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Abstract 
Non-dominated sorting genetic algorithm version 2 
(NSGA-II) is a multi-objective optimisation method. 
NSGA-II is often used to optimise the design of 
building. This paper details small improvements to this 
algorithm using ‘fitness approximation’ methods.  
Fitness approximation is used speed up the conversion of 
NSGA-II. Radial basis functions networks have been 
shown to be useful for this. Although there are many 
types of fitness approximation function that could be use 
for this purpose, Kriging methods have not yet been 
tested. 
In this paper, Kriging models are compared to standard 
NSGA-II. The results show that Kriging-based fitness 
approximation slightly improves upon standard NSGA-
II. More work is needed to test this method on different 
building types as well as more complex problems, such 
as those associated with HVAC design.  

Introduction 
Optimising buildings using computational techniques is 
becoming more common (Nguyen, Reiter, & Rigo, 
2014). Optimisation methods are particularly common in 
building facade design research (Zemella, De March, 
Borrotti, & Poli, 2011) and residential building envelope 
design (Tuhus-Dubrow & Krarti, 2010).  
Genetic algorithms (GAs) are popular optimisation tools, 
and are used widely in engineering (Ooka & Komamura, 
2009; Wright & Alajmi, 2005). Of the GA algorithms in 
use, NSGA-II has been shown to be a very effective tool 
and is used in a wide variety of building optimisation 
software including TYNSYS (The University of 
Wisconsin, 2016),  IES (Integrated Environmental 
Solutions Ltd., 2017) and Design Builder (Design 
Builder Software Ltd., 2017) as well as other 
applications (Hamdy, Hasan, & Siren, 2013). 
Other optimisation methods that have proven useful in 
building design include artificial neural networks 
(Magnier & Haghighat, 2010). 
In this paper, we examine whether NSGA-II can be 
improved using universal Kriging as a fitness 
approximation function. 
The aim of this work is to test if Kriging-based surrogate 
modelling can be used to improve the results of NSGA-
II. We test this on a simple building design problem. 

Background 
About NSGA-II 
NSGA-II is a multi-objective optimisation algorithm 
based on genetic algorithms. It is commonly used to 
solve multi-output optimisation problems.  
NSGA-II has also found use in building design software. 
Figure 1shows an example taken from Design Builder's 
promotional literature. It show the output of an 
optimisation minimising cost and CO2 emissions. 

 
Figure 1: Example solutions to balance cost and CO2 
emissions (adapted from Cocking & Tindale, 2014) 

The algorithm starts with a random slection of potential 
solutions referred to as population. It then uses this 
population and its results to generate a new population. 
If the algorithm is working well, each new population 
will improve on the previous population. 
NSGA-II also has a property called elitism. This means 
that it always keeps the best results between each 
population iteration. The algorithm achieves this by 
combining the parent and offspring populations and 
selecting the best from the combined population. 
Each generation of a new population is called a 
generation. As the algorithm progresses through each 
subsequent generation, it should converge on an ideal set 
of results - the Pareto front. 

Generating new populations 
NSGA-II creates better solutions by mimicking 
evolutionary processes. It starts this process by mapping 
the numerical inputs to the model (U-values, air 
permeability etc.) onto a virtual 'chromosome'. 
These 'chromosomes' are a binary string representation 
of each variable. For example a variable 133 might be 
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represented as 10000101. Representing the variables in 
this way allows the values to be mutated much like the 
way genes are in DNA. However, instead of 
manipulating the genetic code, NSGA-II manipulates the 
binary strings that represent the model's input. It does 
this using three stages: 
1. Tournament selection 
2. Mutation 
3. Cross-over 

Tournament selection 
The purpose of tournament selection is to create a 
‘mating pool’ from which the offspring population 𝑄 
will be generated. This is achieved by first picking a 
parent population 𝑃 at random. Once the parent 
population is created, NSGA-II runs the following steps. 
It; 
1. randomly selects 𝑛 sample 
2. s from the parent population (where 𝑛 is the 

tournament size); 
3. adds the 𝑛 samples to the mating pool; and 
4. repeats steps 1 and 2 until size of mating pool is 

equal in size to 𝑃 (the size of the parent 
population). 

The tournament selection phase produces the first 
offspring population. These offspring candidates are then 
altered through crossover and mutation. 

Crossover 
The crossover phase allows the swapping of genetic 
information between members of the mating pool. 
‘Parent’ chromosomes from the mating pool are selected 
at random for crossover as are the specific genes on the 
chromosome of each parent. The left hand image in 
Figure 2 shows the crossover of genetic information on 
the third gene of two parents from the mating pool: 

 
Figure 2: Crossover and mutation operations 

 

Mutation 
Mutation is an operation where one (or more) of the 
elements of a gene are changed at random. The location 
of the change and its magnitude are chosen at random. 
The right hand image in figure 2 illustrates a mutation of 
magnitude 2 on the third gene to two parents in the 
mating pool. 

NSGA-II overview 
NSGA-II uses the steps described above to generate each 
subsequent population. An overview of this process is 
shown below: 
1. Create an initial population of buildings (𝑃): These 

are chosen at random. The population of buildings 
is simulated to obtain the relevant results for each 
building. 

2. Use the population 𝑃 to generate a new set of 
buildings 𝑄 using tournament selection, crossover, 
and mutation. 

3. Combine the results of 𝑃 and 𝑄 into a new larger 
population 𝑅. Evaluate the population 𝑅 with the 
simulator. 

4. Find the best solutions in 𝑅 using non-dominated 
sorting and crowding distance sorting. This creates 
the new population at time 𝑡 + 1, 𝑃()*. 

A graphical representation of this process is shown in 
figure  below: 

 
Figure 3: Summary of the NSGA-II process (Deb et al., 2002) 

How can regression methods help improve NSGA-II 
The speed at which the algorithm improves is based on 
the qualities of the new population 𝑄. The better the 
population 𝑄 is, the quicker the algorithm will converge 
on the true Pareto front. 
One way of improving 𝑄 is to make the population size 
of 𝑄 much bigger (Brownlee & Wright, 2015). In the 
standard mode of operation, the population size of 𝑄 is 
the same size as that of the initial population 𝑃. If 𝑄 is 
made 𝑘 times bigger, then the rate at which the 
population improves with each iteration will quicken. 
An increase in the size of 𝑄 causes problems. Increasing 
the size of 𝑄 by an order of 𝑘 means that the number of 
simulations required at each iteration is also increased by 
𝑘. Clearly, this is not worth it, since a 𝑘-fold increase in 
simulations in 𝑄 is unlikely to provide superior results to 
a 𝑘-fold increase in the number of population 
generations. 
Regression is a way of solving this problem - instead of 
running the extra 𝑄 candidates through the simulator, we 
can instead evaluate them with a surrogate model. This 
allows us to generate large populations of 𝑄’	that are 
much larger than 𝑄 without much computational 
overhead. The population in 𝑄’ is sorted and ranked in 
the same way as 𝑄. In the same way, only the top 𝑛 



survive. These rejoin the population 𝑃 as in the standard 
NSGA-II and the algorithm continues (Figure 3). 
The surrogate model will continue to be a better and 
better predictor of the output of	𝑄’, since the more we 
iterate through the NSGA-II process, the more 
information we have on the simulator's output. Because 
of this, the model will get better as the number of 
evaluated populations increases.  
Kriging regression methods 
Kriging is a sophisticated linear regression method. It 
represents the output of a simulator function 𝑓(𝒙) as a 
multivariate Gaussian process 𝑓 𝒙 : 

𝑓 𝒙 ∼ 	GP(𝑚(𝒙)	, 𝑣(𝒙, 𝒙′)) (1) 

Although that output of the Gaussian process is 
essentially random Gaussian noise (with a mean of 𝑚(𝒙) 
and a variance of 𝑣(𝒙, 𝒙′)), this doesn’t mean that we 
think the original simulator output is random. Instead, 
we are using the Gaussian process to allow us to express 
uncertainty in the output: 

 
Figure 4: Kriging example 

The mean and variance functions of the Kriging model 
are estimated using a training set (  shown in Figure 4). 
Standard functions govern the mean and variance. 
However, these functions require the tuning and 
estimation of hyperparameters, whos derivation would 
be too lengthy to detail here. There interested reader is 
referred to Gaussian Processes for Machine Learning 
(Rasmussen & Williams, 2006).  
Kriging has several advantages over standard linear 
regression methods: 
1. It can make predictions of its own uncertainty 
2. The convergence is faster1 

3. The regression prediction 𝑓 (𝑥) is equal to the 
'true' output 𝑓(𝑥) for points in the training set 𝐃2 
 

4. It can capture non-linear processes with a high 
order of complexity with relatively few training 
simulations 

                                                             
1 Convergence in this case refers to convergence on the 
objective function, not the optimum solution. 
2 This is not true of other linear regression methods, like 
polynomial regression, where the closeness of fit is limited by 
the order of the regression equation 

We use Kriging to evaluate the large populations in	𝑄’, 
which are then reduced in size (based on the best 
solutions) to provide a better offspring populations in 𝑄. 
Our aim is to test whether the unique properties in the 
Kriging model (as opposed to other regression methods) 
leads to a significant improvement in the performance of 
NSGA-II. 

Method 
In adding the fitness approximation to the algorithm, we 
add an additional step to the NSGA-II process. The step 
is added after the parent population but before the 
offspring population is created. This is where we create 
the intermediate offspring population	𝑄’.  

 
Figure 5: Schematic showing the Kriging-assisted NSGA-II 
approach 

In this additional step we dont evaluate the fitness of the 
population with the simulator, we evaluate it with an 
emulator instead. This allows us to evaluate much larger 
candidate populations and our hypothesis is that this 
additional layer of population screening will lead to 
better convergence on the Pareto front. We refer to two 
different approaches as standard NSGA-II and Kriging-
assisted NSGA-II.  
For the Kriging-assisted NSGA-II, the initial population 
is selected using a Latin Hypercube sampling method 
(McLeod, Hopfe, & Kwan, 2013; Stein, 1987). We use 
this method because it makes it more likely that the 
initial emulator (on which the whole analysis is built) is 
more accurate (Loeppky, Sacks, & Welch, 2009). 
 
The building model 
The building model use for a test analysis is a simple 
office building (Figure 6). 

 
Figure 6: Office building used in the model 
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The building's construction materials are detailed in table 
1.  
Table 1: Material properties of the building 
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Membrane 0.0001 1.000 1100 1000 
Plasterboard 0.0125 0.210 700 1000 
Floor insulation 0.1100 0.025 700 1000 
Concrete floor 0.1000 2.300 2300 1000 
Chipboard 0.0200 0.130 500 1600 
Carpet 0.0100 0.040 160 1360 
Tiles 0.0127 0.840 1900 800 
Concrete 0.2350 1.400 2100 840 
Wall insulation 0.0840 0.030 43 1210 
Roof insulation 0.0670 0.030 43 1210 
100 mm brick 0.1000 0.890 1920 790 
Brick partitions 0.0040 0.890 1920 790 

The lights were operational between the hours of 7am 
and 7pm. They were set to provide a minimum of 500 
lux on the working plane (centre of the room) and had a 
density such that the total power was 5 Wm-2. 
The occupancy schedule model used in the model is as 
shown in Figure 7. 
 

 
Figure 7: Occupancy schedule used in the model 

The office is assumed to have 5 occupants. The materials 
are used in the construction as follows: 
• Wall construction: 100mm brick / insulation / 

concrete 
• Roof construction: Tiles / Membrane / insulation / 

plasterboard 
• Floor construction: InsulationFloor / 

ConcreteFloor / Cavity / Chipboard / Carpet 
• Windows construction: Low emissivity double 

glazing (6 mm/13 mm/6 mm) Argon filled (with 

25% equivalent openable area for natural 
ventilation) 

 
 
The ranges of the variables used in the building model 
are given in the appendix. The other setup parameters 
are: 
• Heating set point: 21°C 
• Activity level per person: 80 Watts 
• Calculation detail - time step: 12 steps per hour 
The limits of the variables that can be chosen by each 
algorithm are shown in Table 2. We assume a uniform 
distribution of potential solutions for each variable (i.e. 
no prior weighting).  
Table 2: Ranges of the variables used in the computer model 

Real Name Min Max 
Aspect ratio 0.50 1.0 
U-value walls (Wm-2) 0.10 0.5 
U-value roof (Wm-2) 0.10 0.5 
Glazing north (%) 0.00 0.9 
Glazing south (%) 0.00 0.9 
Glazing east (%) 0.00 0.9 
Glazing west (%) 0.00 0.9 
Window U-value (Wm-2) 1.00 3.0 
Concrete thickness (m) 0.05 0.5 
Overhang north (m) 0.10 0.5 
Overhang south (m) 0.10 0.5 
Overhang east (m) 0.10 0.5 
Overhang west (m) 0.10 0.5 

 

Weather data 
We used the new CIBSE Design Summer Year for 
London DSY1 (Eames, 2016). Note that any other 
weather file could have been used. 
Optimisation criteria 
We use the NSGA-II algorithms to generate a range of 
solutions that minimise both the lighting energy use and 
the overheating. 
Overheating and lighting are conflicting design criteria. 
They compete with each other because and increase in 
glazing will mean that less lighting energy is required. 
However, a greater proportion of glazing has been linked 
to increased overheating. Conversely, less glazing mean 
less overheating, but it also means that more lighting 
energy will be required. The aim of the optimisation 
process is to generate a range of options that strike a 
balance between these two requirements. 
We measured overheating by counting the number of 
hours where 𝛥𝑇 > 0 (based on Criterion a), which is 
taken from CIBSE TM 52 (Nicol, 2013)). (𝛥𝑇 is greater 
than 0 when the internal temperature is above the 
comfort temperature.) We measured the lighting by 
measuring the total annual lighting energy use (kWh). 
 



Genetic algorithm setup 
The NSGA algorithms were used with the following 
settings: 
Standard NSGA-II 
• Population size: 20 
• Crossover probability: 0.5 
• Mutation probability: 0.4 
• Tournament size: 3 
Kriging Enhanced NSGA-II 
• Population size: 20 
• Crossover probability: 0.7 
• Mutation probability: 0.4 
• Tournament size: 3 
Each analysis had a budget of 300 simulations and was 
repeated nine times. This allowed us to check for 
consistency in the results as well as monitoring the 
progress of each of the analysis runs. 
Note that the crossover probabilities are different 
between the Standard NSGA-II and the Kriging 
enhanced version. We found that increasing the 
crossover probability by a small amount significantly 
improved the output of the Kriging emulator. We need to 
complete a more extensive analysis of each of the 
options. This is again the subject of further work. 
Measuring the performance: Hypervolumes and 
spread 
As well as tracking each of the individual runs through 
each generation, we also monitored the hypervolume and 
diversity in the results. 
The hypervolume and diversity are the two key measures 
of the quality of the end result. The hypervolume can be 
thought of as a measure of how close the solution is to 
the 'true' Pareto front and the diversity is a measure of 
how 'evenly spread out' the solutions are. 
An illustration of two different levels of diversity are in 
Figure 8. An illustration of the hypervolume is shown in 
Figure 9. 

 
Figure 8: Examples of diversity in the result's outputs 

 
Figure 9: Hypervolume definition 

A good result will have a higher hypervolume and a 
higher spread coefficient (the options are as evenly 
distributed as possible across the Pareto front). 
The size of the hypervolume relies on the position of the 
reference point. For our purposes, the reference point is 
located at 𝑥 = 20 and 𝑦 = 1300. 
The spread is a single value measure which is dependent 
on the ‘spread area’ in the output space as shown in 
Figure 10.  

 
Figure 10: Spread definition 

Results 
Figure 11 shows the output of one of the analyses after 
15 generations for both standard NSGA-II and Kriging-
assisted NSGA-II. 
 

 
Figure 11: Results after 15 generations (standard and Kriging 
enhanced NSGA-II) 

The results of the Kriging-enhanced NSGA-II are 
slightly better in both spread and in the closeness to the 



Pareto front. This is true for all nine repetitions of the 
algorithm.  The hypervolume and spread progress is 
shown in Figure 12 to Figure 15. 

 
Figure 12: Hypervolume progress 

  
Figure 13: Mean hypervolume progress (over 9 repetitions) 

 
Figure 14: Spread progress 

 

Figure 15: Mean spread progress of Kriging assisted NSGA-II 
vs. standard NSGA-II. 

Discussion and conclusion 
The results show that the Kriging enhanced NSGA-II 
performs well in comparison to the standard NSGA-II. 
Both the mean hypervolumes and the mean spreads 
show differences (though the different in the spread is 
more significant). 
For the hypervolume, the Kriging-assisted method is 
superior up to around eight generations. The standard 
NSGA-II then catches up. 
After 15 iterations, the Kriging assisted NSGA-II has a 
much better spread of results. It also appears to get a 
much better spread after fewer iterations. Further work 
will be required to determine whether this is case for 
other building design problems. 
When considering the improvements offered by the 
Kriging-assisted design, we need to consider the 
additional computational costs. 
The Kriging model adds two additional computational 
loads. There are; 
a) interrogating the Kriging emulator to evaluate 

each; and 
b) creating the Kriging model at each generation. 
Interrogating the emulator its outputs extremely quick. 
For a typical desktop computer, it takes around 10-6 
seconds. The building simulator used in the assessment 
takes approximately 30 seconds to run, so in this case the 
emulation time is insignificant. 
We also need to consider how long it takes to create the 
Kriging model. The time it takes to create the Kriging 
model is (roughly) proportional to 𝑛C (where 𝑛 is the 
number of training samples). The Kriging model is built 
using all of the samples that have passed through the real 
building simulator. So, as the the number of generations 
increases, the size of the Kriging training set also 
increases. There is therefore a problem for using this 
model with either a large number of population 
generations, large populations or both.  
 
The Kriging assisted algorithms take longer to run. The 
total simulation time is a combination of the time taken 
to; 

1. run the simulations; 
2. perform the genetic operations in the NSGA 

model; and 
3. rebuild the Kriging emulators between 

generations 
The standard NSGA-II method only runs steps one and 
two, the Kriging assisted method needs all three.  
 
The time taken to run the simulations is around 30 
seconds. This time is much greater than the time taken to 
execute steps two and three (typically << 1 second). The 
extra time added by the Kriging processes is 
insignificant. For other simulation optimisation 
problems, where the simulation time is much lower, the 



extra computation time will begin to become more 
significant.  
Further work should include; 
• examining problems where there are more than 

two outputs objectives; 
• testing the efficacy of the different algorithms on 

different building problems (e.g. examining 
ventilation and HVAC strategies where the 
optimisation geometeries can be extremely 
complex); 

• running the algorithms for different building and 
climate types. 

Further work should also consider investigating the 
'settings' for crossover, mutation and tournament 
selection used in both algorithms. There are many 
possible combination and permutation of these settings, 
which all need to be tested statistically on a range of 
problems. 
The method should also be compared to 'pure' Kriging-
based multi-objective optimisation. Methods such as 
ParEGO (Knowles, 2006) should also be investigated. 
Not withstanding the need for further work, the results 
show that Kriging-based fitness approximation shows 
promise for improving NSGA-II. Further work is needed 
to strengthen this finding. 
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