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Sensitive finite state computations using a
distributed network with a noisy network attractor

Peter Ashwin and Claire Postlethwaite

Abstract—We exhibit a class of smooth continuous-state
neural-inspired networks composed of simple nonlinear elements
that can be made to function as a finite state computational
machine. We give an explicit construction of arbitrary finite-
state virtual machines in the spatio-temporal dynamics of the
network. The dynamics of the functional network can be com-
pletely characterised as a “noisy network attractor” in phase
space operating in either an “excitable” or a “free-running”
regime, respectively corresponding to excitable or heteroclinic
connections between states. The regime depends on the sign of
an “excitability parameter”. Viewing the network as a nonlin-
ear stochastic differential equation where deterministic (signal)
and/or stochastic (noise) input are applied to any element, we
explore the influence of signal to noise ratio on the error rate of
the computations. The free-running regime is extremely sensitive
to inputs: arbitrarily small amplitude perturbations can be used
to perform computations with the system as long as the input
dominates the noise. We find a counter-intuitive regime where
increasing noise amplitude can lead to more, rather than less,
accurate computation. We suggest that noisy network attractors
will be useful for understanding neural networks that reliably
and sensitively perform finite-state computations in a noisy
environment.

I. INTRODUCTION

ALTHOUGH there is a very good understanding of finite-
state computational machines in both abstract and prac-

tical settings, and a good understanding of the dynamical
properties of many aspects of the central nervous system of
animals, there remains a debate on how an evolved biological
system can apparently undertake finite-state computations in a
routine and robust (albeit, error-prone) manner whilst remain-
ing sensitive to inputs that may be of very low amplitude. In
other words, it is still not really clear how a virtual (finite
state) machine may be embedded within the imperfect and
noisy behaviour of a distributed neuronal network [35]. Dy-
namical systems theory has contributed a lot to understanding
how computational systems may operate for fixed inputs,
but true computational systems act on time-varying inputs.
The theory of non-autonomous dynamical system (e.g. using
feedback control approaches for computation [24]) is much
less developed than that for autonomous (input-free) systems.
Nonetheless there are models of computational systems that
are sensitive to arbitrary low-amplitude inputs. These include
models with heteroclinic connections between: equilibria [29],
[30], periodic orbits [2], [6], [27] or chaotic saddles/Milnor
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attractors [37]. Our model develops these ideas to construct
explicit realizations of Turing Machines (TMs) using a system
first described in [4].

Bournez and Campagnolo [9] review some attempts to
use continuous time analogue (continuous state) dynamical
systems to perform finite state computations of the type
envisaged in [38]. Key problems are how to explain the
functioning of apparent finite state computational processes in
a robust way with continuous state variables, and to understand
their complexity [33]. If computation can be achieved using
only low-amplitude input signals and allow for noise and
imperfections in the system, so much the better. Further work
has attempted to implement more general types of computation
(for example super-Turing [32]) but we do not consider this
here.

Analogue models of computation using continuous time
have been extensively considered since [26]. There is an
extensive literature on Recurrent Neural Networks (RNNs)
where simple nonlinear elements interact in ways that allows
computation to emerge from the dynamics of the system
[31]. Important examples include Echo State Networks (ESNs)
[8], [21], [22], [20], [24], long short-term memory networks
(LTSNs) [15], coupled spiking neurons [7], [17] and Uni-
versal Memcomputing Machines (UMMs) [10], [36]. Various
researchers have highlighted critical behaviour, richness of
dynamics and computational properties for coupled systems
with even relatively simple dynamics. Various issues have
been addressed, such as the realisation of TMs with explicit
polynomial vector fields including bounded noise [14] and the
modelling of the behaviour of noisy TMs [1] where at each
stage the tape symbols can change with some small probability.
Realistic models of neural computation should clearly include
the possibility of imperfect computation [23]. Although the
paradigm of TMs with a halting state is not ideal, it remains
the benchmark for finite-state computational systems.

Non-deterministic analogues of TMs have been suggested
to solve NP-complete problems in polynomial time [36].
Coupled phase oscillator models [7], [17] have been proposed
for Turing-type machines [2] as have pulse-coupled phase
oscillators [27] but in senses where the interfaces to the outside
world may not be so simple.

In this paper, we explain how to embed a general finite-
state machine (modelled as a TM) into the dynamics of a
distributed network of coupled nonlinear dynamical systems.
We use a method presented in [4] that couples two layers of
systems, each system having one dynamic degree of freedom:
• There is a “classifying” network of mutually inhibiting

systems (p-systems) with multiple attractors that are used
to classify the state of the TM.
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• There is a “connecting” network of systems (y-systems)
that selectively excite certain of the classifying states and
inhibit others. The connecting systems inhibit each other
to ensure that a well-defined transition is achieved.

As discussed in [4], one can embed a dynamic network in the
phase space of such systems using an explicit construction, and
realise any given finite graph as a “network attractor” between
states in phase space. These states are equilibria of the system
and the network may be excitable or heteroclinic. In [5] we
examine the robustness of such an autonomous system to noise
whilst in this paper we turn our attention to what happens if in
addition to noise, we permit deterministic inputs to the system
that perturb particular nodes in the “connecting” network.

On changing a single global parameter ν that affects the
excitability of the y-systems, the attractor for the dynamics
can be varied between the following two regimes:

• In the “free-running” or heteroclinic regime (ν < 0),
there is a spontaneous wandering between states, each
of which is of saddle type (the network is a robust
heteroclinic network attractor in phase space). The states
visited depend critically on the noise and other inputs to
the system.

• In the “excitable” regime (ν > 0), the system contains
stable states, such that perturbations over some threshold
can cause a transition to a new state on the network (the
network is an excitable network in phase space). For this
excitable network, perturbations must exceed a minimum
threshold to wander between states, but this threshold can
be arbitrarily small by choosing ν close to 0.

The “excitability parameter” ν can be thought of as providing a
measure of criticality of the network dynamics: for ν < 0 com-
putation can be undertaken with arbitrarily small inputs while
for ν > 0 there is an input threshold under which computation
will not progress. In the presence of both inputs (signals) and
noise (randomness), in both free-running and excitable regimes
there will be a competition between these effects, and one aim
of this paper is to explore this competition.

This excitability parameter has an analogous role to neuro-
modulators within the brain, in that ν globally affects speed,
sensitivity to inputs and error rate of the computation, but
not the computation itself. The systems we discuss have many
features of, and could possibly be used to realise, UMMs [36]:
storage and processing are distributed to all locations rather
than being divided between memory and central processing
unit, though the detailed dynamics and structure we investigate
is quite explicit.

The paper is organized as follows: in Section II we describe
heteroclinic and excitable networks in phase space and intro-
duce a particular family of systems from [4]. Some details in
Appendix A outline how one can embed an arbitrary directed
graph (with the restriction that it contains no one-cycles/self-
loops) as such a network in a robust manner. Section III applies
this construction to embed the behaviour of a generic TM in
the dynamics of the system, where there is a “virtual paper
tape” with an asynchronous symbol-dependent feedback to the
dynamics. In Section IV we consider the three state “busy
beaver” [19] as a case study of a particular TM realised using a

network attractor in this way. We confirm that on the addition
of a simple interface to the virtual paper tape the resulting
differential equations can be used to faithfully reproduce the
TM behaviour.

Section V uses an idealisation of a TM with recurrent dy-
namics (i.e. no halting state) to explore the performance of the
system in terms of the error rates as a function of noise, signal
and excitability. We classify transition errors into “read errors”
and “wild errors”. We find an intriguing and paradoxical result,
that increasing noise can (in certain circumstances) reduce the
error rate in the system. Finally, in Section VI we discuss how
this work can be usefully extended to more realistic neural
models, to neurally inspired computational architectures and
to adaptive learning of distributed systems.

II. DETERMINISTIC AND NOISY NETWORKS IN PHASE
SPACE

We briefly recall some of the concepts and notation used
to describe network attractors in our previous work [4]. We
consider the non-autonomous stochastic differential equation
(NSDE)

dx = [f(x, ν) + ζz(x,t)] dt+ η dw (1)

and the associated autonomous ordinary differential equation
(AODE)

d

dt
x = f(x, ν), (2)

where the terms are described below. In both (1) and (2),
x ∈ Rd where t ≥ 0, f(x, ν) is a smooth nonlinear function,
and ν ∈ R is a bifurcation parameter. The AODE is derived
from the NSDE by removing both the noise term and the inputs
(η = ζ = 0). Specifically, components of the vector w(t) are
standard independent identically distributed (i.i.d.) Wiener pro-
cesses, and η = diag(η1, . . . , ηd) gives the noise amplitudes.
The vector z(x, t) is an additional non-autonomous (control)
input that affects the state according to a control amplitude
ζ > 0 that we view as a parameter for the system. The control
z(x, t) models inputs from the environment: in general the
environment may be affected by outputs from the system and
so a computational system will include two-way interaction
with the environment. We consider an asynchronous feedback
case where z(x, t) is piecewise constant. We assume for
simplicity that the noise in the various components of (1) is
additive and uncorrelated; there is no difference between Itô
and Stratonovich formalism in this case.

We consider the computational capabilities of (1) as arising
from the interaction of the “pure nonlinear dynamics” of (2)
with the noise η dw and the control input ζz(x, t).

Let Φt(x0) denote the flow generated by (2), i.e. the solution
x(t) to the initial value problem starting at x(0) = x0. We
assume there is a set of N ∈ N equilibria ξj , i.e. points in Rd
such that f(ξj , ν) = 0; the existence and location of these may
vary with ν but in the following we will assume that ν only
changes the stability of the equilibria. How long the system
remains near an equilibrium depends on the stability of the
equilibrium, as well as any noise or nonautonomous inputs
(when considering (1)). Generically, all equilibria ξj will have
stability that is determined by the linearisation of (2) about ξj ,
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as long as the linearised system Jj = df(ξj , ν) is hyperbolic
(i.e. no eigenvalue λ of Jj has Re(λ) = 0). We denote by ns
the number of stable eigenvalues, i.e. those with Re(λ) < 0
and by nu the number of unstable eigenvalues, i.e. those with
Re(λ) > 0.

If the equilibria are used to describe computational states
then a computational process that changes these states needs
to move the system dynamically between respective equilibria.
On the one hand, a large instantaneous perturbation of the
system could move the state from one stable equilibrium (i.e.
one with ns = d) to another. On the other hand, if the
equilibrium has an instability (i.e. it has nu > 0), then the
nonlinear dynamics may take the system from one equilibrium
to another if there is a connecting orbit between them.

More precisely, each hyperbolic equilibrium ξj with ns
stable eigenvalues and nu unstable eigenvalues will have
invariant sets

W s(ξj) = {x ∈ Rd : |Φt(x)− ξj | → 0 as t→∞}
Wu(ξj) = {x ∈ Rd : |Φt(x)− ξj | → 0 as t→ −∞}

where the stable manifold W s is an embedded ns-dimensional
invariant manifold and the unstable manifold Wu is an em-
bedded nu = (d− ns)-dimensional manifold, and the rate of
limiting is exponential and determined by the eigenvalues of
Jj : see for example [18, Theorem 2.1] for an exposition of
this.

Although the invariant sets W s,u(ξj) are embedded mani-
folds that contain ξj , they may contain other invariant sets in
their closures. Connecting heteroclinic orbits are trajectories
that are contained in the unstable manifold of one equilibrium
and the stable manifold of another. Heteroclinic networks
composed of a network of such trajectories have been proposed
by a number of authors as a way that neural systems can
encode information and perform computations [2], [6], [27],
[29], [30], [34].

For a heteroclinic network, each equilibrium that is part
of a nontrivial cycle must have 0 < ns and 0 < nu and
hence be of saddle type. More recently, it was noted in [4]
that a bifurcation of such saddles within a network can lead
to an excitable network where each equilibrium is stable
(nu = 0). In such a network there will be thresholds of
excitability, where a small perturbation can lead to switching
that is effected by reaching the stable manifold of the new
equilibrium.

A. Heteroclinic and excitable networks

We now give definitions of heteroclinic and excitable net-
works [4] that are used in this paper. There is a heteroclinic
connection from one equilibrium ξi to another ξj for (2) if

Wu(ξi) ∩W s(ξj) 6= ∅

and (2) has a heteroclinic network attractor if there is an
asymptotically stable compact connected set ΣH ⊂ Rd such
that for some set of saddle equilibria {ξi}Ni=1 we have

ΣH =

N⋃
i=1

Wu(ξi) (3)

x1

x2x0

x12

(a)
x3

x13

x1

x2x0

(b)
x3

x01

Fig. 1. Schematic diagram showing connections between equilibria ξi
representing phase space states of the system, when switching from ξ0 to
ξ1 and then to one of ξ2 or ξ3. The cases of (a) excitable (ν > 0) and (b)
heteroclinic (ν < 0) connections for the AODE (6) are shown. The arrows
indicate trajectories for the noise-free autonomous system. In case (a) observe
that near ξ1 there is a threshold (black circle) that must be exceeded by any
impulsive perturbation to achieve switching to a new state. The basin boundary
of ξ1 is given by the stable manifolds of the threshold saddles ξ1i. In case
(b) there is an instability of ξ1, meaning there is no minimum threshold of
perturbation to achieve switching between states. This case naturally leads to
faster but less controllable switching.

We say the system (2) has an excitable connection for
amplitude δ > 0 from one equilibrium ξi to another ξj if

Bδ(ξi) ∩W s(ξj) 6= ∅

(where Bδ(ξ) is the ball of radius δ centered at ξ), and this
connection has threshold δth if

δth = inf{δ > 0 : Bδ(ξi) ∩W s(ξj) 6= ∅}.

There is an excitable network of amplitude δ > 0 if there is a
set of equilibria {ξi} such that the set

ΣE =

n⋃
i,j=1

{Φt(x) : x ∈ Bδ(ξi) and t > 0} ∩W s(ξj) (4)

is attracting.
For an excitable network of amplitude δ we can follow an

arbitrary path on the network by a mixture of trajectories
and “jumps” of δ, while for a heteroclinic network the δ
can be chosen arbitrarily small. In [4] we gave a particular
construction of coupled nonlinear systems in the form of
equations (2) where an arbitrary network can be constructed
as a heteroclinic or as an excitable network in phase space.
We included more details in Appendix A. The response of
this network to noisy perturbations is considered in [5] and
Figure 1 shows the situation in phase space for two values of
an excitability parameter ν that bifurcates between these cases
at ν = 0.

B. Relating trajectory itineraries for the AODE and the NSDE

If we assume that typical trajectories of (1) spend most of
their time close to a heteroclinic or excitable network ΣN
of (2), one can describe the motion in terms of the itinerary
around the network, i.e. the sequence and timing of visits to
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the equilibria ξk - this is detailed in [5] but we summarise it
below. For fixed 0 < h < 1

2 mini,j |ξi − ξj | we define

K(x) :=

{
k if there exists a k such that |x− ξk| ≤ h
0 otherwise.

so if x is close to an equilibrium, then K(x) gives the index
of that equilibrium. Note that the choice of maximum of h
means that K(x) is uniquely defined. For a trajectory x(t) of
(1) we define

K̃(t) = {K(x(t̃)) : t̃ = sup{t̃ ≤ t : K(x(t̃)) 6= 0}} (5)

which gives the “last visited equilibrium”. If a trajectory starts
near an equilibrium this will always be non-zero, though note
it depends on the threshold h. For K(x(t)) = k we say x(t)
is close to the kth equilibrium. As conjectured in [5], under
suitable assumptions which include |η| small and no input
(ζ ≡ 0), trajectories will remain close to one of the ξj for
most of the time, and transitions will correspond to following
heteroclinic or excitable connections within the network.

For a given x(0) and realisation of the noise and control, the
trajectory x(t) can be characterised as an itinerary of epochs

{(k(n), τ(n)) : n ∈ N}

where K̃(t) = k(n) for the interval t ∈ [τ(n), τ(n+ 1)), and
k(n+ 1) 6= k(n). We define the duration of the nth epoch

τ̃(n) = τ(n+ 1)− τ(n).

In [5] we discuss several statistical properties of the epoch
durations (also known as residence times) and of the transition
probabilities between equilibria for (1) in the absence of a
control input. That paper shows there are heteroclinic and
excitable networks of arbitrary complexity where the dynamics
for low noise is well-modelled by a one-step Markov process.

C. Dynamic realizations of arbitrary network attractors

In order to undertake arbitrary computational tasks one can
clearly use gradient systems with a high degree of multista-
bility and then consider perturbations that take the state from
the basin of attraction of one attractor to the basin of another.
In simple terms, this is how electronic computers currently
work: a large number N of bits of information are stored in
bistable circuit elements that are as isolated from each other
as possible. This gives rise to a multistable system with 2N

states. The associated circuits are about changing the states by
appropriate control impulses. However this gives rise to circuit
structures that are not very distributed - the central processing
unit has a key role, and timing needs to be imposed externally
rather than emerging from the circuit dynamics per se.

On the other hand, if we consider the computational task as
sitting on a given directed graph of equilibria for a highly con-
nected dynamic network (and inputs to the system determine
the transitions between states) then one can embed a given
finite direct graph in the dynamics of (2) and use the control
to induce transitions between states.

Several recent studies [3], [4], [5], [11] address the question
of how to construct a system whose dynamics gives an arbi-
trary network structure in phase space. The method we discuss

here is from [4] which considers an arbitrary (one-cycle free)
directed graph G with nv nodes (vertices) and ne edges. The
construction embeds the graph into the dynamics of an ex-
plicitly given AODE on (p, y) = (p1, . . . , pnv

, y1, . . . , yne
) ∈

Rnv+ne of the form
d

dt
pi = fi(p, y)

d

dt
yj = fnv+j(p, y, ν)

(6)

for i = 1, . . . , nv and j = 1, . . . , ne, where f =
(f1, . . . , fnv+ne) is described in equation (13) in Appendix A.
The p variables classify which of the nodes of the graph is
visited; in this system pi ≈ 1 (and all other pk ≈ 0) when
the system is close to node i. The y variables are activated
(i.e. become non-zero) during a transition between nodes:
more details of this process is given in [4] and outlined in
Appendix A. The parameter ν (which only affects the y-
dynamics) is such that for ν < 0 the embedding is as a
heteroclinic network while for ν > 0 it is as an excitable
network where all edges have threshold approximately

δth ≈
√
ν/2 (7)

so δth → 0 as ν → 0+: see [4] for more details.

III. NETWORK ATTRACTORS AND TURING MACHINES

We start by recalling the classical TM, and then discuss our
method of encoding these machines within the dynamics of
noisy network attractors.

A. Turing machines

A finite state single-tape Turing Machine can be thought of
as the seven-tuple [16]

(Q,Γ, b,Σ, ρ, q1, F )

where a machine has:
• a finite set of internal states Q,
• a starting state q1 ∈ Q,
• at least one, and possibly several, halting states F ⊂
Q \ {q1},

• a finite set Γ of tape symbols, one of which is a blank b
and a set Σ ⊂ Γ \ {b} of input symbols,

• a transition function ρ : (Q \F )×Γ→ Q×Γ×{L,R}.
(N.B. we follow the notation of [16] but note that one
can extend the definition of ρ to Q in a trivial way.)

Let nQ := |Q|, the number of internal states, and nΓ := |Γ|,
the number of possible symbols. We number the states and
symbols qi ∈ Q, i = 1, . . . , nQ and sj ∈ Γ, j = 1, . . . , nΓ, so
we can represent the action of the transition function ρ as

(q̃ij , s̃ij , σ̃ij) := ρ(qi, sj). (8)

where q̃ij ∈ Q, s̃ij ∈ Γ and σ̃ij ∈ {L,R}.
The tape consists of a doubly infinite string of symbols

γj ∈ Γ, j ∈ Z, where a finite number of the γj are in Σ
and the infinite remainder are all blank b. The symbols on the
tape are read and written by a moveable head. Starting at head
position j = 0 and internal state q(0) = q1 suppose that the
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machine arrives after n steps at internal state q(n) ∈ Q and
head position β(n). If q(n) ∈ F then the computation has
finished, while otherwise it performs the transition given by

(q̃, γ̃, σ̃) = ρ(q(n), γβ(n))

where q ∈ Q, γ̃ ∈ Γ, σ̃ ∈ {L,R}. The machine then updates
the internal state to q(n+1) = q̃, the head changes the symbol
at site β(n) to γ̃ and then the head moves along the tape
according to β(n+ 1) = β(n) + 1 if σ̃ = R and β(n+ 1) =
β(n)−1 if σ̃ = L. The machine repeats this either forever, or
until it reaches a halting state and computation has finished.

We claim that the dynamics of (1) with f being defined
by (6) and an appropriate interface to a tape with moving
and printing capabilities is capable of efficiently encoding an
arbitrary TM. We do this by considering the graph G used in
the construction of equations (6) to be the graph of internal
states of the TM with nodes Q and edges qi → qj if there is
a symbol s ∈ Γ such that ρ(qi, s) = (qj , s̃, σ̃) for any s̃, σ̃.

B. Asynchronous Turing machine realization using a network
attractor

We construct a realisation of an arbitrary TM using a
nonautonomous stochastic differential equation. Specifically,
we consider equation (6) (with f described in (13) in Ap-
pendix A), with added noise and inputs, to give the system

dpi = [fi(p, y, ν) + ζzi(t)] dt+ ηpdwp,i

dyj = [fnv+j(p, y, ν) + ζznv+j(t)] dt+ ηydwy,j
(9)

for i = 1, . . . , nv and j = 1, . . . , ne. The components of
vectors wp and wy are standard i.i.d. Weiner processes and the
noise amplitudes ηp and ηy are allowed to vary independently:
they correspond to noise amplitudes in the p and y systems
respectively.

The zi are the components of the input vector z(t), which
is determined by the symbol on the tape at the current head
position. In the following, we define a function β̂(t) which
gives the position of the head at time t, and functions γ̂j(t)
which give the symbols at position j on the tape at time t.
Formally we have z(t) = Z(γ̂β̂(t)(t)) for some function Z

which acts on tape symbols. The functions β̂(t) and γ̂j(t) are
piecewise constant, and may have discontinuities at the start
of each epoch (i.e. when t = τ(n) for some n ∈ N).

This realisation has asynchronous feedback, i.e. the timing
of the transitions is purely determined by the dynamics of the
machine rather than externally imposed.

As mentioned in the introduction, our network realisation
only works if the graph of states does not contain “self-loops”.
This is because self-loops would correspond to homoclinic
orbits in the dynamical system, which are of codimension
greater than zero (i.e. they can only exist for isolated parameter
values). We consider only TMs that contain self-loops: this is
not a real limitation as in Appendix B we explain how to
remove any self-loops from a TM. In order to achieve this
we add the action N that writes nothing on the tape, and the
action 0 which does not move the head.

Our implementation of the TM described in section III-A as
the dynamical system (9) has a phase space (p, y) ∈ Rnv+ne

y

p

Epoch change detector

Tape head β

Paper tape γj

1
0

1
0

1

1

y

p
1

1 ne

nv

Noise
L

R

K(t)
~

ζzi
ηy

ηp

Fig. 2. Using the system (9) with an external paper tape to approximately
realise an arbitrary TM. The inputs come from the tape head and noise sources
with amplitudes ζ and ηy,p respectively. The “connecting” layer of y cells has
dynamics that can induce changes in the “classifying” layer of p cells. The
output to the tape head is determined by a detected change in the state K̃(t)
of the p variables. The excitability parameter ν only affects the dynamics of
the y variables.

where nv = nQ (the number of states in the TM) and ne =
nQnΓ (i.e. one edge for each symbol choice at each state).
We associate each equilibrium in the phase space ξi (i =
1, . . . , NQ) with a state qi ∈ Q of the TM. The transitions
between states are described using a list of directed edges ej
for j = 1, . . . , ne. Each edge ej starts at a equilibrium α(ej),
ends at equilibrium ω(ej) and has associated with it a direction
σ(ej) ∈ {L,R} (corresponding to the action on the tape). So,
for i = 1, . . . , NQ and j = 1, . . . , nΓ:

α(e(i−1)nΓ+j) = qi

ω(e(i−1)nΓ+j) = q̃ij

σ(e(i−1)nΓ+j) = σ̃ij

where q̃ij and σ̃ij are given by the transition function ρ (8).
The embedding of the graph G with nodes ξi and edges ej as
described, using equation (9) and the construction described in
Appendix A, gives a network attractor that mirrors the graph
of states of the TM. Figure 2 schematically shows this method
of realization.

We use the process described in section II-B and the
last visited node variable K̃(t) (equation (5)) to classify
the dynamics of (y(t), p(t)) into epochs {(k(n), τ(n))}. The
tape is implemented as a dynamical process external to the
dynamical system (9), as follows. The position of the head
β(n) is described in the continuous-time setting as a step-
function β̂(t), defined as

β̂(t) = β(n), when t ∈ [τ(n), τ(n+ 1)).

Note that this depends on the threshold h > 0 used for
classification of the state.

Similarly, the symbols on the tape γj can each be considered
in the continuous-time setting as step functions γ̂j(t). These
potentially change at the start of each epoch, i.e. whenever
t = τ(n). The symbols γ̂j(t) on the tape and the head’s
position β̂(t) are updated by the dynamics, and in turn affect
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the dynamics. The dynamical system (9) is initialised at time
t = 0 close to the starting state ξ1 corresponding to q1 and
head’s position β̂(0) = 0.

C. The action of the dynamics on the tape

Each time the system starts a new epoch (i.e. at time t =
τ(n), for some n ∈ N), the trajectory in the phase space (p, y)
becomes close to a new equilibrium, ξk(n). That is, there is a
transition on the TM from state qk(n−1) to state qk(n). For q̃ij
again defined by ρ, there are three possibilities:

• If there is a j such that sj = γβ(n−1), and

q̃k(n−1)j = qk(n)

then we say there is a read accurate transition, or no
error.

• If there is a j such that sj 6= γβ(n−1) and

q̃k(n−1)j = qk(n)

then we say there is a read inaccurate transition or a read
error.

• If there is no j such that

q̃k(n−1)j = qk(n)

then we say there is a wild transition or a wild error.

If there is a read accurate transition or a read error, and
σ̃k(n−1)j 6= 0, then we change the symbol on the tape at
location β(n − 1) to s̃k(n−1)j and update the new location
according to β(n) = β(n − 1) + 1 if σ̃k(n−1)j = R and
β(n) = β(n− 1)− 1 if σ̃k(n−1)j = L. If s̃k(n−1)j = N then
we do not change the symbol on the tape, and if σ̃k(n−1)j = 0
we do not move the tape. This corresponds to the “do nothing”
possibility at a transition because we have put in additional
transitions for each self-loop. If there is a wild error we
similarly neither update the symbol on the tape nor move the
tape. For a sequence of transitions of the system we define
rates of read or wild errors as the proportion of transitions for
which a read or wild error occurs.

D. The action of the tape on the dynamics

The current state of the tape, γ̂β̂(t)(t) ∈ Γ is used to deter-
mine the direction of the control perturbation z(t) ∈ Rnv+ne .
Suppose that γ̂β̂(t)(t) = sj for some j ∈ {1, . . . , nΓ}, then we
define a piecewise constant control z(t) = Z(γ̂β̂(t)(t)) where

Zl(sj) =

 1 if l = nv + inΓ + j
for some i ∈ 0, . . . , nv − 1

0 otherwise.
(10)

That is, the components of z(t) corresponding to activated
edges for node γ̂β̂(t)(t) are set equal to 1, and all others are
zero.
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Fig. 3. The figure shows output from a simulation of the “busy beaver”
routine. Each row shows the symbols of the tape at each step in the sequence.
Blue colour indicates a 0 and yellow indicates a 1. The position of the numbers
in the figure shows the position of the head at each step, and the value of the
number indicates the current internal state of the TM.

IV. NETWORK DYNAMIC REALIZATIONS OF TURING
MACHINES

As a specific illustration, we consider the three-state “busy
beaver” [19]. In this example, there are only two possible
symbols on the tape, s1 = 0, which is also the blank symbol
b, and s2 = 1. We show an example simulation in Figure 3:
the symbols on the tape and the read/write head’s position
are illustrated at each step. More details of the parameters
and numerical methods used in the computations are given in
Appendix A.

The three-state two-symbol “busy beaver” TM of [19] is
so-called because it takes the maximum number of steps of
any three-state two-symbol TMs to arrive at a halting state.
For larger numbers of states (and still only two symbols) the
general problem of how long a busy beaver can take is an
outstanding open problem in the theory of computation: some
recent records are given in [25].

There are three states not including the halting state, so in
terms of the formalism above we write

Q = {q1, q2, q3, H}, Γ = {0, 1}, b = 0, Σ = {1}, F = {H}

and the transition function can be tabulated as shown on the
left of Table I. We show the graph of connections between
states in Figure 4. Note the one-cycle in the associated graph
corresponding to remaining in state q2 if symbol 1 is read
on the tape. We add an additional state q4 and the possibility
that there is no move N - this allows one to illustrate the
machine transition function as a one-cycle free directed graph
with transition function shown in the table on the right of
Table I, and by the graph in Figure 4.

The output from an integration of the equations (9) is shown
in Figure 3. A portion of the corresponding time series is
shown in Figure 5.
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Inputs Outputs
qi sj q̃ij s̃ij σij
q1 0 q2 1 R
q1 1 q3 1 L
q2 0 q1 1 L
q2 1 q2 1 R
q3 0 q2 1 L
q3 1 H 1 R

Inputs Outputs
qi sj q̃ij s̃ij σij
q1 0 q2 1 R
q1 1 q3 1 L
q2 0 q1 1 L
q2 1 q4 1 R
q3 0 q2 1 L
q3 1 H 1 R
q4 0 q2 N 0
q4 1 q2 N 0

TABLE I
LEFT: TRANSITION TABLE ρ FOR THE 3-STATE 2-SYMBOL “BUSY

BEAVER”. RIGHT: TRANSITION TABLE ρ? FOR A ONE-CYCLE FREE
VERSION OF THE SAME.
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Fig. 4. The left figure shows the original 3-state “busy beaver” transition
table as a directed graph, and the right shows the corresponding one-cycle-
free directed graph on adding the “waiting state” 4 and the “do nothing”
action N . The black numbers on the edges correspond to the tape symbols,
and the red letters L and R to the direction the tape is moved during each
transition. The small blue numbers on the right figure correspond to the labels
of the edges; compare with the order of the lines in table I.
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Fig. 5. The figures show a portion of the time series for a realisation of
a reliable computation for the 3-state busy beaver using a noisy heteroclinic
network. The top figure shows the p-variables, (p1 blue, p2 orange, p3 yellow,
p4 green) and the bottom figure shows the y variables (y1 blue, y2 orange,
y3 yellow, y4 purple, y5 green). Compare the top figure with the sequence of
states shown in Figure 3 (left). Parameters are ν = 0.05 (so the network is
excitable rather than heteroclinic), ηy = 0.01, ηp = 0.0001, ζ = 0.01 and
all others as the standard set given in Appendix A.
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Fig. 6. The figures show a realisation of the busy beaver routine which
makes an error in its very first step. Compare the left hand figure here with
the correct output on the left of Figure 3. The time series on the right shows
that between approximately t = 20 and t = 30, the p1 variable (blue) is
turned on and both the y1 (green) and y2 (red) connections begin to become
activated. The input is in the y1 dimension but the particular realisation of the
noise in the y2 dimension is in this instance sufficient that the transition in
this dimension occurs first and the system moves to the p2 state. Colours are:
p1 blue, p2 yellow, p3 orange, y1 green, y2 red. Parameters are ν = 0.05 (so
the network is excitable rather than heteroclinic), ηy = 0.03, ηp = 0.0001,
ζ = 0.01 and all others as the standard set given in Appendix A.

V. COMPUTATIONAL PERFORMANCE OF NOISY NETWORK
ATTRACTORS

As noise amplitude η is increased relative to the system
dynamics and the input amplitude ζ, errors will be made in
the computation. These may be read errors or wild errors as
defined in section III-C. In Figure 6 we show an example of a
time-series and resulting tape output for a computation of the
“busy beaver” which makes a read error in its first step.

The observed rate of errors in a computation is due to a
balance between the noise and the input amplitudes (i.e. the
size of the perturbations coming from the tape). In Figure 7
we give a schematic to show how we expect the error rate
and speed of computation to vary as the noise and input
amplitudes are varied both for the case of heteroclinic (ν < 0)
and excitable (ν > 0) transitions. The influence of noise on
mean residence times for heteroclinic and excitable network
attractors is considered in [5]. In the excitable case ν > 0 and
for no input, the mean residence times are expected to scale
according to a Kramers’ law exp(Kν2/η2

y) with K constant,
so for values of ηy appreciably less than ν we expect to find
very large residence times. Conversely, if there is no noise then
it can be shown that if ζ < ζc =

√
2

3
√

3
ν3/2 (see Appendix C for

details) then all the equilibria corresponding to the states in
the TM are stable and hence there will be no transitions at all.
As either the noise or input amplitudes increase above these
minima, we expect the residence times to decrease. In both the
heteroclinic and excitable cases, if ζ � ηy or ζ � ηy then
we expect the motion around the network to be dominated by
either inputs or noise, and the error rates will tend towards 0
or 0.5 (purely random motion) respectively. In fact, we note
from computations that if ζ > ηy (the input is greater than the
noise) then the error rate is extremely small.

We simulated the computational properties of the network
attractors in order to understand the speed of transitions and
error rates as a function of input and noise strengths. We give
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νc

fewer errorsslower slower fewer errors

Fig. 7. Schematic showing how we expect speed of computation and error
rate to vary, for the asynchronous feedback case as functions of the input
strength ζ and a noise amplitude η, showing the heteroclinic case ν < 0 and
the excitable case ν > 0. Note that accurate transitions are possible down to
arbitrarily small signals in the heteroclinic case, at the expense of speed of
transition. For the excitable case there is a threshold of signal that must be
exceeded for an accurate transition to take place.
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Fig. 8. The figure shows a “recurrent” machine that resembles a TM but (a)
we assume that it writes the symbol ‘0’ at every point in time and (b) there
is no halting state, and so it will continue to make transitions ad infinitum.

results only for excitable networks but found that heteroclinic
networks perform similarly, with the main difference being
that excitable networks need a minimum input amplitude
(relative to the excitability parameter ν) to perform compu-
tations successfully. To avoid being in the halting state, we
consider a simple “recurrent” machine with no halting state
and transitions shown in Figure 8. We start in state 1 and then
progress at each point in an anticlockwise or clockwise fashion
depending on whether the symbol read is ‘0’ or ‘1’. At each
state we write only ‘0’ and we start with a tape containing
only ‘0’. This means that at each stage we may do:
• an anticlockwise transition corresponding to a “no er-

ror”/“read accurate transition”,
• a clockwise transition corresponding to a “read error” or
• a diagonal transition corresponding to a “wild error”.
Figures 9 shows the results of many computations using

this “recurrent” machine. Panel (a) shows the proportion of
transitions that make read errors as the noise parameter ηy and
the input amplitude ζ are varied, and panel (c) shows the mean
residence times for the same computations. In this case, ηp is
much smaller than ηy , and so read errors are more common
that wild errors, because excitable connections between the
nodes visited when a read error is made exist, while those
between nodes visited during wild errors do not. Rate of wild
errors are increased by increasing the noise amplitude ηp.
Panel (b) shows the proportion of transitions that make read
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Fig. 9. The figures show error rates (a,b) and mean residence times (c,d) for
the recurrent network as the noise parameters ηy and ηp are varied, for an
excitable network with ν = 0.05. In (a) and (c), ηy is varied, and each line
is for a different value of ζ: blue, orange, yellow, purple, green correspond
to ζ = (0.01, 0.02, 0.03, 0.04, 0.05). We set ηp = 0.0001, and only read
errors are shown (wild errors are extremely rare). In (b) and (d), ηp is varied,
and we set ζ = 0.01 and ηy = 0.03. In (b), read errors are shown in blue and
wild errors are shown in red. In each case, error rates and mean residence
times are computed after the system is run long enough to observe 5, 000
transitions. All other parameters are as the standard set in Appendix A.

errors or wild errors, and panel (d) shows the mean residence
time as the noise parameter ηp is varied. Examination of these
figures shows two non-intuitive results. First, in panel (c), we
see that the mean residence time is non-monotonic in ηy: we
might expect that larger noise decreases the residence time, but
this is not always the case. Second, in panel (b) we see that
as ηp is increased, this initially has the effect of decreasing
the rate of read errors and although the rate of wild errors
increases the total rate of errors clearly also decreases. We
explain both of these effects in the next two subsections.

A. Non-monotonicity of residence time with increasing ηy
Consider first the dynamics of the excitable system with

no noise. Then, for ζ > ζc (described in Appendix C), the
equilibria ξi and ξij as described in section II and Figure 1
(a) no longer exist, but have disappeared in a saddle-node
bifurcation. There no longer exists an excitable network, but
instead there is a periodic orbit. (Note that the periodic orbit
exists in the recurrent network. In TMs which contain a
halting state, the dynamics will not be periodic, although the
dynamics past the previous location of the equilibria would
be very similar.) In the literature on noisy perturbation of
periodic orbits, it has previously been noted that counter-
intuitive behaviour may emerge as increasing noise amplitude
causes a progressively larger region of the nonlinear dynamics
near the periodic orbit to be explored. This includes stochastic
resonance effects in the absence of periodic forcing [13] and
even reversal of direction of motion or bistability near the orbit
[28].
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In this study, a surprising observation is the non-
monotonicity of the mean period (Figure 9(c)) on adding
low amplitude noise. Although we do not perform a detailed
analysis here, the reason is that small amplitude noise adds
to the tail of distribution of first return times while larger
amplitude noise causes accelerated crossing of the slow region
in the periodic orbit, near the saddles. The crossover (and
maximum mean period) therefore occurs when ηp and ζ are
of comparable magnitude.

B. Decreasing rate of read errors with increasing ηp
To understand why increasing the noise parameter ηp can

decreases the rate of read errors, it is helpful to consider the
noise-free dynamics of the system (9) in a subspace with only
one y variable and one p variable non-zero, such that there is
an excitable connection from that p variable in that y direction.
The dynamics is governed by:

ṗ = A6p(1− p2) (11)

ẏ = y((y2 − 1)2 +A1 −A2p
2) + ζ (12)

where ζ is present only if there is input in that y direction. In
Figure 10 (a) we show trajectories from the full system (9)
projected onto a two-dimensional plane, where the y and
p variables are chosen to correspond to the node which is
currently being visited and the direction in which the trajectory
escapes, respectively. In the upper panel, the noise in the
p-direction is larger (ηp = 0.4) than in the lower panel
(ηp = 0.05), and as expected, the variance of the trajectory
in the p direction is much larger. However, notice that the
mean of the p-variable is also shifted: in the lower panel the
mean appears to be at approximately p = 1, but the mean in
the upper panel is less than p = 1. We interpret this via the
strong attraction of the unit sphere in the p-dynamics [4]: for
increasing noise amplitude the noise spreads the distribution
mostly along the surface of the unit sphere in p.

This reduction in mean p for larger noise has the con-
sequence of changing the rate of escape near the node. To
illustrate why this is, in panel (b) we show the nullclines of the
two-dimensional system given by equations (11) and (12). The
grey dashed line is the p-nullcline and the solid lines are the
y-nullclines, for ζ = 0 (black), ζ = 0.002 (red) and ζ = 0.01
(blue). Notice how the upper y-nullcline shifts to the left as ζ
increases, meaning that escape from y = 0 becomes easier as ζ
is increased, or conversely, for fixed ζ, escape becomes harder
as p is reduced from p = 1. We demonstrate this by showing in
panel (c) the mean time to escape for a one-dimensional escape
problem (from y = 0 to y = 1) given by equation (12) with
fixed p. Each line is for a different value of ζ, with again ζ = 0
(black), ζ = 0.002 (red) and ζ = 0.01 (blue). The change in
ratio of escape times for the system with ζ = 0 and the system
with non-zero ζ is what changes the probability of escaping in
the correct direction. We show this by using the escape times
in panel (c) to compute the probability of escaping in the
(desired) direction with ζ non-zero rather than in a direction
with ζ = 0. Again the blue curve is for ζ = 0.01 and the red
curve is for ζ = 0.002. We notice that as p is decreased from
p = 1 the probability of leaving in the direction with non-zero
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Fig. 10. The figures show aspects of the dynamics in a p-y subspace
for the “recurrent” network. (a) shows two trajectories (in blue) of the full
system, projected onto the two-dimensional subspace for the system given by
equations (11) and (12). The grey dashed line is the p-nullcline and the black
curves are the y-nullclines. In the top panel, ηp = 0.4, and in the lower panel,
ηp = 0.05. In both, ζ = 0.01, ηy = 0.03 and other parameters are as in the
standard set in Appendix A. (b) shows the nullclines for the two-dimensional
system (11) and (12) as ζ is varied. The dashed grey line is the p-nullclines
and the solid lines are the y-nullclines, for ζ = 0 (black), ζ = 0.002 (red)
and ζ = 0.01 (blue). Panel (c) shows the mean residence times for an escape
processes in the y-variable governed by (12) with constant p, for various ζ,
colours as in (b). Finally, (d) shows the relative probability of escape in the
y1 direction for a two dimensional escape problem. Further details are given
in the text.

ζ (i.e. the probability of making a correct transition) initially
increases. As p decreases further, the probability reaches a
maximum (this can be seen more clearly for the curve for
ζ = 0.002). This is because for smaller p the y-nullclines (see
panel (b)) become closer together and so the dynamics of the
non-zero ζ case asymptotes towards the ζ = 0 case. We expect
that as p decreases further, the probability will limit to 0.5.

Overall, as p is decreased, the probability of making a cor-
rect transition increases. Thus, as ηp increases, the trajectory
spends more time in a region where p is smaller, and hence
the overall probability of making an error decreases.

VI. DISCUSSION

The purpose of this paper is to give an explicit way to
embed a classical finite state TM in the nonlinear dynamics
of a nonautonomous stochastic differential equation interact-
ing with an external “tape”. This is based on [4] and uses
an explicit construction of network attractors with arbitrary
graph structure. It also allows controllable switching between
heteroclinic and excitable regimes of dynamics, which we
interpret as allowing us to use the excitability parameter ν
to switch between zero threshold for ν < 0 and a small but
finite threshold for ν > 0.

We verify that reliable computation is possible in this setup
(i.e. error rates can be made very small) depending on the type
of network attractor considered and the according balance of
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perturbation size, noise amplitude, speed of the computation.
Clearly also the speed of writing and reading tape symbols
will provide limits to speed, but we have not fully quantified
the trade-offs in this paper.

The model we present is an explicit nonlinear dynamical
model that may be helpful to understand more general cases of
continuous state dynamical system (such as an ESNs [21], [22]
or UMMs [36]) used to model a neural computational process
in phase space. It particularly gives insight to cases where
the transitions between states may occur via a competition
between spontaneous instabilities (heteroclinic connections
between states) or where there are thresholds that need to be
crossed to effect a transition (excitable connections between
states). Note that the excitability refers to excitability of
the emergent states in phase space rather than to coupled
networks of excitable units (where emergent dynamics may,
for example, be periodic). Although we consider a single
excitability parameter, common to all connections, this can
clearly be generalised to consider excitability parameters that
differ on each connection. Our work gives more insight
into how computations of a UMM [10] can be undertaken
following the trajectories of an underlying nonlinear system.

The sensitivity of the system is of particular interest: the
computation takes place even for inputs that may be arbitrarily
small for the heteroclinic case, while in the excitable case there
is a finite threshold for inputs - although this may be made
arbitrarily small by choosing an excitability parameter close to
zero. The free-running heteroclinic case gives residence times
in each state determined by the time it takes perturbations to
grow to a point where nonlinear terms take over - in this case
the feedback is asynchronous. The excitable case will have
residence times that will be determined by the timing of the
first perturbation that exceed threshold.

An intriguing insight is that changes in the computational
properties of the system (in particular, speed and error rates)
can be induced by global changes in excitability of the states.
As previously noted, in the brain it is possible that changes
in concentration of neuromodulators (e.g. dopamine, GABA,
serotonin) cause effects through changes not just in hetero-
clinic connections [34] - they may also potentially switch
connections between heteroclinic and excitable behaviour in
such computational networks. For example, a reduction in
excitability of the states in our system is analogous to a
neuromodulator that depresses excitability - and will typically
lead to both slower computations and changed error rates,
according to Figure 7. This may be helpful in understanding
the effects of neuromodulators on cognitive function and
timing, as well as providing models for neural malfunction
in disease.

We do not discuss possible learning/training strategies for
this system, although both qualitative learning (such as learn-
ing the dependence of tape symbol on the transition between
states, or learning sequences) and quantitative learning (such
as the rate of transition or excitability of individual state) are
possible using the framework as considered in [21]. Our study
suggests that the excitability parameter will be an interesting
parameter for adaptation: it gives a trade-off between compu-
tational speed and reliability.

Finally, we mention that one of the current major challenges
of machine-based computation is to reduce the power usage
in massively parallel computational systems [12]. Since large
perturbations typically result in more energy expenditure than
small ones, a computational strategy using a system close to
a excitable/heteroclinic bifurcation may suggest novel insights
and designs of computational systems that give an optimal
balance between noise tolerance, energy usage and speed of
calculation.
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APPENDIX

A. Construction of dynamics realising network attractors

As outlined in [4] we consider a system of coupled au-
tonomous ordinary differential equations (AODEs) that re-
alises a arbitrary directed graph G = (V, E) as a heteroclinic
or an excitable network. The graph G is defined by the set
of vertices V and set of edges E . There are nv vertices
vi which are each associated with an equilibrium ξi in the
AODEs, and ne edges ej . Each edge ej has a “starting” and
“ending” equilibrium, given respectively by vα(j) and vω(j).
The AODEs are of the form given in equation (6) with f
defined by:

fi(p, y) = [pi(A6(1− p2) +A4(p2
i p

2 − p4))

+A5(−Z(o)
i (p, y) + Z

(i)
i (p, y)]

fnv+j(p, y, ν) =
[
B
(
yj , A1 −A2p

2
α(j) +A3(y2 − y2

j )
)]
(13)

for i = 1, · · · , nv and j = 1, · · · , ne, where p2 =
∑nv

j=1 p
2
j ,

p4 =
∑nv

j=1 p
4
j , y2 =

∑ne

j=1 y
2
j and A1, . . . , A6 are constants

except for A2 which depends on ν. The function B is defined
by

B(yk, λ) = −yk
(
(y2
k − 1)2 + λ

)
(14)

while the inputs to the pi cells from the y cells are:

Z
(o)
i (p, y) =

∑
{k : α(k)=i}

y2
kpω(k)pi

Z
(i)
i (p, y) =

∑
{k′ : ω(k′)=i}

y2
k′p

2
α(k′)

(15)

(NB there is a sign error in the definition of Zo in [4] that we
have corrected here).

For η ≡ 0 the system is an ODE and ξj denote the unit
basis vectors (p, y) ∈ Rnv+ne : the first nv correspond to unit
vectors where one of the pj is non-zero. As shown in [4], the
subspaces

P` = {(p, y) : yk = 0 if k 6= ` and pj = 0 if j 6= α(`) or ω(`)}

for ` = 1, . . . , ne are invariant for the flow generated by
system (9) and for suitable choice of parameters contain
connections that realise the graph G as a heteroclinic/excitable
network embedded in phase space.

We choose default parameters

A1 = 0.5, A2 = 1.5−ν, A3 = 2, A4 = 10, A5 = 4, A6 = 2.
(16)

For ν < 0 close to zero this realises a heteroclinic network,
while for ν > 0 close to zero it realises an excitable network
with a small threshold. In all cases we choose a threshold
to classify the state that is h = 0.29. The case ν = 0
corresponds to bifurcation between the two types of network:
see [4, Fig. 4] for more details and justification that the
networks are heteroclinic/excitable for these parameter values.
For numerical solution of the NSDE we use a Heun integration
method with fixed timestep dt = 0.05.

B. Removal of self-loops from the Turing machine

In this appendix we describe how to remove self-loops
from the TM. Suppose there exists some i and j such that
ρ(qi, sj) = (q̃ij , s̃ij , σ̃ij) and qi = q̃ij . Then this is a self-
loop in the graph of internal states of the TM. Due to the
restrictions of not allowing self-loops (homoclinic loops) in
the heteroclinic network defined by equation (9), we define a
variant of the TM that avoids self-loops in the graph of states.

Suppose that the graph of states has nS self loops, and let
S = {(i1, j1), . . . , (ins

, jns
)} be the set of pairs of indices

of states and symbols corresponding to self loops. We then
append nS additional self-loop states qnQ+i (i = 1, . . . , nS)
to the TM, and define a new transition function ρ? for our
variant TM as follows.
• For i = 1, . . . , nQ, and (i, j) /∈ S, then

ρ?(qi, sj) = ρ(qi, sj) = (q̃ij , s̃ij , σ̃ij).

• For i = 1, . . . , nQ and (i, j) = (il, jl) ∈ S then

ρ?(qi, sj) = (qnQ+l, s̃ij , σ̃ij),

where s̃ij and σ̃ij are defined by ρ, given above.
• For i = nQ + 1, . . . , nQ +nS , write l = i−nQ and then

ρ?(qnQ+l, sj) = (qil , N, 0),
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for all j ∈ 1, . . . , nΓ, and where il is the first component
of the pairs in the set S defined above.

We have added the action N which writes nothing on the tape,
and the action 0 which does not move the head, corresponding
together to a “do nothing” action when returning from the self-
loop. Note that this construction creates nΓ connections back
from each extra state to the state which originally had the
self-loop, one for each of the possible tape symbols.

The new TM has NQ = nQ + nS internal states.

C. Computation of ζc
In this appendix we show how to compute an approximation

for ζc, the minimum value of input required for transitions in
the excitable network case, in the case where there is no noise
(as described in section V).

We consider a subspace of the system (9) with p1 = 1,
y1, y2 non-zero, and all other coordinates zero. We assume
there are connections from p1 in the y1 and y2 directions, and
input in the y1 direction only (i.e. znv+1 = 1 and all other zi
are zero), resulting in the two-dimensional system

ẏ1 =− νy1 + 2y3
1 −A3y1y

2
2 − y5

1 + ζ

ẏ2 =− νy2 + 2y3
2 −A3y2y

2
1 − y5

2

For 0 < ν � 1 and ζ = 0 this system has a stable
equilibrium on the coordinate axis at y1 =

√
ν/2 + O(ν),

y2 = 0, and an unstable equilibrium at y1 = y2 = 0. As
ζ is increased, these two equilibria disappear in a saddle-
node bifurcation at ζ = ζc ≡

√
2

3
√

3
ν3/2 + O(ν2). For ζ > ζc

trajectories which start near the origin will move in the y1

direction until y1 becomes O(1), and for trajectories close to,
but not in this subspace will move away, affected by the other
dynamics in the system.
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