producing an ergodic Markov chain {wk}k∈N that has µ as its invariant
distribution, i.e.

1
K

K

∑
k=1

g(wk)→
∫

Ω

g(w)µ(dw) = Eµ g(w) , (10)

with probability 1, for g ∈ L1(Ω).
The Metropolis-Hastings method is a general MCMC method defined by choos-

ing θ0 ∈ supp(π) and iterating the following two steps for k ≥ 0

(1)Propose: θ ∗ ∼ Q(θk, ·).
(2)Accept/reject: Let θk+1 = θ ∗ with probability

α(θk,θ
∗) = min

{
1,

π(θ ∗)Q(θ ∗,θk)

π(θk)Q(θk,θ ∗)

}
,

and θk+1 = θk otherwise.

In general, random-walk proposals Q can result in MCMC chains which are
slow to explore the state space and susceptible to getting stuck in local basins of
attraction. Hamiltonian Monte Carlo (HMC) is designed to improve this shortcom-
ing. HMC is a Metropolis-Hastings method [?duane1987hybrid,?Neal1996]
which incorporates gradient information of the log density with a simulation of
Hamiltonian dynamics to efficiently explore the state space and accept large moves
of the Markov chain. Heuristically, the gradient yields d pieces of information,
for a Rd-valued variable and scalar objective function, as compared with one
piece of information from the objective function alone. Our description here of
the HMC algorithm follows that of [?brooks2011handbook] and the nec-
essary foundations of Hamiltonian dynamics for the method can be found in
[?teschl2012ordinary].

Our objective here is to sample from a specific target density

π(θ) ∝ exp(−E(θ)) (11)

over θ , where E(θ) is as defined in Eqn. (9) and π(θ) is of the form given by Eqn.
(8).

First, an artificial momentum variable p∼N(0,Γ ), independent of θ , is included
into Eqn. (11), for a symmetric positive definite mass matrix Γ , that is usually a
scalar multiple of the identity matrix. Define a Hamiltonian now by

H(p,θ) = E(θ)+
1
2

pT
Γ
−1 p

where E(θ) is the “potential energy” and 1
2 pT Γ−1 p is the “kinetic energy”.

Hamilton’s equations of motion for p,θ ∈ Rd are, for i = 1, . . . ,d :
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dθi

dt
=

∂H
∂ pi

dpi

dt
=−∂H

∂θi

In practice, the algorithm creates a Markov chain on the joint position-momentum
space R2d , by alternating between independently sampling from the marginal Gaus-
sian on momentum p, and numerical integration of Hamiltonian dynamics along
an energy contour to update the position. If the initial condition θ ∼ π and we were
able to perfectly simulate the dynamics, this would give samples from π because the
Hamiltonian H remains constant along trajectories. Due to errors in numerical ap-
proximation, the value of H will vary. To ensure the samples are indeed drawn from
the correct distribution, a Metropolis-Hastings accept/reject step is incorporated into
the method.

In particular, after a new momentum is sampled, suppose the chain is in the state
(p,θ). Provided the numerical integrator is reversible, the probability of accepting
the proposed point (p∗,θ ∗) takes the form

α((p,θ),(p∗,θ ∗)) = min{1,exp{H(p,θ)−H(p∗,θ ∗)}} . (12)

If (p∗,θ ∗) is rejected, the next state remains unchanged from the previous itera-
tion. However, note that a fresh momentum variable is drawn each step, so only
θ remains fixed. Indeed the momentum variables can be discarded, as they are
only auxiliary variables. To be concrete, the algorithm requires an initial state θ0,
a reversible numerical integrator, integration step-size h, and number of steps L.
Note that reversibility of the integrator is crucial such that the proposal integration
Q((p,θ),(p∗,θ ∗)) is symmetric and drops out of the acceptance probability in Eqn.
(12). The parameters h and L are tuning parameters, and are described in detail
[?brooks2011handbook,?Neal1996].

The HMC algorithm then proceeds as follows:
for k ≥ 0 do HMC:

pk← ξ for ξ ∼N (0,Γ )
function INTEGRATOR(pk,θk,h) return (p∗,θ ∗)
end function
α ←min{1,exp{H(pk,θk)−H(p∗,θ ∗)}}
θk+1← θ ∗ with probability α otherwise
θk+1← θk

end for
Under appropriate assumptions [?Neal1996], this method will provide sam-

ples θk ∼ π , such that for bounded g : Rn→ R

1
K

K

∑
k=1

g(θk)→
∫
Rn

g(θ)dθ as K→ ∞ .
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4 Numerical Experiments

To illustrate our approach, we consider numerical experiments on synthetic datasets
in R2 and R3, with varying levels of noise and percentage of observed data. We
focus our attention to rigid transformations of the form Eqn. (1).

For all examples here, the M observation points are simulated as Yi∼N(Rϕ X j(i)+

t,γ2Id), for a rotation matrix Rϕ parameterized by ϕ , and some t and γ . So,
θ = (ϕ, t). To simulate the unknown correspondence between the reference and
observation points, for each i = 1, . . . ,M, the corresponding index j(i) ∈ [1, . . . ,N]
is chosen randomly and without replacement. Recall that we define percentage of
observed points here as p = M

N ∈ [0,1].We tested various percentages of observed
data and noise γ on the observation set, then computed the mean square error (MSE),
given by Eqn. (13), between the reference points and the registered observed points,

E (θ) =
1
M

M

∑
i=1

min
X∈X
|RT

ϕ(Yi− t)−X |2 . (13)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

Reference

Observation

Registered

Fig. 2: Full data

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

Reference

Observation

Registered

Fig. 3: 33% Observed Data

4.1 Two Dimensional Registration

First we consider noise-free data, i.e. γ = 0 (however in the reconstruction some
small γ > 0 is used). The completed registration for the 2-dimensional ‘fish’ set is
shown in Figs. (2, 3). The ‘fish’ set is a standard benchmark test case for registration
algorithms in R2 [?myronenko2007,?jian2011robust]. Our methodology,
employing the HMC sampler described in Sect. 3 allows for a correct registration,
even in the case where we have only 33% of the initial data, see Fig. (3).
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As a final experiment with the ‘fish’ dataset, we took 25 i.i.d. realizations of the
reference, all having the same transformation, noise, and percent observed. Since we
have formulated the solution of our registration problem as a density, we may com-
pute moments, and find other quantities of interest. In this experiment we evaluate
θ̄ = 1

25 ∑
25
k=1 θ̂k, where θ̂ is our MAP estimator of θ from the HMC algorithm. We

then evaluated the transformation under θ̄ . The completed registration is shown in
Fig. (4). With a relatively small number of configurations, we are able to accurately
reconstruct the data, despite the noisy observations.

−3 −2 −1 0 1

−2

−1

0

1

2

Reference

Observation

Registered

Fig. 4: Full data, γ = 0.5, average of 25 Registrations.

4.2 Synthetic APT Data

The datasets from APT experiments are perturbed by additive noise on each of the
points. The variance of this additive noise is not known in general, and so in practice
it should be taken as a hyper-parameter, endowed with a hyper-prior, and inferred
or optimized. It is known that the size of the displacement on the order of several
Å (Angstroms), so that provides a good basis for choice of hyper prior. In order to
simulate this uncertainty in our experiments, we incorporated additive noise in the
form of a truncated Gaussian, to keep all the mass within several Å . The experi-
ments consider a range of variances in order to measure the impact of noise on our
registration process.

In our initial experiments with synthetic data, we have chosen percentages of
observed data and additive noise similar to what Materials Scientist experimentalists
have reported in their APT datasets. The percent observed of these experimental
datasets is approximately 33%.The added noise of these APT datasets is harder to
quantify. Empirically, we expect the noise to be Gaussian in form, truncated to be
within 1-3 Å. The standard deviation of the added noise is less well-known, so we
will work with different values to asses the method’s performance. With respect to
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the size of the cell, a displacement of 3Å is significant. Consider the cell representing
the hidden truth in Fig. (5). The distance between the front left and right corners is
on the scale of 3Å. Consequently a standard deviation of 0.5 for the additive noise
represents a significant displacement of the atoms.

As a visual example, the images in Fig. (5) are our synthetic test data used to
simulate the noise and missing data from the APT datasets. The leftmost image
in Fig. (5) is the hidden truth we seek to uncover. The middle image is the first
with noise added to the atom positions. Lastly, in the right-most image we have
‘ghosted’ some atoms, by coloring them grey, to give a better visual representation
of the missing data. In these representations of HEAs, a color different from grey
denotes a distinct type of atom. What we seek is to infer the chemical ordering and
atomic structure of the left image, from transformed versions of the right, where
γ = 0.5.

Fig. 5: Example APT data: Left: Hidden truth, Center: Noise added, Right: Missing atoms colored
grey.

For our initial numerical experiments with simulated APT data, we choose a sin-
gle reference and observation, and consider two different percentages of observed
data, 75% and 45%. For both levels of observations in the data, we looked at results
with three different levels of added noise on the atomic positions: no noise, and
Gaussian noise with standard deviation of 0.25 and 0.5. The MSE of the processes
are shown in Table (1). We initially observe the method is able, within an apprecia-
bly small tolerance, find the exact parameter θ in the case of no noise, with both
percentages of observed data. In the other cases, as expected, the error scales with
the noise. This follows from our model, as we are considering a rigid transformation
between the observation and reference, which is a volume preserving transforma-
tion. If the exact transformation is used with an infinite number of points, then the
RMSE (square root of Eqn. (13)) is γ .

Now we make the simplifying assumption that the entire configuration corre-
sponds to the same reference, and each observation in the configuration corresponds
to the same transformation applied to the reference, with independent, identically
distributed (i.i.d.) noise added to it. This enables us to approximate the mean and
variance of Eqn. (13) over these observation realizations, i.e. we obtain a collection
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{E l(θ l)}L
l=1 of errors, where E l(θ l) is the MSE corresponding to replacing Yl and

its estimated registration parameters θ l into Eqn. (13), where L is the total number
of completed registrations. The statistics of this collection of values provide robust
estimates of the expected error for a single such registration, and the variance we
can expect over realizations of the observational noise. In other words

ELE (θ) :=
1
L

L

∑
l=1

E l(θ l) and VLE (θ) :=
1
L

L

∑
l=1

(E l(θ l)−ELE (θ))2 . (14)

We have confidence intervals as well, corresponding to a central limit theorem ap-
proximation based on these L samples.

In Figs. (6 - 9) we computed the registration for L = 125 i.i.d. observation sets
corresponding to the same reference, for each combination of noise and percent ob-
served data. We then averaged all 125 registration errors for a fixed noise/percent
observed combination, as in Eqn. (14), and compared the values. What we observe
in Figs. (6 - 9) is the registration error scaling with the noise, which is expected.
What is interesting to note here is that the registration error is essentially constant
with respect to the percentage of observed data, for a fixed standard deviation of
the noise. More information will lead to a lower variance in the posterior on the
transformation θ , following from standard statistical intuition. However, the impor-
tant point to note is that, as mentioned above, for exact transformation, and infinite
points, (13) will equal γ2. So, for sufficiently accurate transformation, one can ex-
pect a sample approximation thereof. Sufficient accuracy is found here with very
few observed points, which is reasonable considering that in the zero noise case 2
points is sufficient to fit the 6 parameters exactly.

The MSE registration errors shown in Figs. (6 - 9), show the error remains essen-
tially constant with respect to the percent observed. Consequently, if we consider
only Fig (7), we observe that the blue and red lines intersect, when the blue has a
standard deviation of 0.1, and the associated MSE is approximately 0.05. This same
error estimate holds for all tested percentages of observed data having a standard
deviation of 0.1. Similar results hold for other combinations of noise and percent
observed, when the noise is fixed.

Standard
Deviation

Percent
Observed

Registration Error

0.0 75% 3.49368609883352e−11
0.0 45% 4.40071892313178e−11
0.25 75% 0.1702529649951198
0.25 45% 0.1221555853433331
0.5 75% 0.3445684328735114
0.5 45% 0.3643178111314804

Table 1: E (θ) Registration Errors
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Fig. 6: Blue: Full data, Red: Noiseless data
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Fig. 7: Blue: 90% Observed, Red: γ = 0.1
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Fig. 8: Blue: 75% Observed, Red: γ = 0.25
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Fig. 9: Blue: 50% Observed, Red: γ = 0.5
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Fig. 10: Blue: Full data, Red: Noiseless data
(MALA)
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Fig. 11: Blue: 90% Observed, Red: γ = 0.1
(MALA)
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Furthermore, the results shown in Figs. (6 - 9) are independent of the algorithm,
as the plots in Figs. (10 - 11) show. For the latter, we ran a similar experiment with
125 i.i.d. observation sets, but to compute the registration, we used the Metropolis
Adjusted Langevin Algorithm (MALA) [?roberts1998optimal], as opposed
to HMC in Figs. (6 - 9). Both algorithms solve the same problem and use informa-
tion from the gradient of the log density. In the plots shown in Figs. (6 - 9), we see
the same constant error with respect to the percent observed and the error increasing
with the noise, for a fixed percent observed. The MSE also appears to be propor-
tional to γ2, which is expected, until some saturation threshold of γ ≥ 0.5 or so.
This can be understood as a threshold beyond which the observed points will tend
to get assigned to the wrong reference point.
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Fig. 12: Histograms of ϕ parameters, 100000 samples, γ = 0.25, Observed = 35%

To examine the contours of our posterior described by Eqn. (8), we drew 105

samples from the density using the HMC methodology described previously. For
this simulation we set the noise to have standard deviation of 0.25 and the percent
observed was 35%, similar values to what we expect from real APT datasets. The
rotation matrix R is constructed via Euler angles denoted: ϕx,ϕy,ϕz, where ϕx ∈
[0,2π),ϕy ∈ [−π

2 ,
π

2 ] and ϕz ∈ [0,2π). These parameters are especially important
to making the correct atomic identification, which is crucial to the success of our
method.
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Fig. 13: Histograms of θ parameters, 100000 samples, γ = 0.25, Observed = 35%

In Figs. (12 - 14), we present marginal single variable histograms and all com-
binations of marginal two-variable joint histograms for the individual components
of θ . We observe multiple modes in a number of the marginals. In Figs. (15 - 20)
we present autocorrelation and trace plots for the rotation parameters from the same
instance of the HMC algorithm as presented in the histograms above in Figs. (12 -
14). We focus specifically on the rotation angles, to ensure efficient mixing of the
Markov chain as these have thus far been more difficult for the algorithm to opti-
mize. We see the chain is mixing well with respect to these parameters and appears
not to become stuck in local basins of attraction.

Additionally, we consider the following. Define null sets A1, . . . ,AN . For each
j = 1, . . . ,M and l = 1, . . . ,L, let i∗( j, l) := argmini∈{1,...,N}|RT

ϕ l (Y l
j − t l)−Xi|2, and

increment Ai∗( j,l) = Ai∗( j,l) ∪Y l
j . This provides a distribution of registered points

for each index i, Ai, from which we estimate various statistics such as mean and
variance. However, note that the cardinality varies between |Ai| ∈ {0, . . . ,L}. We
are only be concerned with statistics around reference points i such that |Ai|> L/10
or so, assuming that the other reference points correspond to outliers which were
registered to by accident. Around each of these N′ ≤ N reference points Xi, we
have a distribution of some K ≤ L registered points. We then computed the mean
of these K points, denoted by X̄i and finally we compute the MSE 1

N′ ∑
N′
i=1 |Xi −
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Fig. 14: Histograms of θ parameters, 100000 samples, γ = 0.25, Observed = 35%
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X̄i|2. The RMSE is reported in Table (2). Here we note that a lower percentage
observed p is correlated with a larger error. Coupling correct inferences about spatial
alignment with an ability to find distributions of atoms around each lattice point is
a transformative tool for understanding High Entropy Alloys.
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Fig. 17: Autocorrelation plot, ϕy
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Fig. 19: Autocorrelation plot, ϕz
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Fig. 20: Trace plot, ϕz

Table 2: Errors for 125 Completed Registrations

Standard
Deviation

Percent
Observed

Error

0.25 75% 0.04909611134835241
0.5 75% 0.07934531875006196
0.25 45% 0.07460005923988245
0.5 45% 0.11978598998930728

5 Conclusion

We have presented a statistical model and methodology for point set registration.
We are able to recover a good estimate of the correspondence and spatial alignment
between point sets in R2 and R3 despite missing data and added noise. As a con-
tinuation of this work, we will extend the Bayesian framework presented in section
2.1 to incorporate the case of an unknown reference. In such a setting, we will seek
not only the correct spatial alignment and correspondence, but the reference point
set, or crystal structure. The efficiency of our algorithm could be improved through



18 Adam Spannaus, Vasileios Maroulas, David J. Keffer, Kody J. H. Law

a tempering scheme, allowing for easier transitions between modes, or an adaptive
HMC scheme, where the chain learns about the sample space in order to make more
efficient moves.

Being able to recover the alignment and correspondences with an unknown ref-
erence will give Materials Science researchers an unprecedented tool in making
accurate predictions about High Entropy Alloys and allow them to develop the nec-
essary tools for classical interaction potentials. Researchers working in the field will
be able to determine the atomic level structure and chemical ordering of High En-
tropy Alloys. From such information, the Material Scientists will have the necessary
tools to develop interaction potentials, which is crucial for molecular dynamics sim-
ulations and designing these complex materials.
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