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Abstract16

Convective parameterizations are widely believed to be essential for realistic simulations of17

the atmosphere. However, their deficiencies also result in model biases. The role of convec-18

tion schemes in modern atmospheric models is examined using Selected Process On/Off Klima19

Intercomparison Experiment (SPOOKIE) simulations without parameterized convection and20

forced with observed sea surface temperatures. Convection schemes are not required for rea-21

sonable climatological precipitation. However, they are essential for reasonable daily precip-22

itation and restraining extreme daily precipitation that otherwise develops. Systematic effects23

on lapse rate and humidity are likewise modest compared with the inter-model spread. With-24

out parameterized convection Kelvin waves are more realistic. An unexpectedly large moist25

Southern Hemisphere storm track bias is identified. This storm track bias persists without con-26

vection schemes, as does the double intertropical convergence zone and excessive ocean pre-27

cipitation biases. This suggests that model biases originate from processes other than convec-28

tion or that convection schemes are missing key processes.29

1 Introduction30

The parameterization of convection was borne out of necessity. In the 1960s the primitive-31

equation moist atmospheric models required a convection scheme for stable time integrations32

[Kasahara, 1993]. The moist adjustment scheme of Manabe et al. [1965] was one of the first,33

and simplest, convection schemes implemented into a radiative-convective equilibrium model.34

The scheme successfully prevented grid-scale convection which previously caused the model35

to quickly deteriorate [Manabe et al., 1965, see references within] and become numerically36

unstable.37

Fifty years after Manabe et al. [1965], convective parameterizations are still implicitly38

assumed to be an important component of global climate models (GCM), as they are used at39

all the major modeling centers and in the models submitted to the CMIP5 archive. More re-40

cently, model runs were performed without parameterized convection by Frierson [2007] in41

developing a simplified convection scheme, and Lin et al. [2008] in testing the sensitivity of42

convective equatorial waves to convection schemes. The first organised collection of atmosphere-43

only models run without parameterized convection is the Selected Process On/Off Klima In-44

tercomparison Experiment (SPOOKIE) by Webb et al. [2015]. The motivation for SPOOKIE45

was to test if convection schemes are a leading source of inter-model spread in cloud feed-46

backs, which is known to be important for model equilibrium climate sensitivity. Webb et al.47
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[2015] found the range of cloud feedbacks were similar with and without parameterized con-48

vection suggesting that the convective parameterizations are not a leading-order source of inter-49

model spread.50

The SPOOKIE simulations also disprove a second commonly held assumption namely51

that convection parameterizations are still required for numerical stability in modern GCMs.52

This is likely due to the improved numerical schemes and much higher horizontal and verti-53

cal resolution. The question that remains unanswered, and is the aim of this study, is what im-54

pact does parameterized convection have on climatological precipitation? A first step in a sys-55

tematic approach to improving convection parameterizations is to establish what impact the56

schemes have on model climatology and the distribution of daily rain rates. In this way we57

hope to provide guidance for modelling centers on what biases are a direct result of the con-58

vection schemes.59

2 Methods and Data60

SPOOKIE consists of ten global atmospheric models, identical to the standard ‘AMIP’61

configuration except without parameterized convection, herein ‘ConvOff’, [von Salzen et al.,62

2013; Neale et al., 2012; Voldoire et al., 2013; Anderson et al., 2004; Zhao et al., 2009; Mar-63

tin et al., 2011; Dufresne et al., 2013; Watanabe et al., 2010; Giorgetta et al., 2012; Yukimoto64

et al., 2012]. See supplementary Table 1 for models, resolutions, and time periods. See acknowl-65

edgement for data storage locations.66

Both deep and shallow convection parameterizations (if they exist) are deactivated in Con-67

vOff. Large-scale precipitation is generated in the microphysics scheme, where precipitation68

results from grid-scale condensation. The boundary-layer scheme and large-scale dynamics are69

still free to remove instability and to transport heat and moisture vertically; see Webb et al. [2015]70

for further details. SPOOKIE output is also available with +4K and 4×CO2 forcings and71

aquaplanet configurations; however, none of these are used in this study.72

Daily and monthly data are interpolated, using bilinear interpolation, for each model to73

a common resolution of 2.5◦×2.5◦, although daily data is only available for four out of the74

ten models. A cross-validation approach was used to check for outlier models that could strongly75

influence the multi-model mean precipitation; see supplementary Fig. 1. No outlier models were76

found and all models are included in the multi-model means.77
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Modelled precipitation is compared to observed Global Precipitation Combined Precip-78

itation (GPCP) data for the 30-year period from 1979 to 2008 (monthly, GPCP v2.3, Adler79

et al. [2003]) and the 20-year period from 1996 to 2015 (daily, GPCP v1.2, Huffman et al. [2001]).80

Monthly ERA-Interim reanalysis [Dee et al., 2011] is used for the 30-year period from 197981

to 2008. In calculating relative humidity, ERA-Interim uses a weighted ice- and liquid-water82

saturation vapor pressures between −23◦ C and 0◦C following Simmons et al. [1999]. We con-83

vert ERA-Interim relative humidity data using pressure with respect to ice below 0◦C rather84

than apply the weighting of Simmons et al. [1999] to AMIP and ConvOff, see supplementary85

for details.86

The Southern ITCZ bias metric [Bellucci et al., 2010] is used to measure the double ITCZ,87

defined as the climatological precipitation model minus observations in the 20◦S−0S◦ and88

210◦−260◦ domain. The edge of the ITCZ is measured using the moisture ITCZ definition89

[Byrne and Schneider, 2016] where the edge is defined as the latitude where evaporation dom-90

inates over precipitation.91

3 Results92

Climatological precipitation for GPCP and the multi-model means of AMIP and Con-93

vOff are shown in Fig. 1a-c, together with their differences in Fig. 1d-f. AMIP precipitation94

is generally similar to the satellite-derived GPCP, though enhanced AMIP precipitation exists95

in each of the tropical ocean basins, in particular the western Indian Ocean and off-equatorial96

bands in the western and central Pacific Oceans (Fig. 1d). These AMIP biases are also present97

in the CMIP5 coupled models in the 2013 IPCC report [Flato et al., 2014, see their Fig. 9.4b],98

hence the biases originate from the atmospheric models, noting that they include about fifty99

models and a slightly shorter time period but these differences are not expected to affect cli-100

matological biases. The enhanced AMIP precipitation bias over the ocean, compared to GPCP101

observations, persists and is worse without parameterized convection (Fig. 1e). In addition to102

amplifying the excessive precipitation over the Indian and western Pacific Oceans, ConvOff103

has more precipitation in the equatorial western Atlantic and eastern Pacific oceans. In the zonal104

mean these differences are small, AMIP and ConvOff are similar at all latitudes (supplemen-105

tary Fig. 5).106

The most striking similarities occur between AMIP and ConvOff in Fig. 1f (see also sup-107

plementary Fig. 8 and Fig. 10). The multi-model precipitation differences over the ocean are108
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much smaller in magnitude and spatial extent than differences between GPCP and AMIP and109

are largest in regions of strongest precipitation. In the Northern Hemisphere eastern Pacific110

there is a poleward shift in the ITCZ in ConvOff. Over tropical land there is reduced precip-111

itation which does not occur in AMIP.112

Without a convection scheme each models precipitation response is similar in spatial struc-113

ture (supplementary Fig. 10) and in each case AMIP is closer to GPCP than ConvOff, with114

errors quantified in a Taylor diagram (supplementary Fig. 3). There is some evidence to sug-115

gest that higher resolution models have smaller differences between AMIP and ConvOff pre-116

cipitation, which have lower root mean square errors, however the sample size (number of mod-117

els) is too small to draw any quantitative conclusions (supplementary Fig. 2). There is no ev-118

idence to suggest that AMIP models have a dependence on resolution for the ratio of convec-119

tive to large-scale precipitation.120

Known CMIP5 precipitation biases also persist in ConvOff. These include deficient pre-121

cipitation over the Amazon region, India and its surrounding ocean, southern Africa, and South122

China Sea. The double ITCZ bias also persists and appears somewhat worse with a broader123

South Pacific convergence zone and more precipitation. However the double ITCZ bias, as mea-124

sured by the Southern ITCZ bias metric of Bellucci et al. [2010], is very similar for the multi-125

model mean AMIP and ConvOff runs (supplementary Fig. 4). Some models have an improved126

double ITCZ bias and some worsen with individual models having similar magnitude biases127

to coupled CMIP3-5 models [Tian, 2015, see their Fig. 1b]. The multi-model mean width of128

the ITCZ is narrower in ConvOff (14◦) compared to AMIP (17◦). The ITCZ is expected to129

narrow with global warming and so understanding the sensitivity of the width is important.130

In this study, the model agreement on the size and sign of the change is limited and it is un-131

clear what impact running models without parameterized convection has on the width of the132

ITCZ.133

Daily precipitation histograms in Fig. 2 reveal larger differences between ConvOff and134

AMIP than seen in climatologies (supplementary Fig. 6). Over land GPCP has 55% of its grid135

cells without precipitation, defined as P ≤ 1.0 mm day−1, fewer in AMIP (50%) and more136

in ConvOff (70%). Over the ocean GPCP has 60% of its grid cells without precipitation, less137

for AMIP (40%) and ConvOff (55%). There are more non-precipitating grid cells in ConvOff138

than AMIP, too many dry land grid cells compared to GPCP but an improvement in dry ocean139

grid cells which are known to produce too much drizzle [Stephens et al., 2010]. The distribu-140
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tion of precipitating grid cells, over land Fig. 2b) and ocean Fig. 2d), highlights that there are141

fewer ConvOff grid cells with light-to-medium rain rates and more grid cells with extreme pre-142

cipitation, i.e., biases that are worse in ConvOff than in AMIP, compared to GPCP. The ex-143

treme rain rates in ConvOff are almost twice as large as GPCP and AMIP and somewhat worse144

over the ocean.145

The more intense precipitation and increased number of non-precipitating grid cells in146

ConvOff can also be seen in daily snapshots of precipitation (supplementary Fig. 7). Daily snap-147

shots also indicate that precipitation is more organised and intensely clustered into grid cell148

storms while AMIP is more uniform, consistent with Becker et al. [2017] who show more ag-149

gregation in a GCM without parameterized convection in radiative convective equilibrium. The150

increased organisation in ConvOff is also present in the multi-model mean wave-frequency plots151

in Fig. 3 (supplementary Fig. 15-16). ConvOff actually has a more realistic Kelvin wave power152

spectra than AMIP. This enhancement in the Kelvin waves occurs in each of the four mod-153

els, especially in IPSL for lower wave numbers. Only minor differences occur in the equato-154

rial Rossby wave response and, perhaps surprisingly, in the MJO region. There is some ev-155

idence to suggest that the IPSL model has improved variability at MJO wave numbers but closer156

investigate is required to determine if the signal is MJO-like.157

Differences in ConvOff temperature and moisture response compared to AMIP are shown158

in Fig. 4 (also supplementary Fig. 9, 11-14). As expected with fixed-SST model runs, the near-159

surface temperature and moisture differences are small (Fig. 4). Farther aloft, AMIP and Con-160

vOff are both cooler than ERA-Interim, especially in the Southern Hemisphere polar region.161

In the middle and upper subtropical troposphere, ConvOff is cooler than AMIP (Fig. 4c). Trop-162

ical cooling also occurs in the middle and upper troposphere, however the response is not ro-163

bust between models, see supplementary Fig. 14, hence the temperature response appears as164

two subtropical lobes.165

Without parameterized convection the middle and upper tropical troposphere are drier166

(Fig. 4f). In the Southern Hemisphere storm tracks AMIP and ConvOff multi-model means167

are moister in, compared to ERA-Interim, less so in the Northern Hemisphere. The AMIP moist168

Southern-Hemisphere storm-track bias and Southern-Hemisphere polar-stratospheric cool bias,169

compared to ERA-Interim, are broadly consistent with those shown in coupled ocean-atmosphere170

multi-model means for CMIP3 [John and Soden, 2007, see their Fig. 1 rows 1-2] and CMIP5171

[Tian et al., 2013, see their Fig. 2-5].172
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4 Discussion173

Running a global climate model without parameterized convection is a fairly extreme174

perturbation, given that most rainfall occurs in convective clouds which are far from being re-175

solved in GCMs. Convection must occur irrespective of whether there is a convection scheme176

as latent heating is needed to balance radiative cooling.177

Without parameterized convection, excessive ocean and deficient land precipitation bi-178

ases occurs. We interpret this response to changes in Convective Available Potential Energy179

(CAPE). Over land in the afternoon there is a rapid increase in CAPE which can be more eas-180

ily consumed by a convection scheme than resolved convection, hence more AMIP land pre-181

cipitation and presumably less over the ocean in order for moisture conservation in the model.182

In terms of moisture conservation, the global precipitation amount does not depend on the con-183

vection scheme as differences in the atmospheric temperature, humidity, and total cloud cover184

do not appear to be large enough to strongly affect global-mean net radiative cooling of the185

atmosphere. There are statistically significant differences in climatological precipitation in runs186

with and without convection schemes, however, the magnitude and spatial coverage of these187

differences are smaller than perhaps expected. Furthermore, AMIP biases compared to GPCP188

are much larger and cover a greater area than the differences between AMIP and ConvOff.189

We suspect a key difference between AMIP and ConvOff is how unstable the atmosphere190

needs to be in order to drive the convection required to transport heat and moisture in a ver-191

tical. By design, parameterized convection initiates before grid-scale saturation occurs. With-192

out parameterized convection, the explicitly resolved motions require more convective insta-193

bility to drive the convective overturning. In order to increase the overturning the atmosphere194

must presumably be more unstable, hence the lapse rate must increase. This instability could195

originate from either surface warming (unlikely for fixed SST runs) or cooling of the tropo-196

sphere. Indeed, ConvOff is cooler than AMIP but perhaps surprisingly the difference in tem-197

perature is small and ConvOff is not that much more unstable than AMIP. We do not believe198

the turbulence schemes alone could explain the cooling response as they do not normally trans-199

port a significant amount of heat except near unstable temperature profiles.200

Net moistening might have been expected in ConvOff, compared to AMIP, as convec-201

tion is harder to initiate. However, we find net drying in ConvOff and offer two interpretations.202

First, AMIP models can produce shallow convection which has a lower precipitation efficiency203

and moistens the mid-levels, whereas explicitly simulated convection at such coarse resolu-204
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tion is mostly deep convection hence has very high precipitation efficiency. Second, convec-205

tion is more organized in ConvOff, and more organized convection results in a drier domain206

[Tobin et al., 2013].207

An AMIP Southern Hemisphere storm track moist bias occurs in the mid-lower tropo-208

sphere. This moist bias has previously been identified in coupled CMIP5 models [Tian et al., 2013, see their Fig. 3 and 5]209

and occurs in a region with known cloud biases [Grise and Polvani, 2014, see reference within].210

We believe ours is the first study to report this moist bias in AMIP models, indicating the bias211

arises from the atmospheric models rather than ocean temperature errors in coupled models.212

The bias may be a consequence of cloud and microphysics schemes [McCoy et al., 2016], their213

coupling to large-scale circulation or boundary layer schemes. Bodas-Salcedo et al. [2014] has214

shown that in atmosphere-only GCMs the Southern Hemisphere mid-level clouds are miss-215

ing in the storm track region. Their absence removes a fundamental condensation process which216

could result in a moist bias, however, further work is needed to test this idea.217

The double ITCZ is a well-known model bias [Zhang et al., 2015], that persists with-218

out parameterized convection. Interestingly, the ConvOff multi-model mean is not qualitatively219

different to AMIP suggesting that convective schemes are not likely the root cause of the bias.220

The inter-model response of the double ITCZ is broad (supplementary Fig. 4), some models221

show a large response and others small. Previous studies have shown that convection schemes222

play a key role in forming the double ITCZ in aquaplanets [Möbis and Stevens, 2012] and cou-223

pled models [Song and Zhang, 2009]. Our results are not inconsistent with such studies, rather224

our conclusions differ in that the net impact of the convection schemes in the multi-model mean225

is smaller than the response in individual models.226

A second deficiency of GCMs is represent convective organization, self aggregation and227

the MJO are prime examples. Becker et al. [2017] found that a GCM, in radiative convective228

equilibrium, has more aggregation without parameterized convection. Furthermore, a differ-229

ence in the MJO might have been expected in ConvOff as the MJO accuracy in GCMs is hin-230

dered by convection parameterizations [Ajayamohan et al., 2013]. Furthermore, it has previ-231

ously been found by Boyle et al. [2015], amongst others, that suppressing convection schemes232

improves the MJO when the entrainment rate was increased. However, in this study we find233

no robust improvement in the MJO.234

Unlike the MJO, we find Kelvin waves are more realistic without convective parame-235

terizations. Convection schemes affect the generation of convective coupled waves and so it236
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is not surprising that the wave spectra is different in runs with and without parameterized con-237

vection. Fully coupled GCMs in general have less wave activity than is seen in observations,238

however, the source of the reduced wave activity is difficult to isolate [Kiladis et al., 2009].239

Reduced wave activity in GCMs has previously been linked to convective parameterizations,240

specifically the moisture sensitivity of trigger functions, and to the treatment of stratiform pre-241

cipitation that result in errors in the heating profiles [Kiladis et al., 2009]. The improved wave242

response in ConvOff may be the results of increased instability, where gravity waves are more243

easily generated in regions with more stratification, or it may be that parameterized convec-244

tion suppresses gravity wave generation. Further work is needed to isolate why Kelvin waves245

are more realistic without parameterized convection.246

A limitation of SPOOKIE the use of fixed SSTs. However, fixed SSTs are necessary to247

prevent the untuned ConvOff climatology from drifting too far away from AMIP and obser-248

vations. Such a drift would prevent an intercomparison such as this, as it would be almost im-249

possible to interpret the direct impact of the convection schemes. A further limitation is only250

using one observational and one reanalysis product, however, we believe this is justified as we251

are primarily focused on the impact of convective schemes on models rather than model eval-252

uation per se. A final limitation is in using daily precipitation data, as exact comparison of mod-253

eled and observed short-term statistics is challenging because of the sampling characteristics254

of observing systems [e.g. Stephens et al., 2010], but it appears unlikely that observational un-255

certainties are as large as the impact of convective schemes.256

5 Conclusions257

Webb et al. [2015] has previously shown that convection schemes do not contribute to258

the spread in cloud feedbacks. We build on their study by showing that parameterized con-259

vection does not strongly impact climatological precipitation, temperature or relative humid-260

ity. This contradicts a common expectation that parameterized convection is required for re-261

alistic mean-state climatologies, given realistic sea-surface temperatures. However, there are262

some interesting differences in runs with and without parameterized convection. Specifically,263

excessive ocean precipitation biases, deficient land precipitation, a robust 1K cooling in the264

subtropical mid-upper levels and a robust 5% drying of the equatorial mid-upper levels.265

At daily time scales the absence of convection parameterizations has a clearer impact266

where storms are more intense and organized into clustered grid cells. Without the convec-267
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tion schemes the most intense tropical storms have daily rate rates almost double observations268

and AMIP. The convection schemes thus constrain unrealistically large precipitation extremes.269

There is an improvement in the number of non-precipitating grid-cells over the ocean but this270

comes at the expense of too many non-precipitating grid cells over land and too fewer light-271

to-medium rain rates. Excessive light rainfall rates is a well known model bias in comprehen-272

sive. Another well known model bias is inhibited organization due to over-active convection273

schemes, as opposed to suppressed schemes which are harder to initiate. We show that the Kelvin274

wave power spectra is improved without parameterized convection although no change is found275

in the MJO.276

We find that a number of known GCM biases persist without parameterized convection.277

Persistent precipitation biases include the double ITCZ, excessive precipitation over the ocean,278

and deficient precipitation over land. These biases are a little worse without parameterized con-279

vection over the ocean but considerably worse over land. Hence, convective parameterizations280

are reducing biases but not substantially. A large AMIP moist bias is identified, present with281

and without parameterized convection, over the Southern Hemisphere storm tracks. We sus-282

pect this is linked to known cloud biases in the region.283

The persistence of modelled precipitation biases without parameterized convection sug-284

gests they originate from processes other than convection or that convection schemes are miss-285

ing key processes and their absence is preventing the schemes from fully ameliorating the bi-286

ases. Candidate processes include upscale convective momentum transport, convective organ-287

ization, convective memory, sensitivity to tropospheric humidity, or missing feedbacks.288

Our results show that model climatologies are relatively insensitive to convective param-289

eterization for fixed-SST runs. If convection parameterizations are not, to first order, control-290

ling the intensity and spatial distribution of climatological precipitation then what is? Further-291

more, if known precipitation biases persist without convective parameterizations, then where292

are they generated? We believe these questions warrant further investigation, as well as the293

deficient land precipitation bias and moist AMIP bias in the Southern Hemisphere storm tracks.294

These could be addressed in a follow up mechanism-denial type study where other key pro-295

cesses are deactivated.296

Some of the results presented in this study might have been anticipated by model de-297

velopers. However the broader community may well be surprised that model climatologies are298

so similar with and without convective parameterizations. In this study we are not advocat-299
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ing abandoning convection parameterization, rather we were motivated to understand what im-300

pact convection schemes have on precipitation and if their impact is as large as commonly ex-301

pected. The results of this study are important for attributing biases in fully coupled climate302

models to model physics, testing long standing expectations about the role of convection schemes303

and in understanding what impact convection schemes have on model climatologies.304
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Figure 1. Average precipitation for a) GPCP, the multi-model means of b) AMIP and c) ConvOff. Differ-

ence in GPCP with the multi-model means of d) AMIP and e) ConvOff and f) their differences. All plots have

the same common resolution of 2.5◦ × 2.5
◦. In d-f) differences are only plotted when 90% or more of the

models agree on the sign of the multi-model difference and is statistically significant with a two-tailed 95%

significance level (±2σ), where σ is the internal variability of the multi-model mean.
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Figure 2. Daily tropical (15◦ S-15◦ N) precipitation for a-b) land and c-d) ocean grid points. Bar plots in

a) and c) are the number of grid points with precipitation less than 1 mm day−1 (ie non-precipitating). His-

tograms in b) and d) are daily precipitation rates from 1− 130 mm day−1 with a bin width of 1 mm day−1.

The percentage of grid points in b) and d) terminates at 0.01%, which for a common 2.5
◦

× 2.5
◦ grid is 1443

tropical ocean points and 429 tropical land points per time step corresponds to 300-500 points over land and

1000-1600 over ocean (ranging from 20-30 years). The plot includes all available daily data (four of the ten

models). The multi-model mean is the average of each models histogram computed on the common grid.
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Figure 3. Wheeler and Kiladis [1999] diagrams for a) ERA-Interim (1979-2015) b) AMIP (1979-2008) and

b) ConvOff (1979-2008) using daily outgoing longwave radiation. The plot includes all available model daily

(four out of the ten models). The wave-frequency spectra was computed for each model on its native grid and

the resulting wave-frequency values were averaged for the multi-model mean plotted.
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Figure 4. Temperature differences between the multi-model mean of a) AMIP and b) ConvOff with ERA-

Interim, and c) their differences. Likewise relative humidity differences in d-f). Grey contouring masks

orography. Contour lines are a guide for magnitude only. Differences are only plotted when 90% or more of

the models agree on the sign of the multi-model mean difference and is statistically significant with a two-

tailed 95% significance level (±2σ), where σ is the internal variability of the multi-model mean. Points which

are not significant are set to zero. Each subplot has a common interpolated grid.
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