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Abstract. It is often implicitly assumed that over suitably

long periods the mean of observations and models should be

comparable, even if they have different temporal sampling.

We assess the errors incurred due to ignoring temporal sam-

pling and show that they are of similar magnitude as (but

smaller than) actual model errors (20–60 %).

Using temporal sampling from remote-sensing data sets,

the satellite imager MODIS (MODerate resolution Imag-

ing Spectroradiometer) and the ground-based sun photome-

ter network AERONET (AErosol Robotic NETwork), and

three different global aerosol models, we compare annual and

monthly averages of full model data to sampled model data.

Our results show that sampling errors as large as 100 % in

AOT (aerosol optical thickness), 0.4 in AE (Ångström Ex-

ponent) and 0.05 in SSA (single scattering albedo) are pos-

sible. Even in daily averages, sampling errors can be signif-

icant. Moreover these sampling errors are often correlated

over long distances giving rise to artificial contrasts between

pristine and polluted events and regions. Additionally, we

provide evidence that suggests that models will underesti-

mate these errors. To prevent sampling errors, model data

should be temporally collocated to the observations before

any analysis is made.

We also discuss how this work has consequences for in

situ measurements (e.g. aircraft campaigns or surface mea-

surements) in model evaluation.

Although this study is framed in the context of model eval-

uation, it has a clear and direct relevance to climatologies

derived from observational data sets.

1 Introduction

In the past decades, the role of atmospheric aerosol in the

Earth’s climate and biosphere has become clearer. Aerosols

can change the global radiation budget directly (Angstrom,

1962) and indirectly (Twomey, 1974; Albrecht, 1989). They

can affect the temperature structure of the atmosphere

(Hansen et al., 1997; Lohmann and Feichter, 2005) and may

have consequences for the hydrological cycle (Lohmann and

Feichter, 1997). Dust aerosols may transport nutrients for

the biosphere over long distances (Vink and Measures, 2001;

McTainsh and Strong, 2007; Maher et al., 2010; Lequy et al.,

2012) and anthropogenic aerosols can pose health hazards

for humans (Dockery et al., 1993; Brunekreef and Holgate,

2002; Ezzati et al., 2002; Smith et al., 2009; Beelen et al.,

2013).

One approach to explore the role of aerosol is through

(global) models. A lot of effort has gone into evaluating

global aerosol models against observations (Kinne et al.,

2006; Schulz et al., 2006; Textor et al., 2006, 2007; Huneeus

et al., 2011; Koch et al., 2009; Quaas et al., 2009; Koffi

et al., 2012) in the framework of the AEROCOM (AEROsol

Comparisons between Observations and Models) community

(http://aerocom.met.no). Although this has allowed the com-

munity to identify weaknesses in models (and has driven fur-

ther model development), less effort has gone into develop-

ing best practices when performing such an evaluation.

When evaluating models with observations, one problem

is the different temporal sampling of the data sets. While

models can in principle provide data at any time, observa-

tions may not be available for much of a day or even extended

periods (up to several weeks) due to, e.g. satellite overpass
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Table 1. Models used in this study.

ECHAM-HAM HadGEM-UKCA MIROC-SPRINTARS

Version ECHAM6.1-HAM2.2 HadGEM3-A-GLOMAP UKCA 8.4 MIROC3.2-SPRINTARS3.84

Resolution 1.9◦× 1.9◦, 31 levels (T63L31) 1.9◦× 1.25◦, 85 levels (N96L85) 2.8◦× 2.8◦, 20 levels (T42L20)

Reanalysis ERA-interim ERA-interim NCEP

Natural emissions model time-step model time-step model time-step

Anthropogenic emissions monthly monthly monthly

Wildfire emissions daily monthly monthly
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Figure 1. Yearly and zonal averages of AOT from the observations (MODIS-NRL Aqua) and the models. The latter are averaged in two

different ways: using either all model data or only those sampled at the observation times.

times, cloudiness, low-light conditions or other unfavourable

circumstances as well as instrument malfunction or mainte-

nance. Although limited temporal sampling is clearly an is-

sue for remote-sensing data sets, in situ data may likewise be

affected. This temporal sampling issue is however ignored

in many studies where it is implicitly assumed that suitably

long averaging periods (months or years) will put model and

observational data sets on equal footing.

In this paper, we will study errors due to temporal sam-

pling errors by applying temporal samplings from actual ob-

servational data sets to global model data. The temporal evo-

lution of aerosol has received some interest before: Anderson

et al. (2003) used hourly nephelometer measurements of dry

extinction to study timescales of aerosol evolution over one

polluted and one remote site. They found timescales from 2

to 48 h, with aerosol often becoming uncorrelated over a day

and a half. Kaufman et al. (2000) used AERONET (AErosol

Robotic NETwork) AOT (Aerosol Optical Thickness) data

to assess whether a single daily overpass from either Terra

or Aqua satellite would allow an accurate estimate of daily-

averaged AOT. They concluded this was indeed possible,

suggesting that aerosol diurnal cycles are small. Smirnov

(2002), also using AERONET AOT, showed that diurnal cy-

cles of 10 to 40 % existed near polluted and biomass burning

sources while diurnal cycles were insignificant over ocean.

Remer et al. (2006) put an upper limit of 2.5 % on regional

AOT changes over 3 hours by comparing MODIS (MODer-

ate resolution Imaging Spectroradiometer) Aqua and Terra

aerosol observations over the remote oceans. Geogdzhayev

et al. (2014) studied the ability of MODIS Aqua and Terra

to assess regional and monthly AOT using model data and

MODIS L2 temporal samplings. They found differences in

monthly, regional AOT of 0.01–0.02 over ocean and of 0.03–

0.09 over land. The model data consisted of daily averages

so no investigation of diurnal cycles was possible.

The previous studies highlight aspects of the temporal evo-

lution of aerosol but always with the purpose of deriving cli-

matologies from observational data sets. Temporal sampling

of aerosol observations in the context of model evaluation has

received little interest, although Sayer et al. (2010) pointed

out that differences in AOT of up to 0.1 in monthly and an-

nual regional averages were possible when comparing model

data to AATSR (Advanced Along-Track Scanning Radiome-

ter) satellite observations.

Global models are routinely compared to a host of remote-

sensing data, from satellites and ground sites. Within AE-

ROCOM, standard practice is to use daily averaged model

data in these comparisons but in the literature monthly or

yearly averages are used as well. With regard to temporal

sampling issues, it seems that many questions are still left

unanswered: what magnitude of temporal sampling error is

possible on daily, monthly and yearly timescales, for indi-

vidual grid points? Do these errors exhibit distinct spatial

patterns? Do aerosol diurnal cycles impact temporal sam-

pling errors? Can models represent aerosol temporal variabil-

ity well enough to be used to assess sampling errors? Are in-

tensive aerosol properties like AE (Ångström Exponent) and

SSA (single scattering albedo) less affected than extensive

aerosol properties like AOT? What controls the size of these

sampling errors? And finally, how do temporal sampling er-

rors compare to model errors and observational errors? In this

paper, we make a first attempt at answering these questions.
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Figure 2. Global maps of yearly mean, standard deviation, and relative standard deviation in AOT.

In Sect. 2, we give a brief overview of the models that will

be used, followed by a similarly brief overview of the obser-

vational data sets in Sect. 3. Our methodology is explained in

more detail in Sect. 4, but the bulk of our paper is dedicated

to the results in Sect. 5. We will start by describing simulated

observations, their temporal variability and how they com-

pare to actual observations in Sect. 5.2. Next, we will discuss

the spatial patterns in temporal sampling errors. A fuller ex-

planation of what controls temporal sampling errors is given

in Sect. 5.4. These errors are compared to observational er-

rors and models errors in Sect. 5.5. The paper is wrapped up

with a summary (Sect. 6) of our results.

2 Models

Three global aerosol models, ECHAM-HAM, HadGEM-

UKCA and MIROC-SPRINTARS, see also Table 1, are used

in this paper to provide time-varying aerosol fields.

The global aerosol model ECHAM-HAM consists of the

aerosol module HAM (Stier et al., 2005, 2007; Zhang et al.,

2012) coupled to the atmospheric general circulation model

ECHAM (Roeckner et al., 2003, 2006). It solves the prog-

nostic equations for vorticity, divergence, surface pressure

and temperature using spherical harmonics with triangular

truncation. Aerosols are advected with a flux-form semi-

Lagrangian transport scheme (Lin and Rood, 1996) on a

Gaussian grid. The aerosol module HAM calculates the
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Figure 3. AOT time series and its associated power spectrum at

75◦W, 0◦ N in HadGEM-UKCA. For this power spectrum, the ratio

of power at 1 day over total power is ∼ 0.01. The straight line in the

lower plot has a slope of −5/3.
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Table 2. Median ratio of daily AOT variation δo/δm across all

AERONET sites. Only sites with more than two observations for

at least 24 days during 3 months were used. Since the estimated er-

ror in AERONET AOT measurements is 0.01, the error in measured

δo can be no more than
√

2× 0.012.

ECHAM- HadGEM- MIROC-

δo HAM UKCA SPRINTARS

≥ 0 2.48 2.36 2.08

≥

√
2× 0.012 3.66 3.75 2.95

≥ 2
√

2× 0.012 4.19 4.95 3.35

global evolution of five aerosol species: sulphate, particu-

late organic matter, black carbon, sea salt and dust. These

species are the constituents of both internally and exter-

nally mixed aerosol particles whose size distribution is rep-

resented by seven uni-modal log-normal distributions called

modes. These seven modes describe four size classes (nucle-

ation, Aitken, accumulation and coarse) and two hygroscopic

classes (hydrophobic and hydrophilic). HAM uses the two-

moment M7 aerosol microphysics scheme (Vignati et al.,

2004).

The global aerosol model HadGEM-UKCA (Bellouin

et al., 2013) uses the UKCA aerosol and chemistry schemes

with the third generation of the Hadley Centre Global Envi-

ronmental Model (Hewitt et al., 2011) developed at the UK

Met Office. This circulation model is non-hydrostatic and

uses a semi-Lagrangian transport scheme. UKCA calculates

the evolution of five aerosol species, sulphate, particulate or-

ganic matter, black carbon, sea salt and dust, in both inter-

nally and externally mixed particles. The aerosol scheme in

UKCA is based on the Global Model of Aerosol Processes

(GLOMAP-mode, Mann et al., 2010) which is similar to the

M7 framework. The main exception is that dust is currently

calculated separately using six size bins. UKCA hence only

considers five modes.

The global aerosol model MIROC-SPRINTARS uses the

aerosol module SPRINTARS (Takemura et al., 2000, 2002;

Takemura, 2005) in conjunction with the atmospheric gen-

eral circulation model MIROC. SPRINTARS calculates the

global evolution of three externally mixed aerosol species:

sulphate, sea salt and dust; and two species that can be ei-

ther internally or externally mixed: organic matter and black

carbon. In contrast to HAM and UKCA, SPRINTARS uses a

single moment scheme and carries only mass as a prognos-

tic variable. The size distributions of sulphate, organic mat-

ter and black carbon are fixed but for sea salt and dust a bin

scheme is used.

All three models were run for the year 2007, with nudged

meteorology, prescribed sea surface temperatures and appro-

priate emission inventories (see Table 1).

3 Observations

We used the temporal sampling from several remote-sensing

data sets, both satellite and ground sites. The satellite sensor

is the MODIS wide-swath (∼ 2330 km) multi-channel im-

ager onboard the Aqua satellite (local equator crossing time

1:30 p.m., repeated view period: 1 to 2 days depending on lat-

itude). The ground sites constitute the AERONET network of

sun-photometers that measure solar transmittance with nom-

inally a 15 min time resolution.

We chose not to use the original observations but data

sets that have undergone further quality checks and spatio-

temporal aggregation. It seems reasonable to study temporal

sampling issues for data sets that have been optimised for

actual model evaluations.

The satellite remote-sensing data are the MODIS Aqua L3

NRL (Naval Research Laboratory) data (Zhang and Reid,

2006; Shi et al., 2011; Hyer et al., 2011) for 2007. These

are based on official MODIS Aqua L2 Coll. 5 data (see Re-

mer et al. (2005) for a discussion of the very similar over-

ocean retrieval for Coll. 4 and Levy et al. (2007) for Coll. 5

over-land retrievals) that have been subjected to further qual-

ity checks, empirical corrections and spatial aggregation. The

data comprise of AOT and its error estimate for 1
◦

by 1
◦

grid

boxes at a 6-hourly resolution. We have analysed MODIS

Terra as well but since it does not alter our conclusions,

MODIS Terra observations will not be used in this paper.

We also use the MODIS Aqua L3 AORI (Atmosphere and

Ocean Research Institute) data (Schutgens et al., 2013) for

2007. These are based on MODIS Aqua L2 data that have

been subjected to further quality checks, empirical correc-

tions and spatial aggregation. The AORI data differ from the

NRL data as they use different empirical corrections and in-

clude both AOT and AE. Unlike the NRL data, AORI data are

available only over ocean. In a preliminary analysis against

Maritime Aerosol Network observations, we found that the

AORI data suffered less from the high bias in AOT at low

AOT values than the NRL data. The AORI AOT and AE data

and its error estimates are available for 1◦ by 1◦ grid boxes

at a 6-hourly resolution. MODIS Terra data will be ignored,

again because it does not alter our conclusions.

Not applying the extra quality checks in the AORI product

almost doubles the number of observations. While this does

reduce the temporal sampling error somewhat (primarily in

yearly averages), it does not alter our conclusions fundamen-

tally. This also suggests that using Coll. 6 instead of Coll. 5

will have a minimal impact.

The other two remote-sensing data sets are ground-based:

AERONET Direct Sun lev 2.0 (Holben et al., 1998; Eck

et al., 1999; Schmid et al., 1999) and AERONET Version 2

Inversions lev 2.0 (Dubovik and King, 2000; Dubovik et al.,

2000) for 2007. Observations at each site were averaged over

6 h, each 6 h. AERONET data used in this study are AOT, AE

and SSA.
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Figure 4. Global maps of the relative importance of the diurnal cycle: the ratio of power at a period of 1 day to total power for AOT time

series.
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Figure 5. Taylor plots showing the standard deviation and correlation of modelled AOT against MODIS-NRL and AERONET observations.

The dark grey symbols refer to observations randomly perturbed with estimated observational errors.

As the MODIS-NRL product is provided on a regular 6-

hourly grid, all other observations were similarly put on a

regular 6-hourly grid. Using a 3-hourly grid for AERONET

hardly affected our results. Moreover it was just as likely

to (slightly) increase sampling errors as (slightly) decrease

them.

4 Method

The 3-hourly model data were linearly interpolated to the lo-

cations of actual observations. These model values v were

then sampled at the times of the actual observations to gen-

erate simulated observations.

The straight average

v =N−1
i=N∑
i=1

vi, (1)

(where i represents time and N the number of values over a

day, a month or a year) is the average normally produced by

models and often used in model evaluations.

The sampled average

ṽ =

(
i=N∑
i=1

fi

)−1 i=N∑
i=1

fivi, (2)

is a model-simulated observation (daily, monthly or yearly

mean) where fi represent the observational sampling (taken

from actual observational data sets):

fi =

{
0 if no observation present at time i

1 if observation present at time i
(3)

The impact of not collocating model data with observa-

tions is now given by the error

ε = v− ṽ, (4)

where we consider ṽ the reference value. After all, actual

observations are (hopefully) a proxy for the truth and used to

assess models. Note that this error can be rewritten as

ε =N−1
i=N∑
i=1

1−

∑j=N

j=1 fj

N

−1

fi

vi . (5)

The temporal sampling error depends on the statistics of

the time series vi as well as the statistics of observations

times fi and in particular the amount of observational tem-

poral coverage

C =

∑j=N

j=1 fj

N
. (6)

5 Results

5.1 Does temporal sampling matter?

Figure 1 shows yearly and zonally averaged AOT from both

observations (MODIS-NRL Aqua) and models (either collo-

www.atmos-chem-phys.net/16/1065/2016/ Atmos. Chem. Phys., 16, 1065–1079, 2016
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Daily variation AERONET_DS vs ECHAM−HAM: AOT 675nm

8−1 (4√2)−1 4−1 (2√2)−1 2−1 (√2)−1 1 √2 2 2√2 4 4√2 8

Daily variation AERONET_DS vs HadGEM−UKCA: AOT 675nm

8−1 (4√2)−1 4−1 (2√2)−1 2−1 (√2)−1 1 √2 2 2√2 4 4√2 8

Daily variation AERONET_DS vs MIROC−SPRINTARS: AOT 675nm

8−1 (4√2)−1 4−1 (2√2)−1 2−1 (√2)−1 1 √2 2 2√2 4 4√2 8

Figure 6. Median ratio of daily difference in maximum and minimum AOT δo/δm, either observed or modelled, for all AERONET sites.

Smaller circles indicate sites where 0.5≤median δo/δm ≤ 2. Only sites with more than two observations per day for at least 24 days during

3 or more separate months were used.

Figure 7. Top panel shows the 2007 yearly mean AOT of MODIS-

NRL Aqua. Bottom panel shows the temporal coverage (%) of ob-

servations during that year. Grey colours indicate no observations

available at all.

cated with the observations or not). The difference between

the straight model average (solid red line) and the sampled

model average (dotted red line) shows the impact sampling

has on model averages. The difference between the sam-

pled model average (dotted red line) and observations (dotted

black line) is due to model errors (and observational errors).

Clearly, sampling errors can be as big as model errors. We

also see that resampling the model improves agreement with

some prominent features in the observations.

5.2 Temporal evolution of modelled AOT

To better understand the temporal sampling errors, we first

need to consider the models’ temporal evolution. Figure 2

shows the mean, standard deviation and their ratio (rela-

tive standard deviation) of the modelled AOT time series.

All three models agree in global mean AOT patterns (ele-

vated AOT near natural sources like the Sahara and South-

ern Ocean and anthropogenic sources like Europe and East

Asia), but there are substantial differences: HadGEM-UKCA

shows lower mean AOT over the Sahara, ECHAM-HAM

shows lower AOT over Europe and MIROC-SPRINTARS

shows lower AOT over the Southern Ocean. Similarly,

there are differences in standard deviation: HadGEM-UKCA

has its largest standard deviation in AOT over East-Asia,

ECHAM-HAM over the Sahara and East-Asia and MIROC-

SPRINTARS over East-Asia and Eastern Europe. The rel-

ative standard deviation (standard deviation divided by the

mean) also differs among these models, even though all three

had their meteorology nudged to reanalysis data, suggest-

ing there are fundamental differences in their time evolution

due to the aerosol modelling itself. In particular, HadGEM-

UKCA shows globally lower relative standard deviation than

the other two models, while ECHAM-HAM and MIROC-

SPRINTARS differ in the spatial patterns of the relative stan-

dard deviation. Regionally, relative standard deviation can

easily differ by more than a factor of 2 among these three

models.

AOT time series in our models are characterised by power-

law power spectra with an exponent close to Kolmogorov’s

−5/3 constant, see Fig. 3 as an example. Sometimes this

power spectrum flattens out into white noise at large peri-

ods due to synoptic-scale weather systems. In any case, AOT

variability is largest for the longest periods. Diurnal cycles

are not very strong for these models and their global patterns

and magnitudes are very different (Fig. 4). As the modelled

diurnal cycles are quite uncertain, so will our (later) conclu-

sions regarding diurnal sampling errors.

We present a comparison of the (collocated) models

against actual AOT observations as Taylor plots in Fig. 5. A

Taylor plot (Taylor, 2001) graphically represents the variabil-

Atmos. Chem. Phys., 16, 1065–1079, 2016 www.atmos-chem-phys.net/16/1065/2016/
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Figure 8. Top row shows global map of yearly mean of model AOT collocated with MODIS-NRL Aqua AOT data. Bottom row shows the

relative temporal sampling error using MODIS-NRL Aqua AOT sampling. Grey colors indicate no observations available.

Figure 9. Global map of absolute temporal sampling error using MODIS-AORI Aqua AE sampling. Grey colors indicate no observations

available.

ity of the model data and its correlation with observations and

is especially suited to analyse the models’ temporal evolu-

tion. Here we show them for four different regions: the entire

Earth, the Amazon, East Asia and Western Africa. Mostly

the models underestimate observed variability (the exception

is MIROC-SPRINTARS which often overestimates it). Note

that observational error has only a small impact on these

statistics.

Assessing the model’s diurnal cycle from remote-sensing

observations that require daylight is difficult, but a simple

analysis that is appropriate to this paper’s focus is to consider

daily variation. This daily variation is not necessarily the re-

sult of a diurnal cycle but may also be caused by, e.g. syn-

optic weather patterns. We compare the difference δ between

maximum and minimum AOT over a day for all AERONET

sites for both observations δo and models δm. Figure 6 shows

the median δo/δm for each AERONET site throughout the

year, while Table 2 presents the median across all sites (in

this case, medians provide a more conservative and lower es-

timate than means). Over a period of a day, observations tend

to show more variability than the models. Various sensitivity

studies (e.g. δo/δm as a function of δo as shown in Table 2)

suggest that this is not due to observational error. It is likely

due to at least two factors: first an underestimation of mod-

elled AOT over the continents that limits absolute daily vari-

ation; secondly, modelled AOT time series show very strong

auto-correlations (> 0.8) over 6 h, further reducing potential

daily variation. Consequently, we suggest that these models

underestimate daily variation in AOT.

Similarly, there are substantial differences in the time se-

ries of AE and SSA among the three models (not shown).

In particular, ECHAM-HAM shows a larger standard devi-

ation in AE and SSA over the continents than the other two

models, while HadGEM-UKCA shows a very small standard

deviation in SSA over the oceans.

5.3 Spatial patterns in temporal sampling errors

Yearly averaged MODIS-NRL Aqua AOT and its temporal

coverage are shown in Fig. 7. Coverage is especially low

over regions with high cloudiness and land areas with strong

variations in surface albedo. In Fig. 8, we show yearly av-

erages of the modelled AOT collocated with MODIS-NRL

Aqua. The relative sampling error (Eq. 4) when using straight

model averages is also shown. There are several things to

note. First, temporal sampling errors can easily cause AOT

www.atmos-chem-phys.net/16/1065/2016/ Atmos. Chem. Phys., 16, 1065–1079, 2016
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Figure 10. Absolute temporal sampling error for monthly mean AOT using AERONET sampling, as a function of time series standard

deviation and observational coverage. The grey boxes in the background (axis on the right), show the 25 and 75 % quantiles of those errors

for equally sized sub-samples.
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Figure 11. Absolute temporal sampling error for monthly mean AE and SSA using AERONET sampling, as a function of time series standard

deviation and observational coverage. The grey boxes in the background (axis on the right), show the 25 and 75 % quantiles of those errors

for equally sized sub-samples.

to be over or under-estimated by as much as 50 %. Secondly,

these temporal sampling errors show substantial spatial cor-

relation: entire regions show similar errors greatly reducing

the possibility of reducing temporal sampling errors through

spatial averaging (see, e.g. Fig. 1). Thirdly, different mod-

els predict different error patterns. Finally, we point out that

observational coverage only partly explains sampling errors.

For instance, Fig. 7 suggests that India is far better sampled

(temporally) than the Bay of Bengal, yet relative errors are

larger in India, at least in the ECHAM-HAM and MIROC-

SPRINTARS experiments.

Obviously, the temporal sampling error in yearly aver-

ages may be strongly impacted by several months of no

observations at all. Over land, snow cover (combined with

cloud cover) may preclude meaningful observations and,

e.g. Siberia is not observed at all during the Northern Hemi-

sphere winter. Even over ocean, high latitudes may not be ob-

served during part of the year due to low SZA (Solar Zenith

Angle) or ice cover. We have inspected global maps of this

temporal sampling error for monthly means, but found that

errors can be just as large as for yearly means, due to the 1 to

2-day period between repeated views by MODIS and the pos-

sibility of extended cloud cover. In particular, for almost ev-

ery location on Earth observed by MODIS, we found at least

1 month when temporal sampling errors exceeded 100 %. A

more in-depth analysis of the impact of averaging periods

will follow later (Sect. 5.5).

Lastly, the absolute temporal sampling error in yearly av-

eraged AE from the MODIS-AORI data set is shown in

Fig. 9. The observational coverage of AE is less than that

of AOT, due to more stringent quality checks (not shown).

Sampling errors rarely exceed±0.3. However, a very distinct

spatial pattern can be seen for all three models: near coast-

lines, especially in polluted outflow regions, the error tends

to be strongly negative while over the remote oceans it tends

to be strongly positive. If one does not properly collocate

AE model data with observations, this would create an arti-

ficial contrast up to ∼ 0.6 in AE between the continents and
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Figure 12. Box-whisker plots of temporal sampling errors, observational and model errors. For MODIS Aqua, sampling errors (blue),

observational errors (grey) and model errors (red) are shown side by side as a function of averaging period (yearly, monthly, daily). The

box-whisker plot shows the 2, 9, 25, 50, 75, 91 and 98 % quantiles of these errors, the dot shows the mean error. The grey shading shows

the 9, 25, 75 and 91 % quantiles of the observational errors. The red numbers above each blue box-whisker show how the different quantile

ranges (from top to bottom: 2–98, 9–91 and 25–75 %) compare between the sampling error and the model errors.

Figure 13. Correlation between model AOT at the time of MODIS-NRL Aqua observation and a 24 h model AOT average. Top: 24 h model

average uses overpass time as the centre for the 24 h average; bottom: 24 h average defined according to UTC. Note how in the bottom plot,

correlations drop off towards the date-line.

the remote oceans. The reason is that AE observations re-

quire a minimum AOT to be successful (see Schutgens et al.,

2013). In areas with polluted outflows, low AOT correspond

to the sea-salt background with low AE and observations will

mostly sample the outflow with high AE, leading to nega-

tive sampling errors. Conversely, over the remote oceans high

wind-speeds lead to high AOT and low AE (larger particles)

that will be more often observed than the lower AOT and

higher AE (smaller particles) that occur at low wind-speeds.

The last paragraph suggests that minimum AOT require-

ments in retrievals can have large impacts on temporal sam-

pling errors. While this was shown for the AORI data set,
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Figure 14. Ratio of the RMS (root mean squared) temporal sampling daily error to RMS model daily error, i.c. MODIS-NRL Aqua. The

daily errors were defined according to UTC. The thin black contour represents a ratio of 0.3.

Figure 15. Relative temporal sampling error using MODIS-NRL Aqua AOT sampling. The yearly averages are constructed from daily data,

excluding days for which no observations were present. This figure can be compared to the bottom row of Fig. 8 (but note that the colour bar

has half its range). Grey colors indicate no observations available.

already the official MODIS Coll. 5 product shows a strong

dependence of the quality of AE retrievals on AOT values,

as might be expected. See also Fig. 11 in Schutgens et al.

(2013).

5.4 Drivers of temporal sampling errors

In Fig. 10, we show temporal sampling errors for monthly

averaged AERONET AOT (similar plots can be shown for

MODIS). Sampling errors increase with the standard devia-

tion of the time series, but decrease with increasing observa-

tional temporal coverage. Still, even for relatively high cov-

erage large sampling errors are possible. We surmise that the

clear positive bias is due to cases of high relative humidity

that will tend to (1) prevent observations due to cloudiness;

(2) increase model AOT due to wet growth. Randomising the

observation times (instead of using actual AERONET times)

in this analysis removes this bias and also reduces the spread

in the errors by 15 to 45 % (depending on the model). Thus it

appears that correlations between the time series and the ob-

servation times (see Eq. 5) also affect these sampling errors.

Similar figures for monthly-averaged AERONET AE and

SSA are shown in Fig. 11. They confirm previous results and

mostly serve to show the magnitude of the sampling errors

that can possibly occur. The positive bias for SSA is likely

due to a minimum AOT in the AERONET Inversion data

files (all inverted SSA values have AOT≥ 0.2). As a result,

the sampled model data will mostly sample pollution or dust

events with low SSA while the straight model data also in-

clude the aerosol background state with higher SSA.

5.5 Temporal sampling errors in context

To put these sampling errors in context, we will compare

them to model errors and observational errors. The model

errors are defined as the difference of collocated model val-

ues from actual observations. Strictly speaking this “model

error” includes observational errors as well but unfortunately

they can not be separated. However, estimates of this obser-

vational error’s standard deviation are part of our observa-

tional data sets (we will assume this error distribution to be

an unbiased Gaussian). The model error (minus the observa-

tional error) is the signal we are interested in when evaluating

models.

Figure 12 shows a comparison of the above errors for

yearly, monthly and daily averages of MODIS data (AOT

and AE). For both AOT and AE, we see that observational

errors and model errors decrease as averaging periods in-

crease. In contrast, sampling errors behave differently, with

the largest errors typically occurring for monthly averages

and the smallest errors for daily averages. The models dif-

fer both in the sampling errors and how they compare to the

model errors. But a few conclusions seem obvious: (1) for

yearly and monthly averages, sampling errors will contribute

considerably (typically 30–60 %) to model errors (defined as

the difference between a model and observations) if no col-

location is performed; (2) sampling errors in AOT are com-

parable to or larger than observational errors for monthly or

yearly averages; (3) for daily averages, these sampling errors

appear to be smaller.
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Figure 16. Box-whisker plots of temporal sampling errors, observational and model errors. For AERONET, sampling errors (blue), observa-

tional errors (grey) and model errors (red) are shown side by side as a function of averaging period (yearly, monthly, daily). The box-whisker

plot shows the 2, 9, 25, 50, 75, 91 and 98 % quantiles of these errors, the dot shows the mean error. The grey shading shows the 9, 25, 75 and

91 % quantiles of the observational errors. The red numbers above each blue box-whisker show how the different quantile ranges (from top

to bottom: 2–98, 9–91 and 25–75 %) compare between the sampling error and the model errors. For SSA, no observational error estimates

were available.

This last point is important as standard practice for AE-

ROCOM models is to save data as daily averages. Doing so

would incur sampling errors of at most 25 % of the model

error. There are a few caveats however. We have already

pointed out that models seem to under-estimate AOT vari-

ability, especially on daily timescales (see Sect. 5.2). Thus

we are likely to underestimate daily sampling errors. Further-

more, the AEROCOM daily averages are defined according

to UTC. This means that, e.g. satellite observations (made

close to local noon time) near the date-line are not as repre-

sentative of the model day as observations near the Green-

wich meridian. The consequence of this is shown in Fig. 13,

where correlations between daily model averages and simu-

lated observations clearly drop off towards the date-line. A

box-whisker plot as in Fig. 12 also hides the fact that in large

parts of the world daily sampling errors are in magnitude at

least 30 % of the daily model errors (see Fig. 14).

It is interesting to consider what temporal sampling errors

remain if an annual average is constructed from daily model

averages and observations, excluding those days for which

no observations exist. Figure 15 shows that this does indeed

reduce sampling errors compared to the case of straight an-

nual averages (as in Fig. 8) but we still find typical root

mean square errors of 12, 7 and 17 % for ECHAM-HAM,

HadGEM-UKCA and MIROC-SPRINTARS. Interestingly,

such a procedure results in mostly positive errors because

daily minimum AOT (as modelled) occurs near the time of

observation. Note also that the error patterns correlate some-

what with the diurnal cycles in these models, see Fig. 4.

Any analysis of model data attempting to look at shorter

timescales (e.g. scatter plots, time series) will be further neg-
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atively affected when using daily data. To prevent this, mod-

els need to be resampled to the observation times.

Figure 16 shows a comparison of the above errors for

yearly, monthly and daily averages of AERONET data (AOT,

AE and SSA). The overall picture is much the same as

Fig. 12: model errors and observational errors decrease as

averaging increases, while sampling errors are the largest for

either yearly or monthly averages. Note that in the case of

AERONET AOT, already for daily averages, sampling errors

are larger than observational errors.

6 Summary

Although model data and observations usually have very dif-

ferent temporal sampling, researchers often assume this does

not affect their analyses. Consequently, monthly or yearly

means are compared without first temporally collocating the

model data with the observations. We have assessed potential

errors resulting from this practice and shown them to be sig-

nificant. We would like to point out that the practice of tem-

poral collocation of data sets is very normal in the remote-

sensing and data assimilation communities, but less so in the

modelling community.

Our analysis is based on the temporal sampling of several

oft used remote-sensing data sets (MODIS, AERONET) and

data from three different models: ECHAM-HAM, HadGEM-

UKCA and MIROC-SPRINTARS. We define the temporal

sampling error as the difference in yearly, monthly or daily

means of the full model data set and the sampled model data

sets. Three different models were used as we found that cur-

rent models differ in their temporal evolution even though

yearly mean global patterns are fairly similar and meteoro-

logical fields were nudged to reanalysis data. Although this

study is framed in the context of model evaluation, it has a

clear and direct relevance to climatologies derived from ob-

servational data sets.

We find that temporal sampling errors in yearly and

monthly means can amount to 100 % in AOT, 0.4 in AE and

0.05 in SSA. In addition, these sampling errors are compa-

rable to model errors (30–60 % for MODIS, 20–90 % for

AERONET). While daily averages incur smaller sampling

errors, we argue (based on observations) that our models very

likely underestimate daily variation and hence sampling er-

rors. In addition, model daily averages are defined through

UTC while remote-sensing observations are only possible

during local daylight. This introduces a marked longitudinal

dependence in temporal sampling errors. Annual averages

constructed from daily averages still exhibit temporal sam-

pling errors although at reduced levels (we estimate typical

errors of 7–17 %).

Temporal sampling errors will affect model evaluation

of not only AOT, AE and SSA but also derived properties

like direct aerosol radiative forcing, if data are not prop-

erly collocated with the observations. Our analysis should

also provide caution to researchers using in situ data from,

e.g. ground sites. While such data often have nominally high

measurement frequencies (hours), significant gaps (days to

weeks) in temporal coverage may be present. Much will de-

pend on the observational sampling and the nature of the ob-

served time series. For instance, PM2.5 filter measurements

by EMEP (European Monitoring and Evaluation Network,

http://www.emep.int) are time-integrated measurements that

can probably be compared to models without temporal sam-

pling issues. But several EUSAAR (European Supersites for

Atmospheric Aerosol Research, http://www.eusaar.net) sta-

tions have significant intermittency in their observations.

Flight campaign data obviously require temporal collocation

to make any sense in a model evaluation context. Also, unlike

remotely sensed column properties like AOT, in situ mea-

surements will be affected by vertical transport. This may

possibly exacerbate any temporal sampling issues.

As a corollary to our study, we have shown that the tempo-

ral evolution of models can be very different (although yearly

means are quite similar). We suggest that more effort should

be made to understand modelled and observed time series.

It is likely that such time series contain finger prints of in-

dividual aerosol processes and provide new ways to evalu-

ate models. In particular we point out the large differences

we found in diurnal cycles (see Fig. 4) and the research op-

portunities that may lie in observational data sets (e.g. from

geostationary satellites) that resolve this diurnal cycle.

Finally, if there is one error in the field of aerosol mod-

elling over which we have direct control and that can be con-

fidently eliminated, it is the error due to incongruous tempo-

ral sampling of model data and observations. Not doing so

barely saves time or resources but risks compromising any

model evaluation. For instance, we have shown that the lati-

tudinal pattern of yearly, zonal averages of collocated model

AOT agrees better with MODIS observations than the nor-

mal yearly, zonal model average. The collocation of model

data with observations can either be done on-line through

observation simulators or off-line through sampling of high

frequency model output. A generic tool to support the latter

operation is freely available as the Community Intercompar-

ison Suite (http://www.cistools.net).
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