
Using Kriging regression to improve the
stability and diversity in NSGA-II

Michael Wood and Matthew Eames

College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK

Abstract
Non-dominated sorting genetic algorithm version 2
(NSGA-II) is a multi-objective optimisation method.
NSGA-II is often used to optimise the design of
building. This paper details small improvements to this
algorithm using ‘fitness approximation’ methods.
Fitness approximation is used speed up the conversion of
NSGA-II. Radial basis functions networks have been
shown to be useful for this. Although there are many
types of fitness approximation function that could be use
for this purpose, Kriging methods have not yet been
tested.
In this paper, Kriging models are compared to standard
NSGA-II. The results show that Kriging-based fitness
approximation slightly improves upon standard NSGA-
II. More work is needed to test this method on different
building types as well as more complex problems, such
as those associated with HVAC design.

Introduction
Optimising buildings using computational techniques is
becoming more common (Nguyen, Reiter, & Rigo,
2014). Optimisation methods are particularly common in
building facade design research (Zemella, De March,
Borrotti, & Poli, 2011) and residential building envelope
design (Tuhus-Dubrow & Krarti, 2010).
Genetic algorithms (GAs) are popular optimisation tools,
and are used widely in engineering (Ooka & Komamura,
2009; Wright & Alajmi, 2005). Of the GA algorithms in
use, NSGA-II has been shown to be a very effective tool
and is used in a wide variety of building optimisation
software including TYNSYS (The University of
Wisconsin, 2016), IES (Integrated Environmental
Solutions Ltd., 2017) and Design Builder (Design
Builder Software Ltd., 2017) as well as other
applications (Hamdy, Hasan, & Siren, 2013).
Other optimisation methods that have proven useful in
building design include artificial neural networks
(Magnier & Haghighat, 2010).
In this paper, we examine whether NSGA-II can be
improved using universal Kriging as a fitness
approximation function.
The aim of this work is to test if Kriging-based surrogate
modelling can be used to improve the results of NSGA-
II. We test this on a simple building design problem.

Background
About NSGA-II
NSGA-II is a multi-objective optimisation algorithm
based on genetic algorithms. It is commonly used to
solve multi-output optimisation problems.
NSGA-II has also found use in building design software.
Figure 1shows an example taken from Design Builder's
promotional literature. It show the output of an
optimisation minimising cost and CO2 emissions.

Figure 1: Example solutions to balance cost and CO2
emissions (adapted from Cocking & Tindale, 2014)

The algorithm starts with a random slection of potential
solutions referred to as population. It then uses this
population and its results to generate a new population.
If the algorithm is working well, each new population
will improve on the previous population.
NSGA-II also has a property called elitism. This means
that it always keeps the best results between each
population iteration. The algorithm achieves this by
combining the parent and offspring populations and
selecting the best from the combined population.
Each generation of a new population is called a
generation. As the algorithm progresses through each
subsequent generation, it should converge on an ideal set
of results - the Pareto front.

Generating new populations
NSGA-II creates better solutions by mimicking
evolutionary processes. It starts this process by mapping
the numerical inputs to the model (U-values, air
permeability etc.) onto a virtual 'chromosome'.
These 'chromosomes' are a binary string representation
of each variable. For example a variable 133 might be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/151472183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

represented as 10000101. Representing the variables in
this way allows the values to be mutated much like the
way genes are in DNA. However, instead of
manipulating the genetic code, NSGA-II manipulates the
binary strings that represent the model's input. It does
this using three stages:
1. Tournament selection
2. Mutation
3. Cross-over

Tournament selection
The purpose of tournament selection is to create a
‘mating pool’ from which the offspring population 𝑄
will be generated. This is achieved by first picking a
parent population 𝑃 at random. Once the parent
population is created, NSGA-II runs the following steps.
It;
1. randomly selects 𝑛 sample
2. s from the parent population (where 𝑛 is the

tournament size);
3. adds the 𝑛 samples to the mating pool; and
4. repeats steps 1 and 2 until size of mating pool is

equal in size to 𝑃 (the size of the parent
population).

The tournament selection phase produces the first
offspring population. These offspring candidates are then
altered through crossover and mutation.

Crossover
The crossover phase allows the swapping of genetic
information between members of the mating pool.
‘Parent’ chromosomes from the mating pool are selected
at random for crossover as are the specific genes on the
chromosome of each parent. The left hand image in
Figure 2 shows the crossover of genetic information on
the third gene of two parents from the mating pool:

Figure 2: Crossover and mutation operations

Mutation
Mutation is an operation where one (or more) of the
elements of a gene are changed at random. The location
of the change and its magnitude are chosen at random.
The right hand image in figure 2 illustrates a mutation of
magnitude 2 on the third gene to two parents in the
mating pool.

NSGA-II overview
NSGA-II uses the steps described above to generate each
subsequent population. An overview of this process is
shown below:
1. Create an initial population of buildings (𝑃): These

are chosen at random. The population of buildings
is simulated to obtain the relevant results for each
building.

2. Use the population 𝑃 to generate a new set of
buildings 𝑄 using tournament selection, crossover,
and mutation.

3. Combine the results of 𝑃 and 𝑄 into a new larger
population 𝑅. Evaluate the population 𝑅 with the
simulator.

4. Find the best solutions in 𝑅 using non-dominated
sorting and crowding distance sorting. This creates
the new population at time 𝑡 + 1, 𝑃()*.

A graphical representation of this process is shown in
figure below:

Figure 3: Summary of the NSGA-II process (Deb et al., 2002)

How can regression methods help improve NSGA-II
The speed at which the algorithm improves is based on
the qualities of the new population 𝑄. The better the
population 𝑄 is, the quicker the algorithm will converge
on the true Pareto front.
One way of improving 𝑄 is to make the population size
of 𝑄 much bigger (Brownlee & Wright, 2015). In the
standard mode of operation, the population size of 𝑄 is
the same size as that of the initial population 𝑃. If 𝑄 is
made 𝑘 times bigger, then the rate at which the
population improves with each iteration will quicken.
An increase in the size of 𝑄 causes problems. Increasing
the size of 𝑄 by an order of 𝑘 means that the number of
simulations required at each iteration is also increased by
𝑘. Clearly, this is not worth it, since a 𝑘-fold increase in
simulations in 𝑄 is unlikely to provide superior results to
a 𝑘-fold increase in the number of population
generations.
Regression is a way of solving this problem - instead of
running the extra 𝑄 candidates through the simulator, we
can instead evaluate them with a surrogate model. This
allows us to generate large populations of 𝑄’	that are
much larger than 𝑄 without much computational
overhead. The population in 𝑄’ is sorted and ranked in
the same way as 𝑄. In the same way, only the top 𝑛

survive. These rejoin the population 𝑃 as in the standard
NSGA-II and the algorithm continues (Figure 3).
The surrogate model will continue to be a better and
better predictor of the output of	𝑄’, since the more we
iterate through the NSGA-II process, the more
information we have on the simulator's output. Because
of this, the model will get better as the number of
evaluated populations increases.
Kriging regression methods
Kriging is a sophisticated linear regression method. It
represents the output of a simulator function 𝑓(𝒙) as a
multivariate Gaussian process 𝑓 𝒙 :

𝑓 𝒙 ∼ 	GP(𝑚(𝒙)	, 𝑣(𝒙, 𝒙′)) (1)

Although that output of the Gaussian process is
essentially random Gaussian noise (with a mean of 𝑚(𝒙)
and a variance of 𝑣(𝒙, 𝒙′)), this doesn’t mean that we
think the original simulator output is random. Instead,
we are using the Gaussian process to allow us to express
uncertainty in the output:

Figure 4: Kriging example

The mean and variance functions of the Kriging model
are estimated using a training set (shown in Figure 4).
Standard functions govern the mean and variance.
However, these functions require the tuning and
estimation of hyperparameters, whos derivation would
be too lengthy to detail here. There interested reader is
referred to Gaussian Processes for Machine Learning
(Rasmussen & Williams, 2006).
Kriging has several advantages over standard linear
regression methods:
1. It can make predictions of its own uncertainty
2. The convergence is faster1

3. The regression prediction 𝑓 (𝑥) is equal to the
'true' output 𝑓(𝑥) for points in the training set 𝐃2

4. It can capture non-linear processes with a high
order of complexity with relatively few training
simulations

1 Convergence in this case refers to convergence on the
objective function, not the optimum solution.
2 This is not true of other linear regression methods, like
polynomial regression, where the closeness of fit is limited by
the order of the regression equation

We use Kriging to evaluate the large populations in	𝑄’,
which are then reduced in size (based on the best
solutions) to provide a better offspring populations in 𝑄.
Our aim is to test whether the unique properties in the
Kriging model (as opposed to other regression methods)
leads to a significant improvement in the performance of
NSGA-II.

Method
In adding the fitness approximation to the algorithm, we
add an additional step to the NSGA-II process. The step
is added after the parent population but before the
offspring population is created. This is where we create
the intermediate offspring population	𝑄’.

Figure 5: Schematic showing the Kriging-assisted NSGA-II
approach

In this additional step we dont evaluate the fitness of the
population with the simulator, we evaluate it with an
emulator instead. This allows us to evaluate much larger
candidate populations and our hypothesis is that this
additional layer of population screening will lead to
better convergence on the Pareto front. We refer to two
different approaches as standard NSGA-II and Kriging-
assisted NSGA-II.
For the Kriging-assisted NSGA-II, the initial population
is selected using a Latin Hypercube sampling method
(McLeod, Hopfe, & Kwan, 2013; Stein, 1987). We use
this method because it makes it more likely that the
initial emulator (on which the whole analysis is built) is
more accurate (Loeppky, Sacks, & Welch, 2009).

The building model
The building model use for a test analysis is a simple
office building (Figure 6).

Figure 6: Office building used in the model

Input

O
ut

pu
t

Simulator output

Kriging mean

Training points

Kriging 95%
confidence

The building's construction materials are detailed in table
1.
Table 1: Material properties of the building

N
am

e

T
hi

ck
ne

ss
 (m

)

C
on

du
ct

iv
ity

 (W
.m

-1
K
−1

)

D
en

si
ty

 (k
gm

-3
)

Sp
ec

ifi
c

he
at

 (J
kg

-1
K

-1
)

Membrane 0.0001 1.000 1100 1000
Plasterboard 0.0125 0.210 700 1000
Floor insulation 0.1100 0.025 700 1000
Concrete floor 0.1000 2.300 2300 1000
Chipboard 0.0200 0.130 500 1600
Carpet 0.0100 0.040 160 1360
Tiles 0.0127 0.840 1900 800
Concrete 0.2350 1.400 2100 840
Wall insulation 0.0840 0.030 43 1210
Roof insulation 0.0670 0.030 43 1210
100 mm brick 0.1000 0.890 1920 790
Brick partitions 0.0040 0.890 1920 790

The lights were operational between the hours of 7am
and 7pm. They were set to provide a minimum of 500
lux on the working plane (centre of the room) and had a
density such that the total power was 5 Wm-2.
The occupancy schedule model used in the model is as
shown in Figure 7.

Figure 7: Occupancy schedule used in the model

The office is assumed to have 5 occupants. The materials
are used in the construction as follows:
• Wall construction: 100mm brick / insulation /

concrete
• Roof construction: Tiles / Membrane / insulation /

plasterboard
• Floor construction: InsulationFloor /

ConcreteFloor / Cavity / Chipboard / Carpet
• Windows construction: Low emissivity double

glazing (6 mm/13 mm/6 mm) Argon filled (with

25% equivalent openable area for natural
ventilation)

The ranges of the variables used in the building model
are given in the appendix. The other setup parameters
are:
• Heating set point: 21°C
• Activity level per person: 80 Watts
• Calculation detail - time step: 12 steps per hour
The limits of the variables that can be chosen by each
algorithm are shown in Table 2. We assume a uniform
distribution of potential solutions for each variable (i.e.
no prior weighting).
Table 2: Ranges of the variables used in the computer model

Real Name Min Max
Aspect ratio 0.50 1.0
U-value walls (Wm-2) 0.10 0.5
U-value roof (Wm-2) 0.10 0.5
Glazing north (%) 0.00 0.9
Glazing south (%) 0.00 0.9
Glazing east (%) 0.00 0.9
Glazing west (%) 0.00 0.9
Window U-value (Wm-2) 1.00 3.0
Concrete thickness (m) 0.05 0.5
Overhang north (m) 0.10 0.5
Overhang south (m) 0.10 0.5
Overhang east (m) 0.10 0.5
Overhang west (m) 0.10 0.5

Weather data
We used the new CIBSE Design Summer Year for
London DSY1 (Eames, 2016). Note that any other
weather file could have been used.
Optimisation criteria
We use the NSGA-II algorithms to generate a range of
solutions that minimise both the lighting energy use and
the overheating.
Overheating and lighting are conflicting design criteria.
They compete with each other because and increase in
glazing will mean that less lighting energy is required.
However, a greater proportion of glazing has been linked
to increased overheating. Conversely, less glazing mean
less overheating, but it also means that more lighting
energy will be required. The aim of the optimisation
process is to generate a range of options that strike a
balance between these two requirements.
We measured overheating by counting the number of
hours where 𝛥𝑇 > 0 (based on Criterion a), which is
taken from CIBSE TM 52 (Nicol, 2013)). (𝛥𝑇 is greater
than 0 when the internal temperature is above the
comfort temperature.) We measured the lighting by
measuring the total annual lighting energy use (kWh).

Genetic algorithm setup
The NSGA algorithms were used with the following
settings:
Standard NSGA-II
• Population size: 20
• Crossover probability: 0.5
• Mutation probability: 0.4
• Tournament size: 3
Kriging Enhanced NSGA-II
• Population size: 20
• Crossover probability: 0.7
• Mutation probability: 0.4
• Tournament size: 3
Each analysis had a budget of 300 simulations and was
repeated nine times. This allowed us to check for
consistency in the results as well as monitoring the
progress of each of the analysis runs.
Note that the crossover probabilities are different
between the Standard NSGA-II and the Kriging
enhanced version. We found that increasing the
crossover probability by a small amount significantly
improved the output of the Kriging emulator. We need to
complete a more extensive analysis of each of the
options. This is again the subject of further work.
Measuring the performance: Hypervolumes and
spread
As well as tracking each of the individual runs through
each generation, we also monitored the hypervolume and
diversity in the results.
The hypervolume and diversity are the two key measures
of the quality of the end result. The hypervolume can be
thought of as a measure of how close the solution is to
the 'true' Pareto front and the diversity is a measure of
how 'evenly spread out' the solutions are.
An illustration of two different levels of diversity are in
Figure 8. An illustration of the hypervolume is shown in
Figure 9.

Figure 8: Examples of diversity in the result's outputs

Figure 9: Hypervolume definition

A good result will have a higher hypervolume and a
higher spread coefficient (the options are as evenly
distributed as possible across the Pareto front).
The size of the hypervolume relies on the position of the
reference point. For our purposes, the reference point is
located at 𝑥 = 20 and 𝑦 = 1300.
The spread is a single value measure which is dependent
on the ‘spread area’ in the output space as shown in
Figure 10.

Figure 10: Spread definition

Results
Figure 11 shows the output of one of the analyses after
15 generations for both standard NSGA-II and Kriging-
assisted NSGA-II.

Figure 11: Results after 15 generations (standard and Kriging
enhanced NSGA-II)

The results of the Kriging-enhanced NSGA-II are
slightly better in both spread and in the closeness to the

Pareto front. This is true for all nine repetitions of the
algorithm. The hypervolume and spread progress is
shown in Figure 12 to Figure 15.

Figure 12: Hypervolume progress

Figure 13: Mean hypervolume progress (over 9 repetitions)

Figure 14: Spread progress

Figure 15: Mean spread progress of Kriging assisted NSGA-II
vs. standard NSGA-II.

Discussion and conclusion
The results show that the Kriging enhanced NSGA-II
performs well in comparison to the standard NSGA-II.
Both the mean hypervolumes and the mean spreads
show differences (though the different in the spread is
more significant).
For the hypervolume, the Kriging-assisted method is
superior up to around eight generations. The standard
NSGA-II then catches up.
After 15 iterations, the Kriging assisted NSGA-II has a
much better spread of results. It also appears to get a
much better spread after fewer iterations. Further work
will be required to determine whether this is case for
other building design problems.
When considering the improvements offered by the
Kriging-assisted design, we need to consider the
additional computational costs.
The Kriging model adds two additional computational
loads. There are;
a) interrogating the Kriging emulator to evaluate

each; and
b) creating the Kriging model at each generation.
Interrogating the emulator its outputs extremely quick.
For a typical desktop computer, it takes around 10-6
seconds. The building simulator used in the assessment
takes approximately 30 seconds to run, so in this case the
emulation time is insignificant.
We also need to consider how long it takes to create the
Kriging model. The time it takes to create the Kriging
model is (roughly) proportional to 𝑛C (where 𝑛 is the
number of training samples). The Kriging model is built
using all of the samples that have passed through the real
building simulator. So, as the the number of generations
increases, the size of the Kriging training set also
increases. There is therefore a problem for using this
model with either a large number of population
generations, large populations or both.

The Kriging assisted algorithms take longer to run. The
total simulation time is a combination of the time taken
to;

1. run the simulations;
2. perform the genetic operations in the NSGA

model; and
3. rebuild the Kriging emulators between

generations
The standard NSGA-II method only runs steps one and
two, the Kriging assisted method needs all three.

The time taken to run the simulations is around 30
seconds. This time is much greater than the time taken to
execute steps two and three (typically << 1 second). The
extra time added by the Kriging processes is
insignificant. For other simulation optimisation
problems, where the simulation time is much lower, the

extra computation time will begin to become more
significant.
Further work should include;
• examining problems where there are more than

two outputs objectives;
• testing the efficacy of the different algorithms on

different building problems (e.g. examining
ventilation and HVAC strategies where the
optimisation geometeries can be extremely
complex);

• running the algorithms for different building and
climate types.

Further work should also consider investigating the
'settings' for crossover, mutation and tournament
selection used in both algorithms. There are many
possible combination and permutation of these settings,
which all need to be tested statistically on a range of
problems.
The method should also be compared to 'pure' Kriging-
based multi-objective optimisation. Methods such as
ParEGO (Knowles, 2006) should also be investigated.
Not withstanding the need for further work, the results
show that Kriging-based fitness approximation shows
promise for improving NSGA-II. Further work is needed
to strengthen this finding.

Acknowledgements
The authors would like to thank for EPSRC for funding
this research [Ref: EP/M021890/1]

References
Design Builder Software Ltd. (2017). Design Builder.

Retrieved from http://www.designbuilder.co.uk/
Eames, M. (2016). An update of the UKs design summer

years: Probabilistic design summer years for
enhanced overheating risk analysis in building
design. Building Services Engineering Research
and Technology, 37(5), 503–522.
https://doi.org/10.1177/0143624416631131

Hamdy, M., Hasan, A., & Siren, K. (2013). A multi-
stage optimization method for cost-optimal and
nearly-zero-energy building solutions in line with
the EPBD-recast 2010. Energy and Buildings, 56,
189–203.
https://doi.org/10.1016/j.enbuild.2012.08.023

Integrated Environmental Solutions Ltd. (2017). IES
(www.iesve.com). Retrieved from
http://www.iesve.com/

Knowles, J. (2006). ParEGO: a hybrid algorithm with
on-line landscape approximation for expensive
multiobjective optimization problems. IEEE
Trans. Evol. Comput., 10(1), 50–66.

Loeppky, J. L., Sacks, J., & Welch, W. J. (2009).
Choosing the Sample Size of a Computer
Experiment: A Practical Guide. Technometrics,
51(4), 366–376.
https://doi.org/10.1198/TECH.2009.08040

Magnier, L., & Haghighat, F. (2010). Multiobjective
optimization of building design using TRNSYS

simulations, genetic algorithm, and Artificial
Neural Network. Build. Environ., 45(3), 739–746.

McLeod, R. S., Hopfe, C. J., & Kwan, A. (2013). An
investigation into future performance and
overheating risks in Passivhaus dwellings.
Building and Environment, 70, 189–209.
https://doi.org/10.1016/j.buildenv.2013.08.024

Nguyen, A.-T., Reiter, S., & Rigo, P. (2014). A review
on simulation-based optimization methods applied
to building performance analysis. Applied Energy,
113, 1043–1058.
https://doi.org/10.1016/j.apenergy.2013.08.061

Nicol, F. (2013). TM52: The limits of thermal comfort:
avoiding overheating in European Buildings.

Ooka, R., & Komamura, K. (2009). Optimal design
method for building energy systems using genetic
algorithms. Building and Environment, 44(7),
1538–1544.
https://doi.org/10.1016/j.buildenv.2008.07.006

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian
processes for machine learning. International
journal of neural systems (Vol. 14).

Stein, M. (1987). Large Sample Properties of
Simulations Using Latin Hypercube Sampling.
Technometrics, 29(2), 143–151.
https://doi.org/10.1080/00401706.1987.10488205

The University of Wisconsin. (2016). A TRaNsient
SYstems Simulation Program (TRNSYS).

Tuhus-Dubrow, D., & Krarti, M. (2010). Genetic-
algorithm based approach to optimize building
envelope design for residential buildings. Building
and Environment, 45(7), 1574–1581.
https://doi.org/10.1016/j.buildenv.2010.01.005

Wright, J., & Alajmi, A. (2005). The robustness of
genetic algorithms in solving unconstrained
building optimization problems. Proceedings of
Building Simulation, 5, 1361–1368.

Zemella, G., De March, D., Borrotti, M., & Poli, I.
(2011). Optimised design of energy efficient
building façades via Evolutionary Neural
Networks. Energy and Buildings, 43(12), 3297–
3302.
https://doi.org/10.1016/j.enbuild.2011.10.006

