
Dynamics and Statistics of the Climate System, 2017, 1–14
doi:10.1093/climsys/dzx003

Advance Access Publication Date: 18 July 2017
Research Article

This Open Access article contains public sector information licensed under the Open Government Licence v2.0 (http://www.nationalarchives.gov.uk/doc/
open-government-licence/version/2/).

Published by Oxford University Press 2017.

Research Article

Towards the validation of a traceable climate 
model hierarchies
Robin Tokmakiana,* and Peter Challenorb

aDepartment of Oceanography, Naval Postgraduate School, Monterey, CA, USA and bDepartment of 
Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.

*Correspondence Robin Tokmakian, Department of Oceanography, Naval Postgraduate School, 833 Dyer Rd, Bldg 232, Rm 328 Monterey, 
CA 93943, USA; E-mail: rtt@nps.edu

Received 5 January 2017; Revised 5 July 2017; Accepted 11 July 2017

Abstract

Background. It is a common practice to use a simple model to explain the mechanisms or processes that 
occur in a much more complex, complete and computationally expensive model. Many such examples 
can be found in climate change research.
Objective. This paper uses two illustrative examples to show how we can quantitatively relate the 
mechanisms or processes observed in a simple climate model to similar mechanisms in a more 
complex one.
Method. A simple model can only explain a more complex solution’s mechanisms if outcomes are 
tested over a broad range of inputs. By carefully sampling the full set of inputs for both the simple 
and complex models, we can robustly compare the process or mechanistic outcomes, statistically, 
between them. Thus, by examining the similarity or differences in the relationship between the inputs 
and outputs. The method can reject an incorrect simple model.
Results. The examples are, first, analytic and numerical solutions to the heat equation and, second, 
the 1948 Stommel model of horizontal ocean circulation and a more complex quasi-geostrophic ocean 
model. We quantitatively state how similar the simple model’s mechanisms are to the mechanisms 
in the more complex representation. In addition, when a simple solution may be correct, we give the 
percentage of the variance of the complex model’s outcomes that is explained by the simple response 
along with an uncertainty estimate.
Conclusion. We successfully tested a methodology for robustly quantifying how the physics encapsulated 
by a simple model of a process may exhibit itself in another, more complex formulation. Suggestions 
are given as a guide for use of the methodology with more complex and realistic models.
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1.  Introduction

Various kinds of model hierarchies (Hoskins, 1983; Nikurashin and Vallis, 2012; Knutti and Rugenstein, 2015) allow 
us, to some degree, to explain responses in complex models in terms of physical processes encapsulated in simpler 
ones. While it is possible to argue, heuristically, which physical processes are important in a complex solution using 
a simpler model, such arguments do not quantitatively link the simple one to a more complex model. Furthermore, 
in contrast, as Knutti and Rugenstein (2015) suggest, if we want to argue that a simpler solution can represent key 
processes of a complex model, a quantitative analysis of the two models and their relationship to each other is neces-
sary. Such a requisite, rigorous method should be able to understand how a simple model’s response space (and the 
physics within it) maps onto a similar solution space of the complex implementation.

Examples of quantifying connections within model hierarchies [In the broadest sense, a set of models that are 
hierarchical are ones in which the physics of the lower model are found in the higher, more complex model. The 
simple model is less computationally demanding than the complex model.] exist (Tran et al., 2016; Oughton and 
Craig, 2016), though not in the context of understanding physical processes or mechanisms that drive climate 
change. Quantifying such connections should provide us with confidence in our explanations and should help 
to distinguish between different possible simpler formulations of physical processes and their representation in a 
complex model. Such analysis can also allow us to rule out physical processes that are not present in the complex 
model. We propose a method that allows not only models of the same species [e.g. Community Earth System Model 
(CESM) at different resolutions] but also ones that are within the same general family [for example, conceptual 
models of ocean circulation and general circulation models (GCMs)] to be traceable [By traceable, we mean that 
the physics in the complex model can be attributed, quantifiably, to the physics of the simpler model. We also use 
mechanism and process, interchangeably, to refer to the underlying physics that control the dynamics (the move-
ment of fluid, rather than in a mathematical sense of a dynamical systems) represented by the model.] from the 
simpler to the more complex model.

Using modern statistical machinery [Gaussian process (GP) emulators], we relate the response of the complex solu-
tion to the response in the simpler model along with an associated uncertainty. This allows us to test whether a less 
complicated response, where we understand the physical mechanisms, is being reproduced (or not) in the complex 
model. The examples used in this paper have low computational requirements and could be addressed without emula-
tors. Emulators become an important tool when the requirements to explore the input space of the complex model 
exceed the available computational resources. The key to success is the design of the experiment defined by a correct 
set of inputs to explain the outputs.

Two simple examples are used to explain this idea of tracing physical process through model hierarchies. The 
first is an abstraction. Our complex model is a set of partial differential equations solved numerically, and the simple 
model is the family of analytical solutions. We use this to illustrate the methodology. The second example is more real-
istic and uses, as the complex model, a quasi-geostrophic (QG) model of the ocean with several parameters that can 
be varied. In this example, the simple physical process is a Stommel (1948) model of horizontal circulation, in which 
only bottom friction is allowed to change. Finally, we consider how this idea might be applied to hierarchies involving 
Climate Model Intercomparison Project (CMIP) class GCMs.

2.  Methodology

The goal of this exercise is to show how to trace the physics from a simple and understandable model to similar 
physics in a much more complex solution with many more interactions and modelled processes and where it is not 
clear which physical processes are operating. The basic idea is that if the same physical processes are active in both 
the complex and simple models, then the response of the more sophisticated implementation to changes in the inputs 
(parameters) will be similar to the response of the simple model. Similarly, if the complex model does not respond in 
the same way to inputs as the simple model does, we can rule out these physical processes as being the driving force 
in the complex solution. We do not expect the response to be exactly the same, only similar.

We express this concept, mathematically, by considering, not only the relationship between the simple and complex 
solutions but also the difference between the simple formulation and the response from the complex model. That is:

	 = + +x z x x zY Y D O( , ) ( ) ( ) ( )c s 	 (1)
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where Yc is the model response from the complex implementation, a function of some vector of input parameters x (related 
to the process or mechanism of interest) and a separate vector z (unrelated to the process of interest). Ys is the response (out-
come) from a simple model embodying the physical process. It is only a function of x. D is an additional response related 
to physical processes that are not accounted for by the simple model. It, also, is a function of the vector x and is unknown. 
zO( ) represents small-scale variability and other physical process contributions, which are unrelated to the inputs x but are 

a function of another, unspecified set of inputs z. Thus, we not only relate input quantities to outputs but also account for 
any differences in the two solutions that also can be related to the inputs. The success of this approach is that xD( ) has to 
be distinguishable from zO( ). If there is no relationship between Yc and +Y Ds , zO( ) will be the dominant term.

The model is simple but encapsulates the question being addressed: does the complex implementation follow the 
simple dynamics or not? A more complex statistical model including, for example, interaction terms, could be built. 
Such a model would be difficult to fit. There may be problems with identifiability, but, more importantly, if we needed 
such a complex model, it would show that simple dynamics does not explain the behaviour of the complex model and 
hence answer our original question.

At its most fundamental level, the method we propose to use to trace the physical processes from a simple to 
a more complex model is a non-linear regression mapping of the set of inputs to the responses and to the dif-
ferences between the simple and complex responses. In a larger context, these same methods are used to create 
statistical emulators to interpolate a limited set of model runs to give the full set of outcomes (and associated 
uncertainty) over the full range of input values. Furthermore, emulators have also been used in a variety of geo-
physical problems and examples of their use are described in Higdon et al. (2004), Williams et al. (2006), Sansó 
et al. (2008), Sansó and Forest (2009), Hall et al.  (2011), Tokmakian et al. (2012) and Tokmakian and Challenor 
(2014). Alternative methods for statistically describing and analysing climate dynamics using Bayesian hierarch-
ical models have been developed (e.g. Wikle et al., 2001). This work has mainly been involved with the assimila-
tion of data and does not seem to map easily onto our problem. We have therefore not investigated such methods 
further in this context.

The first criteria for the success or not of this proposed approach is that the R2 value of the regression of the 
responses of the complex model versus the sum of the simple model responses plus the difference between the mod-
els is significant and skilful. The outcomes should be tested for a broad range of input settings. The second criteria 
relates to the use of emulators. Because a physical model generally is expensive to run (e.g. GCM), an emulator can 
be employed to allow for the ability to create a set of outcomes from a broad set of inputs for the simple model, the 
complex model or both. The criteria for success for each emulator is that 90% of the validation cases fall within a 2σ 
uncertainty range of the mean emulator estimate for a given set of inputs.

A brief overview of the method is described next, with the details for those unfamiliar with GP emulators given 
in Appendix A. We develop the regression estimator or emulator using the assumption that the relationship between 
the inputs and outputs are smooth, but non-linear. Each of our models’ outputs will have a relationship such that 

= xY F( ), where  x is a vector of input parameter values, each with length q. Depending upon the problem, we create a 
sample set,  Y, of a small size (n) of the model outcomes by one of two ways. The first is to specifically vary the inputs 
in both the simple and complex models in a similar manner so that the same physics is being modified. For example, 
varying a viscosity term in the examination of vertical mixing in the ocean. In some cases, especially in the realm of 
climate studies, the relationship between the inputs and the physical processes being studied may not be simple. For 
example, the influence of the Atlantic multi-decadal oscillation on the meridional overturning circulation does not 
relate in a simple way to a set of input parameters of an embedded process model. For such problems, some thought 
and care will be necessary to match inputs between the simple and complex implementations, possibly using sensitiv-
ity analysis to identify the important inputs. The outcomes and inputs are then used to create emulators or regressions 
conditioned on the input vector  x for the simple model, which we will refer to as xY ( )s  and for the difference, xD( ).

Formally,

	 ≈ = +x x x xF f m G( ) ( ) ( ) ( ),0 	 (2)

where f is the regression function, m0 is some mean process function and G is a GP to capture the information that 
deviates from the mean. All are functions of the input vector x in which each element, x i( ), is the value for the ith par-
ameter. An equation exists for each sample, j.
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The prior specification of the regression function is an important part of specifying the emulator. In spatial 
statistics that use similar methods in a low dimension setting, there has been much discussion of confounding (see 
for example Hanks et al., 2015). However, in emulation, an efficient predictor of the underlying dynamical model 
is built, which we carefully validate. Because we are not interested in the form of the relationship in terms of the 
input variables, confounding is not an issue and we can use either simple prior mean functions, as used here, or more 
complex ones.

The GP regression interpolates the true outcomes Y at the locations where the simulator was run or sampled, 
which we will call the set  Y, (also called the set of design locations). At other points, xf ( ) gives an expected value 
for xF( ), the true function, along with an associated uncertainty estimate. A GP is used to determine xf ( ) under the 
assumption that the uncertainty in the regression can be described with such a process. A GP can be understood as 
a generalization of a Gaussian distribution over an infinite vector space. Just as a Gaussian distribution has a mean 
and variance, a GP has a mean function and a covariance function. It does not mean that either the distributions of 
the inputs or the outcomes are Gaussian. Normally, the function F is smooth and continuous over its input space, 
although anything known about the outcome can be incorporated into the regression through the mean function. 
This can include strong non-linearities and discontinuities. With such a model, the uncertainty in the outcome, Y, at 
some vector location, x, is easily obtainable. Standard GP regression interpolates the data. If we add a ‘nugget’ term 
(an independent and identically distributed Normal random variable), the regression function no longer interpolates 
exactly (Gramacy and Lee, 2010; Andrianakis and Challenor, 2012).

Extensions to the standard GP methods have been developed which analyse hierarchies of models (see for example 
Goldstein and Rougier, 2009). Assuming that there is a set of related models defined for various ‘levels’ t (e.g. resolu-
tions, complexity) such that = xy f ( )s s , where xf ( )s  is the emulator function for the simple model and ys is the approxi-
mation of the output for the simple model. We also define the = +x x xy r Y d( ) ( ) ( )c s s , where d is a GP of the misfit (in 
essence, a regression of the misfit, −Y Yc s) between the two model levels. It is only a function of x and rs is a set of 
regression coefficients. yc is, then, the approximation for the complex model. The details can be found in Kennedy 
and O’Hagan (2000). The UK RAPIT Group (Williamson et al., 2012) used two related models of HADCM3 and a 
reduced resolution model FAMOUS, which has the same basic physics, to illustrate how the simpler implementation 
could make good predictions of the more complex model. Others, for example Tran et al. (2016), use such methods 
to have an inexpensive emulator replace an expensive model component of a climate system.

We test the validity of our regressions (emulators) by either using some additional input points (often chosen 
at random), or  using known outcomes (Bastos and O’Hagan, 2009; Challenor, 2013). This is only advised when 
the numerical solutions or simulations are relatively cheap to run. In most cases, because the numerical solutions/
simulations are expensive to run, we test them by creating a series of emulators using only −n 1 inputs and out-
comes, leaving out each point in turn. The pair of inputs/outcomes that was not used in the emulator is then used 
to evaluate the validity of the regression, the ‘leave one out’ strategy. If 90% of the tests are successful, then we 
are confident the regression using the whole set of inputs and outcomes will be reasonable.

3.  Example 1: heat equation

To illustrate our approach, we begin with an example using the heat equation. Our complex model is a numerical 
simulation of the equation, while the simple solution is the analytical solution. Two cases are provided. In the first 
case, the analytic solution is the correct solution for the heat equation, while in the second case, we test our method 
using an incorrect analytic solution.

The heat equation is defined as follows:

	

∂
∂

= ∂
∂

T
t

K
T

z

2

2 	
(3)

with the boundary conditions = =T t T Z t(0, ) 0, ( , ) 0, where =Z 20 is the total depth, T is the temperature, t is time, z 
is depth and K is the diffusion coefficient. As the initial condition for the first case, we set = πT z Asin( , 0) ( )z

Z
, where A 

is a scaling coefficient. We now have two parameters, A and K, which we can vary resulting in a response T for every 
combination of the two parameters. The input vector x contains the values of A and K used to produce some response 
T. We sample our analytic and numerical solutions at =z 3.8 and =t 24 giving us Ys and Yc, respectively.
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We set up the first case such that we sample across a range of values (A = 1–10, K = 0.4–1) using a Latin hypercube 
(McKay et al., 1979) resulting in 100 (n) values for A and K that make up an input vector x1. We sample the solu-
tions at =z 3.8, and =t 24 giving us a vector of Ys and Yc values, respectively, each vector of length 100. Using the set 
of inputs and the analytic solutions Ys, we create a regression or emulator (ys) as described in section 2 to represent 
the relationship between the inputs and outputs. We validate the regression by using 100 values of A and K chosen 
randomly. Figure 1a illustrates the results. We plot the emulator estimate of the outcome or response on the x-axis 
versus the true numerical outcome on the y-axis. The grey bars represent the uncertainty in the emulator outcomes 
(±2 SD). Ninety-nine of the 100 random values are within 2 SD of the given numerical value, giving an 99% signifi-
cant level. Thus, we conclude that our regression ys for T for our analytic model is valid, within the given range of A 
and K values.

The second step in creating a traceable model hierarchy is to create an emulator or regression for the difference 
between our analytic and numerical model outcomes ( −Y Yc s conditioned on x1). This regression or emulator is also 
validated by using the same random points as was done for ys. The results in Figure 1b show that the estimate of 
the differences and true difference both have values close to zero, with uncertainty on the order of 10e-3. This is as 
expected because the numerical model is close to an exact analytic solution (in other words, zO( ) is approximately 
zero). The result is confirmed by Figure 1c, which shows the sum (yc) of the ys and d as compared to the true outcome 
of the numerical model, Yc. For this case, ys almost fully explains Yc because zO( ) is zero and xd( )1  is almost zero.

Our second case is an illustration of when the dynamics of a simple solution does not explain the outcomes of 
a more complex model. For this example, A is a value between -1 and -10 and K is a constant (5), giving us the 
set of inputs x2. We create a regression (ys) to relate these new inputs, x2, to the analytic outcomes Ys. Figure 1d 

Figure 1.  Example 1 Case 1: (a) Regression model, ys, versus true response of analytic solution, Ys, varying both A and k; (b) 
regression, d, versus true difference, −Y Yc s, varying both A and k in both models; (c) regression, yc, versus truth Yc. Case 2: (d) 
Regression model ys versus true response of analytic solution, Ys, varying only A; (e) regression, d, versus true difference, −Y Yc s,  
varying only A in Ys and varying A and k in Yc. The regression is conditioned only on A; (f) regression model, yc, versus truth Yc, 
with yc conditioned only on A. The circles represents the mean value from the regression model at 100 randomly sampled values 
not used in the creation of the emulator, while the grey line is the uncertainty in that estimate.
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are the results, as expected, an almost perfect relationship between Ys and its associated regression, ys. Following 
the same steps as in Case 1, a regression, xd( )2 , is created for relationship between the newly defined inputs (x2)  
and the difference between the analytic outcomes, xY ( )s 2 , and the numerical set of solutions as defined in Case 
1, xY ( )c 1 . Because 32 of the 100 emulator outcomes from our set of 100 random inputs fall outside 2 SD, as 
seen in Figure 1e, we conclude that xd( )2  is not a good regression. Furthermore, a comparison of xY ( )c 1  (y-axis) 
to the sum of xy ( )s 2  and xd( )2  gives very low R2 value of 0.36, indicating that Ys does not represent the same 
process as given by Yc, even if we include some additional process, d, conditioned on x2. This leads to the 
conclusion, correctly, that in Case 2, the numerical solution does not follow the same response as found in the  
analytical model.

4.  Example 2: Stommel model and QG model

Having illustrated the method using a relatively simple example, we now turn to a more complex problem. We will 
use, as our simple implementation of a process, the Stommel (1948) model of horizontal ocean circulation in a closed 
basin on a beta plane with bottom friction.

	
ττ

ψ
β β

ψ
∂∇
∂

= ∇ × + ∇
x

k1 2

	 (4)

where ττ∇ ×  represents the wind (τ) forcing of the system and β
k is related to bottom friction. β is related to the Coriolis 

parameter and is constant for this problem.
The complex implementation will be a QG model (Pedlosky, 1996). The equation for the time-evolving stream 

function is given as follows:

	


ψ
ψ ψ

ψ
µ ψ ψ

∂∇
∂

+ ∇ +
∂∇
∂

= + ∇ + ∇
t

J
x

w E( , ) e

2
2 2 4

	 (5)

where ψ is the streamfunction, ϵ is a coefficient related to advection, we is the vertical Ekman velocity associated with 
some forcing at the surface and =

β
E A

L
H
3 is a coefficient related to eddy viscosity. AH is the eddy viscosity coefficient, β 

is related to the Coriolis term and L is the width of the basin. The coefficient, µ = β
r
L
, is the Stommel coefficient related 

to the bottom friction, r. ψ ψ∇J( , )2  is the Jacobian of the stream function. The model will be examined when it reaches 
steady state, and therefore, the first two terms are unimportant for our problem.

Physically, we would like to show how the Stommel model is represented in a QG formulation, especially in 
consideration that there are, most likely, interactions occurring between the bottom friction term and the eddy 
viscosity term as represented by the horizontal streamlines. Figure 2 presents the horizontal stream line fields for a 
subset of bottom friction and eddy viscosity parameter values. The three QG versions are as follows: row 2: varying 
only the Stommel related coefficient (μ), varying only the eddy viscosity term, E, and row 3: varying both of these 
terms. Each column represents a different location in the E, μ space. In general, the circulation, as shown by the 
streamlines, shows a circular pattern, with an enhanced western boundary current on the left side of each subplot. 
(Streamline values are relative, with the highest value in the centre and weakest value around the outside.) By eye, 
one might say that the Stommel solution (top row) is represented in all three versions of the QG model (rows 2, 3 
and 4).

For each case below, we follow the same steps as in Example 1, that is (i) create an emulator for the simple 
solution, given a designed set of inputs, x (length of vector =q 1) and outputs, Ys, (ii) create an emulator for the 
difference in outcomes between the simple and the complex formulations and (iii) compare the resulting emulated 
outcomes, ys to see how well the simple model represents the processes in the complex implementation. Our input 
space, x, will be sampled from possible values of μ (or k in the Stommel model). The outcomes will be the stream-
line value at =y 15axis  and =x 10axis  in the western portion of the domain near the point of the strongest flow. All 
inputs and outputs are standardized before the regression or emulator is created. For our cases, 150 points (n) 
were sampled across the input space of the QG model using values of E and μ between 0.01 and 0.05 and for the 
Stommel model, k values between 0.4e-6 and 2.5e-6. The sampling of all parameters was determined by the same 
Latin Hypercube.
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The results are given below. In Case 1, only the bottom friction parameter is varied in the QG model; in Case 2, 
only the eddy viscosity parameter is varied; and in Case 3, both the eddy viscosity parameter and bottom friction 
parameter are varied. In each case, we validate the emulator results in two ways. First, the emulator is validated by 
a ‘leave one out’ strategy. A second validation method can only be used when the simulator is cheap to run. This 
requires a sufficient size sampling of random input values to be used as inputs to the emulator and to the simulator. 
The outcomes from the emulator and the simulator can then be compared directly.

Figure 2.  Plan view of stream function for a northern hemisphere basin. Top row: Stommel model with three different values of 
bottom friction coefficient, k; second row: QG model with only the bottom friction coefficient (E) varied; third row: QG model 
varying only the eddy viscosity coefficient (μ); bottom row: QG model varying both the bottom friction and eddy viscosity terms. 
Streamlines are relative, with highest value as the centre ring and lowest value as the outside ring.
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In Case 1, as we expect with only one parameter as an input (the bottom friction), we have a linear relationship 
between the emulator estimates (ys) of the streamline and the streamline value from the Stommel model (Fig. 3a), 
with small uncertainty. The emulator, or regression, of the difference between the Stommel and the QG outcomes (d), 
given a set of bottom friction values is also respectable with low uncertainty (Fig. 3b). For the second validation, the 
sum of the two emulators, ys and d, should compare favourably the true value of the QG simulator at the sampled 
input locations (Fig. 3c). The R2 estimate, yc as compared to the truth Yc, is 0.99, allowing us to state with confidence 
that, indeed, the Stommel model is represented in the QG model response. This is expected, since the QG model at 
steady state reduces to the Stommel model if the eddy viscosity coefficient is held constant. Although unlike in the first 
example, the difference term, xd( ) is not zero. We can say that the QG implementation is following the same physics 
as the simpler Stommel model but the response is not identical.

For Case 2 (Fig. 3d and e), when only the eddy viscosity coefficient, 
β
A

L
H
3, is varied and the bottom friction term is 

zero, the emulator of the difference, d, between the Stommel and the QG outcomes has a much larger uncertainty and 
11 of the 150 ‘leave one out’ validity tests produce outcomes that are outside the range of uncertainty (52%). This 
is an acceptable emulator with a 93% confidence value, but with wide uncertainties (grey bands). However, where a 

Figure 3.  Example 2, input, x, is a set of bottom friction coefficient values, r or μ. The models’ responses, Yc and Ys, are the stream-
line values located at L0.5  (y-axis) and L0.3 , where ≈L 600 for Stommel model and =L 32 for QG model. Case 1: (a) Regression 
of Stommel model (ys) versus true values (Ys); (b) regression of difference d (Stommel model - QG model) conditioned on x; (c) 
regression yc versus QG model with only bottom friction varying (μ). Case 2: (d) Same as (b), expect only eddy viscosity coefficient, 
E, varied in Yc, and regression conditioned on x containing varying values of bottom friction (μ); (e) same as (c), Yc only varied E. 
Case 3: (f) Same as (b), but eddy viscosity (E) and bottom friction coefficients (μ) varied in QG model; (g) same as (c), except that 
eddy viscosity, E, and bottom friction coefficients, μ, varied. The circles represent the mean value from the regression model, while 
the grey line is the uncertainty in that estimate.
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set of independent sampled values, Figure 3e, with the emulated streamline values are plotted versus the true values 
from the QG model, the R2 equals 0.52. The conclusion is that the physical processes in the simulator can not be 
represented by a simple model with only varying bottom friction.

Case 3 (Fig. 3f and g) is the most realistic of all the examples as we are varying both the eddy viscosity term and 
the bottom friction term in the QG model. The terms interact such that the response is non-linear in nature. As such, 
it illustrates a case in which a climate GCM contains many more processes than a simpler formulation of a process 
contains. Again, we have both an emulator of the streamline outcomes from the simple implementation (the Stommel 
model), ys, and an emulator of the difference, d, between the streamline values of the Stommel and the QG models. 
As Figure 3f illustrates, the emulator of the differences does a fairly good job of representing the outcomes of the 
differences (16 of the 150 values fall outside of 2σ or 90% confidence level). The uncertainty bands (given by the 
grey lines in the figure) are much smaller than for Case 2. A regression between the true differences and the emulated 
differences gives an R2 value of 0.99. This is confirmed by Figure 3g using a test of a set of 150 validation points 
that gives an R2 value of 0.98. It can be confidently stated that the dynamics of the Stommel model are represented 
in the QG model.

5.  Example 3: time and space dilemma for geophysical flows

Complicating the analysis of geophysical flows is the high degrees of freedom (both in time and space) for such prob-
lem. In the second example, the outputs of the Stommel and the QG models were sampled at one location. While the 
emulated solution and comparison of the two models is an adequate analysis at one location, the following question 
arises: does the solution hold for all locations? If the answer is yes, such a solution would give more weight to the 
justification that the simple model explains to processes in the complex model. It is possible to address this question 
just by creating an emulator for each location or a subset of locations as suggested by Rougier (2008). Depending on 
the size of the problem, this approach may be time consuming. It also does not address how the outcome of a process 
in one location relates to another location. A much simpler and elegant solution is to treat the spatial and temporal 
locations as additional input parameters. Just as the process parameter space is sampled broadly, the additional 
parameters, x and y, can also be sampled. In geophysical space, processes at a location are generally highly correlated 
with its near neighbours, thus making this approach attractive.

In this third example, the models from the second example are used, but now the x and y spatial locations are 
treated as input parameters in the creation of the emulator (q the length of the vector β is 3). And, rather than just 
sampling one location, as in Example 2, the outcomes of the Stommel and QG models are sampled at different x and y 
locations with every new setting of the bottom friction or eddy viscosity parameters. In other words, just as the models 
are not run at every bottom friction or eddy viscosity value, the x y,  space does not need to be sampled everywhere. 
Again, three cases are run for the QG model: (i) varying only the bottom friction parameter, (ii) varying only the eddy 
viscosity term and (iii) varying both the bottom friction and eddy viscosity parameters. The result, shown in Figure 4, 
illustrates that the addition of the spatial parameters increases the confidence of the emulator for the first and third 
cases over just using one location (Fig. 4c and g), with R2 values of 0.92 and 0.91, respectively. For the case in which 
only the eddy viscosity term is varied, the R2 value is 0.76, For completeness, the validation (using the ‘leaveone out’ 
strategy) results in a valid emulator 97% of the time for Case 1, 93% of the time for Case 2 (but with wider uncer-
tainty) and 97% of the time for Case 3. In summary, this third example illustrates how high spatial and temporal 
dimensions might be addressed successfully.

6.  Discussion and conclusions

In the above examples, we have shown how one can use a statistical method to trace the dynamics of a rela-
tively simpler model to the dynamics of a model with more complexity. The models may or may not be models 
within the same family (e.g. CESM models of differing resolutions). We acknowledge that climate GCMs are  
orders of magnitude more complex than these examples and care needs to be taken in how the inputs are 
chosen and which climate metrics are suitable to be used in this sort of problem. The following guidelines  
are proposed.
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1.	 The input parameters need to be defined such that a wide range of values are allowed so that responses in the 
simple and complex models are variable. For example, the amount of CO2 (an absolute or percentage) applied as 
a forcing or the strength of the wind (related to CO2 uptake in the ocean).

2.	 Inputs and model responses should, each, be describing comparable physical processes in the simple and complex 
models.

3.	 The metric or model response should have a signal distinguishable from noise.
4.	 The inputs should be appropriate to the problem. For example, while the eddy viscosity coefficient is relevant for 

understanding whether or not an ocean model exhibits Munk theory circulation behaviour; on its own, the par-
ameter will not help us in understanding the climate signal in complex GCMs. For the climate problem, we might 
chose a parameter such as the depth of the mixed layer for evaluating the amount of carbon uptake.

5.	 Metrics of a single variable or a spatial variable can be considered, and examples of both have been provided. 
A broad sampling of the output is an important to accurately reflect variations in the dynamics.

6.	 Section 2 states that the inputs x and z need to be clearly separable. It is possible to examine how parameters 
affect a process and for what range of values by exploring the full parameter space, as in this example from 
Williamson et al. (2013). This initial step would identify regions of the input space x that is distinct from z for a 
given process in the complex model.

7.	 If a large number of possible dynamics are compared using these methods, the usual problems of multiple simul-
taneous statistical tests will arise. We recommend the method is only used to compare small numbers of possible 
simple dynamical models.

8.	 We have deliberately simplified our methodology for clarity. In particular, in practice, we would use more sophis-
ticated space-filling designs; maximin Latin hypercubes of even sequential designs.

Figure 4.  Example 3, input, X, is a set of bottom friction coefficient values, r or μ, and spatial location x,y. The three cases are the 
same as Figure 3, but with the added inputs of a location in x y,  space.
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There are numerous climate-based problems that would be appropriate for such an analysis. One example is illus-
trated in the following paper. Knutti and Rugenstein (2015) describe the qualitative relationships between outcomes 
from the complex CESM and a model of intermediate complexity, the ECBilt-CLIO model. CESM simulations with 
4× CO2 forcing were compared with ECBilt-CLIO simulations using a range of forcings between cooling and 16× 
CO2. In their figure 9, they illustrate the relationship between surface temperature and top-of-atmosphere radiative 
imbalance with respect to how much CO2 forcing was used. Clearly, the relationship between the surface temperature 
and the top of the atmosphere (TOA) radiative balance is similar, but not the same between the CESM and the ECBilt-
CLIO solutions. As described in this paper, to understand whether the same mechanism is functioning in both models, 
a few more simulations of CESM varying the CO2 forcing would be necessary to fully explore the response surfaces 
of the CESM and ECBilt-CLIO modules and their similarities. The next step to justifying this methodology would be 
to expand the method to more complex situations such as the example just described.

We have presented a methodology for robustly quantifying how the physics encapsulated by a simple model of 
a process may exhibit itself in another, more complex formulation. The method conclusively rejects simple phys-
ical process models that do not have the same pattern of variation as the physics of the more complex implementa-
tion, seen, for example, in the comparisons in Figures 1f and 3e where there is no significant relationship between 
the outcomes of the two models over the same input space. It has also been shown that this methodology can 
identify when a simpler physical model is, potentially, explaining the physics correctly for the more complex one. 
We have shown, when a simple formulation may be correct, the percentage of the variance of the complex model’s 
outcomes can be explained by the simple version’s mechanism. If there were multiple possible simple model pro-
cesses, the variance percentage explained can help in determining our confidence in one explanation over another.
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Appendix A. Gaussian emulator details

Equation 2 defined an emulator in a broad sense and following, now we provide the details for interested readers. We 
note that in the discussion of the emulator itself, we use the word parameter to refer to quantities intrinsic to the emula-
tor. These parameters are not related to the ‘process parameters’ that are used as inputs in our specific implementation.

The idea of using GPs to model correlated fields has a long history. One of the first references to the use of GP 
models for spatial statistics is Diggle et al. (1998), as opposed to traditional Kriging based on best linear unbiased 
estimation (BLUE) (Cressie, 1990). The development of GP emulators for computer models starts with Sacks et al.  
(1989). We assume that a stationary GP with squared exponential or Matérn covariance function fits the data and we 
assume there is some noise in the system requiring the use of a nugget term.

We use a Bayesian framework to evaluate our problem. We first define a prior for the GP. The general form of our 
prior mean function is given by:

	 β=m x h x ,( ) ( )T0 	 (A.1)

where h x( )T is a vector of q regression functions and β is a vector of q parameters. A great deal of statistical 
modelling can be done to decide on the form of the prior. For our experiment however, the mean prior function is 
represented by a simple linear function (although more complex functions can be considered):

	
== ( )h x 1 x .( )T

	 (A.2)
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Before we can determine the posterior mean we need to specify the prior on the GP. The joint distribution of any 
two points, x , x( )1 2 , is Normal with the mean given by Equation A.1 and the covariance by

	 σ χ==v x , x x , x .( ) ( )o 1 2
2

1 2 	 (A.3)

where χ x , x( )1 2  is a correlation function. For our applications, we use two different, but related, correlation func-
tions. The first example uses a Gaussian correlation function: − − −e x x B x x( ( ) ( ))T

1 2 1 2 . B is a matrix of smoothing parameters 
set to be diagonal. This gives a very smooth emulator, i.e. all derivatives exist.

In the second and third examples, the correlation function is the Matérn. The general form is as follows:
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ν ν
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	 (A.4)

where xj i,  is the ith parameter for a given location j, bii is the smoothing parameter in that dimension, q is the num-
ber of parameters, νK  is a modified Bessel function (with its arguments following in the brackets) and Γ is the Gamma 
function. We have set ν equal to 3/2. This gives much less smooth realizations of our GP, only the first two derivatives 
exist. Each matrix entry, bii, is a smoothing parameter for an input and / b1 iis are the correlation length scales where 
the off-diagonal values equal zero. For details on GPs, see Rasmussen and Williams (2006).

Since these methods are Bayesian, they can incorporate expert knowledge (prior knowledge) to define prior dis-
tributions of β, σ 2 and B. If we wished to include such prior information, it would be gathered from experts with 
knowledge of the simulator of interest (O’Hagan et al., 2006). For our test problem, we assume we do not have any 
prior knowledge of how the simulator behaves and use a linear prior and a Gaussian covariance function with non-
informative priors for mo and σ 2. This has the advantage that the posterior of the parameters β and σ 2 can be derived 
analytically (Oakley and O’Hagan, 2004).

B is estimated by maximizing the marginal likelihood, i.e. we estimate the length scales ( / b1 iis) by determining 
their most probable values, given the model output. This is not a fully Bayesian analysis. For a true Bayesian analysis, 
B would also be allocated a prior and a method such as Markov Chain Monte Carlo would be used to generate the 
posterior distributions. In using maximum likelihood, we underestimate the uncertainty, but it is believed that this is 
small and full Bayesian analysis is rarely done in problems such as these (Bayarri et al., 2007).

To restate, we form the posterior distribution by combining the prior mean function with the results of the simu-
lation runs (Y) in the realization of the emulator. The regression functions associated with the vector β are used to 
determine the prior form, f x( ), initially, and the GP model determines the systematic variation of the outcome around 
the values of Y, and thus, defining the posterior mean function. To clarify, the posterior mean function, ∗m x( ), is 
not equal to the prior mean function, m x( )o . Rather, it is a combination of the m x( )o , the prior covariance function: 
v x , x( )o 1 2 , and the model output Y.

The formal expression for the posterior mean is defined as follows:

	 β β= + −∗ −^ ^m x h x t x A Y H( ) ( ) ( ) ( ),T T 1
	 (A.5)

where β = − − −^ H A H H A Y( )T T1 1 1 , A is a ×n n covariance matrix between the design points S and t is the ×n 1 vector of 
covariances between the input x and S. H ( ×n q) is the matrix of the prior mean function evaluated at the design points 
S. The first term on the right hand side, β̂h x( )T , is determined from the linear prior mean with respect to the outputs 
Y and is simply a regression function. The first term is modified by the relationships between the different simulator 
outcomes, Y, and our new point, x (second term). Note that we have set up the problem so that the emulator estimates 
are equal to the model output Y at the corresponding input locations. As we move away from where we have run the 
model the second term goes to zero and the emulator reverts to the form of the prior.

We can also calculate a posterior covariance term:

	

σ χ== −− ++
− ∗
−

−−∗

−

− − −

^v (x , x ) [ (x , x ) t(x ) A t(x )

h x t x A H

H A H h x t x A H
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	 (A.6)
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where σ β β= − − − −− −^ ^ ^n q Y H A Y H( 2) ( ) ( )T2 1 1 . This posterior covariance term gives us information about the dif-
ference in form between the mean posterior and the mean prior function. The first term within the brackets on the 
right side of the equation, χ x x( , )1 2 , is the correlation function dependent on the different inputs. The second term, 

−t x A t x( ) ( )T
1 2

1 , is due to correlation of Y at an input location and its associated predicted emulator outcome with the 
training set. The third term, − ∗ −− − − −h x t x A H H A H h x t x A H( ( ) ( ) ) ( ) ( ( ) ( ) )T T T T T T

1 1 2 2
1 1 1 1 , is a covariance quantity related to 

the residuals from the mean posterior function, the regression function.
For further details on the GP emulators, see Oakley and O’Hagan (2004) or the Managing Uncertainty in Complex 

Models (MUCM) website at mucm.ac.uk. The advantage of using an emulator is that it is very quick to evaluate and 
can be used instead of the expensive full simulator for inference. A simple, illustrative, but very non-linear example of 
a simulator/emulator system is described in Tokmakian et al. (2012).
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